A. Annexe, Complexes d'accords définis par une relation d'équivalence K T

A. Annexe, Complexes d'accords définis par une relation d'équivalence K T, pp.0-12, 2000.

A. Annexe, Complexes d'accords définis par une relation d'équivalence K TI

A. Annexe, Complexes d'accords définis par une relation d'équivalence K TI, 2000.

A. Annexe, Complexes d'accords définis par une relation d'équivalence K M

A. Annexe, Complexes d'accords définis par une relation d'équivalence

L. Bigo and A. Spicher, Self-Assembly of Musical Representations in MGS, International Journal of Unconventional Computing, p.2013
URL : https://hal.archives-ouvertes.fr/hal-01106878

[. Bigo, A. Spicher, and O. Michel, Spatial Programming for Music Representation and Analysis, 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshop, 2010.
DOI : 10.1109/SASOW.2010.22

URL : https://hal.archives-ouvertes.fr/hal-01161288

[. Bigo, A. Spicher, and O. Michel, Two Representations of Music Computed with a Spatial Programming Language, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01161289

[. Bigo, J. Giavitto, and A. Spicher, Building Topological Spaces for Musical Objects Mathematics and Computation in Music, 2011.

L. Bigo, J. Garcia, A. Spicher, and W. E. Mackay, PaperTonnetz : Music Composition with Interactive Paper
URL : https://hal.archives-ouvertes.fr/hal-00837640

L. Bigo and A. Spicher, Self-Assembly of Musical Representations in MGS. Artificial Intelligence and Simulation of Behaviour Convention, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01106878

[. Bigo, J. Giavitto, and A. Spicher, Spatial Programming for Musical Transformations and Harmonization. Spatial Computing Workshop, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925767

L. Bigo, M. Andreatta, J. Giavitto, and A. Spicher, Computation and Visualization of Musical Structures in Chord-Based Simplicial Complexes, Mathematics and Computation in Music, 2013.
DOI : 10.1007/978-3-642-39357-0_3

URL : https://hal.archives-ouvertes.fr/hal-00925748

J. Garcia, L. Bigo, A. Spicher, and W. E. Mackay, PaperTonnetz, CHI '13 Extended Abstracts on Human Factors in Computing Systems on, CHI EA '13, 2013.
DOI : 10.1145/2468356.2479608

URL : https://hal.archives-ouvertes.fr/hal-00837640

L. Conférences, A. Bigo, O. Spicher, and . Michel, Diérentes utilisation de l'espace en musique à l'aide d'un langage de programmation dédié au calcul spatial, 2011.

D. Bibliographie-harold-abelson, D. Allen, C. Coore, G. Hanson, . Homsy et al., Amorphous computing, Communications of the ACM, vol.43, issue.5, pp.74-82, 2000.
DOI : 10.1145/332833.332842

M. Leonard, Y. Adlemannew, and . Washington-, Molecular computation of solutions to combinatorial problems, SCIENCE, pp.1021-1021, 1994.

C. Agon, OpenMusic : Un langage visuel pour la composition musicale assistee par ordinateur, 1998.

A. , G. Albini, and S. Antonini, Hamiltonian cycles in the topological dual of the tonnetz, Mathematics and Computation in Music, pp.1-10

]. M. Andreatta and C. Agon, Implementing algebraic methods in Open- Music, Proceedings of the International Computer Music Conference, 2003.

]. T. Bergstrom, K. Karahalios, and J. C. Hart, Isochords, Proceedings of Graphics Interface 2007 on , GI '07, pp.297-304, 2007.
DOI : 10.1145/1268517.1268565

C. Stephen and . Brown, Dual Interval Space in Twentieth-Century Music, Music Theory Spectrum, vol.25, issue.1, pp.35-57, 2003.

]. Callender, I. Quinn, and D. Tymoczko, Generalized Voice-Leading Spaces, Science, vol.320, issue.5874, pp.346-348, 2008.
DOI : 10.1126/science.1153021

]. Chouvel, Analyser l'harmonie ? aux fronti??res de la tonalit??, Musurgia, vol.XVIII, issue.1, pp.109-143, 2009.
DOI : 10.3917/musur.111.0065

]. Chouvel, Au-delà du système tonal, 2009.

]. Chouvel, Traversée du vent et de la lumière. Six remarques pour une phénoménologie de la création musicale, pp.17-133, 2009.

L. Richard and . Cohn, The dramatization of hypermetric conflicts in the Scherzo of Beethoven's Ninth Symphony, 19th-century Music, vol.15, issue.3, pp.188-206, 1992.

]. Cohn, Maximally Smooth Cycles, Hexatonic Systems, and the Analysis of Late-Romantic Triadic Progressions, Music Analysis, vol.15, issue.1, pp.9-40, 1996.
DOI : 10.2307/854168

]. Cohn, Neo-Riemannian Operations, Parsimonious Trichords, and Their "Tonnetz" Representations, Journal of Music Theory, vol.41, issue.1, pp.1-66, 0118.
DOI : 10.2307/843761

]. Cohn, Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective, Journal of Music Theory, vol.42, issue.2, pp.167-180, 1998.
DOI : 10.2307/843871

]. Cohn, Audacious euphony : Chromatic harmony and the triad's second nature, pp.20-92, 2012.

J. De-hon-andré-de-hon, F. Giavitto, and . Gruau, Computing media and languages for space-oriented computation, numéro 06361 de Dagsthul Seminar Proceedings, Dagsthul, pp.3-8, 2006.

J. Douthett and P. Steinbach, Parsimonious Graphs: A Study in Parsimony, Contextual Transformations, and Modes of Limited Transposition, Journal of Music Theory, vol.42, issue.2, pp.241-263, 1998.
DOI : 10.2307/843877

R. Egli, F. Neil, and . Stewart, Chain models in computer simulation, Mathematics and Computers in Simulation, vol.66, issue.6, pp.449-468, 2004.
DOI : 10.1016/j.matcom.2004.02.017

]. J. Garcia, T. Tsandilas, C. Agon, and W. Mackay, InkSplorer : Exploring Musical Ideas on Paper and Computer, Proceedings of New Interfaces for Musical Expression, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00600083

]. I. Gent, T. Walsh, I. Hnich, and I. Miguel, CSPLib : a problem library for constraints, 2011.

]. Giavitto, O. Michel, and J. Sansonnet, Groupbased fields, Parallel Symbolic Languages and Systems, pp.209-214, 1996.

]. Giavitto and O. Michel, Data Structure as Topological Spaces, Proceedings of the 3nd International Conference on Unconventional Models of Computation UMC02, pp.137-150, 2002.
DOI : 10.1007/3-540-45833-6_12

]. Giavitto, Topological Collections, Transformations and Their Application to the Modeling and the Simulation of Dynamical Systems, Rewriting Technics and Applications (RTA'03), volume LNCS 2706 of LNCS, pp.208-233, 2003.
DOI : 10.1007/3-540-44881-0_16

J. Giavitto and A. Spicher, Systems self-assembly : multidisciplinary snapshots, chapitre Simulation of self-assembly processes using abstract reduction systems, pp.199-223, 2008.

]. Guntram, Bibliographie en relation avec ce travail Generic software components for scientific computing, 2000.

W. Paul, S. Holland, and . Leinhardt, Transitivity in structural models of small groups, Comparative Group Studies, 1971.

]. S. Holland, Learning with Harmony Space : an overview, Music Education : An Artificial Intelligence Perspective, pp.24-40, 1994.

A. Jaap and . Kaandorp, Modelling growth forms of biological objects using fractals, 1994.

A. Vladimir and . Kovalevsky, Geometry of locally finite spaces. Editing House Dr, Baerbel Kovalevski, 2008.

]. C. Letondal, W. E. Mackay, and N. Donin, Paperoles et musique, Proceedings of the 19th International Conference of the Association Francophone d'Interaction Homme-Machine on, IHM '07, pp.167-174, 2007.
DOI : 10.1145/1541436.1541469

URL : https://hal.archives-ouvertes.fr/hal-01106308

M. Lindley and R. Turner-smith, Mathematical models of musical scales : A new approach, 1993.

]. B. Lisper, On the relation between functional and data-parallel programming languages, Proc. of the 6th. Int. Conf. on Functional Languages and Computer Architectures, 1993.

]. B. Lisper and J. Collard, Extent analysis of data fields, Royal Institute of Technology, 1994.
DOI : 10.1007/3-540-58485-4_42

]. Mandereau, D. Ghisi, E. Amiot, M. Andreatta, and C. Agon, Discrete phase retrieval in musical structures, Journal of Mathematics and Music, vol.51, issue.2, pp.99-116, 2011.
DOI : 10.1023/A:1005907024475

URL : https://hal.archives-ouvertes.fr/hal-00664787

]. Masson, Nouveau traité des règles pour la composition de la musique, 1971.

D. Steven-maupin, B. Gerhard, and . Park, Isomorphic tessellations for musical keyboards, Proceedings of Sound and Music Computing Conference, pp.471-478, 2011.

]. O. Michel, Design and implementation of 81/2, a declarative data-parallel language, Computer Languages. special issue on Parallel Logic Programming, vol.223, issue.2, pp.165-179, 1996.

]. Michel, Représentations dynamiques de l'espace dans un langage déclaratif de simulation, 1996.

O. Michel, A. Spicher, and J. Giavitto, Rule-based programming for integrative biological modeling, Natural Computing, vol.14, issue.3, pp.865-889, 2008.
DOI : 10.1007/s11047-008-9105-9

URL : https://hal.archives-ouvertes.fr/hal-00644440

R. Morris and D. Starr, The Structure of All-Interval Series, Journal of Music Theory, vol.18, issue.2, pp.364-389, 1974.
DOI : 10.2307/843642

]. R. Morris, Composition with pitch-classes : a theory of compositional design, p.83, 1987.

R. James and . Munkres, Elements of algebraic topology, p.31, 1984.

S. Richard, V. Palmer, and . Shapiro, Chain Models of Physical Behavior for Engineering Analysis and Design, Research in Engineering Design, vol.5, pp.161-184, 1993.

L. Samuel-peltier, P. Fuchs, and . Lienhardt, Simploidals sets: Definitions, operations and comparison with simplicial sets, Discrete Applied Mathematics, vol.157, issue.3, pp.542-557, 2009.
DOI : 10.1016/j.dam.2008.05.032

P. and G. Perle, Serial Composition and Atonality, Music Educators Journal, vol.49, issue.1, 1972.
DOI : 10.2307/3389785

]. A. Prechtl, A. J. Milne, S. Holland, R. Laney, and D. B. Sharp, A MIDI Sequencer That Widens Access to the Compositional Possibilities of Novel Tunings, Computer Music Journal, vol.18, issue.1, pp.42-54, 2012.
DOI : 10.1080/07494468900640071

L. David and . Reiner, Enumeration in Music Theory, The American Mathematical Monthly, vol.92, issue.1, pp.51-54, 1985.

M. Andreatta, Using Formal Concept Analysis to Represent Chroma Systems, Mathematics and Computation in Music, pp.189-200, 2013.

]. Shapiro, J. Farin, M. Hoschek, and . Kim, Solid Modeling, 2001.
DOI : 10.1016/B978-044451104-1/50021-6

A. Spicher, O. Michel, and J. Giavitto, Understanding the dynamics of biological systems, chapitre Interaction-based simulations for Integrative Spatial Systems Biology, pp.195-231, 2011.

A. Tausz, M. Vejdemo-johansson, and H. Adams, JavaPlex : A research software package for persistent (co)homologySoftware available at http://code.google.com/javaplex, pp.33-133, 2011.

]. J. Thiebaut, P. G. Healey, N. B. Kinns, and Q. Mary, Drawing Electroacoustic Music, Proceedings of Internationnal Computer Music Conference, 2008.

D. Tymoczko, Geometrical Methods in Recent Music Theory, Music Theory Online, vol.16, issue.1, 2010.

E. Valencia and J. Giavitto, Algebraic topology for knowledge representation in analogy solving, European Conference on Artificial Intelligence (ECAI98), pp.88-92, 1998.

H. C. John and . Whitehead, Combinatorial homotopy II, Bull. Am. Math. Soc, issue.55, pp.453-496, 1949.

]. M. Wright and A. Freed, Open sound control : A new protocol for communicating with sound synthesizers, Bibliographie en relation avec ce travail Proceedings of the 1997 International Computer Music Conference, pp.101-104, 1997.