S. Singh and C. Coqueret, Histoire des codes secrets : de l' ´ Egypte des PharaonsàPharaonsà l'ordinateur quantique, 2001.

E. Maiwald, Fundamentals of Network Security, p.9780072230932, 2004.

A. Kerckhoffs, La cryptographie militaire, Journal des sciences militaires, pp.5-38, 1883.

P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems, CRYPTO'96 Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology, pp.104-113
DOI : 10.1007/3-540-68697-5_9

N. Koh, Equations system coming from weil descent and subexponential attack for algebraic curve cryptosystem. Cryptology ePrint Archive, 2013.

S. Chari, J. R. Rao, and P. Rahatgi, Template Attacks, Cryptographic Hardware and Embedded Systems -CHES, pp.13-28, 2002.
DOI : 10.1007/3-540-36400-5_3

J. Bajard, L. Didier, and P. Kornerup, An RNS Montgomery modular multiplication algorithm, IEEE Transactions on Computers, vol.47, issue.7, pp.766-776, 1998.
DOI : 10.1109/12.709376

P. L. Montgomery, Modular multiplication without trial division, Mathematics of Computation, vol.44, issue.170, 1985.
DOI : 10.1090/S0025-5718-1985-0777282-X

W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6
DOI : 10.1109/TIT.1976.1055638

J. M. Pollard, A monte carlo method for factorization, BIT, vol.29, issue.129, pp.331-334, 1975.
DOI : 10.1007/BF01933667

H. Cohen, A course in computational algebraic number theory, 1996.
DOI : 10.1007/978-3-662-02945-9

R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, vol.21, issue.2, pp.120-126, 1978.
DOI : 10.1145/359340.359342

C. Pomerance, Analysis and comparison of some integer factoring algorithms. Computational Methods in Number Theory, pp.89-139, 1982.

D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography, 2004.

D. J. Bernstein and T. Lange, Explicit-formulas database. Website. URL https

M. Joye, Fast point multiplication on elliptic curves without precomputation . 2nd International Workshop, WAIFI, pp.33-46, 2008.

H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiaion using mixed coordinates, International Conference on the Theory and Application of Cryptology and Information, pp.51-65, 1998.

N. P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace One, Journal of Cryptology, vol.12, issue.3, pp.193-196, 1999.
DOI : 10.1007/s001459900052

H. Bar-el, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, The Sorcerer's Apprentice Guide to Fault Attacks, Proceedings of the IEEE, vol.94, issue.2, 2006.
DOI : 10.1109/JPROC.2005.862424

S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks : Revealing the Secrets of Smart Cards, 2007.

J. S. Coron, Resistance Against Differential Power Analysis For Elliptic Curve Cryptosystems, Cryptographic Hardware and Embedded Systems -CHES, pp.292-302, 1999.
DOI : 10.1007/3-540-48059-5_25

D. Pamula, Arithmetic Operators on GF(2 m ) for Cryptographic Applications : Performance -Power Consumption -Security Tradeoffs, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00767537

T. Chabrier, Arithmetic recodings for ECC cryptoprocessors with protections against side-channel attacks, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00910879

D. E. Knuth, The Art of Computer Programming) : Seminumerical Algorithms, 1997.

F. Herbaut, P. Y. Liardet, N. Méloni, Y. Teglia, and P. Véron, Random Euclidean Addition Chain Generation and Its Application to Point Multiplication, INDO- CRYPT 2010, pp.238-261, 2010.
DOI : 10.1007/978-3-642-17401-8_18

URL : https://hal.archives-ouvertes.fr/hal-00674251

A. P. Fournaris and O. G. Koufopavlou, GF(2/sup K/) multipliers based on Montgomery Multiplication Algorithm, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512), pp.849-852, 2004.
DOI : 10.1109/ISCAS.2004.1329405

C. Grabbe, M. Bednara, J. Teich, J. Zur-gathen, and J. Shokrollahi, Fpga designs of parallel high performance GF(2 233 ) multipliers, ISCAS (2), pp.268-271, 2003.

J. Chu and M. Benaissa, GF(2<sup>m</sup>) multiplier using Polynomial Residue Number System, APCCAS 2008, 2008 IEEE Asia Pacific Conference on Circuits and Systems, 2008.
DOI : 10.1109/APCCAS.2008.4746320

G. Sutter, J. P. Deschamps, and J. L. Imaña, Efficient Elliptic Curve Point Multiplication Using Digit-Serial Binary Field Operations, IEEE Transactions on Industrial Electronics, vol.60, issue.1, pp.217-225, 2013.
DOI : 10.1109/TIE.2012.2186104

D. Pamula and E. Hrynkiewicz, Area-speed efficient modular architecture for GF(2<sup>m</sup>) multipliers dedicated for cryptographic applications, 2013 IEEE 16th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2013.
DOI : 10.1109/DDECS.2013.6549784

M. A. Garcia-martinez, R. R. Posada-gomez, G. Morales-luna, and F. Rodriguez-henriquez, FPGA Implementation of an Efficient Multiplier over Finite Fields GF(2^m), 2005 International Conference on Reconfigurable Computing and FPGAs (ReConFig'05)
DOI : 10.1109/RECONFIG.2005.18

A. El-sisi, S. M. Shohdy, and N. A. Ismail, Reconfigurable Implementation of Karatsuba Multiplier for Galois Field in Elliptic Curves, TeNe, pp.87-92, 2008.
DOI : 10.1007/978-90-481-3662-9_14

E. Ferrer, D. Bollman, and O. Moreno, A Fast Finite Field Multiplier, ARC, pp.238-246, 2007.
DOI : 10.1007/978-3-540-71431-6_22

J. L. Imaña and J. M. Sánchez, Efficient Reconfigurable Implementation of Canonical and Normal Basis Multipliers Over Galois Fields GF(2 m ) Generated by AOPs, Journal of VLSI signal processing systems for signal, image and video technology, vol.53, issue.8, pp.285-296, 2006.
DOI : 10.1007/s11266-006-4189-x

R. Azarderakhsh and A. Reyhani-masoleh, Low-Complexity Multiplier Architectures for Single and Hybrid-Double Multiplications in Gaussian Normal Bases, IEEE Transactions on Computers, vol.62, issue.4
DOI : 10.1109/TC.2012.22

J. Xie, P. K. Meher, and Z. H. Mao, High-Throughput Finite Field Multipliers Using Redundant Basis for FPGA and ASIC Implementations, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.62, issue.1, pp.62-110, 2015.
DOI : 10.1109/TCSI.2014.2349577

E. W. Knudsen, Elliptic Scalar Multiplication Using Point Halving, Proc. Int
DOI : 10.1007/978-3-540-48000-6_12

. Conf, Theory and Application of Cryptology and Information Security (ASIA- CRYPT), pp.135-149, 1999.

C. Negre and J. Robert, New Parallel Approaches for Scalar Multiplication in Elliptic Curve over Fields of Small Characteristic, IEEE Transactions on Computers, vol.64, issue.10, 2013.
DOI : 10.1109/TC.2015.2389817

URL : https://hal.archives-ouvertes.fr/hal-00908463

M. A. Hasan and C. Negre, Low Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation, IEEE Transactions on Computers, vol.60, issue.4, pp.602-607, 2011.
DOI : 10.1109/TC.2010.132

URL : https://hal.archives-ouvertes.fr/hal-00813621

H. W. Chang, W. Liang, and C. W. Chiou, Low Cost Dual-Basis Multiplier over GF(2 m ) Using Multiplexer Approach, Knowledge Discovery and Data Mining, pp.185-192, 2012.
DOI : 10.1007/978-3-642-27708-5_25

J. K. Omura and J. L. Massey, Computational method and apparatus for finite field arithmetic, 1986.

Q. Liao, The Gaussian normal basis and its trace basis over finite fields, Journal of Number Theory, vol.132, issue.7, pp.1507-1518
DOI : 10.1016/j.jnt.2012.01.013

A. Reyhani-masoleh, Efficient algorithms and architectures for field multiplication using Gaussian normal bases, IEEE Transactions on Computers, vol.55, issue.1, pp.34-47, 2006.
DOI : 10.1109/TC.2006.10

G. Feng, A VLSI architecture for fast inversion in GF(2/sup m/), IEEE Transactions on Computers, vol.38, issue.10, pp.1383-1386, 1989.
DOI : 10.1109/12.35833

G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, An implementation for a fast public-key cryptosystem, Journal of Cryptology, vol.3, issue.2, pp.63-79, 1991.
DOI : 10.1007/BF00196789

R. Azarderakhsh, K. Jarvinen, and V. Dimitrov, Fast inversion in GF(2 m ) with normal basis using hybrid-double multipliers, IEEE Trans. Comp, vol.63, pp.1041-1047, 2014.

W. Drescher, K. Bachmann, and G. Fettweis, VLSI architecture for non-sequential inversion over GF(2 m ) using the euclidean algorithm, Proc. Conf. Signal Processing Applications and Technology, 1997.

T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GF(2 m ) using normal bases. Information and Computation, pp.171-177, 1988.

D. E. Knuth, Seminumerical Algorithms, volume 2 of The Art of Computer Programming, 1997.

J. Hu, W. Guo, J. Wei, and R. C. Cheung, Fast and generic inversion architectures over GF(2 m ) using modified Itoh-Tsujii algorithms, IEEE Transactions on Circuits and Systems II : Express Briefs, 2015.

A. Weil, Basic Number Theory, 1995.

A. Brodnik, J. Karlsson, J. I. Munro, and A. Nilsson, An O(1) Solution to the Prefix Sum Problem on a Specialized Memory Architecture, 2006.
DOI : 10.1007/978-0-387-34735-6_12

S. Aravamuthan and V. R. Thumparthy, A Parallelization of ECDSA Resistant to Simple Power Analysis Attacks, 2007 2nd International Conference on Communication Systems Software and Middleware, pp.1-7, 2007.
DOI : 10.1109/COMSWA.2007.382592

J. Taverne, A. Faz-hernández, and F. Rodríguez-henríquez, Speeding scalar multiplication over binary elliptic curves using the new carry-less multiplication instruction, Journal of Cryptographic Engineering, vol.23, issue.1
DOI : 10.1007/s13389-011-0017-8

S. M. Rodríguez and F. R. , An FPGA arithmetic logic unit for computing scalar multiplication using the half-and-add method, ReConFig. IEEE Computer Society, 2005. URL http

L. Bossuet, Approche didactique pour l'enseignement de l'attaque DPA ciblant l'algorithme de chiffrement AES. Journal sur l'enseignement des sciences et technologies de l'information et des systèmes URL https, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00753215

O. Choudary and M. G. Kuhn, Template attacks on different devices In Constructive Side-Channel Analysis and Secure Design -5th International Workshop Revised Selected Papers, pp.179-198, 2014.

A. Klein, Linear Feedback Shift Registers, 2013.
DOI : 10.1007/978-1-4471-5079-4_2

D. Stephen and . Cohen, Primitive polynomials with a prescribed coefficient Finite Fields and Their Applications, pp.425-491, 2006.

J. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on Information Theory, vol.15, issue.1, pp.122-127, 1969.
DOI : 10.1109/TIT.1969.1054260

N. Veyrat-charvillon, B. Gérard, M. Renauld, and F. X. Standaert, An Optimal Key Enumeration Algorithm and Its Application to Side-Channel Attacks, Selected Areas in Cryptography, 19th International Conference Revised Selected Papers, pp.390-406, 2012.
DOI : 10.1007/978-3-642-35999-6_25

C. K. Koc and T. Acar, Montgomery multiplication in GF(2 k ). Des. Codes Cryptography, pp.57-69, 1998.

A. J. Menezes, S. A. Vanstone, and P. C. Van-oorschot, Handbook of Applied Cryptography, 1996.
DOI : 10.1201/9781439821916

E. Mastrovito, VLSI Architectures for Computation in Galois Fields, 1991.

D. Pamula, E. A. Hrynkiewicz, and A. Tisserand, Analysis of GF(2 233 ) multipliers regarding elliptic curve cryptosystem applications, PDeS -11th IFAC/IEEE International Conference on Programmable Devices and Embedded Systems, pp.252-257
URL : https://hal.archives-ouvertes.fr/hal-00702622

J. Eynard, RNS arithmetic approach of asymmetric cryptography. Theses, Université Pierre et Marie Curie -Paris VI, 2015. URL https
URL : https://hal.archives-ouvertes.fr/tel-01187925

A. P. Shenoy and R. Kumaresan, Fast base extension using a redundant modulus in RNS, IEEE Transactions on Computers, vol.38, issue.2, pp.292-297, 1989.
DOI : 10.1109/12.16508

J. Bajard, M. Kaihara, and T. Plantard, Selected RNS Bases for Modular Multiplication, 2009 19th IEEE Symposium on Computer Arithmetic, pp.25-32, 1920.
DOI : 10.1109/ARITH.2009.20

URL : https://hal.archives-ouvertes.fr/lirmm-00394985

H. O. Peitgen and D. Saupe, The Science of Fractal Images, 1988.

S. Kawamura, M. Koike, F. Sano, and A. Shimbo, Cox-Rower Architecture for Fast Parallel Montgomery Multiplication, Proceedings of the 19th International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT'00, pp.523-538, 2000.
DOI : 10.1007/3-540-45539-6_37

J. Chu and M. Benaissa, Polynomial residue number system GF(2 m ) multiplier using trinomials

C. Morales-sandoval-feregrino-uribe, R. Cumplido, and I. Algredo-badillo, m ) elliptic curve cryptographic coprocessor, Programmable Logic (SPL), 2011 VII Southern Conference, 2011.

M. Morales-sandoval, C. Feregrino-uribe, R. Cumplido, and I. Algredo-badillo, A SINGLE FORMULA AND ITS IMPLEMENTATION IN FPGA FOR ELLIPTIC CURVE POINT ADDITION USING AFFINE REPRESENTATION, Journal of Circuits, Systems and Computers, vol.19, issue.02, pp.425-433, 2010.
DOI : 10.1142/S0218126610006153

P. G. Comba, Exponentiation cryptosystems on the IBM PC, IBM Systems Journal, vol.29, issue.4, pp.526-538, 1990.
DOI : 10.1147/sj.294.0526

]. K. Bigou, ´ Etude théorique et implantation matérielle d'unités de calcul en représentation modulaire des nombres pour la cryptographie sur courbes elliptiques

K. Bigou and A. Tisserand, Improving Modular Inversion in RNS Using the Plus-Minus Method, Cryptographic Hardware and Embedded Systems -CHES 2013, 2013.
DOI : 10.1007/978-3-642-40349-1_14

URL : https://hal.archives-ouvertes.fr/hal-00825745

C. Wun-chiou, . Fu-hua, Y. C. Chou, and . Yeh, Speeding up euclid's gcd algorithm with no magnitude comparisons, Int. J. Inf. Comput. Secur, vol.4, pp.1-8, 2010.

P. Ning and Y. Lisa-yin, Efficient Software Implementation for Finite Field Multiplication in Normal Basis, Information and Communications Security (ICICS), pp.177-188, 2001.
DOI : 10.1007/3-540-45600-7_21

C. Rebeiro, D. Selvakumar, and A. S. Devi, Bitslice Implementation of AES, 2006.
DOI : 10.1007/11935070_14