Etude de la migration du corps basal au cours de la ciliogénèse - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2016

Study of basal body migration during primary ciliogenesis

Etude de la migration du corps basal au cours de la ciliogénèse

Résumé

The primary cilium is a sensory organelle present on the surface of most quiescent cells. It possesses numerous receptors on its surface and is responsible for transducing biochemical and mechanical signals to the interior of the cell and playsimportant roles during development and in homeostasis. Defects in primary cilium assembly are the underlying cause of a group of pleiotropic diseases referred to as ciliopathies.The primary cilium is anchored to the plasma membrane through the basal body which is derived from the mother centriole and is connected to three networks of the cytoskeleton. Primary cilium formation is a highly regulated and multi-step process that begins with the maturation of the centriole mother into basal body in the cytoplasm of the cell. One of the first steps of primary cilium assembly is the recruitment of specific proteins to the mother centriole to initiate the formation of a ciliary vesicle at the distal end of the mother centriole. Once formed, the mother centriole migrates to and is anchored to the apical membrane, triggering the elongation of microtubules from the distal end of the mother centriole to form the outer part of primary cilium, or axoneme. In order for this to occur, significant remodeling of the actin cytoskeleton and directe-trafficking of vesicles to the base of the cilium is required. While much progress has been made in characterizing the initial steps of primary ciliogenesis, how the basal body migrates to the plasma membrane is not fully understood.To gain a better understanding of the mechanisms involved in the migration of basal body during ciliogenesis, we developed an experimental system based on the use of adhesive micro-patterns coated with fibronectin. This technology has many advantages. It enables the control of the cell spreading which is imposed by the size of the adhesive area and, in turn, the regulation of cytoskeletal organization and the positioning of subcellular organelles. Furthermore, this technique enables the cell volume induced by the spatial confinement, to be controlled, facilitating the observation and measurement of the centrosome's position in z throughout the primary ciliogenesis process.First, we demonstrated that the shape and architecture of the actin cytoskeleton are major regulators of primary ciliogenesis. Cells spatially confined and starved for 24h on small discoidal micropattern develop an apical web like actin network necessary for the primary cilium growth. In contrast, cells plated on large discs are much more contracted and they develop significant stress fibers on their ventral surface. In this situation, the centrosome remains below the nucleus and the level of contraction prevents the assembly of a primary cilium. The level of contractility therefore modulates the formation of apical actin network that in turn controls the movement of the basal body and the cilium elongation.Secondly, we studied actin cytoskeleton and microtubule reorganization during the basal body migration step that occured just after serum starvation. Our results indicate that migration requires a transient increase in the stability of microtubules, concomitant with an increase in contractility of actin filaments. By RNA interference screening, we have identified genes involved in the migration process including CEP164, which has previously been shown to participate in the anchoring of the ciliary vesicle to the mother centriole. CEP164-deficient cells were found to have defects in cytoskeletal reorganization thereby explaining why basal body transport to the plasma membrane was blocked in these cells.Altogether, these results enable our understanding of how basal body movement to the apical membrane is driven. This requires both significant remodeling and crosstalk between the actin and microtubule cytoskeleton and interaction with ciliary components necessary for the formation of a primary cilium.
Le cil primaire, véritable organite sensoriel cellulaire est présent à la surface de la plupart des cellules de mammifères en quiescence. Truffé de récepteurs à sa membrane, le cil capte les signaux mécaniques et chimiques, jouant ainsi un rôle clé dans de nombreux processus développementaux et physiologiques. Un défaut de structure et/ou de fonction du cil est à l'origine de cancérogénèse et de pathologies humaines appelées ciliopathies.Le cil primaire est ancré à la membrane plasmique grâce au corps basal, structure dérivée du centriole père et connectée aux trois réseaux du cytosquelette. La formation du cil primaire nécessite une succession d'étapes cytoplasmiques hautement régulées. Elle débute par la maturation du centriole père en corps basal. Cette étape nécessite le recrutement de protéines spécifiques au centriole père permettant l'association avec une vésicule ciliaire à l'extrémité distale du centriole père. Ce complexe migre et vient s'ancrer à la membrane apicale déclenchant la nucléation de microtubules pour la formation de la partie externe du cil, ou axonème. En parallèle, la ciliogénèse nécessite un remodelage important du cytosquelette d'actine ainsi qu'un trafic de vésicules orienté vers la base du cil. Si la plupart des étapes sont bien caractérisées, celle concernant la migration du corps basal ainsi que la contribution du cytosquelette reste mal comprise.Afin de mieux appréhender les mécanismes impliqués dans la migration du corps basal lors de la ciliogénèse, nous avons développé un système expérimental basé sur l'utilisation de micro-patrons adhésifs recouverts de fibronectine. Cette technologie comporte de nombreux avantages. Elle permet le contrôle de l'étalement de la cellule inhérent à la surface imposée par la matrice extracellulaire régulant ainsi l'organisation du cytosquelette ainsi que le positionnement des organelles subcellulaires. Par ailleurs, le volume cellulaire induit par le confinement spatial facilite l'observation de la position du centrosome en z au cours du temps, indispensable pour l'étude de chaque étape de la ciliogénèse cytoplasmique.Dans un premier temps, nous avons démontré que la forme et l'architecture du cytosquelette d'actine qui en dépend sont des régulateurs majeurs du processus ciliogénique. Les cellules confinées spatialement et sevrées 24h sur des petits disques développent un réseau branché au niveau de leur surface apicale nécessaire à la croissance du cil primaire. A l'inverse, les cellules étalées sur des grands disques sont beaucoup plus contractées. Elles développent d'importantes fibres de stress sur leur surface ventrale. Le centrosome reste sous le noyau et le niveau de contraction empêche l'assemblage du cil. Le niveau de contractilité module donc la formation du réseau d'actine apicale qui contrôle en retour le mouvement du corps basal et l'élongation du cil.Dans un deuxième temps, nous avons étudié la dynamique du cytosquelette d'actine et de microtubules durant l'étape de migration du corps basal c'est à dire juste après la privation de sérum. Nos résultats indiquent que la migration nécessite une augmentation transitoire de la stabilité des microtubules concomitante avec une augmentation de la contractilité des filaments d'actine. Un crible basé sur l'ARN interférence nous a permis d'identifier des gènes impliqués dans le processus de migration dont CEP164, contribuant à l'ancrage du centriole père à la vésicule ciliaire. Les cellules déficientes en CEP164 montrent un défaut de réorganisation du cytosquelette expliquant l'inhibition du transport du corps basal vers la membrane apicale.L'ensemble des résultats nous permet d'avancer dans la compréhension des conditions requises pour le mouvement du corps basal vers la membrane apicale. Celui-ci nécessite à la fois un remodelage significatif du cytosquelette en constant dialogue et en interaction avec certains composants ciliaires nécessaires à la formation du cil primaire.
Fichier principal
Vignette du fichier
PITAVAL_2016_archivage.pdf (19.89 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01318967 , version 1 (20-05-2016)

Identifiants

  • HAL Id : tel-01318967 , version 1

Citer

Amandine Pitaval. Etude de la migration du corps basal au cours de la ciliogénèse. Biologie cellulaire. Université Grenoble Alpes, 2016. Français. ⟨NNT : 2016GREAV001⟩. ⟨tel-01318967⟩
580 Consultations
1085 Téléchargements

Partager

Gmail Facebook X LinkedIn More