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Résumé

Titre. Une équation stochastique avec sauts censurés liée & des PDMP & plusieurs régimes.

Résumé. L’ensemble de ce travail est dédié a ’étude de certaines propriétés concernant les
processus de sauts d-dimensionnels X = (X;) dont le générateur est donné par

2

Do) = 3 3 040 s h e 4+ ()9 (0) + [ (0l + el ) — b))z a)p(d)
i, v

ol u est de masse totale infinie.

Si v ne dépendait pas de x, nous nous trouverions dans une situation classique ot le processus
X pourrait étre représenté comme une solution d’une équation stochastique comportant une
mesure ponctuelle de Poisson de mesure d’intensité v(z)u(dz) ; lorsque v dépend de z, on peut
s’en représenter I’heuristique en imaginant le processus comme la trajectoire d’une particule, la
loi des sauts pouvant alors dépendre de la position de la particule.

Dans la premiére partie, nous donnons des conditions pour obtenir I'existence et 'unicité de
tels processus. Ensuite, nous considérons ce type de processus comme une généralisation des
PDMP ; nous montrons qu’ils peuvent étre vus comme une limite d’une suite (X, (¢)) de PDMP
standards pour lesquels 'intensité des sauts tend vers l'infini quand n tend vers l'infini, suivant
deux régimes : un lent et un rapide qui, en supposant que les processus en question sont centrés
et normalisés convenablement, produit une composante de diffusion & la limite.

Finalement, on prouve la récurrence au sens de Harris de X en utilisant un schéma regénératif
entiérement basé sur les sauts du processus. De plus, nous dégageons des conditions explicites par
rapport aux coefficients du processus qui nous permettent de controler la vitesse de convergence
vers 1’équilibre en terme d’inégalités de déviation pour des fonctionnelles additives intégrables.

Dans la seconde partie, nous considérons a nouveau le méme type de processus X = (Xy(z))
partant du point x. Utilisant une approche basé sur un Calcul de Malliavin fini-dimensionnel,
nous étudions la régularité jointe de ce processus dans le sens suivant : on fixe ¢ > 1 et p > 1,
K un ensemble compact de R%, et nous donnons des conditions suffisantes pour avoir P(Xi(z) €
dy) = pi(x,y) dy avec (z,y) + pi(x,y) appartenant & WIP(K x R%).

Mots-clés. Calcul de Malliavin, processus de sauts, PDMP, récurrent au sens de Harris
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Abstract

Title. A stochastic equation with censored jumps related to multi-scale Piecewise Deterministic
Markov Processes.

Abstract. This work is dedicated to the study of some properties concerning the d-dimensional
jump type diffusion X = (X;) with infinitesimal generator given by

2 T
Lo(e) = 3 Do) i + 9@ V() + [+ e(e.2) = bl (2.2

)

where p is of infinite total mass.

If ~v did not depend on x, we would be in a classical situation where the process X could
be represented as the solution of a stochastic equation driven by a Poisson point measure with
intensity measure y(z)u(dz); when v depends on z, we may have the heuristic idea that, if we
were to imagine the process as a trajectory of a particle, the law of the jumps may depend on
the position of the particle.

In the first part, we give some conditions to obtain existence and uniqueness of such processes.
Then, we consider this type of processes as a generalization of Piecewise Deterministic Markov
Processes (PDMP) ; we show that they can be seen as a limit of a sequence (X, (t)) of standard
PDMP’s for which the intensity of the jumps tends to infinity as n tends to infinity, following
two regimes: a slow one, which leads to a jump component with finite variation, and a rapid one
which, supposing that the processes at hand are centered and renormalized in a convenient way,
produces the diffusion component in the limit.

Finally, we prove Harris recurrence of X using a regeneration scheme which is entirely based
on the jumps of the process. Moreover we state explicit conditions in terms of the coefficients
of the process allowing to control the speed of convergence to equilibrium in terms of deviation
inequalities for integrable additive functionals.

In the second part, we consider again the same type of process X = (X;(z)) starting from x.
Using an approach based on a finite dimensional Malliavin Calculus, we study the joint regularity
of this process in the following sense : we fix ¢ > 1 and p > 1, K a compact set of R? and we
give sufficient conditions in order to have P(X¢(z) € dy) = pi(x,y) dy with (z,y) — pi(z,y) in
WoP(K x R%).

Keywords : Malliavin calculus, jumps processes, PDMP, Harris recurrent
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Introduction

Ce travail est dédié a I’étude de certaines propriétés concernant la solution de I’équation différen-
tielle stochastique d-dimensionnelle suivante (ot X; est un processus a valeurs dans R%, W, un
mouvement brownien multidimensionnel et N une mesure aléatoire de Poisson) :

t

t t+
X;=a+ / o(Xs)dWs + / g(Xs)ds + / / (2, Xo- ) fu<y(zx, 3N (ds,dz,du). (1)
0 0 0 JExR,

Tout d’abord, on peut remarquer immédiatement que cette équation est "irréguliére" dans
le sens ol 'un de ses coefficients contient une fonction indicatrice. Ceci permet de modéliser
des processus dont le taux de saut dépend du processus lui-méme : la mesure d’intensité du
générateur infinitésimal L est y(z,x)u(dz) (au lieu de p(dz) dans le cas usuel des équations avec
sauts).

Le générateur infinitésimal associé & un processus markovien X vérifiant cette équation est
défini par

2
Lve) =5 3 aa) oo tl@) + 9@ V0te) + [ (la+elz ) =)z ()

d
1<i,j<d R

o a ¥ go* et on i est une mesure (o-finie) sur E associée a la mesure d’intensité N de N :
N(dt,dz, du) = dt x p(dz) x 140,003 (u) du.

Si, dans cette définition, v ne dépendait pas de x, nous serions dans une situation classique ol
le processus X pourrait étre représenté comme une solution d’une équation stochastique associée
a une mesure ponctuelle de Poisson de mesure d’intensité v(z)u(dz) ; lorsque v dépend de =z,
une heuristique possible est de se figurer, si I'on imagine le processus comme la trajectoire d’une
particule, que la loi des sauts peut dépendre de la position de la particule.

Dans le cas particulier ott ’équation (1) ne posséde pas de composante brownienne (ie. o =0 ;
ou, de maniére équivalente, a = 0 dans (2)), nous somme amené & étudier un processus markovien
déterministe par morceau (PDMP) ; dans le cas ou la mesure p est finie, la partie poissonnienne
devient simplement un processus de Poisson composé (et nous avons par conséquent un ensemble
dénombrable de sauts (7},)nen sans points d’accumulation) et une solution peut étre construite
par morceau entre deux sauts successifs (sur ce dernier point, cf. par exemple, la remarque 1.6.1
que nous ferons au chapitre 1).

Existence et unicité

Pour arriver a ce résultat, nous utilisons un argument basé sur le lemme de Gronwall, mais, dans
notre cas, il n’est pas possible de travailler directement dans 'espace L2. C’est une difficulté
spécifique de notre probléme. Suivant une idée de N. Fournier (communication orale), nous
travaillerons ainsi dans 'espace L! plutét que dans 'espace L2.

Nous démontrerons ainsi, dans la premiére partie de ce travail 'existence et 'unicité de la
solution de (1) ; nous présentons ici briévement la stratégie qui a été suivie.
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On définit une équation sur la restriction F' C E par

t t t+
xr ::c+/ a(Xf)dWer/ g(XE) ds+/ / 1p(2)e(z, X yey o xr 3N (ds, dz, du)
0 0 0 ExR4 - s
(3)

et on prouve, sous certaines hypothéses (cf. chapitre 1, hypothése 1.1 ; grosso modo, o, ¢
. . . . . . N . — def
sont lipschitziennes, ¢, v sont lipschitziennes par rapport a la seconde variable, et 7(z) =

sup,cra(|7(z, 2)|) et @(z) = sup,egpa(|c(z, x)|) vérifient certaines conditions d’intégrabilité par

rapport a u), que 'on a le résultat suivant (cf. chapitre 1, lemme 1.4.1) :

e avec GCFCE, et Zy & XF— XC, il existe K1, Ky € Ry tels que

W<T, Bz <TK /F CLOLTORES /O E[|Z,(] ds.

En utilisant le lemme de Gronwall, I'unicité en découle immédiatement et, considérant une
suite croissante (E,) de E telle que |JE, = FE et Vn € N, u(E,) < oo, ce résultat permet de
prouver que (sous les mémes hypothéses 1.1) la suite des solutions approchées X}’ o XtE" (qui
existent pour chaque n, en utilisant la remarque 1.6.1, évoquée précédemment) converge vers la
solution cadlag de (1) dont les trajectoires appartiennent & I’espace des fonctions I,!.

Solution vue comme une limite de PDMP a plusieurs régimes

Dans ce deuxiéme chapitre nous considérerons ce type de processus comme une généralisation
des processus markovien déterministes par morceaux (PDMP) dans deux directions : dans la
théorie standard des PDMP, entre deux temps de sauts, le processus suit une courbe déterministe,
solution d’'une EDO. Dans notre cas cette courbe déterministe est remplacée par une trajectoire
d’un processus de diffusion (ainsi le processus n’est plus désormais déterministe par morceau,
mais posséde une composante diffusive). Ensuite le processus saute avec une intensité qui dépend
de la position de la particule. Il faut remarquer cependant que, dans la définition standard des
PDMP, l'intensité de la mesure de saut est finie, et par conséquent les temps de sauts forment
un ensemble discret. Dans notre cas, nous considérons une intensité de mesure infinie, et par
conséquent les temps de sauts forment un ensemble dense dans R .

Nous étudierons par conséquent un théoréme limite qui motive I'introduction de ’équation qui
fait I'objet de ce travail : on considére une suite X;* de PDMP standard pour lesquels I'intensité
des sauts tend vers l'infini quand n — oo, suivant deux régimes : un régime lent, qui induit
une composante de saut & variation bornée, et un régime rapide, en supposant que les processus
considérés sont centrés et renormalisés d’une facon convenable, qui induit une composante de
diffusion en passant & la limite.

En plus de ’hypothése 1.1 du premier chapitre (qui assure l’existence et 'unicité de la so-
lution), nous ajouterons I’hypothése suivante (hypothése qui sera de toute maniére nécessaire
dans la seconde partie (partie concernant le calcul de Malliavin) et sera contenue alors dans les
hypotheéses 5.2) :

e On suppose, dans toute la suite, que v est borné par C € R .

Nous pouvons ainsi supposer dans ce chapitre, sans aucune perte de généralité, que C' =

% (cette valeur particuliére étant uniquement choisie pour simplifier 1’écriture de ce qui suit),

I’équation pouvant alors étre écrite ici

=z v ta s ! t s)ds
X, = +l§;/0 Z<X>dws+/ob<x>d (4)

t
+/ / C(XS_,Z)]l{ug,y(xs_7z)}N(d8,dZ,du).
0 JEx(0,1)
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Rappelons que, si p est une mesure finie, alors la précédente équation admet la représentation
suivante. Soit J; un processus de Poisson de paramétre p(E) x [0, 1] et soit Ty, k € N les temps
de sauts. Considérons aussi la suite des variables aléatoires indépendantes Zi, Ui, k € N de lois

P(Z, € dz) = p(dz) et P(Uy € du) = 19 1y(u) du.

1
u(E)
Alors la précédente équation s’écrit

Jt

t
Xt =x+ Z/ O'l dWl A b(Xs) ds + ZC(XTk_7 Zk)]l{UkS’Y(Xkayzk}' (5)

k=1

Ainsi, dans le cas u(E) < oo, on prouve que la loi de X; coincide avec la loi de X; construite de
la facon suivante.

On considére un point z, ¢ E et on note E, = E U {z.}. Sur E, on définit la mesure de
probabilité

1
n(z,dz) = 6(x)d,, (dz) + m]lp;(z)v(:n, 2)u(dz), avec

! /E (1 - (2, 2))u(d2).

w(E)

On pose X = x et on définit par récurrence

0(x) =

Y = YTI@_ + C(YTIC 77’6)153(716) (6)

t
X, = X:@%‘Z/ dWl /b(XS)ds, T <t <Tgyq-
Ty,

les variables aléatoires Z}, suivant la loi conditionnelle
P(?k edz | Xp— = x) =n(x,dz).

Remarquons que T, k € N ne sont pas les véritables temps de sauts de X : en effet, 15(Z;) = 0
avec probabilité 6(z) > 0 et dans ce cas X7, = Xr,—. Remarquons aussi que la loi du saut au
temps T}, dépend de la position X T.—- Ainsi, si 0 = 0, alors X, est un PDMP. Notre modéle
apparait alors comme une généralisation naturelle de ce type de modéles, qui posséderaient une
composante de diffusion > ", fg 01(Xs) dW!. La motivation de cette composante de diffusion
résulte du théoréme de convergence qui suit.

Considérant a nouveau une suite croissante (E,,) de sous-ensembles de FE telle que |J E,, = F
et Vn € N, u(E,) < oo ainsi qu'une famille (v, )nen de mesures finies définies sur F, on considére
une suite X', n € N, de PDMP & deux régimes :

t t
X[ = $+/ b(X7) d5+/ / / c(Xeo s 2) L fu<ry(x,_ 23 NE (ds, dz, du) (7)
n + (0,1) B

/ / / ) ]l{u<"/(X )}N,Z(ds,dz,du)
0,1

Ici Nf(ds,dz,du) et N¥(ds,dz, du) sont deux mesures ponctuelles de Poisson avec
N¥(ds,dz,du) = dslp, (2) du(2) Ly (u)du  and  NY(ds,dz,du) = ds dv,(2)1 g1 (u) du.

Puisque p(Ey) 4+ vn(E) < 00, la solution de (7) est un PDMP standard. Le régime 1g, (2) du(z)
est le régime lent et dv, le régime rapide. On note ¢(z) = sup,crd |c(z, 2)| et

aﬁ;j:/Eci(a:,a)cj(:z:,a)'y(x,a)dyn(a).
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Soit o le coefficient dans 'équation (4) et a = oo™*. On note

e(n) = Ha—anHoo—f-/ C’ydu+/637dun
B¢ E

et on construit

c.(n) = inf ( /E Tt pE)e(n)).

n>n
Alors, sous I'hypothése y(z, z) > 7 > 0 on prouve que (cf. théoréme 2.3.5)

e pour tout f € C3(R?)

sup [ [/(X,(2)] - B [f(7 ()] < fg T (8)

et nous donnons une estimation explicite pour C,, (de maniére générale sup, C,, < o). En
particulier, si
lim Cphei(n) =0,

n—oo

e on obtient la convergence en loi de X' vers X.

Remarquons que l'inégalité (8) n’est pas asymptotique, elle est vraie pour tout n fixé. Ceci
nous permet de le considérer d’'un point de vue différent, essentiellement comme un résultat
pouvant étre utilisé pour une simulation, par exemple. C’est une idée remontant & Asmussen
et Rosiniski [2] qui considérent une équation stochastique avec des sauts (de type classique) et
proposent de simuler la solution d’une telle équation en remplagant les petits sauts (ceux qui
produisent une activité infinie) par un mouvement brownien. Nous faisons la méme chose ici
: nous remplagons c(X]", z)]l{ugy(xgi’z)}]vﬁ(ds, dz,du) par o(Xs)dW; (nous considérons le ré-
sultat dans le sens inverse). Et alors (8) donne une majoration de lerreur induite par cette
approximation. Ainsi, d’une maniére générale, nous répondons a la question : quel est le prix
A payer pour remplacer un morceau de la mesure ponctuelle de Poisson par un morceau du
mouvement brownien ?

Ergodicité pour une EDS multidimensionnelle avec sauts censurés

Dans le troisiéme chapitre, nous donnons une premiére application concernant le possible com-
portement ergodique de cette solution : ’objectif est de donner des conditions aisément vérifiables
sur les coefficients g, o, ¢ et v sous lesquelles le processus serait récurrent au sens de Harris! et
satisferait le théoréme ergodique en partant de n’importe quel point de départ x, sans imposer
aucune condition de non-dégénérescence sur la partie diffusive.

Pour les EDS avec sauts, une littérature abondante commence a se développer sur le sujet :
voir e.g. Masuda [40] (2007) qui travaille dans une situation plus simple ou le “terme de censure”
L,<(z,x,_) nest pas présent et qui suit 'approche de Meyn et Tweedie développée dans [42] ou
[41], Kulik [34] (2009) qui utilise la méthode de stratification pour prouver I'ergodicité exponen-
tielle des diffusions avec sauts, mais le modéle qu’il considére n’inclut également pas la situation
avec censure, ou encore, finalement, Duan and Qiao [22] (2014) qui s’intéressent & des solutions
d’équations a coefficients non lipschitziens.

'Rappelons qu’un processus X est dit récurrent au sens de Harris s’il posséde une mesure invariante m telle
que tout ensemble A m—mesurable avec m(A) > 0 soit visité infiniment souvent par le processus presque sirement
(cf. Azéma, Duflo et Revuz [4] (1969)): pour tout = € R%,

Pz[/ 1a(X.)ds = oo| = 1.
0



Notre but n’est pas d’améliorer les conditions de régularités imposées sur les coefficients, mais
de nous concentrer sur le mécanisme de saut. Plus précisément, nous montrons que ’on peut
utiliser les sauts eux-mémes pour générer un schéma de “splitting” qui nous permettra de prouver
la récurrence du processus. Il est important de remarquer que la présence du terme de censure
v(z, Xs—) dans (1) implique que I’étude de X est techniquement beaucoup plus lourde que dans
la situation non censuré ou « est minorée et strictement positive.

La méthode que 'on utilise est la méthode de régénération que ’on applique sur les grands
sauts. Plus précisément, pour un ensemble convenable E tel que u(E) < oo, nous coupons la
trajectoire de X en parties de solutions de (3.1.1) dirigées par N restreinte & E° et qui sont
stoppées au premier saut arrivant par le “bruit” z appartenant a E. Dans 'esprit de la technique
de “splitting” introduite par Nummelin [44] (1978) et Athreya et Ney [3] (1978), on suppose une
condition de non-dégénérescence qui garantit que l'opérateur de saut associé aux grands sauts
posséde une composante Lesbegue-absolue continue. Cela revient & imposer que les dérivées par-
tielles du terme de saut ¢ par rapport au bruit z soient suffisamment non dégénérées (voir (3.2.6)

t (3.2.7)). Nous soulignons que nous n’avons besoin d’aucune condition de non-dégénérescence
pour le coefficient diffusif o.

Remarquons que 'on n’applique pas la technique de “splitting” & une chaine échantillonnée
extraite ni & une chaine résolutive comme dans Meyn et Tweedie [42] (1993) ; la perte de mémoire
nécessaire pour la régénération est produite par certains grands sauts. Cette approche est trés
naturelle dans ce contexte, mais ne semble pas avoir été utilisée jusqu’a présent dans la littérature,
a l'exception de Xu [54] (2011), qui travaille dans un cadre trés spécifique et dont les sauts ne
dépendent pas de la position du processus.

Ainsi, avec des hypothéses adaptées (grosso modo, ¢ doit étre de classe C2, i doit étre absol-
ument continue par rapport a la mesure de Lebesgue et nous supposons de plus des conditions
de type Lyapounov), nous établissons dans ce chapitre le théoréme suivant (théoréme 3.2.8):

e le processus X est récurrent au sens de Harris avec une unique mesure de probabilité in-
variante m, et, de plus, pour toute fonction mesurable f € L(m), on a

/ F(X,)ds = m(f)

P,—presque strement pour tout x € R,

Le théoréme ergodique ci-dessus est un outil important, e.g. pour les inférences statistiques
basées sur des observations du processus X en temps continu. Dans cette direction, 'inégalité de
déviation suivante est particuliérement intéressante :

e avec f € LY(m) < oo, €R? et 0 < € < || f]loo, pour tout t > 1 il existe une
constante C(e, f) > 0 (dépendant de € et f) telle que l'on ait la suivante inégalité :

Cle, f)
v(t)

H /f )ds - <f>\>s} <V(x)

ot x — V(x) est une fonction de Lyapounov et v : Ry — Ry une fonction croissante qui
fournit ’ordre d’ergodicité.

Avec des hypotheéses supplémentaires adaptées sur V(z), nous pouvons avoir pour taux v(t) =
tP~1 pour un certain p > 1, et, avec « tel que p = ﬁ, on obtient le contrdéle quantitatif de la
convergence de la moyenne ergodique suivant (proposition 3.2.10) :

e pour tout x,y € RY,

[t oo

X1

1
<O (V@)Y + V()

TV



ot C > 0 est une constante. En particulier, si a > %, alors

1 t
H/ Py(z,-)ds —m
t Jo

(ot ||.||ry norme de la variation totale).

< C%V(x)(l’o‘)

TV

Régularité jointe pour la densité de la solution

Dans cette partie nous considérons a nouveau la solution X} de I’équation (1), partant du point
x, et nous étudierons sa régularité “‘jointe”, dans le sens suivant : soient ¢ > 1, p > 1 et K un
compact de R? fixés, et nous donnerons des conditions suffisantes pour avoir P xr(dy) = px=(y) dy
avec (z,y) = pxz(y) € WIP(K x RY).

Dans le cas ot 0 = 0 (c’est-a-dire sans partie brownienne) et avec une condition initiale x
fixée, la régularité de y — pxz(y) a déja été étudiée dans [8].

La nouveauté ici, outre la présence de la partie brownienne, est que nous prouvons également
la régularité par rapport a la condition initiale. Ceci est un probléme non trivial, du fait de la
présence de la fonction indicatrice dans un coefficient de 1’équation (1). Par conséquent, le flot
x — X[ n’est pas différentiable. Nous utiliserons certaines idées nouvelles provenant de [7| pour
parvenir & passer outre ces difficultés.

De la méme fagon que dans [8], notre approche est basée sur un calcul de Malliavin fini-
dimensionnel (que nous rappellerons dans le chapitre 4). Mais, dans le cadre de notre étude, la
présence du terme supplémentaire o dW rend I'estimation des normes de Sobolev beaucoup plus
technique et ardue que dans [8].

Nous expliquons & présent briévement de quelle maniére de tels résultats aménent a la régu-
larité recherchée en présentant un rapide survol de la preuve en elle-méme.

On pose By = {z € R? : |z] < M}, M € N*, (alors u(Bys) < 00), et on construit (pour
chaque M) une approximation X () du processus X{ basée sur la restriction Ny; de la mesure
aléatoire IV sur le sous-espace Bj;. Pour le moment, on omet le point de départ x, pour simplifier
les notations.

En utilisant un résultat similaire au lemme 1.4.1, obtenu dans la premiére partie de ce travail,
nous pouvons établir que la distance dans L' entre ces deux processus est bornée comme suit :

vVt <T, E[|X: - XtMH < CT/ c(2)7(z) du(z).

c
B M

vVt <T, E HXf - XtMH < CT/ c(2)7(z) du(z).

c
B M

Puisque pu(Bjs) < 400, la mesure aléatoire Nj; peut étre représentée comme un processus
de Poisson composé (ou les temps de sauts seront notés Té\/l , k € N) et la partie poissonni-
enne du processus XM peut alors étre exprimée comme une somme ; néanmoins, du fait de la
fonction indicatrice présente dans la solution originelle, les coefficients de I’équation vérifiée par
XtM demeurent (pour la partie poissonienne) discontinus et, ainsi, on ne peut pas encore utiliser
directement le calcul différentiel évoqué précédemment. Nous prouvons donc, de maniére inter-
médiaire que XM posséde la méme loi que le processus Yﬁw qui vérifie une équation avec des
coefficients réguliers.

Arrivé 4 ce point, au vue de notre stratégie, il serait souhaitable d’obtenir une formule
d’intégration par partie pour le processus Y,{V[ , mais il subsiste pour cela une derniére difficulté :
il est clair que, pour t < T{¥ (le premier saut de Nj;), la mesure aléatoire Nj; ne produit pas de
bruit, et par conséquent il n’y a aucune possibilité de 'utiliser pour arriver & une intégration par
partie (la matrice de Malliavin de variance-covariance étant alors bien stir dégénérée).

Xil



C’est la raison pour laquelle un dernier processus est introduit :

FM(z) & XM (@) + VU () x A,

ol A est une gaussienne et ot Up(t) est défini par Ups(t) = th]cM+1 A(2)y(z) du(z2).

La distance dans L! entre Fy; et Yiw est alors bornée, pour t < T', par

KT\/ | eeneau)

c
M+1

Le calcul de Malliavin fini-dimensionnel développé dans 8], et présenté au chapitre 4, donne
une formule d’intégration par partie pour le processus Fj; :

E [¢'(Fu)] = E [p(Fy)Hul, (Iar)

ot Hjy est calculé a partir de Fs : nous pouvons donc donner une borne supérieure pour E [| H /||
(qui dépend bien entendu de M) et controler par conséquent la vitesse de son explosion quand
M grandit.

La deuxiéme étape consiste a prouver la régularité de la densité elle-méme

Si le point de départ x est fixé, 'idée est d’utiliser une certaine “balance” entre l'erreur
E[|Fap — X¢|] (qui tend vers 0) et le poids E[|Hps|] (qui tend vers oo), ce qui a été la stratégie
utilisée dans [8]. Ici, estimation de la quantité E [|[Hj/|] a été cependant plus délicate que celle
effectuée dans [8] a cause de la partie brownienne additionnelle o dIW. Cependant, une fois ce
dernier point réglé (ce qui correspond au chapitre 6 de ce travail), il est possible de conclure
de la méme fagon ; pour rappel, la “balance” utilisée dans [8] était basée sur une méthode de
transformation de Fourier.

Mais, puisque nous étudions en plus également la régularité par rapport au point de départ
x, on utilise une nouvelle méthode, appelée “Méthode d’Interpolation”, développée dans [7].

Cette méthode nous permet, pour une suite donnée de mesures (up7) absolument continues
par rapport & la mesure de Lebesgue, chacune possédant une densité suffisamment réguliére fa,
convergeant vers px (sous une certaine norme, cf. section 4.6), de conclure a I’absolue continuité
de px et a la régularité de sa densité.

Il suffit de définir , & présent, la mesure px par (ot Pyr est la loi de X})

px (de,dy) = Wi (x)Pxy(dy) dz (9)

ou Vg est une approximation de classe C*° & dérivées de tout ordre bornées de la fonction
indicatrice 1.

Une approximation naturelle de px(dz,dy) serait alors \IJK(x)pXtM (x,y)dxzdy. Mais, pour
pouvoir utiliser le calcul de Malliavin développé précédemment, il est plus pratique d’utiliser, &
la place de XM, 'approximation (en loi) F' W que l'on a déja vue, et nous posons

far E Vg (@)ppu (z,y). (10)
Le point principal (cf. théoréme 4.6.2) est alors de borner cette norme particuliére de fay, ce

qui est le travail développé dans le chapitre 7, ot nous sommes amenés a utiliser aussi bien la
borne supérieure du poids E [|[Hj/|] que la formule d’intégration par partie (Ips).
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Introduction

This work is dedicated to the study of some properties concerning the solution of the following
d-dimensional stochastic differential equation (where X; represents an R%valued process, W; a
multidimensional Brownian motion and N a Poisson measure) :

t t t+
X, =z+ / o(Xs) dWy +/ g(Xs)ds + / / (2, Xo- ) fu<y(zx, 3N (ds,dz,du). (1)
0 0 0 JExR,

First of all, one may immediately notice that this equation is "irregular" in the sense that
one of its coefficients contains an indicator function. This allows to modelize processes for which
the rate of jumps of X; depends on X; itself : the intensity measure in the infinitesimal operator
L is vy(z,z)u(dz) (instead of p(dz) in usual jump type equation).

The associated infinitesimal generator of a Markovian process X verifying this equation is
defined by

o) =5 ¥ ayle) g tle) +o@) V) + [ (@l e(z.a) = 0@ an(d:) (2

d
1<i,j<d R

where @ & go* and where p is a (o-finite) measure on E associated to the intensity measure N
of N : N(dt,dz,du) = dt x p(dz) x 140,001 () du.

If, in this definition, v did not depend on z, we would be in a classical situation where the
process X could be represented as the solution of a stochastic equation driven by a Poisson point
measure with intensity measure v(z)u(dz) ; when v depends on z, we may have the heuristic idea
that, if we were to imagine the process as a trajectory of a particle, the law of the jumps may
depend on the position of the particle.

In the particular case where the equation 1 does not involve a Brownian part (ie. 0 = 0 ;
or, equivalently, @ = 0 in 2), we are brought to study a piecewise-deterministic Markov process
(PDMP) ; in the case where the measure p is finite, the Poisson part becomes merely a compound
Poisson process (and thus we have a countable number of jumps (T},),en without accumulation
points) and a solution can be constructed piecewise between two successive jumps (concerning
that point, ¢f. for instance the Remark 1.6.1 that we will make in Chapter 1).

Existence and uniqueness

In order to establish this point, we use a Gronwall’s lemma argument, but, in our case, the work
in L2 fails. This is the specific difficulty of our problem. Following an idea by N. Fournier (oral
communication), we will work in the L! space, instead of the L? space.

Hence, in the first part of this work we will show the existence and the uniqueness of a solution
of 1 ; we briefly present here the strategy that has been followed.

We define an equation on a restriction F' C E by

t t t+
xr :x+/ o(XE) dWs—I—/ g(XE) ds+/ / ]lp(z)c(z,Xf_)]l{qu(Z’XF )1V (ds, dz, du)
0 0 0 JExRr, = s~
(3)
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and prove that, under some Hypothesis (¢f. Chapter 1, Hypothesis 1.1 ; roughly speaking, o, g are

def

Lipschitz, ¢, v are Lipschitz with respect to their second variable, and 7(z) = sup,epa(|7(z, z)|)

and ¢(z) € sup,cpa(|c(z,z)|) verify some integrability conditions with respect to u) we have the

following result (c¢f. Chapter 1, Lemma 1.4.1) :

e with G C F CE, and Z; 1o XtF — XtG, there exists K1, Ko € Ry such that

W<T, Bz < TKl/
JaXe

t
) () + Ko [ B2 ds.

Using the Gronwall’s lemma, the uniqueness follows immediately and, considering a non-
decreasing sequence (F,) of subsets of E such that |JE, = E and Vn € N, u(E,) < oo, this
result allows to show that (under the same hypothesis 1.1) the sequence of approximated solutions
X7 o X;E " (which exist for each n, using the remark 1.6.1, quoted earlier) converge to a cadlag
solution of 1 with trajectories belonging to the L' space.

Solution viewed as a limit of PDMP with regimes

In Chapter two, we will consider this type of process as a generalization of Piecewise Deterministic
Markov Processes (in short PDMP) in two senses: in standard PDMP theory, between two jump
times, the process follows a deterministic curve, solution of an ODE. In our case this deterministic
curve is replaced by the trajectory of a diffusion process (so the process is no more piecewise
deterministic, but has a diffusive component). Then the process jumps with an intensity which
depends on the position of the particle. Notice however that, in the standard setting of PDMP’s,
the intensity of the jump measure is finite, so the jump times are discrete. In our case we consider
an infinite intensity measure so that the jump times are dense in R;..

We will therefore study a limit theorem which motivates the equations introduced above :
we consider a sequence X/ of standard PDMP’s for which the intensity of the jumps tends to
infinity as n — oo, following two regimes: a slow one, which leads to a jump component with
finite variation, and a rapid one which, supposing that the processes at hand are centered and
renormalized in a convenient way, produces the diffusion component in the limit.

In addition to the Hypothesis 1.1 in the first chapter (which ensure existence and uniqueness
of the solution), we will add the following one (that hypothesis will be needed in the Malliavin
Calculus part anyway : it will be contained in the Hypothesis 5.2) :

o We assume, in the following, that ~ is bounded by C € R% .

We can consequently assume in that chapter, without any loss of generality, that C' = % (this
value is only chosen in order to simplify the following notations), so our equation can also be
written here

=z v tO’ s ! t s)ds
X, = +lzl/0 Z<X>dWs+/0b<X>d (4)

¢
+// c(XS_,Z)]l{ug,y(xsﬂz)}]\f(ds,dz,du).
0 JEx(0,1)

We recall that, if u is a finite measure, then the above equation admits the following repre-
sentation. Let J; be a Poisson process of parameter u(E) x [0,1] and let Tj, k € N be its jump
times. Consider also a sequence of independent random variables Zy, Uy, k € N with laws

1
P(Z, e dz) = @u(dz) and P(Uy € du) = 1 g 1)(u) du.
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Then the above equation reads
Jt

t
Xt —.iU—I—Z/ O'l dWl / b(Xs) d5+ZC(XTk_7Zk)]l{UkS’Y(XTk77Zk}' (5)
0 k=1
So, in the case u(E) < oo, we prove that the law of X; coincides with the law of X; constructed
in the following way.
We consider a point z, ¢ E and we denote E, = FE U {z.}. On E, we define the probability
measure

1
n(z,dz) = 0(x)d.. (dz) + @113(2)7(:8, z)u(dz),  with
1
Hx:/l— T,z dz).
(z) (B E( V(z, 2))p(dz)
We put X = = and we define by recurrence
X1, = X1, - + o(Xny—, Zi)1E(Zk) (6)
t J—
X, =X, + Z/ o) dW! + / b(Xs)ds,  Tp <t < T

Tk

with the random variables Z;, having the conditional law
P(Zk edz | Xp— = :E) =n(x,dz).

Notice that T}, k € N are not the real jump times of X : indeed, 15(Z;) = 0 with probability
6(r) > 0 and in this case X7, = Xp,_. Notice also that the law of the jump at time T}
depends on the position X7, _. So, if ¢ = 0, then X; is a PDMP. Then our model appears as
a natural generalization of such models, which introduces a supplementary diffusive component
Sy fo 01(Xs) dW!. The motivation of this diffusive component is now given by means of the
following Convergence result.

Considering again a non-decreasing sequence (F,) of subsets of E such that | J E,, = F and
Vn € N, u(Ey,) < oo and a family (vp)nen of finite measures on E, we consider a sequence X/,
n € N, of PDMP’s with two regimes:

t
Xf—:c—i—/ b(Xn d$+/ / / X, )]l{u<'y(Xg_ )}N (ds,dz,du) (7)
n < (0,1)

/ // c(Xes 2) L uar(x,_, )}N (ds,dz, du).
0,1)

Here N}/(ds,dz,du) and NY(ds,dz, du) are two Poisson point measures with
N#(ds, dz,du) = dslg, (2) du(2)1 (o) (u) du and Nﬁ(ds, dz,du) = ds dv,(2)1 (g 1) (u) du.

Since p(Ey) + vp(E) < oo, the solution of (7) is a standard PDM P. The regime 1g, (2) du(z) is
the slow regime and dv,, will be the rapid regime. We denote ¢(z) = sup,cpa |¢(z, 2)| and

abi = / Az, a)d (z,a)y(x,a)dv,(a).
E
Let o be the coefficient in the equation (4) and a = ogo*. We denote
o) =la-anllo+ [ edu+ [ SHan,
Eg E
and we construct

n>n

.(n) = inf ( / T+ u(Er)e(n)).

Then, under the hypothesis y(z, z) > v > 0 we prove that (see Theorem 2.3.5)
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o for every f € Cg’(]Rd)

sup [B[(X,(@))] ~ B [(XF (@)]| < (jg 111500 2+ (n), (8)

and we give an explicit estimate for C), (generally sup,, C;, < o0). In particular, if

lim Cphei(n) =0,

n—oo

e we obtain the convergence in law of Xj* to X;.

Notice that the estimate (8) is not asymptotic, but holds for every fixed n. This allows to
consider it from a different point of view, mainly as a result which may be used for simulation,
for example. This is an idea going back to Asmussen and Rosiniski [2] : they consider a jump type
stochastic equation (of classical type) and propose to simulate the solution of such an equation by
replacing the small jumps (the ones which produce the infinite activity) by a Brownian motion.
We are doing the same here: we replace ¢(X]", z)ﬂ{ug'y(X;L,z)}ﬁ'g(dsa dz,du) by o(Xs)dWs (so
now we read the result in a converse sense). And then (8) gives an upper bound of the error
introduced by this operation. So, in a general way, we answer the question : what is the price to
pay in order to replace a piece of Poisson point measure by a piece of Brownian motion?

Ergodicity for multidimensional EDS’s with censored jumps

In Chapter three, we give a first application concerning the possible ergodic behaviour of this
solution: the purpose is to give easily verifiable conditions on the coefficients g, o, ¢ and ~ under
which the process is recurrent in the sense of Harris? and satisfies the ergodic theorem starting
from any initial point x, without imposing any non-degeneracy condition on the diffusive part.

There starts to be a huge literature on the subject of EDS with jumps, see e.g. Masuda [40]
(2007) who works in a simpler situation where the “censure term” Lu<y(z,x,_) is not present and
who follows the Meyn and Tweedie approach developed in [42] or [41], Kulik [34] (2009) uses the
stratification method in order to prove exponential ergodicity of jump diffusions, but the models
he considers do not include the censored situation neither. Finally, let us mention Duan and Qiao
[22] (2014) who are interested in solutions driven by non-Lipschitz coefficients.

Our aim is not to improve on the regularity conditions imposed on the coefficients but to con-
centrate on the jump mechanism. More precisely we show that we can use the jumps themselves
in order to generate a splitting scheme that will allow to prove recurrence of the process. It is
important to note that the presence of the censure term 7(z, X5_) in (1) implies that the study
of X is technically much more involved than the non-censored situation when ~ is lower-bounded
and strictly positive.

The method we use is the so-called regeneration method which we apply to the big jumps.
More precisely, for some suitable set F such that u(E) < oo, we cut the trajectory of X into
parts of solutions of (3.1.1) driven by N in restriction to E¢ and which are stopped at the first
jump appearing due to “noise” z belonging to E. In spirit of the splitting technique introduced by
Nummelin [44] (1978) and Athreya and Ney [3] (1978), we state a non-degeneracy condition which
guarantees that the jump operator associated to the big jumps possesses a Lebesgue absolutely
continuous component. This amounts to imposing that the partial derivatives of the jump term

2Recall that a process X is called recurrent in the sense of Harris if it possesses an invariant measure m such
that any set A of positive m—measure m(A) > 0 is visited infinitely often by the process almost surely (see Azéma,
Duflo and Revuz [4] (1969)): for all € R?,

PI[/ 14(Xs)ds = oo = 1.
0
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¢ with respect to the noise z are sufficiently non-degenerate (see (3.2.6) and (3.2.7)). We stress
that we do not need any non-degeneracy condition for the diffusion coefficient o.

Notice that we do not apply the splitting technique to an extracted sampled chain nor to the
resolvent chain as in Meyn and Tweedie [42] (1993); the loss of memory needed for regeneration
is produced by certain big jumps. This approach is very natural in this context, but does not
seem to be used so far in the literature, except for Xu [54] (2011), who works in a very specific
frame and where the jumps do not depend on the position of the process.

As a result, under appropriate additional assumptions (basically, ¢ has to be C?, i has to be
absolutely continuous with respect to the Lebesgue measure and we assume some Lyapunov-type
conditions) we establish in that chapter the following theorem (Theorem 3.2.8) :

o the process X is recurrent in the sense of Harris having a unique invariant probability
measure m, and, moreover, for any measurable function f € L'(m), we have

2 [ reas s mip)

P,—almost surely for any = € R?.

The above ergodic theorem is an important tool, e.g. for statistical inference based on observations
of the process X in continuous time. In this direction, the following deviation inequality is of
particular interest.

e with f € LY(m) such that || f]lec < 00, * € R? and 0 < & < ||f|loo, for all t > 1 there exists
a constant C'(g, f) > 0 (depending on € and f) such that the following inequality holds :

Cle, f)
v(t)

where x +— V(z) is the Lyapunov function and v : Ry — Ry an increasing function which
gives the order of ergodicity.

PmHi/Otf(Xs)ds—m(f)‘ > s} <V ()

Under appropriate additional assumption on V(x), we can achieve the rate v(t) = tP~!, for some

1

p > 1, and, with a such that p = =, we obtain the following quantitative control of the

convergence of ergodic averages (Proposition 3.2.10) :

e for any x,y € R?,

Hi/otps(x,-)ds—1/;Ps(y,~)

where C > 0 is a constant. In particular, if a > %, then

< OLV (@) + V() 1),

TV

1 t
H/ Py(z,-)ds —m
t Jo

(where ||.||Tv is the total variation norm).

< C’%V(x)(l’o‘)

TV

Joint regularity for the density of the solution

In this part we consider again a solution X} of the equation (1), starting from z, and we study
the joint regularity of it in the following sense : we fix ¢ > 1 and p > 1, K a compact set of
R¢, and we will give sufficient conditions in order to have P xr(dy) = pxp(y)dy with (z,y) —
pxz(y) € WP (K x RY).
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In the case 0 = 0 (no Brownian part) and for a fixed initial condition z, the regularity of
y — pxz(y) has already been studied in [8].

The new point here is that we prove the regularity with respect to the initial condition as
well. This is a non trivial problem, because the coefficient of the equation (1.2.3) involves an
indicator function. Consequently , the flow x — X[ is not differentiable. We will use some new
ideas coming from [7] in order to circumvent this difficulty.

As in [8], our approach is based on a finite dimensional Malliavin Calculus (which we recall
in Chapter 4). But in our framework, due to the supplementary term o dW, the estimates of the
Sobolev norms are much more technical and difficult then in [8].

We will now explain briefly how such results lead to the regularity we were looking for by
giving a sketch of the whole proof itself.

We set By = {z € R? : |z] < M}, M € N*, (so u(Bys) < o0), and we construct (for each
M) an approximation XM (x) of the processes X7 based on the restriction Nys of the random
measure N on the subset Bj;. For the moment, we will omit the starting point x, for more
convenience.

Using a similar result as the Lemma 1.4.1, given in the first part of this work, we can then
tell that the L!-distance between these two processes is bounded as follows :

vVt <T, E[|X: - XtMH < C’T/ c(2)7(z) du(z).

c
B]\/]

Since pu(Bps) < 400, the random measure Nj; may be represented as a compound Poisson
process (where the jump times will be denoted by T, k € N) and the Poisson part of process
XM could be expressed as a sum ; nevertheless, because of the indicator function from the
original equation, the coefficients of the equation verified by XM are still (for the Poisson part)
discontinuous and so, we cannot use directly the differential calculus presented earlier. Instead
we prove that XtM has the same law as a process Yiv'[ which verifies an equation with smooth
coeflicients.

At this point, one would like to obtain an integration by part formula for Yﬁw , but there
remains one last difficulty : it is clear that, for ¢ < T{¥ (the first jump of Njs), the random
measure Nj; produces no noise, and consequently there is no chance to use it for an integration
by part (the Malliavin covariance matrix being, of course, degenerated).

That is why one last process will be introduced :

FM (@) 2 X @)+ VOu(t) x A,
where A Gaussian and where Uy () is defined by Ups(t) = th?w ) A(2)y(z) du(z).
N 7
The L!-distance between Fj; and Yﬁw is then bounded, for t < T', by

KT\/ /B 2(2)y(2) du(2).

c
M+1

The finite dimensional Malliavin Calculus developed in [8], and presented in Chapter 4, gives
an integration by part formula for the process Fi :

E [¢'(Fu)] = E [p(Fy)Hul, (Iar)

where H)s is computed from Fjy, so we can give an upper bound for E[|H/|] (which depends
on M of course) and consequently control its speed of explosion.

The second step consists in proving the density regularity.

If the starting point x is fixed, the idea is to use a certain balance between the error
E[|Fp — X¢|] (which tends to 0) and the weight E[|Hj/|] (which tends to oo). This was the
strategy used in [8] as well. But here the estimates of E [|Hs|] have been more delicate then the

XI1X



corresponding one in [8] because of the additional brownian part o dW. Nevertheless, with this
last point taken care of (which corresponds to Chapter 6 of this work), it is possible to conclude in
the same way ; as a reminder, the balance used in [8] was based on a Fourier transform method.

But, since we additionally study regularity with respect to the starting point x too, we use a
new method, called Interpolation Method, developed in |7].

This method allows us, given a sequence (ps) of measures absolutely continuous with respect
to the Lebesgue measure, each with a sufficiently regular density fys, converging to px (under
a certain norm, cf. Section 4.6), to conclude to the absolute continuousness of ux and to the
regularity of its density.

We just have to define now the measure px by (where Py is the law of X}')

px (de,dy) = Uk (z)Pxy(dy) dz (9)

where Vg is a smooth version with bounded derivatives of any order of the indicator function
1k.
A natural approximation of px (dz,dy) would be then Wg (z)pxa (z,y)dx dy. But in order

to use the Malliavin calculus developed in this work, it is more convenient to use, instead of XM,
the approximation (in law) FY, of it that is already defined, and we set

def

fur Wi (@)pp (). (10)

The main point (¢f. Theorem 4.6.2) is to bound this particular norm of fjs, which is the
work developed in Chapter 7, where we will be lead to use as well the upper bound of the weight
E [|H)s|] and the integration by part (Ins).

XX



Part 1

Solution of the equation and Ergodic
application



Chapter 1

Existence and uniqueness

1.1 Introduction

We shall start by introducing the following class of jump type stochastic equations (with £ = R?):

mo ot t
X, :m+2/ al(Xs)dW;—l—/ 9(Xs)ds (1.1.1)
=1 /o 0

t
+// C(Xs,,z)]l{ugv(xsﬂz)}N(ds,dz,du),
0 JExR,

To portray the idea behind the existence and uniqueness of a solution of such an equation, we
suppose momentarily that N(ds,dz,du) is a homogeneous Poisson point measure on E x (0,1)
with intensity measure p(dz) x 1(g1)(u)du and the coefficients are oy,b : R? — R? and ¢ :
R x E — RY v :RY x E — R under some reasonable conditions (cf. Hypothesis 1.1). Moreover,
let us suppose for a moment that p is a finite measure. Then the above equation admits the
following representation. Let J; be a Poisson process of parameter p(E) and let T, k € N be its
jump times. Consider also a sequence of independent random variables Zy, Uy, k € N with laws

1
P(Zyedz) = mu(dz) and P(Uy € du) = 1 g 1y (u) du.

Then the above equation reads

Ji

m t t
Xt:x+Z/0 al(Xs)dW;+/0 9(Xs)ds + > (X, Z1) Ly, <o (X, 21} (1.1.2)
=1 k=1

Existence and uniqueness of the solution of the above equation may be proved in a constructive
way: on each interval of time [T}, Tk1) one just solves a standard diffusion equation with diffusion
coefficients o; and drift coefficient g. But the problem becomes non trivial if u(E) = oo because
the domain of the Poisson measure is dense in R4. So a first result of this work consists in proving
that, under reasonable hypothesis on the coefficients of the equation, we have the existence and
uniqueness property. This is done in Theorem 1.2.3. The proof is based on a natural argument:
one considers a sequence of sets E,, T E with u(E,) < oo and proves that the sequence X{*,n € N
of the solutions of the equations corresponding to E, (which are of type (1.1.2)) is a Cauchy
sequence which, at the limit, produces the solution of (1.1.1). However this is not trivial: a subtle
estimate of || X} — X7"||; is needed (see Lemma 1.4.1 ; the same argument proves uniqueness as
well). We notice that a standard approach based on L? norms, with p > 1, instead of L' norms fails
— we thank N. Fournier who gave us an important hint in this direction (private communication
to Vlad Ball~y). We also mention that our approach fails if we want to add a martingale term
driven by dN (roughly speaking this is because ]I%UkS’Y(XTk—:Zk)} = ]I{UkS’Y(XTk—yzk)})'



1.2 Notations and hypothesis

We consider a Poisson point process p with state space (X, B(X)), where X = E x R, (in this
framework E will be simply R%). We refer to [30] for the notations.

We denote by N the counting measure associated to p, we have N([0,t) x A) = #{0 < s <
t; ps € A} for t > 0 and A € B(X). We assume that the associated intensity measure is given
by N(dt,dz,du) = dt x p(dz) x 10,00} (u) du where (z,u) € R? x Ry and p(dz) = h(z) dz.

We are interested in the solution of the following d-dimensional diffusion equation where
X = (X{)i=1,..d represent an R?-valued process and W, = (th)lzl,...,m is a m-dimensional
Brownian motion :

t t t+
X = x+/ J(XS)dWS+/ 9(X5s) ds+/ / c(z, Xg- )M pu<qyz,x. 3N (ds,dz, du). (1.2.3)
0 0 0 ExRy °

Definition 1.1 A process (Xt) will be called “ L' -solution” if

>0

e t — X, is an adapted cadlag process which verifies (1.2.3) and moreover,

o for every T > 0,

supE [|X¢|] < oc. (%)
t<T

Remark 1.2.1 We stress that the uniqueness of the solution of the equation (1.2.3) is proved, in
this work, in the class of processes which verify ().

We notice that the infinitesimal generator of the Markov of such a process X; is given by

i) =5 3 a(e) g () + 9@V + [ (Wl ele2) = vl) K ,02)

2,07
1<i,j<d Oz:0%, R

where a £ oo* and K(z,dz) £ ~(z,2)h(z)dz depends on the variable z € R? (with C?2 C
Dom(L)).

To establish the existence and uniqueness of the solution of the above equation, we will as-
sume that the functions o : R - R x R™, g: R 5 R% ¢: ExR? 5 R% ~: E x R - Rt
satisfy the following hypothesis ! :

Hypothesis 1.1 1. Lipschitz-conditions : let L,, L, € Ry such that
o lo(@) —a(y)| < Lole —yl, Va,y e RY
o [9(z) —g(y)| < Lglz —yl, Va,y R
and let L. : E — Ry and L, : E — Ry such that

le(z,2) — c(2,9)| < Le(2)|lz —y|, Vz,y€RY VzeE
i |’Y(Z,$)—’Y(Z,y)’ SL’Y(Z)‘:B_y‘v VJ/‘,?/GRd, VZEE

2. Integrability conditions : let 7(z) = sup,cra(|7(z,2)|) and ¢(z) ) sup,cra(le(z, x)]),
we then assume that

o Oy & [ Le(2)7(2) p(dz) < 400

n all this framework we will denote the euclidean norm of z € R? by |z| ( i.e. |2| ef S 22).

=11



o I Ly ) u(dz) < 400

o [nc(z p(dz) < +oo

3. Linear growth conditions : We will assume that o is bounded and g is such that
lg(x)] < K(1 +[x]).

Remark 1.2.2 e We could have assumed also |o(x)| < K(1+ |z|), the bounded condition is
here in order to simplify a little the following.

e The condition [, ¢(2)7(z) du(z) < +oo implies that the Poisson part of the equation makes
sense.

e Because of this particular Poisson part in the equation (1.2.3), we will have to work with
L'-norm.

Because of this last reason we will use the F function space (cf. ITkeda-Watanabe [30] p.62),
defined as

t
1 . . .
F, = {f(s,z,u, -); f predictable and Vt > 0, E {/ /EXR |f (s, z,u, ')|N(ds,dz,du)} < —i—oo}
+

on which we have the following isometry (recalling that here N(ds,dz,du) = ds x p(dz) x
1(0,00) (w) du)

1 t+ ‘ :|_ [ t ‘ :|
VfEeF,, E [/0 /EXR+ f(s,z,u,-)N(ds,dz,du)| = E /0 /EXR+ f(s,z,u,-)dsp(dz) dul .

(1.2.4)
We can now state the main result of this chapter :

Theorem 1.2.3 Under the Hypothesis 1.1, the diffusion equation

t t t+
Xi==x +/ o(Xs)dWs + / 9(Xs)ds +/ / c(z, Xg- ) iu<qy(z,x_ )3 N(ds,dz, du)
0 0 0 ExRy s

has a unique 1L'-solution, in the sense of Definition 1.1.

1.3 Regularisation
Let us define the following real function by

def aexp(—ﬁ) if |z <1,
Ple) = { 0 if Jz| > 1.

where « is chosen in order to have [; ¢(x)dz = 1. This function is then a smooth compactly
supported one. Let . : R — R be defined by :

gef 1 ($>
= -pl—]), Vo € R.
pe(T) 680 - T
Proposition 1.3.1 ¢. : R — R is a smooth compactly supported function and there exists C' > 0
such that :

C C
VeeR, @S5 and |pl@) <



Proof : The proof is postponed and will be made in Appendix A.1. °
Then one defines h, : R — R by :

he(z) = ||V 2,

and ¢. : R — R by setting :
60) 2 (hex o) (@) = [ hela—poly)dy,  VoeR
R

Proposition 1.3.2 1. (gb5)€>0 converges pointwise (as € — 0) to the absolute value function
x> |z| and

¢e(x) =2, if |z[<e¢, (1.3.5)
=z, o |z]>3e, (1.3.6)

and
0< gu(z) <de, for |z] €le.3e].

2. There exists M > 0 such that

M
Ve e R, |eL(@)] <M and [§(2)] £ —Ljsj<ze- (1.3.7)

Proof : The proof is postponed and will be made in Appendix A.1. °

1.4 Preliminary lemma

Let F' and G be two subsets of E such that G C F' (the case G = F = F is include). We let
(Xy) = (Xz)z‘:17...,d and (Y;) = (ni)z‘:17._,7d be two cadlag R%valued processes satisfying :

t+
Xt—a:—i—Z/ oi(X dWJ+/ ds+/ / c(2, X)L puer(zx. 13N (ds, dz, du)
ExR, - #

and
mooat . t+

Y: :x—f-Z/ Uj(}/s)dWs]-i-/ dS—l—/ / c(z, Yy~ )]l{u<,y(z7yi)}N(ds,dz,du).
=170 0 ExRy -

Let

moog A t t+
7 ¥ X, -V, = Z/ Ajos dW? +/ Ags ds—l—/ / H, (z,u)N(ds,dz,du)
=0 0 0 JExR,

where
o Njo, = 0j(X,) — 0;(Ys),
o Ags = g(Xs) - g(Ys),
o and H, (z,u) & Lp(2)e(z, Xo- ) pucyzx, )y — La(2)e(2, Y- ) lugy(zy, )}

Lemma 1.4.1 Suppose that X; and Y; are L'-solutions (in the sense of Definition 1.1) of the
above equations. Under the hypothesis 1.1, and with the above notations,



1. we have the following inequality :

/ / (z,u))|dsdpu(z) du < (dC, + dC.) / | Zs |d8+dT/ c(2)7(2)du(z) ;
ExJR+ F\G (149

2. there exist Ky, Ko € Ry such that
ve<T, E[z]< TK1< / e(2)7(2) du(z))eKQt. (1.4.9)
F\G

Proof.
1) By decomposing H'_(z,u) we notice that

// —(z,u)|dsdu(z)du < Cy + Ca+ Cs
EXR+

with :
Cp Z / / 2)|c (2, Xo-) = ¢ (2, Y ) fugn oy, yy ds dp(2) du,
EXR+
Cp = Z/ / 2)|c (2, X~ )||]l{u§7(z,X5 )~ Liuga(zy, - ) ds dp(2) du,
EXR+
Cy = Z/ / Lpa(2)[e' (2, Yo )| L usq -y, )y ds dpu(2) du.
EXR+
So, using that ¢ is Lipschitz with respect to the second variable,
d t ' '
G = Z/ / c"(z, Xs-) — c'(2, Y- )| (/ ﬂ{ug’y(zjyg_)} du) dsdu(z)
=170 JE Ry ‘
d
<> [ B = Ve he Y e dsdn)
i=1

< i / X Y ( [ AL dﬂ(Z)) as<ac, [ 2 ds.

We also have

d t ‘
Oy < Z/ / |CZ(Za Xs—)H]l{uSW(z,Xs,)} - ]l{ug'y(z,YS,)}| ds dlu’(z) du
. 0 EXR+

< d_/ot/EC(z) </R+ L ucy(zx, )} — Lugy(ay, du) dsdpu(z)
= [ @t X~ el dsduta
<a [ 1 -] ([ 2o (erete) ) ) s

t
< dCc/ | Z,| ds.
0



At last

Cs = Z/ /E ]lF\G|C 2, Yo ) [Ljucy(zy, )y dsdu(z) du

_Z/ /F (e, Yoo ) du(z) ds
<ar| I

Which completes the proof of (1.4.8).

2) Let, for all z € RY,

fo(2) = e(]2])-
Then f. is C?, and we have :

;O
veeR!,  2E() = oL ()

Since |¢L oo < M, the norm of the differential of f. is less or equal to M, so f. is M —Lipschitz
We have also

d *fe o ( ¢e(l2) ziz | o 9L(lz])
Vz € RY, 8ziazj(z)_ < - (]2]) — ) + ;.

ERVAE SR
Notice that, if |z| < e, we have ¢.(|z|) = ¢(]z|) = 0, which leads to

8f€ (Z) — azfe 2) =

Let now T > 0. For ¢ € [0,T1], the It6 formula leads to

[ NN Ad
f( ) fa ZO Z/ azlafzj Z( ;O'SAgo's)dS

Since ¢ is bounded f ¢ af; <
is zero.

Zs)ALos dw? is a martingale and, by consequence, its expectation
Moreover s — fe(Zs + Hy-(2,u)) — fo(Z,-) is clearly predictable and belongs to F) since
for all i € [1,d], ((s,u,2) — H! (z,u)) € F, (we can use this condition because |f.(Z,- +
Hy (20) ~ [(Z, ) < MI(Zy- + Hy-(2,0)) — Z,-| = MH, (2,u)], since f. is M-Lipschitz),



so, using the isometry (1.2.4), it comes

1 & borf. TN i A
E[f(Zy)] — E[f(Z0)] = B Z E ) 92002, (Zs) Z( j0sA]os)ds

ij=1 =1
d t
b .
+) E [ Je (Zs)Algs ds}
=1

0 9z

IE [ /0 N 7 ) = (20 dsdi(z) du]

d t m
:;ZE[/ ¢5(Z|Zs|) Z( 208)2&9]
‘ || I=1
L(1Z) Ziz] &
3 ZE/( (120 ¢|(|Zs||)|2|2z iosbion)d ]

2]1

+ ZE [ afa Zs)A'g, ds]

82:1

t+
LE [ / JA(Zy 4 H,y (20)) — fo(Z,-) dsdu(2) du}
0 ExR

LA+ A +B+C.

Since A§-as = a§(Xs) - a}(Ys),
(Ao < 1212,
and, since ¢L is bounded,

/ m 2 2
¢E‘<Z|st|>;< 0.2 < m 2226112,
< mL%|Zs|M.
So
< WML?r/tEHZSHdS
2 0
Similarly,

|AliJS||AlmUS| < Lg]ZSIQ
and since using (1.3.7), if |u| > 3¢, then ¢”(u) = 0, we have

" $L(12Z:)\ ZiZL -
'( <(1Zs]) - A ) 1Z,2 Z lUSA]Us

, 6(1Z:)) | 123112
(i) - EOED EE
—_——

<1
< mL2 (6102|1241 + 16L(1Z) 2]

< mL? ((g) M (3¢)? +M]ZS]>
=mL>M (9 + |Z,|)

mL2| Z?

SO

1 t
A< 2deLE,J\4(9Ts+/ B[ Z|] ds).
0



Since |3 (2,)Alg,| < M|Alg,| < ML,|Z],

5fe i
B= ZE[O 82’1 )Agsds]

t
ngLg/ E[|Z,]] ds
0

Finally, for the quantity C, recalling that f. is M-Lipschitz, it comes, straightly from (1.4.8) :

cl<ulf t / o VAZe o H (e 0) = o2 ds ) aul

/ 2(2)7(2) dM(Z)] .
JaXe!

Gathering all the bounds obtained for A, A’, B, C, we obtain finally (noticing that z
¢(2)7(z) is a deterministic function),

t
< M(dC, + dC.)E [/ |Z,| ds] + MdTE
0

E[f.(Z)] < (TC' + 1) + Tk, /F .

t
o(2)7(:) duz) + Ke | B(Z.) ds
0
and since f-(Zy) — |Zs|, using Fatou’s lemma?, it comes :
E—

B2 <TK: [ elehi() du(a) + Ko /0 B[|Z])ds

F\G

Moreover, since, from the hypothesis made on X; and Y;, we have

sup E[|Z;] < +o0,
0<t<T

we may use Gronwall’s lemma (c¢f. A.2.1 ), which proves the result.

1.5 Uniqueness

Let X and Y be two L!-solutions of the equation (1.2.3). Using the above lemma with F = G = E,
we obtain E[|X; — Y;|] = 0, which shows the uniqueness with regard to the L' space of function.

1.6 Existence

Let (E,) be a non-decreasing sequence of subsets of E such that |JE, = E and ¥n € N,
w(E,) < oo and let X' = (X;™)1<i<n be a Ré%valued process solution of the equation :

) ) m t ) t t+ .
P o / o (XT) AW + / G (X™) dst / / 1, (2)¢' (2, X7 ) Lpuerox 9y N(ds, dz, du).
- 0 ExR4 8

We will prove that X;* converge to X;, a cadlag solution of (1.2.3) such that

sup E[|Xy|] < +o0. (%)
0<t<T
21t sll—+> 0 using Fatou’s lemma, all the quantities being non-negative, E[|Z]] =
—+o0

Elliminf, f.,(Z.)] < liminf; B[f.,(Z.)] < liminf, ((Tc' + D1+ TKy [ o @(2)7(2) du(z) + Ko [} E[|Z4]] ds)
TK1 [p ¢ €2)7(2) du(z) + Kz [y E[| Zs]] ds.



Remark 1.6.1 The existence of X;* comes from the fact that u( n) < 00 : we may represent the

random measure N by a compound Poisson process ; let A, “ O x pu( n) and let J' a Poisson

process of parameter \,. We denote by T', k € N, the jump times of Ji*. We also consider

two sequences of independent random variables (Z )kEN and (Uy)ren, respectively in R? and R,

which are independent of J" and such that Zj} ~ )]IBM+1( z)du(z), and Uy, ~ %]1[0’@}(10 du.
Then, the last equation may be written as

t t Ji
Xp =t [CoX2 AWt [ a(XD)ds+ 30 el Xip )00 (127 X ).
k=1

Then, we can construct, under the hypothesis 1.1, a “piecewise” solution by considering on each
interval [T}, T} [ a classic SDE, as it is done, for instance, in [Watanabe [30], p.245]. The
solution is cadlag, with trajectories belonging to the L' space, and such that

sup E[|X}']] < +oo. (1.6.10)
0<t<T

(For this last assertion cf. also [32].)

! def / .
For n > n/, we set Z,"" = X' — X" and the previous lemma, leads to

B2 ) < TK, /

F\G

t
o(2)7(:) dut) + Ka [ B[1Z0]] ds,

0
and since (1.6.10), we have also supy<,;<7 E[| Z/" ”/H < 400, and the Gronwall lemma implies

Bz < ([ e )

therefore
lim E[| X! — X” || = (1.6.11)

It is a Cauchy sequence into the L' space, so it converges to a limit X;. Since, moreover, for
t < T we have

E[IX7|] <E[X] - X/(] + B [1X/]

<78, ([ o) aute) ) 4 B 1K

n

so that

sup E[JXi)) < sup. B[ X} \]+TK1(/

e(2)7(2) du(z) )" < oo,
0<t<T E

it remains to be proven that this limit can be chosen cadlag to end the whole proof. Let X; such
that

1
ve>0, Xxr-x,.

In order to get a cadlag behaviour for X, we will look for a uniform convergence (with respect
to t).
We have
X' =x+ M + A}

with

° Mti’n = ] 1 fo ] dW] + f fEXR+ ]lE"ci(z’X?’)]l{“SV(Z’Xg*)} dN(S’ #u)

10



° Ai’” = fg bi(XP)ds + fg fEX[R+ 1g, (z)ci(z,X;‘,)ll{ugv(zvX;L)} dN(s, Z,u)
= [V (X2)ds + [y [ Lm, (2)¢ (2, X2 )y(2, X2 ) dpa(2) ds

consequently, MZ "™ is a martingale.

1) Let us prove that (Mti’n)neN is a Cauchy sequence in the L' space.
We write

M = M <X - X AT - AP (1.6.12)

First
. .oy t . . ’ t 3 /
A=A < [l =g s+ [ )] dsduz) du
0 0 ExRy

so, using the inequality (1.4.8), it comes,

A a2

t
e(2)7(2) dulz) + ks / X7 - X7 ds (1.6.13)
E,\En 0

thus

B[4 - Ai’"'|] < Th /

t
o7 duz) + [ B 17 - x]] s
E,/\En 0

Since (X7")nen is a Cauchy sequence in 1! (uniformly with respect to ¢ € [0,T]) it follows from
this last inequality that (A}),en is also a Cauchy sequence, and consequently, from (1.6.12),
(M]")nen is finally itself a Cauchy sequence.

2) Let us characterize now the uniform convergence.
We have, using the inequality (1.6.13),

X7 = X | < M- M|+ Ay - A

<M - M|+ TE

t
e(=7(2) du(z) + Ko / X7~ X ds.
E\E,, 0

Thus (with &, ,» = K3 fEn\E ,¢(2)7(z) du(z)), the Gronwall lemma leads then to

X7 = X' < [ sup (M = M|+ Tep | €527
u<T
and

sup | X' — XP'| < | sup [M? — MY | + Tep v | 227
t<T u<lT

If a martingale is only integrable, the Doob’s inequality becomes (cf. [30] p.34):

E [|M;" - M;"ﬂ
A )

YA>0, P |sup |M:"— M| > A

u<T

< Vi€ [1,d].

Since we have shown, for all i € [1,d], the L.!-convergence of (Mti’”)neN, it comes that, in
probability, (X]*) converges uniformly to X;. Therefore there exists a subsequence of (X]*) which
converges a.s uniformly to X; (on [0,7], for any T'). Since the convergence is uniform, this last
limit is, a.s, cadlag.
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Finally, let us show that X; is solution of the equation (1.2.3) : first, [ g(X?)ds converge

mLY)to g s. Likewise, the isometry (1.2.4) on the Fj-space an 4.8) leads to the
in ! X7)ds. Likewise, the i 1.2.4 he F) d (1.4.8) lead h
convergence (in ') of

t+ ]
/ / ]lEn(z)CZ(Z,X;Lf)]l{ugfy(zyxni)}]\/'(ds,dz,du)
0 EXR+ s
to

t+ ‘
/ / (2, X ) fu<q(z,x _)}N(ds,dz,du).
0 ExXRy °

Now, this L'-convergence implies a convergence in probability and it only remains to show
that f(f o(X7)dW; converges in probability to f(f o(Xs) dWs.

Let
Ay = {sup| XP — X, < 1).
t<T
Then
T T
p ( / o(XT) — o(Xy) AWV, > 5) < P(A,) + P (An n / (X1 — o(Xy) AWV, > 5)
0 0
and
T T
p <An n / o(X7) — o(X) dW,| > 5> <p / (0(X™) — (X)L xn_x, <1 W] > 5>
0 0

T
/0 (0(X™) — o(X) Lo, <1 AW,

2]
= % [/OT(U(X?) — 0(Xs))* L xn_x,|<1 ds}

T
< 5—;’ [/ X7 — X1 xn_x, <1 ds]
0

T
<% UO |X§L_XS|]1IX2XS|§1dS]

Since (X7) converges in I.! to X, this latter term converges, by dominated convergence, to
zero, and, since we even have a uniform convergence, P(°4,,) has zero for limit, which ends the
proof.
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Chapter 2

Solution viewed as a limit of PDMP
with two regimes

2.1 Introduction

We consider again the following class of jump type stochastic equations of which we have already
proven the existence and uniqueness in Chapter 1 (¢f. Theorem 1.2.3) :

m

t t t
X ::IJ+Z/ O'l(XS) dWi +/ g(XS) d8+/ / C(Z,XS_)]I{U<V(XS_7Z}N(dS,dZ,du),
= Jo 0 0 JExr, -

were E = R? N(ds,dz, du) is a homogeneous Poisson point measure on E x (0,T) with intensity
measure (dz) X 1o r)(u)du and the coefficients are oy, g : R? 5 RYand ¢: R4 x E — R4~ :
R x E — R.

We will consider this type of process as a generalization of Piecewise Deterministic Markov
Processes (in short PDMP) in two senses: in standard PDMP theory, between two jump times,
the process follows a deterministic curve, solution of an ODE. In our case this deterministic
curve is replaced by the trajectory of a diffusion process (so the process is no more piecewise
deterministic, but has a diffusive component). Then the process jumps with an intensity which
depends on the position of the particle. Notice however that, in the standard setting of PDMP’s,
the intensity of the jump measure is finite, so the jump times are discrete. In our case we consider
an infinite intensity measure so that the jump times are dense in R,..

In this chapter, we will study a limit theorem which motivates the equations introduced above:
we consider a sequence X/ of standard PDMP’s for which the intensity of the jumps tends to
infinity as n — oo, following two regimes: a slow one which leads to a jump component with
finite variation. And a rapid one which, supposing that the processes at hand are centred and
renormalized in a convenient way, produces the diffusion component in the limit.

In addition to the Hypothesis 1.1 (which ensure existence and uniqueness of the solution), we
will add the following one (that hypothesis will be needed, in the Malliavin Calculus part anyway
: it will be contained in the Hypothesis 5.2) :

Hypothesis 2.1 (Additional on v) We suppose in the following that v is bounded by C € R%.

Remark 2.1.1 Throughout this chapter and unless stated otherwise we assume, without loss of

generality, that T = 1 and C = %, so the last equation can also be written

m_o o t
Xt:x—l—Z/ Ul(Xs)dWé—i-/ 9(Xs)ds (2.1.1)
=170

0

t
+/ / C(Z,XS_)]I{U<W(XS_7Z}N(dS,dZ,du).
0 JEx(0,1) N
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We recall that, if u is a finite measure then the above equation admits the following repre-
sentation. Let J; be a Poisson process of parameter pu(E) x [0,1] and let Ty, k € N be its jump
times. Consider also a sequence of independent random variables Zy, Ui, k € N with laws

P(Zy e dz) = p(dz) and P(Uy € du) = 1g,1)(u) du.

1
n(E)
Then the above equation reads

Jt

t
Xt_.I'—I—Z/ ol (X dW +/ (Xs)ds+ZC(XTk—’Zk)]l{UkS’Y(XTk—7Zk}' (2.1.2)
k=1

So, in the case u(E) < oo, we prove that the law of X; coincides with the law of X; constructed
in the following way.

We consider a point z, ¢ E and we denote E, = E U {z,.}. On E, we define the probability
measures

n(z,dz) = 0(x)d,, (dz) + M(lE)]lE(z)’y(z,$)u(dz), with
1
0e) = = [ (1=a(a)n(az).

(we have here, by construction, 6(z) > 3).

We put X = = and we define by recurrence

y = Yka + C(YTk ,7k)]lE(7k) (2.1.3)

t
X = XTk+Z/ o) dWl+ /g(Xs>ds, Ti <t < Tipr.
Tk

with the random variables Z; having the conditional law
P(?k edz | X = x) =n(z,dz).

Notice that T}, k € N are not the real jump times of X : indeed, 1 5(Z;) = 0 with probability
0(x) > 0 and in this case X7, = X7, _. Notice also that the law of the jump at time T}, depends
on the position X T,—- 90, if 0 = 0, then X, is standard Piecewise Deterministic Markov Process
(in short PDM P). Then our model appears as a natural generalization of such models, which
introduces a supplementary diffusive component > ;" fot 01(X ) dW!. The motivation of this
diffusive component is given by means of a convergence result. Consider a sequence X', n € N,
of PDM P's with two regimes:

t
thzx—i-/ (Xn d3+/ / / Z X )1{u<'y(zXS )}N (ds,dz, du) (2.1.4)
n < (0,1)

/ / / (2, Xo ) fu<r (2, x, )}N (ds,dz, du).
0,1)

Here NY(ds, dz, du) is a Poisson point measure with N4 (ds, dz,du) = dsl g, (2) dp(2)1 g1y (u) du
and N (ds,dz,du) is a Poisson point measure with NY(ds,dz, du) = ds dvn(2)1 0,1y (u) du. We
assume that p(E,) + vp(E) < 0o so (2.1.4) is a standard PDM P. The regime 1g, (z)du(z) is
the slow regime and dv,, will be the rapid regime. We denote

t(z) = s;lﬂgl le(z, x)], (2.1.5)
Y(z) = sup |y(z,z)| (2.1.6)
zeR?
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and
af{j(:r):/Eci(z,x)cj(z,x)v(z,x)dyn(z).

Let o be the coefficient in the equation (2.1.1) and a = oo*. We denote
o) =la=anllo+ [ edu+ [ S,
ES E

and we construct

n) = inf (&7 du+ (B,
Then, under the hypothesis v(z,2) > v > 0 we prove that (see Theorem 2.3.5) for every
feCiRY)
C

sup [E(f(Xi(x)) — E(f(X{'(2))] < 7; [1£1l3,00 €% (n)- (2.1.7)

and give an explicit estimate for C), (generally sup,, C), < 00). In particular, if

lim Che,(n) =0

n—oo
we obtain the convergence in law of X" to X;.

Notice that the estimate (2.1.7) is not asymptotic, but holds for every fixed n. This allows to
consider it from a different point of view, mainly as a result which may be used for simulation,
for example. This is an idea going back to Asmussen and Rosiniski [2] : they consider a jump type
stochastic equation (of classical type) and propose to simulate the solution of such an equation by
replacing the small jumps (the ones which produce the infinite activity) by a Brownian motion.
We are doing the same here: we replace c(z, X;Z)]l{ug,y(zxg_)}]vg(ds, dz,du) by o(Xs)dW; (so
now we read the result in a converse sense). And then (2.1.7) gives an upper bound of the error
introduced by this operation. So, in a general way, we answer the question: what is the price to
pay in order to replace a piece of Poisson point measure by a piece of Brownian motion?

2.2 Regularity of the truncated semi-group

In this section we consider a set G C E, with u(G) < oo, and define X () as the solution of the
equation

G =X - tO’ G ! t G S L.
XE(x) = +;/ 1<X5>dws+/og<xs>d (2.2.8)

t+
+/ / ]lG(Z)C(Z,XSG,)]l{u<7(27XG )3 AN (s, 2, u).
0 ExRy - s

Remark 2.2.1 We already have encountered this solution at the beginning of section 1.4, under
a slightly different notation (in this section we had Xy = X[ and Yy = XE, for some fized set F
and G).

Our aim is to study the regularity of PCf(z) = E[f(X{(z))], where f € C}(RY). Since
1(G) < 0o we have the representation

m t t
=1 T <t

where Ty, k € N are the jump times of a Poisson process J; of parameter u(G) and Zy, Uy are
independent random variables of law

P(Zyedz) = ,u(lG)M(dz)]lG(z)’ P(Uy € du) = 1(g,1)(u) du.
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We introduce some further notations. For a function f : E x R? — R we denote

f(z) = sup [f(z,2)] = [|f(2 )l 5 (2.2.10)
reRd
7 _supZ\aa (z,2)] = D 110°f (=,
2€R |0 |=k la|=F
k

Fw(2) =) fu(2).
i=0
and, for a function ¢ defined on R?, we denote

19lly,00 = Z 1% oo

Theorem 2.2.2 Let ¢ € N. Suppose that o € Cg(Rd;Rdxm), g€ CZ(Rd;Rd) and 1 > y(z,x) >
7 >0 for every (z,x) € R x G. Then, for all f € C(R?),

HPFquoo_ Cat Hf\lqoo(1+/ 7(2)p (dz))e (G)e!Calaia (@) (2.2.11)

where 7 is defined in (2.1.6), where Cy,l, are constants which depend on q and

q

e +/Z 1—|—Zc p(dz), (2.2.12)

q
Byp(G) =1+ (1V [|[Va| )% + (1V [|[Vg].)* + /GZ%@ + Z%Fpﬂz)u(dz)
=1 =1

O4p(G) =1+ o[l

For q=1,2,3 we have l; = q.

Before starting the proof we have to introduce another representation of the solution of the
equation (2.2.8). We define YtG, t > 0 in the following way. We denote by ®,,,(x) the solution of
the diffusion equation

D, (z) =z + 3 va(q>u,s(g;))dwg+ ' (®o.5(x)) ds, (2.2.13)
> ) K

We consider a point z, € F'\ G and we define the probability density
1
1(G)

1
o) = e /G (1 — (= p))u(dz).

46(2,y) = ba(x)d.. (2) + La(z)v(z,y)  with (2.2.14)

We put YOG (x) = = and we define by recurrence

X5 (¢) = X5, _(2) + o(Z1, X5, _(2),16(Zy) (2.2.15)

G ~G

The random variables Z; have the conditional law

P(Zy € dz | Xg,_(2) = y) = aa(z, y)u(dz). (22.16)
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Remark 2.2.3 In mathematical physics the above equations are known as "transport equations”
and the equation (2.2.8) is called the "fictive shock" representation and the (2.2.15) is the "real
shock" representation: see [35] p. 49. This book gives a complete overview of the numerical meth-
ods used in the Monte Carlo approach to such equations as well as several possible applications.

Lemma 2.2.4 The law of X (x) coincides with the law of th(x) Moreover, for any non neg-
ative and measurable function ¥ the law of Sy = Zi’;l \I’(Zk‘)]l{Uk<7(Zk X&)} coincides with the
<V(Zk, XE, _

law of Sy = Y0t U(Zy).
Proof : We have (with the notation from (2.2.9))

E[f(Xf) | Xf_ =y]
=B [fy+ ey, Z)a(Z) i, <z, + E [F @O Lw, 5y, = 1+ J.

A simple computation shows that P(U; > v(Z;,y)) = 6c(y) and moreover

1 1
I:/E/O f(y+C(Z’y)]lG(Z))ﬂ{US’Y(Z,y)}mduu(dz)

_ /E f(y+c<z,y>ne<z>>v<z,y>@u<dz>
so that

B[f(X§) | X§_ =y] = [E fly+ C(zyy)llc(Z))v(zay)M(lG)u(dZ) +06(y) ()

:/Ef(y—i—c(z,y)]lG(Z))QG(Z7y)M(dZ)
=E[f(X7,) | X7,- =1)].

We conclude that the law of X coincides with the law of YtG . In order to check that the laws of
S; and of Sy are the same, we just use the previous result for the couple (X, S;) and (Yf,gt).

Notice that the process th defined in (2.2.15) verifies the equation

x¢ =X - tO' x¢ X ! t x¢ X S
X{w) =3 /0 (X6 () AW + /0 9(X%())d (2.2.17)

Ji

+ " Z1, X5, (@) 1a(Z).
k=1

It is known (see Ikeda-Watanabe [30]) that one may choose a variant of the stochastic flow ®,, ,(x)
which is differentiable with respect to the initial condition z, and we choose this variant. Then

T — YtG () will be also differentiable. Our aim now is to give an upper bound for the moments
of the derivatives.

Remark 2.2.5 Let us be more precise : for each fived Zy, = z1,, k € N, we consider the function
x — YtG(x), solution of (2.2.17) ; 8xlth(x) designates the derivative of this function with respect
to x;. As mentioned before, the law of Z}, depends on 7%,(3:) and consequently depends on x
also. But the derivative 9,, does not concern the law of Zy but only the flow YtG(a:) for each fixed

7y, = z1.. The perturbation of the law of Zj, when we move x will be treated in a separate way, in
the proof of Theorem 2.2.2.
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Proposition 2.2.6 For every q,p € N there exist some constants C' (depending on q and p) and
lg (depending on q) such that, for every multi-index o with |a| = ¢

B [|09X (2)[7] < €Oy p(G)e!atar(©) (2.2.18)
and
o .
E [an(zk)]agxt (x)ﬂ <Ot / Fdp x Ogy,p(G)e!Peiar(@) (2.2.19)
e G
with ©g ,(G), 04,(G) defined in (2.2.12). For q =1,2,3 we have l; = q, and in general, l; < 29.
Proof : We treat the first derivatives. We have (with ¢; = (0, ...,0,1,0,...,0) with 1 on the i'th

position)

0. X7 (z _e1+2/ Vo (XS (2)), 0, X ( )>dW§ (2.2.20)

+ [ (vocxSia), axifi’“(xw ds

Jt
+ > (Va2 X5, (2)),0, X5, (2) ) 1a(Zs).
k=1

Using the identity of laws given in Lemma 2.2.4 for the system (Yf(m), wata (x))+>0 we conclude
that the law of this process coincides with the law of the process (XtG(m),V(l),t(x))tzg where
X&(z) is the solution of the equation (2.2.8) and V(1)t 44 =1,...,d solves the equation

Viyale —6#2/ Vo (X3 (), Vi 4 (2 )>dWl (2.2.21)

t
+/ VngGa:,Visaz ds
O< (XS (@), Vo) )
+Z< 2C(Zp, X5, (x ))"/(il),Tk—(x)>]lG(Zk)]l{ng'y(ng_(x),Zk)}‘

We will use Proposition A.3.1 in order to estimate the moments of V(1) ,(z). In order to fix
notations we mention that the index set is now A = {1,...,d} and o = i. Moreover V(il) 0= €

and H' = h' = Q' = 0 so, in particular, § = 0 and R’ = 0. It follows that (see (A.3.3) for the
notation)

) = [ a0+ a0 ()T dulz)
Then, using the identity of law and (A.3.4) we obtain
G 2 i 2 ~
B ([0, X7 @) = B[ Vi) o@)]”] < exp(tCp(1+]V0]2+ Vg2 +201) 2(p))) < exp(tCpfrp(G))

0 (2.2.18) is proved. And

p
[Z]IG Zk) ‘Vu ) T (x)‘ ]l{Uk<w<X$k_(x),Zk)}]

/vdﬂ/ Vi ()] as

0 (2.2.19) is also proved with I; = 1).
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We estimate now the second order derivatives. We take derivatives in (2.2.20) and we obtain

0,50, X, (x Z/HJ ) dw! + /w ds (2.2.22)

+ Zd’jm—,?ma@
k=1

+Z / Vo, (X%(2)), 0, axjf(x)>dwﬁ+ /0 t<Vg(XSG(x)),3xj8xin(:z:)>ds

= 2< w21, X7, (2)), 00, X7, (x) ) 16(Z0).

with (where X° = (YG7r(x))1<r<d>

Z 0, (X (2))0, X ()0, XS (),

ror/=1

Z 2 (X5 ()0, X5 (0)0,, X (),

T‘?"—

and
d

Q.70 = Y O e(Zn X (@)0p XS ()0, %0 ()

ror/=1

Using the identity of laws given in Lemma 2.2.4 for the system (X, ( )s Vg X (x), V?EYtG(x))tZO
we conclude that the law of this process coincides with the law of the process (Xt (), Vi) (), Vi) (7)) i>0
where X,g(a:) is the solution of the equation (2.2.8), and V(il) ¢ € R?, i =1, ...,d solves the equation

(2.2.21) and Végt(x) e R%i,j =1,...,d solves the following equation:
Vi (@) —Z/ H (s) dW! + / hi (s) ds (2.2.23)
+ZQW T Z1)1e(Zk) Ly, <y(x§_(@).200)
k=1

+ Z ), (VX awd+ [ (aCe . v, )as

+ Z< o2, X5, _(x )>7V<3§,Tk—> Lo(Zi v <y(x§_(@).20))

with
Z 00w (XE (@) (V) ) @) (V] ) (@),
ror'=1
G Z 0r0,rg(XE (@) (Vi ) (@) (Vi) )" (),
and

Q¥ (s, Z) = Z BB, ¢( 21y Xy (2)) (Vi) ) (@) (V)" ().

ror/=1
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We will again use Proposition A.3.1 in order to estimate the moments of V(9 +(z). Now the index
set is A = {(4,7);4,5 = 1,...,d} and a = (4, j). Moreover V(2) =0 and H% h¥I Q™ are given
above. In particular we have |Q% (s, Zy)| < g(2)R"(s) with g(z) = C(2)(z) and Ry = ‘1/(1)75’2.

So
¢2)1(p) Z/G(C(2>(Z)+C(1)(Z))(1 +22)(2))*7(2) dps(2),
(2),2(p) Z/G(C(z)(2)+0(1)(2))(1 +2(1)(2))7(2) dpa(2).-

We also have

t m
| B[S+ e + ) R[] as (2.2.2)
=1
¢ »
< | ol + gl + 2@ B[ [Viny o " ds

< 1Cy(llo 3% fD +€(2),1(p)) exp(tC2y (1 + |V | L + Vgl 2 + ) 2(2)))-

Then

—G 2p i 2p
<tCy(llo 152 + 19157 + E2)1 (P)
x exp(tC2(1 + IIVJIIié’ + IVglIZ + 21 2(2p) + C2)2(D)))
<tCpO2,p(G) exp(tCopba,2p(G))
(since E(2),2(]9)) < 5(2),2(2]?)))-

So the proof of (2.2.18) is finished and then (2.2.19) follows as above. Notice that lo = 2 here.
We deal with the third derivatives now. Notice that

B

0 0 0
00,00 flo(e)) = k; 1 ayk,, 5t ) g0k (@) e 0) 5ok

0?2 o H? 9
+ Z k’a k )) (mgk(a)aigk’(a) + 8xr8xj g’ (a,)aixlgk(a)

kk'=1 ¥ z

_l’_

02 9
Dy Dy g’“(“)a?g’“’(“))

+ <Vf(g(a)), 8$Taa:j 8119(01))7
Then, the same pattern as before gives
.. m t .. l t ..
Vi@ =" /0 H7"(s) AW+ /0 hiI7(s) ds
=1

Jt
+ZQW Ti= Zo) L6 (Zi) v, <y(x§, _(x).20)}

t
i l —G ©,7,T
n Z [ (Vo wnvigryawt+ [ (voCe . v as
Jt —c C
+ 3 (VaelZi, X, (@), Vi) La(Zi) i, <y(x§ _(@).200)
k=1
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where Hlm’r, hH37 Q%" are defined in a similar way as H;’J, h%3, Q%I in the second order case.
So we have, (with |a| = 3),

)

o = o b = = o 3
and |Q(s, Z¢)| < G(2)R*(s) with q(2) = ) (2) + (3)(2) and RS = [Viy) o + [Vig) | [Via) o] So
the hypothesis of Proposition A.3.1 are verified with

(NI

B {187 ()] < Cyllloll3e + 113 (B (Va7 + (B [IVia) ol 7] B [[Veay o/ 7))

%,poo + HgHg{)oo)(E [|V(1),s|6p] + (E [|V(2),s|4p] E [|V(1),s’4p])

N|=

E [|h°(s)[*] < Cyllg

c3)(p) = /G(C(s)(z) +2(2)(2) + 1) (2)) (1 + T2 (2) + 3y (2))PF(2) dpu(2),
C(3)2(p) = /G(C(g)(z) + (2 (2) + 1) (2)) (1 4 ¢1)(2)) P (2) dua(2).

We also havel!

B[ 6 o)+ ) R[] s (22.25)
=1

t 1
< /0 Colllol3e + o113 + 913 + 913 + )1 (0)) (B [1Via) o] + (E [[Vig) o #] B [IVir) o1'7]) ) s

< (14 1C,0225()) ©1,() exp(tCY (81(G) + 013,(G) + 02.s(C).
It follows that (see A.3.4)
- 2p i 2p
B[ |000:00 X, @) | =B [ [7] < 4(14 1/10,022(G) ) 024,(G)
X exp(tCy(1+ 01,25(G) + 013p(G) + b2,4p(G) + IV |22 + [ VlIZE +E3) 2(p)))

<t (14 4/1C0:2(G)) O3, (@) exp(tCyf 3y (G)):

So we obtain (2.2.18), with I3 = 3.
For higher order derivatives the proof is the same but it is more difficult to give a precise expres-

sion of /. For example, when using Hélder’s inequality in order to estimate E [ |V(1)7t ‘4p ‘1/'(2)7t|4p }

we are not able to keep 4p. But it is clear that [, = 29 will always work. °

We are now ready to give:
Proof of Theorem 2.2.2. Given a sequence z = {zy}ren with 2z € E, we construct
xi(x, 21, oy 2,) by zo(z) = z and

7 (T, 215 ooy 28) = X1 — (T, 21,5 ooy 26—1) + (2= (2, (21, o, 26—1)), 26) LG (2k) (2.2.26)
x(z, 21, .oy 21) = Oy t(@7, (2,21, .0y 21)) Th <t < Tk

so that YtG(x) = 24(z,Z1, ..., Z j,). Conditionally to G, = o(Wy, Js,s < t), 2(z, 21, ..., 25,) is a
deterministic function of z1, ..., z;,. We choose a variant of the stochastic flow ®;, ;(x) which is

1Since we already know that

E [[Vi1),s|*] < exp(tCyb1,3,(G))
E [[Vi2)s[*"] E [[Viay.s] 7] < tC102,2p(G) exp(tCapba,ap(G)) exp(tCpb1,2,(G)),

SO

E V)] + (E [[Vi2)s| 7] E [|V(1),s\4p])% < (14 VtCpO2,2,(G)) exp(tC; (01,2p(G) + 01,35(G) + 02,4,(G))).

21



infinitely differentiable with respect to x, so © — z¢(x, 21, ..., zx) is infinitely differentiable. Notice
also that Yf (v) = x4(x, Z1, ..., Z,) so that, with Eg, the conditional expectation with respect
to gtu
7G J— J—
B /(X7 (@)] =B [Bg, [f(ai(@, 71, Z1))]]

E [/f(.’lﬁ‘t(l’,Zl,...,Z{]t))p(]ﬂf(.%',Zl,...,th),lL(d21),...,/,L(dZJt)

where
Jt
pJ,t($7 By eeny th) - H qG(ka—(xa Z1y eeey zk*l)a Zk;)
k=1
It follows that

On B [f(X( (@)] = A+ B

with
d
A= ZE {/&f(xt(x,zl, ooy 20)) 0, Ty (0, 21, oy 27, D04 (2, 21, oy 27, ) p0(d21), oy p(d2g,)
=1
d — — — —
= ZE [alf(fﬂt(l', VAR ZJt))axll’é(CC, Z, "'7ZJt)
=1
and

B=E |:/f(l't($,zl, ""ZJt))aﬂfiprt(‘T?Zl? ...,th),u(dzl), "'7H(dZJt):|
=E [/f(xt(:z:,zl, s 27,)) 0, M p (2, 21, .0y 2,) X Dye(2, 21, ...,th),u(dzl),...,u(dzjt)}
=E [f(xt(a;,Zl, ...,th))azi lan7t(.%',71, ...,7Jt)] .

Let us estimate A. Using (2.2.18)

d
A< e YE |

=1
< C ”f”l,oo @171(G)6tc®1,1(61).

O, 21, Z2)| | = Clf o B [ [Va X7 @)]]

Let us estimate B. We have
Jt

Op, npyi(z,21,..25,) = Z@D(zk)@xz Inbg(zr,— (2, 21, ..., 2k—1))
k=1
Jt
+ Z Lg(2k) 0z Iny(2r,— (2, 21, .0y Zk—1), 2k)-
k=1

Notice that 0 (z) > 3 and y(z,a) > 7. We also have |V 0¢(z)| < [7]l1,00 sO that

Jt
|0z, Mpi(z, 21, ..y 2,)| §22¢(zk) |Vl (zr,—(z, 21, ...y 2—1))| X |Vaxr,—(z, 21, ...y 2k—1)]
k=1
Ji
1
+ 5 Zﬂg(zk) \Vey(zr,—(x, 21, ..., 25-1))| X |Vaezr,— (2, 21, ..., 25—1)|
Lp=1
1 4
<(2+ 5) Moo X 3 La(z) [Vawr— (@, 21, s 25-1)] -
— k=1
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Using (2.2.19)

Ji

B[ [0 npss(e. 21, 20| | < C(24 2) Il oo B [ Y- 16(Z0 V.5, (@)
— k=1

1
<Ct(2+4 2) Il ©14(@)O) [ 5ap

and this gives
1
B < Ct I (24 7) I3l e €100 [ 50

For higher derivatives the proof is similar so we skip it.

2.3 The convergence result

Our concern in this section is to give a sequence of PDM P’s with two regimes which converge
in law to the solution of our equation. The main result is Theorem 2.3.5 bellow. We consider a
measurable space F and for each n > 0 we take an increasing family of sets E,, T E. Moreover we
consider a o-finite non-negative measure p and some finite non-negative measures v, on F and
we define the measure 7, on E by

M (d2) = vn(d2) + 1g, (2)p(dz).

We denote A\, = n,(E).
Moreover we consider a measurable function v, : R? x E — [0, %] and a point z, ¢ E and we
denote E, = FU{z.}. On E, we define the probability measures

1 (029) = 0n(9)3-.(d2) + Lo (e pmn(d)  with
On(s) = 5 /E (1= 7z ) (d2).

The PDMP that we have in mind is the following. Let J;* be a Poisson process of parameter
An and let 75,5 € N be its jump times (they depend on n but we ignore it for simplicity). The
jump coefficient will be ¢, : R? x E, — R? which verify c,(2«,y) = 0. And the drift component
is ¢, : R — R?. Then we put Yg = z and we define by recurrence

Xy, =X1,_ +cn(Zie, X7, ) (2.3.27)

t
Y? :Y%g +/ (Z)n(YZ) ds T. <t< Tk+1.
Ty,

The random variables Z; have the conditional law
P(Zk €dz | Xy, = y) = (y, d2). (2.3.28)

Notice that T,k € N are not the real jump times of X" : indeed, since cn(zx,y) = 0, one may
have cn(Zk,Y%C_,) = 0 with probability 6,,(y) > 0 and in this case Y;k = ng_.

Example 2.3.1 The generic example we have in mind is the following. We take E = (0,1)
and E, = (n™1,1) and z. = 0. Then we take v, (dz) = n]l(n_274n_2)z_5/2 dz and p(dz) = 273/ dz.
So

Nn(dz) = (n]l(n_274n_2)z_5/2 + ]l(n_1’1)(z)z_3/2) dz.

And we take (here d = 1)

cn(2,y) =0(y)z, w2 y) =)
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We will now give an alternative representation of Y:L as solution of a jump type stochastic
equation. We consider a Poisson point measure N, on E x (0,1) with compensator

Np(ds,dz, du) = ds x g, (dz) x To,1)(w) du (2.3.29)

and we denote by X/ the solution of the SDE

t t
X' =x —l—/ / n (2, X&) L fusy, (z,xm )3 Nn(ds, dz, du) +/ on(X7)ds (2.3.30)
ExR, 0

—1‘+ch X v <om (25X, }+/¢an

Here Z; and Uj,j € N are independent random variables with P(Z; € dz) = A, 'n,(dz) and
P(Uj S du) = 1(071)(u) du.

The same argument as in the proof of Proposition 2.2.2 (and more precisely the Lemma 2.2.4)
proves that (X} )¢>0 has the same law as (X*);>0.

Our aim is to give sufficient conditions in order to obtain the convergence in law of X, (or
alternatively of X") to X solution of

Xy x+2/ o1(Xs) dW! + /tg(XS)ds (2.3.31)
0

+/// c(z,Xs,)]l{ugv(axsi)}]\f(ds,dz,du)
o JE o)

where W is an m-dimensional Brownian motion and o7,g : R* — R? and ¢ : R x E — RY,
v:RYXE — R are some coefficients, and N (ds, dz, du) = ds x u(dz) x 1 (0,1)(u) du. Notice that p
is the measure considered in the construction of 7,, but v, disappears. The noise corresponding
to vy, represents the "fast regime" (see the example) and the corresponding contribution will
converge to the stochastic integral with respect to the Brownian motion. The relation between
the coefficients ¢y, ¢y, v, of the approximation equation and o, g,c,y will be specified in the
hypothesis that we present later on.
We denote

() = () + /E en(2 ) (20 2)vn(d2).

and (with the notation from (2.2.10))
Cor =1+ gl | s/ (G + 17,0 (23.32)
+ /E(’Yn,mci + VnCnCn (1)) dvn.

We also denote

Z 0,01 (x)ai (x) + Za F@0h@)+ [ (@t enlz) = F@)nlza) dut2)

1,j=1 "
(2.3.33)
with
aii = [ () (2,22 0) don2) (2.334)
E
Lemma 2.3.2 i) There exists a universal constant C' such that for every t € [0, 1)
E [yXf(x) - 3:|2] < Ctc? (2.3.35)
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ii) For every f € C3(R%)

1Pf £ (x) = f(2) = tLnfll < CCLIIf 300 (1'% + 0(n))t (2.3.36)

with
go(n) = / @ (2)7,, dvp. (2.3.37)

E

Proof :  We denote hy(z,7,u) = ¢, (2, %)l {y<y,(z,2)} and we consider two independent Poisson
point measures N” and N/ with intensity measures NY(dt,dz,du) = dtv,(dz)du respectively
];\\fﬁ(dt, dz,du) = dt1g, (2)p(dz) du. Then we write the equation (2.3.30) as (with N¥ < N¥ —

Ny)
X _g;+/ / (z, X" ,u)NY(ds,dz, du) (2.3.38)

EXR+

// n(z, X2, u)NH(ds,dz, du)
nXR+

+/ gn(X7)ds.
0
Let us prove (2.3.35). We have

2
B1xp—af?] <ct [ eg,dusof( [ emdut ol )
E, Ey,

+ Ct / 27, dvy,.
E

Let us prove (2.3.36). Using Itd’s formula, for a function f € C%(R), we have

X)) = f(2) + M () + 1 (F) + ' (F) + D (f)

with
[T e X)) R s, s,
ExRL
/ | R b X3 0) = P2 = (V). B X ) N2 (s, d, )
= / / PO b X)) = F(XT )N (s, dz,du)
DY) = [ (VHOXD).00(X2) ds.

Since M['(f) is a martingale we obtain

Pf(x) = f(z) =B [I}(] + E[H())] + E[D}(f)].

We estimate now each of these terms.
Let us estimate E [I]'(f)]. We denote

(z,2,u) Z@@f he (2, z,u)hd (2,2, u)

4,j=1
g(z,x,u) = f(z+ hp(z,2,u) — f(x) = (Vf(2), hn(z,2,u)) — (2,2, u).
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Notice that, since ai/ = [, ¢k, (2, 2)ch(2, 2) (2, ) dvn(2),

l(z,z,u)vp(dz)d 0;0; f(z
gy temitn= 3 3% 0o
so that

Zaaf () 4+ ri(t, z) + ra(t, )

i,j=1
with

1(t,x) / / 9(z, X7, u))] dudvy,(dz)ds,
Ex( 01)
= / / E [I(z, X] ,u) — (2, z,u)] dudvp(z)ds.
2 Jo JEx(0,1)
We have
l9(z,2,0)| < C || flls 00 (2,2, 0)1* = O [ fll3,06 len (2, 2)° Lpuso (2.0}

so that

t 1
n\13
1 (2)] < C 1l /0 /E /0 E [Jen(z X [* Lpuen oxn yy] dudun(2) ds
t
n 3 n
= Clfllsm /0 /E E [ |en(z, X7)[* (2, X7)] dv(2) ds
<Clfllsnt / &, du.
’ E

We estimate now r9. We write

1
/ I(z,z,u) du = I(z,x),
0

with
Z 0:6;(2)6h (2,2)ch (2, 2)m (2, ).
zy 1
Then Lot
= 2/0 /EE [(z, X)) = U(2,2)] dvn(2) ds.
One has .
Val(2,2)| < C 1 Fll5 00 (Fn(2) + T, (1) (2))80(2) + V3 (2)En(2)En, 1) (2))

¢
2t < C il [ T+ Ty o x [ B[1X2(0) —a] ] ds
0
< C2||f|l3 00 Cn
the last inequality being a consequence of (2.3.35). We conclude that

d
1] =5 3 00, f@)aid (2)

ij=1

< CC2 | flly o0 (12 + / 7, dvy).
E
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We estimate now H}'(f). We have

// 9(z, X)) u(dz) ds

9(z,x) = (f(x + enlz,2)) = [(2))m(2,2).

with

Since
V2g(2:2)| < C |l fll2.00 (n,j1]Tn + V1)) (2)

i[/ﬁm@mmaﬁ
S[f/nﬁﬁwaX?ﬂ—ﬂ@JMMM@ds

t
< Clfllne [ T+ oy dix [ B|XD (@) ] as

n

it follows that

< Ot | fllz,0 Cr-

Finally

‘EUﬁUﬂ-ié<Vf@%%J@%h <ol e Wl | BIXE @) 2] as < cC22

We consider now the Poisson point measure N with compensator N (ds,dz,du) = dsu(dz) du
and the stochastic equation

X x—l—Z/ o1(X,) dWl 4 /Otg(Xs)ds (2.3.39)

—l—/// (2, Xs— ) u<ry(z,x, )3V (ds, dz, du).
0o JaJo,)

We denote P f(z) = E [f(X¢(z))] the semi-group associated to X;. This is the limit equation
in our framework. We will also use the truncated version of the equation (2.3.39) as defined in
(2.2.8) for G = E,,. We denote P f(z) = E [f(XtE" ())] and, with a = oo™,

d
LPn f(x) §jaaf aﬂ+§j&ﬂm¢mrﬁéﬁfu+c@w»—fu»waxmma

i,j=1

and

Co = 1+ ol o+l e + [ T
Lemma 2.3.3 A. For every f € C3(RY)

HPtE" o f—tLPny (2.3.40)

| =cep)

3,00

B. We also have
|Pif = P

‘ gCt/ ydp. (2.3.41)
o E%

27



Proof : Assertion A is analogue to (2.3.36) so we skip its proof. The estimate (2.3.41) is an
immediate consequence of Lemma 1.4.1. °

In order to give our main result we have to introduce some additional notations. We assume
that y(z,2) > v > 0 and, for G C E, we denote

2(G) ' inf{y(z,z) : z € R, 2 € G}.

Moreover we recall the definition of 0, ,(G) and 6, ,(G) defined in (2.2.12)

q q
0yp(G) = 1+ |02, + llgll2", + /Gzc(i)(l +) ) ydu, (2.3.42)
i=1 =1
q
0u(G) = 1+ (1Y Vel + (1V [ Vgl + [ 300 +3 7P du
=1 =1
Finally we denote
as(@) = fit@s,gm)e”w(@(u / Ydp). (2.3.43)
7(G) G
Then by (2.2.11),
HPthH&OO < Ctas(G) || fll5.00 - (2.3.44)
MOI"GOVGI‘ we denote
eo(n) = / o n W, (2.3.45)
E

e1(n) = lla = anll + 19 = 9nll

£2(n) =/ e(2)sup [7(2,2) = (2, 2)| +7(2) sup |e(z, ) — en(2, 2)| p(dz)

n

e3(n) = / vy

and, for every n € N we define

3
g«(n) = ér;fn(/c &ydp + az(ER)(C? + C?) ZEZ (2.3.46)
- =0

Remark 2.3.4 The definition of €.(n) is based on the idea of an equilibrium (when R — +00)
between IE% ydp | 0 and az(ER) 1 oo. Indeed, if [,7dp = oo (and this is the really interesting

example) then as(ER) blows up, so we have to find an efficient equilibrium with [p. eydu | 0.
R
See the example, section 2.4.

We are now able to give our main result:
Theorem 2.3.5 There exists a universal constant C such that for every n € N and every f €

Cy(RY)
1Pef = B flloo < CtIfll3,00 85(7) (2.3.47)

In particular, if lim, . £+(n) = 0, then, for every x € R? and t > 0, XJ*(z) converges in law to
Xt(:c)
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Proof : Step 1. It is easy to check that

2

L5 f = Lof]l o € C I fllace > iln).

i=1

This, together with the previous two lemmas gives (for every R > n and every § > 0)

PP f(a) — Py f(@)] < CO(C2 + CR)o(6"/2 + Z ein
=0

(2.3.48)

Step 2. Using (2.3.41), for every R > n

|Pf = PPl < | PP = P

Ot [ evn

Step 3. Let 0 > 0,t;, = ké and Asf(x) = Py f(x) — PfRf(x). We write
o= 2 [Fenaoried], < 3 flaorins

By (2.3.48) first and by (2.3.44) then

st pees

.

|aapEns]_ < |[BEns], (c2r e+ ems
’ =0

3
< Ctas(ER) || flls 00 (CF + CR)(E2 + Y " ei(n))s
1=0

Summing over k = 1,...,t/d we obtain

3
Lo < Ctas(ER) | flls.00 (C2+CHEY? + Y ei(n)
1=0

Ipens— prs

3
= Ctas(Bp) | fll3.00 (CZ +C7) Y _eiln)
=0
the last inequality being obtained by taking §1/2 ZZ o €i(n). We conclude that for every R > n

3
I1Pef = PP Sl < C( [ Tl + as(BR) 1l (C2 4 €2 D)
R =0

and taking the infimum over R > n we obtain (2.3.47). Using now this last equation with
the function 1 — fr, where fr : R? — R is smooth and such that T_rr(lyl) < frly) <
T (r41),r411(|y]), for all y € RY, we obtain that the sequence (Xf(a;))n is tight and so the
convergence in law follows. °

2.4 Example

We take d = 1 and the coefficients ¢, (z,a) = c(z,a) = o(x)a, gn(z) = g(z) and v, (z,a) =
v(z,a) = v(z) with

1oll3,00 + 19ll3,00 + 1Vll3,00 = ex <00, and  ~(z) 27 >0. (2.4.49)
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We also consider the measures

n 1

vp(dz) = 25/2]1(%,%2)(2) dz, wu(dz) = Wﬂ(o,l)(z) dz and

1 (d2) =va(dz) + 11 ) (2)p(dz).
So, with the notations from the previous sections, we have E = (0,1) and E, = (2,1). We
also recall that given a measure x(dz) on E we have denoted by N"(ds,dz,du) the Poisson

point measure of compensator dsk(dz)du. We will work with the following equations. The limit
equation is

t+
X, = x—l—/ Xo) Vv (Xs) dWs+/ ds+/ / )21 pu<n(x, )3 NH(ds, dz, du)
0 Ex(0 1)

(2.4.50)
and the approximation equations are

t+
X/ :$+/ / X Z]l{u<'y(X" )}N (ds,dz,du) (2.4.51)
nXx(0,1)
t+ t
/ / X z]l{u<7(Xn )}N (ds,dz,du) —i—/ 9(Xs)ds
Ex(0,1) 0

t+
—:c+/ / (X z]l{u<7(Xn N (ds, dz, du) + / On(Xs)ds
Ex(0,1)
with

on(z) = glz) - /E o(2)2(@)vn(d2)

4n* 4y
S = o(a) — 2o (@)(a).

— gla) - olahr(a)n [

1/n2
Since n?c(z)y(z) generally blows up (ie. except in the case x € {o = 0} U {y = 0}), it is clear
that we are obliged to put it in the drift coefficient of the equation (2.4.51). So, with the notation
from the previous sections, we have g, = g and also

= 2 1% = Zx xr)n 4/n2%_12.7] X
@) = [ A o) =enen [ = Sotent)

Proposition 2.4.1 Suppose that (2.4.49) holds true. Then

thSeCC 1

1Pf — P fllo < —7 (2.4.52)

Proof : First, one easily checks that ©33(FR) + 033(Eg) < Ccl (recall that ©33(Eg) and
03 3(ER) are defined in (2.3.42) and the integrals involved in these terms are done with respect
to p and not with v,). We compute now

[ AGnaz) = 2@uEr) = 2@VR < . VR

It follows that
(ER) C 8 CC*RI/Q
7

Notice also that C, + C,, < Ccl. We compute now &;(n) i = 0, ..., 3 defined in (2.3.45). First

4/n? Cct

go(n) = / @7, dv, < cin
E

1/n?
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and e9(z) = e1(z) = 0. Moreover

We conclude that

! Cct
Ze,(n) < YR
=0
Finally
/ ydu < ¢ /URdZ < 262
; o VESVE
It follows that
3
ex(n) = inf cydu + as(E Cf—l—Cfl gi(n
)= ot (] s st )3 i)
C 15 00 1 RP2Csea 1
< ¥C* e }lzgfn(m m) = ?C* e X

Using (2.3.47) we obtain (2.4.52).
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Chapter 3

Ergodicity for the solution

3.1 Introduction

Now that we have established in the first chapter the existence of a solution of the stochastic
equation (1.2.3), we will give here a first application concerning its possible ergodic behaviour.

So, again, let N(ds,dz,du) be a Poisson random measure on Ry X R? x R, defined on
a probability space (2,4, P) with intensity measure dsu(dz)du. We consider a process X =
(Xt)e>0, Xt € R?, solution of

t ¢
Xy :a?+/ g(XS)ds+/ o(Xs) dWS—i—/ / c(z, Xs— ) y<q(zx,)N(ds,dz, du), (3.1.1)
0 0 [0,t] JRIXR B

x € R%, where W is an m—dimensional Brownian motion. The associated infinitesimal generator
is given for smooth test functions by

i) =5 3 anle) g tl@) + g@ V0@ + [ (o + cla0) — b))zl

1<i5<d 8%(%] Rd
(3.1.2)
where a = oo*. Notice that the jump rate at time ¢ of process depends on the position of
the process X; itself, i.e. the intensity measure in the infinitesimal operator L is «y(z,z)u(dz).
Moreover, since p has infinite total mass, jumps occur with infinite activity, i.e. the process
possesses infinitely many small jumps during any finite time interval [0, 7).

The principal aim of this chapter is to give easily verifiable conditions on the coefficients b, o, ¢
and v under which the process is recurrent in the sense of Harris and satisfies the ergodic theorem
starting from any initial point x, without imposing any non-degeneracy condition on the diffusive
part. Recall that a process X is called recurrent in the sense of Harris if it possesses an invariant
measure m such that any set A of positive m—measure m(A) > 0 is visited infinitely often by
the process almost surely (see Azéma, Duflo and Revuz [4] (1969)): for all z € RY,

Pw[/ 14(X,)ds = 00| = 1.
0

There starts to be a huge literature on the subject of EDS with jumps, see e.g. Masuda [40]
(2007) who works in a simpler situation where the “censure term” 1,<(; x,_) is not present and
who follows the Meyn and Tweedie approach developed in [42] or [41], Kulik [34] (2009) uses the
stratification method in order to prove exponential ergodicity of jump diffusions, but the models
he considers do not include the censored situation neither. Finally, let us mention Duan and Qiao
[22] (2014) who are interested in solutions driven by non-Lipschitz coefficients.

Our aim is not to improve on the regularity conditions imposed on the coefficients but to
concentrate on the jump mechanism. More precisely we show that we can use the jumps them-
selves in order to generate a splitting scheme that will allow to prove recurrence of the process.
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It is important to notice that the presence of the censure term v(z, X;_) in (3.1.1) implies that
the study of X is technically much more involved than the non-censored situation when -~ is
lower-bounded and strictly positive.

The method we use is the so-called regeneration method which we apply to the big jumps.
More precisely, for some suitable set F such that u(E) < oo, we cut the trajectory of X into
parts of solutions of (3.1.1) driven by N in restriction to E¢ and which are stopped at the first
jump appearing due to “noise” z belonging to E. In spirit of the splitting technique introduced by
Nummelin [44] (1978) and Athreya and Ney [3]| (1978), we state a non-degeneracy condition which
guarantees that the jump operator associated to the big jumps possesses a Lebesgue absolutely
continuous component. This amounts to imposing that the partial derivatives of the jump term
¢ with respect to the noise z are sufficiently non-degenerate, see (3.2.6) and (3.2.7) below. We
stress that we do not need any non-degeneracy condition for the diffusion coefficient o.

Notice that we do not apply the splitting technique to an extracted sampled chain nor to the
resolvent chain as in Meyn and Tweedie [42] (1993); the loss of memory needed for regeneration
is produced by certain big jumps. This approach is very natural in this context, but does not
seem to be used so far in the literature, except for Xu [54] (2011), who works in a very specific
frame and where the jumps do not depend on the position of the process.

This chapter is organized as follows. In Section 3.2 we state our main assumptions, prove
a lower bound which is of a local Doeblin type and state our main results on Harris recurrence
and speed of convergence to equilibrium of the process. Section 3.3 introduces the regeneration
technique based on big jumps and proves the existence of certain (polynomial) moments of the
associated regeneration times. Section 3.4 is devoted to an informal discussion on explicit and
easily verifiable conditions stated in terms of the coefficients g, o, ¢ and « which imply the Harris
recurrence. Finally, we give in Section 3.5 a proof of the local Doeblin condition which is quite
involved due to the fact that the jump mechanism depends on the position x of the process just
before jumping.

3.2 Notations

As we did in the first chapter of this work, we consider again a Poisson random measure
N(ds,dz,du) on Ry x R? x Ry, defined on a probability space (£, .4, P), with intensity mea-
sure dsp(dz)du, where p is a o—finite measure on (R? B(R?)) of infinite total mass. Let
X = (Xt)t>0, Xt € R?, be a solution of

¢ t

X, =t / g(X.)ds+ / (X,) AW, + / / (2, Xo ) Lyer o,y N(ds, dz, du), (3.2.3)
0 0 0, JRIXR

r € R4, where W is an m—dimensional Brownian motion. Write IF' = (F;);>0 for the canonical

filtration of the process given by

Fi=o{Ws,N([0,s] x Ax B),s <t,Aec BR%,BecB(R,)}.

3.2.1 Assumptions

In order to grant existence and uniqueness of the above equation, throughout this chapter, we
impose the following conditions on the coefficients g, o, ¢ and ~.

Assumption 3.2.1 1. g and o are globally Lipschitz continuous; o is bounded and g has
sub-linear growth; i.e. there exists a constant B > 0 such that

lg(x)| < B(1+ |z]), for all z € R%

2. ¢ and vy are Lipschitz continuous with respect to x, i.e.

le(z,2) = c(z,2)] < Le(2)|x — 2’| and |y(z,2) = (2,2")] < Ly(2)|z — 2,
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where L, L : R? - R,.

3. Putting 5(z) < SUp,epd Y(z, ) and ¢(z) “ sup verd (Jc(z,2)| + |3§‘8£c(z,x)|), we sup-
a-+B<2
pose that ¥(z) < 7 < oo, for all z € R, and that the following integrability condition

holds:
/Rd(LW(Z)’Y(Z) + Le(2)e(2))p(dz) < oco.

[ a@ete)a(a) < o.
Rd

Hence, the Theorem 1.2.3 ensures us, since Hypothesis 1.1 are in this case verified (notice
that this last set of hypothesis are the same, with an additional stronger condition' with respect
to the regularity of the coefficient c), that (3.2.3) admits a unique non-explosive adapted solution
which is Markov, having cadlag trajectories.

Notice that our assumptions do not imply that there exists a finite total jump rate

/R Az a)u(d2)

for any z € R? In other words, the above integral might be equal to +oco, and jumps occur
with infinite activity. We also stress that due to the presence of the censure term 1,<,; x,_) in
equation (3.2.3) we are not in the classical frame of jump diffusions where the jump term depends
in a smooth manner on z and z. Hence we are in a much more difficult situation than the one
considered e.g. in Kulik [34] (2009) or in Masuda [40] (2007). In the last chapter we studied
the regularity of the associated semi group P; under stronger assumptions than the ones we are
considering here. As a consequence, imposing only the above Assumption 3.2.1 does not ensure
that our process is Feller.

In this chapter, we are looking for conditions ensuring that the process X is recurrent in the
sense of Harris without using additional regularity of the coefficients, based on some minimal
non-degeneracy of the jumps and without imposing any non-degeneracy condition on o.

Recall that a process X is called recurrent in the sense of Harris if it possesses an invariant
measure m such that any set A of positive m—measure m(A) > 0 is visited infinitely often by
the process almost surely (see Azéma, Duflo and Revuz [4] (1969)): For all x € R%,

R{/)lﬂXQdyzw —1
0

We will prove Harris recurrence by introducing a splitting scheme that is entirely based on
the “big” jumps of X. In order to do so, we introduce the following assumption.

Assumption 3.2.2 We suppose that p(dz) = h(z)dz, for some measurable function h > 0 €
Lc(N), A the Lebesgue measure on R?,

3.2.2 A useful lower bound

Let (En)n be a non-decreasing sequence of subsets of R? such that UE, = R? and such that
w(Ey) < oo for all n. Fix some n and let N, (ds,dz,du) be the restriction of N(ds,dz,du) to
R4 x E,, x [0,7] where we recall that 4 = sup, sup, v(z, z) is an upper bound on the jump rate.
Since p(E,) < oo, N, can be represented as compound Poisson process. We denote its jump
times by T}',k > 1, and the associated marks by (Z}, U}’); the T}" are the jump times of a rate

Indeed, the quantity &(z) €ef sup, cpd (|c(2, x)|) defined in the hypothesis 1.1, is replaced here, with the same
notation, by &(2) < sup verd (le(z,2)] + 10208 c(z,2)]).

a+pB<2
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4 x u(Ey)—Poisson process, and the variables Z}' are i.i.d. with law ﬁlﬁjn (2)p(dz). Moreover,

the U]} are i.i.d. with uniform law on [0,7].
Let I(z,dy) = L(X1p|[X7r— = z)(dy) be the transition kernel associated to the jumps. Our
aim is to obtain a local Doeblin condition of the type

(. dy) > Lo(z)Br(dy), (3.2.4)

for a suitable measurable set C, some /3 €]0, 1] and a suitable probability measure v. It is easy to
see that the following lower bound holds.

V)= o o)y ot ez 2)) ()

1(En) 2l
= ! 1(z,7) r+clz,x 2)dz
~ w(Ey) /n ~ Ly (x + c(z, x))h(2)dz, (3.2.5)

where h is the Lebesgue density of u. It is natural to use a change of variables in the r.h.s. of
the above lower bound, i.e. to replace, for fixed initial position x, the argument x + ¢(z, 2)) by
y = y(z), on suitable subsets of R? where z — x + ¢(z, 2) is a diffeomorphism. The difficulty is
to control the dependence on the starting point z, since we are looking for uniform lower bounds
(3.2.4), uniform in x € C. This uniform control is achieved in the following proposition.

Proposition 3.2.3 Suppose that there exist xo,z9 € R* and r,R > 0 such that for all z €
B(xg, ),
i) there exists A > 0 with

|V.c(z0,2)h| > Alh|,  VheRY (3.2.6)

ii) there exists K > 0 such that for all z € B(z0, R),

_ K
— 3.2.7
(Vo \z\azz% I (3:27)
iii)
inf v(z,2)h(z) = >0 and S= sup ¢(z) <+4oo, (3.2.8)
zi|z—z0|<R,z:|z—20|<T zilz—z0|<R

where p(dz) = h(z)dz.
Fix ng with B(zo, R) C Ep,. Then there exist n > 0 and some ball B C R? such that for all
n > no,

inf P[XT,? S V‘XTIS_ = l‘] >

—————eA(V N B). 3.2.9
2€B(z0.m) ~ S u(En) ( ) (329

As a consequence of Proposition 3.2.3, the local Doeblin condition (3.2.4) holds with C' = B,
8= st\d(B)s EEA 1 and v(dy) = ﬁlB(y)dy. Notice that the set C' is not a “petite” set in the sense
of Meyn and Tweedie (1993) [42].

The main ingredient of the proof Proposition 3.2.3 is the following result.

Lemma 3.2.4 Let U, (2) = z + c¢(z,2), K = B(z0,R),¥,(K) = {¥,(2),z € K} and a, =
x + c(z0,x) = VUyp(zp). Put

A 1
p=3 (R A ﬁ) (3.2.10)
Then there exists n > 0 such that
P
B(aay, 5) C N T(K). (3.2.11)
x€B(zo,m)

Moreover, for all v € B(xg,1), B(az,p) C V4(K) and there exists Ky C K such that z — V¥, (2)
is a Cl-diffeomorphism from K, to B(ayg, p).
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The proof of this Lemma and of Proposition 3.2.3 is given in Section 3.5 below.

Remark 3.2.5 The ball B can be chosen as B = B(ag,,p/2) with p as in (3.2.10) and ay, =
xo + (20, o). If moreover

L.= sup L.(z) < oo,
zilz—z0|<R
then we can choose
) A(R A o)
Ty A TE R R

We close this section with two examples where the ball B and the radius n are explicitly given.

Example 3.2.6 We consider the one-dimensional case, with u(dz) = dz. Throughout this exam-
ple, f will be a bounded 1— Lipschitz-function such that |f(z)| > f > 0 for all x € B(xo, 7).

1. Suppose that c¢(z,x) = e"FIf(x) for all z € B(z0, R) and that |20| > R+ a, a > 0. Then for
all z € B(xzg,r), |V.c(20,2)h| = ‘f(a:)e"zo‘h‘ > Alh| with A = ie"z‘)'. Moreover

&2¢ el?ol

822(2,33)‘ = m\f@)\e*lzl <e®l=e = K Vze B(z,R).

|(Vaclz0,7)) |

Recall that B = B(ag,, p/2) where az, = o + (20, 20) = xo + e 1?0l f(20). We have

2o Ann ) = 2 (),

Finally, since Le = sup,.,_. <g Le(2) < €77,

e~ 7ol a—|zo|

T e
"=y e 4(1+efa)<RA 2 ) AT
2. Suppose now that c(z,x) = 1‘}:(50) and that |zo| > R+ a, a > 0. Then for all x € B(xq,7),
22
2 2f|z
|V .c(z0,2)h| = )f 22+(’1 h‘ > A|h| with A = ( {g-g?’ Moreover
_1, | 9% (zo +1)2 1322 — 1
VZ ) a9\~ = X 2 7.9 | 1\3
(9-ct0) | 522691 = gy * 20 G
(26 + 1)*[3(120] + R)* + 1 B
< =K Vze B R).
g ’ZO‘(G2 + 1)3 ) z E (ZO’ )
In this case,
P _ S0l (R/\ |z0(a® + 1)3 >
2 2(z§+1)2 2(25 + 1)23(J20| + R)2 + 1|/
Since Le = sup.,_|<r Le(2) < 1+ ——, we have

. fll Jz0l(a? + 1)?
T "2 ara e (B ame st mre))

’r]:

3.2.3 Drift criteria

The set C' = B(zg,n) appearing in the local Doeblin condition (3.2.4) will play the role of a small
set in the sense of Nummelin [44] (1978) and Meyn-Tweedie [41] (1993). In order to be able to
profit from the lower bound (3.2.9), we have to show that (Xr»_ ), comes back to the set C i.o.
For that sake, we introduce a drift condition in terms of the continuous time process, inspired by
Douc, Fort and Guillin (2009) in [21].
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Assumption 3.2.7 There exists a continuous function V : R® — [1, 00, an increasing concave
positive function ® : [1,00[— (0,00) and a constant b < oo such that for any s > 0 and any
z € RY,

B, [V(X,)] + Es UO B oV(Xy) du} < V(z)+bE, [/0 Lo (X0) du] , (3.2.12)

where C' = B(xo,3), n as in Proposition 3.2.5.

If V€ D(A) belongs to the domain of the extended generator A of the process X, then
Theorem 3.4 of Douc, Fort and Guillin [21] (2009) shows that the following condition

AV (z) < =P o V(x) + blg(x) (3.2.13)

implies the above Assumption (3.2.12).

We discuss in Section 3.4 examples where (3.2.12) or (3.2.13) are verified.

Under Assumption 3.2.7, Douc, Fort and Guillin [21] (2009) give estimates on modulated
moments of hitting times. Modulated moments are expressions of the type

Exjﬁ r(5)f(X.) ds,

where 7 is a certain hitting time, r a rate function and f any positive measurable function. Knowl-
edge of the modulated moments permits to interpolate between the maximal rate of convergence
(taking f = 1) and the maximal shape of functions f that can be taken in the ergodic theorem
(taking » = 1). In the present chapter we are interested in the maximal rate of convergence and
hence we shall always take f = 1.

For the function ® of (3.2.12) put

Hy(u) = /f (;(‘Z), u>1, re(s) =r(s) = ®oHg'(s). (3.2.14)

If for instance ®(v) = cv® with 0 < o < 1, this gives rise to polynomial rate functions

o

r(s) ~ CsT=a;

a =1 yields r(s) = ce®. In most of the cases, we will deal with the case ®(v) = cv*,0 < a < 1
and thus work in the context of polynomial rates of convergence. In this situation, the most
important technical feature about the rate function is the following sub-additivity property

r(t+s) <ec(r(t) +r(s)), (3.2.15)
for t,s > 0 and ¢ a positive constant. We shall also use that
r(t+s) <r(t)r(s),

for all t,s > 0.

3.2.4 Main results

Theorem 3.2.8 Grant the assumptions of Proposition 3.2.3, Assumptions 3.2.1, 3.2.2 and 3.2.7.
Then the process X is recurrent in the sense of Harris having a unique invariant probability
measure m satisfying that ® oV € L(m). Moreover, for any measurable function f € L*(m), we
have

ey as = mip)

P,—almost surely for any = € RY.
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The above ergodic theorem is an important tool e.g. for statistical inference based on observations
of the process X in continuous time. In this direction, the following deviation inequality is of
particular interest. Recall that v is the measure given in the local Doeblin condition (3.2.4).

Theorem 3.2.9 Grant the assumptions of Proposition 3.2.3, Assumptions 3.2.1, 3.2.2 and 3.2.7
with ®(v) = cv®,0 < a < 1. Put p=1/(1 — ). Let f € L'(m) with || f|c < 00, = be any initial
point and 0 < € < ||f|loo. Then for allt > 1 the following inequality holds:

N L R C (3.2.16)
LI£1E ifl<p<2

Here K(p,v,X) is a positive constant, different in the two cases, which depends on p,v and on
the process X, but which does not depend on f, t, €.

Finally, we obtain the following quantitative control of the convergence of ergodic averages.

Proposition 3.2.10 Grant the assumptions of Proposition 3.2.3, Assumptions 3.2.1, 3.2.2 and
3.2.7 with ®(v) = cw®,0 < a < 1. Then for any x,y € R?,

1 t 1 t 1 . 3
IIt/0 Ps(x,.)ds—t/o Py(y, .)ds||TV§(jg(V($)(1 )V (y)-), (3.2.17)

where C > 0 is a constant. In particular, if o > %, then

I3 [ o) ds = mllry < O3V ()0 (32.18)

The proof of Theorems 3.2.8 and 3.2.9 and of Proposition 3.2.10 relies on the regeneration
method that we are going to introduce now.

3.3 Regeneration for the chain of big jumps

3.3.1 Regeneration times

We show how the lower bound on the jump kernel (3.2.4) allows us to introduce regeneration
times for the process X.

We start by defining a split kernel Q((x, u), dy). This is a transition kernel Q((z, ), dy) from
R x [0,1] to R? defined by

v(dy) if (x,u) € C x [0, f]
Q((z,u),dy) = 13 <H(:c,dy) — Br(dy)) if (z,u) € Cx]B,1] (3.3.19)
II(z,dy) if v ¢ C.

We now show how to construct a version of the process X recursively over time intervals
(17, T3 1 [,k > 0. We start at time ¢ = 0 with Xo = = and introduce the process Z; defined by

t
Zt::c+/ 9(Z )ds+/ s) dWs +/ / / c(2, Zs—)y<y(z,2,yN(ds, dz, du).
0 C

For t < T7', we clearly have Z; = X;. Notice also that 77" is independent of the rhs of the
above equation and exponentially distributed with parameter yu(E,). We put Xrp— = Zrp—
(notice that Zpn = Zrn_, since Z almost surely does not jump at time 77'). On XTln =12/, we
do the following.
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1. We choose a uniform random variable Uy ~ U(0, 1), independently of anything else.

2. On U; = u, we choose a random variable V; ~ Q((2,u), dy) and we put

Xrp = V3. (3.3.20)

We then restart the above procedure with the new starting point V; instead of x.
We will write X¢ for the process with additional color Uy, defined by

Xe =) ligpp ()X, Ug)-
k>0

Remark 3.3.1 Notice that the above splitting procedure does mot even wuse the strong Markov
property of the underlying process. It only uses the independence properties of the driving Poisson
random measure.

This new process is clearly Markov with respect to its filtration, and by abuse of notations we
will not distinguish between the original filtration IF' introduced in Section 3.2 and the canonical
filtration of X¢. In this richer structure, where we have added the component Uy to the process,
we obtain regeneration times for the process X. More precisely, write

A:=Cx|0,0]
and put
Ry :=0, Rpy1 :=inf{T), > Ry : X7n_ € A}. (3.3.21)
Then we clearly have
Proposition 3.3.2 a) Xp, ~ v(dz)U(du) on Ry < oo, for all k > 1.

b) Xg,+. is independent of Fr,— on Ry < oo, for all k > 1.
c) If Ry, < oo for all k, then the sequence (XRg, )k>1 s i.i.d.

It is clear that in this way the speed of convergence to equilibrium of the process is determined
by the moments of the extended stopping times Rjg. In the next section we show that the drift
condition of Assumption 3.2.7 ensures in particular that Ry < oo P,—almost surely for any .

3.3.2 Existence of moments of the regeneration times

Recall the local Doeblin condition (3.2.4) , the definition of the set C' and of C’ = B(xo,1/2).
Let 7o = inf{t > 0 : X; € C'} be the first hitting time of C’. It is known (Douc, Fort and Guillin
[21] (2009)) that the condition (3.2.12) implies that

To!
Ez/ r(s)ds < V(x), (3.3.22)
0
where r is given as in (3.2.14).

Return times to C

In particular, equation (3.3.22) implies that 7cv < oo P,—surely for all 2. We show that this
implies that the regeneration times Ry introduced in (3.3.21) above are finite almost surely.
Recall that 7} are the successive jump times of the Poisson point process N restricted to (z,u) €
Ey, x [0,7]. The regeneration times R}, are expressed in terms of the jump chain Xrp_,k > 0.
We have to ensure that the control of return times to C’ for the continuous time process implies
analogous moments for the jump chain.
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Before stating the first result going into this direction, we have to introduce the following
objects. Let ||| be the sup-norm of the diffusion coefficient o and recall that |g(z)| < B(1+4|z|),
Vz € R?. Finally, we choose n sufficiently large such that

u(Ey) > B (3.3.23)
(recall that u(R%) = 0o) and such that
T Yu(Ey, Yu(Ey,
’U”oo\zf - En) g ’yg( _)B - < Z, (3.3.24)
(yu(E,) — B)? (Yu(En) — B)
where By = [54 &(2)7(2) du(z) + B(1 + |zo| + 3).
Proposition 3.3.3 For any n verifying (3.3.23) and (3.3.24),
miélcfv Pz(XTI" € C) 5 (3.3.25)

Remark 3.3.4 The choice % i the above lower bound is arbitrary, by choosing larger values of

n, we could achieve any bound 1 — e on the right hand side of (3.3.25).
Proof : Recall the process Z; defined by

t
Zt:a:—i—/ 9(Z )ds—l—/ s) dWs —I—/ / / (2, Zs—)y<y(z,2,_yN (ds, dz, du)
O C

and recall that for any ¢t < T7", Z; = X;. Recall also that 77" is independent of the rhs of the
above equation. Now let z € C' and upper-bound

P, [Xry_ ¢ C] = Pu[Zrp_ ¢ C).

Eo[|Z — ).
SUpPyefo,r] | Z¢| and m € N,

Clearly, P [|Z; — o] > 1]

< 2F
-7
Let T' > 0. Then, with Z} =

t
BullZ —all ] < B [| [ o(Z0 Wil z3.0] +E /\g )l dst 73 <0

+ E, // / le(z, Zs— |1u<,y(zzg (ds,dz,du)]lz;<m}

<E, [| /Ota(Zs)dWsl} +E, /0 fg(Zs)\ds]lz;on]

t 7
+ Eac [A / /0 |C(Z, ZS—)|1u§7(z,ZS_)N(d5, dZ, du)}

with (using the Ito isometry and the fact that o is bounded)

E, [y/ota(zs)qu < \/Ex [| /Ota(zs)dwﬂ < ol V2.

Moreover, for z € B(xo,3) = C’,

t t
[ [lazolastzen] < B[ [ B0+ 2] dstzgcn)
0 0
t
:Bt+B/ E; [|Zs[1 25 <m) ds
0
t
< Bt(1+ Jol) + B [ B |2~ altzn] ds
0

t
< Bi(1 4 [0l + 1) + B/ By [|Z, — o1 <] ds.
0
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We upper bound

t gl
B [ ][ et 2ol N5,z )
:Ex{/o/ /0 ]c(z,ZS_)]LJSV(Z’ZS_)dzdu(z)du}

<t e <t [ d2rE)dute)

and put By, = [za¢(2)7(2) du(2) + B(1 + |zo| + %). Then

C
n

t
Eu[|Zt — 2l zz <] < o llooVE + Byt + B/ E; [|Zs — 212z <] ds.
0

Then Gronwall’s lemma (see Proposition A.2.1 in the appendix) implies that

E.[|Ze — 2[1z5<m] < (lollooVE + Byt)e™,

forall t <T.
Since Z; is a cadlag process, Z; is finite almost surely. Therefore |Z; — z|1 Zz<m tends to
|Zy — x| almost surely as m — oo, and monotone convergence implies that

E.[|Z — 2[] < (|lo]leoVt + Byt)e?t, (3.3.26)
for all ¢ < T. In the above rhs, the constants do not depend on T, hence (3.3.26) is actually true
for any ¢ > 0.

Furthermore

E.[|Zi— — /] < (||o|looVt + Byt)e?, (3.3.27)

which can be seen as follows. Using (3.3.26), we have, for s < t,
Eo(|Zs — 21z <m] < Eul|Zs — @[] < (loflooV/s + Bys)e™ < (lollocVt + Byt)e™
so, using dominated convergence when s tends to ¢ from inferior values,
Eo(|Zi- — 2|1z; <] < (lo]looVt + Byt)e™,

and letting m — +o00, monotone convergence gives (3.3.27).
Now, T7* is independent from (Z;);, exponentially distributed with parameter A = yu(E,).
By choice of n, A > B. Then

+o0
Bol|Zn — o] < / (lollsoV + Byt)eBiae ™ di
0
+00 +oo
- )\(HJHOO / Vie OBl dt + B, / te_(’\_B)tdt)
0 0

\(llo r(3) Byl N _ (1, Vo1 By
- )‘(H HOO()\_B)% * ()\—B)2> - A(” loo 2 \-DB): - ()\*BV)

for every x € B(xg, 2). Since n was chosen to have

VT u(E)

lolloo =5~ 5 + By <
2 (:}/M(En) _B)E
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we obtain

sup Po[Xrp- ¢ )< sup PullZrp-—af > ]
z€B(x0,1) z€B(z0,%)

2
< sup —Epf|Zrpo —2f] <
ZEB(Q?Q,%) n

N

The above arguments imply the following statement.
Corollary 3.3.5 Let Sy = inf{T}',k > 1: Xgp_ € C}. Then Py(S1 < 00) =1 for all x.
Proof : We introduce the following sequence of stopping times.
ty = T10r, 81 = inf{T > t1},....t; =inf{s > s;_1 : X5 € C'}, s, = inf{T}' > t;}.
The above stopping times are all finite almost surely. We put
T = inf{l : X,,— € C}.

Then, using (3.3.25), for any x € R,

1\
Px(T* > nO) < (2> )
which shows that 7, < oo P,—almost surely for all z. In particular,
S1 < 87, < 00

P,—almost surely for all x. °

The above proof shows in particular that the polynomial control obtained for the first entrance
time in C’, obtained in (3.3.22) remains true for S;. Moreover we have the following control on
polynomial moments of the regeneration times.

Proposition 3.3.6 Grant Assumption 3.2.7 with ®(v) = cv*,0 < a < 1. Let p = ﬁ Then
there exists a constant ¢ such that

E, [SV] < cV(x). (3.3.28)

Proof : We adopt the notation of the proof of Corollary 3.3.5.
1. In what follows, ¢ will denote a constant that might change from line to line. We start by
studying E, [;" r(s) ds, where 7 is as in (3.2.14). Let

A= F_Y:U(En)

be the rate of the Poisson process associated to 1}', k > 1. Then by definition of s1,

S1

E, /051 r(s)ds = Ex /OTC/ r(s)ds + E, /jl r(s)ds < V(z) + EI/ r(s)ds,

C/ Tc/

where we have used (3.3.22).
Now, using that s; — 7¢s is independent of F;_,, exponentially distributed with parameter A,
we upper-bound

s1 S1—Tcr
Ez/ r(s)ds = E, Ex, / r(tcr + s)ds
T, 0

C/

< E[r(re)] Elr(s1 — 1¢r)] = cEg[r(rer)],
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since Bx, | [r(s1 — 7c)] = J;° Ae™Mr(t) dt < oo does not depend on X,
Using that

t
r(t) < c—i—/ r(s)ds, (3.3.29)
0
we obtain
’Tcl
Ey[r(ter)] <c+ Ex/ r(s)ds < c+ V(x).
0
Therefore,

/ s)ds < c+cV(z) < cV(z), (3.3.30)
1.

where we have used that V(z) >
2. We now use 7(t + s) < r(t)r(s) in order to obtain a control of E, ftf* s)ds. We certainly
have

<V(@)+ Y Ep Loy (t)V(Xe,)] (3.3.31)

where we have used (3.3.22) and the fact that 1,1,y is Fs, , —measurable. Now, X;, belonging
to C’, we can upper-bound V(X;,) < ||V]|¢cr = ¢, and obtain

tr
E/ r(s)ds < V() + ¢ 3 Ba [Lporeryr(ta)] (3.3.32)
0

n>1

We use r(t + s) < r(t)r(s) and the Markov property with respect to t; to obtain

E; [1{n—1<7*}r(tn)] < E;r(t) Sug E, [T(tn—l)l{nf2<‘r*}]'
yed’

Using (3.3.29), the first factor can be treated as follows
t1
Eyr(t1) <c+ Ez/ r(s)ds <c+V(zx) <cV(x),
0

since V(z) > 1.
Further, let p €]2=2Vv1,1[ and ¢ > 1 with %—1—% = 1. Then, using that P(n—2 < 7,,) < (3)"72,

) 1\ (»=2)/
By [Ln-acryr(tn-1)] < By(r"(tn-1))" <2> '

We have, by definition of r that rP(t) < ctﬁp, where 2~p > 1 by choice of p. Using Jensen’s
inequality we obtain
P (tn o) < c(n—2)Tal Lt 4 4 (b, — tn_3)TaP).

1
a o 1

o 1 t o« t
t1-aP = / sT-aP ldsgc/ r(s) ds.
a1
1—a 0 0
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This allows to rewrite

o t1 tn
P (tn_2) < c(n — 2)T-aP~! (/ r(s)ds+...+ / ’
0 0

—tn—3

r(s) ds) .
Using successively the Markov property at times ¢1,%9,...,t,—3, we obtain

@ t
EyrP(th—2) < c(n — 2)T-aP"1(n — 2) sup EZ/ r(s)ds.
zeC’ 0

Finally, by (3.3.22), sup,cc E. fgl r(s)ds < sup,ccr V(2) = ¢, and therefore
(Ey 7P (tn—2))"/? < c(n — 2)T5.

Coming back to (3.3.32) we conclude that

B, /OtT* r(s)ds < V(@) + V()Y <1> (=9 < V().

2
n>1
3. We now argue as follows.

Sp* tr* Sp*
Ex/ r(s)ds = Ex/ r(s)ds + Em/ r(s)ds
0 0

tT*

<cV(r)+ Z Eg Lire—ny / ’ r(s)ds
tn

n>1

Sn—tn
<cV(z)+ Z By Liresn—1y7(tn) / r(s)ds
0

n>1

S1
< CV(Z’) + Z Ez[1{7*>n—l}r(tn) Sup / 7'<3> dS]
n>1 yeC’ JO

< CV(I‘) + CZ Ez 1{T*>n71}r(t’l’b)7

n>1

where we have used the Markov property with respect to ¢,, and (3.3.30). The last sum is treated

as (3.3.32), which concludes our proof, since r(s) > csTa.
[ ]

The above result implies an analogous control for moments of the regeneration times Ry of
(3.3.21). More precisely, we can now define

S = inf{T;? > S)_q: XTff* € C},l > 2,

and let
Ry = inf{Sl U < ﬁ},Rk+1 = inf{Sl >R U < B} (3.3.33)

An analogous argument as the one used in the proof of Proposition 3.3.6 then implies
Theorem 3.3.7 Grant Assumption 3.2.7 with ®(v) = cv*,0 < a < 1 and let p = 1/(1 — ).
Then

E; R < cV(z). (3.3.34)

We are now ready to prove Theorems 3.2.8 and 3.2.9.
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3.3.3 Proof of Theorems 3.2.8 and 3.2.9

Proof of Theorem 3.2.8.
Let

Ro

m(0) := E/ 1o(Xs) ds,

Ry
for any measurable set O. By the strong law of large numbers, any set O with m(O) > 0 is visited
i.o. P,—almost surely by the process X, for any starting point (z,u) € R? x [0, 1]. Hence, the
process is recurrent in the sense of Harris, and by the Kac occupation time formula, m is the
unique invariant measure of the process (unique up to multiplication with a constant).

Now, recall that v is of compact support, hence V' € L!(v). Using (3.3.34) in the case a = 0,
we obtain m(R? x [0,1]) = E[Ry — R1] = E, Ry < ev(V) < co. This implies that X is positive
recurrent.

The invariant measure m of the original process X is the projection onto the first coordinate
of m. In particular, X is also positive Harris recurrent, and m can be represented as

Ro
m(f) =E f(Xs) ds.
Ry
The ergodic theorem is then simply a consequence of the positive Harris property of X. Finally,

the fact that ® o V € L!(m) is an almost immediate consequence of (3.2.12), based on Dynkin’s
formula. ®

Proof of Theorem 3.2.9.
Theorem 3.2.9 follows from Theorem 5.2 of Locherbach and Loukianova (2013) in [39] together
with Proposition 3.3.6. °

We finally proceed to the proof of Proposition 3.2.10.

Proof of Proposition 3.2.10.
Let X and Y be copies of the process, issued from = (from y respectively) at time 0. Let R; and
R’ be the respective regeneration times. Using the same realization Vj, for X and for YV (recall

(3.3.20)), it is clear that Ry and Rj are shift-coupling epochs for X and for Y, i.e. Xg, 4. = Yp ..
If follows then from Thorisson [53] (1994), see also Roberts and Rosenthal [51] (1996), Proposition

5, that
1 [t 1 [t
H/ Ps(x,-)ds—/ Py(y, -)ds
tJo t Jo

Recall that p = 1/(1 — «). Then

S CEIR + B[R], (3.3.35)

B[R] < (By R < oV (@)1,
Now, if o > %, then 1 — a < « and therefore,
E.[R1] < c®oV(z) € L' (m).

In this case, we can integrate (3.3.35) against m(dy) and obtain the second part of the assertion.
[

3.4 Discussing the drift condition

In this section, we discuss in an informal way several easily verifiable sufficient conditions implying
Assumption 3.2.7 with ®(v) = cv®. These conditions will involve different coefficients of the
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process. Recall that the infinitesimal generator L of the process X is given for every C2-function
Y with compact support on R? by

1 9?
L) = 3 3 o30) o bla) + 0V + [ [0l + ol ) — ()] K (o, ),
2 T 0x;0x; Rd
where a = o0* and K (x,dz) = v(z,z)h(z) dz. In order to grant Assumption 3.2.7, we are looking
for conditions implying that
LV < —AV*(z) + bl (x), (3.4.36)

for some 0 < a < 1, with C" = B(xo, 4).

Example 3.4.1 If we choose for instance V(x) = |z — x0|? and a = % it suffices to impose that
for allz € R4\ (',

Tr(oo™) +2(g(x), z — o) + /Rd (2(x —x0) +e(z,2),c(z,2))v(z,2)h(2) dz < —Alx — x¢]. (3.4.37)

We now discuss several concrete sufficient conditions implying (3.4.36). In this context, it is
interesting to notice that the influence of the different coefficients can be quite different. Some
coefficients can work in a favorable way in order to ensure (3.4.36). In that case we will say
that they are “pushing” the diffusion into the set C’. Other coefficients might play a neutral role
or even work against (3.4.36). Since we have three natural parts of coefficients (diffusion part,
drift and the jump part), we will discuss here the following cases: “pushing” with the jumps only,
“pushing” with jumps and drift together? and “pushing” with the drift only.

Pushing with the jumps

Consider first a pure jump process, i.e. the case when a = g = 0. We choose V() = |z — x0|?
and propose the following conditions.
1. Global condition with respect to z. Vz € R%, Va € B(:Eo, g)c,

(c(z,x) + 2(x — x0),c(z,x)) <O0. (3.4.38)

2. Local conditions with respect to z on some set K. There exists a set IC such that the following
holds.

1. there exists £ > 0 such that for all 2 € B(xo, g)c,
/ le(z, z)|y(z,z)h(z)dz > &. 3 (3.4.39)
K

2. There exists ¢ € (0, 1] such that for all z € K and for all x € B(zo, 2)°.
(c(z,x) + 2(x — x0),c(z,2)) < —Cle(z,2) + 2(x — zo)]|c(z, )|, (3.4.40)

[

3. For all z € K and for all z € B(xo, %),

le(z,x)| < |z — o). (3.4.41)

Zthis will be the most interesting case
3This condition has to be seen in relation with Condition (3.2.8).
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Notice that this last condition implies in particular that |c(z,z) + 2(x — x¢)| > |z — zo|. Then
under the above conditions, for all x € B (mo, g)c,

LV (z) = /E(V(:U +c(z,z)) — V(x))y(z,x)h(z) dz

= /E<c(z, x) + 2(x — x0),c(z,2))y(z,z)h(z) dz

< —¢ [ letza) +2( = a0l ) (2 a)h(2) s
g—dw—awéwuamwammadz
< (o — wol€ = —A(V(x))?

with A = (€ > 0.

Remark 3.4.2 1. Using the Cauchy-Schwarz inequality, (3.4.38) implies that for all z € R? and
for all z € B(xo, g)c, le(z, x)] < 2|z — x0l. In particular for all z € B(xo, g)c, Sup,cpd |e(z,z)| <
+00.

2. The condition (3.4.41) is a natural condition to force the diffusion to enter into the set B(xo, g)
3. There is a simple geometric interpretation of the conditions (3.4.40) and (3.4.41). Indeed, they
lead to the (effective) condition

(e(z,2) + 2(x = w0), ¢z, %)) < —(lz — wolle(z, 2)|

or
2((x — 20), c(2,2)) + le(2,2)|* < —(|z — olle(z, 7).
On the one hand, this implies that ((x — x¢),c(z,z)) < f%\x — xolle(z, z)|, which means that

c(z,x) belongs to the convex cone of direction (x — ) and angle arccos (— %) On the other hand,
using (3.4.41), the following condition

2((x — o), ez, 2)) + le(z, @) & — 20l < ~Cla — aolle(=, )|

. . o . 1+
is a sufficient (but not necessary!) condition which leads to ((x — xo),c(z,z)) < —(Q—O]x -

xollc(z, z)|. In other words, it suffices that c(z,x) belongs to the convex cone of direction (x — xg)
(1+¢)
and angle arccos ( — T)

The above conditions on the jump mechanism are naturally quite restrictive since they ensure
that from everywhere in R?\ C’, the jumps force the process into the set C’. Nevertheless, this
example is useful, and we will come back to these arguments later when discussing the influence
of the drift coefficient.

In the next step, let us suppose that o # 0. Then under the above conditions, for all z €
B (x07 g) Ca

LV (z) = Tr(o(x)o*(z)) + /E(c(z, x) +2(x — x0), c(z,2))v(z, x)h(z) dz
< Tr(o(z)o™(x)) — (lo — zol¢.

Let ¥ = SqueB(a:o,g)c W and suppose that K is such? that (¢ > 3. Then

N

LV(x) < —A(V(z))

with A = (¢ — .
Finally, if g # 0, the minimal additional condition (z — z, g(z)) < 0, for all z € B(xo, g)c,
ensures that the above result will remain true.

4 Actually it is always possible to multiply v(z,z) with a sufficiently large constant ensuring that £ > /.

47



Pushing with both jumps and drift part

The conditions we made on the jump mechanism in the above paragraph are of course very strong.
In this paragraph, we will therefore consider that these conditions hold only for x belonging to
some set F7. Moreover, we will suppose that the drift coefficient contributes to force the diffusion
into C’ when x belongs to another set Fs.

More precisely, we suppose that £y C B(zo, g)c and put E» = B(xo, g)c\El. We will impose
the global condition (3.4.38) but aim to weaken the conditions (3.4.39), (3.4.40) and (3.4.41) by
replacing x € B (mo, g)c by x € E;. For x € Es, we assume additionally that

Tr(oo™) + 2(g(x), x — xo) < —A|z — x0].

Such a condition is true for example if

1 T — T
=—(A+X
9(z) = —5(A+ )|$_x0,
where we recall that > = supxeB(x n)c W
0,9

Example 3.4.3 We continue Example 3.2.6 item 1. and consider the one-dimensional case with
p(dz) = dz and c(z,2) = eIl f(z). We suppose that o = 0 and let Ey = [-M — 2] U [ + M].
Moreover we choose K = [a,a + 2R] in such a way that fK: e llldz = % Finally we will suppose
that for all (z,x) € K x Ey

v(z,z) >y >0 and flz)>f>0 (3.4.42)

with .
=27, (3.4.43)
It is clear that (3.4.39) is verified for all (z,2) € K X E1, and, moreover, that the jumps are strong
enough to ensure the drift condition even in presence of the Brownian part.
If we impose moreover that for allz € B(0,2)", |f(z)| < |z|, then (3.4.41) is satisfied. Adding
finally the condition that for all x € B(0,2)°, sgn(f(x)) = —sgn(z), (3.4.38) is true as well and
(3.4.40) follows with ¢ = 1.

Pushing partially with both

In the last paragraph we supposed that on the subset Eo where the drift is driving the process
towards C’, the jumps do not act in a contradictory way — this is actually ensured by the condition
(3.4.38). Notice that it is a priori not possible to weaken this assumption on Fs. Indeed, without
condition (3.4.38) we have the following structural problem: we cannot even be sure that

/E|c(z,x)|2'y(z,x)h(z) dz < +o0. (3.4.44)

Moreover if we do not suppose a global condition as (3.4.38), it will be necessary to compensate
the possible non-negative part fE\,C<c(z,x) + 2(z — x0), c(2,2))v(z,z)h(z) dz due to jumps in
order to obtain a suitable control for LV (x).

Pushing only with the drift

If we decide to ensure the Lyapunov condition by means of the drift coefficient g only, in the
same spirit as above, we could take F; = (), but would have to keep global conditions, like the
condition (3.4.38), if we use the same Lyapunov function.
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However, if we choose another Lyapunov function, the situation might be more favorable as

we are going to explain now. Let for example V(z) = |z| (= y/2? + -+ + 22) for z € B(z0, )".
Then )
0:0; jz ||

Let D be such that
[ ez o)z ah()dz < D
E

and |a;;| < D, where a = oo*. With v > 0 such that v|z|; < |z| (where |21 = |z1] + - - + |z4])
and D & % (d + 7%) we assume that g verifies, for every x € B(xo, g)c,

(z,9(x)) < —Alz|* = Djz| — D. (3.4.45)

Then it is immediately clear to see that

D/d |zillzsy | (xg9(@))
LV (z) < E(Ix] + Z ]x\3j ) + " —|-/E le(z, x)|y(z, 2)h(z) dz

1<i,j<d
D( z[f\ | (. g(x))
(= + —) + 4D
2 \|z| |z ||
D
_ D, g,
|| ||
D 2
<o —|(A|:c| + Dlz|+ D)+ D < —Alz].

3.5 Proofs

3.5.1 Proof of Proposition 3.2.3

Proof : We first admit Lemma 3.2.4 and we put K = B(zg, R). As a consequence, there exists
a ball B(xg,n) such that for all z € B(xo,7), B(as,,5) C ¥2(K). Choose K” C K such that ¥,
K" — B(ag,, §) is a C*-diffeomorphism for all z € B(xg,7).” Since for all (z,z) € K x B(zo,n),
v(z,z)h(z) > €, we now have

1"

. / 1y (y) 1,1 (y)] dy.
B(azorg)

[ wieneowe e [ 1)

n

Put z = ¢, !(y), then

) 1
[ Ty-1(y)] = T, 2))  [Vac(z,2)]

and, using Hadamar’s Inequality,

d
V.e(z,x)| H

®Indeed, from Lemma 3.2.4, there exists K' C K such that ¥, : K' — B(as,p) is a C'-diffeomorphism, and
since B(az,,5) C B(ax,p), there exists K" C K' C K such that ¥, : K" — B(ag,, £)is a C*-diffeomorphism.
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As a consequence, we obtain

| wenta) dn) = AV 0 Blax. 5)) (3.5.46)

n

which, together with (3.2.5), ends the proof. .

It remains to give a proof of Lemma 3.2.4. This proof goes through several intermediate steps
which are given now.

Lemma 3.5.1 Let g : R — R? be a C?-function such that
1. 9(0) =0,
2. dgo = 1d,

3. there exist R, K > 0 such that for all z € B(0, R),

529k
Z ‘ 3,2182] ’ K

Put R = RA g Then B(0,£)  g(B(0, R).
Proof : The third condition allows to apply the Mean Value Inequality to z — dg, since
ld(dg):|l < K,  Vz€ B(0,R).

Therefore, with R = R A 2}(,

1 ~
ldg. —1d|| = [[dg- —dgoll < K|z| < 5, Vz € B(0, R).

Let now y € B(O, g) and set h: B(0,R) = R%, 2z h(z) :==y + z — g(z). We have

[dh| = |[1d — dg.|| < Vz € B(0, R).

DO |

Using again the Mean Value Inequality, we obtain for all z, 2’ € B(0, R),
/ 1 /
[h(z) = h(=)| = 51z = =1

In particular |h(z)] <
z € B(0, R).

This last result highlights two facts. First, h is an %—contraction from the complete space

B(0, R) into itself, so the fixed-point theorem gives us the existence of z € B(0, R) such that

h(z) = z, and, secondly, the range of h defined on B(0,R) is B(0,R), so we have in fact the
existence of z € B(0, R) such that h(z) = z, or equivalently, g(z) = y, which ends the proof. e

Lz — 2|+ [h()]. so [A(z)] < 2| + [A(O)] = bzl + [yl < R, for al

Remark 3.5.2 1. g is in fact a C'-diffeomorphism from V = B(0,R) N g~} (B(O, g)) to

B(0,). ~

2. We could have taken, of course, R = R N 1= 10,1].

50



Lemma 3.5.3 Let A be a d X d matrixz such that
Vh € RY, |Ah| > K|h|.

Then
B(Au, KR) C A(B(u, R)).

Proof : Notice first that A is clearly invertible. Let now y € B(Au, KR) Then for v € R,
o] = [A(A™ )| > K[A™ 1|,
so, with v = y — Au,
KR> |y — Au| > K|A™ (y - Au)| = K|A™y — u],
or, equivalently, R > |A~'y — u| implying that A~'y € B(u, R) and y € A(B(u, R)).
We now have the following extension of Lemma 3.5.1.

Proposition 3.5.4 Let f : R* = R¢ a C%-function and a € R? such that
1. |dfuh| > A|h| for all h € RY,

2. there exist R, K > 0 such that for all y € B(a, R),

>
4,7

IA

0% f K
—— ()| < —-
02;0z; d

Then, with R = R A %,

R ~
B(f(a),AE) c f(B(a,R)).
Proof : 1) We use Lemma 3.5.1 with
9(2) = df; ' (fla + 2) = f(a)).
All hypotheses needed in Lemma 3.5.1 are satisfied since

| O*f
82iaZj

0%g
8ZiaZj

(2) = dfy (a+2).

Thus _
B(o, %) c g(B(0, R)).

2) Since f(y) = dfag(y — a) + f(a), using Lemma 3.5.3,

R) < df(B(0, ?)) C df.g(B(0, R)),

B(O, A5

where we have used the preceding step in order to obtain the last inclusion. Therefore,

B(f(a),Af)  f(B(a, R)).

We are now able to prove Lemma 3.2.4.
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Proof : [of Lemma 3.2.4] 1) Let = € B(zo,r). We can apply Proposition 3.5.4 with a = zp,
f = ¥, which gives p = %(R A %) such that

Blas, p) © Wa (Blao, ) € W (K),

where we recall that £ = B(zp, R). Since our conditions are uniform in z, the radius p will be
the same for all z € B(xq, 7).
2) The previous point implies in particular that

B(azy, p) C Vay (K).

Since x +— U, (zp) is continuous, there exists n with » > 1 > 0 such that

-] < = | Wu(z0) — Uay(20)| < g. (3.5.47)

Therefore,

ﬂ B(ay, p) C ¥.(K),

yEB(zo0,m)

so it is sufficient to prove that

Blas,5)C () Blay.p)

y€B(z0,m)

which can be seen as follows. Let y € B(ag,, §) and 2 € B(xo,7), then

|ag =yl < laz, — yl + [az — ag,|
= ‘aazo - y| + |\Ijx(20) - \Ija:o(zo)‘

PP
<S4 T =p,
227"
so y € B(ag, p), for every x € B(xg,n) and the statement is proved. o

Proof : |of Remark 3.2.5] Recall that we have imposed the additional hypothesis L. = sup,cx Le(2) <
00. Since

le(z,2) — c(z,9)| < Le(2)|z —y|, Yo,y €RY VzeE,
it is sufficient to set p
2(1+ L)

in order to grant (3.5.47). .

n= AT,
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Part 11

Regularity of the density
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Chapter 4

Differential calculus and Integration by
part

4.1 Introduction

In the next chapters of this work we will study the regularity of the density of the following
stochastic equation

m t t
X, —a:—I—Z/ al(Xs)dW;+/ b(X,)ds
=10

0
t
—|—// c(Xs—, 2) Ly (x,_ 3 N(ds,dz, du)
0 JExR, -

of which we have already studied some properties in the first part of this work.

The way to do so used here is based on a two step strategy. First, we construct an approxi-
mation (Fjy) of the process X; (basically given a non-decreasing sequence of subsets (B M) MeN®
with p(Bjs) < 0o, recovering E, the approximation Fj; will be constructed (for each M) from a
restriction of the processes X; based on the restriction of the random measure N on the subset
Byy) verifying an integration by part formula :

E [¢'(Fu)| = Ep(Fa)Huy)

This integration by part is obtained within a general framework developed in [8] by V. Bally
and E. Clément, whose main results used in the sequel are presented in this chapter.

The second step consists in proving the density regularity itself. The idea is to use a certain
balance between the error E [|Fyy — X¢|] (which tends to 0) and the weight E [|[Hjs|] (which tends
to 00). This was the strategy used in [8] as well. But here the estimates of E [|Hs|] will appear
to be more delicate than the corresponding one in [8] because of the additional Brownian part
o dW. Moreover, the balance used in [8] was based on a Fourier transform method while here we
use the new method developed by V. Bally and L. Caramellino in [7].

This new method allowed us also to extend the result to the regularity of the density consid-
ering additionally the variation of the starting point of the process, which was fixed in [§8] ; the
part of |7] used for our purpose is presented, in this chapter, Section 4.6.

4.2 Notations, tools of differential calculus

4.2.1 Notations and differentials operators

We consider a sequence (V;);en+ of random variables on a probability space (£2, F,P), a o-algebra
G C F and a G-measurable random variable J, with values in N. We assume that the variables
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(Vi) and J satisfy the following integrability condition :

Vp>1, E[J?|+E Kle Vfﬂ < oo0.

Following Bally and Clément, we will define a differential calculus based on the variables (V;),
conditionally on G.
First we will define the following set

Definition 4.1 Let M be the class of functions f : Q x RN — R such that :

o f can be written as

Flw,v) =D Fw, v, 0) )=
j=1

where f7: Q2 xR — R are G x B(R?)-measurable functions ;

e there exists a random variable C € (), LI(Q, F,P) and p € N* such that

ool se(i+ (T

(in other words, conditionally on G, the functions of M have polynomial growth with respect
to the variables (v;)).

We will define also
e G; the o-algebra generated by GU o (V},1 < j < J,j #1),
e (a;(w)) and (b;(w)) two sequences of G;-measurable random variables satisfying

—o0 < ai(w) < bi(w) < +oo, Vi € N*

e O; the open set of RN defined by O; = Pi_l(]ai, b;[), where P; is the coordinate map RN
(ie. Pi(v) =v;).

We localize the differential calculus on the sets (O;) by introducing some weights (m;), satis-
fying the following hypothesis.

Hypothesis 4.1 For alln € N*, m; € M and
{m;i >0} C O;.

Moreover for all j > 1, 7Tg is infinitely differentiable with bounded derivatives with respect to the
variables (vi,...,v;).

At last, we associate to these weights 7;, the spaces C*¥ € M, k € N*, defined recursively as
follows.

e For k = 1, C! denotes the space of functions f € M such that for each i € N*, f admits a
partial derivative with respect to the variable v; on the open set O;. We then define

9 fww)

OF f(w,) = m(ew,0)

and we assume that 0 f € M.
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e Suppose now that C’Tlﬁ is already defined. For a multi-index o = (aq,...,ax) € N** | we
define recursively 9y = 9, --- 97, and Ck+1 is the space of functions f € C¥ such that for

every multi-index o = (o, ..., a;) € N*¥ we have 97 f € CL. Notice that if 7 f € M for
each a with |a] < k.

e Finally we define
cr = () ck
keN*

Definition 4.2 (Simple functionals) A random variable F is called a simple functional if there
exist f € C2° such that F = f(w,V), where V. = (V;). We denote by S the space of the
simple functionals (it is an algebra) ; moreover, it is worth to notice that, conditionally on G,

F=f(Vi,...,Vy).

Definition 4.3 (Simple processes.) A simple process is a sequence of random variables U =
(Ui)ien+ such that for each i € N*, U; € S. Consequently, conditionally on G, we have U; =
u;’(Vl, ..., Vy). We denote by P the space of the simple processes and we define the scalar product

J
U V)= UV;  (€9).

i=1
We can now define the derivative operator and state the integration by parts formula.

Definition 4.4 (The derivative operator.) We define D: S — P by

def

DF ¥ (D;F)eP where D;F < 97 f(w,v).
Notice that D; FF =0, fori > J.

Definition 4.5 (Malliavin covariance matrix ) For F = (F',...,F%) ¢ 8% the Malliavin
covariance matriz is defined by

J
oH¥(F) = (DF* DF¥); => " D; F*D; F¥
i=1
We denote
A(F) = {deto(F) # 0} and Y(F)(w) =0 Y F)(w), weAF)

In order to derive an integration by parts formula, we need some additional assumptions on
the random variables (V;). The main hypothesis is that conditionally on G, the law of the vector
(Vi,...,Vy), admits a locally smooth density with respect to the Lebesgue measure on R.

Hypothesis 4.2 1. Conditionally on G, the vector (Vi,...,Vy) is absolutely continuous with
respect to the Lebesque measure on R? and we denote by py the conditional density.

2. The set {py > 0} is open in R’ and on {p; > 0}, Inp; € C=.
3. For all ¢ > 1, there exists a constant Cy such that
(L+[v])ps < Cy

where |v| stands for the euclidean norm of the vector (vi,...,vy).
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Assumption 3) implies in particular that conditionally on G, the functions of M are integrable
with respect to py and that for f € M :

Eglf(w, V)] = JfJ X py(w,v1,...,v5)dv,...,dvy.
R

Definition 4.6 (The divergence operator) Let U = (U;)ien+ € P with U € S. We define
d:P—S by

5;(U) Z (8, (mU;) + Uil gy~ 07 Inpyy) (4.2.1)
s(U)=>_&(U) (4.2.2)

For F € S, we then define
L(F) < §(DF) (4.2.3)

4.3 Duality and integration by parts formulae

4.4 IPP

The duality between 6 and D is given by the following proposition.

Proposition 4.4.1 Assuming the two preceding hypothesis, then for oll ' € S and for allU € P
we have
Eg[(DF,U) ;| = Eg[F§(U)].

Lemma 4.4.2 Let ¢ : RY — R be a smooth function and F = (F',...  F%) € 8. Then ¢(F) € S
and

d
D(F) =Y 0,¢(F)DF". (4.4.4)
r=1
If F eS8 and U € P, then
§(FU) = F5(U) — (DF,U),.

Moreover, for F = (F ,FY € 8 we have

1, oo
d
Lo(F) = 0,¢(F)LF" = Y 8,v¢(F)(DF",DF"),.

r=1 ror/=1
We can now state the main results of this section.

Theorem 4.4.3 Assuming the two preceding hypothesis, let F = (F',...,F%) € 8, G € S and
¢ : RT — R be a smooth bounded function with bounded derivatives. Let A € G, A C A(F) such
that

E [| det y(F)[P15] < oo, Vp > 1.

Then,
1. for everyr =1, ..., d,
Eg[0,¢(F)G]1x = Eg[¢(F)H,(F, G)|1a
with
d d
H(F,G)= Y 6(Gy""(F)DF") =Y (Géw T(FYDF") — 4" "(DF" D G>J) :
r’'=1 r'=1

(4.4.5)
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2. for every multi-index 8 = (B1,...,04) € {1,...,d}?
Egl030(F)G]1y = Eglo(F)HY(F, G)J15 (4.4.6)
where the weights HY are defined recursively by (4.4.5) and

-1
HY(F,G) = Hp, (F HE (P, G)). (4.4.7)

4.5 Estimations of HY

In order to estimate the weights H? appearing in the integration by parts formulae of the previous
section, we first need to define iterations of the derivative operator. Let a@ = (aq,...,ax) be a
multi-index, with o; € {1,...,J}, fori=1,...,k and |a| = k.

For F € § we define recursively

k def k—1 k def k
Dot ey £ = Day, (D(al ----- ak—l)F> and DEF = (D(O‘l"“’o‘k) F>ai6{1,...,J}'

Notice that D F € R/®% and consequently we define the norm of DF F as

J
IDFF|E Y |Df F?. (4.5.8)

(Q1,..y0u)
ag,...,op=1

Moreover we introduce the following norms, for F' € S :

l l
|Fli; € ) |DFF| and  |F|; € |F|+|Fly =) |DFF. (4.5.9)
k=1 k=0

For F = (Fy,...,Fy) € 8¢

d d
IFl, & SIFT,  and [P R
r=1 r=1

and, similarly, for F' = (F T””/)

ror/=1,...,d

d
def /
Fhe = >0 [F7y,
1

rr/=

d
and |F|; & Z |FT’T/‘I.
1

rorl=

Notation 4.5.1 e In the sequel, we will generally denote simply Dg by Dy (where « is a
multi-index of length k).

e We will also use the following generalisation for F € 8¢ and G € S¥™* : we will simply set

def

k def k
D, F (Dam)l%d and DG ¥ (DFGiy) ey

1<5<k

4.5.1 Differentiability lemmas

In this section we will use directly the notations from Chapter 5 defined in 5.5.1 and 5.5.2, where
we will apply the previous general differential framework.

In order to express the form of the different multi-derivatives we will use in the next chapter,
let us set the following notations :
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o if F € 8% we will denote the n-th derivative

Dy rn) (D(kn,l,rn,l) ( (D(kl,m)(F)))

by
Do (F)

with @ = (aq,...,ap) and, for all 7 € {1,...,n}, o S (kiyri) s

e for 1 <[ < n, we denote by

./\/ln(l):{M:(Ml,...,Ml), U M; ={1,...,n} and M; " M; = @, forz';éj};

1€[1,1]
the set of the partitions of length [ of {1,...,n}.
Remark 4.5.2 The multi-derivatives defined above are not commutative : in general

D (i) (D(m,n)(F)> # D(mm) (D(k,r) (F)>-

We can now state :

Lemma 4.5.3 Let AB € S, ¢ : RY - R and ¢ : R x RY — R be smooth functions and

F=(F'...,FY), G=(G,...,GY € 8 Then
1. for every (k,r) € [1,J] x [1,d],
Dy (AB) = Dy (A)B + ADy,(B) ;
and for every a = (a1, ..., o), with o = (ki) € [1,J] x [1,4],
D, (AB) = Z Do, ADq, B
vy ondored
(by “ordered” we mean that if o; = (ay, ..., 04,), then iy < --- <iy)
2. for every a = (aq,...,qn), with o £y (ki,ri) € [1,J] x [1,d],

Z > Y. 930(F)Dasy(a) s, - Danoy Fy

B=(B1,--,1) MeMy (1)
Bi€l1,d]

=Ta(0)(F) + Vo(F) Do F,

where

° fO?”M:(Ml,.‘.,Ml) EMn(l), ZfM]:(Zl,,Zr) Q{l,...,n},

T.(¢)(F) & > > 950(F)Dagya) Fy - Digya) F
MeMa (1)

1=2 B=(B1,....01)
ﬁiGHLdﬂ

(4.5.10)

(4.5.11)

(4.5.12)

(4.5.13)

(4.5.14)



3. for every o = (ou1,..., ), with a; = (ks,r;) € [1,J] x [1,d], and using the same nota-
tions,

n

wc(F,G) =" > > 95¢(F,G) Dasya) Fay -+~ D, (o) F,
I=1 B=(B1,Br Bl 1resB)) MEM (1)
BielL.dl, B;€[d+1,2d]

X Dagyi1(0) Garyy - Dasy(a) Gy

~Un(¢)(F,G) + Vc(F,G) Do F + Vye(F,G) Do G.

Remark 4.5.4 The non-symmetric form (4.5.13) is used in the sequel in recurrence’s purpose :
all the elements M;(a) from T, are such that |M;(a)| < a so the degree of derivation of Dy, (a)
is strictly inferior to the one of D, itself.

With the same notations :

Lemma 4.5.5 Let ¢ : R — R a smooth function and F = (F',...,F%) € 8% «a a multi-index
andn = |a|. Then there exists Chp.d > 0 such that

2
Da () < Copa(l6n(F)? S 3 (1Dt (o) P2+ + | Dy ) FI™) - (45.15)

=0 MeMy(l)

with |¢|n(F) < supjg|<, [0s6(F)|.

Proof :
From Lemma 4.5.3 we have

:Z Z Z Opp(F DM1 ) EBy -+ - Do) Fy-

=1 ﬂ (ﬁlv 75l) MEMTL()
,Bie[[l,d}]

It follows

n

| Do ¢(F)| < Cololn(F)Y . > > IDane) Faul - | Dasya) Fal

=1 B=(B1,....61) MeMn(l)
ﬁze[[ld]]

2
| Da ¢(F)[* < Crp (|l pz > D D) Faul™ - | Dasye) Fi [
I=1 g=(B1,....051) MeEMy (1)
Bi€[1,d]

Now
Doty FI? -+ Dagtay FI? < - (1Dasay FPP 4+ | Dagyoy FPP),

'Since, if a1, ..., a, € RY, it is well-known that {/T[|_, a;i < LS ai,

n 1 n " 1 - n .
Haignﬁ(zai) Snfnn Zam
i=1 i—1

SO
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SO

n

Do 6(F)# < Crpa(16h(F)™ D" 3" (IDasyga) FIPP* 4+ -+ | Dagy(a) FI).

I=1 MeM,(l)
[ ]
We will also need an extended version of the first item of Lemma 4.5.3 :
Lemma 4.5.6 Let A, B € S, Then for every (k,r) € [1,J] x [1,d],
Dir(AB) = Dy (A)B + ADg(B) ; (4.5.16)
and for every a = (v, ..., an), with o; = (ki) € [1,J] x [1,d],
Do(AB)= ) Da, ADg, B; (4.5.17)
a;baj=a
a;,a; ordered
(by “ordered” we mean that if o = (v, ..., a4, ), then iy < --- < iy).
Proof : Let A= (Ai,j)lgi,jgd and B = (Bi,j)lgi,jgd with AZ'J‘, B;;j € S. Then,
d
DkJ,T‘(AB) = Dkﬂ‘ <( Z Az,mBm,])lgl’]§d>
m=1
d
= (( Z Di.r (A@mBm,j))gz‘,jgd)
m=1
d
= (3 P (i) Bons + Aian Dy (Bms)) 11520 (using (4.5.10))
m=1

= Dy.(A)B + ADy,(B).

But the proof of (4.5.17) only requires an induction over the formal relation (4.5.16) (and
does not need any commutativity in the product of A by B). °

Corollary 4.5.7 Let A = (Ai,j)lgi,jgd; B = (Bi,j)lgi,jgd with Ai’j, Bijj € S andl € N*. Then
there exists Cp > 0 such that
|AB]; < Ci|A|i| B;. (4.5.18)

We also have the following result proven in [8] (Lemma 8) :

Lemma 4.5.8 Let ¢ : R? = R be a C® function and F € S then for all | > 1 we have
6 ) < IVOUE)IFL + Cosup 030(F) P11

Result that we will essentially use in this work through this corollary :

Corollary 4.5.9 Let ¢ : R? — R be a C*™ bounded function with bounded derivatives of any order
and F € 8% then for alll > 1 there exists Cy,1 > 0 such that

[B(F)i < Cou(1+|Fli+ |Fli_y). (4.5.19)
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4.5.2 Some bounds on H¢?

The further theorem, proven in [8], gives some estimates for the weights H? in terms of the
derivatives of G, F', LF' and ~y(F).

Theorem 4.5.10 For F € 8¢, G € S and for all ¢ € N* there exists a universal constant Cod
such that for every multi-index 5 = (B1, ..., Bq)

Cq,d|G‘q(1 + |F|q+1)(6d+1)q
| det o (F)[3a-1

’Hg(F, G)‘ < (1+LFZ_,).

Remark 4.5.11 In the sequel, we will simply denote Hg(F, 1) by Hg(F)

4.6 Interpolation method : notations and theoretical result

All this section is directly taken from the article of Bally and Caramelino [7].

4.6.1 Notations and definitions

Let us define for £ and ~ some multi-indexes

d

N | B2 (4.6.20)
=1

fen(@) & 270 f(x) (4.6.21)

Iflkip = D > lfenlly (4.6.22)

0<|y|<l0<[¢]<k

For all v such that |y| <,

d d
def i i i l
27| = Tl < Tl < Ja>=7 < (1 + |a))
i=1 =1

SO

If

iy <Ca Y I+ [2)) O f (@)l (4.6.23)

0<|¢|<k

Since in the sequel we will have to bound the quantity || fas||2m+q,2m.p, let us notice that we have
directly

3=

||fMH2m+q,2m,p < Cd Z (/]Rdx]Rd [(1 + |($ay)|2m)a§ (fM(l', y))]pdl‘ dy) (4624)

0<[¢|<2m+q

Moreover, we will define a distance between two measures p and v in the following way :

di(p, v) % sup{‘/qbd,u—/qbdu‘ o C®RY, S [0edllu < 1‘} (4.6.25)

0<[¢|<k

Remark 4.6.1 Here, we will only use the case k = 1, which is called the bounded variation
distance (or, also, the Fortet-Mourier distance).
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4.6.2 Main result
Theorem 4.6.2 Let ¢,k € N, m € N*, p > 1 and set

k+d/p*
77>q+ +/p.

4.6.26
5 (4.6.26)

We consider a non negative finite measure p and a family of finite non negative measures
ps(dx) = fs(x) de, 0> 0.
We assume that there exist C, r > 0 such that
Agm (0) = sup || fo l|l2m+q,2mp < C6"
6<0’<1
and moreover, with n given in (4.6.26),

Mg (8)dys (11, pis) < C. (4.6.27)

Then u(dx) = f(x)dx with f € WP,
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Chapter 5

Regularity of the Density

5.1 Introduction

As we briefly mentioned in the introduction of the last chapter, the main purpose of this second
part is to study the regularity of the law of the random variable X; solution of the following
stochastic equation with jumps :

t t+ t
X; = x+/ U(XS)dWS+/ / (2, Xg- ) pyu<qy(z,x )}N(ds,dz,du)Jr/ g9(Xs)ds (5.1.1)
0 0 ExRy ° 0

(again, for the existence and the uniqueness of such stochastic equation see Chapter 1).

Our global aim is to give sufficient conditions in order to prove that the law of X is absolutely
continuous with respect to the Lebesgue measure and has a smooth density. That was the point
of the study made in [8] as well, with an equation of this type but without the Brownian part.

But, here, we will not only consider the existence and the regularity of the density y — px, (y)
(defined by Px,(dy) = px,(y) dy) with a given starting point z € R? : we will consider instead
the behaviour of (z,y) — pxz(y) (with Pxz(dy) = pxz(y)dy where Xi stands for the solution
of (5.1.1) starting at x).

This joint density regularity property, in addition to being obviously a stronger result, will
allow us (and it was, at first, one of the motivations to extend the result obtained for the regularity
ofy — pxr (y)) to obtain an interesting application concerning the Harris-recurrence of the process
(section 7.4).

5.2 Hypothesis and notations
Let us recall that the associated intensity measure of the counting measure NN is given by
N(dt,dz, du) = dt x p(dz) x 110,003 (w) du

where (z,u) € X = R? x R, and u(dz) = h(z)dz.
In this section we make the following hypothesis on the functions ~, g, h and c.

Hypothesis 5.1 We assume that 7, g, h and c are infinitely differentiable functions in both
variables z and x. Moreover we assume that

e g and its derivatives are bounded ;
e Inh has bounded derivatives ;

e both v and In~vy have bounded derivatives.

64



Hypothesis 5.2 We assume that there exist two functions 7,7 : R? — R, such that
C27(2) 2y(2,2) 29(2) 20, Ve eR?
where C is a constant.

Hypothesis 5.3 1. We assume that there exists a non negative and bounded function ¢ : R4 —
Ry such that [pq¢(2z)pu(dz) < co and

le(z, )| + |050%¢(2, )| < (z), Vz,z € R
We need this hypothesis in order to estimate the Sobolev norms.
2. There exists a measurable function ¢ : R* — R such that Jga é(2)u(dz) < oo and
|Vae x I1d+Vee) Nz, z)| < é(2), Vz,z € RY,
In order to simplify the notations we assume that ¢(z) = ¢(z).

3. There exists a non negative function ¢ : R* — Ry such that, for all z € RY,

d

S (Ore(z,2),6)? > A€}, VEeR?

r=1

and we assume that there exists 0 € @j_ such that

1
lim inf — 2 u(dz) = 0. 522
/{ Y (2)u(d2) (5.2.2)

a—oo Ina Jres1y—
- —a

Remark : assumptions 2) and 3) give sufficient conditions to prove the non degeneracy of the
Malliavin covariance matrix as defined in the previous chapter.

5.3 Main result

We are now able to state the density property of X and the joint regularity (in x and y) of it :
we fix ¢ > 1 and p > 1, K a compact set of R?, and we will give sufficient conditions in order to
have Pyz(dy) = pxz dy with (x,y) — pxr € WIP(K x R9).

Theorem 5.3.1 Let q, p > 1. We assume that hypotheses 5.1, 5.2 and 5.3 hold.

Let (BM)MeN* such that \Jyren« Bu = E and, for all i € N*

B; C B+ and ,u(BZ) < +o00.
Let K a compact set of R? and (with p* such that % + ]% =1)

+1+d/p*
4 /p_

5 (5.3.3)
If there exists C, r > 0 such that
(B )0t < o (5.3.4)
and if
lim sup (u(BM)6<d+q+3)3”( / e(2)7(2) dp(2) + \/ / A(2)1(2) du<z>)> < 400, (5.3.5)
M By B

then, for t > %ﬂ, with ¢ = d + q+ 2, and for every x € K, the law of X} is absolutely

continuous with respect to the Lebesgue measure, ie. Pxr(dy) = pxz(y)dy, and the function
(w,y) = pxz(y) belongs to WIP(K x RY).
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Remark 5.3.2 The quantity n and the related condition 5.3.3, come directly from the main
theorem of the interpolation method (Theorem 4.6.2), in the particular case k = 1, as we stated
in Remark 4.6.1, and with m = 1 (this last choice is discussed in Remark 5.5.4).

Remark 5.3.3 If 0 = oo, then, for allt > 0, the law of X} is absolutely continuous with respect
to the Lebesgue measure and the density pxz belongs to W4P(K x R%).

Remark 5.3.4 Recalling that (cf. Brézis [15], p.168, Corollaire 1X.13, for example), with k 4
[q— %] , we have (with O € R™ an open ball), W% (O) C C*¥(O), in the sense that each element of

WeP(0O) has a CF representative, this theorem can also be used to characterize the C* behaviour
of the function (z,y) — pxz(y) (as we will briefly see in the evamples at 5.3.1).

Notation 5.3.5 In the sequel, since x will belong to a fired compact set, we will often write
simply Yy instead of Y for any process Y starting at x, if this precision is not strictly needed
(that is why the starting point will never explicitly appear within the Chapter 6 but will be always
used in Chapter 7).

Before starting the proof itself, we will first try to give a sketch of the strategy that we will
use. The global idea is articulated in two steps :

1. to obtain an integration by part formula on an appropriate approximation of the process
Xt ;

2. to use this last result to prove the regularity of the density.

The terms from the condition (5.3.5) are a direct consequence of this pattern.

For the first step, and first of all, given a non-decreasing sequence of subsets (B M) Mener With
u(By) < oo, recovering E, we construct (for each M) an approximation X of the process X;
based on the restriction N, of the random measure N on the subset Bjy;.

Using a similar result as the Lemma 1.4.1, given in the first part of this work, we can then

say that the L!-distance between these two processes is bounded as follows :

ve<T, E[X - XM <Cr / (=7 (2)(d),

c
Bl\l

which explains the presence of the term fB]cM ¢(2)7(#) du(z) in the condition (5.3.5).

Since u(Bjr) < 400, the random measure Nj; may be represented as a compound Poisson
process (where the jump times will be denoted by T,ﬁw , k € N) and the Poisson part of process
XtM could be expressed as a sum ; nevertheless, because of the indicator function from the
original equation, the coefficients of the equation verified by XM are still (for the Poisson part)
discontinuous and therefore, we cannot use directly the differential calculus presented earlier.
Instead we prove that XtM has the same law as the process Yiv[ which verifies an equation with
smooth coefficients.

At this point, one would like to obtain an integration by part formula for Yﬁv‘[ , but there
remains one last difficulty : it is clear that, for ¢ < T 1M (the first jump of Njy), the random
measure Nj; produces no noise, and consequently there is no chance to use it for an integration
by part (the Malliavin covariance matrix being, of course, degenerated).

That is why one last process will be introduced :

Fy = X"+ VOu(t) x A,
where A Gaussian and where Uj(t) is defined by Up(t) =t [z c(2)y(z) du(z).

M+1 "~ -
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The L!-distance between Fy; and Yﬁw is then bounded, for t < T, by

Kﬂ /B 2(2)y(2) dp(2),

c
M+1

which gives a natural interpretation for the last term of the condition (5.3.5).
We are now able to obtain an integration by part formula for the process Fj; :

E [¢'(Fu)] = Elp(Fa)Hy) - (Tar)

The second step consists in proving the density regularity. The idea is to use a certain
balance between the error E [|Fyy — X¢|] (which tends to 0) and the weight E [|[Hps|] (which tends
to 00). This was the strategy used in [8] as well. But here the estimates of E [|H /|| have been
more delicate then the corresponding one in [8] because of the additional brownian part o dW.
Moreover, the balance used in [8] was based on a Fourier transform method while here we use
the new method developed in [7].

This new method allows us also to extend the result to the regularity of the density considering
additionally the variation of the starting point of the process, which was fixed in [8] ; finally, we
give an application of this improvement since we can then consider a regenerative scheme to
obtain an interesting result concerning the Harris-recurrence of the process (section 7.4).

5.3.1 Examples

In this example we assume that h = 1 so pu(dz) = dz and 7(z) is equal to a constant v > 0. We
then have B B
u(Bar) = raM?
where 74 is the volume of the unit ball in R?. We will also assume that z is in some compact set
K ¥ B(0,R), R > 0.
We will consider two types of behaviour for c.

i) Exponential decay : we assume that ¢(z) = e~%*l° for some constants 0 < b < a and ¢ > 0.
We then have

ol

/ 2(2) du(dz) = v x (lnu)t.
{02>%} (2a)c

we then deduce for the constant  (definied in (5.2.2))

=0 if c>d,
0 = o0 it  0<ce<d, (5.3.6)
2a

If ¢ > d, hypothesis 5.3.3 fails, which is coherent with the result of Bichteler, Gravereaux
and Jacod in [12]. Now observe that

J

for some £ > 0, so the condition (5.3.5) is always well verified.
When 0 < ¢ < d, since § = oo, for every t > 0, (z,y) = px=(y) belongs to W>P(K x RY)

(Vp > 1), which implies, according to the Remark 5.3.4, that (z,y) — pxz(y) can be
considered as an element of C*°(K x R%).

a(=)7(=) du(z) + \/ /B A(2)y(2) dulz) < Ke &

c
M

If ¢ = d, then appears a more particular behaviour and it is interesting to compare the
result obtained here with the example from [8| (recalling that, in this last case, X; does not
possess a Brownian part, though), assuming here, for that sake, that z is fixed, £ € N and
p>1:
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8] Present work

: 8da 8da 1
Domain t> 334 4 2) t:>?;¢m(1+5)+3k+8)

Regularity of px, C* with C* with
1 7rd Ird 1
k<d(1+gt) —d | k<i(1+Eee) —a(1+1) -2

Remark 5.3.6 In fact, in this work, (z,y) — pxz(y) belongs to WOP(K x RY) (vp > 1)
with v
d
142 )—d—z
3 ( " Sda 8da

s0, using again the Remark 5.3.4, (x,y) + pxz(y) can be considered as an element of
CF(K x RY), with

k;@{q_d]gq_d<]<1+;xg-q%1+;)—z

In particular it requires, at least, ¢ > g to obtain some regularity.

ii) Polynomial decay : We assume now that ¢(z) =

b . )
T+[z] and Q(Z) = Tz for some constants
0 <a<bandv>d We have here

el
v

/ (2) dp(dz) = yrqg x (av/u — 1),
{02>%}

so 0 = limsup,_,o, mra(ay/u — 1)% = oo and then, in this case, the regularity result
stands for every t > 0.

A simple computation gives us the following bounds :

/CC()()dM() Mgd and /BC 22()()(1#() ngd

M+1

So with C and r > 0 such that p(Bj;)8@+e+3)° < CM™ (condition (5.3.4)), we have

H(BM)6(d+q+3)3n(/c e(2)7(2) du(z \// 2) du(z ))

1
/
<CMm<2M” d = 2M2v— d)
< C/Mrn—v—‘rd‘
Hence, the condition (5.3.5) is true if
v—d
U
,

and, since here u(Bys) = rqM?, (5.3.4) gives r = 6d(d + ¢ + 3)? and, with (5.3.3), we have the
following condition :

qg+1+d/p* <v—d
2 - r

Finally, with v such that

v > 6d(d+q+3) 5

(5.3.7)
(w,y) = pxz(y) belongs to WIP(K x R%), for all p > 1.
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5.4 Approximation of X;

In order to prove that the process Xy, solution of (5.1.1), has a smooth density, we will apply the
differential calculus and the integration by parts formula from Chapter 4. But since the random
variable X; cannot be viewed as a simple functional, the first step consists in approximating it.
We describe in this section our approximation procedure. We consider a non-negative and smooth
function ¢ such that ¢(z) =0 for |z| > 1 and . ¢(2)dz = 1. And for M € N, we denote

(I)M(Z) = p* ]lBM

with By = {z € R? : |z| < M}. Then &), € Cy° and we have 1, , < &y < 1p,,,,. We
denote by XM the solution of the equation

t t t
XtM:x—i—/ a(X;”)dWs—i—/ /cM(z,Xﬁ)]l{u<7(z,XM)}N(ds,dz,du)+/ g(XM)ds. (5.4.8)
0 0 JE - 5 0

where
def

eyv(z,x) = oz, )P (2).

If we set
def

Ny (ds,dz,du) = 1p,,,,(2) x 1y, 25}(U)N(ds,dz,du),

since {u < v(z, XM)} € {u < 20} and ®y/(2) = 0 if |z] > M + 1,we may replace N by Nj; in
the above equation and consequently XM is solution of the equation

t t t
XtM:aj—i—/ O'(Xéw)dWs—F/ /cM(z,XéVI)]l{u<7(z7X;w)}dNM(S,z,u)+/ g(XM) ds.
0 0 JE 0

Since the intensity measure Ny is finite, we may represent the random measure Ny by a
compound Poisson process. Let

Ay = 20 X p(Buryr) = tVE [Nyt E)]

and let JM a Poisson process of parameter A\y;. We denote by Té\/f , k € N, the jump times of
JM. We also consider two sequences of independent random variables (Z,iw Jken and (Ug)ken,
respectively in R? and R, which are independent of JtM and such that

1 1

Z;iw ~ mﬂBMH (2)u(dz), and Uy ~ f]l[oﬂé] (u) du.

Then, the last equation may be written as

¢ i t
xM :x+/0 U(Xé\/[)dWS—l—ZcM(Z,]y,X%M_)]I(UMO)(V(Z%,X%M_))—i-/o g(XMyds. (5.4.9)
k=1
The random variable XM solution of (5.4.9) is a function of (Zy,.. ., Zu) but it is not

a simple functional, as defined in Chapter 4, because the coefficient cM(z,w)]l{uS,y(z,w)} is not
differentiable with respect to z. In order to avoid this difficulty we use the following alternative
representation. Let 23, € R? such that |2},| = M + 3. We define

def ]-

am(z,x) = @(z = 2y)0mH () + mﬂBM+1(Z)V(Za$)h(Z) (5.4.10)
Orr (2) M(BIMJrl) /{ . (1 - 2107(2,;7;)) 1(dz). (5.4.11)
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We recall that ¢ is the function defined at the beginning of this subsection : a non-negative and
smooth function with [ ¢ = 1 and which is null outside the unit ball. Moreover from Hypothesis
52,0 <~(z,x) < C and then
1
1> 0y (x) > 3 (5.4.12)
From this last inequality it is easy to deduce the following result :
Lemma 5.4.1 Let qp; defined as in (5.4.10). Then ln gy has bounded derivatives of any order.

By construction the function gas satisfies [ qa(z,2)dz = 1. Hence we can check that (cf.
appendix A.4 for a proof)

B[7(XM ) | XM =] = /Rdf@: +enr(2,2))qui (2, 2) d. (5.4.13)

From the relation (5.4.13) we construct a process (Yi\/[ ) equal in law to (XM) in the following
way.
Let 0 < u < v and y € R?, we denote by U, »(y) the solution of
v

Voup(z) =y + / o(Vys(y)) dWs + / (W s(y)) ds.

u u

v

We assume that the times T}, k € N are fixed and we consider a sequence (zj)ren With zx € R,
Then we define x4, t > 0 by xo = x and, if z7, is given, then

Ty = \I/let(JJTk), Tk <t< Tk+1, (5.4.14)

X =T +CpmlZ Tr— ).
Tt Tyq M( k+15 Tk+1)

We note that for T}, <t < Tgy1, ¢ is a function of z, 21, ..., z;. Notice also that x; solves the
equation
J]VI
t i t
T =T+ / o(xs)dWs + ZCM(Z]C,:ETI;) +/ g(xs) ds.
0 1 0

We consider now a sequence of random variables (Z;), k¥ € N*, independent of the Brownian

motion W;, and we denote Gy, = o(1},p € N) Vo (Z,,p < k) and
X =2(Zv,.. . Z ). (5.4.15)
We assume that the law of Zj; conditionally on Gy, is given by

— — = M
P(Zk+1 €dz | gk) = qM(Z,Hka—_H(Zl, e Zk>) dz = qM(Z’XTI;rl) dz. (5416)

M . .
Then X, satisfies the equation

t JtM t
X =+ / o(X2) AW, + > CM(ZquA{*) + / g(X,")ds (5.4.17)
0 Pt 0

7M .
and X, has the same law as X}/, Moreover we can prove a bit more.

Lemma 5.4.2 For a locally bounded and measurable function ¢ : R¢ — R let

JM JM
Si(y) = Z(@MIZJ)(Z@)’ Si(y) = Z((I)M@Z))(Zk)]l{fy(zk,X;{)>Uk}’
k=1 k=1 k

then (Yi\/[,gt(dﬂ)tzo has the same law as (XM, S;(¥))i>0.

Proof : Observing that (Yi\/[,gt(w))tzo solves a system of equations similar to (5.4.17), but in

dimension d + 1, it suffices to prove that (X i‘/l )t>0 has the same law as (X{M)¢>0, which is done
in detail in the appendix A.5. °
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5.5 The integration by part formula

. ~M . . . . .
The random variable X, constructed previously is a simple functional but unfortunately its
Malliavin covariance matrix is degenerated. To avoid this problem we use a classical regularization

procedure. Instead of the variable Yﬁw , we consider the regularized one Fj; defined by

Fy X 4 Un(t) x A, (5.5.18)

where A is a d-dimensional standard Gaussian variable independent of the variables (7k)k21 and
(Tk)k>1 and Up(t) is defined by

Uni(t) = t /B 2()(2) du(2). (5.5.19)

M+1
Notation 5.5.1 We observe that Fyy € S% where S is the space of simple functionals for the
differential calculus based on the variables (Zy)>1 with Zo = (A™)1<r<q and Zy, = (Z)lﬁrﬁd and
we are now in the framework of the previous chapter (Section 4.2) by taking G o o(Ty, k € N)
and defining the weights (my) by setting 7y = 1 and

def

= om(Zk) (5.5.20)
for1 <r <d.
Conditionally on G, the density of the law of (Z1,...,72 JtM) is given by

TM
~M
pM(w, Zlyeeoy ZJtM) = H am (Zj, \I/Tj_th (Xijl)) (5.5.21)
j=1

M . . . . . M
where XT];1 is a function of z;, 1 <i < j — 1 (moreover, we can notice that ‘I’ijl,Tj(XTj,l) =

Y%I,) ; we can check that pys satisfies the Hypothesis 4.2 of Chapter 4.

Notation 5.5.2 To clarify the notation, the derivative operator can be written in this framework
for F € § by DF = (Dy, F') where Dy, = 71'287; for k>0 and 1 < r < d. Consequently we

deduce that Dy, F]T/,[ =Dy, Yﬁw’w, for k> 1 and Dg F]\’/} = /U (t)0y 0 with 8,0 =0 if 7 # 1/,
Oppr = 1 otherwise.

The Malliavin covariance matrix of Y?/[ is equal to

JM g

o (X, )i = 3> Diy Dy, X MM
k=1r=1

for 1 <14,j < d and finally the Malliavin covariance matrix of F)s is given by
o(Fy) = o (X)) + Uni(t) x 1d.

Using the results of Chapter 4, we can state an integration by part formula and give a bound
for the weight HY(Fys,1) in terms of the Sobolev norms of Fjy, the divergence L Fj; and the
determinant of the inverse of the Malliavin covariance matrix det J(F M).

The control of these last three quantities is rather technical and is studied in detail in the
next chapter.

Since we are looking here also for the regularity with respect to the starting point x, and in
order to use the Interpolation method (c¢f. 4.6) we will have to look a little bit further. It is clear,
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from its definition, that the law Ppg of Fj; possesses a smooth density : Pz (dy) = pry, (y) dy.
We will then define

fule,y) = Uk (@)prg, (v) (5.5.22)
where Wy is a smooth version with bounded derivatives of any order of the indicator function

1k, and study its behaviour with respect to the norm defined by (4.6.22). More precisely, we will
admit for the moment the following result (for the proof, see section 7.3) :

Lemma 5.5.3 Let g e N, m e N*, p> 1. Then
|t llomra2mp < Cpu(Bar)2m+edt)” (5.5.23)

where C' does not depend on M.

5.5.1 Proof of the main result

To do so, as we said earlier, we will use a more powerful method then the usual “balance” that
can be made, with some reasonable conditions, when an integration by part formula is available
for a convergent sequence of processes (for a more detailed explanation, see [7], from which this
new tool is taken) : here, we will use the Theorem 4.6.2, taken directly from this last cited article.

Proof : Lett > M, with ¢ = d + 2 + ¢, and let us define the measure px defined by
(where Py is the law of X}')

px(dz, dy) = U (x)Pys(dy) do (5.5.24)

where Wy is a smooth version with bounded derivatives of any order of the indicator function
1. A natural approximation of px (dz,dy) would then be W (z)px (2, y) dzdy. But in order

to use the Malliavin calculus developed in this work, it is more convenient to use, instead of XM,
the approximation (in law) Fjs of it. Let us recall that

def

o [y = Yt + Un(t) x A, where A is Gaussian and where Uj(t) is defined by Ups(t) =
t e, € (2(z)du(z)
o fu & ‘I’K(x)thM(ﬂfay)-

We will then use the Theorem 4.6.2, with § Y (to be rigorous with the notations, we

should define and work with fs ) far, but we will simply use fay).
On one hand, using Lemma 5.5.3 with m = 1, we find that

||fMH2+q,2,p < CH(BM)G(d+Q+3)3 (5525)

where C' does not depend on M.
On the other hand, using the definition (4.6.25) of the distance dj, in the case k=1 :

d(pix, fur) sup ’// g(x,y)ux (de,dy) — // g9(x,y) far(z,y) dedy
geC™ (RIXR?) ]Rdx]Rd RdXRd
||9||oo7||V9||oo<1

- /. \Px<x>(E o Xi(@)] ~ B[y, £ (2)]) do
R

M
< /]Rd U (z)E [| X¢(z) — FM(2)|] do

SO
di(px, fm) < CK(/ e(2)7(2) du(z \// z) dp(z )) (5.5.26)
C M+1
It follows that, with the conditions (5.3.4) and (5.3.5), the conditions of the Theorem 4.6.2
are well verified and we can directly conclude. °
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Remark 5.5.4 Let us give a quick explanation why we only considered the case where the pa-
rameter m is equal to 1. This parameter was made to loosen up the lower bound condition for
1 in Theorem 4.6.2 (roughly speaking this lower bound is a O(%)) which could help to obtain a
better condition from (4.6.27). But, the upper bound obtained for || far||2m+q,2m.p with respect to
m, is a O(m?), so we lose here completely the possible advantage of taking m > 1.
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Chapter 6

Bounding of the weights HE(FM)

6.1 Introduction

In this chapter we consider that the starting point x is fixed.
The final result of that part is to bound the quantity HE(FM) ; to do so, we will use the
bounding given by the Theorem 4.5.10, which implies :

1
’d\ det o (Fyy)

=Y (Fw)| < et (1 [ Eular) 00 (14 [LE ),

and so will be brought to bound, in particular, on one hand Hm |lp, which will be done at
Lemma 6.6.5 and, on the other hand |||Fas|n|l, and |||[LEa|n]|p (where |||, is the LP-norm). To
do this last thing, because of the similar structure of the linear equations verified by the different
processes involved here, we will develop in the first place a way to bound this type of processes,
in a recursive way (which is natural, since we want, in particular, to bound successive derivatives
of our process). Moreover, this theoretical result will be helpful in the Chapter 7, when we will
study further the density continuity of the process Xj.

The upper bound of this quantity allows us to prove, under some similar conditions to (5.3.5),
the existence of a regular density for X; : (with ¢ > 1 and p > 1 fixed) we have Px,(dy) = px, dy
with px, € W9P(R?) (using a Fourier transform method as in [8], or some weaker version of the
interpolation method (c¢f. [7]) quoted here). In this sense, this chapter is “self-contained” ; that
is one of the reasons why we give the Lemma 6.7.1. The other reason (and it is globally true for
the whole chapter) is to show a pattern of the proof, in a simpler case, which will be used again
in the more general Lemma 5.5.3 (proved in the section 7.3).

Even though, to conclude in the general case (joint regularity), we need some further results,
made in the next chapter, the main part of the needed techniques is presented in this one, with
less heavier notations, since the starting point x is momentarily put aside.

Notations

e In all the sequel we will denote by Eyy the expectation with respect to the Brownian motion
; 1.e. conditionally with respect to the Poisson measure.

e As we have already pointed out in 5.3.5, in all this chapter, since x will belong to a fixed
compact set, we will always write Y; instead of Y;* for any process Y starting at z.

6.2 An upper bound lemma for a family of linear SDE’s

In this section we give LP? bounds for the solution of a family of linear equations which represent
the general framework in which the Malliavin derivatives fit.
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Hypothesis

We fix a finite set I and we consider the multi-indexes of the type « o (a1y...,ap), with a; € 1.
We define and denote the length of a by |«| ' n. We also consider the void multi-index o = 08

and in this case we put |a| £ 0.
Then we denote
Ay = {a = (o,...,an) : g e}

the set of multi-indexes of length n and define then
A=A,
neN

and
ne = #{a € A, o <k}

(since I is finite, ny is a defined finite number).
We define a family of process (V7 );>0, a € A in the following way.

o If |a| = 0 we put V? XM with Yﬁw solution of the equation (5.4.17) :
—M vt o —M v}
X, :a:+/ (X )dWs+ZcM(Zk,XTk—)+/ g(X,)ds.
0 k=1 0

e Suppose now that we have already defined V* for la] < n—1. We denote by

def *ﬁ
Vi (t) = (Vt ) Bl<h_1

(so V(o)(t) = (V? ) = (Y,{V[ ), a family of d-dimensional one element). Then let V" be, for
|a| = n, the solution of

JM .
Vi=Vi+ / G (V k—1y(s)) AWy +Zd (Z5, Voo (T} ))‘i‘/o 9% (Ve—1)(s)) ds
J=1
JM .
+Z/ P VOV cAwl+) 8% Z],VT )VT /Oba(VS)V;"ds, (6.2.1)
j=1

with the functions G* : R# -1 — R>™ g% - R x R>M-1 — R, g - RM-1 5 RY,
PP R? — R4*d 3 Re x RY — R4 p> : R4 — R¥*4 and the following Hypothesis :

Hypothesis 6.1 1. There exist w € N and K € Ry such that, for all v € R™1 and z € R?,
G (v)] < K1+ [v])", g% ()] < K(1 4 |v])", (6.2.2)

and

8%(2,0)| < B(2), |df (z,v)| < Ke(z)(1 + [v])* (V5 €N), (6.2.3)
with, for all n € N,

o [pac(z)"u(dz) < oo ;
o Jou Bl (d2) < o0

2. bounding conditions :
_ def
® P = SUDycRd SUPeA SUP << P[] (8)] < 00 ;

75



o b = sup, pasup,ea [b°(s)] < 0.
Lemma 6.2.1 Let p € N*. We assume that the Hypothesis 6.1 holds and we set
O, (t) = sup Ew [|V?|2p} .
acA
|| <k

For allT > 0, there exists a constant Crypj (which does not depend on M nor on the set A, and,
in particular, does not depend on the size of I) such that

B|0p4(t)] < Crp (6.2.4)

Proof : In order to use stochastic calculus, we will come back to the process XM, so, with the
same notations as before, and
Vi (t) & (Vﬁ)
(1) t ) |si<k

with the convention V2 = XM (so Vioy(t) = XM), Vi is then defined as a solution of the
following SDE (where k = |a|):

J]\/I
t t
Ve :VOO‘—i—/O G (Vig—1y(s)) AW —i—zd 35 Vi (T;)) Ly, <7(Zv,X%/1_)}+/O 9% (Vik-1)(5)) ds
J
J]M
+2/ P (VS) VadWl+Zﬁa ZavV )Ly, <az, x50 pVr / b V)V ds.
7=0

(6.2.5)

In order to express the first compound Poisson process with an integral with respect to the Poisson
measure, we put (with the convention Tj = 0)

s (z,v) & Z]I]Tj,l,Tj}(S)d?(ZW)
j=1

from (6.2.3) it is clear that,

e (z,v)| < Ke(2)(1 + |v])™. (6.2.6)
Therefore
t I t
Wa:VoaJF/O G*(Vig—1)(s)) AW +Z€ (Zj, Vi) (T))) Ly, <2, X )}+/0 9% (Vig—1y(s)) ds
JM ‘
+Z/ PR (V9) Vadwl+25a Z],V Ny, <q(z, ) )}V +/0 b (VO VEds

t
:%a+/0 GO‘(V(k,l dW —i—/ /e (2, Vi) ))]l{ugv(z’XSM)}N(ds,dz,du)+/0 ga(V(kfl)@)) ds

m t t
S / VOV AW + / / B (2, VO e o xit y Vi N (ds, d2, dur) + / b (VO ds.
—1 /0 0 JE - 5 0

From Lemma 5.4.2, V,* and V? are sharing the same law, so we will prove that, for all & > 0,

E [ sug Ew UV{ga\Zp] } < Crp, (6.2.7)
ae
|| <K

which will be shown by recurrence on k.
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e For k=0, V0 = XM it is the Proposition B.0.1.

e For k£ > 1, we first simplify the notations by writing :

Go(s) = G (Vik—1y(9)), g*(s) = 9* (Vik—1y(9)),
p(s) = o (VD) b (s) = b (VY),
h*(s™, z,u) = 6?— (ZvV(k—l)(si))]l{uﬁv(z,X;”{)}a BH(s™, z,u) = ,Ba(z,VSO_)]l{ugv(z’Xﬂ)},

which gives

t t t
Ve =V +/ G*(s)dW; —|—/ / h*(s™, z,u)N(ds,dz,du) +/ g%(s)ds
0 0o JE 0

0

m t t t
+Z/ p?(s)xgadwg+/ /ﬁa(s,z,u)vs%N(ds,dz,duH/ b2 (s)V2 ds.
=1 70 0 JE

In order to use the recurrence hypothesis, we bound the coefficients of this last equation in the
following way : with

Br(s) = K(1+ [Vig-1y(s))”
and
&zu) = (2(2) + B(2) L fu<r(o))
we have (according to the hypothesis 6.1)

sup G(s) < hi(s) and hi(s) Lef sup g*(s) < hi(s)
acA acA
|| <k lo| <k

and (using (6.2.6) and (6.2.3))
Vs, z,u, |h* (s, z,u)| < he(s7)E(z,u) and 1B8%(s™, z,u)| < &(z,u). (6.2.8)
At last, we have to notice, using the recurrence hypothesis for & — 1, that, for all n € N*,

sup E [|h(s)]"] < oo; (6.2.9)
0<s<T

this last result comes directly from the following bounding :

Step 1

In order to use the Itd’s formula, we will first have to localize our problem by using the

sequence (TH)gen+ of stopping times defined by

(k) = inf{t >0 : sup » [V > K}, (6.2.10)

SSE o<k

Let us prove that a.s. limg_, le\gf = 0.
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From the hypothesis made on the coeflicients of V,*, it is clear that, for all ¢ > 0,
> E[sup VY] < oo (6.2.11)

o<k St

We have, fort > 0
lim P(r¥ <t) = hm P(sup Z VX > K)

K—oo K—o0
s<t la| <k
<Khm —E [sup Z Ve =
—
Sy s<t o<k

(T% )Ken+ tends to oo in probability and so, there exists a subsequence (that we will continue to
denote by (7)) ken+) which tends to co a.s.
In this case we have
2 2
VEPP Ly, TV as,
SO
2 2
Bu (VA1 050 1 Bw V2] as.
and

sug Ew [|[V**1 M>t] 0 sup Ew [|[V;**] a.s.
|g|€§k |a|<k
If we admit for the moment that there exists a constant C) 7 which does not depend on K

and M and such that, for all 0 <t < T,

E[ sup By [| o MPI’H < Cropn (6.2.12)
acA

lo| <k
The monotone convergence theorem implies then

E sup Ew [[V:*]] :S}l{pE[ sup Ew [V [P Lopr ] :S;PE[ sup Bw [Vl ™]] < Crppe
! jal<k o<k

Step 2

We have to establish now (6.2.12).
For a single component we have (omitting for a moment the parameter « in order to simplify
the notations)

V= V0+Z/ Gi(s) dW! + //h N(ds, dz, du) + /Otgi(s)ds
+ZZ/ phn(s vdel+Z/ /Bzh 2 (ds,dz,du)—i—é/ﬂtbm(s)vjds

=1 h=1

Then, applying Ito’s formula with f(z) = 2%

d
(‘/Z/\TM)QP = (VH* + Z/ )2 1<Gl 5) + Zplih(s)vsh) dw!

h=1

tnTid d
+2p /0 (Viyze—t (gi(s) - Z bl-h(s)VSh> ds

P Z/OMT%(V )20 2( )+ szh ) ds

t/\TK L 2p -
/ / VZ + hi(s™, z,u) +Zﬁih(s_,z,u)vs_> — (V2)*PN(ds,dz, du)
h=1

t/\TK
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We take now the expectation with respect to the Brownian motion (i.e. conditionally with
respect to all the others random quantities) :

Ew (Vi) ®] =B [(V5)¥ ] +2p/ow% Ew [(V)# " (gi(s +szh v as

<>Z/ (IR AR
/t/\TK / EW V + hi( +Zﬁzh - _>2”_(xgi_)2p}N(ds,dz,du).

Since s <t A 7'[]\(4, we have X = Xs/\T}gfv and obviously t <t A 7‘%, so we have
o [, fwgpp} —Ey [Wgﬁp} —|-2p/ Ew [| g |2 1(|gi(s)|—|—Z|bih(s Vs}j\TM\ﬂ ds
2
p(2p—1) Z/ B [[Viar 72 (1Ga(s |+Z\pm Ve ) | as

/t/\TK / EW Vz + h + Z,Blh , 2 7>2p B (ij)szN(dS,dz,du).
Since

h=1
‘i( )( +Z@h 2 Vh) V;}pik‘

k=
Z( > [BI(s™2,w) + 1BI(s™, 2, w)[V]o-) |V |- )

k=
(Ve + [Bl(s™, 2, u) + 1BI(s™, 2, w) | V|- = [V[Z,

IN

it follows (with p o supy |pi|)

M
tATE

Ew[(Viprp) ] < Ew[[Vo[*] + 220/0 Ew Ve~ (lgl(s) + bl (s)|Vs])] ds
+p(2p - 1)/0 " BV (G (5) + p(s) Ve ds

t/\T}\(/I
[ BV BT ) + 18157 2 Vi )PP Ve 7N (s, d du),
0 E

Then (writing again from now on the parameter «, in order to see clearly which components
depend of it or not), we have (using, among others things, the inequality (6.2.8))

t/\Tliy - _
wllViw PP <Bw[[ Ve 7] + 2p/0 Ew [V~ (he(s) + bIV])] ds

+p(2p—1) / T B VAP 2 ((s) + IV ds
/ h / Ew[([VE] + (s )E(z w) + &z w)| V) — [V PN (ds, dz, du),
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(Notice that, since V;* is an adapted process, |V{| is a constant, so Ew [|[VE|?] = [V&|?P.)
To bound the first integral, using the elementary inequality

Yo,y >0, Yu,0 >0 aty’ <ot 4yt (6.2.13)
we notice that :

VPP R (s) + BIVEPP| < ()™ + VPP + BV

< hy
= hi(s) + (L + D) [V,
and, similarly, for the second one,

VP2 (Ris) + BIVED? < 2()% + 20V + 257 VO
— 9T (5) + 2(1 + B V2.

It follows that,

M
tATE

INTE - _ o
2p/0 Ew [V~ (i (s) + DIV])] ds + p(2p — 1)/0 Ew [V P72 (hi(s) + pIVi[)?] ds

INTE - t/\Ti](w
< op/o By [T ()27] ds + c;,/o B [V 2] ds
For the third integral, we will see that
(VE [+ (57 )E (2, w)+E (2 ) [VE NP = [VE [22 < E(2,0) P(E(z, ) (VE [P+ (i(57)%) (6.2.14)

where P is a polynomial function.
Let us prove now (6.2.14) : if u,v > 0,

’qu — U2p‘ < |u—v|(u+ )L, (6.2.15)
so, it follows that, for a, b, ¢ > 0 :

(a+c(b+a)® —a® < c(b+a)(a(2+c) + cb)?P!
<2277 le(b 4 a)(a®7H2 + )P + (eb)?P7Y)
<227 (@ (2 + o)+ a(eh)?P T+ ba®P (2 4 )P 4 AP

using (6.2.13), we have
a(ch)?H < a® 4+ (ch)®  and  ba®PT (24 )P < a® 4 b7P(2 + )2
which brings to
(a+cb+a)® —a® <227 le[a® (24 (24 )P 71) + 0P (P71 + FP 4 (24 )27

or, more generally, to
(a4 c(b+a))? —a® < cP(c) [an + b2p)], (6.2.16)

where P € R[X], which proves (6.2.14).
Gathering all those results,

t/\TM t/\‘l'}]\(/[
Ew (Vi 7] <Ew (VS 7] + G, / w i ()] ds + C; / Ew (V] ds
0
ATy M
[0 [ep@maieoN@sanan + [T [ ep@mwlve v s az o)
0 E
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We then have, directly, with O, x(t A 7) = Sup aea Ew [| tATM PP]
la|<k

t/\TK t/\’r}y
0,1 (t A1) <O, 4(0) +c/ w (s )2p]ds+C”/ 0, 4(s)ds

/WK/gP €) By [A2P ()| N (ds, dz, du) /WK/gP 0, (5= )N(ds, dz, du),
(6.2.17)

Since s <t A T%, we have, for any process Y, Y; = Y/\T]W and obviously t <t A TK , SO we have

t t
O, x(t ATM) <O, 4(0) + Cp / By [fie(s A 7)) ds + C, / O, x(s A 7MY ds
0 0

t
+ [ [ @ Ew (s Arit) N s dzd+ [ [ €P@B (s AN (s, dzsc),
(6.2.18)
Step 2
The last step is to bound
E[©,x(?)].
By setting

u [ ep(©)duntdz)

we have (using the isometry in Fpl, cf. (1.2.4))
I C9]
t t
<E[0,0(0)] + B[ [ Bwlusnrit)as] + B[ [ Oputs Ari) s
0 0

+E [/;/E»SP(E) By (B2 (s A 73) ))IN (ds,dz, du)] + B [/Ot/EgP(g)@p,k((sAr}g)—))N(ds,dz,du)

—E[6,4(0)] +C’p/0tE[hk(s/\T}‘(/[)2p] ds+c,g/0 B0, 4(s A )] ds

IR / B[RZ((s A r4)7))] ds + /0 E[O,((s A 72)7))] ds

0

t t
—E[0,40)] + (G Ra) [ Elals Arid))ds+ (C) + Ba) | ElOyu(s A 7] ds
0 0

With A,(T) € E [@p,k(o)} +(Cp + R1) J; E[hy(s)%]ds, which, by virtue of (6.2.9), is a finite
quantity, the Gronwall’s lemma gives here :

B [@p(t A Ti)] < Ap(T) expl(C) + Ry)i]

which proves the assertion (6.2.12).

To bound (in LP, p > 1) the Sobolev norm ’Xt]M’p we will proceed by recurrence on [ € N*,
and we will show in detail the case corresponding to the first order norm, since in this particular
case, the structure of the general method already appears with lesser notations than used in the
general case.
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In all the following we will set
Ap(L) = ([1, L] x [1,d])*

and

AL) = | Ak(D).
keN*

We will also need the following lemma’s :

Lemma 6.2.2 Letn,p > 1 and F € 8. Then

a€A,

B[|DmFP| < vy B (7)) sup \/E[ max. Eiy [| Do FI17]]
Proof : By definition
B[IpF] =& [( S |DaF|2)p];
ac([1,JM]x[1,d])™

on the other hand )
E \D"F]Qp] — supE [|D“F\2P11JM<L}
L L t —=

and
_ p
B0 =B[( X 0P 1]

ae([LJIM]x[1,d])"

<E -(dt]t)n(pfl) Z ‘Doz FIZPH]lkiSJtMSL}
) a=((kn,rn),...,(k1,r1))€An (L) =1

<B[@n e Y By (1D, F*]]
a aEAn(L)

<E _d"thnp max
L An(L)

< &\ [E ()] \/E[ max By [| Do F|#]].

Ey []DaF|2pH

aEAn )
[ ]
Lemma 6.2.3 Let j > 1. Then there exists C, > 0 such that
‘Da Z]| < C|a|-
Proof : For |a| =1, a = (k,r) and (recalling that 7}, = ¢ar(Zy))
Dir Zj = | M0z 2] | = | ¢m(Zk)ok, (6.2.19)

50 [ Dpy Zj| < [|9lloc = 1.

Since ¢ has bounded derivatives of any order, the recursive differentiation of (6.2.19) gives
the general bounding property ; although this recursive differentiation is rather clear, we show
the case |a| = 2, to highlight the mechanism of it :
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let @ = ((m,n)(k,r)), then (using (6.2.19)),

with - B B
Tz (601 (Zk)) Ok 5 = daa(Zim)On Mt (Z1) S 1Ok 5

and a derivative of higher order will be of the following form :

0
Do Z;=| Y cllosom(Z))
0
so (since the sum and the product are finite),

Do Zil <) ][] 1088l = Clay.

[ ]
Recalling the following notation (cf. Section 4.5.1) : for 1 <[ < mn,
Ma(l) {M:(Ml,...,Ml), | Mi={1,...,n} and M; 0 M, = &, foriyéj},
1€[1,1]
we have, in fact, a more precise result :
Lemma 6.2.4 Let k> 1 and a = ((kp,7n), ..., (k1,71))-
Do Zj, = Ok ke Oy 5Oy 1 fo(Z) (6.2.20)
where (with v < (rp,...,r2))
fo(Z1) ¥ > ¢a [ [ 05.y02(Z1) (6.2.:21)
B=(B1, ,Bn)EMp_1(n) =1
with
e cgeN;
e we denote again M, _1(n), but, here, we allow B; to be empty.
Proof : By induction over the length k& of «. °
6.3 First order norm
Proposition 6.3.1 Ifp > 1, for all T > 0, exists a constant Cry, > 0 such that
vie[0,7],  |D'X{M |2 < Crp\/ 1194 [|2p- (6.3.22)
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Proof :
First, from Lemma 6.2.2, we have

15 M|2P M M |4
B[|DUM ] < v\ [B ()] sup \/E [, max Ew [|Do X1 [%]]

Hence, to conclude, it remains to bound, independently of L, the quantity E [maxaeAl(L) Ew [| D, XM |4PH .
Recalling that XM solves the following diffusion equation :

t JM t
XtM:aH—/ U(Xéw)dWS—FZcM(Zj,X%)%—/ g(XM)ds,
0 ; 0
Jj=1
we have

m t
Dy Xo = Vaoer (Z, X3 ) Dy Ze+ Y | Vou(X}) Dy, XM aW!
1=1 7Tk

M
+ Z VICM(Zj,X%_)DkJX%_
j=k+1
t
+ [ Vug(XM)Dy, XM ds.
Tk

7O def

We can then apply the bounding Lemma 6.2.1 with a = (k,r) and V;, = Dy, X, since the
Hypothesis 6.1 are well verified, for we have (a = (k, 7))

G* =0, d¥(Z;,Vo)(T;) = 0scn(Zj, X3! )@ (Z)015, g% =0
PR(VOVE = Vo XM, 8%(2;, V- )Vi- = Vaen(Z;, X31_) Dy, X3,
b (VIVS = Vag(XM) Dy, X
with (using Lemma 6.2.3)
10z, cn(Zy, X7/ )®ui(Z))85] < Cre(Z;)  and |[Vaen(Z;, X770)| < €(Z5),

which completes the proof.

6.4 Norm of higher order

Following the very same path as before, we find, recalling that Ay & 2¢u(Eyy) (where Fy is
chosen in order to have p(E7) > 0)

Proposition 6.4.1 Ifp > 1 and | € N*, there exists a constant Cp ;7 > 0 such that
e 0.7 [[1EM, Iy, < Corr@ /I ), (6.4.23)
and, consequently, there exists a constant C’I’D w7 > 0 such that!

vee0,7],  |[[XM |y, < Crary/ ). (6.4.24)

We note, indeed, that JM ~ P(tAn) which implies E [JtMn] = P(tAum), where P is polynomial of degree n :
when M is growing, (for t < T), we have

E [JtM"] = 0(\).
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Proof : We have l
_ _ 2
B[l <, Yk [prx ]
k=0

and, using Lemma 6.2.2,

l
Cp,) E “DkXtM‘ﬂ <c, dep\/msup\/ max Eiv [| D XM 20]].
k=0 ac

So, if we admit for a moment that, for k& € [0, 1], supy, \/E [ maxaea, (0) Ew [| Da XM|*]] < Chp,

then
B|[XM)7] <c Zd’“p\/ [(J})247] Chepy < Cppr(144/B [(J2)29]) (6.4.25)

which proves the proposition.
Hence, to conclude, it remains to bound, independently of L, the quantity E [maxae Ax(n) Ew U D. XtM \4p]] ,
which will be done by recurrence on |a/ in the next lemma.

Lemma 6.4.2 Let p > 1, and n € N and ; there exists Cypj such that

M 2p
s%pE [alerli%x) Ew [|Da X" H < Chp- (6.4.26)

Proof :
The case |a| = 1 is corresponding to the first order norm case.
Else, starting again from
X —at [ (Rt Y (2, ) + [ (X
0 : 0
7=1

we have (using Lemma 4.5.3, with

SEY Y OY aa YEY Y Y

1) 1=2 B=(B1,....60) MEM(I) 2) I=1 B=(B1,.,Br,B) y15-B]) MEM(I)
gielLd] BielLdl, Bjeld+1,2d]

where k =< |a/, in order to shorten the equation)

JM

t
D, XM Z/ o(o1(XM) AWL +> " Dalenr(Z;, X7 ))+/ D, (g(XM))ds
Jj=1 0
—Z / Zaﬁaz ) Dot e (X -+ Py (X + Vor(X) Da (X AW,
J]\l
—FZZ@BCM )DMl(a) ZJ 'DMr(a) Zﬂ X DMr+1(o¢)(XTJ—)de;+1 Ml(oc)(X )d 8]
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Then we apply the upper bound Lemma 6.2.1 with V? L Do X, (and consequently V(k n(t) =

<D5 Xt) Bl |). Using Lemma 6.2.3, it follows that the Hypothesis 6.1 are well verified ; for ex-
<l

ample :

G (Vie-1)(s)) = G?«DB Xt>|m<\a|>

def

> 95(01(X M) Dy () (X2

(XM a, Doy ey (X5,
(1)
so there exists w € N such that
|G (v)] < K(1+ [v])";
and
dj (Zjav(k—l)(T‘i))
= d D X
(2 ( g )\6I<Ia\)
= ZaﬂcM ) D) 2} - Dt 2} X Dy () (X7

)d Bror ™ DMl(a)(X%—)dfﬁ{'

Notice that it is legitimate to consider each Dy, ( )Z@ “ as a function of j and Z; since, using
directly the Lemma 6.2.4

~Bu _
Dity(a) 25" = O(Mua))hg =

O(Mu(a))} 5O ()28, Fa(Z5)
where f, is defined in (6.2.21).

Since, from the Lemma 6.2.3, every | D,

Z7"| is bounded, there comes an inequality of the
form - B
|45 (Z5, V-0 (T;))| < Ke(Z;) (1 + [V -y (T;)])™,
and likewise to the other quantities
[}
6.5 Operator L

Proposition 6.5.1 Forp <1, and all | € N*, it exists Nt , > 0 such that

H|LXtM‘lH2p < ]\/vTJ’p(/\M)(l-i-2)27
with Ay = ,LL(EM)

(6.5.28)
Proof :

In the following C,, Cj, C),; are “flying constants” which may change during the calculation
we have

JM 4
L(F)=—

Z Z Ok r(Tky) Dir F + D (Diy F') + Dy Inpy Dy o F.
k=1r=1

(6.5.29)
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hence, using the fact that |.|; is a norm (and with |AB|; < Ci|A|;|B|; : ¢f. 4.5.7)

J]M d
L) <D0 10k (k) Dk Fli + | Dy (Dgey F I+ZZ|DkrlanDkrF|l
k=1r=1 k=1r=1
J}VI J]W JtZ\J d
<CZZZ!(9M7TM!l\DkrF\l+ZZ|Dkerr P)i+Cr Y Y | Diplnpy|| iy Fly
k=1r=1 k=17r=1 k=17r=1
J]\/I J]M Jt]\/f d
<CZZZ!3kr7Tkr|z+!DkrF|z+ZZ|Dkerr P)i+C ) > Dy Inpylf + | Dy FI7
k=1r=1 k=1r=1 k=1r=1
J]W d
<ZZ’D]€TD]€T e+ Cil|mhr[fer + [pglfiy + 21F I y)
k=1r=1

M M
(the last inequality follows from the fact that Zitzl Zle | Dy G| = Zitzl Zle > laj<t | PaDiyr G|? <
> jaj<i+1 | Da G|? = ]G|l2+1), which implies :

J]\I
| L(F)| 2p<C l((ZZ’Dkr Di F |l> +’7Tk7“‘l+1+’F’l+1+|lnpj|?f1)
k=1r=1
((JNZZleDm i)’ h)
k=1r=1

2 4 4 4
< cp,Z(wz”)ﬂFuiQ el + FI + |1nm|l:i1).

And, finally (noticing that, as a consequence of Lemma 6.2.3, |7T]€7T‘;1£1 < Cip),

B[ILE)?] < i1+ VE (M1 E[IFD,) +E[IFP] +E] np[,])  (65.30)
We put F = XM. Let us recall that, from (6.4.25)

[]XthH} <Cpir(1+ \/E [(J%)A:n(l-&-l)]) < Cz/),l,T\/m-

Then, if we admit for the moment Lemma 6.5.2, we obtain the following upper bound :

E [| L(XtM) ZQP} < NT,l,p()\M)Qp(Hz)Q’

which ends the proof. °

Hence, all that remains is to prove the following result :

Lemma 6.5.2 Letl,n € N.

n 2
B {|mps ] < Conptinir (0(E)"™

Proof :
We recall that
i
Inpy = Zlon(Zj,X%_),
j=1

and recalling that In gps has bounded derivatives of any order, using Lemma 5.4.1, which implies,
by corollary 4.5.9, the existence of Cy,,; > 0 such that

laa (F)li1 < Copa (14 [Flis + [FI;Y)
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we have,

%
[npslipr <Y [nga(Z, X3 )iy
= M
< CIIMJZl +1(Z, X3 )i + 1025, X2
Jj=1 o
< Cora (M + 321 Zilia +1XE i + 202, + 1 XM_)
-
< G (J% + Z ’X%Jlﬂ + ])_(%7 §+1)
j=1
it directly follows
M
E [|npsff] < Copn (B[] +E [ (A D IR i+ (KE1?) )
- M
< Coppn (B[] +E[(24)" (Z\XT B+ IXHFD))
=
P
< o (B 1OV B ()], B[S B+ 1))
7j=1

Our aim is then to bound the second term of the rhs of this last inequality.
We have
FM |2 FM |2
’Xij‘l-i-l = Z |DO¢ Xij‘
o] <I+1

T7Q def

and from (6.4.27) we know that we can put V; = D, X; with V; defined in (6.2.1) ; then, there
exists a process V,* with the same law and verifying (6.2.5). So :

[(JZMIIXT ) }:E_(iager <)
(z|z| X )T
5[5 5
5[5 5 )]

< cufe [ [z( > e R) ]

J=1 Jo|<i+1
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In the same way,

{(JXNX% ’z z+1> ] <c E{(JM 4n 2} [:Z;(|§<:l‘va >2n(l+1)}.

But, using the FI} isometry, with v, w € N*,

E[ﬁ(%vww e[ ] o |<U\v512)wzv<ds,dz,du>}
— 2Cu(E) B /(%;vaa\?) s
= 2Cum ] [ (2 7r) e
= 20p(E) B[ [ XM s

Now from (6.4.25) we have

E [\XtM\ﬂ < Cpir(1+ \/W)

Gathering these results, we obtain :

B [lnps | < Copimr (B[] 4B [(JQM)%} (u(Ea) E[() "] /B [(J%“"”“”])i)

Since (for t <T),

Bl = o ().

M—+oc0
we have

E [I lnpjlflﬁ] < Copptmnir (W(Er)) * (1(En))

on—1+ n(l+1)l

n(14+2)2
< CQMJ,”,T(M(EM)) (+2

6.6 The covariance matrix

6.6.1 Preliminaries

We consider a Poisson point measure N(ds,dz,du) on R? x R ; with compensator pu(dz) x
1(9,00)(u) du and two non-negative measurable functions f, g : R? — R,. For a measurable set
B C R? we denote By = {(z,u) : 2 € B,u < g(2)} C R? x R, and we consider the process

Ni(1,f) / f(2)N(ds,dz,du).
Bg

Moreover we note v4(dz) = g(z)u(dz) and

00s8) = [ (=IO iyfds) Bags(o) = [ (1= eIy

We have the following result.
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Lemma 6.6.1 Let ¢(s) =E [e_SNt(]lBg f)] the Laplace transform of the random variable N¢(1p, f)
then we have
¢(s) = e U1 (5)=BBg.1(s))

Proof : From Itd’s formula we have
¢
exp(Ni(1p,f)) =1 - / / exp(—s(Nr— (1, f)))(1 — exp(—sf(2)lp,(2,u))) dN(r, z,u)
0 JRIXR,

and consequently

E [exp(Ni(15, /)] = 1- /0 E [exp(—s(Ny_ (15, 1)))] dr /R (1—exp(=sf(=)Lp, (2, u)))u(dz) du.

dXR+

But

[, - ep(sfEia,Gu)nddi= [ La,u) - exp(-sf(:)n(dz) du
RIXR 4

RdXR+

- / 15(2)(1 - exp(—s£())) / Ly ldz) du
R4 R,

- /B (1 — exp(—s£(2)))g(2)u(dz) = ag 1 (3) — Brg s(5),

It follows that
E [exp(Ni(15, )] = exp(—t(ag,r(s) — Brg,r(s)))-
O

We consider an abstract measurable space F/, a measure v on this space and a non-negative
measurable function f: E — Ry, such that [ fdr < co. For ¢t > 0 and p > 1 we notice

+o0o
ap(t) = /E(l — e @) qu(a), and I'(f) = /0 P—lo—tas(s) gg.

Lemma 6.6.2 1. Suppose that forp > 1 andt > 0

SR | p
then
IP(f) < oo.
2. A sufficient condition for (6.6.31) is
1 1
liminf—y(f > f) > 2 (6.6.32)
u—oo Inu u t

In particular, if liminf, . ﬁz«f > %) =00, then Vp > 1 and Vt > 0,

IP(f) < .

We notice that if v is finite then (6.6.32) cannot be satisfied.

Proof : 1) From (6.6.31) one can find & > 0 such that as s goes to infinity sP~te~tes(s) < sll+€
and consequently I7(f) < oo.
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2) With the notation n(dz) = v o f~1(dz), we have

ar(u) = /0+00(1 —e “F)dn(z) = /O+Oo e_yn<g,oo) dy.

Using Fatou’s lemma and (6.6.32), we obtain

1 [Fee e 1
liminf — e_yn<g, oo) dy > / e Y liminf —n(g, oo) dy > b
u 0 u

u—oo Inu 0 u—oco [Inu

We consider the Poisson point measure N(ds,dz,du) on R? x R, with compensator p(dz) x
1 (0,00)(w) du. We recall that

Ni(1p,f) / f(z)N(ds,dz,du),
Bg

def

for f, g : R? = Ry and B, = {(2,u) : 2 € B,u < g(2)} C R x R, and that (with v,(dz) =
9(z)u(dz))

ag.f(s) = /]Rd (1 — e_sf(z)) dry(dz), BB,g,f(s) = /C (1 — e_sf(z)) dry(dz).

We have the following result (with I'(p f+oo “le=sds).

Lemma 6.6.3 Let Uy =1t [z f( dl/g( ), then, for allp > 1,

1 1 /00 .
< P exp(—tayg ¢(s)) ds. (6.6.33)
(Ni(1s, )+ U)" | = T(0) Jo o!
If it is supposed that, for some 0 < 0 < oo,
1 1
. > 7)) =
han_1>1£f e (f a) 0, (6.6.34)

then for every t > 0 and p > 1 such that § < 6

< oQ.

1
E iz
[(Nt(ﬂBgf) + Ut)
Proof : By a change of variables we obtain for every A > 0,
+00
A PT(p) = / sPlem ds.
0
Taking the expectation in the previous equality with A = N;(1 g, f) + U; we obtain

!
L(p

+o00 -
) /0 P71 E [exp(—s(Ne(1p, f) + Up))] ds.

1
. [(Nt(]lBgf) + Ut)p

Now from Lemma 6.6.1 we have

E [exp(—sNi(1,f))] = exp(—t(ag,r(s) — Bp,g,1(5)))-

Moreover, from the definition of U; one can easily verify that exp(—sU;) < exp(—tfp,q,f(s)) and
then

E [exp(—s(Nt(]lBgf) + Ut))} < exp(—tag,(s))
this completes the proof of (6.6.33). The second part of the lemma follows directly from Lemma

6.6.2.
g
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6.6.2 The Malliavin covariance matrix
1 .
det a(FM)|p} 18
bounded (uniformly on M), for the Malliavin matrix o(F)s) defined at the definition 4.5.
From the diffusion equation (5.4.17)

In this section, we prove, under some additional assumptions on p and t, that E [

JM
t t
xM :x+/ a(Xy)dW3+ZcM(zj,X%_)+/ g(XM)ds,
0 - 0
7=1
let us consider the tangent flow
J]W ‘
YM =1d+ Z/ Vo (XYM AWl +> " Vaeen(Z5, X2 )Y + / Veg(XM)YM gs.
Jj=1 0

We then define the following process (with V,c¢; = Ve (Z;, X%_)) :

J M

§M e g Z/ Y MV (XM aw! =" VAL Vi (1d +V4c5) 7! / ( Zval (XM)2 wg(XM)>d

7j=1

Lemma 6.6.4 We have, for allt > 0,

yMyM =1d. (6.6.35)
Proof : The proof is postponed in the Appendix C. .

Lemma 6.6.5 Assuming hypothesis 5.1, 5.2, 5.8 we have, forp > 1, T >t > 0 such that % <0

1
El————| < .6.
[[det U(FM)|p] = O (6.6.36)
where the constant C, does not depend on M.

Proof :
Since

m t
Dy X¢ = Ve (Z, X3 _) Dy Zis + Z/ Vo (XM) Dy, XM aw’!

J]M

t t
+ Y Veen(Z, X3 ) Dy X2+ / Veg(XM) Dy, XM ds.
j=k+1 0
We have
JJ\/I ‘
yM =y} +Z vo—l (XYM AWl + > Veen (Z;, X Y2 + | Vaeg(XMYM ds
Jj=k+1 Ty
and, with A, = VZCM(Zk,X%_) Dkﬂ« Zk,
m t
VMY Ay = VIV A+ | Vo (XY MV Ay aw!,
—— =1 Ty
=Id
J]W ‘
+ Y Vaeen(Z, XPOYP Y A+ | Vag(XMYMYVA Ay ds.
j=k+1 T
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Then
Dk,r Xt = }QM?%A]C = }QM?%VZCM(Z]{, X%f) Dk,r Zk
Therefore

d d
> (D X1, 8)° Z (YMYPIN cent(Zh, X0 2) D Z1, §)°

r=1
d

Z Ouren(Zr X1 ), (YY) 7€)

2 a1 (20 e( 2y, X1 2), (VM YA€)
=1

since m > 1p,, ,(Z)) and cpr = ¢ on Byy_1 ; using Hypothesis 5.3 item 3., it follows that

JM
pr > lg{lﬂZﬂBM (2D ZI MV ER > (VMM 2 1, (Z0)A(Z).
r=1

With o(Fyr) = o(XM) + Ups(t), we have?

. dp
p dp 1+ (|[YMyM|)2
E[d : 1F ] - [1] | <e - (HiTk tiﬂ)
et o(Far) pr+Unm(t) St gy (Zk)E2(Zx) + Une(t)

Now observe that the denominator of the last fraction is equal in law to
J]\/I

2
ZnBM (Zk)e Zk)]lqu(Zk’X%i_) +Un(t) 2 Ne(Lparc?) + Unr (1),

with BQ/[ = {(z,u) : z € By-1,u < 7y(2)}. Assuming Hypothesis 5.3 item 3., we can apply
Lemma 6.6.3 with f = ¢* and dv(z) = y(z)u(dz). This gives p’ > 1 such that %/ <6

/

p
1
E < Cy.
(Nt(]lByCQ)JrUM(t)) -

Finally, since the moments of ||Y;|| are bounded uniformly on M the result follows from Cauchy-
Schwarz inequality :

1
El— | < .
[|det o(FM>|"} =G

6.7 Bounding the weights

Lemma 6.7.1 Letq,p € N* andT > 0. ForT >t > 0 with M < 0, there exists a constant
Cp,q,1 such that

2
q 72 (4q+6d+9)
[H5(Fam)llp < Cpgr Ay . (6.7.37)
2If a, b, ¢ and d are non-negative real numbers,
1 < 1+ c
2+d " a+d



def

Proof : Let ¢ € N* and f = (f1,...,0,;) a multi-index. We have to bound Hg(FM) =
HE(F M, 1) ; from Theorem 4.5.10 there exists a universal constant Cy 4 such that (recalling that
Fy e Rd)

‘HZ(FM)‘ <Cy Ba-1 (14 [Farlgs) D) (1 + [LEw ], ).

1
@ det o (Fpr)

2d(6¢—2)
1

So (for T'> t > 0 such that < 6 ; Cy will be, in the following lines, a “ flying constant”)

E {HE(FM)] = Cq’d\/E [I det a(l}“M)lﬁq—J \/E [(1 + | Faglgs1) ©0+D2)? (1 + \LFM\Z—lﬂ

< (B [(1 4 1Parly) @99 B+ Ll )] )i

2dp

since we know that, from Lemma 6.6.5, for p > 1 and 7" > ¢ > 0 such that =

< 0,
E . <

|det o(Fp)P] — %
But, from (6.4.23) and (6.5.28), there exists C, 7 > 0 such that

B [(1Fbrlr) O] < Curafr Y and B |[LEMf] < CurXy Y

s0 (since ¢ > 1, ¢> > U2ty

(¢+1)q

(6d+1) +1)2
B [HY(Fu)| < Cpardy,? Adla+1)*
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Chapter 7

Joint density regularity

7.1 Introduction

We recall that we made an approximation in law Fy, of our process Xy. It is clear, from its
definition (cf. (5.5.18)), that the law Pre of Fj; possesses a smooth density : Ppy (dy) =
pry, (y) dy. Then, we have defined

def

fu(z,y) = Vi (z)pre, (y)

where Wy is a smooth version with bounded derivatives of any order of the indicator function
1x.

In this chapter we will highlight the behaviour of fjs(x,y) with respect to the norm defined
by (4.6.22), which will prove the Lemma 5.5.3 and, consequently, will end the proof of our main
result.

7.2 Bounds for the Sobolev norms of the tangent flow and its
derivatives

A simple generalisation (a little bit heavier with respect to the notations, but using the very same
ideas and methods) of Proposition 6.4.1 gives straightforwardly the following result :

Proposition 7.2.1 Letl,g € N*, p>1 andt <T. For every multi-index 5 € {1,...,d}?, there
exists Cppq1r > 0 such that
<M
105X 1illp < Crpgry/ (Aar)- (7.2.1)

7.3 Proof of 5.5.3 : an upper bound for || fir||2m+q.2mp

We already have all the tools to prove the Proposition 5.5.3, which was the key for proving our
main joint density result 5.3.1. To bound the quantity || far||2m+q,2m,p, it is sufficient, by (4.6.24),
to bound the quantities

aﬁ(fM('ray))v & <2m+q,

which is the exact point of the Proposition 7.3.3 that we will prove now ; we will deal first with
the case & = 0 (which is the point of the next proposition), to show more conveniently the method
that we used.

Notation 7.3.1 In all the sequel, p. will represent a mollifier converging weakly, as € tends to
0, to the Dirac distribution. We will also define

def T zq
(I)E(wl,...,.fb'd) = / / gpg(tl,...,td> dtl...dtd. (732)
—0o0 —0o0
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Proposition 7.3.2 Let T > 0. For every t G]M,T[

1 3
Proof : Let us note that, formally, PrM (r,y) = E [50(FtM(x) — y)], where dg is the Dirac
distribution.

In order to work in the direction of this last representation, we will therefore consider the
following approximation of fas :

fre = Ui (@) E [po(FM (2) = y)Wa(FM (2) )], (7.34)

where ¢, is, as we said before, a mollifier and where Ws is a smooth version (with bounded
derivatives of any order) of the indicator function with respect to the ball centred at 0 with
radius 2.

We will consequently look, in the first place, for an upper-bound of fy;. = ¥ (z) E [ng(FtM (x)—
y)Wa(FM(z) — y)] ; using Theorem 4.4.3,

E [p:(FM — y)Uo(FM(2) — y)] = E [@(FM — y)HY (Far, U2 (FM (z) — )]

It directly follows, since ||®|loc < 1 (which is clear from the definition (7.3.2)) and the weight
H )y does not depend on ¢, the pointwise convergence of fis(x,y) when € tends to 0.

Using Theorem 4.5.10 and denoting temporarily Gy & Wo(FM (2) — y),

(1 + ’FM|d+1)(6d+1)d
| det o (Fpy)]3d—1

| H (Far, Gan)| < Cal Gl (L+ Ly

Following the same pattern as we did in the proof of Lemma 6.7.1, for T" > ¢t > 0 such that

w < 0 (here q= d), we have

1
|det o(Fa)]

1
B [1H1y (Far, Ga)l| < Cd<E[ 6“] B (14 1Fulas) S0 B {1+ LRI )] ) G lalla

1
d+1)d 4
< Co( B |IFul ) B |ILFuli | ) i Garlalla
and, for M big enough (provided that Ap; — +o00, when M — +o0c) we found that!

3
B [’H%(FMyGM)\] < Car Xy ™ 11G s alla.

def def

The Lemma 4.5.8, with ¢(-) = Wa(- —y) (and with [¢[,(F) = sup|g<, [0sp(F)| ; it is clear
then that |@|,(FM(2)) = |Wa|n(FM(z) — y)) implies :

|¢(FtM)|d < Cd‘¢|d(FtM) (1 + |FtM|1,d + |FtM Cll,dfl)
< Calo| (FM) (1 + XM o+ 1XM1521)-

So, noting that |Wal,(u) < Cplyjy<sy,
1Garlalla = 11W2(FM () = y)lalla
< Ka(E [1g 1 () y1<3y])

= Cyr (P[|FM(z) — y| < 3])

ool
ol

(B + KM+ 1XM9)"))

an)

e

lusing the non-optimal inequality :

d((d—1)°+2) + g(6d+ D(d+1) <4(d+1)°
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and, since

PIFM (x) —y| < 3)] < P[IFM ()] = |y| - 3]
[|FM( )|8(d+1 ]

(ly = 3)8t+h)
Kd
= (lyl = 3)8d+)
we used the fact that E [|FM (z)[3@+D] = [||EM (2)]o]|3@+) which is bounded from Proposition
£ £
6.4.1) so
o Oon) T
d,T\"M
”|GM|d||4 < W
So, since by definition || @, | < 1,
2 3
/\4(d+1)3(/\M>d7 )\5(d+1)
M M M M
E [p-(FY — y)Us(F" (z) —y)] < Kar (g —3)F 1 < Kd,TW-
And )
5(d
fare(e,y) < Cd,T‘I’K(x)( e 3)d+1)A (a+1°, (7.3.5)

We are now ready to deal with the general case || > 1. We have to be aware that the density,
conditionally on G = o(Tk, k € N), of the law of (Z1,...,Z JtJW), density given by

M
M
thM,;v(wv Rlyee- 72th‘4) = H am (Zj7 \I/Tj_ijl (XTj,l))
j=1
depends on x, which makes the differentiation more complicated.
Proposition 7.3.3 Let T >0, m, g € N. For every t €]4d(3q ),T[, with ¢ = d +2m + q, and
every multi-index £ such that |£] < 2m + q,
1 6(d+2m—+q+1
06112, 0)] < Camar e () (LA g )07 (130)

Proof :
Because of what we said concerning the density, we will separate the differentiation with
respect to z and to y, and hence define two multi-indexes « and (8 such that

0500 = 0.

Then, we will start to work on the quantity J¢ faro(x,y) = 8?85 (fM’g(:v, y))
It is clear that 85(@6(FM —y)) = (=1)P0Pp(FM —y), so

0205 (Frre(, ) = 0205 (Vi (@) B [0e(X, () = ) 02X} (2) — )] )

_aa(pr Z ay (X! () = )8 (X} (@) - )]
=
Y aa(wK B [070.(X)" (2) — )0 02X, (2) — 1) )]

B'ep’=
=17 3 Y wk@)os (B 07 e (X (1) - )07 (X} (@) — )] ).

B'®B"=8 o/ Ba =c
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Lemma 7.3.7 implies then that 0?85 (fM,s (z, y)) converges (when € tends to 0) and the existence
of Cqm,qr > 0 such that

1 6(d+2m-+q+1)3
Ocfrre(,y) < Camgrlis1(x) (1 A e 3)2m+d+1))\]\§ +2mtgtl) (7.3.7)

which allows us to state that lim._o O¢ fare(2,y) = Oc frr(x,y), and letting e — 0 in (7.3.7), we
obtain (7.3.6). o

In this last proof, we used the Lemma 7.3.7 ; to prove it, we will first need two preliminary
lemmas :

Lemma 7.3.4 Let f : R — R% and 8 a multi-index, then (with the notations used in Lemma

4.5.8)
18]

l
8% f(x Z > e [[0M P f (=) (7.3.8)

with cpr € N.

Proof : By induction on |3].
We will just show the mechanism, which will then be rather clear for a higher range, for

1Bl =1, 2.
For |B| =1, let B8 = (z;) ; then it is clear that

O, f () = f(2)00; In f ()

(so ey =1 for M = {{1}}).
For [B] =2, let § = (xj, x;) then

Or, 0z, f () = Or, (f(2)0, In f())
= ax]f( )axz In f( ) + f(l‘)axjamz lnf(z)
( (z)o T In f(x ))amz In f(x) + f(m)arjaxi In f(z)
(2) (0, In £(2)0, In £(2) + O, D, In ()

(s0 car = 1 for M = {{1,2}} or M = {{1},{2}}).

Lemma 7.3.5 Let ,qg € N, p > 1 and t < T. For every multi-index® 5 € {1,...,d}9, there
exists Cpp g1 > 0 such that

J M

[(ZWXT 2) } < Cupoyo g0 (Aar) Y. (7.3.9)

Proof : We have
IXP 2= Do 05X |2,

jal<v

In the very same way as we did in (6.4.27) (with an obvious generalisation® of Lemma 4.5.3) we
can set

Vel ol X,

*With the convention {1,...,d}° = {0} and JF = F.
3Indeed, in this lemma, the derivatives were purely formal, therefore, we can use it directly with an operator
D/, where o/ = (a, ) and D, &' D, 87
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with V?’ﬁ defined as in (6.2.1) ; then, there exists a process Vf"ﬁ with the same law and verifying
(6.2.5), so we have :

B[St <B[(35 (5 oot ) )|
5[5 )]
E[( ()]
e[S )
<Rl 8 (35 (5 )
But, using the F isometry, with v/ € N*, and setting f(y) 2 (5,c, [V ) ,
Kg(;@'w') )

2
= // N(s,z,u) // stzu))}
E]\/[X[O 20] E]\/[X[O QC
2
SE // stzu +E // stzu))}
E[wX[O 20] E]\/[X[O 2C

< 2Cu(Ex) E /Ofs ds]+(20,u(EM TE /Ofs ds}
- t
— (2Cu(Ewx) + (2Cu(Ea))°T)E /fs2ds

:(2CM(EM)+(2C_'M(EM))2T)E/ (32 werp)™ o

|a| <v

— (2Cu(Ewxr) + (2Cu(Ea))°T)E /(Z‘Vﬂm) /ds}

|| <w

= (2Cu(Eny) + 2Cu(Ex)) T E | /O SR s |

= (2Cu(Ey) + (2Cu(En))?T) /0 B [0S XM ] ds.

Now from (7.2.1) we have (with Ay = u(Enr)),

d

Gathering these results, we obtain :

/

_ 4w’
85Xt]w‘v :|§Cv,w’,|ﬁ|,T()‘M)2vw

J M

[(Z\ZWXM ‘2w> } < Covnyr(Anr)" “L (A )L,
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Lemma 7.3.6 Let l,q € N*, p > 1 and t < T. For every multi-index o € {1,...,d}9, there
exists Cpp g1 > 0 such that

110710 p je ,(Z1, -, Z ppi)lillap < Clp g (An) @HIFL, (7.3.10)

Proof : In this proof we will denote JM simply by J (and sometimes X%_ (z) simply by X%_).
Using a similar formula as (4.5.12) (the Malliavin derivatives were used in a formal way, so it
is in particular true with the usual differential operator), we have (with « € {1,...,d}9),

ILP(F Z > > 9p(F)oM D B, - 0M)

I=1 B=(B1,....,051) MeMu(l)
ﬂiell—lud]]

. def
so, with o = 371, ZB=(ﬁ1,...,ﬁz) ZMeMn(l)7
Bi€[1,d]

O (nan (X (), Z;)) = Y 9p(nann) (X3 _(2), Z))0x" O (X7]_(2)) g, -+ 02 (X2 (2)) 5.
(a)

By corollary 4.5.9, we have the existence of C” il >0 such that

| qur (F)i < Coprt (14 [Fli + [Fli_y)

which leads to (recalling ¢ = |a])

106 (0 s (XA (2), Zp)le < Coppa (14 1XR_R + X2+ D0 108(KH_(@)).

BCa
Then
M
05 npsl <Y 105 (Ingur (X2 (), Z;)),
=1
J I
< Copa (D 1+ 1T+ XM + Y 102 (R ()]
=1 «
’ J%I BC J]\/I
< Cp (T + DRI+ 1+ 30 D 103 (KA () )
7j=1 BCa j=1
it directly follows, using the Lemma 7.3.5,
J]\J
E |:|azo¢ 1an|12n:| < C’qJV[,l,n,|oz| (E [( [(Z |XT ’l) :|
JM 2n JM 2n
vE[(S )] + ZE [(Z\aﬂ @) )
j=1
< Copronilal ((/\M)Qn + Crg (M) 4 C;L,l,T()‘M)%l(l(l_l H) + Z Cn,l,q,|B|,T()\M)2n(ql+1))

BCa
< Cn,l,a,T()\M)Q”(l(q+l)+1)‘

Now we can prove the wanted result :
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Lemma 7.3.7 Let T > 0. Let a, 8 and v multi-indexes such that |o| + |B] + || < 2m + q. For
every t E]M T, with ¢ = d+|B|, the quantity 03 E [36905(FM — )0y (FM (z) — y)}

converges (when € tends to 0) and

m 3
0 [a%E(FM—y)an(FtM(x)—y)} < Kd,m,q,T(m )Ajgd“ T (7.3.11)

1
(lyl = 3)2m+at

Proof: (in this proof we will denote simply JM by .J ; let us set 5z & Uum (t) and temporarily
Wy and fu,z) = Spu+ iz, 21, .., 25))

OB 0P pu(FM — ) w(F (2) - y)|

—E[ag/ I/(du)/ aﬁ@g(éMU—i‘fEt(m,Zl,...,ZJ)‘P(&MU"‘(I?t(x,Zl,...,ZJ)PJ’x(Zl,...,ZJ)le"'dZJ:|
Rd RY

- Y [/R o(du) /R 0 (0% e (. 2) 05 (W(F (1, 2))) Pz, 2) d2a -]

a1®ag

+ Z [/ v(du) /RJ ot (8/8g0€(f(u, 2))) 052 (U (f (u, Z)))ag3PJ7x(Zl,...,ZJ)le"'dZJ:|

a1®a2®a3
a3#9

=(1) + (2).
For the part (1), since
B[ vidw) [ 0 (07070, 2)08 (W70, 2) Praler.o 20 o1 o]
—E [0 (0. (F™ — )02 (W(FM — )]

b [( Z s (FM (z) — y)8N1<a1)X;’f4 oo aNl(al)Xé’lM)
(a1)

X (Zaﬁ’q’(Fz&M( —y)aN’(a2)X Oy (ag)X )}

we are brought, on one hand, to prove the convergence (when e tends to 0) and afterwards to
bound the quantity

E [%%(FtM(fv) — )00, V2B (2) — y)YN,N/} (7.3.12)

with Yy nv = 3N1(a1) aNl(al)Xgl ONY(a) X B/ 8N’(a2)Xt M.
On the other hand, for the part ( ), Lemma 7.3.4 leads to

|as|

l
09Pa =Pz > > cex[[0M Py, (7.3.13)

I=1 MEM|oy () i=1

403| d& ‘ag

so, letting p ZMGM‘Q (1) M H,, OMi(@3) In Py .. we have :

B[ vl [ 08 (0%, 2) 0 (W (0 2) 05 PraCers oo 2) dor -y
=B |02 (0P (B — y)) e (Y — )il (2, . Z)

—E [( Z s (FM () — y)aNl(al)XZ’l . '8Nz(a1)X§lM>
(o)

v iM oM\ «|a
X (Zaﬁ"l’(EM(I)—y)azmo%,)xi - Oty Xy )p!,;'(zl,..,zn) ,
(a2)

101



so we are brought, again, to prove the convergence (when ¢ tends to 0) and afterwards to bound
the quantity

E [wa(FtM(x) — )00, Wa(FM () — )V (7.3.14)

M _
with Vv = O (o X5 Onian X5 Oy (o) X5 - Oy X (2, Z).

We can see a s1m11ar structure between (7.3.12) and (7.3.14) : for the moment we will treat
them at the same time ; we will temporarily denote by Y either Y n+ or Y nv, and keep working
on

B 9s(FM (@) = )00, Wa(FM (2) = )Y |. (7.3.15)
Letting Gy & 050y Vo (FM (x) — y)Y, using Theorem 4.4.3, we have
E [050-(FM — )00, Wo(FM (z) — y)Y] = B [®.(FM — ) HI P (Fy, Gar)]. (7.3.16)

It directly follows, since ||®.||oc < 1 and the weight Hj; does not depend on ¢, the pointwise
convergence of J, ( fre(z, y)) when ¢ tends to 0.
Now, with Theorem 4.5.10, and following the same pattern as we did in the proof of Lemma

6.7.1, for T'> ¢ > 0 such that %,_1) < 0 (recalling ¢ = d + |f)),
E [Hjc\lj‘BI(FM7GM)]

1 1
<Ca( B[+ 1LFulg_)"] ) (B[ + 1Farlys) © )] ) liGaly
So, for M big enough (provided that Ap; — +o00, when M — +00) we find that

((¢'=1)%242)¢'+ 4 (6d+1) (d+1)

B [# Py, Gan)] < Cag i Gl

< Cag oM Gl
Moreover (with Cauchy-Swartz and 4.5.7)
IGarlglls < Cy 1950y W2(FM (2) = )l [V |l
< Oy 11100y W2 (FM () = )l lIs 1Y 1 lls-
With the fact that, for all multi-index 7
0rVa(u) < Cljy<s (7.3.17)

We can show that, as we already did in the proof of Proposition 7.3.2, for all 8, ', +v of length
less than 2m + ¢,

q/2
Kél,m q(AM) z

] e (7.3.18)

11050502 (FM (2) = y)lylls <

using 7.3.6, 7.2.1 (and also 4.5.7), it appears that

q

[Ynn gl < COan) E1T < C(App) T @mta)
and
|||17N Ngllp < Cryp qT()\M)q?l\al()\M)Ioc\(q’(q’+\a|)+1) < Clpg T()\M)(2m+q)(qu+(2m+q+1)q/+1)

Since A\p; — 400, we have finally

a 1 A(d,m,q,q"
O%E |8% . (FM — )07 Uy (FM () —y)] < Kd’m’qy(l/\ Wl _3)2m+d+1>,\M( qq),
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with
12
def

A(d,m,q,q) = (¢ +1)° +3(d+1)° + % +(@2m+9) (¢ + (2m + g+ 1)¢' +1).

def

Now, setting ¢ = d+2m+q > ¢/,

3
A(d,m,q,¢) <4@+1)°+28° + 57 +T < 6@+ 1)°.

103



7.4 Regenerative scheme and Harris-recurrence

We assume that the process Xy, solution of (1.2.3), admits a transition density for any time
t > 0, denoted p;(z,y), which is strictly positive and continuous in  and y ; a criteria for such a
situation is given by Theorem 5.3.1.

As a consequence, for any t > 0 and any compact set C, there exists a probability measure v
and a constant o > 0 such that the local Doeblin condition is verified :

Pi(z,dy) > ale(z)v(dy). (7.4.19)
In order to obtain some ergodic result over the stochastic process X;, the main heuristic idea

is to approximate, when ¢ — 400, the quantity %fg f(Xs)ds by %Z?:l f}];f“ f(Xs)ds, where

the r.v. R; are to be defined and where the r.v. f}gf“ f(Xs)ds would be i.i.d which will allow to
conclude by applying the strong law of large numbers.

To do so in a rigorous way, we will follow the path developed by Eva Locherbach in [37],
Ergodicity and speed of convergence to equilibrium for diffusion processes, 2013 (cf. also ITkeda,
Nagasawa and Watanabe (1966) [29]). First, given a cadlag Markov process Y;, we will define the
notion of regeneration times :

Definition 7.1 A sequence (Ry,)n>1 is called generalized sequence of regeneration times, if
1. R, T o0 as n — +o00.

2. Rpt1 = Ry + R109Ug, (VU is the shift operator defined by O,f = f(t+.), where f: Ry — E
is cadlag).
3. YR, +. is independent of ]:gr_.

4. At regeneration times, the process starts afresh from Yg, ~ v(dy).

5. The trajectories (Yr,+s,0 < s < Ry41 — Rp)n are 2-independent , i.e. (Yg, 45,0 < s <
Rypi1— Ry) and (Yg, 45,0 < s < Rp41 — Rp) are independent if and only if |[m —n| > 2.

These regeneration times do not exist for the original solution X, but they exist for a version
of the process on an extended probability space, rich enough to support the driving Brownian
motion, the Poisson measure and an i.i.d sequence of uniform random variable (U, )n>1.

We will construct, then, a stochastic process (Y;):>0 on this richer probability space, equal in
law to (X3)¢>o0.

First we will fix a compact C' and a time parameter ¢, > 0 such that (7.4.19) is true :

P, (z,dy) > ale(x)v(dy).
Then we set Y3 = X; for all 0 <t < 51, where

S & inf{t >t,: X; € C} and Ry £ S +t..
At time gl, we choose Uq, the first of the uniform random variables. If U; < «, we choose
Y, ~v(dy). (7.4.20)

Else, if U1 > «, given Y5 = x, we choose

P, (z,dy) — av(dy)

l—«o

Y, ~

(7.4.21)
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Finally, given Yip =y, we fill in the missing trajectory (Yt)te]ﬁl B between time S; and time
R according to the diffusion bridge law

b3 (:Ev z)p}}l_t(za y)

dz. 7.4.22
pe. (2, ) ( )

Notice that by construction, if we do not care about the exact choice of the auxiliary random
variable Uy, then we have that (Y),p £ (Xt)<p, -

We continue this construction after time Rp : choose Y; equal to Xy for all ¢ E]Rl, 52] where

SQ Lef 'nf{t > Rl : X, € C} and RQ &t SQ + t..
At time S, we choose Us in order to realize the choice of Y}, according to the splitting of the

transition kernel P, , as in (7.4.20) and (7.4.21). More generally, the construction is therefore
achieved along the sequence of stopping times

5 def

Spy1 Einf{t >R, : X, €C} and Ry = Spi1+t.,  n>1,

where during each ]Rn, §n+1], Y follows the original solution of the SDE, whereas the intervals
[Sn+1, Rn+1] are used to construct the splitting. In particular, every time that we may choose a
transition according to (7.4.20), we introduce a regeneration event for the process Y, and therefore

the following two sequences of generalized stopping times will play a role. Firstly,
Sy =inf{S,:U,<a}, ..., Sp=inf{Sp >S, 1:Un<a}, n>2

and secondly,
def

The above construction of the process X, since at each time S,, a projection into the future is
made.
Let Ny < sup{n: U, <t} and

F =o{Ye,s <t,U,, Y ,n< N}, t>0,

be the canonical filtration of the process Y. The sequence of (F} )i>o-stopping times (R )n>1 is
a generalized sequence of regeneration times as it was defined in Definition 7.1.

Remark 7.4.1 The trajectories of Y are not the same as those of the original solution X of the
SDE. However, by definition, the Harris-recurrence is only a property in law. As a consequence,
if, for a given set A, we succeed to show that almost surely, Y wisits it infinitely often, the same
is automatically true for X as well.

We can now state the theorem we were looking for (the demonstration of it is directly taken
from Eva Locherbach’s lecture, Ergodicity and speed of convergence to equilibrium for diffusion
processes, and we give it here only for the convenience of the reader) :

Theorem 7.4.2 If for all x € R* we have P.[Ry < o] = 1, then the process X is recurrent in
the sense of Harris.

Proof :
Define a measure 7 on (R, B(R?)) by
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For any n > 2, put &, £ }];"71 1(Y;) ds. By construction, the random variables £o,,, n > 1, are

i.i.d. and so are, on the other hand, as well, the random variables £2,11. Put
N; =sup{n: R, <t}

and observe that N; — oo as t — 0o. Hence, applying the strong law of large numbers separately
to the sequence (£2,,)n>1 and the sequence (£2y,41)n>1, we have that

 Jo10G)ds _
TN W
P,-almost surely, for any z € R?. This implies that any set A such that 7(A) > 0 is visited
infinitely often by the process Y almost surely. Thus, we have the recurrence property also for
the process X, for any set A such that w(A) > 0. Then, by a deep theorem of Azéma, Duflo and
Revuz (1969) [4], see also Theorem 1.2. of Hopfner and Locherbach (2003) [28], the process is
indeed Harris.
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Appendix A

Miscellaneous

A.1 Regularisation

Let us define on R the following function:

1 .
ar | aexp(—1—z) sifr[<1
wle) = { 0 si |z > 1

where o is chosen in order to have [ ¢(z)dz = 1. Numerically, a ~ (0,44399) !,
Proposition A.1.1 ¢ : R — R is C*° compact support function.

We then define ¢ : R — R by:

ol
pe(z) = —p (E) vz € R.
(3 g

Thus defined, function ¢, converges weakly, as € tends to 0, to the Dirac distribution ; it is a
mollifier: for every continuous function f,

L limeyo f * @e(2) = f(z)
2. [ is C*
def

(With f* Sps(x) = Jr f(y)SDs(x - y) dy))-

Proposition A.1.2 ¢, : R — R remains a C* compact support function and there exists M > 0
such that:

M M
ek, @<y and gl <
Proof : If [z| > ¢,

Elsewhere, oc(z) = % exp ( S—— ) and

/(@) ae 1 ><72x>< 1
x — X -
e e e
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The function y — exp (— 1_1y2> ﬁ is defined and continuous (considering a continuous ex-

tension for y = £1) on R and bounded, as we can easily prove by considering its limits when y
tends respectively to o0, —1 and 1.
Denoting now by M; an upperbound and letting C; = 2aM;, we obtain the first assumption.

Now,
A () = o exp < 1 > —2z " —2z n 0 —2z
€ ) T ()2 12\ 2 2\ 2 or 12\ 2
: E\2(-@") (-7 T\(-®7)
. < 1 ) 4(2)? 2 P
- 3 - 2\ 2 4 2 T 2 N3
- @O\ (- - T (-7
Similarly, the function y — exp( ) ( e y2) (18y2)3) is bounded on R by a
constant Ms. With Cy = aMy and M C’l, 02) we then obtain the last property. )

We then define h. : R — R by:
he(z) = |z| v 2¢

and ¢ : R — R by:
P=(x) = he * @c(7).

Proposition A.1.3 1. ¢ converges pointwise to the absolute value function x — |x| and

2 if Ja<e
‘bf(x)_{m if |z > 3¢

and
0< ge(e) <dc if |z] e 3c].
2. There exists C > 0 such that
/ /! C
Vo € Ra ’d)e(w” < C and |¢5 (.I')| < ;]l|x|§36‘

Proof : First, let us remark that, since ¢. is defined by a convolution, it is a smooth function

and, for all n € N*, ¢ (x) = he * gogn) ().
We will now prove the two items by dividing the problem into the following three cases.

e Case |z| <e:
We have

Hence, for all |z| < e,
¢e(r) = ¢L(z) =0,

(which remains true when |x| = €, since ¢, is a smooth function).
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e Case |z| > 3e:

noticing that z — zp.(2) is an odd function (with compact support),

Pe(x) = /ha-:(x — 2)pe(2)dz = Azga he(z — 2)pe(2) dz

:/|< |:L‘—Z|80€(Z)dz
:/|< sign(z)(z — 2)p:(2) dz

= sign(z) x (:z: - /Rgpg(z)zdz) = |z|.
N

=0

Hence, for all |z| > 3¢,
Gx) =41 and  lz) =0,

(and obviously again, it remains true when |z| = 3e¢).

e Case |z| €]e, 3¢]:

Let g be a continuous function (with compact support), then
4e
he * g(x) = /Rg(w —y)he(y) dy = /4 9(x —y)he(y) dy
—4e
< 45/ lg(2)|dz.
R

With g = ¢., [ ]9(2)|dz =1 and it follows that

de(x) < 4de

def

with respectively g = . and ¢ £ ¢/, and using the Proposition A.1.2, it follows that

€

M
qb’e(m):hg*goggéle/ E—Qdy:8M;

—&

and
EM SM

Gathering the three cases, we may conclude.

A.2 Gronwall’s lemma
In all this work we used the following version of the Gronwall’s lemma:

Proposition A.2.1 If a measurable function g : [0,T] — R* is such that
1. G =supycp 9(t) < +oo ;
2. for allt €[0,T7,
g(t) < A—f—B/Otg(s)ds

then, for allt € [0,T],
g(t) < Aexp(Bt).
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Proof : It is easy to obtain by induction that, for every n € N*,

n—1

g(t) < A(l +3 (iﬁ)k +B" /Ot /Otl .../Otn_lg(tn)dtn---dtl dt),

k=1

which implies
n

—1 k n
g(t)gA(l—i—k_l ]

(Bnt,)n = 0, the assertion follows. o

Since limy, 5100 G

A.3 Moment inequalities

In this section of the appendix we prove some moment inequalities which we used in Section 2.2,
so the notations introduced in that section prevail.

We assume in this section that u(E) < oco. This is just to simplify the notations — in concrete
applications we will replace p by 1gu. Then we consider an index set A and we denote by « the
elements of A. Moreover we consider a family of processes V;* € R% a € A which verify the
following equation

mo o
Ve = VS [ R+ (V) Ve aw] (A3.1)
1=1"70
¢
+/ (h*(s) + (Vb(Xs), V) ds
0
t
+/ / (Q%s—,2) + <VIC(X5_, z), Vsoi>)]1{u§7(xs,,z)} dN(s,u, z).
0 JEx(0,1)
Here H*, hi'and Q< are adapted cadlag processes which verify

T
/ (HR () + 11 (s)] + / 1Q (s, 2) | 7(2)du(2)) ds < oo.
0 FE

(Where the functions o, b, ¢ and v are the ones introduced in Section 2.2.) So the corresponding
stochastic integrals in (A.3.1) make sense.

Proposition A.3.1 We suppose that
|Q%(s, 2)| < q(2) | R (A.3.2)
for some adapted cadlag process R® and some measurable function q¢: E — Ry and we denote
alp) = /E(Q(Z) +201)(2)) (1 +(2))*7(2)du(2), (A.3.3)
Gl) = [ @)+ @)1+ ()PTENG),
For every p € N there exists a universal constant Cp, such that 0 <t <T
E [[VE*] <exp (Cpt(1+ [[Vo |22 + [[VD|Z + E(p))) (A.3.4)

t m
< (v +c, [ B (S + e + ) R[] as)

110



Proof : Using Ito’s formula for f(z) = 22”7, we obtain’
(Vi)™ = (V)™ + M7 + I + J
with

=3 [ onve () + (Vo (X V) v
=1

I = Z/ (2p — 1)( Va - 22 Hl VO'I( S)a‘/sa>)2d3

L 2p /0 (VY=L (h%(s) + (Vb(X,), V) ds

t
Ji = / /E o ((Vf_ + Q%(s—,2) + (Vac(Xs—,2), V) )2p - (Vsa_)2p> T u<ry(x,_,2)3 AN (5,4, 2).
XU,

Using the trivial inequality a“b’ < a%* + b%* we obtain

t m
E[|I7]] ng/O E{Z\Hf‘(s)|2p+]ha(s)’2p} ds
=1
t
+C(1+ [Tl + [V812) [ B[V ?] ds.
0

We estimate now J*. Using the elementary inequality
(a+0)* —a® < Gy [b] (Ja*"~" + b1
we obtain
Ve + Q% (s— z)+<ch(X 2), VOO — [ve |
< GollQ (=2 ey () [V DAV (L ey (2) +1Q (s, 2) 7).
Recall that |Q%(s—, z)| < q(z {Ra | so the above term is upper bounded by

2p1 2p1

Cp(a(z) [ RS- | + 2y (2) [ViL ) \Va\ (1420 (2))7 " + [a(=) RE |
< Cpl@(z) + ey () (|RE | + [V (X + ey ()P~ Ve [ + Ja( Ra\% '
We use once again the inequality a*b? < a“™ + b and we upper bound the above term by

Co(@(2) + Ty () (| B (14 7(2)% + (1 + 720y (2))F V).

It follows that
E[172]] <G, / )1+ 7(2))P7(2)du(z) / B[|Re[*] ds

+G, / 2)+ e () (L + 2 ()P dp(:) [ B (V7] ds

Since M{" is a martingale we obtain

E[(V)”] =E[(V§)?] +E[I}] + E[J7]

"For z = (2:)1<i<a € R? we simply denote (227)1<i<q by x2P.
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and (we recall the notation in (A.3.3))
E[[VAP] <V +E[117]] +E[1J7]]

E
grvoay?uc/ [Z P+ 0 () + 21 (o) [ B[] as

t
+Cp(1+ Vo2 + VB2 + & (p)) /0 B [|ve[”] ds.
The Gronwall’s lemma then gives
B[] Sexp (Cot(1 -+ 1912 + [FH12 +20))

< (1P + / S P + 1+ | ] ).

A.4 Proof of (5.4.13)

[=E [fXT) 0,2z x 1 XT - = 7]
dp
- F(XM)1 VP —
/(X%ix) T/ AUk 27 (Zk, X7, )}P(X%, = 1)
) dp
P(X}_ =)

/ M M F(X
(XM _ =) (Uk>(Z0, XM )
On the event (X%_ =z)N (U > 'y(Zk,X%_» we have X% =z, so I becomes

PU(XN_ = 2) N (U = v(Zk, X7} )))
P(X}M_ =)
_ f(x)P«X%_ =x) N (U > v(Zk, x)))
P(X%_ x)
= f(z) P(Ux > v(Z, x)) (since Uy and X%i are independent)

1 2c
= 1) Ty fy Mo )

- f(:c)u(BlMJrl) /BM+1 (1 — 7(;’096)> du(z)

= F()0r11(2) = F(@)0a1-(x / oz — 24y) dz (J 6 =1 and $(B(0,1)%) = 0)

I'=f(z)

= flx+cem(z,2))p(z — 23) 04 (x) dz (since cpr(z,z) =01if |z > M +1)
|z|>M+1

= / flx+cem(z,2))qun (2, z) dz.
|z|>M+1
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On the other hand:

T =B [F (X3 vz x31 1 XT3 = 2]

dp
= XMyq - -
/<Xﬁ _ )f( 7,) {Ue<v(Zr, X7y )} P(X%_ = 2)
dp
:/ o M f(x+CM(Zk7x))P(XM _J:')
(XTk7:$>m<UkZ'Y(Zk7XTk7)> Tp— —
= /Qf(m + enm(Zks )L u, <y(2p )3 AP (since (Ug, Zy) and X%_ are independent)
1 2c
= T+ cp(2, %)) Liyen(zay du(z) du
e A ARG CR TR ID
1 / (2 ) -
=— fle+cp(z,x — dp(z with du(z) = h(z)dz
B o e ) (with dj(z) = h(z) dz)

We finally have
E [f(X%ﬂX%_ = x] = /Rd flx+cep(z,2))qn(z,x) dz.

Now o(X7,,,~) C G, so
~M ~M
E [f(XTk+1)|XTk+1_ = :L‘]

—M B — —M
=E [f(XTka +em(Zgsr, Xgy )Xy, - = x

—M — =M —M
=E[E[f(Xr,,— +em(Zryr, Xpp, NG X7, - = 7]

—M —M —M —M
=E [/Rd f(XTkH, + cM(z,XTkH,))qM(XTkH,,z) dz]XTkH, = x]

—M —M —M dP
= f( Xy _Femz X )au(Xp, _,2)—— dz
/Rd /<x¥;+1_=x> s fiee e Xy = )
=/ flxz+cem(z,2)qm(z,x) dz
R
So we have: M
E[f(X3)|X7_ =2] =E [f(Xq)| X7, = 7] (A.4.5)

~M .
We can prove now that the processes X;¥ and X, are sharing the same law.

M
A5 XM and X, share the same law
o First, if 0 <t < T1, 2 = Uy(2) and then X, = W,(z) ~ XM

e Moreover, if Y%_ ~ XM we have Y?pi ~ Xj’\{: recalling that, if ¢(z) := E [Y|X = 2], we
have [, ¢(z) dPx () = f(XeA> Y dP, since Pga =Py the relation (A.4.5) leads to
Ty — K~

E[f(X})] = [f(X7,)]

. : —M —M
o Finally, if Ty <t <Tjy1, Xy = V7 (X7, ) ~ Vi1, (X%) = XM
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Appendix B

Sobolev norms of XtM and 1ts
derivatives.

We have used, within the proof of the Lemma 6.2.1 that X; has moments of any order. The
proof of that result follows the same pattern of this same lemma, although a bit simpler. The
following result is the equation (6.2.7) in the special case k = 0.

Proposition B.0.1 Let M € N*. For all T > 0 and p > 1, there exists a constant Ctp > 0
(which does not depend on M ) such that

E [|XM?] < Oryp. (B.0.1)

Proof :
We localize our problem by using the sequence (7']]\(/[ )iken+ of stopping times defined by

™M= inf{t >0 : |XM| > K}. (B.0.2)

We can prove that a.s. limg oo TI]\{/[ = 00:
From the hypothesis made on the coefficients of X}, it is clear that, for all ¢ > 0,

E [sup | XM|] < oc. (B.0.3)
s<t

We have, for t > 0
im P(sup | XM| > K)

lim P(t¥ <) = 1
Kgnoo (TK ) K—o0 s<t

1
< lim —E XM =o.
< lim [s;;l;\ S1=0

(T% )Ken+ tends to oo in probability and so, there exists a subsequence (that we will continue to
denote by (TH)ken+) which tends to co a.s.

If we admit for the moment the Lemma B.0.2, we know that there exists a constant C), r
which does not depend on K and M and such that, for all 0 <¢ < T,

E “X%r;{”'zp] < Cryp.
The monotone convergence theorem implies then
B[] = sup B XM PP ]

and
M2 _ M )2
s;pE (x| p]17%>t] = sg{pE UXMT%] Pl < Cpp.
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Lemma B.0.2 Let M € N* and a sequence (73)ken+ of stopping times defined by (B.0.2).
There exists a constant Cy, 7, which does not depend on K and M, and such that, for all0 <t < T,

E |:|th%7'}]¥1|2p:| S CT’p'

Proof :
Recalling the definition (5.4.8) of XM:

t t t
XtM:a:+/ a(Xy)dWs+/ /cM(z,Xéw)]l{ugv(zxéw)}N(ds,dz,du)—i—/ g(XM)ds,
0 0 JE 0

we have, for a single component (omitting for a moment the parameter M in order to simplify
the notations) applying Ito’s formula with f(z) = 22 with respect to every component of the

process Xt/\ s

t/\TK

(XP )P = (XP) 2p+2/ p(XH2P oy (X,) AW

t/\T
t/\Tﬁ[ )
+ap / (X120 g,(X,) ds
0

m t/\T A 9
p(2p —1) Z/ (X2~ (cu(Xs)) ds
=1

0

t/\TK . 2p .
+ /0 /E (X;,+CM(Z,X;‘{ )n{ugv(z,xﬁ)}) — (X_)?N(ds, dz, du)

We now take the expectation with respect to the Brownian motion (i.e. conditionally with
respect to all the other random quantities):

B (6] =B [o77] 0 [ [t

p(2p— 1) ; /0 v Ew [(X;ypi(gi,(xs)ﬂ ds

INT . 2p .
+ / /E Ey [(X;_ +en(z, XM)1 {ugy(z,Xﬁ)}) — (X')%| N(ds, dz, du)
0

Since s <t A TIJ\(/[, we have X; = X m, and obviously ¢t > t A T[J‘(/[, so we have

B [1X], 7] <Ew [yxgy%] +2p/ B [1X], 277 s(X,)] s
2= [ [, a0 o

+ /OWK /E Ew H (Xi- +em(z Xﬁ)ﬂ{uswz,xﬁ)})zp - (X;*)QPH N(ds,dz, du)

It follows (since (a + b)?® — a?™ < (|a| + |b])*® — a®", for all a,b € R and using the inequality
xuyv < ‘,Eu—&-fu + yu+v)

t
Ew || Xipru] <Ew [1X0f?] +2p /O Ew || Xonp %] ds + 25Tl oo

t
pp = 1pm [ B [, 7] ds -+ p(2p — Do
0

thrM 2%
w0 B [(1X e tasn )" - X P N (s, 2
0 E
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2
using now |a?? —b%"| < |a—b|(a+b)?P~!, we have (|XS_ ]—i—E(z)]l{uSﬁ}) p—|XS— 2P < 2%6(2) Lgy<my | X - P,
S0,

t tnrM
EW |:’Xt/\7—}]¥‘2pi| SCT + Ap/o EW [|XS/\TIA(/[‘2pi| ds + Bp/o /EC(Z)]I{U<’Y} EW |:|X87 ’2p:| N(dS,dZ, du)

t t
<Cr+ Ap/o Ew [|Xs/\7'11‘(4‘2p} ds + Bp/o /EC(Z)]I{U<’Y} Ew [‘X(s/\v—%)* |2p} N(ds, dz, du)

With

K def M2
% = 02ust Fw UXWT%' g

we then have
t t
of < CT+Ap/ oK ds—I—Bp/ /c(z)n{m}efzv(ds,dz,du).
0 0 JE

With .
R ¥ / /c(z)]l{ugw} du(z) du
0o JE

we have
E[0K] <Cr + A,E [/Ot s ds} +B,E [/Ot /Ec(z)n{ugw}ef_ dN(s,z,u)}
<Cr+4, /O B [0X)ds+ 5, /0 t [E ()L usyy B [057] dspu(dz) du

<Cr + (A, + Ry) /OtE [05] ds.

The Gronwall’s lemma ends then the proof.
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Appendix C

Tangent flow

Let us recall the expression of the tangent flow Y,M:

m t sz t
YA =104 Y [ oy Y Voo (Z, SOV + [ Tog(Xy M as
=170 j=1 0

We have then defined the following process (with Vac; = Vien(Z;, XA )):

J

mo JM
M Id_Z/ YMVo (XM dW! = VR Vae;(1d +Vae)
1=1"0 j=1
t . 1 m _ _
[ (5 Vel - Va2 s
0 2 =1
and stated that:
Lemma C.0.3 For allt >0, R
yMyM =1d. (C.0.1)
Proof :
Step 1

Let us consider (for the moment m = 1) the stochastic process sharing the same law as Y; (that
we will continue to denote Y, in order to simplify the notations) defined by

t JtJVI t
Y, = Id+/ SV, dWe + Y CYEL +/ GY, ds
0 : 0
7=1
with
Cj = Vaerr(Zy, X1, )y, <oz, 53 )
and let us set
t JM t
Y, = Id+/ Y. AdW, + Y Y H; +/ Y,Bds
0 - 0
7j=1
that is

J]W

d d
Zt: Z C]i’,hY;,:f; + Z /t GinY! ds
h=1"0

Y7 =6+ / SinYed AW +
h=1"0 E'=1h=1
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and

JM d .
9, h hv' A.,h
3_5”+Z/ ViR Ay, ; AW +ZZY H,J+Z/O VihBy, jds
k'=1h=1 h=1

We have (Y;Y; —Id),, = S0, Y2y — 6, .. Using It6’s formula it follows:

n=1

DNy NG
Yy, Op,gn

t d t d
- / YN VPR Ay, AW, + / YPnS S, p Y AW,
0 h=1 0 h=1

d

1 [t . d
+ 3 / Z ysp,gAgm <Z En’hysh,q>
0 h=1

g=1

t d t d
+ / YN YPRB)ds + / ypn Z G n Y ds
0 h=1 0

’ d d
+ / / (Y;iq + ch;h(z,u)lfs’i‘I)( N yrh g, u)> —Y™MIYPN(ds, dz, du)
0 JE h=1

h=1

The integrated term with respect to dWs of (Yth — Id),, 4 has the following form:

d d d d d d d d
DAL B IECIES R T WED B
n=1h=1

n=1 h=1 n=1h=1 n=1 h=1
d d )
=D D YIWEM A+ S ).
n=1h=1
This term is null for
A=-X

which we will suppose in the following of this proof.
For the third term

d d d
> (e ) (Lmart) - 33 (S irea,mnte)
n=1 \g=1 n=1g=1 \h=1
d
S (S e
g=1h=1 \n=1
d
=> > ZAn oS | YRV
n=1h=1 \g=1
d d
=330 (A, Vv
n=1h=1
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The integrated term with respect to ds of (Yth —1d), 4 has the following form:

d d d d d d
1 N " N
52 2 (AD YV 4 D D VIV Bt 3 D VI Cap Y
n=1h=1 n=1h=1 n=1h=1
14 d d d d_
S DTN LEIES 9) ST UNED 9) S RNL
n=1h=1 n=1h=1 n=1h=1
d /4 A
=22 (2 (A, + Bu + Gn,h> ypmyla
n=1h=1
d 1
Z (AE + B+ G) ypnyhd
This term is null if (with A = —X)
B=-*-@
Step 2
Multidimensional Brownian case:
. J]W
Yt:Id+/ Y, dW! +- /z YdW”+ZCYT /GYds
0 e
and let us set
. JJ\/I
Yt:IdJr/ Y, Ay dW} + /YA dW”+ZYT H; +/YBds
0
that is
N m d . J]M
AETTED )M I REL RS S civhd 4 z / Gy Y ds
1=1 h=1"0 k'=1h=1
and
. m d t JIM d t ‘
RTEES % 3y RIITUERD 3) S ERIEED o) BTN
1=1 h=1"0 k'=1h=1 h=1"0
and
m d m
YP, n,g i _/ Yn Z Z P7hAl dWl / Yp n Z Z Z:l Yh,q dwl
I=1 h= I=1 h=1
moq ot d d
3oy [ (e ) (o)
=1 ©70 \g=1 h=1
t d t d
+ ST B + / VPN 3 G Y i ds
0 h=1
d
/ f (s Z Ol (2, Y1) (Y21 ST VPP I (2,0) ) = YV PN (ds, d2, du)
h=1
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The same computations, by a straight superposition, give us then, for all [ € [0, m],
A, =-%;

and

1
B=; (;ﬁ) ~G.
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