A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, and G. Varoquaux, Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning, MICCAI, pp.607-2013
DOI : 10.1007/978-3-642-40763-5_75

URL : https://hal.archives-ouvertes.fr/hal-00853242

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Alexandre Gramfort, Bertrand Thirion, and Gaël Varoquaux. Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics, vol.8, 2014.

K. Alaerts, G. Daniel, J. Woolley, A. D. Steyaert, . Martino et al., Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism, Social Cognitive and Affective Neuroscience, vol.9, issue.10, p.156, 2013.
DOI : 10.1093/scan/nst156

L. Andrew, . Alexander, M. Jee-eun-lee, R. Lazar, M. B. Boudos et al., Diffusion tensor imaging of the corpus callosum in Autism, Neuroimage, vol.34, issue.1, pp.61-73, 2007.

S. Jeffrey, J. A. Anderson, . Nielsen, A. Michael, . Ferguson et al., Abnormal Brain Synchrony in Down Syndrome, NeuroImage: Clinical, 2013.

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, issue.0, pp.40-79, 2010.
DOI : 10.1214/09-SS054

URL : https://hal.archives-ouvertes.fr/hal-00407906

. American-psychiatric-association, Diagnostic and statistical manual of mental disorders (4th ed., text rev.; DSM?IV?TR). Washington, DC: American psychiatric association, 2000. learning functional brain atlases modeling inter-subject variability 100

. American-psychiatric-association, Diagnostic and statistical manual of mental disorders, 2013.
DOI : 10.1176/appi.books.9780890425596

L. Baldassarre, J. Mourao-miranda, and M. Pontil, Structured Sparsity Models for Brain Decoding from fMRI Data, 2012 Second International Workshop on Pattern Recognition in NeuroImaging, pp.5-8, 2012.
DOI : 10.1109/PRNI.2012.31

S. Baron-cohen, A. M. Leslie, and U. Frith, Does the autistic child have a ???theory of mind??? ?, Cognition, vol.21, issue.1, pp.37-46, 1985.
DOI : 10.1016/0010-0277(85)90022-8

A. Beck and M. Teboulle, Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems, IEEE Transactions on Image Processing, vol.18, issue.11, pp.2419-2434, 2009.
DOI : 10.1109/TIP.2009.2028250

C. F. Beckmann and S. M. Smith, Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging, IEEE Transactions on Medical Imaging, vol.23, issue.2, pp.137-152, 2004.
DOI : 10.1109/TMI.2003.822821

Y. Behzadi, K. Restom, J. Liau, and T. T. Liu, A component based noise correction method (CompCor) for BOLD and perfusion based fMRI, NeuroImage, vol.37, issue.1, p.90, 2007.
DOI : 10.1016/j.neuroimage.2007.04.042

T. Blumensath, E. Mike, and . Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, vol.27, issue.3, p.265, 2009.
DOI : 10.1016/j.acha.2009.04.002

T. Blumensath, T. Behrens, and S. Smith, Resting-State FMRI Single Subject Cortical Parcellation Based on Region Growing, pp.188-195, 2012.
DOI : 10.1007/978-3-642-33418-4_24

N. Boddaert, N. Chabane, C. Gervais, . Good, M. Bourgeois et al., Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study, NeuroImage, vol.23, issue.1, pp.364-369, 2004.
DOI : 10.1016/j.neuroimage.2004.06.016

N. Boddaert, M. Zilbovicius, A. Philipe, L. Robel, M. Bourgeois et al., MRI Findings in 77 Children with Non-Syndromic Autistic Disorder, PLoS ONE, vol.43, issue.2, p.4415, 2009.
DOI : 10.1371/journal.pone.0004415.t003

URL : https://hal.archives-ouvertes.fr/hal-00805387

S. Boyd and L. Vandenberghe, Convex optimization

K. Brodmann, Vergleichende Lokalisationslehre der Groshirnrinde, 1909.

V. Ariane, Z. Buescher, M. Cidav, . Knapp, S. David et al., Costs of autism spectrum disorders in the United Kingdom and the United States, JAMA pediatrics, vol.168, issue.8, pp.721-728, 2014.

D. Vince, J. Calhoun, K. Sui, J. Kiehl, E. Turner et al., Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder, Frontiers in psychiatry, vol.2, 2011.

Q. Cao, Y. Zang, L. Sun, M. Sui, X. Long et al., Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study, NeuroReport, vol.17, issue.10, pp.171033-1036, 2006.
DOI : 10.1097/01.wnr.0000224769.92454.5d

J. Carp, The secret lives of experiments: Methods reporting in the fMRI literature, NeuroImage, vol.63, issue.1, pp.289-300, 2012.
DOI : 10.1016/j.neuroimage.2012.07.004

F. Manuel, . Casanova, A. Imke, . Van-kooten, E. Andrew et al., Minicolumnar abnormalities in autism, Acta neuropathologica, vol.112, issue.3, pp.287-303, 2006.

A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An introduction to total variation for image analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery, pp.263-340, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00437581

P. Colleen, . Chen, L. Christopher, A. Keown, A. Jahedi et al., Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism, NeuroImage: Clinical, 2015.

G. Chen, D. Ward, C. Xie, W. Li, Z. Wu et al., Classification of Alzheimer Disease, Mild Cognitive Impairment, and Normal Cognitive Status with Large-Scale Network Analysis Based on Resting-State Functional MR Imaging, Radiology, vol.259, issue.1, pp.213-221, 2011.
DOI : 10.1148/radiol.10100734

L. Vladimir, . Cherkassky, K. Rajesh, . Kana, A. Timothy et al., Functional connectivity in a baseline resting-state network in autism, Neuroreport, vol.17, issue.16, pp.1687-1690, 2006.

N. John, . Constantino, P. Christian, and . Gruber, The social responsiveness scale

E. Courchesne, C. Karns, . Hr-davis, . Ziccardi, . Carper et al., Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study, Neurology, vol.57, issue.2, pp.245-254, 2001.
DOI : 10.1212/WNL.57.2.245

R. Cameron-craddock, A. James, E. Paul, . Holtzheimer, P. Xiaoping et al., A whole brain fMRI atlas generated via spatially learning functional brain atlases modeling inter-subject variability 102

R. C. Craddock, P. E. Holtzheimer, I. , X. P. Hu, and H. S. Mayberg, Disease state prediction from resting state functional connectivity, Disease state prediction from resting state functional connectivity, p.1619, 2009.
DOI : 10.1002/mrm.22159

R. William, O. Crum, . Camara, L. Derek, and . Hill, Generalized overlap measures for evaluation and validation in medical image analysis, Medical Imaging IEEE Transactions on, vol.25, issue.11, pp.1451-1461, 2006.

S. Jessica, . Damoiseaux, E. Katherine, . Prater, L. Bruce et al., Functional connectivity tracks clinical deterioration in Alzheimer's disease, Neurobiology of aging, vol.33, issue.4, pp.828-847, 2012.

I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden et al., Independent component analysis for brain fMRI does not select for independence, Proceedings of the National Academy of Sciences, vol.106, issue.26, p.10415, 2009.
DOI : 10.1073/pnas.0903525106

S. Rahul, F. Desikan, B. Ségonne, . Fischl, T. Brian et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage, p.31968, 2006.

A. D. Martino, C. Kelly, R. Grzadzinski, M. Xi-nian-zuo, M. A. Mennes et al., Aberrant Striatal Functional Connectivity in Children with Autism, Biological Psychiatry, vol.69, issue.9, pp.847-856, 2011.
DOI : 10.1016/j.biopsych.2010.10.029

A. D. Martino, Q. Chao-gan-yan, E. Li, . Denio, X. Francisco et al., The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism, Molecular Psychiatry, vol.3, issue.6, pp.659-667, 2014.
DOI : 10.1007/s12021-012-9151-4

B. Egaas, E. Courchesne, and O. Saitoh, Reduced Size of Corpus Callosum in Autism, Archives of Neurology, vol.52, issue.8, pp.794-801, 1995.
DOI : 10.1001/archneur.1995.00540320070014

A. G. Garrity, G. D. Pearlson, K. Mckiernan, D. Lloyd, K. A. Kiehl et al., Aberrant" default mode

E. Glerean, R. Kumar-pan, J. Salmi, R. Kujala, J. Lahnakoski et al., Reorganization of functionally connected brain subnetworks in high-functioning autism. arXiv preprint, learning functional brain atlases modeling inter-subject variability 103

C. Goutte, P. Toft, E. Rostrup, Å. Finn, L. K. Nielsen et al., On Clustering fMRI Time Series, NeuroImage, vol.9, issue.3, pp.298-310, 1999.
DOI : 10.1006/nimg.1998.0391

L. Grady, Random walks for image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.28, issue.11, pp.1768-1783, 2006.

A. Gramfort, B. Thirion, and G. Varoquaux, Identifying Predictive Regions from fMRI with TV-L1 Prior, 2013 International Workshop on Pattern Recognition in Neuroimaging, pp.17-20, 2013.
DOI : 10.1109/PRNI.2013.14

URL : https://hal.archives-ouvertes.fr/hal-00839984

M. Greicius, Resting-state functional connectivity in neuropsychiatric disorders, Current Opinion in Neurology, vol.24, issue.4, p.424, 2008.
DOI : 10.1097/WCO.0b013e328306f2c5

M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI, Proceedings of the National Academy of Sciences, p.4637, 2004.
DOI : 10.1073/pnas.0308627101

S. Haar, S. Berman, M. Behrmann, and I. Dinstein, Anatomical abnormalities in autism? Cerebral Cortex, p.242, 2014.

J. Paul-hamilton, G. Chen, E. Moriah, . Thomason, E. Mirra et al., Investigating neural primacy in Major Depressive Disorder: multivariate Granger causality analysis of resting-state fMRI time-series data, Molecular Psychiatry, vol.46, issue.7, pp.763-772, 2011.
DOI : 10.1038/mp.2010.46

H. C. Hazlett, H. Gu, C. Robert, . Mckinstry, W. Dennis et al., Brain Volume Findings in 6-Month-Old Infants at High Familial Risk for Autism, American Journal of Psychiatry, vol.169, issue.6, 2012.
DOI : 10.1176/appi.ajp.2012.11091425

M. Herbert, C. Da-ziegler, . Deutsch, . Lm-o-'brien, . Lange et al., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys, Brain, vol.126, issue.5, pp.1182-1192, 2003.
DOI : 10.1093/brain/awg110

C. Honey, . Sporns, . Cammoun, . Gigandet, . Thiran et al., Predicting human resting-state functional connectivity from structural connectivity, Proceedings of the National Academy of Sciences, vol.106, issue.6, p.2035, 2009.
DOI : 10.1073/pnas.0811168106

S. Jane, C. R. Howard, . Sparkman, G. Howard, G. Cohen et al., A comparison of intensive behavior analytic and eclectic treatments for young children with autism, pp.359-383, 2005.

T. Iidaka, A. Matsumoto, J. Nogawa, Y. Yamamoto, and N. Sadato, Frontoparietal Network Involved in Successful Retrieval from Episodic Memory. Spatial and Temporal Analyses Using fMRI and ERP, Cerebral Cortex, vol.16, issue.9
DOI : 10.1093/cercor/bhl040

J. Madiha, . Jafri, D. Godfrey, M. Pearlson, . Stevens et al., A method for functional network connectivity among spatially independent resting-state components in schizophrenia, Neuroimage, vol.39, issue.4, pp.1666-1681, 2008.

K. Järbrink, The economic consequences of autistic spectrum disorder among children in a Swedish municipality, Autism, vol.14, issue.1, pp.453-463, 2007.
DOI : 10.1177/1362361307079602

R. Jenatton, G. Obozinski, and F. Bach, Structured sparse principal component analysis, Proc. AISTATS, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00414158

J. Joormann, H. Ian, and . Gotlib, Updating the contents of working memory in depression: Interference from irrelevant negative material., Journal of Abnormal Psychology, vol.117, issue.1, p.182, 2008.
DOI : 10.1037/0021-843X.117.1.182

M. Adam-just, L. Vladimir, . Cherkassky, A. Timothy, . Keller et al., Functional and Anatomical Cortical Underconnectivity in Autism: Evidence from an fMRI Study of an Executive Function Task and Corpus Callosum Morphometry, Cerebral Cortex, vol.17, issue.4, pp.951-961, 2007.
DOI : 10.1093/cercor/bhl006

L. Kanner, Autistic disturbances of affective contact. publisher not identified, 1943.

C. Kelly, X. Zuo, K. Gotimer, C. L. Cox, L. Lynch et al., Reduced Interhemispheric Resting State Functional Connectivity in Cocaine Addiction, Biological Psychiatry, vol.69, issue.7, pp.69684-692, 2011.
DOI : 10.1016/j.biopsych.2010.11.022

P. Daniel, E. Kennedy, E. Redcay, and . Courchesne, Failing to deactivate: resting functional abnormalities in autism, Proceedings of the National Academy of Sciences, pp.8275-8280, 2006.

V. Kiviniemi, T. Starck, and J. Remes, Functional segmentation of the brain cortex using high model order group PICA, Human Brain Mapping, vol.447, issue.12, pp.3865-3886, 2009.
DOI : 10.1002/hbm.20813

M. Natalia, R. Kleinhans, . Müller, N. David, E. Cohen et al., Atypical functional lateralization of language in autism spectrum disorders, Brain research, vol.1221, pp.115-125, 2008.

M. Kowalski, Sparse regression using mixed norms, Applied and Computational Harmonic Analysis, vol.27, issue.3, pp.303-324, 2009.
DOI : 10.1016/j.acha.2009.05.006

URL : https://hal.archives-ouvertes.fr/hal-00202904

N. Kriegeskorte, R. Goebel, and P. Bandettini, Information-based functional brain mapping, Proceedings of the National Academy of Sciences, vol.103, issue.10, pp.3863-3868, 2006.
DOI : 10.1073/pnas.0600244103

S. Laconte, J. Anderson, S. Muley, J. Ashe, S. Frutiger et al., The evaluation of preprocessing learning functional brain atlases modeling inter-subject variability 105

D. Lashkari, E. Vul, N. Kanwisher, and P. Golland, Discovering structure in the space of fMRI selectivity profiles, NeuroImage, vol.50, issue.3, p.1085, 2010.
DOI : 10.1016/j.neuroimage.2009.12.106

A. Le-couteur, M. Rutter, C. Lord, P. Rios, S. Robertson et al., Autism diagnostic interview: A standardized investigator-based instrument, Journal of Autism and Developmental Disorders, vol.26, issue.2, pp.363-387, 1989.
DOI : 10.1007/BF02212936

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, p.365, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, vol.401, pp.788-791, 1999.

A. Lefebvre, A. Beggiato, T. Bourgeron, and R. Toro, Neuroanatomical Diversity of Corpus Callosum and Brain Volume in Autism: Meta-analysis, Analysis of the Autism Brain Imaging Data Exchange Project, and Simulation, Biological Psychiatry, vol.78, issue.2, 2015.
DOI : 10.1016/j.biopsych.2015.02.010

H. Liu, Z. Liu, M. Liang, Y. Hao, L. Tan et al., Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study, NeuroReport, vol.17, issue.1, pp.19-22, 2006.
DOI : 10.1097/01.wnr.0000195666.22714.35

Y. Liu, K. Wang, Y. Chunshui, Y. He, Y. Zhou et al., Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies, Neuropsychologia, vol.46, issue.6, pp.461648-1656, 2008.
DOI : 10.1016/j.neuropsychologia.2008.01.027

C. Lord, Follow-Up of Two-Year-Olds Referred for Possible Autism, Journal of Child Psychology and Psychiatry, vol.33, issue.8, 1995.
DOI : 10.1007/BF01046106

C. Lord, Unweaving the Autism Spectrum, Cell, vol.147, issue.1, pp.24-25, 2011.
DOI : 10.1016/j.cell.2011.09.017

C. Lord, M. Rutter, S. Goode, J. Heemsbergen, H. Jordan et al., Austism diagnostic observation schedule: A standardized observation of communicative and social behavior, Journal of Autism and Developmental Disorders, vol.20, issue.2, pp.185-212, 1989.
DOI : 10.1007/BF02211841

C. Lord, H. Edwin, . Cook, L. Bennett, . Leventhal et al., Autism Spectrum Disorders, Neuron, vol.28, issue.2, pp.355-363, 2000.
DOI : 10.1016/S0896-6273(00)00115-X

URL : https://hal.archives-ouvertes.fr/inserm-00723650

J. Linda, H. Lotspeich, C. M. Kwon, . Schumann, L. Susanna et al., Investigation of Neuroanatomical Differences learning functional brain atlases modeling inter-subject variability 106

P. Martinsson, V. Rokhlin, and M. Tygert, A randomized algorithm for the decomposition of matrices, Applied and Computational Harmonic Analysis, vol.30, issue.1, p.47, 2011.
DOI : 10.1016/j.acha.2010.02.003

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, Total Variation Regularization for fMRI-Based Prediction of Behavior, IEEE Transactions on Medical Imaging, vol.30, issue.7, pp.1328-1340, 2011.
DOI : 10.1109/TMI.2011.2113378

S. Christopher, . Monk, J. Scott, J. L. Peltier, S. Wiggins et al., Abnormalities of intrinsic functional connectivity in autism spectrum disorders, Neuroimage, vol.47, issue.2, pp.764-772, 2009.

M. B. Nebel, A. Eloyan, D. Anita, . Barber, H. Stewart et al., Precentral gyrus functional connectivity signatures of autism, Frontiers in Systems Neuroscience, vol.13, issue.69, 2014.
DOI : 10.1111/j.1460-9568.2001.01385.x

B. Ng, M. Dressler, G. Varoquaux, J. Baptiste-poline, M. Greicius et al., Transport on Riemannian Manifold for Functional Connectivity-Based Classification, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2014, pp.405-412, 2014.
DOI : 10.1007/978-3-319-10470-6_51

URL : https://hal.archives-ouvertes.fr/hal-01058521

A. Jared, . Nielsen, A. Brandon, T. Zielinski, . Fletcher et al., Multisite functional connectivity MRI classification of autism: ABIDE results, Frontiers in human neuroscience, 2013.

A. Nieto-castanon, S. Satrajit, J. A. Ghosh, . Tourville, H. Frank et al., Region of interest based analysis of functional imaging data, NeuroImage, vol.19, issue.4
DOI : 10.1016/S1053-8119(03)00188-5

J. Paakki, J. Rahko, X. Long, I. Moilanen, O. Tervonen et al., Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders, Brain Research, vol.1321, pp.169-179, 2010.
DOI : 10.1016/j.brainres.2009.12.081

J. Saskia, . Palmen, E. Hilleke, C. Hulshoff-pol, . Kemner et al., Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder, Psychological medicine, issue.04, pp.35561-570, 2005.

F. Pedregosa, G. Varoquaux, A. Gramfort, and V. Michel, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, p.2825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

D. Pfitzner, R. Leibbrandt, and D. Powers, Characterization and evaluation of similarity measures for pairs of clusterings, Knowledge and Information Systems, vol.8, issue.3, pp.361-394, 2009.
DOI : 10.1007/s10115-008-0150-6

J. Piven, J. Bailey, J. Bonnie, S. Ranson, and . Arndt, An MRI study of the corpus callosum in autism, American Journal of Psychiatry, vol.154, issue.8, pp.1051-1056, 1997.

M. Plitt, K. A. Barnes, and A. Martin, Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards, NeuroImage: Clinical, vol.7, 2014.
DOI : 10.1016/j.nicl.2014.12.013

D. Jonathan, . Power, L. Alexander, . Cohen, M. Steven et al., Functional network organization of the human brain, Neuron, vol.72, issue.4, pp.665-678, 2011.

D. Jonathan, . Power, A. Kelly, . Barnes, Z. Abraham et al., Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion, Neuroimage, vol.59, issue.3, pp.2142-2154, 2012.

M. E. Raichle, Two views of brain function, Trends in Cognitive Sciences, vol.14, issue.4, p.180, 2010.
DOI : 10.1016/j.tics.2010.01.008

S. Ray, M. Miller, S. Karalunas, C. Robertson, S. David et al., Structural and functional connectivity of the human brain in autism spectrum disorders and attention-deficit/hyperactivity disorder: A rich club-organization study, Human Brain Mapping, vol.8, issue.3, pp.356032-6048, 2014.
DOI : 10.1002/hbm.22603

J. Richiardi, H. Eryilmaz, S. Schwartz, P. Vuilleumier, and D. Van-de-ville, Decoding brain states from fMRI connectivity graphs, NeuroImage, vol.56, issue.2, 2010.
DOI : 10.1016/j.neuroimage.2010.05.081

I. Leonid, S. Rudin, E. Osher, and . Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1, pp.259-268, 1992.

W. W. Seeley, R. K. Crawford, J. Zhou, B. L. Miller, and M. D. Greicius, Neurodegenerative Diseases Target Large-Scale Human Brain Networks, Neuron, vol.62, issue.1, p.42, 2009.
DOI : 10.1016/j.neuron.2009.03.024

R. William, H. Shirer, . Jiang, M. Collin, B. Price et al., Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination, NeuroImage, 2015.

W. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. Greicius, Decoding Subject-Driven Cognitive States with Whole-Brain Connectivity Patterns, Cerebral Cortex, vol.22, issue.1, p.158, 2012.
DOI : 10.1093/cercor/bhr099

S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox et al., Correspondence of the brain's functional architecture during activation and rest, Proceedings of the National Academy of Sciences, vol.106, issue.31, p.13040, 2009.
DOI : 10.1073/pnas.0905267106

S. M. Smith, K. L. Miller, G. Salimi-khorshidi, M. Webster, C. F. Beckmann et al., Network modelling methods for FMRI, NeuroImage, vol.54, issue.2, p.875, 2011.
DOI : 10.1016/j.neuroimage.2010.08.063

S. Sara, . Sparrow, V. Domenic, . Cicchetti, A. David et al., The vineland adaptive behavior scales. Major psychological assessment instruments, pp.199-231, 1989.

L. Wendy, . Stone, B. Evon, L. Lee, J. Ashford et al., Can autism be diagnosed accurately in children under 3 years, Journal of Child Psychology and Psychiatry, issue.02, pp.40219-226, 1999.

S. C. Strother, J. Anderson, L. K. Hansen, U. Kjems, R. Kustra et al., The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework, NeuroImage, vol.11, issue.5
DOI : 10.1016/S1053-8119(00)91523-4

K. Supekar, Q. Lucina, A. Uddin, J. Khouzam, . Phillips et al., Brain Hyperconnectivity in Children with Autism and its Links to Social Deficits, Cell Reports, vol.5, issue.3, pp.738-747, 2013.
DOI : 10.1016/j.celrep.2013.10.001

B. Thirion, G. Varoquaux, E. Dohmatob, and J. Poline, Which fMRI clustering gives good brain parcellations? Frontiers in neuroscience, 2014.

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard et al., Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain, NeuroImage, vol.15, issue.1, p.273, 2002.
DOI : 10.1006/nimg.2001.0978

K. R. Van-dijk, M. R. Sabuncu, and R. L. Buckner, The influence of head motion on intrinsic functional connectivity MRI, NeuroImage, vol.59, issue.1, p.431, 2012.
DOI : 10.1016/j.neuroimage.2011.07.044

G. Varoquaux and C. Craddock, Learning and comparing functional connectomes across subjects, NeuroImage, vol.80, p.405, 2013.
DOI : 10.1016/j.neuroimage.2013.04.007

URL : https://hal.archives-ouvertes.fr/hal-00812911

G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion, Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling, MICCAI 2010a. learning functional brain atlases modeling inter-subject variability 109, pp.200-208
DOI : 10.1007/978-3-642-15705-9_25

URL : https://hal.archives-ouvertes.fr/inria-00512417

G. Varoquaux, M. Keller, J. B. Poline, P. Ciuciu, and B. Thirion, ICA-based sparse features recovery from fMRI datasets, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, p.1177, 2010.
DOI : 10.1109/ISBI.2010.5490204

G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. B. Poline et al., A group model for stable multi-subject ICA on fMRI datasets, NeuroImage, vol.51, issue.1
DOI : 10.1016/j.neuroimage.2010.02.010

URL : https://hal.archives-ouvertes.fr/hal-00489507

G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion, Multisubject dictionary learning to segment an atlas of brain spontaneous activity, Inf Proc Med Imag, pp.562-573, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00588898

G. Varoquaux and B. Thirion, How machine learning is shaping cognitive neuroimaging, GigaScience, vol.3, issue.1, pp.28-2014
DOI : 10.1186/2047-217X-3-28

URL : https://hal.archives-ouvertes.fr/hal-01094737

S. Judith, N. Verhoeven, E. Rommel, A. Prodi, I. Leemans et al., Is there a common neuroanatomical substrate of language deficit between autism spectrum disorder and specific language impairment?, Cerebral Cortex, issue.10, pp.222263-2271, 2012.

N. X. Vinh, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.2837-2854, 2010.
DOI : 10.1145/1553374.1553511

D. Wechsler, Wechsler intelligence scale for children, 1949.

S. Whitfield-gabrieli and A. Nieto-castanon, : A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks, Brain Connectivity, vol.2, issue.3, pp.125-141, 2012.
DOI : 10.1089/brain.2012.0073

L. Wing and J. Gould, Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification, Journal of Autism and Developmental Disorders, vol.6, issue.1, pp.11-29, 1979.
DOI : 10.1007/BF01531288

C. Chao-gan-yan, X. Craddock, Y. Zuo, . Zang, P. Michael et al., Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes, Neuroimage, vol.80, pp.246-262, 2013.

Z. Yao, L. Wang, Q. Lu, H. Liu, and G. Teng, Regional homogeneity in depression and its relationship with separate depressive symptom clusters: A resting-state fMRI study, Journal of Affective Disorders, vol.115, issue.3, pp.430-438, 2009.
DOI : 10.1016/j.jad.2008.10.013

B. T. Yeo, F. M. Krienen, J. Sepulcre, and M. R. Sabuncu, The organization of the human cerebral cortex estimated by intrinsic functional connectivity, J Neurophysio, vol.106, p.1125, 2011.

Y. Zang, T. Jiang, and Y. Lu, Regional homogeneity approach to fMRI data analysis, NeuroImage, vol.22, issue.1, pp.394-400, 2004.
DOI : 10.1016/j.neuroimage.2003.12.030

Y. Zhou, M. Liang, L. Tian, K. Wang, Y. Hao et al., Functional disintegration in paranoid schizophrenia using resting-state fMRI, Schizophrenia Research, vol.97, issue.1-3, pp.194-205, 2007.
DOI : 10.1016/j.schres.2007.05.029

C. Xi-nian-zuo, A. D. Kelly, M. Martino, . Mennes, S. Daniel et al., Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy, The Journal of neuroscience, issue.45, pp.3015034-15043, 2010.