E. Abraham, G. Rigo, G. Szekely, R. Nagy, C. Koncz et al., Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis, Plant Molecular Biology, vol.51, issue.3, pp.363-372, 2003.
DOI : 10.1023/A:1022043000516

M. Aggarwal, S. Sharma, N. Kaur, D. Patahnia, K. Bhandhari et al., Exogenous Proline Application Reduces Phytotoxic Effects of Selenium by Minimising Oxidative stress and Improves Growth in Bean (Phaseolus vulgaris L.) Seedlings, Biological Trace Element Research, vol.164, issue.3, pp.354-367, 2011.
DOI : 10.1007/s12011-010-8699-9

P. Ahmad, C. Jaleel, M. Salem, G. Nabi, and S. Sharma, Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress, Critical Reviews in Biotechnology, vol.53, issue.1, pp.161-75, 2010.
DOI : 10.4161/psb.3.2.5303

Q. Ali, M. Ashraf, and H. U. Athar, Exogenously applied proline at different growth stages enhances growth of two maize cultivars grown under water deficit conditions

Q. Ali, M. Ashraf, M. Shahbaz, and H. Humera, Ameliorating effect of foliar applied proline on nutrient uptake in water stressed maize (Zea mays L.) plants, Pak J Bot, vol.40, pp.211-220, 2008.

A. M. Matysik and J. , Effect of proline on the production of singlet oxygen, Amino Acids, vol.21, pp.195-200, 2001.

A. P. Mohanty, P. Matysik, and J. , Effect of proline on the production of singlet oxygen, Amino Acids, vol.21, pp.195-200, 2001.

A. P. Pardha, S. P. Mohanty, and P. , Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage, Biochemical Biophysical Research Communication, vol.181, pp.1238-1244, 1991.

A. A. Alves and T. L. Setter, Abscisic acid accumulation and osmotic adjustment in cassava under water deficit, Environmental and Experimental Botany, vol.51, issue.3, pp.259-279, 2004.
DOI : 10.1016/j.envexpbot.2003.11.005

M. Ashraf and M. R. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environmental and Experimental Botany, vol.59, issue.2, pp.206-216, 2007.
DOI : 10.1016/j.envexpbot.2005.12.006

N. J. Atkinson and P. E. Urwin, The interaction of plant biotic and abiotic stresses: from genes to the field, Journal of Experimental Botany, vol.63, issue.10, pp.3523-3543, 2012.
DOI : 10.1093/jxb/ers100

C. Bailly, A. Benamar, F. Corbineau, and D. Côme, Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging, Physiologia Plantarum, vol.14, issue.1, pp.104-110, 1996.
DOI : 10.1016/0003-9861(68)90654-1

M. N. Banu, M. A. Hoque, M. Watanabe-sugimoto, K. Matsuoka, Y. Nakamura et al., Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress, Journal of Plant Physiology, vol.166, issue.2, pp.146-56, 2009.
DOI : 10.1016/j.jplph.2008.03.002

C. Bartoli, C. Casalongue, M. Simontacchi, B. Márquez-garcía, and C. Foyer, Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress, Environmental and Experimental Botany, vol.94, 2012.
DOI : 10.1016/j.envexpbot.2012.05.003

L. S. Bates, R. P. Waldren, and I. D. Teare, Rapid determination of free proline for water-stress studies, Plant and Soil, vol.94, issue.1, pp.205-207, 1973.
DOI : 10.1007/BF00018060

C. L. Beadle, Growth analysis, 1993.

D. O. Hall and J. M. Scurloc, Bolharwhereas complex II is protected by proline and betaine, Plant Physiol, vol.126, pp.1266-1274, 2001.

J. Hanson, M. Hanssen, A. Wiese, M. Hendriks, and S. Smeekens, The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2, The Plant Journal, vol.136, issue.6, pp.935-949, 2008.
DOI : 10.1111/j.1365-313X.2007.03385.x

F. S. Hao, J. Zhang, Z. Yu, and J. Chen, Involvement of NADPH oxidase NtrbohD in the rapid production of H2O2 induced by ABA in cultured tobacco cell line BY-2, Progress in Natural Science, vol.18, issue.3, pp.267-71, 2008.
DOI : 10.1016/j.pnsc.2007.10.003

P. D. Hare, W. A. Cress, and J. Van-staden, Dissecting the roles of osmolyte accumulation during stress, Plant, Cell and Environment, vol.98, issue.6, pp.535-553, 1998.
DOI : 10.1016/S0168-9452(97)00174-X

P. D. Hare, W. A. Cress, and J. Van-staden, Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves, South African Journal of Botany, vol.68, issue.3, pp.393-396, 2002.
DOI : 10.1016/S0254-6299(15)30405-1

P. D. Hare, W. A. Cress, and J. Van-staden, The effects of exogenous proline and proline analogues on in vitro shoot organogenesis in Arabidopsis, Plant Growth Regulation, vol.34, issue.2, pp.203-207, 2001.
DOI : 10.1023/A:1013326526875

F. Hayashi, T. Ichino, R. Osanai, and K. Wada, Oscillation and Regulation of Proline Content by P5CS and ProDH Gene Expressions in the Light/Dark Cycles in Arabidopsis thaliana L., Plant and Cell Physiology, vol.41, issue.10, pp.1096-1101, 2000.
DOI : 10.1093/pcp/pcd036

S. Hayat, Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel et al., Role of proline under changing environments, Plant Signaling & Behavior, vol.17, issue.11, pp.1-11, 2012.
DOI : 10.1093/pcp/pcg066

I. Hebbelmann, J. Selinski, C. Wehmeyer, T. Goss, I. Voss et al., Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase, Journal of Experimental Botany, vol.63, issue.3, 2012.
DOI : 10.1093/jxb/err386

J. Hernandez, D. Rio, L. Sevilla, and F. , (L.) Walp., New Phytologist, vol.3, issue.Suppl, pp.37-44, 1994.
DOI : 10.1111/j.1469-8137.1994.tb07527.x

URL : https://hal.archives-ouvertes.fr/hal-01337126

M. Hernandez, N. Fernandez-garcia, P. Diaz-vivancos, and E. Olmos, A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots, Journal of Experimental Botany, vol.61, issue.2, pp.521-556, 2010.
DOI : 10.1093/jxb/erp321

E. J. Hewitt, Sand and water culture methods used in the study of plant nutrition, Commonwealth Bureau of Horticulture. Tech Rep, vol.22, pp.431-446, 1960.

Z. Hong, K. Lakkineni, Z. Zhang, and D. P. Verma, -Pyrroline-5-Carboxylate Synthetase Results in Increased Proline Accumulation and Protection of Plants from Osmotic Stress, Plant Physiology, vol.122, issue.4, pp.1129-1136, 2000.
DOI : 10.1104/pp.122.4.1129

URL : https://hal.archives-ouvertes.fr/jpa-00209838

M. A. Hoque, M. N. Banu, Y. Nakamura, Y. Shimoishi, and Y. Murata, Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities, Journal of Plant Physiology, vol.164, issue.5, pp.553-561, 2007.
DOI : 10.1016/j.jplph.2006.03.010

M. A. Hoque, M. N. Banu, Y. Nakamura, Y. Shimoishi, Y. Murata et al., Exogenous proline mitigates the detrimental effects of salt stress more than the betaine by increasing, NADPH oxidase AtRbohD and AtRbohF genes function in ROSdependent ABA signalling in Arabidopsis, 2007.

D. W. Lawlor, Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP, Annals of Botany, vol.89, issue.7, 2002.
DOI : 10.1093/aob/mcf110

Y. Lei, C. Yin, J. Ren, and C. Li, Effect of osmotic stress and sodium nitroprusside pretreatment on proline metabolism of wheat seedlings, Biologia Plantarum, vol.28, issue.2, pp.386-390, 2007.
DOI : 10.1007/s10535-007-0082-0

Y. Leshem, L. Seri, and A. Levine, Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance, The Plant Journal, vol.6, issue.2, pp.185-197, 2007.
DOI : 10.1111/j.1365-313X.2007.03134.x

L. Li and H. Yi, Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants, Plant Physiology and Biochemistry, vol.58, pp.46-53, 2012.
DOI : 10.1016/j.plaphy.2012.06.009

Y. Li, Y. Liu, and J. Zhang, Advances in the research on the AsA-GSH cycle in horticultural crops, Frontiers of Agriculture in China, vol.14, issue.3, pp.84-90, 2010.
DOI : 10.1007/s11703-009-0089-8

H. K. Lichtenthaler, [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods in enzymology, pp.350-382, 1987.
DOI : 10.1016/0076-6879(87)48036-1

H. K. Lichtenthaler, Vegetation Stress: an Introduction to the Stress Concept in Plants, Journal of Plant Physiology, vol.148, issue.1-2, pp.4-14, 1996.
DOI : 10.1016/S0176-1617(96)80287-2

J. Liu and J. K. Zhu, Proline Accumulation and Salt-Stress-Induced Gene Expression in a Salt-Hypersensitive Mutant of Arabidopsis, Plant Physiology, vol.114, issue.2, pp.591-596, 1997.
DOI : 10.1104/pp.114.2.591

L. Ma, H. Zhang, L. Sun, Y. Jiao, G. Zhang et al., NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress, Journal of Experimental Botany, vol.63, issue.1, pp.305-317, 2012.
DOI : 10.1093/jxb/err280

J. Maksimovic, J. Zhang, F. Zeng, B. Ziivanovic, L. Shabala et al., Linking oxidative and salinity stress tolerance in barley: can root antioxidant enzyme activity be used as a measure of stress tolerance?, Plant and Soil, vol.29, issue.1-2, pp.141-55, 2013.
DOI : 10.1007/s11104-012-1366-5

J. P. Martinez, S. Lutts, A. Schanck, M. Bajji, and J. M. Kinet, Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L?, Journal of Plant Physiology, vol.161, issue.9, pp.1041-1051, 2004.
DOI : 10.1016/j.jplph.2003.12.009

N. Arabidopsis, AtrbohD and AtrbohF, are essential for jasmonic acidinduced expression of genes regulated by MYC2 transcription factor, Plant Science, vol.180, pp.655-660

J. Matysik, B. Alai, and P. Mohanty, Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plans, Curentr Science, vol.82, pp.525-532, 2002.

K. Maxwell and G. N. Johnson, Chlorophyll fluorescence?a practical guide, Journal of Experimental Botany, vol.51, pp.659-668, 2000.

W. Megdiche, B. Amor, N. Debez, A. Hessini, K. Ksouri et al., Physiological and biochemical traits involved in the genotypic variability to salt tolerance of Tunisian Cakile maritima, African Journal of Ecology, vol.47, pp.774-783, 2009.

G. Miller, K. Schlauch, R. Tam, D. Cortes, M. Torres et al., The plant NADPH oxidase RBOHD mediates rapid systemic signalling in response to diverse stimuli, Sci Signal, vol.2, p.45, 2009.

G. Miller, N. Suzuki, S. Ciftci-yilmaz, and R. Mittler, Reactive oxygen species homeostasis and signalling during drought and salinity stresses, Plant, Cell & Environment, vol.136, issue.4, pp.453-367, 2011.
DOI : 10.1111/j.1365-3040.2009.02041.x

G. Miller, A. Honig, H. Stein, N. Suzuki, R. Mittler et al., Unraveling ??1-Pyrroline-5-Carboxylate-Proline Cycle in Plants by Uncoupled Expression of Proline Oxidation Enzymes, Journal of Biological Chemistry, vol.284, issue.39, pp.26482-26492, 2009.
DOI : 10.1074/jbc.M109.009340

S. Mishra and R. S. Dubey, Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant, Journal of Plant Physiology, vol.163, issue.9, pp.927-936, 2006.
DOI : 10.1016/j.jplph.2005.08.003

R. Mittler, S. Vanderauwera, M. Gollery, and F. Van-breusegem, Reactive oxygen gene network of plants, Trends in Plant Science, vol.9, issue.10, pp.490-98, 2004.
DOI : 10.1016/j.tplants.2004.08.009

R. Mittler and B. Zilinskas, Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase, J Biol Chem, vol.267, pp.21802-21809, 1992.

H. B. Molinari, C. J. Marur, E. Daros, M. K. De-campos, and J. F. De-carvalho, Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress, Physiologia Plantarum, vol.74, issue.2, pp.218-229, 2007.
DOI : 10.1016/S0168-9452(98)00175-7

S. Morita, H. Kaminaka, T. Masumura, and K. Tanaka, Induction of Rice Cytosolic Ascorbate Peroxidase mRNA by Oxidative Stress; the Involvement of Hydrogen Peroxide in Oxidative Stress Signalling, Plant and Cell Physiology, vol.40, issue.4, pp.417-439, 1999.
DOI : 10.1093/oxfordjournals.pcp.a029557

R. Munns and M. Tester, Mechanisms of Salinity Tolerance, Annual Review of Plant Biology, vol.59, issue.1, pp.651-681, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092911

P. Mylona and A. Polidoros, ROS regulation of antioxidant genes Reactive oxygen species and antioxidants in higher plants. USA: Science Publishers, pp.101-127, 2010.

Y. Nakano and K. Asada, Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant and Cell Physiology, vol.22, pp.867-880, 1981.

K. Nakashima, Y. Ito, and K. Yamaguchi-shinozaki, Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses, PLANT PHYSIOLOGY, vol.149, issue.1, pp.88-89, 2009.
DOI : 10.1104/pp.108.129791

M. Nam, S. Huh, K. Kim, W. Park, J. Seo et al., Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice, Proteome Science, vol.10, issue.1, p.25, 2012.
DOI : 10.1186/1477-5956-10-25

T. Nanjo, M. Kobayashi, Y. Yoshiba, Y. Sanada, K. Wada et al., Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana, The Plant Journal, vol.217, issue.2, pp.185-193, 1999.
DOI : 10.1046/j.1365-313X.1995.07050751.x

E. Okuma, Y. Murakami, Y. Shimoishi, M. Tada, and Y. Murata, Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions, Soil Science and Plant Nutrition, vol.11, issue.8, pp.1301-1305, 2004.
DOI : 10.2135/cropsci1993.0011183X003300030023x

K. Oracz, H. El-maarouf-bouteau, I. Kranner, R. Bogatek, F. Corbineau et al., The Mechanisms Involved in Seed Dormancy Alleviation by Hydrogen Cyanide Unravel the Role of Reactive Oxygen Species as Key Factors of Cellular Signaling during Germination, PLANT PHYSIOLOGY, vol.150, issue.1, pp.494-505, 2009.
DOI : 10.1104/pp.109.138107

M. Ozden, U. Demirel, and A. Kahraman, Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H 2 O 2 . Sci. Hortic-Amsterdam, pp.163-168, 2009.

E. Parre, M. Ghars, A. Leprince, L. Thiery, D. Lefebvre et al., Calcium Signaling via Phospholipase C Is Essential for Proline Accumulation upon Ionic But Not Nonionic Hyperosmotic Stresses in Arabidopsis, PLANT PHYSIOLOGY, vol.144, issue.1, pp.503-515, 2007.
DOI : 10.1104/pp.106.095281

G. M. Pastori and C. H. Foyer, Common Components, Networks, and Pathways of Cross-Tolerance to Stress. The Central Role of "Redox" and Abscisic Acid-Mediated Controls, PLANT PHYSIOLOGY, vol.129, issue.2, pp.460-468, 2002.
DOI : 10.1104/pp.011021

Z. Peng, Q. Lu, and D. P. Verma, Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants, Mol Gen Genet, vol.253, pp.334-375, 1996.

V. D. Petrov and F. Van-bresegem, Hydrogen peroxide--a central hub for information flow in plant cells, AoB Plants, vol.2012, issue.0, 2012.
DOI : 10.1093/aobpla/pls014

J. M. Phang and W. Liu, Proline metabolism and cancer, Frontiers in Bioscience, vol.17, issue.1, pp.1835-1845, 2012.
DOI : 10.2741/4022

J. M. Phang, The Regulatory Functions of Proline and Pyrroline-5-carboxylic Acid, 1985.
DOI : 10.1016/B978-0-12-152825-6.50008-4

L. Pnueli, L. Hongjian, and R. Mittler, Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants, The Plant Journal, vol.85, issue.2, pp.187-203, 2003.
DOI : 10.1105/tpc.10.9.1539

M. Pogany, U. Von-rad, S. Grun, A. Dongo, A. Pintye et al., Dual Roles of Reactive Oxygen Species and NADPH Oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem, PLANT PHYSIOLOGY, vol.151, issue.3, pp.1459-1475, 2009.
DOI : 10.1104/pp.109.141994

L. Rizhsky, S. Davletova, H. Liang, and R. Mittler, The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress in Arabidopsis, Journal of Biological Chemistry, vol.279, issue.12, pp.11736-11779, 2004.
DOI : 10.1074/jbc.M313350200

L. Rizhsky, E. Hallak-herr, F. Van-breusegem, S. Rachmilevitch, S. Rodermel et al., Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase, The Plant Journal, vol.11, issue.3, pp.329-342, 2002.
DOI : 10.1046/j.1365-313X.2002.01427.x

M. Romero-puertas, I. Mccarthy, L. Sandalio, J. Palma, F. Corpas et al., Cadmium Toxicity and Oxidative Metabolism of Pea Leaf Peroxisomes, Free Radical Research, vol.31, issue.sup1, pp.25-31, 1999.
DOI : 10.1080/10715769900301281

Y. Saidi, A. Finka, and P. Goloubinoff, Heat perception and signalling in plants: a tortuous path to thermotolerance, New Phytologist, vol.456, issue.3, pp.556-65, 2011.
DOI : 10.1111/j.1469-8137.2010.03571.x

M. Santos, H. Gousseau, C. Lister, C. Foyer, G. Creissen et al., Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family, Planta, vol.198, issue.1, pp.64-73, 1996.
DOI : 10.1007/BF00197587

R. Satoh, Y. Fujita, K. Nakashima, K. Shinozaki, and K. Y. Yamaguchi-shinozaki, A Novel Subgroup of bZIP Proteins Functions as Transcriptional Activators in Hypoosmolarity-Responsive Expression of the ProDH Gene in Arabidopsis, Plant and Cell Physiology, vol.45, issue.3, pp.309-317, 2004.
DOI : 10.1093/pcp/pch036

R. Satoh, K. Nakashima, M. Seki, K. Shinozaki, and K. Yamaguchi-shinozaki, ACTCAT, a Novel cis-Acting Element for Proline- and Hypoosmolarity-Responsive Expression of the ProDH Gene Encoding Proline Dehydrogenase in Arabidopsis, PLANT PHYSIOLOGY, vol.130, issue.2, pp.709-719, 2002.
DOI : 10.1104/pp.009993

A. Savouré, X. Hua, N. Bertauche, M. Van-montagu, and N. Verbruggen, Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana, Molecular and General Genetics MGG, vol.254, issue.1, pp.104-109, 1997.
DOI : 10.1007/s004380050397

J. Scandalios, Oxygen Stress and Superoxide Dismutases, Plant Physiology, vol.101, issue.1, pp.7-12, 1993.
DOI : 10.1104/pp.101.1.7

B. Schobert and H. Tschesche, Unusual solution properties of proline and its interaction with proteins, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.541, issue.2, pp.270-277, 1978.
DOI : 10.1016/0304-4165(78)90400-2

M. Senthil-kumar and K. S. Mysore, Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response, Plant, Cell & Environment, vol.23, issue.7, pp.1329-1343, 2012.
DOI : 10.1111/j.1365-3040.2012.02492.x

C. Servet, T. Ghelis, L. Richard, A. Zilberstein, and A. Savouré, Proline dehydrogenase: a key enzyme in controlling cellular homeostasis, Frontiers in Bioscience, vol.17, issue.1, pp.607-620, 2012.
DOI : 10.2741/3947

M. Shaddad, The effect of proline application on the physiology ofraphanus sativus plants grown under salinity stress, Biologia Plantarum, vol.66, issue.2, pp.104-112, 1990.
DOI : 10.1007/BF02897548

S. Sharma and P. Verslues, Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery, Plant, Cell & Environment, vol.53, issue.11, pp.1838-1851, 2010.
DOI : 10.1111/j.1365-3040.2010.02188.x

S. Sharma, J. Villamor, and P. Verslues, Essential Role of Tissue-Specific Proline Synthesis and Catabolism in Growth and Redox Balance at Low Water Potential, Plant Physiology, vol.157, issue.1, pp.292-304, 2011.
DOI : 10.1104/pp.111.183210

S. S. Sharma, H. Schat, and R. Vooijs, In vitro alleviation of heavy metal-induced enzyme inhibition by proline, Phytochemistry, vol.49, issue.6, pp.1531-1536, 1998.
DOI : 10.1016/S0031-9422(98)00282-9

K. Shetty, Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental applications: a review, Process Biochemistry, vol.39, issue.7, pp.789-803, 2004.
DOI : 10.1016/S0032-9592(03)00088-8

S. Signorelli, J. B. Arellano, T. B. Melø, O. Borsani, and J. Monza, Proline does not quench singlet oxygen: Evidence to reconsider its protective role in plants, Plant Physiology and Biochemistry, vol.64, pp.80-83, 2013.
DOI : 10.1016/j.plaphy.2012.12.017

S. Signorelli, E. Casaretto, M. Sainz, P. Díaz, J. Monza et al., Antioxidant and photosystem II responses contribute to explain the drought???heat contrasting tolerance of two forage legumes, Plant Physiology and Biochemistry, vol.70, pp.195-203, 2013.
DOI : 10.1016/j.plaphy.2013.05.028

S. Signorelli, E. L. Coitiðo, O. Borsani, J. Monza, S. Siripornadulsil et al., OH Radicals and Proline: Insights on the Role as Reactive Oxygen Species Scavenger in Plant Stress, The Journal of Physical Chemistry B, vol.118, issue.1, pp.37-47, 2002.
DOI : 10.1021/jp407773u

D. S. Skopelitis, N. V. Paranychianakis, K. A. Paschalidis, E. D. Pliakonis, I. D. Delis et al., Abiotic Stress Generates ROS That Signal Expression of Anionic Glutamate Dehydrogenases to Form Glutamate for Proline Synthesis in Tobacco and Grapevine, THE PLANT CELL ONLINE, vol.18, issue.10, pp.2767-2781, 2006.
DOI : 10.1105/tpc.105.038323

I. Slama, D. Messedi, T. Ghnaya, A. Savouré, and C. Abdelly, Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum, Environmental and Experimental Botany, vol.56, issue.3, pp.231-238, 2006.
DOI : 10.1016/j.envexpbot.2005.02.007

N. Smirnoff and Q. J. Cumbes, Hydroxyl radical scavenging activity of compatible solutes, Phytochemistry, vol.28, issue.4, pp.1057-1060, 1989.
DOI : 10.1016/0031-9422(89)80182-7

A. Solomon, S. Beer, Y. Waisel, and L. G. Paleg, Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes, Physiologia Plantarum, vol.74, issue.1, pp.198-204, 1994.
DOI : 10.1146/annurev.arplant.39.1.533

K. Sorkheh, B. Shiran, . Khodambashi, V. Rouhi, S. Mosavei et al., Exogenous proline alleviates the effects of H2O2-induced oxidative stress in wild almond species, Russian Journal of Plant Physiology, vol.59, issue.6, pp.788-798, 2012.
DOI : 10.1134/S1021443712060167

N. Strizhov, E. Abraham, L. Okresz, S. Blickling, A. Zilberstein et al., Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis, The Plant Journal, vol.12, issue.3, pp.557-569, 1997.
DOI : 10.1111/j.0960-7412.1997.00557.x

N. Suzuki, S. Koussevitzky, R. Mittler, and G. Miller, ROS and redox signalling in the response of plants to abiotic stress, Plant, Cell & Environment, vol.7, issue.2, pp.259-70, 2012.
DOI : 10.1111/j.1365-3040.2011.02336.x

L. Szabados and A. Savouré, Proline: a multifunctional amino acid, Trends in Plant Science, vol.15, issue.2, pp.89-97, 2010.
DOI : 10.1016/j.tplants.2009.11.009

J. Tan, H. Zhao, J. Hong, Y. Han, H. Li et al., Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress, World J. Agric, 2008.

Y. Tsai, C. Hong, L. Liu, and C. Kao, Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2, Journal of Plant Physiology, vol.162, issue.3, pp.291-300, 2005.
DOI : 10.1016/j.jplph.2004.06.004

N. Verbruggen, X. Hua, M. May, and M. Van-montagu, Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator., Proceedings of the National Academy of Sciences, vol.93, issue.16, pp.8787-8791, 1996.
DOI : 10.1073/pnas.93.16.8787

P. E. Verslues and S. Sharma, Proline metabolism and its implications for plantenvironment interaction, p.140, 2010.

S. Agarwal, J. Zhu, and J. Zhu, Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status, Plant J, vol.45, pp.523-539, 2006.

P. E. Verslues, Y. S. Kim, and J. K. Zhu, Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant, Plant Molecular Biology, vol.102, issue.1-2, pp.205-217, 2007.
DOI : 10.1007/s11103-007-9145-z

P. E. Verslues and S. Sharma, Proline metabolism and its implications for plantenvironment interaction, p.140, 2010.

J. F. Wen, M. Gong, Y. Liu, J. L. Hu, and M. H. Deng, Effect of hydrogen peroxide on growth and activity of some enzymes involved in proline metabolism of sweet corn seedlings under copper stress, Scientia Horticulturae, vol.164, pp.366-371, 2013.
DOI : 10.1016/j.scienta.2013.09.031

J. E. Werner and R. R. Finkelstein, Arabidopsis mutants with reduced response to NaCl and osmotic stress, Physiologia Plantarum, vol.95, issue.4, pp.659-666, 1995.
DOI : 10.1016/0168-9452(87)90104-X

S. J. Wi, N. Ji, and K. Park, Synergistic Biosynthesis of Biphasic Ethylene and Reactive Oxygen Species in Response to Hemibiotrophic Phytophthora parasitica in Tobacco Plants, PLANT PHYSIOLOGY, vol.159, issue.1, pp.251-65, 2012.
DOI : 10.1104/pp.112.194654

Y. J. Xie, S. Xu, B. Han, M. Z. Wu, X. X. Yuan et al., Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis, The Plant Journal, vol.136, issue.2, pp.280-292, 2011.
DOI : 10.1111/j.1365-313X.2011.04488.x

Y. Xing, W. Jia, and J. Zhang, AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis, Journal of Experimental Botany, vol.58, issue.11, pp.2969-81, 2007.
DOI : 10.1093/jxb/erm144

J. Xu, H. X. Yin, and X. Li, Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L., Plant Cell Reports, vol.16, issue.2, pp.325-358, 2009.
DOI : 10.1007/s00299-008-0643-5

S. Xu, H. Ding, F. Su, A. Zhang, and M. Jiang, Involvement of Protein Phosphorylation in Water Stress-induced Antioxidant Defense in Maize Leaves, Journal of Integrative Plant Biology, vol.53, issue.7, pp.654-62, 2009.
DOI : 10.1111/j.1744-7909.2009.00844.x

M. Yamada, H. Morishita, K. Urano, N. Shiozaki, Y. S. Kazuko et al., Effects of free proline accumulation in petunias under drought stress, Journal of Experimental Botany, vol.56, issue.417, pp.1975-1981, 2005.
DOI : 10.1093/jxb/eri195

Z. Yan, S. Guo, S. Shu, J. Sun, and T. Tezuka, Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress, Afr. J. Biotechnol, vol.10, pp.18381-18390, 2011.

S. L. Yang, S. S. Lan, and M. Gong, Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings, Journal of Plant Physiology, vol.166, issue.15, pp.1694-1699, 2009.
DOI : 10.1016/j.jplph.2009.04.006

Y. Yoshiba, T. Kiyosue, T. Katagiri, H. Ueda, T. Mizoguchi et al., Correlation between the induction of a gene for Delta1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress, The Plant Journal, vol.7, issue.5, pp.751-760, 1995.
DOI : 10.1046/j.1365-313X.1995.07050751.x

K. Zarse, S. Schmeisser, M. Groth, S. Priebe, G. Beuster et al., Impaired Insulin/IGF1 Signaling Extends Life Span by Promoting Mitochondrial L-Proline Catabolism to Induce a Transient ROS Signal, Cell Metabolism, vol.15, issue.4, pp.451-465, 2012.
DOI : 10.1016/j.cmet.2012.02.013

A. Zhang, M. Jiang, J. Zhang, H. Ding, S. Xu et al., Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves, New Phytologist, vol.46, issue.1, pp.36-50, 2007.
DOI : 10.1146/annurev.arplant.53.091401.143329

C. S. Zhang, Q. Lu, and D. P. Verma, Removal of Feedback Inhibition of ??1-Pyrroline-5-carboxylate Synthetase, a Bifunctional Enzyme Catalyzing the First Two Steps of Proline Biosynthesis in Plants, Journal of Biological Chemistry, vol.270, issue.35, pp.20491-20496, 1995.
DOI : 10.1074/jbc.270.35.20491

L. P. Zhang, S. K. Mehta, Z. P. Liu, and Z. M. Yang, Copper-Induced Proline Synthesis is Associated with Nitric Oxide Generation in Chlamydomonas reinhardtii, Plant and Cell Physiology, vol.49, issue.3, pp.411-419, 2008.
DOI : 10.1093/pcp/pcn017

Y. Zhang, H. Zhu, Q. Zhang, M. Li, M. Yan et al., Phospholipase D??1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis, THE PLANT CELL ONLINE, vol.21, issue.8, pp.2357-2377, 2009.
DOI : 10.1105/tpc.108.062992

M. G. Zhao, L. Chen, L. L. Zhang, and W. H. Zhang, Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis, PLANT PHYSIOLOGY, vol.151, issue.2, pp.755-767, 2009.
DOI : 10.1104/pp.109.140996

Q. Zhao, D. Yu, H. Chang, X. Guo, C. Yuan et al., Regulation and function of Arabidopsis AtGALK2 gene in abscisic acid response signaling, Molecular Biology Reports, vol.4, issue.11, pp.11033-11046, 1007.
DOI : 10.1007/s11033-013-2773-2

J. Zhou, X. Xia, Y. Zhou, K. S. Chen, Z. Yu et al., production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato, Journal of Experimental Botany, vol.65, issue.2, pp.595-607, 2014.
DOI : 10.1093/jxb/ert404

J. Zhu, Plant salt tolerance, Trends in Plant Science, vol.6, issue.2, pp.66-73, 2001.
DOI : 10.1016/S1360-1385(00)01838-0