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Notation

• The set of square real matrices of dimension n is denoted by R
n×n.

• The set R
+ is the set of nonnegative real numbers.

• Given a matrix A, the transpose of the matrix A is denoted by A⊤.

• Given N square matrices A1, . . . , AN , of respective dimension k1, . . . , kN , the block diagonal

matrix A ∈ R
(k1+···+kN )×(k1+···+kN ) whose block diagonal matrices are A1, . . . , AN , is denoted

by diag [A1, . . . , AN ].

• The identity matrix of dimension n is denoted by In.

• 0 denoted the zero matrix of suitable dimension according to the context.

• The entry (i, j) of a matrix A is denoted by A[i, j].

• For a symmetric matrix A ∈ R
n×n, A being positive definite is denoted A > 0, while A being

positive semi-definite is denoted A ≥ 0.

• The derivative of a matrix A(x) with respect to variable x is denoted by A′(x).

• The usual Euclidian norm in R
n is denoted by | · |, and the associated matricial norm in

R
n×n is denoted by ‖·‖.

• Let I ⊆ R and J ⊆ R
p for some p ≥ 1.

• The set of functions y : I → J such that |y|pLp(I,J) =
∫

I
|y(x)|p dx < ∞, is denoted by

Lp (I;J).

• The set of functions y ∈ L2 (I;J) such that there exists a function g ∈ L2 (I;J)

such that
∫

I
yϕ′ = −

∫

I
gϕ for all ϕ ∈ C1

c (I;J) :=
{

h ∈ C1 (I;J) |supp(h) ⊂ I
}

if I

is unbounded or ϕ ∈ C1
c (I;J) :=

{

h ∈ C1 (I;J) |supp(h) ⊆ I
}

if I is bounded where

supp(h) := {x ∈ I |h(x) 6= 0}, is denoted by H1 (I;J).

• We denote y ∈ L
p
loc(I, J) if y✶K ∈ Lp(I, J) for all compact subsets K of I, where ✶K is the

indicator function of K.

• The scalar product of two functions y1 and y2 in L2 ((0, 1);Rn) is denoted by (y1, y2).

• The restriction of a function y : I → J on an open interval (x1, x2) ⊂ I is denoted by y|(x1,x2).
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1 • Introduction

I
n this chapter, we start by introducing the Partial Differential Equations (PDEs)

analyzed all along this thesis. More precisely, we introduce hyperbolic systems of

balance laws. Then, we present the method of characteristics which is an important

tool to analyze and describe solutions for this type of systems. Three possible ap-

plications for hyperbolic PDEs are presented: the Wave Equation, the Saint-Venant

Equations, and the Aw-Rascle-Zhang Equations which have been used for the illustra-

tion of the different results developed in the other chapters. The first one though a

fundamental example, describes the motion of a string deflection, the second one de-

scribes the motion of water in a canal, while the third one describes in a macroscopic

way the motion of the traffic of vehicles along a road. Therefore, the potential ap-

plications given by these two last equations are important from an engineering point

of view. In a third part, some of the results for the stability and stabilizability of

balance laws are presented. In the last part of this chapter we will present the main

contributions of our work.



4 Chapter 1: Introduction

1.1 Hyperbolic System of Balance Laws

1.1.1 Derivation of the Balance Laws

First of all, we will sketch the “origin” of systems of balance laws. This presentation takes its

inspiration from the exposition given in [83].

A wide number of mathematical models (for instance, physical, biological) describe the evolution

of physical quantities. Roughly speaking, evolution of quantities means that there is a flow of mass

through a physical domain. The flow may depend on the position in the domain, let us denote this

variable x.

This notion of flow is the key to derive hyperbolic systems of balance laws. Let us consider an

open domain Ω and any open regular vicinity V of a point x ∈ Ω and suppose that a flow of

material go through this vicinity, see Figure 1.1. Let us denote q(t, x) this flow. Now consider

a surface element of the domain V, denoted ∆S, and denote n the normal of the surface ∆S at

the position x. Therefore, the quantity of material passing through the volume during the time

interval [t, t+ ∆t] is given by

m = n.q(t, x)∆S∆t . (1.1)

x

V

Ω

Figure 1.1: Flow through the vicinity V of x.

The total flow through the surface S is obtained by integrating (1.1) and adding a minus if the

scalar product of n and q is negative

M = ∆t

∫

S

(−n).q(t, s)ds (1.2)

which corresponds to contribution of mass in the volume V during the small time interval [t, t+ ∆t].

Let us consider that at a time t the mass present in the volume is Mt(V), and that at time t+ ∆t
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the mass is Mt+∆t(V). Therefore, the variation of mass between t and t+ ∆t is given by

∆Mt(V) = Mt+∆t(V) −Mt(V) .

In regards of (1.2) we can write

∆Mt(V) = ∆t

∫

∂V

(−n).q(t, s)ds+ ∆t

∫

V

Q(t, x)dx , (1.3)

where Q is the rate of mass production per volume. Now dividing (1.3) by ∆t and taking the limit

as ∆t goes to 0 we get

dMt(V)

dt
=

∫

∂V

(−n).q(t, s)ds+

∫

V

Q(t, x)dx .

Moreover let us assume that the measure V 7→ Mt(V) has a density ρ we respect to the Lebesgue

measure, we get
d

dt

∫

V

ρ(t, x)dx+

∫

∂V

n.q(t, s)ds =

∫

V

Q(t, x)dx . (1.4)

Let us recall the Stokes formula

∫

∂V

n.q(s)ds =

∫

V

div q(x)dx , ∀q ∈ H1 (V) , (1.5)

and let us apply it to the second member of the left-hand side of (1.4), it gives

∫

V

(

∂ρ

∂t
(t, x) + div q(t, x)

)

dx =

∫

V

Q(t, x)dx .

This last relation is valid for any vicinity V of any point x in the open set Ω and all time t in a

time interval (0, T ) then we get a local expression for the balance law

∂tρ(t, x) + div q(t, x) = Q(t, x) , (t, x) ∈ (0, T ) × Ω . (1.6)

In this thesis we are interested in system evolving in the one dimensional domain Ω = (0, 1), thus

equation (1.6) becomes

∂tρ(t, x) + ∂xq(t, x) = Q(t, x) , (t, x) ∈ (0, T ) × (0, 1) . (1.7)

We are interested in the evolution of n quantities z : R+ × (0, 1) → R
n. We assume there exists

a link between them and the density ρ, the flow q, and the rate of mass production Q. More

precisely, we have relations

ρ(t, x) = f(z(t, x))

q(t, x) = g(z(t, x))

Q(t, x) = h(z(t, x)) .
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Hence, systems of balance laws are written as

∂tf(z(t, x)) + ∂xg(z(t, x)) = h(z(t, x)) , (t, x) ∈ R
+ × (0, 1) .

Let Z a non-empty connected open subset of Rn. Let us make the following assumption.

Assumption 1.1.

1. f ∈ C2 (Z;Rn) is a diffeomorphism on Z;

2. g ∈ C2 (Z;Rn);

3. h ∈ C1 (Z;Rn).

Under Assumption 1.1 the system can be written under the following form

∂tz(t, x) + Φ (z(t, x)) ∂xz(t, x) = Υ (z(t, x)) , (1.8)

where Φ : Z → R
n×n and Υ : Z → R

n×n with

Φ (z) =

(

∂f

∂z

)−1(
∂g

∂z

)

Υ(z) =

(

∂f

∂z

)−1

h(z) .

Definition 1.1. System (1.8) is said to be hyperbolic if Φ(z) has n real eigenvalues for all z ∈ Z.

Definition 1.2. System (1.8) is said to be strictly hyperbolic if Φ(z) has n real distinct eigenvalues

for all z ∈ Z.

Definition 1.3. When Υ ≡ 0, system (1.8) is said to be a system of conservation laws.

System (1.8) may be expressed as a diagonal quasi-linear system with a change of variable y = χ(z),

that is

∂ty(t, x) + Λ (y(t, x)) ∂xy(t, x) = F (y(t, x)) , (t, x) ∈ R
+ × [0, 1] , (1.9)

where Λ(y) is a diagonal matrix for all y ∈ Y = χ(Z) ⊂ R
n. Let us give some properties on the

map χ:

1. The function χ : Z 7→ Y ⊂ R
n is a diffeomorphism;

2. The Jacobian matrix ψ(z) of χ(z) diagonalizes the matrix Φ(z), that is

ψ(z)Φ(z) = D(z)ψ(z) , z ∈ Z , (1.10)

where D(z) is a diagonal matrix for all z ∈ Z.

Thus, system (1.8) can be written under the form (1.9) with

Λ(y) = D
(

χ−1 (y)
)
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F (y) = ψ
(

χ−1 (y)
)

Υ
(

χ−1 (y)
)

.

The change of variables is not always effective, since the equation (1.10) may have no solution,

see [6] for references and examples of this property. Nonetheless, as shown in [73] this change of

variables always exists for n = 2, at least locally.

Remark 1.1. Under suitable compatibility conditions on the initial condition, we may prove

(see [75] and Theorem 6.1 of [6]) that there exists a unique classical solutions in C1 ([0, T ] × [0, 1])

of (1.9). Thus imposing x ∈ [0, 1] instead of x ∈ (0, 1) in (1.9) is not abusive. •

Remark 1.2. The spatial domain can take the more general form [0, L]. Nonetheless, we will

suppose for all our study that L = 1. It is not a restriction, since by a change of variable the

system may always be put in a dimensionless form, meaning that the spatial domain may be [0, 1].

•

1.1.2 Riemann Coordinates, Steady-State, and Linearization

In this thesis, we will work with hyperbolic systems under a linear form, that is

∂ty(t, x) + Λ(x)∂xy(t, x) = F (x)y(t, x) , (t, x) ∈ R
+ × [0, 1] , (1.11)

where Λ(x) is a diagonal matrix for all x ∈ [0, 1].

Let us show how to arrive formally to a system under the form (1.11). The existence of the change

of variables χ, defined above, will not be an issue for our work. Indeed, we will look at system

linearized around a steady state. Let us explain the nature of such framework.

Definition 1.4. A steady state for system (1.8) is a solution z∗ of (1.8) for which ∂tz∗ ≡ 0.

Definition 1.4 leads to the Ordinary Differential Equation (ODE) for z∗

Φ (z∗)
dz∗

dx
= Υ (z∗) . (1.12)

Then, we define the deviation of the state with respect to the steady state z∗ by

z̃ = z − z∗ . (1.13)

Let us define the function F : R2n → R
n by

F (z(t, x), ∂xz(t, x)) = −Φ(z(t, x))∂xz(t, x) + Υ(z(t, x)) .

We have

∂tz(t, x) = F (z(t, x), ∂xz(t, x)) . (1.14)
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A Taylor formula for F around
(

z∗(x), dz
∗

dx
(x)
)

gives

F (z(t, x), ∂xz(t, x)) ≈ F
(

z∗(x),
dz∗

dx
(x)

)

+ [z̃(t, x), ∂xz̃(t, x)] .∇(z,∂xz)F
(

z∗(x),
dz∗

dx
(x)

)

.

We have

∇(z,∂xz)F
(

z∗(x),
dz∗

dx
(x)

)

=

[

−
[

∇zΦ (z∗(x)) dz
∗

dx
(x)
]

+ ∇zΥ (z∗(x))

−Φ (z∗(x))

]

,

where the notation
[

∇zΦ (z∗(x)) dz
∗

dx
(x)
]

stands for the matrix

[

∇zΦ (z∗(x))
dz∗

dx
(x)

]

=

[

∂z1
Φ (z∗)

dz∗

dx
(x)

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∂zn
Φ (z∗)

dz∗

dx
(x)

]

.

Hence it comes

F (z(t, x), ∂xz(t, x)) ≈ −Φ (z∗(x))
dz∗

dx
(x) + Υ (z∗)

+ ∇zΥ (z∗(x)) z̃(t, x) −
[

∇zΦ (z∗(x))
dz∗

dx
(x)

]

z̃(t, x)

− Φ (z∗(x)) ∂xz̃(t, x) .

Using (1.14) and the fact that z∗ is the solution of the ODE (1.12) we get the linearization

∂tz̃(t, x) + Φ (z∗(x)) ∂xz̃(t, x) =

(

∇zΥ (z∗(x)) −
[

∇zΦ (z∗(x))
dz∗

dx
(x)

])

z̃(t, x) . (1.15)

The linear hyperbolic system is said to be uniform if the matrix Φ (z∗(x)) is spatially constant,

equivalently if Φ (z∗(x)) ≡ Φ. Otherwise the system is said to be non-uniform. Therefore, the

uniformity of the steady state z∗ will imply the uniformity of the system.

With the linearized expression (1.15), we can express explicitly the change of variable χ. Since,

the system is hyperbolic the matrix Φ (z∗(x)) is diagonalizable. Then, there exists an invertible

matrix P (x) such that

Λ (z∗(x))P (x) = P (x) Φ (z∗(x)) ,

where Λ (z∗(x)) = diag [λ1 (z∗(x)) , . . . , λn (z∗(x))]. Multiplying (1.15) by P (x) from the left we

get

∂t (P (x) z̃(t, x)) + Λ (z∗(x))P (x) ∂xz̃(t, x) = P (x)

(

∇zΥ (z∗(x))

−
[

∇zΦ (z∗(x))
dz∗

dx
(x)

])

z̃(t, x) . (1.16)
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Then, adding the term Λ (z∗(x))P ′ (x) z̃(t, x) at the left and right-hand side of (1.16) we get

∂t (P (x)z̃(t, x)) + Λ (z∗(x)) ∂x (P (x) z̃(t, x)) = P (x)

(

∇zΥ (z∗(x))

−
[

∇zΦ (z∗(x))
dz∗

dx
(x)

])

z̃(t, x)

+ Λ (z∗(x))P ′ (x) z̃(t, x) . (1.17)

Thus, making the change of variable

y(t, x) = P (x)z̃(t, x) , (1.18)

we obtain

∂ty(t, x) + Λ (z∗(x)) ∂xy(t, x) = P (x)

(

∇zΥ (z∗(x))

−
[

∇zΦ (z∗(x))
dz∗

dx
(x)

])

P (x)
−1
y(t, x)

+ Λ (z∗(x))P ′(x)P (x)
−1
y(t, x) , (1.19)

which is a form as (1.11).

Remark 1.3. In the case where Υ ≡ 0, steady-state is any constant value z∗. •

In Subsections 1.2.3, 1.2.2 the linearization for the Saint-Venant equations and the Aw-Rascle-

Zhang equations will be derived.

1.1.3 Boundary Conditions and Initial Condition

Additional conditions must be specified at the boundary of the domain [0, 1] in order to have a

unique and well-defined solution to the system. In the control theory, this boundary conditions will

be constructed such that the system shall follow some predefined objectives: stabilization, output

tracking, disturbance rejection. The first objective is investigated in Chapters 2 and 4. The two

other objectives are investigated in Chapter 3.

The very general form for the boundary conditions is

B (y(t, 0), y(t, 1), u(t)) = 0 , (1.20)

where B ∈ C1 (Z,Z,Rq;Rn). As noted in [6] the dependence of B on [y(t, 0), y(t, 1)] refers to

physical constraints on the system. The function u is a degree of freedom for controlling the

system, otherwise the system would be uncontrolled, which does not exclude that the system

might have good “properties”.

In order to have a well-posed Cauchy problem, it misses an initial condition. Hence, the initial

condition for the system is

y(0, x) = y0(x) . (1.21)
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Definition 1.5. The initial condition is said to satisfy the zero order compatibility condition with

the boundary conditions (1.20) if it satisfies

B
(

y0(0), y0(1), u(0)
)

= 0 .

The satisfaction of a compatibility condition between the initial condition and the boundary con-

ditions is crucial for the continuity of the solution (see, for instance, [6], [65], and Chapter 3).

To get a better regularity of the solution higher order compatibility conditions are needed. For

instance, to hope a C1 solution in space, besides the previous zero order compatibility condition,

the initial condition shall satisfy a one order compatibility condition, that is to satisfy the zero

order compatibility condition together with the condition

∇B
(

y0(0), y0(1), u(0)
)

.







−Λ(0)dy
0

dx
(0)

−Λ(1)dy
0

dx
(1)

du
dt

(0)






= 0 .

Thus, with the boundary conditions and the initial condition we have all the ingredients to write

the Cauchy problem and to prove the well-posedness. A method to define solutions is given in the

next subsection with the description of the method of characteristics.

1.1.4 Method of Characteristics and Solutions to the Initial Boundary

Value Problem

From now on, we assume that the equations considered is under the form (1.11). A fundamental

method for hyperbolic PDE is the method of characteristics. The basic idea of this method consists

in finding and solving an appropriate set of ODEs which is equivalent to the original PDE. More

precisely, let us fix a (t, x) ∈ R
+ × [0, 1] and assume that the solution of y for this point is known.

The question is: is it possible to find a curve in the time-space domain R
+ × [0, 1] which will

connect x to a point x0 ∈ Γ = R
+ × {0, 1} along which we are able to compute the solution ?

Let Xi be the solutions of the following set of ODEs

dXi(s)

ds
= λi (Xi(s)) , i = 1, . . . , n , (1.22)

with the initial condition

Xi(t) = x0 ,

where s lies in a subinterval of [t,+∞). Formally, the solutions of these ODEs take the form

Xi(s) =

∫ s

t

λi (Xi(ζ)) dζ + x0 .

Letting

Yi(s) = yi (s,Xi(s)) ,

where yi is the i-th component of the solution of (1.11), and differentiating this expression with
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0 1x0

s

xx′
0

Xi(s)

Figure 1.2: Example of crossing characteristic curves Xi(s) in the (s, x)-plane.

respect to s we get

dYi(s)

ds
= [1, λi (Xi(s))].∇(t,x)yi (s,Xi(s)) = F (Xi(s))Yi (s) . (1.23)

The term [1, λi (Xi(s))].∇(t,x)yi (s,Xi(s)) is a directional derivative in direction [1, λ (Xi(s))]
⊤.

Hence, relationship (1.23) describes the rate of change of Yi, equivalently of yi, along the integral

curves of the field [1, λ (Xi(s))], or in other words along the integral curves solutions of the set of

ODEs (1.22). Hence, we get

Yi(s) =

∫ s

0

F (Xi(ζ))Yi(ζ)dζ + C , C ∈ R .

Let us note that

Yi(t) = yi (t,Xi(t)) = yi (t, x0) .

It follows that the resolution of the characteristic equations (1.22) is a key to derive solutions for

hyperbolic system. The well-known issue for non-linear hyperbolic system is the possibility that

characteristic curves cross each other, as illustrated by Figure 1.2, leading to the impossibility

to trace back the value of the solution. This issue is out of the scope of this work, for further

informations we refer the reader, for instance, to [73], [111], [13], [44]. Obviously this drawback

does not exist for linear systems, since the characteristic equations are autonomous ODEs.

Definition 1.6. In the case where F (x) ≡ 0, the characteristics curves Xi are called the Riemann

invariants since the solution remains constant along these curves (see (1.23)).

Nonetheless, the method of characteristics is not the only method available. The question of

existence of solutions for (1.11), (1.20), and (1.21) can be given using the semigroup framework.

Indeed, it can be proved that the following theorem holds (see, for instance, [6]).

Theorem 1.1. For every y0 ∈ L2 ((0, 1);Rn) there exists a unique (weak) solution

y ∈ C0
(

R
+;L2 ((0, 1);Rn)

)

to the Cauchy problem (1.11), (1.20), and (1.21).
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1.2 Some Examples of Hyperbolic Systems

These examples will be studied in the remaining part of the thesis.

1.2.1 A Fundamental Hyperbolic System: The Wave Equation

Let us introduce a fundamental example of hyperbolic systems. It is the wave equation, given by

∂ttw(t, x) = c2∂xxw(t, x) , t ∈ R
+ , x ∈ [0, 1] , (1.24)

where c is the wave speed. For instance, it can model the displacement of a string deflection. This

equation can be expressed as a hyperbolic system thanks to the change of variable

y1(t, x) = ∂tw(t, x) − c∂xw(t, x)

y2(t, x) = ∂tw(t, x) + c∂xw(t, x) .

The states y1 and y2 satisfy the system

∂ty1(t, x) + c∂xy1(t, x) = 0

∂ty2(t, x) − c∂xy2(t, x) = 0 ,

with t ∈ R
+, x ∈ [0, 1]. Thus, the solution w of the original wave-equation (1.24) is obtained with

w(t, x) =
1

2

∫ t

0

(y1(s, x) + y2(s, x)) ds .

The wave equation with indefinite in-domain and boundary damping will be used to illustrate the

trajectory generation of Chapter 3.

1.2.2 Aw-Rascle-Zhang Equations

The second system considered in this thesis is the Aw-Rascle-Zhang equations modelling the density

ρ(t, x) and the velocity v(t, x) at time t ∈ R
+ and space-location x ∈ [0, 1] of vehicles on a road.

It was introduced in the seminal works [4], [113]. The dynamics is given by

∂tρ(t, x) + ∂x(ρ(t, x)v(t, x)) = 0 (1.25)

∂t(v(t, x) − V (ρ(t, x))) + v(t, x)∂x(v(t, x) − V (ρ(t, x))) =
1

τ
(V (ρ(t, x)) − v(t, x)) . (1.26)

The function V is the desired velocity function or the equilibrium velocity function, it establishes a

functional relationship between a density and a velocity v = V (ρ), see Figure 1.3 for an example of

the shape of this function. The equation (1.26) takes into account the “deviation” of the velocity

to this relationship. The term τ is a relaxation which indicates the convergence rate of the velocity

v of the cars to the nominal velocity V (ρ). Let us show how the linearized version of the Aw-

Rascle-Zhang equations looks like. Let us introduce the steady state [v∗, ρ∗], it satisfies
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0 ρmax ρ

Vmax

V (ρ)

Figure 1.3: Example of equilibrium velocity function.

V (ρ∗) = v∗ .

It follows from this last relationship that the steady state is constant in space. We define the

deviation of the state with respect to this steady state by

ρ̃(t, x) = ρ(t, x) − ρ∗ (1.27)

ṽ(t, x) = v(t, x) − v∗ . (1.28)

The linearized version of the Aw-Rascle-Zhang equations is written as

∂t

[

ρ̃(t, x)

ṽ(t, x)

]

+

[

v∗ ρ∗

0 v∗ + ρ∗V ′ (ρ∗)

]

∂x

[

ρ̃(t, x)

ṽ(t, x)

]

=

[

0
1
τ

(V ′ (ρ∗) ρ̃(t, x) − ṽ(t, x))

]

(1.29)

Let us diagonalize the matrix of the system
[

v∗ ρ∗

0 v∗+ρ∗V ′(ρ∗)

]

. The left eigenvectors are given by

l1 = [−V ′ (ρ∗) , 1]

l2 = [0, 1]

and the corresponding eigenvalues are

λ1 = v∗

λ2 = v∗ + ρ∗V ′ (ρ∗) .

Eigenvalues of opposite sign correspond to a congested mode, while positive eigenvalues correspond

to a free flow mode. Obviously eigenvalues of both negative sign is impossible because v∗ is a

velocity with positive value. Hence, the Riemann coordinates are given by

y1(t, x) = l1

[

ρ̃(t, x)

ṽ(t, x)

]

= ṽ(t, x) − V ′ (ρ∗) ρ̃(t, x)
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y2(t, x) = l2

[

ρ̃(t, x)

ṽ(t, x)

]

= ṽ(t, x) .

Conversely, we have

ρ̃(t, x) = − 1

V ′ (ρ∗)
(y1(t, x) − y2(t, x))

ṽ(t, x) = y2(t, x) .

Finally, the linearized version of the Aw-Rascle-Zhang equations is given by

∂t

[

y1(t, x)

y2(t, x)

]

+

[

λ1 0

0 λ2

]

∂x

[

y1(t, x)

y2(t, x)

]

=

[

− 1
τ

0

− 1
τ

0

][

y1(t, x)

y1(t, x)

]

.

As we shall see, the form of the source term for the linearized version is convenient to apply

backstepping, see Chapter 3 in which the trajectory generation and tracking is illustrated thanks

to these equations.

1.2.3 Saint-Venant Equations

Let us consider an open channel with a constant bottom slope Sb, a rectangular cross-section, and

a unit width. The dynamics driven the velocity V (t, x) of the water and the water level H(t, x) in

the pool at time t ∈ R
+ and space-location x ∈ [0, L], are described by the Saint-Venant equations

(or Shallow-Water equations)

∂tH(t, x) + ∂x (HV ) (t, x) = 0 (1.30)

∂tV (t, x) + ∂x

(

V 2

2
+ gH

)

(t, x) +

(

gC
V 2

H
(t, x) − gSb

)

= 0 , (1.31)

with C a friction coefficient and g the gravity acceleration. For more general geometry and thorough

inspection of these equations we refer the reader to [77] and [6]. System (1.30)–(1.31) is non-linear.

We will show how the linearization procedure described in Subsection 1.1.2, works in this case.

Equations (1.30) and (1.31) can be rewritten as

∂tH(t, x) + V (t, x)∂xH(t, x) +H(t, x)∂xV (t, x) = 0

∂tV (t, x) + g∂xH(t, x) + V (t, x)∂xV (t, x) = gSb − gC
V 2

H
(t, x) .

Let us introduce a steady state H∗, V ∗, it is any solution to

[

V ∗ H∗

g V ∗

]

d

dx

[

H∗

V ∗

]

=

[

0

gSb − gC V ∗
2

H∗

]

.

This equation may be rewritten as

V ∗ dH
∗

dx
= −H∗ dV

∗

dx
= −gCV ∗3 − gSbV

∗H∗

gH∗ − V ∗2 .
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Moreover we assume that the steady-state flow is subcritical or fluvial that is

gH∗(x) − V ∗2

(x) > 0 , ∀x ∈ [0, L] .

This hypothesis guarantees that the matrix of the linearized system is diagonalizable with velocities

of opposite sign, as it will be shown now. Defining the deviation of the state with respect to the

steady state H∗(x), V ∗(x) by

h(t, x) = H(t, x) −H∗(x)

v(t, x) = V (t, x) − V ∗(x) ,

and using formula (1.15) we get

∂t

[

h(t, x)

v(t, x)

]

+

[

V ∗(x) H∗(x)

g V ∗(x)

]

∂x

[

h(t, x)

v(t, x)

]

=

[

−dV ∗(x)
dx

−dH∗

dx
(x)

gC V ∗
2

H∗2 (x) −2gC V ∗

H∗ (x) − dV ∗

dx
(x)

][

h(t, x)

v(t, x)

]

.

Let us diagonalize the matrix
[

V ∗(x) H∗(x)
g V ∗(x)

]

as shown above. The left eigenvectors of this matrix

are

l1(x) =

[
√

g

H∗(x)
, 1

]

l2(x) =

[

−
√

g

H∗(x)
, 1

]

,

giving the new variable

y1(t, x) = l1(x)

[

h(t, x)

v(t, x)

]

=

√

g

H∗(x)
h(t, x) + v(t, x)

y2(t, x) = l2(x)

[

h(t, x)

v(t, x)

]

= −
√

g

H∗(x)
h(t, x) + v(t, x) .

Conversely v and h can be expressed in function of y1 and y2

h(t, x) =
1

2

√

H∗(x)

g
(y1(t, x) − y2(t, x))

v(t, x) =
1

2
(y1(t, x) + y2(t, x)) .

The eigenvectors of the system are given by

λ1 = V ∗(x) +
√

gH∗(x)

λ2 = V ∗(x) −
√

gH∗(x) .
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The obtained linear system is

∂t

[

y1(t, x)

y2(t, x)

]

+

[

λ1(x) 0

0 λ2(x)

]

∂x

[

y1(t, x)

y2(t, x)

]

=

[

γ1(x) δ1(x)

γ2(x) δ2(x)

][

y1(t, x)

y2(t, x)

]

,

where

γ1(x) =
gCV ∗2

(x)

H∗(x)





3

4
(

√

gH∗(x) + V ∗(x)
) − 1

V ∗(x)
+

1

2
√

gH∗(x)





+
3gSb

4
(

√

gH∗(x) + V ∗(x)
)

γ2(x) =
gCV ∗2

(x)

H∗(x)





3

4
(

√

gH∗(x) − V ∗(x)
) − 1

V ∗(x)
+

1

2
√

gH∗(x)





+
gSb

4
(

√

gH∗(x) + V ∗(x)
)

δ1(x) =
gCV ∗2

(x)

H∗(x)





3

4
(

√

gH∗(x) + V ∗(x)
) − 1

V ∗(x)
− 1

2
√

gH∗(x)





− gSb

4
(

√

gH∗(x) + V ∗(x)
)

δ2(x) =
gCV ∗2

(x)

H∗(x)





3

4
(

√

gH∗(x) − V ∗(x)
) − 1

V ∗(x)
− 1

2
√

gH∗(x)





− 3gSb

4
(

√

gH∗(x) + V ∗(x)
) .

The last step to obtain a similar form as (1.11) for the Saint-Venant equations consists in making

the system dimensionless, for considering an abstract domain [0, 1]. The new variable

x̃ =
x

L
,

allows to express the system as

∂t

[

ỹ1(t, x̃)

ỹ2(t, x̃)

]

+
1

L

[

λ̃1 (x̃) 0

0 λ̃2 (x̃)

]

∂x̃

[

ỹ1(t, x̃)

ỹ2(t, x̃)

]

=

[

γ̃1(x̃) δ̃1(x̃)

γ̃2(x̃) δ̃2(x̃)

][

ỹ1(t, x̃)

ỹ2(t, x̃)

]

,

where

ỹi(t, x̃) = yi(t, Lx̃)

γ̃i(x̃) = γi(Lx̃)

δ̃i(x̃) = δi(Lx̃) ,

for i = 1, 2.
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These equations will be used to illustrate results of Chapter 2 and 4.

1.3 Stability and Stabilizability of Balance Laws

In the sequel we denote by E a functional space of functions y : [0, 1] → R
n with norm |·|E .

The aim of this thesis is to balance laws, and if needed, to control or stabilize them. The aim

of this section is to recall some methods for the stability and stabilization analysis of hyperbolic

PDEs. The list of references given there is not comprehensive, we cite the works which are the

more closely linked to this one.

The book [6] gathers a lot of results in this direction and is, therefore, an excellent reference for

detailed informations. The book [22] may also be consulted for more general studies. We can

cite also the book [30] which is also an important source of informations for the control, stability,

stabilizability of PDEs with the semigroup theory.

For the stability and stabilizability, a powerful analysis due to Alexandr Lyapunov has been ex-

tended for distributed systems. It relies on the search of a function, called a Lyapunov function,

measuring in some sense an energy for a dynamical system.

Let us give several definitions of stability. These notions of stability are strongly related to the

norm considered. First, let us define the notion of Lyapunov Stability (LS).

Definition 1.7. Let us denote by E′ ⊆ E the set such that for all y0 ∈ E′ we have y(t, ·) ∈ E for

all time t. The system (1.11), (1.20) with u ≡ 0, is said to be stable in the sense of Lyapunov for

every y0 ∈ E′, if for every ε > 0, there exists a δ > 0 such that we have

∣

∣y0
∣

∣

E
≤ δ ⇒ |y (t, ·)|E ≤ ε , ∀t ∈ R

+ , (1.32)

where y is the solution to (1.11), (1.20), and (1.21).

Let us define the Global Asymptotic Stability (GAS).

Definition 1.8. The system (1.11), (1.20), and (1.21) is said to be Globally Asymptotically Stable

in the norm of E if it is Lyapunov Stable and for every initial condition y0 ∈ E, the solutions to

system (1.11), (1.20), and (1.21) satisfy

|y(t, ·)|E → 0 as t → +∞ . (1.33)

Let us define the Global Exponential Stability (GES).

Definition 1.9. The system (1.11), (1.20), and (1.21) is said to be Globally Exponentially Stable

in the norm of E if there exist ν > 0 and C > 0 such that, for every initial condition y0 ∈ E, the

solutions to system (1.11), (1.20), and (1.21) satisfy

|y(t, ·)|E ≤ Ce−νt
∣

∣y0
∣

∣

E
, ∀t ∈ R

+ . (1.34)

Let us define the useful class functions K∞.



18 Chapter 1: Introduction

Definition 1.10. A function α : R+ → R
+ is said to be of class K∞ if it is continuous, strictly

increasing, unbounded, and α(0) = 0.

Roughly speaking, the idea of the Lyapunov control theory is to analyze the “dissipativity” of

the system through the measure of the energy given by the Lyapunov function. Hence, from this

idea the following definition may be stated (see [64] for definitions of Lyapunov function in finite

dimension from which the following one is inspired).

Definition 1.11. A function V ∈ C1 (E;R) is a strict Lyapunov function for the system (1.11),

(1.20), and (1.21) with u ≡ 0 if and only if there exist two class functions K∞ functions α1, α2,

and a positive definite function ρ such that V satisfies

α1 (|y|E) ≤ V (y) ≤ α2 (|y|E) , ∀y ∈ E ,

and the time derivative of V along the trajectories of the system satisfies

V̇ (y) ≤ −ρ (y) .

To show how to use a Lyapunov function, let us assume that V is comparable with the norm |·|E ,

that is there exist c > 0 and C > 0 such that

c |y|E ≤ V (y) ≤ C |y|E , ∀y ∈ E , (1.35)

and that it is a strict Lyapunov function with

V̇ (y) ≤ −αV (y) , α > 0 ,

along the trajectory of the system (1.11), (1.20), and (1.21). Then, from this latter inequality we

can write

V (y(t, ·)) ≤ e−αtV
(

y0
)

, ∀t ∈ R
+ .

Using the assumption that V and |·|E are comparable, one gets

|y (t, ·)|E ≤ C

c
e−αt

∣

∣y0
∣

∣

E
, ∀t ∈ R

+ ,

hence the system is GES. The derivation above is based on the assumption that V is comparable to

|·|E . This assumption always holds in finite dimension, but in the infinite case it may exist system

for which the first inequality of (1.35) fails (for an example of such property, see [56]). Nonetheless,

even if it does not hold, the Lyapunov analysis is still possible with some other conditions on the

system.

The link between stability and Lyapunov function remains an open question for system in infinite

dimension. Nonetheless, for special case some converse results exist. For instance, when considering

system for which the operator generates a strongly continuous semigroup on a Banach space X, a

result states that the system is exponentially stable if and only if there exists a Lyapunov function

(see [56]).
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1.3.1 Lyapunov Approach for Hyperbolic PDEs

A pioneer work for the use of Lyapunov function for PDEs is [24], where the stabilization of a

rotating body beam without damping is realized with the derivation of a Lyapunov function. This

analysis is particularly interesting, because of the fact that the Lyapunov function is not strict,

that is

V̇ (y(t, ·)) ≤ 0 , ∀t ∈ R
+ ,

along the trajectories of the system. The precompactness of the trajectories has been proved in

order to use the LaSalle’s invariance principle and getting the asymptotic stabilization.

To the best of our knowledge one of the first work to analyze the stabilization of a hyperbolic

system in term of Lyapunov function is [21]. The Lyapunov function used was

V (ω) = |ω exp(−θ)|
C0(Ω;R) ,

where w ∈ C0
(

I;C0
(

Ω
))

is the state, I a time interval, θ a function with some good properties,

and Ω the closure of a non-empty open connected and simply connected subset of R2 of class C∞.

A Lyapunov function related to the former one, was introduced in [112] for general hyperbolic

systems. In [26], this Lyapunov function was taken back for the control analysis of 2 × 2 linear

and quasi-linear systems of conservation laws for which the boundary condition (1.20) takes the

following form

B (y(t, 0), y(t, 1)) =

[

y+(t, 0)

y−(t, 1)

]

−G

[

y+(t, 1)

y−(t, 0)

]

. (1.36)

More precisely, this candidate Lyapunov function can be written as

V (y) =

∫ 1

0

y⊤(x)Q(x)y(x)dx , (1.37)

where Q(x) =
[

e−µxQ− 0m,n−m

0n−m,m eµxQ+

]

, with Q− in R
m×m, Q+ in R

(n−m)×(n−m), and µ > 0. Conditions

on the matrix G have been given to obtain the stability of the systems when considering different

norm:

• L2-norm in [26], [5], [96], [35], and [99],

• H2-norm in [26] and [27],

• C1-norm in [23]

using the Lyapunov analysis. A result of stabilization for a coupled system of gas pipes with a

compressor station has been stated in [45] with a Lyapunov analysis for classical solutions. The

feedback law takes the form (1.36), nonetheless no conditions are explicitly given for the matrix

G. Other boundary conditions have been considered than (1.36). For instance, the PI control

of linear systems of conservation laws has been investigated with the Lyapunov analysis in [38].

Boundary control of hyperbolic Lotka-Volterra systems has been investigated with a Lyapunov

approach in [85]. In [36], a boundary control embedding time varying delays is analyzed with a

Lyapunov function for star-shaped networks of quasi-linear hyperbolic systems of balance laws (see
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Node O

Edge 1Edge 2

Edge 3 Edge 4

Figure 1.4: Illustration of a star-shaped network with four edges.

Figure 1.4 for an illustration of star-shaped geometry). The construction of full-state feedback law

or observers by backstepping uses the Lyapunov analysis to prove the stability of the target system

as in [109], [28], [33], [34], [1] (see Chapter 3 for details on backstepping).

This analysis is the one we adopt all along this thesis. However, other approaches can be adopted

to prove the stability of such systems.

1.3.2 Time-Delay Systems Approach

Linear hyperbolic systems of conservation laws can be viewed as time-delay systems. Indeed, for

all t ≥ 0, for all 0 ≤ x < s ≤ 1, one has

yi (t, x) = yi

(

t+
s− x

λi
, s

)

, ∀i = 1, . . . ,m, (1.38)

yi (t, x) = yi

(

t+
x− s

λi
, s

)

, ∀i = m+ 1, . . . , n. (1.39)

In particular, for x = 0, s = 1, we get

yi (t, 1) = yi (t− τi, 0) , ∀i = 1, . . . ,m, (1.40)

yi (t, 0) = yi (t− τi, 1) , ∀i = m+ 1, . . . , n, (1.41)

where τi = 1
λi

are the delays. These scalar time-delay systems are interconnected by the boundary

condition (1.20). This formulation allows to use results from differential difference equations, as

an important source of results in this direction we can cite [54]. This approach has been used in

[25] to prove the exponential stability in the Sobolev space W 2,p.

1.3.3 Characteristics Method Approach

An other approach consists in estimating the norm of the solutions by the characteristics method

during the time. It was the approach used in [51] where a quasi-linear wave equation with a

boundary damping is investigated. Following the same idea, the boundary feedback for the quasi-

linear Saint-Venant equations without slope and friction, is analyzed in [32]. In [37], the friction

and the slope are added to the previous work and the analysis is led in the same way. In [95], the
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method is used to analyze quasi-linear systems of conservation laws subject to boundary errors,

as illustration the dynamic of a pipe filled with water is considered. In [98], the robust boundary

control of a quasi-linear systems of balance laws with respect to the non-homogeneous term (or

source term) is tackled with this estimation technique. In [2], linear switched systems of balance

laws are also analyzed. Recently in [87], it has been shown that there exist boundary dissipative

conditions such that a finite-time stabilization is achieved for a 2×2 quasi-linear hyperbolic system.

1.3.4 Frequency-Domain Approach

Finally, the last method used for the analysis of linear hyperbolic system is the frequency domain

approach. A thorough inspection of this approach is presented in [77] for the Saint-Venant equa-

tions. For more general hyperbolic system taking the form of a flow-density conservation laws

as

∂tρ(t, x) + ∂xq(t, x) = 0 (1.42)

∂tq(t, x) + λ1λ2∂xρ(t, x) + (λ1 − λ2) ∂xq(t, x) = γρ(t, x) − δq(t, x) , (1.43)

where ρ(t, x) and q(t, x) are respectively the density and the flow density at time t and position

x, and γ ≥ 0, δ ≥ 0. The frequency domain approach has been led for this type of system. In

particular in [78], some conditions have been given in the case of a proportional diagonal boundary

controller, that is
[

q(t, 0)

q(t, L)

]

=

[

k0 0

0 kL

][

h(t, 0)

h(t, L)

]

. (1.44)

The frequency domain approach has been used in [10] for the control of such system, with γ = δ = 0,

with a Proportional-Integral (PI) control action, see Chapter 3, where PI controller is considered

for a tracking issue.

We will use the Lyapunov approach in the following chapters where some additional references will

be also given.
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1.4 Contributions of the Thesis

In this section, we explain the problems considered in this thesis and the related main results. We

consider richer diagonal linear systems of balance laws than (1.11). Indeed, we assume that the

velocities may be also time-varying, that is

∂ty(t, x) + Λ(t, x)∂xy(t, x) = F (t, x)y(t, x) , (t, x) ∈ R
+ × [0, 1] , (1.45)

where Λ(t, x) is a diagonal matrix for all (t, x) ∈ R
+ × [0, 1].

1.4.1 Chapter 2: Switching Stabilization

In Chapter 2, we are interested in the stabilization of such equation with

Λ(t, x) = Λ(t)

F (t, x) = F (t) ,

where F (t) is diagonal for all t ∈ R
+ and Λ(t) is positive definite for all t ∈ R

+, and under switched

boundary conditions

Bσ(t) (y(t, 0), y(t, 1)) = y(t, 0) −Gσ(t)y(t, 1) , (1.46)

where σ(t) is a switching signal taking values in a discrete set I := {1, . . . , N}. It describes the

fact that the boundary conditions may change abruptly during the time evolution of the process.

The aim of the following chapter is to propose some switching rules σ as an output feedback law

σ[w] : R
+ → I
t 7→ σ[w](t) ,

where the output w is given by

w(t) = y(t, 1) .

Three switching rules are stated. The first one consists in selecting the mode which optimizes the

time-derivative of the Lyapunov function (1.37) along the trajectories of the system. In this case

we prove that the system is GES (Proposition 2.2, page 40). The second one is a modified version

of the first one. We add a hysteresis phenomenon. The third one is a modified version of the

second one for which we add a low-pass filter. We prove the well-posedness of the system for the

last two switching rules and show a weaker notion of stability with them (Theorems 2.1 and 2.2,

pages 43 and 46 respectively).

Besides, the stabilization results, we explore the effect of measurement noise, such that the mea-

sured output is

w̃(t) = w(t) + δ(t) ,

where δ is the measurement noise. We show that modified versions of the two last switching rules

guarantee an ISS property (Propositions 2.3 and 2.4, pages 48 and 50 respectively) or a robustness

property (Propositions 2.5 and 2.6, pages 52 and 53) which is stronger.
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We illustrate our results with an academic example (Subsection 2.7.1, page 54) as well as with

a physical one which is the Saint-Venant equations without slope and friction (Subsection 2.7.2,

page 58).

1.4.2 Chapter 3: Trajectory Generation and PI Tracking

In Chapter 3, we consider a 2 × 2 hyperbolic system of balance laws where

Λ(t, x) =

[

λ1(x) 0

0 −λ2(x)

]

F (t, x) =

[

c1(x) c2(x)

c3(x) c4(x)

]

,

with λ1, λ2 in C2 ([0, 1] ;R) and satisfy λ1(x) > 0, λ2(x) > 0, for all x ∈ [0, 1]. The functions ci,

i = 1, 2, 3, 4, belong to C1 ([0, 1] ;R). The boundary conditions take the form

B (y1(t, 0), y2(t, 1), S(t)) =

[

y1(t, 0)

y2(t, 1)

]

−
[

0 q

0 0

][

y1(t, 1)

y2(t, 0)

]

−
[

0

S(t)

]

.

In this work we consider that y2(t, 0) is the measured output of the system. The tracking problem

towards a given trajectory by using backstepping method is solved (Theorem 3.1, page 66). Obvi-

ously, the initial condition has to satisfy a compatibility condition with the trajectory z(t), which

is not always the case. Hence, some stabilization techniques shall be taken to regulate the output

to the objective z(t). This regulation is obtained through a PI-controller of the form

S̃(t) = −kP ṽ(t, 0) − kI η̃(t) ,

with

˙̃η(t) = ṽ(t, 0) ,

where ṽ(t, 0) = v(t, x) − vr(t, x), S̃(t) = S(t) − Sr(t) stands for the deviations of the system from

the reference vr(t, x) and from the reference input Sr(t) respectively. The analysis is led through

a “novel” quadratic Lyapunov function. Due to the particular form of the system it is shown that

a cross term between two components of the augmented system (states of the system, y1, y2, and

the integrator η̃) must be added in order to prove stability by Lyapunov techniques (Theorem 3.2,

page 74).

Moreover, we analyze the tracking issue when disturbances are present in the domain as well as at

the boundaries. More precisely, the system is assumed to have the following form

∂ty1(t, x) + λ1(x)∂xy1(t, x) = c1(x)y1(t, x) + c2(x)y2(t, x) + d1(x)

∂ty2(t, x) − λ2(x)∂xy2(t, x) = c3(x)y1(t, x) + c4(x)y2(t, x) + d2(x) ,
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and the boundary conditions take the form

B (y1(t, 0), y2(t, 1), S(t)) =

[

y1(t, 0)

y2(t, 1)

]

−
[

0 q

0 0

][

y1(t, 1)

y2(t, 0)

]

−
[

0

S(t)

]

−
[

d3

d4

]

,

where d1, d2 are in C1 ([0, 1] ;R) and d3, d4 are in R. The integral action is shown to compensate

in the output the distributed and boundary disturbances in the case of solutions in L2 ((0, 1);R)

(Proposition 3.1, page 82). In the case of an initial condition in C1 ([0, 1] ;R) × C1 ([0, 1] ;R) and

assuming that it satisfies a compatibility condition with the boundary conditions, it is shown that

the integral action eliminates these disturbances in a stronger sense (Theorem 3.5, page 84).

The trajectory generation is illustrated with a wave-equation with indefinite in-domain and bound-

ary damping (Section 3.3, page 70). Then, the tracking issue is illustrated through the linearized

Aw-Rascle-Zhang equations (Section 3.6, page 85).

1.4.3 Chapter 4: Numerical Techniques for the Lyapunov Analysis

In Chapter 4, we consider system (1.45) with

Λ(t, x) =

[

Λ+(x) 0m,n−m

0n−m,m Λ−(x)

]

F (t, x) = F (x) ,

where Λ+, Λ−, and F are positive definite functions in C0 ([0, 1] ;Rm×m), C0
(

[0, 1] ;R(n−m)×(n−m)
)

,

and C0 ([0, 1] ;Rn×n) respectively, and under boundary conditions

B(y(t, 0), y(t, 1)) =

[

y+(t, 0)

y−(t, 1)

]

−G

[

y+(t, 1)

y−(t, 0)

]

,

where G is in R
n×n. We analyze the stability of such system with two Lyapunov functions having

the general form

V (y) =

∫ 1

0

y(x)⊤Q(x) |Λ(x)|−1
y(x)dx ,

where the notation |Λ(x)| stands for the matrix whose entries are the absolute values of those of

Λ(x). The kernels Q(x) used are

Q(x) = diag
[

e−2µxQ−, e2µxQ+
]

Q(x) = diag
[

(1 + µx)Q−, (1 − µx)Q+
]

,

with µ a real coefficient for the first kernel and a real coefficient in (−1, 1) for the second one. The

conditions for stability for this system can be written as Matrix Inequalities (MIs) (Propositions 4.1

and 4.3, pages 94 and 96). These MIs depend on the x variable, hence it corresponds to an infinity

of MI to solve. In order to make this problem tractable we use a line-search over one of the

parameter involving in the MI leading to an infinity of Linear Matrix Inequalities (LMIs) to solve.

The difficulty given by the continuum of LMIs is eliminated by an overapproximation by polytopes.
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More precisely, we show that the infinity of LMIs can be reduced to a finite number.

Then, we state results to construct boundary controller. In other words, we suppose that the

boundary conditions are

B(y(t, 0), y(t, 1)) =

[

y+(t, 0)

y−(t, 1)

]

− (T + LKB)

[

y+(t, 1)

y−(t, 0)

]

,

where T is in R
n×n, L is in R

n×q (n > q) are given and the matrix KB is in R
q×n has to be

designed such that system (1.45), (1.21) with the boundary conditions given above is GES. We

construct some MIs conditions for the construction of such controller (Theorems 4.1 and 4.2,

pages 99 and 100).

Then, we consider the design of a distributed controller

F (x) = H(x) +B(x)KD(x) , x ∈ [0, 1] ,

where matrices H(x) in R
n×n and B(x) in R

n×p (n > p) are given and matrix KD(x) in R
p×n

has to be designed such that system (1.45)–(1.21) is GES with the distributed control as defined

above. We assume that KD(x) is given by

KD(x) =

ℓ
∑

i=1

αi(x)Ki ,

where αi, i = 1, . . . , ℓ, are some continuous real functions. Again, the conditions for the con-

struction of such controller is written in terms of MIs (Theorems 4.3 and 4.4, pages 101 and 102).

Then, we can apply the method described above for the stability checking to the controller design

(line-search and overapproximation).

We illustrate our method on academic examples (Subsections 4.5.1 and 4.5.2, pages 113 and 114

respectively) and a physical one given by the Saint-Venant equations with friction and without

slope (Subsection 4.5.3, page 116).
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2 • Switched Hyperbolic PDEs

I
n this chapter, the exponential convergence in L2-norm is analyzed for a class

of switched linear systems of conservation laws. The boundary conditions are

subject to switches. We investigate the problem of synthesizing stabilizing switching

controllers. By means of Lyapunov techniques, three control strategies are developed

based on steepest descent selection, possibly combined with a hysteresis and a low-

pass filter. For the first strategy we show the global exponential stabilizability, but

no result for the existence and uniqueness of trajectories can be stated. For the other

ones, the problem is shown to be well posed and global exponential convergence can

be obtained. Moreover, we consider the ISS and the robustness properties for these

switching rules in presence of measurement noise. Some numerical examples illustrate

our approach and show the merits of the proposed strategies. Particularly, we have

developed a model for a network of open channels, with switching controllers in the

gate operations.

The introduction of the three switching rules have been published in the pro-

ceeding of the 2013 Conference on Decision and Control (CDC) [68]. The thorough

study of the three switching rules with the robustness issue has been published in the

SIAM Journal on Control and Optimization [70].
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2.1 Problem Statement

We are concerned with n× n switched linear hyperbolic system of conservation laws of the form

∂ty(t, x) + Λ(t)∂xy(t, x) = F (t)y(t, x) , t ∈ R
+, x ∈ [0, 1] , (2.1)

y(t, 0) = Gσ(t)y(t, 1) , t ∈ R
+ , (2.2)

y(0, x) = y0(x) , x ∈ [0, 1] , (2.3)

where y : R
+ × [0, 1] → R

n, σ : R
+ → I is the switching signal, and y0 lies in some subspace

E of L2 ((0, 1);Rn). This subspace will be clarified in Section 2.3, for the moment we leave it

intentionally ambiguous.

For all i ∈ I, Gi belongs to R
n×n, for all t ∈ R

+, Λ(t) is a diagonal positive definite matrix

in R
n×n and F (t) is a diagonal matrix in R

n×n i.e. Λ(t) = diag(λ1(t), . . . , λn(t)), F (t) =

diag(f1(t), . . . , fn(t)) where λ1(t), . . . , λn(t), f1(t), . . . , fn(t) are in L1
loc (R+,R) and there exist

n pairs of real positive, non-zero coefficients
(

λd, λd
)

and n pairs of real coefficients
(

fd, fd
)

,

d = 1, . . . , n, such that

λd ≤ λd(t) ≤ λd , ∀t ∈ R
+ , ∀d ∈ {1, . . . , n} , (2.4)

fd ≤ fd(t) ≤ fd , ∀t ∈ R
+ , ∀d ∈ {1, . . . , n} . (2.5)

In the sequel, we denote by Λ and F the diagonal matrix whose elements are the lower bounds of

the velocities Λ(t) and source term F (t) respectively, that is

Λ = diag
(

λ1, . . . , λn
)

(2.6)

F = diag
(

f1, . . . , fn
)

, (2.7)

and we denote Λ and F the diagonal matrix whose elements are the upper bounds of the velocities

Λ(t) and source term F (t) respectively, that is

Λ = diag
(

λ1, . . . , λn
)

(2.8)

F = diag
(

f1, . . . , fn
)

. (2.9)

We denote by λ and λ respectively the smallest eigenvalues of Λ and the largest eigenvalues of Λ

λ = min
1≤i≤n

{

λi
}

, (2.10)

λ = max
1≤i≤n

{

λi
}

. (2.11)

The largest eigenvalue of F is denoted by f that is

f = max
1≤i≤n

{

f1, . . . , fn
}

. (2.12)

The aim of this work is to design a switching rule which depends only on the measurement at the

boundary of the domain, in order to stabilize the system.
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Indeed, hyperbolic systems, provided sensors are locally distributed, can be described with mea-

surements at the boundaries. In our case, the system is only observed at the point x = 1 at any

time. The output is thus defined as

w(t) = y(t, 1) . (2.13)

The output function is well defined as soon as the solution y is in a space where the evaluation at

the boundary is well-defined. Hence, it is an element to construct our subspace E of L2 ((0, 1);Rn)

in which the solution will be considered.

The switching rule σ is given as an output feedback law defined as follows

σ[w] : R
+ → I
t 7→ σ[w](t) .

(2.14)

To summarize, the process evolves in a mode, a sensor measures the state w(t) of the process at the

boundary, then depending on this output, a switching rule imposes the mode in which the system

must evolve afterwards. We make the following causality assumption on σ. For all T ∈ R
+, for all

w , w′ ∈ Crpw ([0, T ] ;Rn), if

w(t) = w′(t) , ∀t ∈ [0, T ] , (2.15)

then we get

σ[w](t) = σ [w′] (t) , ∀t ∈ [0, T ] . (2.16)

Remark 2.1. In the system of equation (2.1), the matrix Λ(t) is diagonal positive definite.

This assumption is made only for the sake of simplicity in our analysis. Indeed we can consider

more general diagonal matrices for Λ(t). Suppose that there exists m > 0 such that for all

t ∈ R
+, Λ(t) is a diagonal matrix satisfying Λ(t) = diag(λ1(t), . . . , λn(t)) with λk ∈ L1

loc (R+;R)

for k ∈ {1, . . . , n}, and 0 < λ+ ≤ λk(t) ≤ λ+ for k ∈ {1, . . . ,m}, λ− ≤ λk ≤ λ− < 0 for

k ∈ {m+ 1, . . . , n}. The matrix Λ(t) is written as

Λ(t) =

[

Λ+(t) 0m,n−m

0n−m,m Λ−(t)

]

,

where Λ+(t) and Λ−(t) are respectively diagonal positive definite matrix and diagonal negative

definite matrix. We introduce the notations y+ = [y1, . . . , ym]
⊤

, y− = [ym+1, . . . , yn]
⊤

such that

y = [y+, y−]
⊤

. The system in its general form is

∂ty(t, x) + Λ(t)∂xy(t, x) = F (t)y(t, x) , t ∈ R
+, x ∈ [0, 1] , (2.17)

[

y+(t, 0)

y−(t, 1)

]

= Gσ(t)

[

y+(t, 1)

y−(t, 0)

]

, t ∈ R
+ , (2.18)

y(0, x) = y0(x) , x ∈ [0, 1] , (2.19)

where for all i ∈ I, Gi =
[

G++

i
G+−

i

G−+

i
G−−

i

]

, such that G++
i , G−−

i , G+−
i and G−+

i are matrices respec-

tively in R
m×m, R(n−m)×(n−m), Rm×(n−m) and R

(n−m)×m. In this notation, the output introduced
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in (2.13) is written as

w(t) =

[

y+(t, 1)

y−(t, 0)

]

. (2.20)

By the change of variable z(t, x) =
[

y+(t,x)

y−(t,1−x)

]

we obtain a new system in the same form as (2.1),

(2.2), and (2.3). •

Remark 2.2. At this point we can make a remark about the special behavior of these switched

hyperbolic PDEs. First, discontinuities appear and propagate during the time evolution of the

system. Indeed, consider the following case with n = 2

∂ty1(t, x) − ∂xy1(t, x) = 0

∂ty2(t, x) + ∂xy2(t, x) = 0 ,

with the following boundary condition

[

y1(t, 1)

y2(t, 0)

]

=

[

1 1
1
2 0

][

y1(t, 0)

y2(t, 1)

]

,

for t ∈ [0, τ). Let us consider the initial condition

[

y1(0, x)

y2(0, x)

]

=

[

1

1

]

.

Hence, for t ∈ [0, τ) the solution remains y(t, x) = [1, 1]
⊤

. Assume that, at t = τ , the boundary

condition is
[

y1(t, 1)

y2(t, 0)

]

=

[

1 1

1 0

][

y1(t, 0)

y2(t, 1)

]

.

Then, a discontinuity is introduced at time t = τ and propagates along the characteristics. The

apparition of discontinuities is a special feature of this type of systems. Hence, one cannot expected

for regularity in the solution even for linear systems when the switching appears at the boundary.

Nonetheless, regularity could be preserved when considering switching with the velocities or in the

source term as in [99], but this aspect is not developed in our framework. This special feature is

another element to construct the space of solutions. •

In the following, we propose three control strategies. For the first one presented below, we are able

to give only a result of global exponential stabilizability in L2-norm and the existence of solution

is not obtained in a general framework. For the next two strategies derived from the first one, we

state existence, uniqueness of solution and global convergence in L2-norm.

Let us define the notion of “convergence” for our switched system.

Definition 2.1. Given a switching rule σ, the closed-loop system (2.1), (2.2), (2.3), (2.13), and

(2.14) is said to be globally exponentially convergent (in L2-norm), if there exist a positive constant

α > 0 and a function g : R+ → R
+, such that for all y0 ∈ E, the solution of (2.1), (2.2), (2.3),

(2.13), and (2.14) exists for all t ∈ R
+ and

|y(t, ·)|L2((0,1);Rn) ≤ e−αtg
(

∣

∣y0
∣

∣

L2((0,1);Rn)

)

, (2.21)
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for all t ∈ R
+. System (2.1), (2.2), (2.3), (2.13), and (2.14) is said to be globally exponentially

stable (GES) if g can be chosen linear.

With Definition 2.1 at hand, the next step is the analysis and the design of switching rules.

2.2 Motivations for Switching and Existing Results

2.2.1 Motivations

The aim of this subsection is to address the reasons for considering switching for PDEs. The list

given there is not comprehensive, other reasons could be imagined.

First, the analysis and stabilization of non-linear PDEs is often too complicated to be tackled

directly. Hence, a classical technique consists in linearizing the system around an operating regime

as in [8], [77] for the Saint-Venant equations (see also Subsections 1.2.3 and 2.7.2 for the illustration

of this aspect), [35] for the Saint-Venant-Exner model, [7] for the Aw-Rascle-Zhang equations (see

Subsection 1.2.2 and 3.6 for the illustration of this aspect), and in controlling the linearized system

around such operating points. Switched hyperbolic systems can be viewed as a transition between

different linearized operating regime. This approach is often called Multi-Models representation as

in [39].

Then, switching can also be viewed as a way to represent the possibility to change of actuator or

sensor configurations. For instance in [41], [42], [43] the switching between N different actuator

configurations is investigated for quasi-linear parabolic PDEs. Since the formalism of these latter

references is quite different from ours, let us develop the idea for our framework. To be as clear as

possible, let us take the simplest situation that we can construct. Let us suppose we are considering

a distributed process governed by a hyperbolic equation over a bounded interval [0, L]. Moreover,

let us assume there are 2 actuators in the domain: one at x = 0 and another one at xa ∈ (0, L).

Then we can consider a 2 × 2 hyperbolic system for the whole system. The first component of

the solution corresponds to the solution for x ∈ [0, xa], and the second component of the solution

corresponds to the solution for x ∈ [xa, L]. It is always possible to make the system dimensionless

with respect to the space variable. Hence, the intervals [0, xa] and [xa, L] become [0, 1], as shown

in Subsection 1.2.3 for the Saint-Venant equations. Moreover, we can suppose that the velocity of

the material is positive and equal in each subdomain, and that the actuator at x = xa gives the

following boundary condition

[

y1(t, 0)

y2(t, 0)

]

=

[

1
2

1
2

1
2

1
2

][

y1(t, 1)

y2(t, 1)

]

. (2.22)

Now let us suppose that at some time t = τ the actuator at x = 1 fails, and that it implies a

conservation of materials between the two subdomains. Hence, the boundary condition becomes

[

y1(t, 0)

y2(t, 0)

]

=

[

1
2

1
2

1 0

][

y1(t, 1)

y2(t, 1)

]

. (2.23)

This example illustrates how the switching can be viewed as a way to describe the actuator config-
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uration. In [41], the switching between different actuator configurations to obtain stability of the

closed-loop parabolic PDE system is investigated. In [42], this aspect is again investigated when

the parabolic equation is subject to actuator failure. In [43], the optimal choice in the actuator

configuration is tackled for general PDE described by strongly continuous semigroup.

Finally, performance criteria is an important reason for switching. Indeed, some technologies

include switching to give better performance result.

For instance simulated moving bed (SMB) chromatography is one example of such application [9].

This technology consists in extracting different species of a mixture in chromatographic columns.

The idea is to switch periodically between different configuration of interconnected-columns in

order to obtain better separation performance than in a non-switched case.

Power converters connected to transmission lines [31] are another example of physical system where

the switching appears. Due to the complexity of this type of systems, which are represented by

a coupled of ODE/PDE, the approach taken in [31] is based on averaging, and considers that the

control takes value in the continuous set [0, 1] instead of the discrete set {0, 1}, which corresponds

to the switched configuration. Then, a saturated control is constructed thanks to a Lyapunov

function.

Road traffic network is again an application in which the switching phenomena is natural. Indeed,

to control this type of system the road speed limit can be changed to avoid the apparition of

jam, as in [59] where a Model-Predictive-Control (MPC) is investigated to solve this problem.

Moreover, the red and green lights, are by their nature, a switch. In [11], the synthesis of on/off

control strategies is analyzed for a highway modelled by the Lighthill-Whitham-Richards (LWR)

equation. Recently, the optimal control with respect to the switching times of an on/off control

for a nonlinear scalar hyperbolic balance law on R is investigated in [92] and [90]. The motivation

is the application to a red and green lights policy.

The switches can be also used in modelling. For instance, for the road traffic, congested regimes

are more accurately described by the LWR model than with the ARZ, while in a free-flow model

regime it is the opposite, based on empirical measurements [45]. Hence, some authors propose a

model with phase transition depending on the value of the density of traffic, it is the case in [50]

and in [20].

2.2.2 Existing Results

The study of switched PDEs is a very new field of research. To the best of our knowledge, one of

the first result is given in [100] where the switched system is stated in an abstract form

ẋ(t) = Aσ(t)x(t) , t ∈ R
+ , (2.24)

x(0) = x0 . (2.25)

The operators Ai, i ∈ I are infinitesimal generators of exponentially stable semigroups on a Hilbert

space X. The commutation of the operators A1 and A2 for the case of switched system consisting

of two modes is a sufficient condition for the stability of the system. Moreover, it is proved the

existence of a common quadratic Lyapunov function under this latter condition.
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Another result in this framework is given by [56], in which it is given sufficient and necessary

conditions for the global exponential stability, uniform with respect to the switching signal, in

terms of the existence of a common Lyapunov function to the switched system (2.24), (2.25). The

analysis is led on Hilbert and Banach spaces as well.

The switching phenomena has also been studied for the wave equation. The system under consid-

eration is the following

∂tty(t, x) = c2∂xxy(t, x) (2.26)

y(t, 0) = f(t) (2.27)

∂xy(t, 1) = −a(t)∂ty(t, 1) . (2.28)

The switching appears with the function a(t) which is piecewise constant. For instance, it can take

two values a0 > 0 and 0, as in [82] which is, to our best knowledge, the first work to deal with

these type of feedback laws. In [53], the switched feedback appears with a delay that is

∂xy(t, 1) =
κ

c
∂ty(t− a(t), 1) , (2.29)

with κ > 0. Finally, in [52] a star-shaped network in which the wave equation governed each arc,

is considered (see Figure 1.4 for an illustration of this geometry). It is proved that if boundary

equation (2.28) representing the control at the exterior node is zero from time to time, it is possible

to stabilize exponentially the system to zero.

In [74], the switching is used to control quasi-linear hyperbolic systems with some vertical charac-

teristics, meaning that there are some components of the state for which the associated velocity

is zero. It is proved that the controllability is obtained thanks to a strategy consisting in using a

local internal control which steers the initial condition to an intermediate state and then switch to

a boundary control to steer this latter state to the final one.

As mentioned in the previous subsection parabolic PDEs with switching has also been considered

in the literature with the already given references [43], [41], [42]. Nonetheless, we can cite the more

recent work [114] where the 1-d heat equation is considered

∂ty(t, x) = ∂xxy(t, x) , x ∈ (0, 1) , t ∈ (0, T ) , (2.30)

y(0, t) = u0(t) , (2.31)

y(1, t) = u1(t) , (2.32)

y(0, x) = y0(x) , (2.33)

where for almost every t ∈ (0, T ) one has

u0(t)u1(t) = 0 . (2.34)

It is shown how to construct u0 and u1 satisfying (2.34) such that the system is null-controllable.

The construction is based on the minimization of a quadratic functional and the use of the adjoint

system of (2.30)– (2.33). The null-controllability with switched pointwise control is also analyzed,
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that is to consider the control system

∂ty(t, x) = ∂xxy(t, x) + ua(t)δa(x) + ub(t)δ(x) , x ∈ (0, 1) , t ∈ (0, T ) , (2.35)

y(t, 0) = 0 , (2.36)

y(t, 1) = 0 , (2.37)

y(0, x) = y0(x) , (2.38)

where ua and ub are such that

ua(t)ub(t) = 0 , (2.39)

for almost every t ∈ (0, T ).

In [80], the time optimal controls for Schrödinger type systems is considered. It is proved that

under some conditions on the operators, the optimal control u∗ is bang-bang, which is a switching

by nature. Other works are focused on the time optimal controls of PDEs, exhibiting bang-bang

property. We refer the reader to the references given in the former cited work.

Finally, [57] is one of the first work in which the study of switched hyperbolic systems is addressed.

It analyses a networked transport system in which each arc is governed by an equation of the form

∂ty(t, x) + Λσ(t)(t, x)∂xy(t, x) = fσ(t)(t, x, y(t, x)) , (2.40)

with a Kirchhoff’s law for the boundary conditions. Results of existence of solution are given with

a class of piecewise continuous functions multivalued at the point of discontinuities. They are given

in the context where the switching signal σ is given as a data and as a feedback. This latter case is

the one with which we are concerned in this chapter. Besides, the question of optimal switching for

this network is tackled. An analysis based on functions of bounded variation in an extended way

is used in [58] to prove well-posedness for system (2.40). In this last two references, the switching

modelling is viewed as a tool for systems for which different time and spatial scales interact. It is

also the approach used in [101], where a result of well-posedness is obtained for transport equation,

in which the velocity term is subject to an abstract closed-loop switching strategy.

The optimality of switching is also considered in [55]. The aim of this work was to approach a

given trajectory yd for the scalar system

∂ty(t, x) + ∂x (λ(t, x)y(t, x)) = fσ(t)(t, x, y(t, x)) , (2.41)

with binary boundary control, that is

y(t, 0) = ŷ(t;σ(t)) , (2.42)

where σ(t) ∈ {0, 1}. In [2], PDEs (2.40) with

Λσ(t)(t, x) = Λσ(t)(x) (2.43)

fσ(t)(t, x, y(t, x)) = Fσ(t)(x)y(t, x) . (2.44)

where Λσ(t)(x) is a diagonal matrix with a number of positive and negative velocities uniform with
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respect to the mode, is analyzed. The boundary condition is of the form of (2.2). The norm

considered for the analysis is the L∞-norm. The condition for stability with respect to the set of

switching signals σ for which there is a finite number of discontinuities for every compact subset

of the time, is proved by a spectral radius condition on the matrices Gi(x), i ∈ I. The result is

proved by the characteristics method and an estimation of the solution along them.

More recently, the analysis of persistently damped transport PDEs for a network of circles has

been addressed in [17]. To be more specific the equation on each circles i = 1, . . . , N , with N the

number of circles, is given by

∂tyi(t, x) + ∂xyi(t, x) = αi(t)χi(x)yi(t, x) , (2.45)

where χi(x) is a characteristic function of a subdomain of the circle. The equations are mixed

through a linear relationship at the central intersecting point. This system can be viewed as a

switched system when, for instance, αi(t) ∈ {0, 1}. Explicit formulas of the solution allow to

prove the exponential stability of the solution under some hypothesis on the boundary condition,

damping, and geometrical properties of the circles.

The optimal control with respect to the right boundary data and switching times for a switched

nonlinear scalar hyperbolic balance law has been recently addressed in [91].

Finally, switched linear hyperbolic systems have been analyzed with the Lyapunov analysis in

[99]. This work is inspired by this last reference for the Lyapunov approach. While the latter

reference consider the stability analysis for switched linear hyperbolic systems, we will consider

the stabilization of these systems by constructing switching rules.

2.3 Well-Posedness

As explained in Section 2.1, the space of solutions should be constituted by functions well-defined

at x = 1 and take into account the discontinuities due to the switched boundary condition. Thus,

let us introduce the following spaces.

Definition 2.2. Given an interval I ⊆ R and a set J ⊆ R
n for some n ≥ 1, a piecewise left-

continuous function (resp. a piecewise right-continuous function) y : I → J is a function contin-

uous on each compact subset of J except maybe on a finite number of points x0 < x1 < · · · < xp

such that for all l ∈ {0, . . . , p− 1} there exists yl continuous on [xl, xl+1] satisfying yl = y|(xl,xl+1).

Moreover at the points x1, . . . , xp (resp. x0, . . . , xp−1) the function is continuous from the left (resp.

from the right). The set of all piecewise left-continuous functions (resp. piecewise right-continuous

functions) is denoted by Clpw (I;J) (resp. Crpw (I;J)).

Note that we have the following inclusions Crpw ([0, 1] ;Rn) , Clpw ([0, 1] ;Rn) ⊂ L2((0, 1);Rn).

In this section we define the solution of the Cauchy problem associated with (2.1), (2.2), and (2.3).

The solution will be defined with the classical method of characteristics (see Subsection 1.1.4). Let

us recall the definition of characteristic curves.
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Definition 2.3. Given d in {1, . . . , n}, the d-th characteristic is an absolutely continuous function

s 7→ Xd (s; t⋆, x⋆) which satisfies Xd (t⋆; t⋆, x⋆) = x⋆ and the ordinary differential equation

d

ds
Xd (s; t⋆, x⋆) = λd(s) , (2.46)

almost everywhere on the domain where Xd (·; t⋆, x⋆) is defined.

Definition 2.4. Let y0 ∈ Clpw ([0, 1] ;Rn) be given with σ ∈ Crpw (R+; I). A solution to the

Cauchy problem associated with (2.1), (2.2), and (2.3) is a function y : R
+ × [0, 1] → R

n such

that, for every (t⋆, x⋆) ∈ R
+ × [0, 1], the components of y are satisfying the ordinary differential

equations
d

dt
yd (t,Xd (t; t⋆, x⋆)) = fd(t)yd (t,Xd (t; t⋆, x⋆)) , (2.47)

for every t ≥ t⋆, such that Xd(t; t
⋆, x⋆) ∈ [0, 1], for all d = 1, . . . , n. Moreover the function y

satisfies the initial condition for t = 0

yd(0, ·) = y0
d , (2.48)

together with the left boundary condition

yd(·, 0) =

n
∑

k=1

Gσ(t)[d, k]yk(·, 1) , (2.49)

for all d = 1, . . . , n.

Before stating any results on existence and uniqueness let us give some useful notations. Let κ be

the time for a wave whose celerity is λ to cross the spatial domain [0, 1]

κ =
1

λ
.

For p ∈ N, let ∆p ⊂ R
+ be defined by

∆p = [pκ, (p+ 1)κ] . (2.50)

Proposition 2.1. Let y0 ∈ Clpw ([0, 1] ;Rn), assume the strategy σ is such that σ[v] ∈ Crpw (R+; I)

for all v ∈ Crpw (R+;Rn). Then there exists a unique solution y to the closed-loop switched system

(2.1), (2.2), (2.3), (2.13), and (2.14), and w ∈ Crpw (R+;Rn).

Proof. Let us start the proof by the existence part. We proceed by induction over the time interval

∆p. The first step consists in proving that w ∈ Crpw (∆0;Rn).

For all (t, x) ∈ ∆0 × [0, 1] such that
∫ t

0
λd(s)ds ≤ x one gets, by the method of the characteristics,

yd(t, x) = e

∫

t

0
fd(s)ds

yd

(

0, x−
∫ t

0

λd(s)ds

)

= e

∫

t

0
fd(s)ds

y0
d

(

x−
∫ t

0

λd(s)ds

)

, d = 1, . . . , n . (2.51)
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Let t ∈ ∆0. Since for all d = 1, . . . , n and for all s ∈ [0, t], we have λd(s) ≤ λ, one gets
∫ t

0
λd(s)ds ≤ 1. Thus, the expression of w on ∆0 is given by

wd(t) = yd(t, 0) = e

∫

t

0
fd(s)ds

y0
d

(

1 −
∫ t

0

λd(s)ds

)

, d = 1, . . . , n . (2.52)

Since y0 is in Clpw ([0, 1] ;Rn) it is clear that w is in Crpw (∆0;Rn), hence by assumption and using

the causality property (2.15), (2.16), σ[w] ∈ Crpw (∆0; I) is uniquely defined. The solution on ∆0

is given by

yd(t, x) :=
n
∑

k=1

Gσ[w](t−τd(t,x))[d, k]wk (t− τd(t, x)) , ∀(t, x) ∈ ∆0 × [0, 1] s. t.

∫ t

0

λd(s)ds > x ,

(2.53)

yd(t, x) := e

∫

t

0
fd(s)ds

y0
d

(

x−
∫ t

0

λd(s)ds

)

, ∀(t, x) ∈ ∆0 × [0, 1] s. t.

∫ t

0

λd(s)ds ≤ x . (2.54)

The function τd(t, x) is uniquely defined by the solution of the following equation

∫ t

t−τd(t,x)

λd(s)ds = x . (2.55)

Applying the implicit function theorem we can show that τd is continuous w.r.t. the time and space

variables. Let t ∈ ∆0, since w (resp. σ[w], y0, τd) belongs to Crpw (∆0;Rn) (resp. to Crpw (∆0; I),

Clpw ([0, 1] ;Rn), and C0 (∆0 × [0, 1] ;R+)), it follows from (2.53) that y(t, ·) is in Clpw ([0, 1] ;Rn)

for all t ∈ ∆0. This concludes the initial step of the induction.

Suppose for p ≥ 0, w ∈ Crpw (∆p;R
n) and y(t, ·) ∈ Clpw ([0, 1] ;Rn) for all t ∈ ∆p. Tak-

ing y ((p+ 1)δ, ·) as the initial condition of the system and applying the same arguments as

above we prove that w ∈ Crpw (∆p+1;Rn) hence by assumption and using the causality prop-

erty (2.15), (2.16), σ[w] ∈ Crpw (∆p+1; I) is uniquely defined, and y exists on ∆p+1 with y(t, ·)
belongs to Clpw ([0, 1] ;Rn) for all t ∈ ∆p+1,. Thus, we proved by induction that, for each

p ∈ N, w ∈ Crpw (∆p;R
n) and y exists on ∆p and y(t, ·) belongs to Clpw ([0, 1] ;Rn). There-

fore, there exists a unique solution to the switched system (2.1), (2.2), (2.3), (2.13), and (2.14),

and w ∈ Crpw (R+;Rn).

The uniqueness part follows directly from the definition of a solution for the system.

It concludes the proof of Proposition 2.1.

2.4 Switching Rules

2.4.1 Lyapunov Function

In this section, preliminary results on Lyapunov functions are derived. Following [27], the candidate

Lyapunov function that is considered in this chapter is written as, for all y ∈ Clpw ([0, 1] ;Rn),

V (y) =

∫ 1

0

y(x)⊤Qy(x)e−µxdx , (2.56)
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for a given diagonal positive definite matrix Q ∈ R
n×n and a given µ > 0.

Let y be a solution of system (2.1)–(2.3). We shall denote in the following

∀t ∈ R
+ , V = V (y(t, ·)) and V̇ =

d

dt
V (y(t, ·)) . (2.57)

With this notation we are able to state our first lemma, giving an inequality for the time derivative

of V along the solution of the switched system of conservation laws (2.1), (2.2), (2.3), (2.13), and

(2.14). This inequality will be useful to design the switching rules, and to give the proof of global

exponential convergence of the system with them.

Lemma 2.1. The time derivative of the candidate Lyapunov function V along a solution

to (2.1), (2.2), (2.3), (2.13), and (2.14) satisfies

V̇ ≤
(

2f − µλ
)

V + qσ[w](t)(w(t)) , (2.58)

where qi(w) = w⊤
[

G⊤
i QΛGi − e−µQΛ

]

w, with Q a diagonal positive definite matrix in R
n×n.

Proof. The time derivative of V along the solutions of the switched system of conservation laws

(2.1), (2.2), (2.3), (2.13), and (2.14) is

V̇ = 2

∫ 1

0

y(t, x)⊤Q∂ty(t, x)e−µxdx

= −2

∫ 1

0

y(t, x)⊤QΛ(t)∂xy(t, x)e−µxdx+ 2

∫ 1

0

y(t, x)⊤F (t)Qy(t, x)e−µxdx

= −
[

y(t, x)⊤QΛ(t)y(t, x)e−µx
]x=1

x=0
− µ

∫ 1

0

y(t, x)⊤QΛ(t)y(t, x)e−µxdx

+ 2

∫ 1

0

y(t, x)⊤F (t)Qy(t, x)e−µxdx

= y(t, 0)⊤QΛ(t)y(t, 0) − y(t, 1)⊤QΛ(t)y(t, 1)e−µ − µ

∫ 1

0

y(t, x)⊤QΛ(t)y(t, x)e−µxdx

+ 2

∫ 1

0

y(t, x)⊤F (t)Qy(t, x)e−µxdx

= y(t, 1)⊤
[

G⊤
σ[w](t)QΛ(t)Gσ[w](t) −QΛ(t)e−µ

]

y(t, 1) − µ

∫ 1

0

y(t, x)⊤QΛ(t)y(t, x)e−µxdx

+ 2

∫ 1

0

y(t, x)⊤F (t)Qy(t, x)e−µxdx .

Since Q is diagonal positive definite, using (2.10) it holds QΛ(t) ≥ λQ, using (2.12) it holds

fQ ≥ F (t)Q. Thus, using (2.6), (2.8), and (2.12) we have

V̇ ≤
(

2f − µλ
)

∫ 1

0

y(t, x)⊤Qy(t, x)e−µxdx (2.59)

+ y(t, 1)⊤
[

G⊤
σ[w](t)QΛGσ[w](t) −QΛe−µ

]

y(t, 1) , (2.60)

using the notation in (2.13). This concludes the proof of Lemma 2.1.
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Remark 2.3. In the proof of Lemma 2.1 a technical property has been used. In the computation

of the time derivative we have proceeded as the solutions were in C1. Nonetheless, the calculus

remains valid with L2-solutions. It is due to the density of C1-solutions in the set of L2-solutions,

see [6] for a developed explanation. •

2.4.2 Argmin

In this section, we consider the closed-loop dynamics of the switched system of conservation laws

(2.1), (2.2), and (2.3) when using output controller (2.14). Following the idea developed in [49]

and recalling the notation qi in Lemma 2.1, we define the memoryless switching rule

σ[w](t) = arg min
i∈I

qi(w(t)) . (2.61)

The idea of the argmin switching rule is to choose the mode which optimizes the decrease of the

Lyapunov function at any time. So we need a condition which ensures that at any time there exists

a mode for which the system is decreasing.

To study the convergence of the switched system of conservation laws (2.1), (2.2), (2.3), (2.13),

and (2.14) we need the following assumption.

Assumption 2.1. Let Γ :=
{

γ ∈ R
N
∣

∣

∣

∑N
i=1 γi = 1, γi ≥ 0

}

. There exist γ ∈ Γ, a diagonal

definite positive matrix Q and a parameter µ > 0 such that

2f

λ
< µ (2.62)

N
∑

j=1

γj
(

G⊤
j QΛGj − e−µQΛ

)

≤ 0 . (2.63)

Assumption 2.1 implies that there exists a mode i ∈ I such that qi(w(t)) ≤ 0. Thus we can give

our first result of global exponential stabilizability of the system (2.1), (2.2), (2.3), (2.13), and

(2.14) with the argmin switching rule.

Remark 2.4. An important issue is the numerical computation of γ ∈ Γ, µ > 0 and of a diagonal

positive definite matrix Q such that Assumption 2.1 holds. The problem is bilinear in Q, γ and

e−µ and the numerical verification of Assumption 2.1 can be quite complex especially for larger

N , since we need to solve a Bilinear Matrix Inequalities (BMI) in γ, e−µ and Q. A special case

is when N = 2, a solution consists in performing a line search over the parameters γ and µ and,

for each pair (γ, µ), to solve a convex problem in the variables Q written in terms of the Linear

Matrix Inequality (LMI) (2.63). This can be done numerically in polynomial time. It is the

approach taken for the two examples given in Section 2.7. See [106] for a tutorial on LMI and BMI

problems. Moreover, Chapter 3 is dedicated to the resolution of LMIs coming from the Lyapunov

analysis of hyperbolic PDEs. •
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Proposition 2.2. Under Assumption 2.1, system (2.1), (2.2), (2.3), (2.13), and (2.14) with

switching rule (2.61) is such that, as long as the solution exists,

|y(t, ·)|L2((0,1);Rn) ≤ ce−αt
∣

∣y0
∣

∣

L2((0,1);Rn)
, (2.64)

where α > 0 and c > 0.

Proof. Consider the candidate Lyapunov function (2.56). Thanks to Lemma 2.1 and using the

switching rule (2.61) we have, along the solution y,

V̇ ≤ −2αV + qσ[w](t)(w(t)) = −2αV + min
i∈I

qi(w(t)) .

By Assumption 2.1 there exists γ ∈ Γ such that
∑N
j=1 γj

(

G⊤
j QΛGj − e−µQΛ

)

≤ 0. Therefore,

for all t ∈ R
+,
∑N
j=1 γjqj(w(t)) ≤ 0. Moreover, by Assumption 2.1 there exists α > 0 such that

2f − µλ < −2α. Hence for all t ∈ R
+ there exists i ∈ I such that qi(w(t)) ≤ 0, which gives

V̇ ≤ −2αV . Hence V satisfies V ≤ e−2αtV
(

y0
)

. Moreover there exists κ > 0 (e.g. κ could be

the largest eigenvalue of Q) such that Q ≤ κIn. Thus, the inequality V ≤ κe−2αt
∣

∣y0
∣

∣

2

L2((0,1);Rn)
,

holds. In the same manner, there exists ν > 0 (e.g. ν could be the smallest eigenvalue of Q) such

that νIn ≤ Q. Since there exists a θ > 0 such that θ ≤ e−µx ≤ 1 for all x ∈ [0, 1], the inequality

νθ |y|2L2((0,1);Rn) ≤ V holds. Finally, the inequality |y|L2((0,1);Rn) ≤
√

κ
νθ
e−αt

∣

∣y0
∣

∣

L2((0,1);Rn)
holds.

Therefore the switched hyperbolic system (2.1), (2.2), (2.3), (2.13), and (2.14) is globally expo-

nentially stabilizable (taking g(r) =
√

κ
νθ
r) with the argmin strategy. This concludes the proof of

Proposition 2.2.

Remark 2.5. The major drawback of this switching rule is the possibility of a finite time of

existence for the solution, as illustrated by the following example. Let us consider the two transport

equations

∂t

[

y1

y2

]

+

[

1 0

0 1

]

∂x

[

y1

y2

]

= 0 ,

with the boundary matrices

G1 =

[

0.99 −0.99

0 0

]

, G2 =

[

0 0

−0.99 −0.99

]

.

The initial condition is chosen as

y0(x) =

[

f(x)

x

]

, x ∈ [0, 1] ,

where

f(x) =

{

0 if x = 0 ,

x sin
(

1
x

)

if x 6= 0 .
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Assumption 2.1 is checked with Q = I2, µ = 10−3 and γ1 = γ2 = 0.5

2
∑

i=1

0.5
(

G⊤
i QΛGi − e−µQΛ

)

=

[

−0.0189 0

0 −0.0189

]

.

On Figure 2.1 the conic regions corresponding to qi(w) < 0, i = 1, 2 are depicted, giving for the

switching rule (2.61),

σ[w](t) =

{

1 if w1w2 > 0 ,

2 if w1w2 < 0 .

Moreover the system trajectory for t ∈ [0, 1) is depicted on Figure 2.1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Conic regions

Figure 2.1: Conic regions where each individual system is active, and the trajectory of w(t) for
t ∈ [0, 1)

One can see that when the time approaches 1, with the switching rule (2.61) the solution crosses

an infinite number of times the thin overlap region, leading to the Zeno behavior (see [76]), that

is an accumulation of switching event at a particular instant. Thus the solution is not defined for

all positive time but only on [0, 1). •

2.4.3 Hysteresis Switching Rule

The first result shows that under Assumption 2.1, the switched system of conservation laws (2.1),

(2.2), (2.3), (2.13), and (2.14) with the argmin switching rule is globally exponentially stabilizable.

The limitation of this rule is a possible fast switching behavior (see Subsection 2.7 for an illustration

of such behavior), and from a theoretical point of view leading to the absence of solution beyond

a given time. From a practical point of view this fast switching is undesirable. So the goal is to

use strategies to slow down the switching. The first one is the hysteresis strategy.
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First, we will show that under this switching rule and Assumption 2.1 the system is well-posed.

For all t > 0 we denote by σ[w](t−) the limit from the left of t of the value of σ[w](t). Roughly

speaking, it is the value of σ[w] “just before t”.

The strategy is the following

σ[w](t) =







σ[w](t−) if qσ[w](t−)(w(t)) < ε(t) ,

arg min
j∈{1,...,N}

qj(w(t)) if qσ[w](t−)(w(t)) ≥ ε(t) , (2.65)

σ[w](0) = arg min
j∈{1,...,N}

qj(w(0)) , (2.66)

ε̇(t) = −ηε(t) , ε(0) > 0 , (2.67)

where η is such that η > 2α, α = 1
2µλ− f .

Lemma 2.2. Under Assumption 2.1, with the strategy defined in (2.65)–(2.67), if

w ∈ Crpw (R+;Rn) then σ[w] ∈ Crpw (R+; I).

Proof. Let K be a compact subset of R+. Let us show that the number of discontinuities of σ[w]

is finite in K. By hypothesis w has a finite number of discontinuities on K. Let t1, . . . , tM ∈ K

be these times of discontinuity, and t0 and tM+1 are respectively the lower bound and the upper

bound of the interval K.

Pick i ∈ {0, . . . ,M}. We need to estimate the number of discontinuities of σ[w] on each time

interval [ti, ti+1]. We can define w̃ as the continuation of w to the time interval [ti, ti+1] with the

left limit of w in ti+1, that is

w̃(t) = w(t) , if t ∈ [ti, ti+1) ,

w̃(ti+1) = lim
t→t−

i+1

w(t) .

The definition of Crpw (R+;Rn) insures that the left limit of w exists and that w̃ is continuous

on [ti, ti+1]. The number of discontinuities of σ[w] on the time interval [ti, ti+1) is less than or

possibly equal to the number of discontinuities when considering σ [w̃] on [ti, ti+1].

Now observe that on R
n, qk is continuous, as w̃ on [ti, ti+1], thus the functions qk(w̃) are continuous

on the compact [ti, ti+1] and therefore uniformly continuous. Using the fact that there is a finite

number of functions qk (w̃) and the uniform continuity, there exists τ∗
i > 0 such that

∀k ∈ I, ∀ t̂i, ťi ∈ [ti, ti+1] :
∣

∣t̂i − ťi
∣

∣ ≤ τ∗
i ⇒

∣

∣qk
(

w̃
(

t̂i
))

− qk
(

w̃
(

ťi
))∣

∣ ≤ ε (ti+1) .

Due to Assumption 2.1, at a switching time t, qσ[w̃](t) (w̃(t)) ≤ 0, and therefore the parameter τ∗
i

gives a lower bound for the distance between two switches. Thus an upper bound for the maximal

number of switches on [ti, ti+1] is given by

si =
ti+1 − ti

τ∗
i

+ 1 .
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To conclude we get that the number of discontinuities of σ[w] on K is bounded by

S =
M
∑

i=1

si ,

which is finite. Note that the right continuity of σ[w] follows from the strict inequality in the first

line of (2.65). It concludes the proof of Lemma 2.2.

With the above lemma, the following theorem can be stated.

Theorem 2.1. Under Assumption 2.1, system (2.1), (2.2), (2.3), (2.13), and (2.14) with an

initial condition y0 ∈ Clpw ([0, 1] ;Rn) and the switching rule (2.65)–(2.67) is globally exponentially

convergent with α = 1
2µλ− f and g(r) = c

(

r +
√

ε(0)
)

with c > 0.

Proof. The existence and uniqueness of a solution to the system (2.1), (2.2), (2.3), (2.13), and

(2.14) with the switching rule (2.65)–(2.67) is given by Lemma 2.2 and Proposition 2.1. Now to

show that the system is globally exponentially convergent we have to establish relation (2.21).

Thanks to Lemma 2.1 and Assumption 2.1 there exists α > 0 such that the time derivative of V

along the solution of (2.1), (2.2), (2.3), (2.13), and (2.14) is

V̇ ≤ −2αV + qσ[w](t)(w(t)) .

Since the invariant in the argmin with hysteresis switching rule is that qσ[w](t)(w(t)) ≤ ε(t) at any

time t ∈ R
+, it gives

V̇ ≤ −2αV + ε(t) . (2.68)

Then using the Gronwall’s Lemma, one gets

V ≤ e−2αtV
(

y0
)

+ e−2αt

∫ t

0

e2αsε(s)ds . (2.69)

Using the expression of ε it follows

V ≤ e−2αtV
(

y0
)

+
ε(0)

2α− η
e−ηt − ε(0)

2α− η
e−2αt . (2.70)

Letting c = max

{

√

κ
νθ
, 1√

νθ(η−2α)

}

one gets (2.21) with g(r) = c
(

r +
√

ε(0)
)

, and thus the

exponential convergence of (2.1), (2.2), (2.3), (2.13), and (2.14) with the switching rule (2.65)–

(2.67) follows. This concludes the proof of Theorem 2.1.

Remark 2.6. Let us note that the function ε(t) > 0 is essential to have the existence of solution

for all time. Indeed, looking at the example given in Remark 2.5, one can see that the argmin with

hysteresis strategy for which ε(t) = 0 leads to the same problem as for the argmin strategy alone.

•
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2.4.4 Low-Pass Filter Switching Rule

Thanks to Lemma 2.1 and Assumption 2.1 there exists α such that it holds along the solutions to

(2.1), (2.2), (2.3), (2.13), and (2.14)

V̇ ≤ −2αV + qσ[w](t)(w(t)) . (2.71)

Keeping in mind the objective of decreasing the number of switches, a low-pass filter is added to

the switching rule (2.65)–(2.67): instead of imposing that qσ[w](t)(w(t)) ≤ ε(t) at any time t ≥ 0,

we just impose that a weighted averaged value of qσ[w](s)(w(s)) is less than ε(t).

Let us define a function m ∈ Crpw (R+;R) and a switching rule σ[w] such that

m(0) = 0 , (2.72)

lim
τ→t+

m(τ) =

{

m(t) if m(t) < ε(t) ,

0 m(t) = ε(t) ,
(2.73)

σ[w](t) =







σ[w](t−) if m(t) < ε(t) ,

arg min
j∈{1,...,N}

qj(w(t)) if m(t) = ε(t) , (2.74)

σ[w](0) = arg min
j∈{1,...,N}

qj(w(0)) , (2.75)

ε̇(t) = −ηε(t) , ε(0) > 0 , (2.76)

where η is such that η > 2α, α = 1
2µλ − f . On the intervals where m is continuous, the time

derivative of m is the solution of the following Cauchy problem

ṁ(t) = −2αm(t) + qσ[w](tk)(w(t)) , t ∈ [tk, ttk+1
) , (2.77)

m(tk) = 0 . (2.78)

Thus the solution is

m(t) = e−2αt

∫ t

tk

e2αsqσ[w](tk)(w(s))ds , t ∈ [tk, tk+1) . (2.79)

To sum up the control consists in keeping m(t) negative or zero at any time. The motivation for

the choice of the function m comes from Gronwall’s inequality (see Lemma A in the Appendix).

The following lemma holds for the switching rule (2.72)–(2.76).

Lemma 2.3. Under Assumption 2.1, with the strategy (2.72)–(2.76), if w ∈ Crpw (R+;Rn) then

σ[w] ∈ Crpw (R+; I).

Proof. Let K be a compact subset of R+. Let us show that the number of discontinuities of σ[w]

is finite in K. By hypothesis w has a finite number of discontinuities on K. Let t1, . . . , tM ∈ K

be these times of discontinuity, and t0 and tM+1 are respectively the lower bound and the upper

bound of the interval K.

The lines to prove the result are similar to those of the proof of Lemma 2.2. In the same fashion
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we consider the continuation of w, instead of w itself. But for the sake of simplicity we keep w in

our notation.

Pick i ∈ {0, . . . ,M}. Observe that on R
n, qk is continuous, as w on [ti, ti+1], thus the functions

qk(w) are continuous on the compact [ti, ti+1] and therefore uniformly continuous. Using the fact

that there is a finite number of functions qk (w) and the uniform continuity, there exists τ∗
i > 0

such that

∀k ∈ I, ∀ t̂i, ťi ∈ [ti, ti+1] :
∣

∣t̂i − ťi
∣

∣ ≤ τ∗
i ⇒

∣

∣qk
(

w
(

t̂i
))

− qk
(

w
(

ťi
))∣

∣ ≤ ε(ti+1) .

Without loss of generality we can choose τ∗
i such that 1 − 2α ≤ e−2ατ∗

i . Assume t̄ ∈ [ti, ti+1] is a

switching time, hence by Assumption 2.1 it holds qσ[w](t̄)(w(t̄)) ≤ 0, and one gets

∀t̂ ∈
[

t̄, ti+1

]

:
∣

∣t̄− t̂
∣

∣ ≤ τ∗
i ⇒

∣

∣qσ[w](t̄)

(

w
(

t̄
))

− qσ[w](t̄)

(

w
(

t̂
))
∣

∣ ≤ ε(ti+1) .

The last inequality is equivalent to

−ε(ti+1) + qσ[w](t̄)

(

w
(

t̄
))

≤ qσ[w](t̄)

(

w
(

t̂
))

≤ ε(ti+1) + qσ[w](t̄)

(

w
(

t̄
))

.

Since qσ[w](t̄)

(

w
(

t̄
))

≤ 0 one gets

qσ[w](t̄)

(

w
(

t̂
))

≤ ε (ti+1) . (2.80)

With (2.80) one gets

e−2αt̂

∫ t̂

t̄

e2αsqσ[w](t̄) (w(s)) ds ≤ e−2αt̂ε (ti+1)

∫ t̂

t̄

e2αsds , ∀t̂ ∈
[

t̄, t̄+ τ∗
i

]

. (2.81)

From (2.81) it follows

m
(

t̂
)

≤

(

1 − e−2α(t̂−t̄)
)

2α
ε (ti+1) ≤ ε (ti+1) , ∀t̂ ∈ [ti, ti+1] .

Thus, the next switching time after t̄ cannot appear before a time τ∗
i . Then an upper bound for

the maximal number of switches on [ti, ti+1] is given by

si =
ti+1 − ti

τ∗
i

+ 1 .

To conclude we get that the number of discontinuities of σ[w] on K is bounded by

S =

M
∑

i=1

si ,

which is finite. The right continuity of σ[w] follows from the strict inequality in the first line of

(2.74). This concludes the proof of Lemma 2.3.

As in the last strategy we are able to give a result of global exponential convergence with the
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switching rule (2.72)–(2.76).

Theorem 2.2. Under Assumption 2.1, system (2.1), (2.2), (2.3), (2.13), and (2.14) with an

initial condition y0 ∈ Clpw ([0, 1] ;Rn) and the switching rule (2.72)–(2.76) is globally exponentially

convergent with α = 1
2µλ− f and g(r) = c

(

r +
√

ε(0)
)

with c > 0.

Proof. The existence and uniqueness of a solution to the system (2.1), (2.2), (2.3), (2.13), and

(2.14) with the switching rule (2.72)–(2.76) is given by Lemma 2.3 and Proposition 2.1. Now to

show that the system is globally convergent we have to establish relation (2.21). Thanks to Lemma

2.1 the time derivative of V along the solution of the system (2.1), (2.2), (2.3), (2.13), and (2.14)

is given by

V̇ ≤ −2αV + qσ[w](t)(w(t)) .

Thanks to differential form of Gronwall’s Lemma one gets

V ≤ e−2αtV
(

y0
)

+ e−2αt

∫ t

0

e2αsqσ[w](s)(w(s))ds .

Using the linearity of the integral one gets

V ≤ e−2αtV
(

y0
)

+ e−2αt

(

k−1
∑

i=0

∫ ti+1

ti

e2αsqσ[w](ti)(w(s))ds+

∫ t

tk

e2αsqσ[w](tk)(w(s))ds

)

, (2.82)

where the tis are the switching times of σ[w], t lies in a interswitching interval (tk, tk+1). Let us

point out that the number of them is finite thanks to Lemma 2.3. Since

ε(ti+1) = e−2αti+1

∫ ti+1

ti

e2αsqσ[w](ti)(w(s))ds ,

one gets

V ≤ e−2αtV
(

y0
)

+ e−2αt

(

k−1
∑

i=0

e2αti+1ε(ti+1) +

∫ t

tk

e2αsqσ[w](tk)(w(s))ds

)

.

Using the positivity and the continuity of ε, and the switching rule (2.72)–(2.76) we have the

following inequality for all t ∈ (tk, tk+1)

V ≤ e−2αtV
(

y0
)

+ e−2αt

(
∫ tk

0

e2αsε(s)ds+ e2αtε(t)

)

.

Using the positivity of ε one gets

V ≤ e−2αtV
(

y0
)

+ e−2αt

(
∫ tk

0

e2αsε(s)ds+

∫ t

tk

e2αsε(s)ds+ e2αtε(t)

)

,

V ≤ e−2αtV
(

y0
)

+

(

1 +
1

2α− η

)

ε(0)e−ηt − ε(0)

2α− η
e−2αt .

Letting c = max
{

√

κ
νθ
,
√

η−2α+1
νθ(η−2α)

}

one gets (2.21) with g(r) = c
(

r +
√

ε(0)
)

, and thus the

global exponential convergence of (2.1), (2.2), (2.3), (2.13), and (2.14) with the switching rule
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(2.74) follows.

This concludes the proof of Theorem 2.2.

2.5 ISS with respect to Measurement Noise

The switching rules (2.61), (2.65), and (2.74) depend on the value w(t). The natural question

arising in this context is: how does this switching rule react to a measurement noise ? In this

section, we state two results on Input-to-State Stability (ISS). Basically, a system is ISS if for

bounded input, as noise, the state of the system stays bounded. This concept has been originally

introduced in [104] for system of finite dimension. To the best of our best knowledge the first work

dedicated to this notion for hyperbolic PDEs is [96] where an ISS-Lyapunov function has been

introduced for time-varying linear hyperbolic PDEs with distributed errors. We will develop ISS

results for the argmin with hysteresis switching rule and for the argmin, hysteresis with low-pass

filter switching rules.

In order to establish ISS results in presence of measurement noise, let us consider system (2.1),

(2.2), and (2.3) with

σ(t) = σ[w + δ](t) , (2.83)

where w is given by (2.13) as before and δ ∈ Crpw (R+;Rn) is an unknown disturbance. Let us

state the definition of ISS for system (2.1), (2.2), (2.3), (2.13), and (2.83).

Definition 2.5. The switched system (2.1), (2.2), (2.3), (2.13), and (2.83) is ISS if there exist

a positive constant α > 0, a function g : R+ → R
+, and a function h of class K∞, such that, for

all y0 ∈ Clpw ([0, 1] ;Rn) and for all δ ∈ Crpw (R+;R), the solution to (2.1), (2.2), (2.3), (2.13),

and (2.83) exists for all t ∈ R
+ and

|y(t, ·)|L2(0,1;Rn) ≤ e−αtg
(

∣

∣y0
∣

∣

L2((0,1);Rn)

)

+ h
(

|δ|Crpw([0,t];Rn)

)

. (2.84)

Let us consider the switching rule adapted from (2.65)–(2.67)

σ[w + δ](t) =







σ[w + δ](t−) if qσ[w+δ](t−)(w(t) + δ(t)) < −ζ |w (t) + δ (t)|2 + ε(t) ,

arg min
j∈{1,...,N}

qj(w(t) + δ(t)) if qσ[w+δ](t−)(w(t) + δ(t)) ≥ −ζ |w (t) + δ (t)|2 + ε(t) ,

(2.85)

σ[w + δ](0) = arg min
j∈{1,...,N}

qj(w(0) + δ(0)) , (2.86)

ε̇(t) = −ηε(t) , ε(0) > 0 , (2.87)

where ζ, α, and η are positive constants η > 2α, α = 1
2µλ− f . Let us define the parameter

β = sup
t

max
i∈I

‖G⊤
i QΛ(t)Gi − e−µQΛ(t) + ζIn‖ , (2.88)

The following assumption is stated.
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Assumption 2.2. Let Γ :=
{

γ ∈ R
N
∣

∣

∣

∑N
i=1 γi = 1, γi ≥ 0

}

. There exist γ ∈ Γ, a diagonal

definite positive matrix Q and a parameter µ > 0 such that

2f

λ
< µ (2.89)

N
∑

j=1

γj
(

G⊤
j QΛGj − e−µQΛ

)

< 0 . (2.90)

It implies that there exists ζ > 0 such that

N
∑

j=1

γj
(

G⊤
j QΛGj − e−µQΛ

)

≤ −ζIn . (2.91)

This latter Assumption is stronger than Assumption 2.1 by comparing (2.63) with (2.91).

Remark 2.7. Note that β is the supremum of a time-dependent matrix norm. Nonetheless, this

value is finite due to the bounds (2.4) on the matrix Λ. For instance, one has

β ≤ max
i∈I

‖Q‖‖Λ‖‖Gi‖2 + e−µ‖Q‖‖Λ‖ + ζ . (2.92)

•

2.5.1 ISS Stability with the Hysteresis Switching Rule

Let us state the following result with the adapted switching rule (2.85)–(2.87).

Proposition 2.3. Under Assumption 2.2, system (2.1), (2.2), (2.3), (2.13), and (2.83) with an

initial condition y0 ∈ Clpw ([0, 1] ;Rn) and a disturbance δ ∈ Crpw (R+;Rn) with the switching rule

(2.85)–(2.87) is ISS.

Proof. First note that Lemma 2.2 is still valid in the context of the switching rule (2.85)–(2.87)

instead of (2.65)–(2.67), for any δ ∈ Crpw (R+;Rn). Hence the existence and uniqueness of a

solution to the system (2.1), (2.2), (2.3), (2.13), and (2.83) with the switching rule (2.85)–(2.87)

is given by Lemma 2.2 and Proposition 2.1. Due to Lemma 2.1 and Assumption 2.2 the time

derivative of V is given by

V̇ ≤ −2αV + qσ[w+δ](t)(w(t)) . (2.93)

The quadratic term in the right-hand part of (2.93) can be written as

qσ[w+δ](t)(w(t)) =qσ[w+δ](t) (w(t) + δ(t))

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t)) . (2.94)

By Assumption 2.2 and (2.90), (2.85) one gets

qσ[w+δ](t)(w(t)) ≤ − ζ |w(t) + δ(t)|2 + ε(t)
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− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t)) .

Using that (a+ b)
2 ≥ 1

2a
2 − b2, for all a, b in R, one has

qσ[w+δ](t)(w(t)) ≤ − ζ

2
|w(t)|2 + ζ |δ(t)|2 + ε(t)

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t)) .

Using (2.88) one gets

qσ[w+δ](t)(w(t)) ≤ −ζ

2
|w(t)|2 + ζ |δ(t)|2 + ε(t) + β |δ(t)|2 + 2β |δ(t)| |w(t)| . (2.95)

Using the Young’s inequality with the last term in (2.95) one gets

qσ[w+δ](t)(w(t)) ≤
(

β

ψ
− ζ

2

)

|w(t)|2 + (ζ + β + βψ) |δ(t)|2 + ε(t) , (2.96)

with ψ > 0. Letting

ψ =
2β

ζ
, (2.97)

one obtains

qσ[w+δ](t)(w(t)) ≤ (ζ + β + βψ) |δ(t)|2 + ε(t) . (2.98)

Thus, the time-derivative of the candidate Lyapunov function V satisfies

V̇ ≤ −2αV + (ζ + β + βψ) |δ(t)|2 + ε(t) . (2.99)

Using the Gronwall’s Lemma we get

V ≤ e−2αtV
(

y0
)

+ e−2αt

∫ t

0

e2αs
(

(ζ + β + βψ) |δ(s)|2 + ε(s)
)

ds . (2.100)

Hence, the following inequality holds

|y|2L2(0,1;Rn) ≤ κ

νθ
e−2αt

∣

∣y0
∣

∣

2

L2(0,1;Rn)
+

ε(0)

νθ (2α− η)
e−ηt

− ε(0)

νθ (2α− η)
e−2αt +

ζ + β + βψ

2νθα
sup
s∈[0,t]

|δ(s)| . (2.101)

Using the fact that η > 2α, if we let c = max

{

√

κ
νθ
, 1√

νθ(η−2α)

}

one has (2.84) with

g(r) = c
(

r +
√

ε(0)
)

, and h(r) =
√

(ζ+β+βψ)
2νθα r. This concludes the proof of Proposition 2.3.
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2.5.2 ISS Stability with the Low-Pass Filter Switching Rule

Motivated by the idea to insure the stability with respect to measurement noise, we consider system

(2.1), (2.2), (2.3) , (2.13), and (2.83) with the switching rule

m(0) = 0 , (2.102)

lim
τ→t+

m(τ) =

{

m(t) if m(t) < −ζe−2αt
∫ t

tk
e2αs |w(s) + δ(s)|2 ds+ ε(t) ,

0 m(t) = −ζe−2αt
∫ t

tk
e2αs |w(s) + δ(s)|2 ds+ ε(t) ,

(2.103)

σ[w + δ](t) =







σ[w + δ](t−) if m(t) < −ζe−2αt
∫ t

tk
e2αs |w(s) + δ(s)|2 ds+ ε(t) ,

arg min
j∈{1,...,N}

qj (w(t) + δ(t)) if m(t) = −ζe−2αt
∫ t

tk
e2αs |w(s) + δ(s)|2 ds+ ε(t) ,

(2.104)

σ[w + δ](0) = arg min
j∈{1,...,N}

qj (w(0) + δ(0)) , (2.105)

ε̇(t) = −ηε(t) , ε(0) > 0 , , (2.106)

where tk is the last instant before t for which m vanishes and η is such that η > 2α, α = 1
2µλ− f .

On the intervals where m is continuous, the time derivative of m is the solution of the following

Cauchy problem

ṁ(t) = −2αm(t) + qσ[w+δ](tk) (w(t) + δ(t)) , t ∈ [tk, tk+1) , (2.107)

m (tk) = 0 . (2.108)

Thus the solution is

m(t) = e−2αt

∫ t

tk

e2αsqσ[w+δ](s) (w(s) + δ(s)) ds , t ∈ [tk, tk+1) . (2.109)

Let us state the following result.

Proposition 2.4. Under Assumption 2.2, system (2.1), (2.2), (2.3), (2.13), and (2.83) with an

initial condition y0 ∈ Clpw ([0, 1] ;Rn) and a disturbance δ ∈ Crpw (R+;Rn) with the switching

rule (2.102)–(2.106) is ISS.

Proof. First note that Lemma 2.3 is still valid in the context of the switching rule (2.102)–(2.106)

instead of (2.72)–(2.76), for any δ ∈ Crpw (R+;Rn). Hence the existence and uniqueness of a

solution to the system (2.1), (2.2), (2.3), (2.13), and (2.83) with the switching rule (2.102)–(2.106)

is given by Lemma 2.3 and Proposition 2.1. Due to Lemma 2.1 and Assumption 2.2 there exists

α > 0 such that the time derivative of V is given by

V̇ ≤ −2αV + qσ[w+δ](t)(w(t)) .

Thank to differential form of Gronwall’s Lemma one gets

V ≤ e−2αtV
(

y0
)

+ e−2αt

∫ t

0

e2αsqσ[w+δ](s)(w(s))ds . (2.110)
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Using (2.94), relation (2.110) becomes

V ≤ e−2αtV
(

y0
)

+ e−2αt

∫ t

0

e2αsqσ[w+δ](s) (w(s) + δ(s)) ds

− e−2αt

∫ t

0

e2αsδ(s)⊤
(

G⊤
σ[w+δ](s)QΛ(t)Gσ[w+δ](s) − e−µQΛ(t)

)

(2w(s) + δ(s)) ds . (2.111)

Let us denote the second term in the right-hand side of (2.111) by R(t). Using the linearity of the

integral one gets

R(t) = e−2αt

(

k−1
∑

i=0

∫ ti+1

ti

e2αsqσ[w+δ](s) (w(s) + δ(s)) ds+

∫ t

tk

e2αsqσ[w+δ](s)(w(s) + δ(s))ds

)

ds ,

(2.112)

where the tis are the switching times of σ[w + δ], t lies in a interswitching interval (tk, tk+1). Let

us point out that the number of them is finite thank to Lemma 2.3. Since

m (ti+1) = −ζe−2αti+1

∫ ti+1

ti

e2αs |w(s) + δ(s)|2 ds+ ε (ti+1) ,

(2.112) becomes

R(t) = e−2αt

(

k−1
∑

i=0

−ζ
∫ ti+1

ti

e2αs |w(s) + δ(s)|2 ds+ e2αti+1ε (ti+1)

+

∫ t

tk

e2αsqσ[w+δ](s)(w(s) + δ(s))ds

)

= −ζe−2αt

∫ tk

0

e2αs |w(s) + δ(s)|2 ds

+ e−2αt

(

k−1
∑

i=0

e2αti+1ε (ti+1) +

∫ t

tk

e2αsqσ[w+δ](s)(w(s) + δ(s))ds

)

.

Using the positivity and the continuity of ε, and the switching rule (2.102)–(2.106) we have the

following inequality for all t ∈ (tk, tk+1)

R(t) ≤ −ζe−2αt

∫ t

0

e2αs |w(s) + δ(s)|2 ds+ e−2αt

∫ t

0

e2αsε(s)ds .

Hence

V ≤ e−2αtV
(

y0
)

− ζe−2αt

∫ t

0

e2αs |w(s) + δ(s)|2 ds+ e−2αt

∫ t

0

e2αsε(s)ds

− e−2αt

∫ t

0

e2αsδ(s)⊤
(

G⊤
σ[w+δ](s)QΛ(t)Gσ[w+δ](s) − e−µQΛ(t)

)

(2w(s) + δ(s)) ds .

Analogously of the proof of Proposition 2.3 we get

V ≤ e−2αtV
(

y0
)

+ (ζ + β + βψ) e−2αt

∫ t

0

e2αs |δ(s)|2 ds+ e−2αt

∫ t

0

e2αsε(s)ds .
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Using the end of the proof of Proposition 2.3 we get Proposition 2.4.

2.6 Robust Stabilization in presence of Measurement Noise

2.6.1 Robust Stabilization with the Hysteresis Switching Rule

As explained in the previous section the switching rule (2.65)–(2.67) depends on the measurements

at the boundary. The aim of this section is to find some conditions such that the system is

stabilizable with a switching rule despite the measurement noise. The hysteresis properties is used

for robustness as in [93], [94], [97] for non-linear finite-dimensional systems. The switching signal

is supposed to have the form (2.83). Let us state the following result.

Proposition 2.5. Under Assumption 2.2, system (2.1), (2.2), (2.3), (2.13), and (2.83) with an

initial condition y0 ∈ Clpw ([0, 1] ;Rn) and a disturbance δ ∈ Crpw (R+;Rn) satisfying

|δ(t)| ≤ ρ |w(t)| , ∀t ∈ R
+ , (2.113)

for a constant ρ such that

0 < ρ ≤
√

1 +
ζ

β
− 1 , (2.114)

with the switching rule (2.85)–(2.87) is globally exponentially convergent.

Proof. Once again note that Lemma 2.2 is still valid in the context of the switching rule (2.85)–

(2.87) instead of (2.65)–(2.67), for any δ ∈ Crpw (R+;Rn). Hence the existence and uniqueness of

a solution to the system (2.1), (2.2),(2.3), (2.13), and (2.83) with the switching rule (2.85)–(2.87)

is given by Lemma 2.2 and Proposition 2.1. Due to Lemma 2.1 and Assumption 2.2 there exists

α > 0 such that the time derivative of V is given by

V̇ ≤ −2αV + qσ[w+δ](t)(w(t)) . (2.115)

The quadratic term in the right-hand part of (2.115) can be written as

qσ[w+δ](t)(w(t)) = qσ[w+δ](t) (w(t) + δ(t))

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t)) . (2.116)

By Assumption 2.2 and (2.90), (2.85) one gets

qσ[w+δ](t)(w(t)) ≤ − ζ |w(t) + δ(t)|2 + ε(t)

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t)) .

Expanding −ζ |w(t) + δ(t)|2 one has

qσ[w+δ](t)(w(t)) ≤ − ζ |w(t)|2 + ε(t) − ζ |δ(t)|2 − 2ζδ(t)⊤w(t)

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t)) . (2.117)
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Rearranging the three last terms of (2.117) as follows

− ζ |δ(t)|2 − 2ζδ(t)⊤w(t) − δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t)

)

(2w(t) + δ(t))

= −δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t) + ζIn

)

2w(t)

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t) + ζIn

)

δ(t)

= −δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t) + ζIn

)

(2w(t) + δ(t)) ,

we get

qσ[w+δ](t)(w(t)) ≤ − ζ |w(t)|2 + ε(t)

− δ(t)⊤
(

G⊤
σ[w+δ](t)QΛ(t)Gσ[w+δ](t) − e−µQΛ(t) + ζIn

)

(2w(t) + δ(t)) .

(2.118)

Using (2.118), (2.88), and (2.113) we get

qσ[w+δ](t)(w(t)) ≤
(

βρ2 + 2βρ− ζ
)

|w(t)|2 + ε(t) .

In order to have qσ[w+δ](t)(w(t)) ≤ ε(t) we need βρ2 +2βρ−ζ ≤ 0. This expression is a polynomial

in ρ. Computing the discriminant one gets

∆ = 4β2 + 4βζ > 0 . (2.119)

Then there exists two real roots for this polynomial. Since the constant term is negative, the two

roots have opposite sign. Hence there exists ρ such that

0 < ρ ≤
√

1 +
ζ

β
− 1 , (2.120)

for which one has qσ[w+δ](t)(w(t)) ≤ ε(t). The end of the proof follows the proof of Theorem 2.1.

This concludes the proof of Proposition 2.5.

2.6.2 Robust Stabilization with the Low-Pass Filter Switching Rule

As for the hysteresis switching rule a stabilizability result can be stated for the low-pass filter

switching rule using the modified version (2.102)–(2.106). Let us state the following result.

Proposition 2.6. Under Assumption 2.2, system (2.1), (2.2), (2.3), (2.13), and (2.83) with an

initial condition y0 ∈ Clpw ([0, 1] ;Rn) and a disturbance δ ∈ Crpw (R+;Rn) satisfying

|δ(t)| ≤ ρ |w(t)| , ∀t ∈ R
+ , (2.121)

for a constant ρ such that

0 < ρ ≤
√

1 +
ζ

β
− 1 , (2.122)
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with the switching rule (2.102)–(2.106) is globally exponentially convergent.

Proof. First note that Lemma 2.3 is still valid in the context of the switching rule (2.102)–(2.106)

instead of (2.72)–(2.76), for any δ ∈ Crpw (R+;Rn). Hence the existence and uniqueness of a

solution to the system (2.1), (2.2), (2.3), (2.13), and (2.83) with the switching rule (2.102)–(2.106)

is given by Lemma 2.3 and Proposition 2.1. By Assumption 2.2 and the proof of Proposition 2.4

the following inequality holds.

V ≤ e−2αtV
(

y0
)

− ζe−2αt

∫ t

0

e2αs |w(s) + δ(s)|2 ds+ e−2αt

∫ t

0

e2αsε(s)ds

− e−2αt

∫ t

0

e2αsδ(s)⊤
(

G⊤
σ[w+δ](s)QΛ(t)Gσ[w+δ](s) − e−µQΛ(t)

)

(2w(s) + δ(s)) ds .

By the proof of Proposition 2.5 we know that

− e−2αt

∫ t

0

e2αsδ(s)⊤
(

G⊤
σ[w+δ](s)QΛ(t)Gσ[w+δ](s) − e−µQΛ(t)

)

(2w(s) + δ(s)) ds

− ζe−2αt

∫ t

0

e2αs |w(s) + δ(s)|2 ds ≤
(

βρ2 + 2βρ− ζ
)

e−2αt

∫ t

0

e2αs |w(s)|2 ds .

Analogously to the proof of Proposition 2.5, the polynomial βρ2 + 2βρ− ζ in ρ has a positive root

given by

ρ =

√

1 +
ζ

β
− 1 .

Hence for all choice of ρ such that (2.122) holds we get

V ≤ e−2αtV
(

y0
)

+ e−2αt

∫ t

0

e2αsε(s)ds .

The end of the proof follows the proof of Theorem 2.2. This concludes the proof of Proposition 2.6.

2.7 Numerical Experiments

2.7.1 Academic Examples

To illustrate the results develop in this chapter let us consider system (2.1)–(2.3) with two modes

(I = {1, 2}). The initial conditions are selected as the first three elements of an orthonormal basis

of L2
(

(0, 1);R2
)

. More specifically the following three initial conditions

y0
k(x) =

[ √
2 sin((2k − 1)πx)√

2 sin(2kπx)

]

, k = 1, 2, 3, (2.123)

are considered. The matrix of the system (2.1) is given by

Λ(t) = diag (0.5 + 0.05 sin(10t), 0.5 + 0.05 cos(10t)) , t ∈ R
+ . (2.124)
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Thanks to a result of [27], boundary matrices Gi which destabilize the unswitched system must

satisfy ρ(|Gi|) > 11. First, let us illustrate Propositions 2.5 and 2.6. The instability of the system

with the proposed matrices is checked numerically with a Weighted Essentially Non Oscillatory

scheme (see [79]). Boundary matrices G1 and G2 are proposed as

G1 =

[

1.1 0.2

−0.3 0.1

]

, G2 =

[

0.2 0.2

0.1 −1.05

]

. (2.125)

The respective spectrum of |G1| and |G2| is {1.1568; 0.0432} and {0.1771; 1.0729}.

To illustrate our result of robustness let us set ζ = 0.07, µ = 0.01, Q = diag (1, 1.0434). With

γ1 = 0.45 (hence γ2 = 0.55) it is obtained

2
∑

i=1

γi
(

G⊤
i QΛGi − e−µQΛ + ζI2

)

=

[

−0.0375 0.0257

0.0257 −0.0223

]

.

The eigenvalues of the previous matrix are -0.0567 and -0.0031. Therefore it is a symmetric negative

definite matrix, and Assumption 2.2 is satisfied. The computation of β gives 0.4844. One lets the

error margin as the maximum margin allowed by Proposition 2.5, that is ρ = 6.98%.

See Figure 2.2 for the time evolution of the solution with constant control input i = 1 and the

initial condition y0
2 where the instability is observed.

The function ε used in the switching rules (2.85)–(2.87) and (2.102)–(2.106) is chosen to be

ε(t) = 10−3e−t, t ∈ R
+ . (2.126)

The measurement noise is chosen as follows

δ(t) = |w(t)| ρ [cos(t), sin(t)]
⊤
. (2.127)

As it was expected the solution is stabilized when switching rules (2.85)–(2.87) and (2.102)–(2.106)

are applied to the system under measurement noise. Figure 2.3 shows the time evolution of the

two components of the solution with the switching rules (2.85)–(2.87). Numerically the rate of

convergence α is equal to 0.4398.

Let us focus on the special behavior of the three switching rules without measurement noise, that

is δ(t) ≡ 0. One checks that the rule (2.65)–(2.67) gives more switching times with the optimized

µ = 0.2175 than with µ = 0.01, see the third column of Table 2.1. Despite the optimization on

µ, the speed of convergence computed numerically along the solution of (2.1), (2.2), (2.3), (2.13),

and (2.14) is not better with the two first rules (2.61) and (2.65)–(2.67). However the speed of

convergence seems to be larger with the switching rule (2.72)–(2.76) with the optimized µ = 0.2175

than with µ = 0.01.

1For the time-invariant velocity case that is Λ(t) ≡ Λ, one has: if ρ (|G|) < 1 then the system (2.1), (2.2)
is exponentially stable (for instance see [27]). Since the velocity perturbation is “small” it is natural to search
matrices G which do not satisfy the previous condition in order to destabilize the system. For more discussion
about conditions on G see [27].



56 Chapter 2: Switched Hyperbolic PDEs

10

5

t00

0.5

x

4

2

0

-2

1

y
1
(t
,
x
)

10

5

t00

0.5

x

2

1

0

-1

-2

1

y
2
(t
,
x
)

Figure 2.2: Time evolution of the first component y1 (left) and of the second component y2 (right)
of the solution of the unswitched system (2.1)–(2.3) with the active mode i = 1.
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Figure 2.3: Time evolution of the first component y1 (left) and of the second component y2 (right)
of the solution of (2.1), (2.2), (2.3), (2.13), and (2.14) with the switching rule (2.85)–
(2.87) with measurement noise (2.127).
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Argmin Hysteresis Low-pass filter

Initial condition y0
k Exponential Stability.

Lyapunov Function.

Exponential Stability.

Lyapunov Function.

Exponential Stability.

Theoretical upper bound on the speed of convergence: 0.0023 (without optimization on µ)

Number of switches by time unit.

k = 1 2.5 2.1 0.1

k = 2 4.7 3.9 0.1

k = 3 6.2 4.3 0.1

Speed of convergence

k = 1 0.4025 0.4166 0.1082

k = 2 0.4282 0.4442 0.1088

k = 3 0.4378 0.4280 0.1088

Theoretical upper bound on the speed of convergence: 0.0489 (with optimization on µ)

Number of switches by time unit.

k = 1 3.1 2.5 0.1

k = 2 5 4.6 0.1

k = 3 6.5 5.9 0.1

Speed of convergence

k = 1 0.4095 0.4159 0.1489

k = 2 0.4328 0.4371 0.1344

k = 3 0.4274 0.4270 0.1405

Table 2.1: Comparison of the different switching strategies for the example with three initial con-
ditions in a L2

(

(0, 1);R2
)

basis. Performed during 10 units of time.

Finally, let us illustrate Propositions 2.3 and 2.4. Let us assume that the measurement noise is

such that

δ(t) =

{

1 , if t < 5 ,

0 , if t ≥ 5 .
(2.128)

As said above, Assumption 2.2 is satisfied, hence the conclusions of Propositions 2.3 and 2.4 hold.

Figure 2.4 shows the time evolution of the two components of the solution with the switching

rules (2.85)–(2.87). Up to t = 5 the solution is bounded, then once the measurement noise disap-

pears the solution goes to zero as it was expected.
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Figure 2.4: Time evolution of the first component y1 (left) and of the second component y2 (right)
of the solution of (2.1), (2.2), (2.3), (2.13), and (2.14) with the switching rule (2.85)–
(2.87) with measurement noise (2.128).

2.7.2 Saint-Venant Equations for a Network of Open Channels

The previous illustrations were motivated by theoretical objectives. In this section, we introduce

a more physical system. Let us consider a cascade of M canal reaches. Each reach is a one-

dimensional pool with a rectangular cross-section, a unit width and a zero slope. Moreover we

suppose that each reach has the same length L. Besides, the friction effects due to the walls are

neglected. The dynamics of the system in each reach is then given by the Saint-Venant equations

presented in Subsection 1.2.3.

Water

0 L

H

Controllers

x

Figure 2.5: Illustration of the multi-canal example.

The equations for each pool are written as

∂t

[

Hi(t, x)

Vi(t, x)

]

+ ∂x

[

Hi(t, x)Vi(t, x)
V 2

i (t,x)
2 + gHi(t, x)

]

= 0 , x ∈ (0, L) , i = 1, . . . ,M , (2.129)

where Hi and Vi denoted respectively the water depth and the velocity in the reach i. Moreover
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the flow-rate in these pools can be defined by

Qi(t, x) = Hi(t, x)Vi(t, x) , i = 1, . . . ,M . (2.130)

In order to have a linear hyperbolic system in the form (2.1)–(2.3), we linearized the system around

a steady-state and made the system dimensionless in the space variable, see Subsection 1.2.3. A

steady-state solution is a constant solution

Hi(t, x) = H∗
i , Vi(t, x) = V ∗

i , i = 1, . . . ,M , ∀t ∈ R
+ , ∀x ∈ [0, L] .

The steady-state flow is assumed to be subcritical or fluvial that is

gH∗
i − V ∗2

i > 0 .

The system is linearized around these steady states (see Subsection 1.2.3), hence the considered

system is a 2M × 2M linear hyperbolic system

∂ty + Λ∂xy = 0 , (2.131)

where Λ = diag (λ1, . . . , λ2M).

2.7.2.1 Boundary Conditions

System (2.131) is subject to a set of boundary conditions, as in [8]. First of all there are M − 1

conditions which express the flow conservation between the pools

Hi(t, 1)Vi(t, 1) = Hi+1(t, 0)Vi+1(t, 0) , ∀t ∈ R
+ , i = 1, . . . ,M − 1 . (2.132)

Then one adds a condition which imposes the inflow rate

H1(t, 0)V1(t, 0) = Q0(t) . (2.133)

In the following we impose a constant inflow rate, that is Q0(t) = Q∗ = H∗
1V

∗
1 . The last M

boundary conditions are given by the gate operations. We are considering underflow sluice gates

with corresponding gate openings uji for reach i ∈ {1, . . . ,M} in mode j ∈ I. The discharge

relationship is given by

Hi(t, 1)Vi(t, 1) = u
j
iµ0l

√

2g (Hi(t, 1) −Hi+1(t, 0)) , i = 1, . . . ,M − 1 , (2.134)

where µ0 is a positive constant coefficient and l is the channel width (here l = 1 m). For the last

gate we have

HM(t, 1)VM(t, 1) = u
j
Mµ0l

√

2g (HM(t, 1) −Hdown) , (2.135)



60 Chapter 2: Switched Hyperbolic PDEs

where Hdown > 0 denotes the constant downstream water level. In the Riemann coordinates,

boundary conditions (2.134) and (2.135) are equivalent to

yi+M(t, 1) = −kji yi(t, 1) , i = 1, . . . ,M , j = 1, . . . , N , (2.136)

for a suitable choice of the control actions uji (t),

u
j
i (t) =

Hi(t, 1)

(

(

1−kj

i

1+kj

i

)

√

g
H∗

i

(Hi(t, 1) −H∗
i ) + V ∗

i

)

µ0l
√

2g (Hi(t, 1) −Hi+1(t, 0))
, i = 1, . . . ,M − 1 , (2.137)

u
j
M(t) =

HM(t, 1)

(

(

1−kj

M

1+kj

M

)

√

g
H∗

M

(HM(t, 1) −H∗
M) + V ∗

M

)

µ0l
√

2g (HM(t, 1) −Hdown)
. (2.138)

The values kji 6= −1 are tuning parameters. Obviously the control actions are well defined only

if Hi(t, 1) > Hi+1(t, 0) for all i = 1, . . . ,M − 1 and HM(t, 1) > Hdown. The linearization of the

boundary conditions provided N matrices such that

[

y+(t, 0)

y−(t, 1)

]

=

[

G++
j G+−

j

G−+
j G−−

j

][

y+(t, 1)

y−(t, 0)

]

, t ∈ [tj , tj+1) . (2.139)

Denote Gj =

[

G++
j G+−

j

G−+
j G−−

j

]

. The matrices G−+
j and G−−

j are given by conditions (2.136) as

G−+
j = diag {−ki, i = 1, . . . ,M} , G−−

j = 0 , j = 1, . . . , N . (2.140)

The conditions (2.132) and (2.133) give the following expression for the matrices G+−
j

G+−
j = diag

{

λi+M

λi
, i = 1, . . . ,M

}

, j = 1, . . . , N . (2.141)

Finally, the matrices G++
j are obtained thanks to the conditions (2.132) and (2.136) as

G++
j [i+ 1, i] =

(

λi + k
j
iλi+M

)

λi+1

√

H∗
i

H∗
i+1

and 0 elsewhere , i = 1, . . . ,M . (2.142)

2.7.2.2 Simulation Experiments

The switched strategies developed in this chapter are now tested with some numerical simulations

in the case presented above. To this end, we consider two pools whose parameters are L = 1000 m,

width l = 1 m, Hdown = 0.2 m, µ0 = 0.4, (H∗
1 , H

∗
2 ) = (2.5, 1) m and Q∗ = 1 m3.s−1. The initial

conditions are, for x ∈ [0, L], (H1(0, x), H2(0, x)) = (4, 1.4) m, Q(0, x) = 2 m3.s−1. There are two

modes. The control gains associated to each mode are
(

k1
1, k

1
2

)

= (1, 0.2) and
(

k2
1, k

2
2

)

= (0.2, 1).

Assumption 2.1 is satisfied with µ = 0.775, Q = 103diag (1.448, 0.001, 2.674, 0.001) and γ1 = 0.95.

The Saint-Venant equations are integrated numerically using the same scheme as in the Subsec-
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tion 2.7.1. In Figure 2.6, the evolution of the function V is represented for the argmin and the

argmin with hysteresis switching rules, with the constant mode σ(t) = 1 and with the constant

mode σ(t) = 2. In this figure, we can observe that the switching strategies stabilize the system,

and more importantly seem to improve the convergence of the system to the desired steady-state.

Moreover, the switching signal for the argmin with hysteresis switching rule is displayed. It can

be observed that the system keeps the mode 1 during the first 1200 s, and then starts generating

switches. Numerically, we observe that this behavior corresponds to the choice of stabilizing the

first pool then the second one. Indeed the mode i = 1 is the most efficient to stabilize the first

pool. The argmin with hysteresis and filter keeps the mode 2.
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Figure 2.6: Evolution of the function V (semilog scale) and of σ[w] for the argmin with hysteresis
switching rule. Legend: square marker for constant mode σ(t) = 1, star marker for
constant mode σ(t) = 2, circle marker for the argmin with hysteresis switching rule
and diamond marker for the argmin switching rule.
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3 • Trajectory Generation and PI

Control

I
n this chapter, we consider the problems of trajectory generation and tracking

for general 2×2 systems of first-order linear hyperbolic PDEs with anti-collocated

boundary input and output. We solve the trajectory generation problem via backstep-

ping. The reference input, which generates the desired output, incorporates integral

operators acting on advanced and delayed versions of the reference output with kernels

which were derived by Vazquez, Krstic, and Coron for the backstepping stabilization

of 2 × 2 linear hyperbolic systems. We apply our approach to a wave PDE with

indefinite in-domain and boundary damping. For tracking the desired trajectory, we

employ a PI control law on the tracking error of the output. We prove exponential

stability of the closed-loop system, under the proposed PI control law, when the pa-

rameters of the plant and the controller satisfy certain conditions, by constructing

a novel “non-diagonal” Lyapunov function. We demonstrate that the proposed PI

control law compensates in the output the effect of in-domain and boundary distur-

bances. We show that in presence of compatibility conditions of the initial condition

with the boundary conditions and under assumption on the smoothness of this latter

one, the disturbance in the output is rejected in C0-norm. We illustrate our results

with numerical examples.

This work is the result of a collaboration with Nikolaos Bekiaris-Liberis during

a research stay at the University of California at Berkeley in the team of Professor

Alexandre M. Bayen. A paper related to some of these materials has been accepted

for the 2015 European Control Conference (ECC) [69], and a thorough version has

been submitted for a publication in Systems & Control Letters [67].
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3.1 Problem Statement and Existing Results

In this chapter, we are concerned with the trajectory generation and tracking problems for general

2 × 2 systems of first-order linear hyperbolic PDEs

∂ty1(t, x) + ε1(x)∂xy1(t, x) = c1(x)y1(t, x) + c2(x)y2(t, x) (3.1)

∂ty2(t, x) − ε2(x)∂xy2(t, x) = c3(x)y1(t, x) + c4(x)y2(t, x) , (3.2)

with anti-collocated boundary input and output

y1(t, 0) = qy2(t, 0) (3.3)

y2(t, 1) = S(t) (3.4)

z(t) = y2(t, 0) , (3.5)

where t ∈ R
+ is the time variable, x ∈ [0, 1] is the spatial variable, z is the output of the system,

and S is the control input. The functions ε1, ε2 belong to C2 ([0, 1] ;R) and satisfy ε1(x) > 0,

ε2(x) > 0, for all x ∈ [0, 1], the functions ci, i = 1, 2, 3, 4 belong to C1([0, 1];R), and q ∈ R. The

purpose is to construct the control input S(t) such that the output y2(t, 0) follows zr(t).

The motion planning problem has been solved in [40] and [89] for a water-tank system, that is a

moving tank containing a fluid whose dynamics is given by the Saint-Venant equations. In [47], the

motion planning is solved for a reaction-advection-diffusion PDE describing a fixed-bed reactor.

The problem is tackled by writing the solution X as a serie expansion, that is

X(t, x) =

∞
∑

i=0

ai(t)
xi

i!
. (3.6)

It is also the approach used in [72] for the heat equation, see also [29] for a more general result.

In [88], the motion planning for the wave equation is solved. It described the motion of a trolley

carrying a fixed length heavy chain to which a load may be attached. These references have

in common to use the flatness approach introduced in [46] for the finite dimensional case and

generalized for the infinite dimensional case by the former references. To give an idea of this

notion let us describe the finite dimensional case. In [81], we can find this description: given a

system with states a ∈ R
n, and inputs b ∈ R

m the system is said to be flat if we can find outputs

c ∈ R
m written as

c = h
(

a, b, ḃ, . . . , b(r)
)

, (3.7)

such that

a = φ
(

c, ċ, . . . , c(q)
)

b = α
(

c, ċ, . . . , c(q)
)

.

We will see later that the construction of the open-loop control to solve our problem follows the

flatness description.

The second aspect of this chapter is the disturbance rejection. Algorithms for disturbance rejection
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in 2 × 2 hyperbolic systems are recently developed. In [1], backstepping is used to construct the

control and reject the disturbance at the boundary. In [3], the previous result is generalized for the

disturbance rejection at an arbitrary place in the domain within a finite time. In [10], a spectral

analysis is led to derive some conditions for the construction of a PI-control for a density-flow

system that is

∂tρ(t, x) + ∂xq(t, x) = 0 (3.8)

∂tq(t, x) + λ1λ2∂xρ(t, x) + (λ1 − λ2) ∂xq(t, x) = 0 , (3.9)

where ρ(t, x) and q(t, x) represent respectively the density and the flow at time t and location

x ∈ [0, L], λ1 and λ2 are the characteristic velocities of the system. In [105], sliding-mode control

is used for a spatially-varying 2×2 linear hyperbolic system. Indeed, sliding-mode is now appearing

for infinite dimensional case (see, for instance, [84]). Finally, in [39], PI controller for the Saint-

Venant equations is derived by a semi-group approach. The Lyapunov-based output-feedback

control with integral action of a 2 × 2 linear hyperbolic system of the form (3.8), (3.9) is analyzed

in [38]. The effectiveness of the method is validated for the regulation of river with experiments

on a micro-channel. Our result differs from the results in [10], [39], [38] in that we employ PI

control on an output of the system in the Riemann coordinates and we construct a non-diagonal

Lyapunov function for proving the closed-loop stability. An integral action is considered for the

tracking issue for 2 × 2 hyperbolic systems of Lotka-Volterra type in [85]. The integral action is

“filtered” to prove the exponential stability thanks to a diagonal Lyapunov function. Nonetheless,

this filtering does not allow to prove that the disturbances are rejected contrary to what we will

do later in this chapter.

We solve the motion planning problem for system (3.1)–(3.5) employing backstepping (Section

3.2). Specifically, we start from a simple transformed system, namely, a cascade of two first-order

hyperbolic PDEs, for which the motion planning problem can be trivially solved. We then apply

an inverse backstepping transformation to derive the reference trajectory and reference input for

the original system.

Our approach is different from the one in [108], [28], in that we use backstepping for trajectory gen-

eration rather than stabilization, and from the one in [89], in that we employ a different conceptual

idea (backstepping instead of series expansion solution as mentioned above) to a different class of

systems. The idea of the backstepping-based trajectory generation for PDEs, which was conceived

in [66], is applied to a beam PDE in [103] and the Navier-Stokes equations in [19], and is recently

extended to general n× n linear hyperbolic systems in [63]. We apply this methodology to a wave

PDE with indefinite in-domain and boundary damping by transforming (see, for instance, [12]) the

wave PDE to a 2 × 2 linear hyperbolic system coupled with a first-order ODE (Section 3.3).
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3.2 Trajectory Generation: Backstepping-based approach

Defining the change of coordinates (see, for example, [5])

u(t, x) = χ1(x)y1(t, x) (3.10)

v(t, x) = χ2(x)y2(t, x) , (3.11)

where

χ1(x) = exp

(

−
∫ x

0

c1(s)

ε1(s)
ds

)

(3.12)

χ2(x) = exp

(
∫ x

0

c4(s)

ε2(s)
ds

)

(3.13)

χ(x) =
χ1(x)

χ2(x)
, (3.14)

system (3.1)–(3.5) is transformed into the following system

∂tu(t, x) + ε1(x)∂xu(t, x) = γ1(x)v(t, x) (3.15)

∂tv(t, x) − ε2(x)∂xv(t, x) = γ2(x)u(t, x) , (3.16)

with

γ1(x) = χ(x)c2(x) (3.17)

γ2(x) = χ−1(x)c3(x) . (3.18)

The boundary conditions become

u(t, 0) = qv(t, 0) (3.19)

v(t, 1) = U(t) , (3.20)

where the original control variable satisfies

U = χ2(1)S , (3.21)

and the output becomes

v(t, 0) = z(t) . (3.22)

The trajectory generation problem is solved by the following theorem.

Theorem 3.1. Let yr ∈ C1(R) be uniformly bounded. The functions

ur(t, x) = qyr (t− Φ1(x)) +

∫ x

0

f (ξ)

ε1 (ξ)
yr (t− Φ1(x) + Φ1(ξ)) dξ +

∫ x

0

Lαβ (x, ξ) yr (t+ Φ2(ξ)) dξ

+ q

∫ x

0

Lαα(x, ξ)yr(t− Φ1(ξ))dξ

+

∫ x

0

Lαα (x, ξ)

∫ ξ

0

f (ζ)

ε1(ζ)
yr (t− Φ1(ξ) + Φ1(ζ)) dζdξ (3.23)
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vr(t, x) = yr(t+ Φ2(x)) + q

∫ x

0

Lβα(x, ξ)yr (t− Φ1(ξ)) dξ +

∫ x

0

Lββ(x, ξ)yr (t+ Φ2(ξ)) dξ

+

∫ x

0

Lβα(x, ξ)

∫ ξ

0

f (ζ)

ε1(ζ)
yr (t− Φ1(ξ) + Φ1(ζ)) dζdξ (3.24)

Ur(t) = yr (t+ Φ2(1)) + q

∫ 1

0

Lβα(1, ξ)yr (t− Φ1(ξ)) dξ +

∫ 1

0

Lββ(1, ξ)yr (t+ Φ2(ξ)) dξ

+

∫ 1

0

Lβα(1, ξ)

∫ ξ

0

f (ζ)

ε1(ζ)
yr (t− Φ1(ξ) + Φ1(ζ)) dζdξ , (3.25)

where

Φ1(x) =

∫ x

0

1

ε1(s)
ds (3.26)

Φ2(x) =

∫ x

0

1

ε2(s)
ds (3.27)

f(x) =

{

ε2(0)Kuv(x, 0) , if q = 0

0 , if q 6= 0 ,
(3.28)

and Lαα, Lαβ, Lβα, Lββ, Kuv are the solutions of the following equations

ε2(x)Lβαx (x, ξ) − ε1(ξ)Lβαξ (x, ξ) = ε′
1(ξ)Lβα(x, ξ) − γ2(x)Lαα(x, ξ) (3.29)

ε2(x)Lββx (x, ξ) + ε2(ξ)Lββξ (x, ξ) = −ε′
2(ξ)Lββ(x, ξ) − γ2(x)Lαβ(x, ξ) (3.30)

ε1(x)Lααx (x, ξ) + ε1(ξ)Lααξ (x, ξ) = −ε′
1(ξ)Lαα(x, ξ) + γ1(x)Lβα(x, ξ) (3.31)

ε1(x)Lαβx (x, ξ) − ε2(ξ)Lαβξ (x, ξ) = ε′
2(ξ)Lαβ(x, ξ) + γ1(x)Lββ(x, ξ) (3.32)

ε1(x)Kuu
x (x, ξ) + ε1(ξ)Kuu

ξ (x, ξ) = −ε′
1(ξ)Kuu(x, ξ) − γ2(x)Kuv(x, ξ) (3.33)

ε1(x)Kuv
x (x, ξ) − ε2(ξ)Kuv

ξ (x, ξ) = ε′
2(ξ)Kuv(x, ξ) − γ1(x)Kuu(x, ξ) , (3.34)

with the boundary conditions

Lβα(x, x) = − γ2(x)

ε1(x) + ε2(x)
(3.35)

Lαα(x, 0) =

{

h1(x) , if q = 0
ε2(0)
qε1(0)L

αβ(x, 0) , if q 6= 0
(3.36)

Lββ(x, 0) =

{

1
ε2(0)

∫ x

0
Lβα(x, ξ)f(ξ)dξ , if q = 0

qε1(0)
ε2(0) L

βα(x, 0) , if q 6= 0
(3.37)

Lαβ(x, x) =
γ1(x)

ε1(x) + ε2(x)
(3.38)

Kuu(x, 0) = h2(x) (3.39)

Kuv(x, x) =
γ1(x)

ε1(x) + ε2(x)
, (3.40)

where h1, h2 ∈ C1 ([0, 1]) are arbitrary, are uniformly bounded and solve the boundary value problem

(3.15), (3.16), (3.19), (3.20). In particular, vr(t, 0) = yr(t), for t ≥ 0.

Before proving Theorem 3.1 we make the following observation, which is also helpful in under-
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standing better the proof strategy of Theorem 3.1.

Remark 3.1. The approach for the trajectory generation introduced here is inspired from back-

stepping. Consider the following system

αt(t, x) + ε1(x)αx(t, x) − f(x)β(t, 0) = 0 (3.41)

βt(t, x) − ε2(x)βx(t, x) = 0 , (3.42)

with boundary condition

α(t, 0) = qβ(t, 0) , (3.43)

which follows by directly applying the backstepping transformation

α(t, x) = u(t, x) −
∫ x

0

Kuu (x, ξ)u (t, ξ) dξ −
∫ x

0

Kuv (x, ξ) v (t, ξ) dξ (3.44)

β(t, x) = v(t, x) −
∫ x

0

Kvu (x, ξ)u (t, ξ) dξ −
∫ x

0

Kvv (x, ξ) v (t, ξ) dξ , (3.45)

where the kernels Kuu, Kuv, Kvu, Kvv are given in [108], to system (3.15), (3.16), and (3.19). It

is shown that the functions

α(t, x) = qyr(t− Φ1(x)) +

∫ x

0

f (ξ)

ε1 (ξ)
yr (t− Φ1(x) + Φ1(ξ)) dξ (3.46)

β(t, x) = yr(t+ Φ2(x)) , (3.47)

where Φ1 and Φ2 are defined in (3.26) and (3.27), respectively, satisfy (3.41)–(3.43) with

β(t, 1) = yr (t+ Φ2(1)) (3.48)

and, in particular, β(t, 0) = yr(t). Using the inverse backstepping transformations introduced

in [108]

u(t, x) = α(t, x) +

∫ x

0

Lαα(x, ξ)α(t, ξ)dξ +

∫ x

0

Lαβ(x, ξ)β(t, ξ)dξ (3.49)

v(t, x) = β(t, x) +

∫ x

0

Lβα(x, ξ)α(t, ξ)dξ +

∫ x

0

Lββ(x, ξ)β(t, ξ)dξ , (3.50)

and relations (3.46), (3.47) one can conclude that the functions ur, vr, and Ur = vr(1) solve the

trajectory generation problem for system (3.15), (3.16), (3.19)–(3.22).

Note that the present approach cannot be directly applied to cases where ε1(x) or ε2(x) vanish for

some x ∈ [0, 1]. This is evident, for instance, from (3.37) which would imply that the kernel Lββ

of the open-loop control law Ur may become infinity for all x ∈ [0, 1]. •

Proof. We first consider the case q 6= 0. Note that since ε1, ε2 ∈ C2([0, 1]) with ε1(x), ε2(x) > 0,

for all x ∈ [0, 1] and γ1, γ2 ∈ C1([0, 1]), system (3.29)–(3.38) has a unique solution with Lαα, Lαβ ,

Lβα, Lββ ∈ C1(T ) where T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1} [28]. Hence, from (3.23)–(3.25) and the

uniform boundedness of yr it follows that ur, vr, and Ur are bounded for all t ≥ 0 and x ∈ [0, 1].
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Taking the time and space derivatives of ur we get

urt + ε1(x)urx = q

∫ x

0

Lαα(x, ξ)yr ′(t− Φ1(ξ))dξ +

∫ x

0

Lαβ(x, ξ)yr ′(t+ Φ2(ξ))dξ

+ ε1(x)

∫ x

0

Lαβx (x, ξ)yr (t+ Φ2(ξ)) dξ + qε1(x)

∫ x

0

Lααx (x, ξ)yr (t− Φ1(ξ)) dξ

+ ε1(x)Lαβ(x, x)yr (t+ Φ2(x)) + qε1(x)Lαα(x, x)yr (t− Φ1(x)) . (3.51)

Integrating by parts the first two integrals we get

urt + ε1(x)urx = q

∫ x

0

(

ε1(x)Lααx (x, ξ) + ε1(ξ)Lααξ (x, ξ) + ε′
1(ξ)Lαα(x, ξ)

)

yr(t− Φ1(ξ))dξ

+

∫ x

0

(

ε1(x)Lαβx (x, ξ) − ε2 (ξ)Lαβξ (x, ξ) − ε′
2 (ξ)Lαβ(x, ξ)

)

yr(t+ Φ2(ξ))dξ

+
(

qε1(0)Lαα(x, 0) − ε2(0)Lαβ(x, 0)
)

yr(t)

+ (ε1(x) + ε2(x))Lαβ(x, x)yr(t+ Φ2(x)) . (3.52)

Due to the fact that Lαβ and Lαα are the solutions of (3.31) and (3.32) with the boundary

conditions (3.36) and (3.38) one gets, by using (3.24), that ur satisfies (3.15). The proof that vr

satisfies (3.16) follows analogously. Setting x = 0 in (3.23), (3.24) and using (3.26), (3.27), we get

that ur and vr satisfy (3.19). Setting x = 1 in (3.24) it follows that (3.25) satisfies (3.20). Setting

in (3.24) x = 0 and using (3.27) we get vr(0, t) = yr(t).

Let us consider next the case q = 0. First observe that the PDEs (3.29), (3.31) with boundary

conditions (3.35), (3.36), for the kernels Lαα and Lβα are decoupled, and hence, Lαα and Lβα

are well-defined [28]. Hence, since f satisfies (3.28) and Kuv, Kuu are well-defined [28], one can

conclude that Lαβ and Lββ are well-defined as well.

Taking the time and space derivatives of ur we get

urt + ε1(x)urx = f(x)yr(t) +

∫ x

0

Lαα(x, ξ)

∫ ξ

0

f(ζ)

ε1(ζ)
yr

′ (t− Φ1(ξ) + Φ1(ζ)) dζdξ

+

∫ x

0

Lαβ(x, ξ)yr ′(t+ Φ2(ξ))dξ

+ ε1(x)Lαα(x, x)

∫ x

0

f(ζ)

ε1(ζ)
yr(t− Φ1(x) + Φ1(ζ))dζ

+ ε1(x)Lαβ(x, x)yr(t+ Φ2(x)) + ε1(x)

∫ x

0

Lαβx (x, ξ)yr(t+ Φ2(ξ))dξ

+ ε1(x)

∫ x

0

Lααx (x, ξ)

∫ ξ

0

f(ζ)

ε1(ζ)
yr(t− Φ1(ξ) + Φ1(ζ))dζdξ . (3.53)

Integrating by parts the first two integrals we get

urt + ε1(x)urx =

∫ x

0

(

ε1(x)Lααx (x, ξ) + ε1(ξ)Lααξ (x, ξ) + ε′
1(ξ)Lαα(x, ξ)

)

×
∫ ξ

0

f(ζ)

ε1(ζ)
yr(t− Φ1(ξ) + Φ1(ζ))dζdξ

+

∫ x

0

(

ε1(x)Lαβx (x, ξ) − ε2(ξ)Lαβξ (x, ξ) − ε′
2(ξ)Lαβ(x, ξ)

)

yr(t+ Φ2(ξ))dξ
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+ (ε1(x) + ε2(x))Lαβ(x, x)yr(t+ Φ2(x))

+ yr(t)

(

f(x) +

∫ x

0

Lαα(x, ξ)f(ξ)dξ − ε2(0)Lαβ(x, 0)

)

. (3.54)

Using (3.24), (3.31), (3.32), and (3.38) one can conclude that ur satisfies (3.15) if f satisfies

f(x) = ε2(0)Lαβ(x, 0) −
∫ x

0

Lαα(x, ξ)f(ξ)dξ . (3.55)

This fact can been shown as follows. The inverse of the backstepping transformation (3.44), (3.45)

is uniquely defined and has the form (3.49), (3.50) (see, for example, [62]). Hence, substitut-

ing (3.44), (3.45) in (3.49), (3.50) we get

∫ x

0

(Kuu(x, ξ) − Lαα(x, ξ))u(ξ, t) +
(

Kuv(x, ξ) − Lαβ(x, ξ)
)

v(t, ξ)dξ

+

∫ x

0

∫ ξ

0

((

Lαα(x, ξ)Kuu(ξ, ζ) + Lαβ(x, ξ)Kvu(ξ, ζ)
)

u(t, ζ)

+
(

Lαα(x, ξ)Kuv(ξ, ζ) + Lαβ(x, ξ)Kvv(ξ, ζ)
)

v(t, ζ)
)

dζdξ = 0 . (3.56)

Performing a change in the order of integration in the second integral of (3.56) and using the fact

that (3.56) holds for all u and v, one obtains

Kuv(x, ξ) = Lαβ(x, ξ) −
∫ x

ξ

(

Lαα(x, s)Kuv(s, ξ) + Lαβ(x, s)Kvv(s, ξ)
)

ds . (3.57)

Setting ξ = 0 in (3.57), multiplying (3.57) by ε2(0), and using the facts that Kvv(x, 0) = 0 for all

x ∈ [0, 1] (see relation (31) in [108]) and that f is defined by (3.28), we get that f satisfies (3.55)

for q = 0. The rest of the proof is similar to the case q 6= 0.

3.3 Application to a Wave PDE with Indefinite In-Domain

and Boundary Damping

Let us consider system

∂ttw(t, x) = ε(x)∂xxw(t, x) + h(x)∂tw(t, x) + b(x)∂xw(t, x) (3.58)

∂xw(t, 0) = −g∂tw(t, 0) (3.59)

∂xw(t, 1) = W (t) , (3.60)

with g 6=
{

1√
ε(0)

,− 1√
ε(0)

}

, h, b ∈ C1([0, 1];R), and ε ∈ C2 ([0, 1];R) with ε(x) > 0, for all

x ∈ [0, 1]. The objective is to make w(t, 0) to track a reference trajectory, say, ζ(t), which belongs

to C2(R;R). Let us define the output of the system as

ψ(t) = w(t, 0) .
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With the change of variables

y1(t, x) =
1 −

√

ε(0)g

1 +
√

ε(0)g

(

∂tw(t, x) −
√

ε(x)∂xw(t, x)
)

y2(t, x) = ∂tw(t, x) +
√

ε(x)∂xw(t, x)

S(t) =
√

ε(1)W (t) + ∂tw(t, 1) ,

system (3.58)–(3.60) is rewritten as (3.1)–(3.5) where

z(t) =
(

1 −
√

ε(0)g
)

ψ̇(t)

ε1(x) =
√

ε(x)

ε2(x) =
√

ε(x)

q = 1

c1(x) =
h(x)

2
− b(x)

2
√

ε(x)
+

ε′(x)

4
√

ε(x)

c2(x) = mc4(x)

c3(x) =
1

m
c1(x)

c4(x) =
h(x)

2
+

b(x)

2
√

ε(x)
− ε′(x)

4
√

ε(x)

m =
1 −

√

ε(0)g

1 +
√

ε(0)g
,

together with the integrator ψ̇(t) = 1

1−
√
ε(0)g

y2(t, 0). Applying Theorem 3.1 we get the following

reference input

W r(t) =
1

2
√

ε(1)

(

(

1 −
√

ε(0)g
)

exp

(

−
∫ 1

0

c4(s)

ε2(s)
ds

)

(

ζ̇ (t+ Φ2(1))

+

∫ 1

0

Lβα(1, ξ)ζ̇ (t− Φ1(ξ)) dξ +

∫ 1

0

Lββ(1, ξ)ζ̇ (t+ Φ2(ξ)) dξ

)

−
(

1 +
√

ε(0)g
)

exp

(
∫ 1

0

c1(s)

ε1(s)
ds

)

(

ζ̇ (t− Φ1(1))

+

∫ 1

0

Lαα(x, ξ)ζ̇ (t− Φ1(ξ)) dξ +

∫ 1

0

Lαβ(x, ξ)ζ̇ (t+ Φ2(ξ)) dξ

))

.

Let us illustrate our trajectory generation methodology with a wave PDE of the form (3.58)–(3.60).

We choose the parameters of the system as

ε = 1 (3.61)

h = 1 (3.62)

b = −1 (3.63)

g = 0 . (3.64)
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The reference for the output is chosen as ζ(t) = sin(3t).

Let us find an explicit form for the kernel Lαβ , Lβα, Lαα, and Lββ . Let us proceed by a change of

variables (see for instance [107]). Letting

Gαα(x, ξ) = e

(

c1
ε1

+
c4
ε2

)(

ε2x−ε2ξ

ε1+ε2

)

Lαα(x, ξ)

Gβα(x, ξ) = e
−
(

c1
ε1

+
c4
ε2

)(

ε1x+ε2ξ

ε1+ε2

)

Lβα(x, ξ)

Gββ(x, ξ) = e
−
(

c1
ε1

+
c4
ε2

)(

ε1x−ε1ξ

ε1+ε2

)

Lββ(x, ξ)

Gαβ(x, ξ) = e

(

c1
ε1

+
c4
ε2

)(

ε2x+ε1ξ

ε1+ε2

)

Lαβ(x, ξ) ,

one gets

ε1∂xG
αα(x, ξ) + ε1∂ξG

αα(x, ξ) = c2G
βα(x, ξ)

ε2∂xG
βα(x, ξ) − ε1∂ξG

βα(x, ξ) = −c3G
αα(x, ξ) ,

with the boundary conditions

Gβα(x, x) = − c3

ε1 + ε2

Gαα(x, 0) =
ε2

qε1
Gαβ(x, 0) .

The second system is

ε2∂xG
ββ(x, ξ) + ε2∂ξG

ββ(x, ξ) = −c3G
αβ(x, ξ)

ε1∂xG
αβ(x, ξ) − ε2∂ξG

αβ(x, ξ) = c2G
ββ(x, ξ) ,

with the boundary conditions

Gαβ(x, x) =
c2

ε1 + ε2

Gββ(x, 0) =
qε1

ε2
Gβα(x, 0) .

The choice of parameters gives c2 = c4 = 0, whence from the above equations we get

Lαα(x, ξ) = 0

Lαβ(x, ξ) = 0

Lβα(x, ξ) = −1

2
exp

(

x+ ξ

2

)

Lββ(x, ξ) = −1

2
exp

(

x− ξ

2

)

.

The reference trajectory wr for system (3.58)–(3.60) is given by

wr(t, x) =
1

37
(19 sin (3t+ 3x) − 3 exp(x) cos (3t− 3x) + 3 cos (3t+ 3x)

+18 exp(x) sin(3t− 3x)) ,
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Figure 3.1: Solution to the trajectory generation problem for system (3.58)–(3.60) with parameters
(3.61)–(3.64).

which gives the following reference input

W r(t) =
57

37
(cos (3t+ 3) − exp(1) cos (3t− 3))

+
9

37
(exp(1) sin (3t− 3) − sin (3t+ 3)) . (3.65)

Figure 3.1 shows the evolution of the reference trajectory zr. Figure 3.2 shows the evolution of the

spatial derivative of zr and, in particular, the control effort W r(t) = ∂xw
r(1, t) given by (3.65).

3.4 Trajectory Tracking: PI Control, Lyapunov Analysis

Let us define the space E by

E = L2 ((0, 1) ;R) × L2 ((0, 1) ;R) × R . (3.66)

For stabilizing the system around the desired trajectory for any initial condition (u(0, x), v(0, x)),

rather than only for (u(0, x), v(0, x)) = (ur(0, x), vr(0, x)), we employ a PI-feedback con-

trol law. We first write the dynamics of the tracking errors ũ(t, x) = u(t, x) − ur(t, x) and

ṽ(t, x) = v(t, x) − vr(t, x) as

∂tũ(t, x) + ε1(x)∂xũ(t, x) = γ1(x)ṽ(t, x) (3.67)
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Figure 3.2: The spatial derivative of the reference trajectory of Figure 3.1. Note in particular the
reference input W r(t) = wrx(t, 1) given by (3.65).

∂tṽ(t, x) − ε2(x)∂xṽ(t, x) = γ2(x)ũ(t, x) (3.68)

ũ(t, 0) = qṽ(t, 0) (3.69)

ṽ(t, 1) = Ũ(t) , (3.70)

where Ũ = U − Ur and Ur is the reference input generating the desired reference trajectory. We

employ the controller

Ũ(t) = −kP ṽ(t, 0) − kI η̃(t) , (3.71)

with

˙̃η(t) = ṽ(t, 0) , (3.72)

and

η̃(0) = η̃0 ∈ R . (3.73)

Theorem 3.2. Consider system (3.67)–(3.70) together with the control law (3.71), (3.72). Let the

positive constants µ, β, ρ, γ, ν, κ, and θ be such that

M1 =

[

−q2 − β
(

k2
P e

µ − 1
)

− κγ
2 −βkP kIeµ + γ

2 (eνkP + 1) − ρ
2

−βkP kIeµ + γ
2 (eνkP + 1) − ρ

2 −βk2
Ie
µ + γeνkI − γ

2

]

> 0 (3.74)

M2(x) =

[

M21(x) M22(x)

M23(x) M24(x)

]

≥ 0 (3.75)
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with

M21(x) =

(

µ− θ

ε1(x)

)

e−µx +
γ2

2 (θρ− γ)

γ2
2(x)

ε2
2(x)

e2νx (3.76)

M22(x) = −γ1(x)

ε1(x)
e−µx − β

γ2(x)

ε2(x)
eµx − γ2

2 (θρ− γ)

γ2(x)

ε2(x)

(

ν − θ

ε2(x)

)

e2νx (3.77)

M23(x) = −γ1(x)

ε1(x)
e−µx − β

γ2(x)

ε2(x)
eµx − γ2

2 (θρ− γ)

γ2(x)

ε2(x)

(

ν − θ

ε2(x)

)

e2νx (3.78)

M24(x) = β

(

µ− θ

ε2(x)

)

eµx − γ

2κ

e2νx

ε2
2(x)

+
γ2

2 (θρ− γ)

(

ν − θ

ε2(x)

)2

e2νx , (3.79)

for all x ∈ [0, 1], and the inequalities

βρ >
γ2e(2ν−µ)x

2ε2(x)
, ∀x ∈ [0, 1] (3.80)

γ > θρ , (3.81)

hold. Then, there exist positive constants λ and Ω such that, for all initial conditions satisfying
(

ũ0(x), ṽ0(x), η̃0
)

∈ L2 ((0, 1) ;R) × L2 ((0, 1) ;R) × R, the following holds for all t ≥ 0

∫ 1

0

(

ũ2(t, x) + ṽ2(t, x)
)

dx+ η̃2(t) ≤ Ωe−λt

(
∫ 1

0

(

ũ2(0, x) + ṽ2(0, x)
)

dx+ η̃2(0)

)

. (3.82)

Proof. In order to analyze the stability of system (3.67)–(3.72) we propose the following candidate

Lyapunov function, for all [ũ, ṽ, η̃] ∈ E,

V (ũ, ṽ, η̃) =

∫ 1

0







ũ(x)

ṽ(x)

η̃







⊤

P (x)







ũ(x)

ṽ(x)

η̃






dx

= R1 (ũ) +R2 (ṽ) +R3 (ṽ, η̃) +R4 (η̃) , (3.83)

with

P (x) =









e−µx

ε1(x) 0 0

0 β eµx

ε2(x)
γeνx

2ε2(x)

0 γeνx

2ε2(x)
ρ
2









, (3.84)

and

R1(ũ) =

∫ 1

0

ũ2(x)
e−µx

ε1(x)
dx (3.85)

R2(ṽ) = β

∫ 1

0

ṽ2(x)
eµx

ε2(x)
dx (3.86)

R3(ṽ, η̃) = γη̃

∫ 1

0

ṽ(x)
eνx

ε2(x)
dx (3.87)

R4(η̃) =
ρ

2
η̃2 . (3.88)
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Let us introduce the constants

λ = min
x∈[0,1]

λmin(P (x)) (3.89)

λ = max
x∈[0,1]

λmax(P (x)) . (3.90)

Inequality (3.80) ensures that P (x) is positive definite and symmetric for all x ∈ [0, 1], and hence,

using the fact that ε1, ε2 ∈ C2 ([0, 1];R) with ε1(x), ε2(x) > 0, for all x ∈ [0, 1], one can conclude

that, λ, λ > 0. Therefore,

λ

(
∫ 1

0

(

ũ2(x) + ṽ2(x)
)

dx+ η̃2

)

≤ V (ũ, ṽ, η̃) ≤ λ

(
∫ 1

0

(

ũ2(x) + ṽ2(x)
)

dx+ η̃2

)

. (3.91)

Using (3.85)–(3.88) we get along the solutions of system (3.67)–(3.72) that

Ṙ1 = −2

∫ 1

0

ũ(t, x)∂xũ(t, x)e−µxdx+ 2

∫ 1

0

ũ(t, x)ṽ(t, x)
γ1(x)

ε1(x)
e−µxdx

=
(

q2ṽ2(t, 0) − e−µũ2(t, 1)
)

− µ

∫ 1

0

ũ2(t, x)e−µxdx+ 2

∫ 1

0

ũ(t, x)ṽ(t, x)
γ1(x)

ε1(x)
e−µxdx (3.92)

Ṙ2 = 2β

∫ 1

0

ṽ(t, x)∂xṽ(t, x)eµxdx+ 2β

∫ 1

0

ũ(t, x)ṽ(t, x)
γ2(x)

ε2(x)
eµxdx

= β
(

k2
P e

µṽ2(t, 0) + 2kP kIe
µṽ(t, 0)η̃(t) + k2

Ie
µη̃2(t) − ṽ2(t, 0)

)

− µβ

∫ 1

0

ṽ2(t, x)eµxdx

+ 2β

∫ 1

0

ũ(t, x)ṽ(t, x)
γ2(x)

ε2(x)
eµxdx (3.93)

Ṙ3 = γη̃(t)

∫ 1

0

∂xṽ(t, x)eνxdx+ γṽ(t, 0)

∫ 1

0

ṽ(t, x)
eνx

ε2(x)
dx+ γη̃(t)

∫ 1

0

ũ(t, x)
γ2(x)

ε2(x)
eνxdx

≤ γη̃(t) (eν (−kP ṽ(t, 0) − kI η̃(t)) − ṽ(t, 0)) − νγη̃(t)

∫ 1

0

ṽ(t, x)eνxdx

+
κγ

2
ṽ2(t, 0) +

γ

2κ

∫ 1

0

ṽ2(t, x)
e2νx

ε2
2(x)

dx+ γη̃(t)

∫ 1

0

ũ(t, x)
γ2(x)

ε2(x)
eνxdx (3.94)

Ṙ4 = ρṽ(t, 0)η̃(t) , (3.95)

where we used integration by parts in the first terms of (3.92)–(3.94) and Young’s inequality in

the second term of (3.94). Using (3.83), (3.92)–(3.95) we get

V̇ ≤ −
[

ṽ(t, 0)

η̃(t)

]⊤

M1

[

ṽ(t, 0)

η̃(t)

]

−
∫ 1

0







ũ(t, x)

ṽ(t, x)

η̃(t)







⊤

M(x)







ũ(t, x)

ṽ(t, x)

η̃(t)






dx

− e−µũ2(t, 1) − θV , (3.96)

where M1 is given in (3.74) and

M(x) =

[

A(x) B⊤(x)

B(x) C

]

, (3.97)
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with

A(x) =

[

A1(x) A2(x)

A3(x) A4(x)

]

, (3.98)

where

A1(x) =

(

µ− θ

ε1(x)

)

e−µx (3.99)

A2(x) = −γ1(x)

ε1(x)
e−µx − β

γ2(x)

ε2(x)
eµx (3.100)

A3(x) = −γ1(x)

ε1(x)
e−µx − β

γ2(x)

ε2(x)
eµx (3.101)

A4(x) = β

(

µ− θ

ε2(x)

)

eµx − γ

2κ

e2νx

ε2
2(x)

(3.102)

B(x) =
[

−γ
2
γ2(x)
ε2(x) e

νx γ
2

(

ν − θ
ε2(x)

)

eνx
]

(3.103)

C =
γ − θρ

2
. (3.104)

Using the Schur complement of C in M(x) and (3.81), (3.104) one has that M(x) ≥ 0 for all

x ∈ [0, 1], if and only if

M2(x) = A(x) −B⊤(x)C−1B(x) ≥ 0 . (3.105)

Thus, if M1 > 0 and M2(x) ≥ 0, for all x ∈ [0, 1], one has

V̇ ≤ −e−µũ2(t, 1) − θV , (3.106)

and hence, V (ũ, ṽ, η̃) ≤ e−θtV (0), for all t ≥ 0. Combining this relation with (3.91) the proof is

complete.

Remark 3.2. A control law with an integral action is designed in [38] for 2×2 hyperbolic systems.

Stability of the closed-loop system is proved using a diagonal Lyapunov function. Here the non-

diagonal term in the Lyapunov function is needed for proving stability using a quadratic Lyapunov

function. Indeed, let us assume that the Lyapunov function is diagonal. We can write it as

V (ũ, ṽ, η̃) =

∫ 1

0

(

q1(x)ũ2(x) + q2(x)ṽ2(x)
)

dx+
ρ

2
η̃2 , (3.107)

where the functions q1 and q2 belong to C1 ([0, 1];R) with q1(x), q2(x) > 0, for all x ∈ [0, 1]. The

time derivative of V along the solutions of system (3.67), (3.68) with boundary conditions (3.69)–

(3.72) is given by

V̇ =

[

ṽ(t, 0)

η̃(t)

]⊤ [

D1 D2

D3 D4

][

ṽ(t, 0)

η̃(t)

]

+

∫ 1

0

[

ũ(t, x)

ṽ(t, x)

]⊤

E(x)

[

ũ(t, x)

ṽ(t, x)

]

dx

− q1(1)ε1(1)ũ2(t, 1) , (3.108)

where

D1 = q1(0)ε1(0)q2 − q2(0)ε2(0) + q2(1)ε2(1)k2
P (3.109)
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D2 =
1

2
(q2(1)ε2(1)kP kI + ρ) (3.110)

D3 =
1

2
(q2(1)ε2(1)kP kI + ρ) (3.111)

D4 = q2(1)ε2(1)k2
I (3.112)

E(x) =

[

∂x (q1(x)ε1(x)) q1(x)γ1(x) + q2(x)γ2(x)

q1(x)γ1(x) + q2(x)γ2(x) −∂x(q2(x)ε2(x))

]

. (3.113)

Using (3.108) and (3.112) one can conclude that when kI 6= 0 the inequality V̇ ≤ 0 can not be

satisfied for any [ũ, ṽ, η̃]
⊤

.

In [5], it is proved that if there exist two boundary controllers for 2 × 2 linear hyperbolic systems

of the form (3.67), (3.68) such that the function

V (ũ, ṽ, η̃) =

∫ 1

0

q1(x)ũ2(x) + q2(x)ṽ2(x) + q3(x)ũ(x)ṽ(x)dx , (3.114)

along the solutions of the system (3.67), (3.68) with the state (ũ, ṽ) satisfies V̇ < 0 then the cross

term q3 between ũ and ṽ is necessarily identically zero. However, in the case of stabilization of

2 × 2 linear hyperbolic systems of the form (3.67), (3.68) with a PI control law that we consider

here, the cross term (3.87) in the Lyapunov function (3.83) between the integral state η̃ of the

controller and the state of the plant ṽ is necessary (as explained above) for proving stability of the

overall closed-loop system consisting of the plant state (ũ, ṽ) and the integral state η̃, using the

Lyapunov function defined in (3.83) (although a cross term between ũ and ṽ is not necessary). •

As explained in Remark 3.2 the non-diagonal term in the Lyapunov function is crucial for proving

stability using a quadratic Lyapunov function. However, this term adds considerable complexity

in verifying analytically that the matrices (3.74), (3.75) are positive definite and that (3.80) holds.

Nonetheless, we will show latter that, at least for some applications, it is possible to check these

conditions. Moreover, it should be possible to develop some embedding techniques as presented in

Chapter 4 in the context of the checking of positive definitiveness of (3.74), (3.75).

Remark 3.3. In [85] the integral action is filtered, that is,

˙̃η(t) = −εη̃(t) + ṽ(t, 0)

where ε > 0 is a small coefficient. This filtering has been introduced to be able to lead a Lyapunov

analysis with a diagonal Lyapunov function as (3.107). The same could be done in our case.

Nonetheless, the effectiveness of the integral action when disturbances act in the system cannot be

analyzed with such filtering, contrary to the integral action that we consider. In the next section,

we will show that controller (3.71) under conditions of Theorem 3.2 eliminates disturbance from

the output with different meaning depending on the nature of the solution. •
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3.5 Tracking Issue in presence In-Domain and Boundary

Disturbances

3.5.1 Compensation in the Output of In-Domain and Boundary Distur-

bances

Let us assume that there exist some disturbances d1, d2 ∈ C1 ([0, 1] ;R) on the right-hand side

of (3.15), (3.16), respectively and some disturbances d3, d4 ∈ R on the right-hand side of (3.19),

(3.20), respectively. The error system (3.67)–(3.70) becomes

∂tũ(t, x) + ε1(x)∂xũ(t, x) = γ1(x)ṽ(t, x) + d1(x) (3.115)

∂tṽ(t, x) − ε2(x)∂xṽ(t, x) = γ2(x)ũ(t, x) + d2(x) (3.116)

ũ(t, 0) = qṽ(t, 0) + d3 (3.117)

ṽ(t, 1) = Ũ(t) + d4 (3.118)

ũ(0, x) = ũ0(x) (3.119)

ṽ(0, x) = ṽ0(x) , (3.120)

with Ũ(t) and η̃(t) given by (3.71) and (3.72) respectively. The equilibrium of the perturbed system

(3.115)–(3.117) and (3.70) is the solution of the following ordinary differential equation

Z ′(x) = F (x)Z(x) +G(x), (3.121)

where

F (x) =

[

0 γ1(x)
ε1(x)

−γ2(x)
ε2(x) 0

]

and

G(x) =

[

d1(x)
ε1(x)

−d2(x)
ε2(x)

]

,

with initial conditions

Z1(0) = d3 (3.122)

Z2(0) = 0 . (3.123)

The initial conditions (3.122), (3.123) for the ODE system (3.121) come from the fact that the

equilibrium of (3.115)–(3.117) and (3.71) shall follow the reference z(t), meaning that ṽ(t, 0) = 0.

Therefore, replacing ṽ(t, 0) by 0 in (3.117) we get the initial condition for Z1 that is d3.

The ordinary differential equation (3.121) together with the initial conditions (3.122), (3.123) is a

well-posed initial value problem for x. The equilibrium depends on d1, d2 and d3. Let us denote

this equilibrium by ũss(x; d1, d2, d3), ṽss(x; d1, d2, d3). From (3.118) it follows that the equilibrium

value of Ũ , namely Ũss, satisfies

Ũss = ṽss(1; d1, d2, d3) − d4 . (3.124)
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Using (3.71), and (3.123) with Z = [ũss, ṽss]
⊤

, it follows from (3.124) that the equilibrium value

of η̃, namely η̃ss, satisfies

η̃ss = − ṽss(1; d1, d2, d3) − d4

kI
. (3.125)

Let us define

u(t, x) = ũ(t, x) − ũss (x; d1, d2, d3) (3.126)

v(t, x) = ṽ(t, x) − ṽss (x; d1, d2, d3) (3.127)

η(t) = η̃(t) − η̃ss . (3.128)

Using (3.121) with Z = [ũss, ṽss]
⊤

together with (3.115), (3.116) it is shown that the variables u

and v satisfy

∂tu(t, x) + ε1(x)∂xu(t, x) = γ1(x)v(t, x) (3.129)

∂tv(t, x) − ε2(x)∂xv(t, x) = γ2(x)u(t, x) . (3.130)

Setting x = 0 in (3.126), (3.127), and using (3.117), (3.122), and (3.123) we get that

u(t, 0) = qv(t, 0) . (3.131)

Setting x = 1 in (3.127) and using (3.118), (3.71), and (3.125) we get

v(t, 1) = −kP ṽ(t, 0) − kI η̃(t) + kI η̃ss .

Using (3.127) for x = 0 together with (3.123) and (3.128) we arrive at

v(t, 1) = −kP v(t, 0) − kIη(t) . (3.132)

Using (3.128) and the fact that

v(t, 0) = ṽ(t, 0) , (3.133)

relation (3.72) becomes

η̇(t) = v(t, 0) . (3.134)

Under the assumptions of Theorem 3.2 the zero equilibrium of (3.129)–(3.132) and (3.134) is

exponentially stable in the L2-norm. Nonetheless, the tracking is not achieved strictly speaking.

It motivates the title of the present subsection: the presence of disturbances in the system is

compensated by the boundary control but not rejected at the output. Nonetheless, let us examine

more carefully how the potential disturbance in the output v(t, 0) persists. Let us introduce some

notations. Let us set

X̃ =







ũ

ṽ

η̃






. (3.135)
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Let us define the operator A : D(A) → E by

AX̃ =







−ε1(x)dũ
dx

+ γ1(x)ṽ

ε2(x) dṽ
dx

+ γ2(x)ũ

ṽ(0)






(3.136)

with

D(A) =
{

[ũ, ṽ, η̃]
⊤ ∈ E | ũ, ṽ ∈ H1 ((0, 1) ;R) , ũ(0) = qṽ(0) + d3, ṽ(1) = −kP ṽ(0) − kI η̃ + d4

}

.

(3.137)

Let us define B ∈ C1
(

[0, 1] ;R2
)

× R by

B =







d1

d2

0






. (3.138)

Thus, system (3.115)–(3.118) with Ũ and η̃ given respectively by (3.71) and (3.72) can be rewritten

as

X̃(t) = AX̃(t) +B . (3.139)

In the case where the initial condition
[

ũ0, ṽ0, η̃0
]⊤ ∈ H1

(

[0, 1] ;R2
)

×R satisfies the compatibility

conditions

η̃(0) =
ṽ0(1) + kP ṽ

0(0)

kI
, (3.140)

and

ũ0(0) = qṽ0(0) , (3.141)

the following theorem holds.

Theorem 3.3. For every
[

ũ0, ṽ0, η̃0
]⊤ ∈ H1 ((0, 1) ;R) ×H1 ((0, 1) ;R) ×R satisfying the compat-

ibility conditions (3.140), (3.141), there exists a unique solution of (3.115)–(3.120), with Ũ and η̃

given respectively by (3.71) and (3.72) such that

[ũ, ṽ, η̃]
⊤ ∈ C ([0, T ] ;D(A)) ∩ C1 ([0, T ] ;E) . (3.142)

Moreover, this solution satisfies, for all t ∈ R
+,

|ũ− ũss, ṽ − ṽss, η̃ − η̃ss|E +

∫ t

0

[

ε1(1) (ũ(s, 1) − ũss(1))
2 − ε1(0) (ũ(s, 0) − ũss(0))

2
]

ds

+

∫ t

0

∫ 1

0

ε′
1(x) (ũ(s, x) − ũss(x))

2
dxds− 2

∫ t

0

∫ 1

0

γ1(x) (ũ(s, x) − ũss(x)) (ṽ(s, x) − ṽss(x)) dxds

+

∫ t

0

[

ε2(0)ṽ2(s, 0) − ε2(1) (ṽ(s, 1) − ṽss(1))
2
]

ds

+

∫ t

0

∫ 1

0

ε′
2(x) (ṽ(s, x) − ṽss(x))

2
dxds− 2

∫ t

0

∫ 1

0

γ2(x) (ũ(s, x) − ũss(x)) (ṽ(s, x) − ṽss(x)) dxds

− 2

∫ t

0

(η̃(s) − η̃ss) ṽ(s, 0)ds =
∣

∣ũ0 − ũss, ṽ
0 − ṽss, η̃

0 − η̃ss
∣

∣

E
, (3.143)
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where [ũss, ṽss]
⊤ is the solution to the ordinary differential equation (3.121) with boundary condi-

tions (3.122), (3.123), and η̃ss is given by (3.125).

In the more general case where the initial condition does not satisfy the compatibility condi-

tion (3.140) and (3.141), and lies in E then the following theorem holds.

Theorem 3.4. For every
[

ũ0, ṽ0, η̃0
]⊤ ∈ E there exists a unique solution of (3.115)–(3.120), with

Ũ and η̃ given respectively by (3.71) and (3.72) such that

[ũ, ṽ, η̃] ∈ C ([0, T ] ;E) . (3.144)

Moreover, this solution satisfies (3.143), for all t ∈ R
+.

The proofs of Theorems 3.3, 3.4 rely on the use of the operator (3.136). We refer the reader to [6]

and [86] for an insight of the proofs .

Proposition 3.1. Under conditions of Theorem 3.2, for every
[

ũ0, ṽ0, η̃0
]⊤ ∈ E, and coefficient

τ > 0 the solution ṽ satisfies

lim
t→+∞

∫ t

t−τ

ṽ2(s, 0)ds = 0 . (3.145)

Proof. From (3.91) we have λ |ũ− ũss, ṽ − ṽss, η̃ − η̃ss|E ≤ V (ũ− ũss, ṽ, η̃ − η̃ss) and from (3.106)

we have V ≤ e−θtV (0), together with (3.143) one gets that ṽ(·, 0) ∈ L2 (R+;R). This property on

ṽ(·, 0) is often related to a “hidden” regularity property (see, for example, [22], Chapter 2, page 32,

or [31] for other examples and references on this property). From, this fact we have that, for all

τ > 0,

lim
t→+∞

∫ t

t−τ

ṽ2(s, 0)ds = 0 .

This concludes the proof of Proposition 3.1.

Loosely speaking, when conditions of Theorem 3.2 hold the PI controller “rejects on time average”

the disturbance in the output.

3.5.2 Disturbances Rejection

Due to the particular nature of our problem, tracking an output given by the solution of a dis-

tributed system at a particular point of the space, the L2-norm is not the better norm to solve it,

as mentioned above. Nonetheless, in the case where there exist some compatibility conditions with

the initial data which is supposed to be a function in C1 ([0, 1] ;R) × C1 ([0, 1] ;R) × R, it can be

proved that the solution lies in C1 (R+ × [0, 1] ;R) × C1 (R+ × [0, 1] ;R) × C1 (R+;R). Using the

fact that the trace of a function in this latter space is well-defined and using (3.145) we show that

the perturbation in the output is rejected in C0-norm.

Lemma 3.1. There exists at most one solution [ũ, ṽ, η̃]
⊤ to (3.115)–(3.118) in C1 (R+ × [0, 1] ;R)×

C1 (R+ × [0, 1] ;R) × C1 (R+;R).
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Proof. Let [ũ1, ṽ1, η̃1]
⊤

and [ũ2, ṽ2, η̃2]
⊤

be solutions in C1 (R+ × [0, 1] ;R) ×C1 (R+ × [0, 1] ;R) ×
C1 (R+;R). Their difference

[α, β, η]
⊤

= [ũ1 − ũ2, ṽ1 − ṽ2, η̃1 − η̃2]
⊤

satisfies

∂tα(t, x) + ε1(x)∂xα(t, x) = γ1(x)β(t, x) (3.146)

∂tβ(t, x) − ε2(x)∂xβ(t, x) = γ2(x)α(t, x) (3.147)

α(t, 0) = qβ(t, 0) (3.148)

β(t, 1) = −kPβ(t, 0) − kI η̆(t) (3.149)

β(0, x) = 0 (3.150)

α(0, x) = 0 , (3.151)

where

˙̆η(t) = ṽ1(t, 0) − ṽ2(t, 0) (3.152)

η̆(0) = 0 , (3.153)

and is also a solution in C1 (R+ × [0, 1] ;R) ×C1 (R+ × [0, 1] ;R) ×C1 (R+;R). Due to (3.148) the

boundary condition (3.149) can be rewritten as

β(t, 1) = −k′
Pα(t, 0) − k′

I η̌(t) , (3.154)

where

˙̌η(t) = ũ1(t, 0) − ũ2(t, 0)

η̌(0) = 0 (3.155)

k′
P =

kP

q

k′
I =

kI

q
.

Using the change of variables

w1(t, x) = e1α(t, x) (3.156)

w2(t, x) = e2β(t, x) , (3.157)

equations (3.146), (3.147) become

∂tw1(t, x) + ε1(x)∂xw1(t, x) = e1γ1(x)e−1
2 w2(t, x) (3.158)

∂tw2(t, x) − ε2(x)∂xw2(t, x) = e2γ2(x)e−1
1 w1(t, x) , (3.159)
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and boundary conditions (3.148), (3.149) become

w1(t, 0) = e1qe
−1
2 w2(t, 0) (3.160)

w2(t, 1) = −e2k
′
P e

−1
1 w1(t, 0) − e2k

′
Ie

−1
1

∫ 1

0

w1(s, 0)ds . (3.161)

Hence, the parameters e1 and e2 can be chosen such that e2k
′
P e

−1
1 , e2k

′
Ie

−1
1 , and e1qe

−1
2 are

“small”. For the sake of simplicity we assume that the parameters q, kP , and kI are “small” from

the beginning. We compute

d

dt

(

([ αβ ] , [ αβ ]) +
κ

2
η̌(t)2

)

=
(

[ αβ ] , [ αβ ]
t

)

+
(

[ αβ ]
t
, [ αβ ]

)

+ κα(t, 0)η̌(t)

=
(

[ αβ ] ,
[

−ε1(x) 0
0 ε2(x)

]

[ αβ ]
x

)

+
([

−ε1(x) 0
0 ε2(x)

]

[ αβ ]
x
, [ αβ ]

)

+ 2
([

0 γ1(x)
γ2(x) 0

]

[ αβ ] , [ αβ ]
)

+ κα(t, 0)η̌(t)

=
([

−ε1(x) 0
0 ε2(x)

]

[ αβ ] , [ αβ ]
x

)

+
([

−ε1(x) 0
0 ε2(x)

]

[ αβ ]
x
, [ αβ ]

)

+ 2
([

0 γ1(x)
γ2(x) 0

]

[ αβ ] , [ αβ ]
)

+ κα(t, 0)η̌(t)

= −
([

−ε1(x) 0
0 ε2(x)

]

x
[ αβ ] , [ αβ ]

)

−
([

−ε1(x) 0
0 ε2(x)

]

[ αβ ]
x
, [ αβ ]

)

+
([

−ε1(x) 0
0 ε2(x)

]

[ αβ ]
x
, [ αβ ]

)

+ κα(t, 0)η̌(t)

+ 2
([

0 γ1(x)
γ2(x) 0

]

[ αβ ] , [ αβ ]
)

+
([

−ε1(1) 0
0 ε2(1)

] [

α(t,1)
β(t,1)

]

,
[

α(t,1)
β(t,1)

])

−
([

−ε1(0) 0
0 ε2(0)

] [

α(t,0)
β(t,0)

]

,
[

α(t,0)
β(t,0)

])

= −
([

−ε1(x) 0
0 ε2(x)

]

x
[ αβ ] , [ αβ ]

)

+ 2
([

0 γ1(x)
γ2(x) 0

]

[ αβ ] , [ αβ ]
)

− ε1(1)α2(t, 0) + ε2(1) (−kPα(t, 0) − kI η̌(t))
2

+ ε1(0)q2β2(t, 0)

− ε2(0)β2(t, 0) + κα(t, 0)η̌(t)

Using the assumption on the smallness of q, kP , and kI and the fact that κ > 0 can be chosen

arbitrary small we get

d

dt

(

([ αβ ] , [ αβ ]) +
κ

2
η̌(t)2

)

≤ C
(

([ αβ ] , [ αβ ]) +
κ

2
η̌(t)2

)

, C ∈ R
+ .

Using the Gronwall’s Lemma, initial condition (3.150), (3.151), and (3.155) we get

[α, β, η̆]
⊤

= [0, 0, 0]
⊤
.

This concludes the proof of Lemma 3.1.

Theorem 3.5. Let us assume that the hypothesis of Theorem 3.2 hold and that the initial condi-

tion
[

ũ0, ṽ0, η̃0
]⊤ ∈ C1 ([0, 1] ;R) × C1 ([0, 1] ;R) × R satisfies the compatibility conditions of order

zero (3.140), (3.141) together with the compatibility conditions

ṽ0(0) =
ṽ0′

(1) + kP ṽ
0′

(0)

kI
(3.162)
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ũ0′

(0) = qṽ0′

(0) , (3.163)

then there exists a unique solution [ũ, ṽ, η̃] ∈ C1 (R+ × [0, 1] ;R) ×C1 (R+ × [0, 1] ;R) ×C1 (R+;R)

to the system (3.115)–(3.118) and it satisfies

lim
s→+∞

∣

∣ṽ(·, 0)✶[s,s+τ ](·)
∣

∣

C0(R+;R)
= 0 . (3.164)

for all τ > 0.

Proof. The proof of existence uses an iteration process and the estimation derived in the proof

of Lemma 3.1, the Gronwall Lemma, the Picard Lemma, and finally the Arzelà-Ascoli Theorem

(see Appendix on page 125). For the insight of the proof see [65], Section 7.6, pages 253–260,

although this reference deals with solution in C∞, the principle of the proof is the same for C1.

The limit (3.164) is obtained by observing that the trace of a solution in C1 is well defined and

using (3.145).

This concludes the proof of Theorem 3.5.

Remark 3.4. In the context of Theorem 3.5 we can say that the PI controller rejects the distur-

bance in the output, but it does not prove that the disturbances are rejected (in C0-norm) in the

rest of the domain. This is not a drawback since our original objective was to track a reference

zr(t) for the output z(t). •

3.6 Application to the Linearized ARZ Equations

We consider the linearized version of ARZ (see Subsection 1.2.2)

∂ty1(t, x) + ε1∂xy1(t, x) = − 1

τ
y1(t, x) (3.165)

∂ty2(t, x) − ε2∂xy2(t, x) = − 1

τ
y1(t, x) , (3.166)

with boundary conditions

y1(t, 0) = qy2(t, 0) (3.167)

y2(t, 1) = S(t) , (3.168)

where τ is a positive parameter. The opposite transport velocities in (3.165), (3.166) correspond

to traffic flow in a congested mode. The boundary condition (3.167) in the original variables is

written as

w(t, 0) =
φ′(s∗)s(t, 0)

1 − q
. (3.169)

Hence, the boundary condition (3.167) dictates that there is a static relation, at the entrance of

the road, between the density and the velocity similarly to the static relation between the nominal

velocity φ(s) and the density of the cars in the road. The change of variables (3.10), (3.11), (3.17),
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and (3.18) transform system (3.165)–(3.168) to

∂tu(t, x) + ε1∂xu(t, x) = 0 (3.170)

∂tv(t, x) − ε2∂xv(t, x) = − 1

τ
exp

(

− 1

τε1
x

)

u(t, x) (3.171)

u(t, 0) = qv(t, 0) (3.172)

v(t, 1) = U(t) , (3.173)

where U(t) is given by (3.21). Observing that γ1 = 0, the computation done in Section 3.3 can be

adapted with the parameters of this illustration, hence one obtains

Lαα(x, ξ) = 0 (3.174)

Lαβ(x, ξ) = 0 (3.175)

Lβα(x, ξ) =
1

τ (ε1 + ε2)
exp

(

− 1

τε1

(

ε1x+ ε2ξ

ε1 + ε2

))

(3.176)

Lββ(x, ξ) =
qε1

τε2 (ε1 + ε2)
exp

(

− 1

τε1

(

ε1x− ε1ξ

ε1 + ε2

))

. (3.177)

Therefore, for system (3.165)–(3.168), the reference input which generates the desired output zr(t)

is

Sr(t) = zr
(

t+
1

ε2

)

+
q

τ (ε1 + ε2)

∫ 1

0

exp

(

− 1

τε1

(

ε1 + ε2ξ

ε1 + ε2

))

zr
(

t− ξ

ε1

)

dξ

+
qε1

τε2 (ε1 + ε2)

∫ 1

0

exp

(

− 1

τε1

(

ε1 − ε1ξ

ε1 + ε2

))

zr
(

t+
ξ

ε2

)

dξ . (3.178)

Let us present an illustration of Theorem 3.2. Let us set in (3.170)–(3.172)

ε1 = 6 (3.179)

ε2 = 6 (3.180)

τ = 5 (3.181)

q = 0.2 , (3.182)

and choose U in (3.70) according to (3.71) with

kP = 0.1 (3.183)

kI = 1.0583 , (3.184)

in order to stabilize the zero equilibrium of (3.170)–(3.172). We verify numerically that the condi-

tions of Theorem 3.2 are satisfied with

(β, κ, µ, ν, θ, ρ, γ) = (0.7, 0.2, 0.5, 0.2, 0.7, 2, 2) . (3.185)
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Figure 3.3: Evolution of the eigenvalues of (3.75) as a function of x (square and cross markers),
and of the determinant of P (x) in (3.84) (star marker).

From (3.74) we get that

M1 =

[

0.4485 0

0 0.2926

]

> 0 . (3.186)

The verification of the positive definiteness of matrix (3.75) is more delicate due to its dependence

on x. Figure 3.3 shows the evolution of the eigenvalues of M2(x) and the determinant of matrix

(3.84), which remain positive for all x ∈ [0, 1]. The numerical approximation of the solution is

computed with a two-step variant of the Lax-Friedrichs (LxF) method [102]. The reference for the

output is chosen as zr(t) = cos(t). We add disturbances at the right-hand side of (3.170), (3.171)

given by

d1(x) = 0.5 exp(x) (3.187)

d2(x) = cos(2x) , (3.188)

together with constant additive disturbances on the boundary conditions (3.172), (3.173) given by

d3 = 0.5 (3.189)

d4 = 0.5 . (3.190)

The initial conditions for u and v are chosen as the reference initial conditions given by (3.23),

(3.24) for t = 0, perturbed by spatially-varying errors as

u(0, x) = ur(0, x) + sin(x) (3.191)

v(0, x) = vr(0, x) + cos(x) , (3.192)

and the initial condition for η̃ is chosen such that U(0) = v(1, 0), that is,

η̃(0) =
Ur(0) − v(0, 1) + kP (vr(0, 0) − v(0, 0))

kI
. (3.193)
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Figure 3.4: The output v(t, 0) of system (3.170)–(3.173) with parameters (3.179)–(3.182) under the
control law (3.194) with gains (3.183), (3.184) (square marker) and with gains (3.183),
kI = 0 (star marker) for the initial conditions (3.191)–(3.193). The single line is the
reference output zr(t) = cos(t).

Figure 3.4 shows that the output of the system v(t, 0) follows the desired trajectory under the PI

controller given by

U(t) = cos

(

t+
1

6

)

+
600

101

(

sin

(

t+
1

6

)

− exp

(

− 1

60

)

sin(t)

)

+
60

101

(

cos

(

t+
1

6

)

− exp

(

− 1

60

)

cos(t)

)

+
120

101

(

exp

(

− 1

60

)

sin(t) − exp

(

− 1

30

)

sin

(

t− 1

6

))

+
12

101

(

exp

(

− 1

60

)

cos(t) − exp

(

− 1

30

)

cos

(

t− 1

6

))

− kP (v(t, 0) − cos(t)) − kI η̃(t) , (3.194)

with gains (3.183), (3.184), and ˙̃η(t) = v(t, 0) − cos(t). One can also observe that with only a P

controller (i.e., when kI = 0 in (3.194)) there is a steady-state tracking error. Figure 3.5 shows the

evolution of the state v.
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Figure 3.5: Evolution of the state v of system (3.170)–(3.173) with parameters (3.179)–(3.182)
under the control law (3.194) with gains (3.183), (3.184) for the initial conditions
(3.191)–(3.193).
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4 • Numerical Methods for

Lyapunov Analysis

I
n this chapter, we consider the problems of stability analysis and control syn-

thesis for first-order hyperbolic linear PDEs over a bounded interval with spatially

varying coefficients. We propose LMI-based conditions for the stability and for the de-

sign of boundary and distributed control for the system. These LMI-based conditions

involve an infinite number of LMI to solve. Hence, we show how to overapproximate

these constraints using polytopic embedding to reduce the problem to a finite number

of LMI to solve. We show the effectiveness of the overapproximation with several

examples, and with the Saint-Venant equations with friction.

Some of this work was submitted as a conference paper for an IFAC meeting [71].
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4.1 Problem Statement and Existing Results

We consider the following general system

∂ty(t, x) + Λ(x)∂xy(t, x) = F (x)y(t, x) , (4.1)

where t ∈ R
+ is the time variable, x ∈ [0, 1] is the spatial variable, y : R+×[0, 1] → R

n, F and Λ are

in C0 ([0, 1] ;Rn×n). The matrix Λ(x) is diagonal and in addition Λ(x) = diag [λ1(x), . . . , λn(x)]

with λk(x) < 0 for k ∈ {1, . . . ,m} and λk(x) > 0 for k ∈ {m+ 1, . . . , n}, for all x ∈ [0, 1]. Let us

introduce the following notations

Λ(x) = diag
[

Λ−(x),Λ+(x)
]

,

y =
[

y−(t, x), y+(t, x)
]⊤

,

where y− : R+ × [0, 1] → R
m and y+ : R+ × [0, 1] → R

(n−m), Λ−(x) = diag [λ1(x), . . . , λm(x)],

and Λ+(x) = diag [λm+1(x), . . . , λn(x)]. We consider the following boundary conditions

[

y−(t, 1)

y+(t, 0)

]

= G

[

y−(t, 0)

y+(t, 1)

]

, t ∈ R
+ , (4.2)

where G is a matrix in R
n×n. The initial condition is

y(0, x) = y0(x) , x ∈ (0, 1) , (4.3)

where y0 ∈ L2 ((0, 1);Rn).

While for finite dimensional and time-delay systems a large number of numerical techniques for

stability analysis exists, for PDEs these tools are mostly lacking. In this chapter, we propose

some techniques to verify numerically the existence of quadratic Lyapunov function for first-order

hyperbolic PDEs over a bounded interval with spatially varying coefficients. Besides this analysis

aspect, we propose some techniques for the synthesis of boundary and distributed controls.

As already mentioned in the Introduction, the use of Lyapunov function is now appearing for

hyperbolic systems. In particular, a special attention has been made on quadratic Lyapunov

functions. Indeed, this class of functions allows to express conditions for stability as MI as in

Chapters 2 and 3. We can cite also [16], [35], [99], and [112] for the linear case. LMI conditions

derived by an operators approach is used in [48] for the H∞ boundary control of parabolic and

hyperbolic systems. Quadratic control Lyapunov function has also been used for 2 × 2 quasi-linear

systems [26] and n × n quasi-linear systems [27]. MI-based conditions derived from a quadratic

Lyapunov function were stated in [15] for the construction of boundary observers for linear as well

as for quasi-linear hyperbolic systems. However, the approach by a quadratic Lyapunov function

is not always effective to prove stability for hyperbolic systems. A result from [5] gives a necessary

and sufficient condition for the existence of control Lyapunov function. In [33], an example with a

static output feedback has been designed such that this condition is violated and thus that there

does not exist a Lyapunov function for this system.

The results in this chapter are related to the resolution of the LMIs proposed in [99] and to
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the control synthesis. We also propose a Lyapunov function with an “affine” kernel similar to

the one used in [31]. The LMI-based conditions involve the spatial variable, hence the number

of constraints is infinite. These LMI-based conditions are analogous to stability conditions for

finite-dimensional Linear Parameter Varying (LPV) systems. Hence, an approach inspired by

this framework is applied to find a candidate Lyapunov function. More precisely, to reduce the

numerical complexity, different approximations based on properties of the exponential functions

are considered in this chapter. The control synthesis relies on a combination of classical techniques

coming from the stabilization for discrete and continuous time finite dimensional systems. Then,

the latter overapproximations techniques are used to get a finite number of LMI-based conditions.

4.2 LMI-based Conditions for Stability

In this section, we propose a Lyapunov function, and derive some LMI-based conditions for the

solution of system (4.1)–(4.3) to satisfy (1.34).

Let us denote |Λ(x)| the matrix whose elements are the absolute value of the elements of the matrix

Λ(x), that is

|Λ(x)| = diag
[

−Λ−(x),Λ+(x)
]

, (4.4)

and let us denote by Ĩn,m the matrix

Ĩn,m =

[

−Im 0m,n−m

0n−m,m In−m

]

. (4.5)

For a matrix A in R
n×n, we decompose it in four block matrices A−− in R

m×m, A−+ R
m×(n−m),

A+− in R
(n−m)×m and A++ in R

(n−m)×(n−m) such that A =
[

A−− A−+

A+− A++

]

.

In [99] sufficient conditions have been given for the stability of (4.1)–(4.3) with Λ(x) and F (x)

constant. We consider a slightly different Lyapunov function

V (y) =

∫ 1

0

y⊤(t, x) |Λ(x)|−1 Q(x)y(t, x)dx , (4.6)

where

Q(x) = diag
[

e2µxQ−, e−2µxQ+
]

, (4.7)

with Q− in R
m×m, Q+ in R

(n−m)×(n−m) are two symmetric positive definite matrices and µ a real

coefficient.
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Proposition 4.1. If there exist ν > 0, µ in R, and symmetric positive definite matrices Q− in

R
m×m and Q+ in R

(n−m)×(n−m) such that the following conditions hold, for all x ∈ [0, 1],

Q(x)Λ(x) = Λ(x)Q(x) , (4.8)

− 2µQ(x) + F⊤(x) |Λ(x)|−1 Q(x) + Q(x) |Λ(x)|−1
F (x) ≤ −2ν |Λ(x)|−1 Q(x) , (4.9)

together with

[

Im 0m,n−m

G+− G++

]⊤

Ĩn,mQ(0)
[

Im 0m,n−m

G+− G++

]

≤
[

G−− G−+

0n−m,m In−m

]⊤

Ĩn,mQ(1)
[

G−− G−+

0n−m,m In−m

]

, (4.10)

with Q(x) defined by (4.7), then the linear hyperbolic system (4.1)–(4.3) is GES.

Proof. For the stability analysis we consider the candidate Lyapunov function (4.6), where Q(x)

is given by (4.7). Let us introduce the constants

λ = min
x∈[0,1]

λmin

(

|Λ(x)|−1 Q(x)
)

, (4.11)

λ = max
x∈[0,1]

λmax

(

|Λ(x)|−1 Q(x)
)

. (4.12)

The matrix |Λ(x)|−1 Q(x) being positive definite, one can conclude that λ, λ > 0 and for all

y ∈ L2 ((0, 1);Rn)

λ |y|2L2((0,1);Rn) ≤ V (y) ≤ λ |y|2L2((0,1);Rn) . (4.13)

Let us compute the time-derivative of the candidate Lyapunov function (4.6) along the solutions

of system (4.1), (4.2). Using the commutativity condition (4.8), we have

V̇ = 2

∫ 1

0

y⊤
t (t, x) |Λ(x)|−1 Q(x)y(t, x)dx

= −2

∫ 1

0

y⊤(t, x)Ĩn,mQ(x)yx(t, x)dx+ 2

∫ 1

0

y⊤(t, x)Q(x) |Λ(x)|−1
F (x)y(t, x)dx . (4.14)

Noting that −2y⊤Ĩn,mQyx = −
(

y⊤Ĩn,mQy
)

x
+ y⊤Ĩn,mQ′y and Ĩn,mQ′ = −2µQ, one has

V̇ =

[

y−(t, 0)

y+(t, 1)

]⊤




[

Im 0m,n−m

G+− G++

]⊤

Ĩn,mQ(0)

[

Im 0m,n−m

G+− G++

]

−
[

G−− G−+

0n−m,m In−m

]⊤

Ĩn,mQ(1)

[

G−− G−+

0n−m,m In−m

]





[

y−(t, 0)

y+(t, 1)

]

+ 2

∫ 1

0

y⊤(t, x)Q(x) |Λ(x)|−1
F (x)y(t, x)dx− 2µ

∫ 1

0

y⊤(t, x)Q(x)y(t, x)dx . (4.15)

Then, (4.9) and (4.10) imply that V̇ ≤ −2νV . Hence for all t ∈ R
+ one has V (y) ≤ e−2νtV

(

y0
)

.

Combining this relation with (4.13), the proof is complete.
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Henceforth, for a given µ in R let us denote Ien,m(x) the matrix

Ien,m(x) = diag
[

e2µxIm, e
−2µxIn−m

]

. (4.16)

The relation between the previous stability conditions and LPV systems is done in the following

proposition.

Proposition 4.2. Let µ in R. Conditions (4.9) and (4.10) are satisfied if and only if the continuous

time LPV system

ṗ(t) = Ien,m(x)
(

|Λ(x)|−1
F (x) − µIn

)

p(t) , x ∈ [0, 1] , (4.17)

and the discrete time system

h(t+ 1) = diag
[

Im, e
−µIn−m

]

eµGdiag [Im, e
µIn−m]h(t) (4.18)

share a common block diagonal Lyapunov matrix diag [Q−, Q+], where Q− and Q+ are symmetric

matrices in R
m×m and R

(n−m)×(n−m) respectively.

Proof. LMI-based condition (4.9) describes a condition for the stability of the continuous time

LPV system (4.17).

LMI-based condition (4.10) may be developed as

P =

[

P−− P−+

P+− P++

]

≤ 0 , (4.19)

with

P−− = e2µG⊤
−−Q

−G−− +G⊤
+−Q

+G+− −Q− ,

P−+ = e2µG⊤
−−Q

−G−+ +G⊤
+−Q

+G++ ,

P+− = P⊤
−+ ,

P++ = e2µG⊤
−+Q

−G−+ +G⊤
++Q

+G++ − e−2µQ+ .

The matrix P in (4.19) may be rewritten as

P = (eµG)
⊤

diag
[

Q−, e−2µQ+
]

eµG− diag
[

Q−, e−2µQ+
]

. (4.20)

Thus, with (4.20) inequality (4.19) leads to establish

P ≤ 0 ⇔ eµG⊤diag
[

Im, e
−µIn−m

]

diag
[

Q−, Q+
]

diag
[

Im, e
−µIn−m

]

eµG

≤ diag
[

Im, e
−µIn−m

]

diag
[

Q−, Q+
]

diag
[

Im, e
−µIn−m

]

⇔ diag [Im, e
µIn−m] eµG⊤diag

[

Im, e
−µIn−m

]

diag
[

Q−, Q+
]

× diag
[

Im, e
−µIn−m

]

eµGdiag [Im, e
µIn−m] ≤ diag

[

Q−, Q+
]

.

Hence, condition (4.10) implies that the discrete time system (4.18) share a common Lyapunov
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matrix with the continuous time LPV system (4.17). It concludes the proof of Proposition 4.2.

Remark 4.1. A consequence of Proposition 4.2 is a trade-off in the choice of µ between the

satisfaction of (4.9) and (4.10). •

Other sufficient conditions for the global exponential stability of system (4.1)–(4.3) are obtained

when considering a different kernel Q(x) in (4.6). The next proposition is built using

Q(x) = diag
[

(1 + µx)Q−, (1 − µx)Q+
]

, (4.21)

in (4.6).

Proposition 4.3. If there exist ν > 0, µ ∈ (−1, 1) and symmetric positive definite matrices Q−

in R
m×m and Q+ in R

(n−m)×(n−m) such that the following conditions hold, for all x ∈ [0, 1],

Q(x)Λ(x) = Λ(x)Q(x) (4.22)

− µQ(0) +
(

|Λ(x)|−1
F (x)

)⊤

Q(x) + Q(x)
(

|Λ(x)|−1
F (x)

)

≤ −2ν |Λ(x)|−1 Q(x) , (4.23)

together with

[

Im 0m,n−m

G+− G++

]⊤ [
−Q− 0m,n−m

0n−m,m Q+

] [

Im 0m,n−m

G+− G++

]

≤
[

G−− G−+

0n−m,m In−m

]⊤ [
−(1+µ)Q− 0

0 (1−µ)Q+

]

×
[

G−− G−+

0n−m,m In−m

]

, (4.24)

then the linear hyperbolic system (4.1)–(4.3) is GES.

Proof. As mentioned earlier, we consider the candidate Lyapunov function (4.6) where Q(x) is

given by (4.21). We used the definitions of λ and λ given in (4.11) and (4.12) in the context

of Q(x) given by (4.21). The matrix |Λ(x)|−1 Q(x) is positive definite, one can conclude that λ,

λ > 0. Therefore,

λ |y|2L2(0,1) ≤ V (y) ≤ λ |y|2L2(0,1) . (4.25)

Let us compute the time-derivative of the candidate Lyapunov function along the solutions of

system (4.1), (4.2). Using the commutativity condition (4.22), we have

V̇ = 2

∫ 1

0

y⊤
t (t, x) |Λ(x)|−1 Q(x)y(t, x)dx

= −2

∫ 1

0

y⊤
x (t, x)

[

−Im 0m,n−m

0n−m,m In−m

]

Q(x)y(t, x)dx+ 2

∫ 1

0

y⊤(t, x)Q(x) |Λ(x)|−1
F (x)y(t, x)dx

= −2

∫ 1

0

y⊤
x (t, x)P(x)y(t, x)dx+ 2

∫ 1

0

y⊤(t, x)Q(x) |Λ(x)|−1
F (x)y(t, x)dx ,

where P(x) =
[

−(1+µx)Q− 0m,n−m

0m,n−m (1−µx)Q+

]

. Noting that −2y⊤
x Py = −∂x

(

y⊤Py
)

+ y⊤P ′y we get



4.2 LMI-based Conditions for Stability 97

V̇ = −
[

y⊤(t, x)P(x)y(t, x)
]1

0
− µ

∫ 1

0

y⊤(t, x)Q(0)y(t, x)dx

+ 2

∫ 1

0

y⊤(t, x)Q(x) |Λ(x)|−1
F (x)y(t, x)dx

=

[

y−(t, 0)

y+(t, 1)

]⊤




[

Im 0

G+− G++

]⊤

P(0)

[

Im 0m,n−m

G+− G++

]

−
[

G−− G−+

0n−m,m In−m

]⊤

P(1)

[

G−− G−+

0n−m,m In−m

]





[

y−(t, 0)

y+(t, 1)

]

− µ

∫ 1

0

y⊤(t, x)Q(0)y(t, x)dx+ 2

∫ 1

0

y⊤(t, x)Q(x) |Λ(x)|−1
F (x)y(t, x)dx .

Then, (4.23) and (4.24) imply that V̇ ≤ −2νV . Hence, for all t ∈ R
+ one has V (y) ≤ e−2νtV

(

y0
)

.

Combining this relation with (4.25) the proof is complete.

Remark 4.2. The condition

Q(x)Λ(x) = Λ(x)Q(x) , (4.26)

will imply that most of the time the matrices Q− and Q+ have to be diagonal. But it

may happen that the matrices cannot be diagonal even in the constant case. Let us show it with

an example. Let us consider the case n = 2, a matrix F spatially constant and Hurwitz, a matrix

G marginally stable and Λ = I2. Hence, condition (4.9) for stability is rewritten as

(F − µI2)
⊤
Q+Q (F − µI2) < 0 . (4.27)

Let us choose G as

G =
1

2
I2 . (4.28)

Hence, condition (4.10) is rewritten as

1

4
Q ≤ e−2µQ , (4.29)

which implies
1

4
≤ e−2µ , (4.30)

that is

µ ≤ ln(4)

2
= λ . (4.31)

To find a matrix F such that it does exist a diagonal Q we suppose that F is written as

F = A+ λI2 =

[

a+ λ b

c d+ λ

]

,
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where A =
[

a b
c d

]

. The matrix F has to be Hurwitz, hence one has

det (F ) > 0 ⇔ ad+ λ (a+ d) + λ2 − bc > 0

Tr(F ) < 0 ⇔ a+ d+ 2λ < 0 .

Since λ > 0 we get Tr(A) < 0. Without loss of generality, the diagonal matrix Q can be written

as [ 1 0
0 α ], with α > 0. One gets

QA+A⊤Q =

[

2a b+ αc

b+ αc 2αd

]

.

Moreover we suppose that det(A) = ad− bc > 0. The determinant of the above matrix is given by

4adα− (b+ αc)
2
, which is a polynomial of degree 2 in α

P (α) = −α2c2 + (4ad− 2bc)α− b2 . (4.32)

The objective is to obtain a matrix A such that the Lyapunov inequality A⊤Q + QA < 0 has no

diagonal solution. Hence, if the determinant is negative the counter example is obtained. The

determinant of P is given by

(4ad− 2bc)
2 − 4b2c2 < 0 ⇔ 16a2d2 − 16adbc < 0

⇔ a2d2 < adbc

⇔ ad (ad− bc) < 0

⇔ ad < 0 .

We used the fact that det(A) > 0. Hence, with the different conditions on a, b, c, d we can find a

matrix F such that conditions do not hold. For instance,

F =

[

−10 −9

10 6

]

, (4.33)

is a possible example. •

4.3 Controller Design

4.3.1 Boundary Control Design

We consider next the problem of boundary control design, when boundary condition (4.2) is given

by

G = T + LKB , (4.34)

where matrices T in R
n×n, L in R

n×q (n > q) are given and the matrix KB in R
q×n has to be

designed such that system (4.1)–(4.3) with the boundary conditions (4.34) is GES. We propose

results based on the use of the Lyapunov function (4.6) in the context of the exponential kernel (4.7)
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and of the affine kernel (4.21).

Exponential Kernel

Theorem 4.1. If there exist ν > 0, µ in R, a matrix U in R
q×n, and symmetric matrices S−

in R
m×m, S+ in R

(n−m)×(n−m) such that S(x) = diag
[

e−2µxS−, e2µxS+
]

, and such that the

following conditions hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (4.35)
[

diag
[

S−, e−2µS+
]

(TS(0) + LU)
⊤

TS(0) + LU diag
[

e−2µS−, S+
]

]

≥ 0 , (4.36)

− 2µS(x) + S(x)F⊤(x) |Λ(x)|−1
+ |Λ(x)|−1

F (x)S(x) ≤ −2νS(x) |Λ(x)|−1
, (4.37)

then the boundary control given by (4.34) with

KB = US(0)−1 , (4.38)

makes system (4.1)–(4.3) GES.

Proof. Replacing U by KBS(0) and applying the Schur complement formula in (4.36) one gets

diag
[

S−, e−2µS+
]

− S(0) (T + LKB)
⊤

diag
[

e−2µS−, S+
]−1

(T + LKB)S(0) ≥ 0 . (4.39)

Reassembling the term in one matrix and multiplying from the left and right with S(0)−1 we get

a matrix

M =

[

M−− M−+

M+− M++

]

≥ 0 , (4.40)

with

M−− =
(

S−
)−1 − e2µ (T + LKB)

⊤
−−

(

S−
)−1

(T + LKB)−−

− (T + LKB)
⊤
+−

(

S+
)−1

(T + LKB)+− , (4.41)

M−+ = −e2µ (T + LKB)
⊤
−−

(

S−
)−1

(T + LKB)−+

− (T + LKB)
⊤
+−

(

S+
)−1

(T + LKB)++ , (4.42)

M+− = M⊤
−+ , (4.43)

M++ = e−2µ
(

S+
)−1 − e2µ (T + LKB)

⊤
−+

(

S−
)−1

(T + LKB)−+

− (T + LKB)
⊤
++

(

S+
)−1

(T + LKB)++ . (4.44)

LettingQ− = (S−)
−1

, Q+ = (S+)
−1

we get condition (4.8) from (4.35), LMI-based conditions (4.9)

from (4.37), (4.10) from the matrix M in (4.40). Indeed, M is equivalent to the matrix −P in (4.19)

in the proof of Proposition 4.2, this latter is the derivation of the inequality (4.10)). It concludes

the proof of Theorem 4.1.
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Affine Kernel

Theorem 4.2. If there exist ν > 0, µ in (−1, 1), a matrix U in R
q×n, and symmetric matrices

S− in R
m×m, S+ in R

(n−m)×(n−m) such that S(x) = diag

[

(1 + µx)
−1
S−, (1 − µx)S+

]

and such

that the following conditions hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (4.45)
[

diag [S−, (1 − µ)S+] (TS(0) + LU)
⊤

TS(0) + LU diag

[

(1 + µ)
−1
S−, S+

]

]

≥ 0 , (4.46)

− 2µS(0) + S(x)F⊤(x) |Λ(x)|−1
+ |Λ(x)|−1

F (x)S(x) ≤ −2νS(x) |Λ(x)|−1
, (4.47)

then the boundary control given by (4.34) with

KB = US(0)−1 , (4.48)

makes system (4.1)–(4.3) GES.

Proof. The proof is similar to the one of Theorem 4.1. Replacing U by KBS(0) and applying the

Schur complement formula in (4.46) one gets

diag
[

S−, (1 − µ)S+
]

− S(0) (T + LKB)
⊤

diag
[

(1 + µ)
−1
S−, S+

]−1

(T + LKB)S(0) ≥ 0 .

(4.49)

Reassembling the term in one matrix and multiplying from the left and right with S(0)−1 we get

a matrix

M̃ =

[

M̃−− M̃−+

M̃+− M̃++

]

≥ 0 , (4.50)

with

M̃−− =
(

S−
)−1 − (1 + µ) (T + LKB)

⊤
−−

(

S−
)−1

(T + LKB)−−

− (T + LKB)
⊤
+−

(

S+
)−1

(T + LKB)+− , (4.51)

M̃−+ = − (1 + µ) (T + LKB)
⊤
−−

(

S−
)−1

(T + LKB)−+

− (T + LKB)
⊤
+−

(

S+
)−1

(T + LKB)++ , (4.52)

M̃+− = M̃⊤
−+ , (4.53)

M̃++ = (1 − µ)
(

S+
)−1 − (1 + µ) (T + LKB)

⊤
−+

(

S−
)−1

(T + LKB)−+

− (T + LKB)
⊤
++

(

S+
)−1

(T + LKB)++ . (4.54)

Letting Q− = (S−)
−1

, Q+ = (S+)
−1

we get condition (4.22) from (4.45), LMI-based conditions

(4.9) from (4.47), (4.10) from the matrix M in (4.50). It concludes the proof of Theorem 4.2.
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4.3.2 Distributed Control Design

We consider that the right-hand side of (4.1) is of the form

F (x) = H(x) +B(x)KD(x) , x ∈ [0, 1] , (4.55)

where matrices H(x) in R
n×n and B(x) in R

n×p (n > p) are given and matrix KD(x) in R
p×n

has to be designed such that system (4.1)–(4.3) is GES with the distributed control (4.55). In the

next we assume that KD(x) is given by

KD(x) =

ℓ
∑

i=1

αi(x)Ki , (4.56)

where αi, i = 1, . . . , ℓ, are some continuous real functions.

Remark 4.3. Examples of suitable functions αi, in (4.56) are the Bézier functions basis and spline

basis functions of degree 1. •

Exponential Kernel

Theorem 4.3. Let an integer ℓ > 0 be given. If there exist ν > 0, µ in R, matrices Ui in R
p×n,

i = 1, . . . , ℓ, and positive definite symmetric matrices S− in R
m×m, S+ in R

(n−m)×(n−m) such that

S(x) = diag
[

e−2µxS−, e2µxS+
]

, and such that, the following conditions hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (4.57)
(

|Λ(x)|−1
H(x) − µIn

)

S(x) + S(x)
(

|Λ(x)|−1
H(x) − µIn

)⊤

+

ℓ
∑

i=1

αi(x)
(

Ien,m(x)
)−1

U⊤
i B

⊤(x) |Λ(x)|−1
+

ℓ
∑

i=1

αi(x) |Λ(x)|−1
B(x)Ui

(

Ien,m(x)
)−1

≤ −2ν |Λ(x)|−1
S(x) , (4.58)

[

diag
[

S−, e−2µS+
]

(GS(0))
⊤

GS(0) diag
[

e−2µS−, S+
]

]

≥ 0 , (4.59)

with Ien,m(x) given in (4.16), then the distributed control given by (4.55) and (4.56) with

Ki = UiS(0)−1 , i = 1, . . . , ℓ , (4.60)

makes system (4.1)–(4.3) GES.

Proof. We know that system (4.1)–(4.3) is exponentially stable if conditions of Proposition 4.1 hold.

To apply this result let us check (4.8), (4.9) and (4.10) successively. Using the Schur complement

formula with (4.59), letting Q− = (S−)
−1

and Q+ = (S+)
−1

as in the proof of Theorem 4.1,

conditions (4.8) and (4.10) are satisfied. We can rewrite (4.9) as

(

|Λ(x)|−1
F (x) − µIn

)⊤

Q(x) + Q(x)
(

|Λ(x)|−1
F (x) − µIn

)

≤ −2ν |Λ(x)|−1 Q(x) .
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We use the expression of F given by (4.55), (4.56) and get

(

|Λ(x)|−1

(

H(x) +B(x)

ℓ
∑

i=1

αi(x)Ki

)

− µIn

)⊤

Q(x)

+ Q(x)

(

|Λ(x)|−1

(

H(x) +B(x)

ℓ
∑

i=1

αi(x)Ki

)

− µIn

)

≤ −2ν |Λ(x)|−1 Q(x) . (4.61)

This last inequality is not jointly convex in Ki and Q(x). To overcome this issue we multiply (4.61)

at the left and right by S(x) we get

(

|Λ(x)|−1
H(x) − µIn

)

S(x) + S(x)
(

|Λ(x)|−1
H(x) − µIn

)⊤

+
ℓ
∑

i=1

αi(x)S(x)K⊤
i B(x)⊤ |Λ(x)|−1

+
ℓ
∑

i=1

αi(x) |Λ(x)|−1
B(x)KiS(x) ≤ −2ν |Λ(x)|−1

S(x) ,

and we let Ki = UiS(0)−1, i = 1, . . . , ℓ, giving (4.58). This concludes the proof of Theorem 4.3.

Affine Kernel

Henceforth, for a given µ in (−1, 1) let us denote Ian,m(x) the matrix

Ian,m(x) = diag [(1 + µx) Im, (1 − µx) In−m] . (4.62)

Theorem 4.4. Let an integer ℓ > 0 be given. If there exist ν > 0, µ in (−1, 1), matrices Ui in

R
p×n, i = 1, . . . , ℓ, and positive definite symmetric matrices S− in R

m×m, S+ in R
(n−m)×(n−m)

such that S(x) = diag

[

(1 + µx)
−1
S−, (1 − µx)

−1
S+
]

, and such that, the following conditions

hold, for all x ∈ [0, 1],

S(x)Λ(x) = Λ(x)S(x) , (4.63)
(

|Λ(x)|−1
H(x) − µIn

)

S(x) + S(x)
(

|Λ(x)|−1
H(x) − µIn

)⊤

+

ℓ
∑

i=1

αi(x)
(

Ian,m(x)
)−1

U⊤
i B

⊤(x) |Λ(x)|−1
+

ℓ
∑

i=1

αi(x) |Λ(x)|−1
B(x)Ui

(

Ian,m(x)
)−1

≤ −2ν |Λ(x)|−1
S(x) , (4.64)

[

diag [S−, (1 − µ)S+] (GS(0))
⊤

GS(0) diag

[

(1 + µ)
−1
S−, S+

]

]

≥ 0 , (4.65)

with Ian,m(x) given in (4.62), then the distributed control given by (4.55) and (4.56) with

Ki = UiS(0)−1 , i = 1, . . . , ℓ , (4.66)

makes system (4.1)–(4.3) GES.

Proof. The proof of Theorem 4.4 is immediate with the proof of Theorems 4.2, 4.3.
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Remark 4.4. The simultaneous design of a boundary control and of a distributed control is

possible. For the exponential kernel it consists in the computation of matrices S−, S+, U , and Ui ,

i = 1, . . . , ℓ, satisfying (4.35), (4.36), and (4.58). For the affine kernel it consists in the computation

of matrices S−, S+, U , and Ui , i = 1, . . . , ℓ, satisfying (4.45), (4.46), and (4.64). •

4.4 Overapproximation Techniques

In this section, we present some practical techniques for the stability analysis and the control

design. For each conditions given up to know we propose a result for their overapproximation. We

distinguish two cases: spatially varying and non-spatially varying. For the clarity of the exposition

we propose a summary table of the results at the end of the section.

4.4.1 Non-Spatially Varying Case

Let us suppose F (x) = F , Λ(x) = Λ. The main goal of this section is to provide a way to

numerically verify conditions of Propositions 4.1 and 4.3 and of Theorems 4.1, 4.2, 4.3, and 4.4.

Exponential Kernel

For fixed µ in R, Q− in R
m×m and Q+ in R

(n−m)×(n−m), we write

Qij = diag
[

e2µiQ−, e−2µjQ+
]

, i, j = 0, 1 . (4.67)

Lemma 4.1. For all x ∈ [0, 1], Q(x) lies in the convex hull formed by Q00, Q01, and Q11 if µ > 0

and by Q00, Q10, and Q11 if µ < 0.

Proof. Without loss of generality we assume that µ > 0. Q : x 7→ Q(x) is a parameterized curve

in the (Q−, Q+) plane. We can express it as an explicit curve. We have e2µxe−2µx = 1, thus the

expression of the explicit curve is given by

h(X) =
1

X
, X ∈ ρ =

[

e−2µ, 1
]

.

This curve is convex on this interval. Then,

1

αe−2µ + (1 − α)
≤ αg

(

e−2µ
)

+ (1 − α)g(1) , α ∈ (0, 1) , (4.68)

where g(X) =
(

1−e2µ

1−e−2µ

)

X + e2µ + 1. When X lies in ρ, g(X) describes the straight line between

Q00 and Q11. Hence, for X ∈ ρ one has h(X) ≤ g(X). Thus, Q(x) lies in the convex hull formed

by Q00, Q01, and Q11.

Proposition 4.4. If there exist ν > 0, µ in R, and symmetric positive definite matrices Q− in

R
m×m and Q+ in R

(n−m)×(n−m) such that

QijΛ = ΛQij , (4.69)
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Q+

Q−

e−2µ 1

1

e2µ

Q(x)

Q01

Q11

Q00

Q̂
Q̃

Q̆

Figure 4.1: Illustration of the elevation of number of points representing the polytope used for the
overapproximation in the (Q−, Q+)-plane. Case µ > 0.

− 2µQij + F⊤ |Λ|−1
Qij +Qij |Λ|−1

F ≤ −2ν |Λ|−1
Qij , (4.70)

hold for all (i, j) ∈ {(0, 0), (0, 1), (1, 1)} if µ > 0 and for all (i, j) ∈ {(0, 0), (1, 0), (1, 1)} if µ < 0,

together with

[

Im 0m,n−m

G+− G++

]⊤

Q00Ĩn,m

[

Im 0m,n−m

G+− G++

]

≤
[

G−− G−+

0n−m,m In−m

]⊤

Q11Ĩn,m

[

G−− G−+

0n−m,m In−m

]

, (4.71)

then conditions (4.8), (4.9), and (4.10) are satisfied for all x ∈ [0, 1].

Proof. The inequality (4.71) corresponds to (4.10). By Lemma 4.1 the constraint of equality (4.8)

and LMI (4.9) are embedded in the polytope formed by the points Q00, Q01 and Q11. Thus,

conditions (4.8), (4.9), and (4.10) are satisfied. It concludes the proof of Proposition 4.4.

Remark 4.5. The approximation with the exponential kernel (4.7) can be made tighter by

increasing the number of points describing the polytope embedding the constraints given by con-

dition (4.8) and LMIs (4.9), (4.10). For instance, on Figure 4.1 there are 5 points: Q11, Q̃, Q̂, Q̆

and Q00. The impact of the number of points is explored numerically in the next section. •

The LMI-based conditions for the construction of boundary and distributed controller can be

overapproximated in the same manner than the LMI-based conditions for stability. Let us suppose

that H(x) = H and B(x) = B. For fixed µ in R, S− in R
m×m and S+ in R

(n−m)×(n−m), we write,

for i, j = 0, 1,

S̆ij = diag
[

e−2µiS−, e−2µjS+
]

, (4.72)

Sij = diag
[

e−2µiS−, e2µjS+
]

, (4.73)

and

Iijn,m = diag
[

e−2µiIm, e
2µjIn−m

]

, i, j = 0, 1 . (4.74)

Proposition 4.5. If there exist ν > 0, µ in R, a matrix U in R
q×n, and symmetric matrices S−

in R
m×m, S+ in R

(n−m)×(n−m) such that, the following conditions hold,

SijΛ = ΛSij , (4.75)
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



S̆01

(

T S̆00 + LU
)⊤

T S̆00 + LU S̆10



 ≥ 0 , (4.76)

− 2µSij + SijF
⊤ |Λ|−1

+ |Λ|−1
FSij ≤ −2νSij |Λ|−1

, (4.77)

for (i, j) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0 and for (i, j) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then

conditions (4.35), (4.36), and (4.37) are satisfied for all x ∈ [0, 1].

Proof. The inequality (4.36) corresponds to (4.76). By Lemma 4.1 the constraint of equality (4.35)

and LMIs (4.37) are embedded in the polytope formed by the points S00, S10 and S11 if µ > 0 or

by the points S00, S01 and S11 if µ < 0. Thus, conditions (4.35), (4.36), and (4.37) are satisfied.

It concludes the proof of Proposition 4.5.

Proposition 4.6. Let an integer ℓ > 0 be given. If there exist ν > 0, µ in R, matrices Ui in

R
p×n, i = 1, . . . , ℓ, and positive definite symmetric matrices S− in R

m×m, S+ in R
(n−m)×(n−m)

such that the following conditions hold

SjkΛ = ΛSjk , (4.78)
(

|Λ|−1
H − µIn

)

Sjk + Sjk

(

|Λ|−1
H − µIn

)⊤

+

ℓ
∑

i=1

min
x∈[0,1]

αi(x)
(

Ijkn,m
)−1

U⊤
i B

⊤ |Λ|−1
+

ℓ
∑

i=1

min
x∈[0,1]

αi(x) |Λ|−1
BUi

(

Ijkn,m
)−1

≤ −2ν |Λ|−1
Sjk , (4.79)

(

|Λ|−1
H − µIn

)

Sjk + Sjk

(

|Λ|−1
H(x) − µIn

)⊤

+

ℓ
∑

i=1

max
x∈[0,1]

αi(x)
(

Ijkn,m
)−1

U⊤
i B

⊤ |Λ|−1
+

ℓ
∑

i=1

max
x∈[0,1]

αi(x) |Λ|−1
BUi

(

Ijkn,m
)−1

≤ −2ν |Λ|−1
Sjk , (4.80)





S̆01

(

GS̆00

)⊤

GS̆00 S̆10



 ≥ 0 , (4.81)

for (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0 and for (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then

conditions (4.57), (4.58), and (4.59) are satisfied for all x ∈ [0, 1].

Proof. First of all the maximum and the minimum of αi, i = 1, . . . , ℓ, are well-defined since they are

continuous functions. The inequality (4.81) corresponds to (4.59). By Lemma 4.1 the constraint

of equality (4.57) and LMI (4.58) are embedded in the polytope formed by the points S00, S10,

and S11 if µ > 0 or by the points S00, S01, and S11 if µ < 0. Noting that any value of a continuous

function can be expressed as a convex combination of the maximum and minimum of the function,

condition (4.58) holds for all x ∈ [0, 1]. It concludes the proof of Proposition 4.6.
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Affine Kernel

Conditions of Proposition 4.3 can be easily verified. For fixed µ in (−1, 1), Q− in R
m×m, Q+ in

R
(n−m)×(n−m), we write

Q0 = diag
[

Q−, Q+
]

, (4.82)

Q1 = diag
[

(1 + µ)Q−, (1 − µ)Q+
]

, (4.83)

and we have the following proposition.

Proposition 4.7. If there exist ν ∈ R
+, µ ∈ (−1, 1) and symmetric positive definite matrices Q−

in R
m×m and Q+ in R

(n−m)×(n−m) such that

Q0Λ = ΛQ0 , (4.84)

Q1Λ = ΛQ1 , (4.85)

− µQ0 +
(

|Λ|−1
F
)⊤

Q0 +Q0

(

|Λ|−1
F
)

≤ −2ν |Λ|−1
Q0 , (4.86)

− µQ0 +
(

|Λ|−1
F
)⊤

Q1 +Q1

(

|Λ|−1
F
)

≤ −2ν |Λ|−1
Q1 , (4.87)

[

Im 0m,n−m

G+− G++

]⊤ [
−Q− 0m,n−m

0n−m,m Q+

] [

Im 0m,n−m

G+− G++

]

≤
[

G−− G−+

0n−m,m In−m

]⊤ [
−(1−µ)Q− 0m,n−m

0n−m,m (1+µ)Q+

]

×
[

G−− G−+

0n−m,m In−m

]

, (4.88)

then conditions (4.22), (4.23), and (4.24) are satisfied for all x ∈ [0, 1].

Proof. Note that Q(x) satisfies

Q(x) = diag
[

(1 + µx)Q−, (1 − µx)Q+
]

= (1 − x)Q0 + xQ1 . (4.89)

Since 1 − x (resp. x) is positive and Q0 (resp. Q1) verifies (4.86) (resp. (4.87)) then (1 − x)Q0

(resp. xQ1) verifies also (4.86) (resp. (4.87)). Hence, condition (4.23) holds. In the same man-

ner condition (4.22) holds. The verification of (4.24) is immediate since (4.88) is equivalent. It

concludes the proof of Proposition 4.7.

Similarly to what have been done with the exponential kernel, we can find some tractable conditions

for the checking of conditions of Theorems 4.2, 4.4. For fixed µ in (−1, 1), S− in R
n×n, S+ in

R
(n−m)×(n−m) we write

S(x) = diag
[

[(1 + µx)
−1
S−, (1 − µx)

−1
S+
]

, x ∈ [0, 1] , (4.90)

and for i, j = 0, 1,

S̃ij = diag
[

(1 + µi)
−1
S−, (1 − µj)

−1
S+
]

, (4.91)

Ŝij = diag
[

(1 + µi)
−1
S−, (1 − µj)S+

]

, (4.92)

Îjn,m = diag [(1 + µj) Im, (1 − µj) In−m] . (4.93)
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Since (4.90) is no more affine in the (S−, S+)-plane we need the following lemma.

Lemma 4.2. For all x ∈ [0, 1], S(x) lies in the convex hull formed by S̃00, S̃10, and S̃11 if µ > 0

and by S̃00, S̃01, and S̃11 if µ < 0.

Proof. Without loss of generality we assume that µ > 0. The map S(x) is a parameterized curve

in the (S−, S+) plane. We can express it as an explicit curve. We have (1 + µx)−1(1 − µx)−1 =

(1 − µ2x2)−1, thus the expression of the explicit curve is given by

h̃(X) =
X

2X − 1
, X ∈ ρ̃ =

[

(1 + µ)
−1
, 1
]

.

This curve is convex on this interval. Then,

h̃
(

α (1 + µ)
−1

+ (1 − α)
)

≤ αg̃
(

(1 + µ)
−1
)

+ (1 − α)g̃(1) , α ∈ (0, 1) , (4.94)

where g̃(X) =
(

(1+µ)−1−1

(1−µ)−1−1

)

X + (1 + µ)
−1

+ 1. When X lies in ρ̃, g̃(X) describes the straight line

between S̃00 and S̃11. Hence, for X ∈ ρ̃ one has h̃(X) ≤ g̃(X). Thus, S lies in the convex hull

formed by S̃00, S̃10, and S̃11.

Proposition 4.8. If there exist ν > 0, µ in (−1, 1), a matrix U in R
q×n, and symmetric matrices

S− in R
m×m, S+ in R

(n−m)×(n−m) such that, the following conditions hold,

S̃ijΛ = ΛS̃ij , (4.95)




Ŝ01

(

T Ŝ00 + LU
)⊤

T Ŝ00 + LU Ŝ10



 ≥ 0 , (4.96)

− 2µS̃ij + S̃ijF
⊤ |Λ|−1

+ |Λ|−1
FS̃ij ≤ −2νS̃ij |Λ|−1

, (4.97)

for (i, j) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, for (i, j) ∈ {(0, 0), (0, 1), (1, 1)} if µ > 0, then condi-

tions (4.45), (4.46), and (4.47) are satisfied for all x ∈ [0, 1].

Proof. The inequality (4.96) is equivalent to (4.46). By Lemma 4.2 the constraint of equality (4.45)

and LMI (4.46) are embedded in the polytope formed by the points S̃00, S̃10 and S̃11 if µ > 0 or

by the points S̃00, S̃01 and S̃11 if µ < 0. Thus, conditions (4.45), (4.46), and (4.47) are satisfied

for all x ∈ [0, 1]. It concludes the proof of Proposition 4.8.

Proposition 4.9. Let an integer ℓ > 0 be given. If there exist ν > 0, µ in (−1, 1), matrices Ui in

R
p×n, i = 1, . . . , ℓ, and positive definite symmetric matrices S− in R

m×m, S+ in R
(n−m)×(n−m)

such that the following conditions hold

S̃jkΛ = ΛS̃jk , (4.98)
(

|Λ|−1
H − µIn

)

S̃jk + S̃jk

(

|Λ|−1
H − µIn

)⊤

+
ℓ
∑

i=1

min
x∈[0,1]

αi(x)
(

Îjn,m

)−1

U⊤
i B

⊤ |Λ|−1
+

ℓ
∑

i=1

min
x∈[0,1]

αi(x) |Λ|−1
BUi

(

Îjn,m

)−1

≤ −2ν |Λ|−1
S̃jk , (4.99)
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(

|Λ|−1
H − µIn

)

S̃jk + S̃jk

(

|Λ|−1
H(x) − µIn

)⊤

+

ℓ
∑

i=1

max
x∈[0,1]

αi(x)
(

Îjn,m

)−1

U⊤
i B

⊤ |Λ|−1
+

ℓ
∑

i=1

max
x∈[0,1]

αi(x) |Λ|−1
BUi

(

Îjn,m

)−1

≤ −2ν |Λ|−1
S̃jk , (4.100)





Ŝ01

(

GŜ00

)⊤

GŜ00 Ŝ10



 ≥ 0 , (4.101)

for (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, for (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ > 0, then condi-

tions (4.63), (4.64), and (4.65) are satisfied for all x ∈ [0, 1].

Proof. First of all the maximum and the minimum of αi, i = 1, . . . , ℓ, are well-defined since they are

continuous functions. The inequality (4.101) corresponds to (4.65). By Lemma 4.2 the constraint

of equality (4.63) and LMI (4.64) are embedded in the polytope formed by the points S̃00, S̃10, and

S̃11 if µ > 0 or by the points S̃00, S̃01, and S̃11 if µ < 0. Thus, conditions (4.63), (4.64), and (4.65)

are satisfied for all x ∈ [0, 1]. It concludes the proof of Proposition 4.9.

4.4.2 Spatially-Varying Case

We may generalize the previous results when Λ and F are both spatially varying and lie in a convex

hull.

We assume that the parameterized matrix

W (x) = |Λ(x)|−1
F (x) , (4.102)

lies for all x ∈ [0, 1] in the convex hull

W :=

{

W : W =

N
∑

i=1

αiWi,

N
∑

i=1

αi = 1

}

, (4.103)

for given matrices Wi, i = 1, . . . , N .

Exponential Kernel

Proposition 4.10. If there exist ν > 0, µ in R, and diagonal positive definite matrices Q− in

R
m×m and Q+ in R

(n−m)×(n−m) such that

− 2µQjk +W⊤
i Qjk +QjkWi ≤ −2ν

∣

∣Λ̄
∣

∣

−1
Qjk , (4.104)

[

Im 0m,n−m

G+− G++

]⊤

Ĩn,mQ00

[

Im 0m,n−m

G+− G++

]

≤
[

G−− G−+

0n−m,m In−m

]⊤

Ĩn,mQ11

[

G−− G−+

0n−m,m In−m

]

, (4.105)

where

Λ̄ = diag

[

min
x∈[0,1]

λ1(x), . . . , min
x∈[0,1]

λm(x), max
x∈[0,1]

λm+1(x), . . . , max
x∈[0,1]

λn(x)

]

, (4.106)
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for all i = 1, . . . , N , and (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if

µ < 0, then conditions (4.8), (4.9), and (4.10) are satisfied for all x ∈ [0, 1].

Proof. Multiplying (4.104) by αi and making the sum for i = 1, . . . , N , we get

− 2µQjk +W (x)⊤Qjk +QjkW (x) ≤ −2ν
∣

∣Λ̄
∣

∣

−1
Qjk , (4.107)

for all x ∈ [0, 1], (j, k) = {(0, 0), (0, 1), (1, 1)} if µ > 0 and (j, k) = {(0, 0), (1, 0), (1, 1)} if µ < 0.

Using Lemma 4.1 and the definition of Λ̄ in (4.106), one gets (4.9). Condition (4.8) is automatically

satisfied because of the diagonal form of Q− and Q+. It concludes the proof of Proposition 4.10.

For the controller design, in the case where H as well as B are spatially-varying we may generalize

the above method. We assume that the parameterized matrices

|Λ(x)|−1
H(x) , (4.108)

and

|Λ(x)|−1
B(x) , (4.109)

lie, respectively, in

R :=

{

R : R =

M1
∑

i=1

βiRi,

M1
∑

i=1

βi = 1

}

, (4.110)

and

Z :=

{

Z : Z =

M2
∑

i=1

γiZi,

M2
∑

i=1

γi = 1

}

, (4.111)

for given matrices Ri, Zj , i = 1, . . . ,M1, j = 1, . . . ,M2. The following two propositions may be

stated.

Proposition 4.11. If there exist ν > 0, µ in R, a matrix U in R
q×n, and diagonal matrices S−

in R
m×m, S+ in R

(n−m)×(n−m) such that, the following conditions hold,





S̆01

(

T S̆00 + LU
)⊤

T S̆00 + LU S̆10



 ≥ 0 , (4.112)

− 2µSjk + SjkW
⊤
i +WiSjk ≤ −2νSjk

∣

∣Λ̄
∣

∣

−1
, (4.113)

for all i = 1, . . . , N , and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if

µ < 0, then conditions (4.35), (4.36), and (4.37) are satisfied for all x ∈ [0, 1].

Proof. As in the proof of Proposition 4.10 we multiply (4.113) by αi, and make the sum for

i = 1, . . . , N , getting

− 2µSjk + SjkW (x)⊤ +W (x)Sjk ≤ −2νSjk
∣

∣Λ̄
∣

∣

−1
, (4.114)

for all x ∈ [0, 1], (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0. Using

Lemma 4.1 and the definition of Λ̄ in (4.106), one gets (4.37). Condition (4.35) is automatically
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satisfied because of the diagonal form of S− and S+. Condition (4.112) is exactly condition (4.36).

It concludes the proof of Proposition 4.11.

Proposition 4.12. Let an integer ℓ > 0 be given. If there exist ν > 0, µ in R, matrices Ui in

R
p×n, i = 1, . . . , ℓ, and positive definite diagonal matrices S− in R

m×m, S+ in R
(n−m)×(n−m)

such that the following conditions hold

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
⊤

+

ℓ
∑

i=1

min
x∈[0,1]

αi(x)
(

Ijkn,m
)−1

U⊤
i Z

⊤
ι2

+

ℓ
∑

i=1

min
x∈[0,1]

αi(x)Zι2Ui
(

Ijkn,m
)−1

≤ −2ν
∣

∣Λ̄
∣

∣

−1
Sjk , (4.115)

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
⊤

+

ℓ
∑

i=1

max
x∈[0,1]

αi(x)
(

Ijkn,m
)−1

U⊤
i Z

⊤
ι2

+
ℓ
∑

i=1

max
x∈[0,1]

αi(x)Zι2Ui
(

Ijkn,m
)−1

≤ −2ν
∣

∣Λ̄
∣

∣

−1
Sjk , (4.116)





S̆01

(

GS̆00

)⊤

GS̆00 S̆10



 ≥ 0 , (4.117)

for all ι1 = 1, . . . ,M1, ι2 = 1, . . . ,M2, and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0,

(j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then conditions (4.63), (4.64), and (4.65) are satisfied for

all x ∈ [0, 1].

Proof. We multiply (4.115) and (4.116) by βι1 , γι2 , and make the sum for ι1 = 1, . . . ,M1,

ι2 = 1, . . . ,M2 we get

(R(x) − µIn)Sjk + Sjk (R(x) − µIn)
⊤

+

ℓ
∑

i=1

min
x∈[0,1]

αi(x)
(

Ijkn,m
)−1

U⊤
i Z(x)⊤ +

ℓ
∑

i=1

min
x∈[0,1]

αi(x)Z(x)Ui
(

Ijkn,m
)−1

≤ −2ν
∣

∣Λ̄
∣

∣

−1
Sjk , (4.118)

(R(x) − µIn)Sjk + Sjk (R(x) − µIn)
⊤

+
ℓ
∑

i=1

max
x∈[0,1]

αi(x)
(

Ijkn,m
)−1

U⊤
i Z(x)⊤ +

ℓ
∑

i=1

max
x∈[0,1]

αi(x)Z(x)Ui
(

Ijkn,m
)−1

≤ −2ν
∣

∣Λ̄
∣

∣

−1
Sjk . (4.119)

Using Lemma 4.1, the definition of Λ̄ in (4.106) and the fact that any value of a continuous function

can be expressed as a convex combination of its minimum and maximum, one gets (4.64). Condi-

tion (4.63) is automatically satisfied because of the diagonal form of S− and S+. Condition (4.117)

is exactly condition (4.65). It concludes the proof of Proposition 4.12.
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Affine Kernel

Similar results may be stated for the LMI-based stability conditions and LMI-based design condi-

tions, derived from the Lyapunov function (4.6) with the affine kernel (4.21).

Proposition 4.13. If there exist ν > 0, µ in (−1, 1), and diagonal positive definite matrices Q−

in R
m×m and Q+ in R

(n−m)×(n−m) such that

− µQ0 +W⊤
i Q0 +Q0Wi ≤ −2ν

∣

∣Λ̄
∣

∣

−1
Q0 , (4.120)

− µQ0 +W⊤
i Q1 +Q1Wi ≤ −2ν

∣

∣Λ̄
∣

∣

−1
Q1 , (4.121)

[

Im 0m,n−m

G+− G++

]⊤ [
−Q− 0m,n−m

0n−m,m Q+

] [

Im 0m,n−m

G+− G++

]

≤
[

G−− G−+

0n−m,m In−m

]⊤ [
−(1−µ)Q− 0m,n−m

0n−m,m (1+µ)Q+

]

×
[

G−− G−+

0n−m,m In−m

]

, (4.122)

for all i = 1, . . . ,M , where
∣

∣Λ̄
∣

∣ is defined in (4.106) and Q0, Q1 are respectively defined in (4.82), (4.83),

then conditions (4.22), (4.23), and (4.24) are satisfied for all x ∈ [0, 1].

Proof. The proof is similar than the proof of Proposition 4.10. Multiplying (4.120) and (4.121) by

αi and making the sum for i = 1, . . . ,M we get

− µQ0 +W (x)⊤Q0 +Q0W (x) ≤ −2ν
∣

∣Λ̄
∣

∣

−1
Q0 , (4.123)

− µQ0 +W (x)⊤Q1 +Q1W (x) ≤ −2ν
∣

∣Λ̄
∣

∣

−1
Q1 , (4.124)

for all x ∈ [0, 1]. Using the fact that

Q(x) = (1 − x)Q0 + xQ1 ,

and the definition of Λ̄ in (4.106), one gets (4.23). Condition (4.22) is automatically satisfied

because of the diagonal form of Q− and Q+. This concludes the proof of Proposition 4.13.

Proposition 4.14. If there exist ν > 0, µ in R, a matrix U in R
q×n, and diagonal matrices S−

in R
m×m, S+ in R

(n−m)×(n−m) such that, the following conditions hold,





Ŝ01

(

T Ŝ00 + LU
)⊤

T Ŝ00 + LU Ŝ10



 ≥ 0 , (4.125)

− 2µS̃jk + S̃jkW
⊤
i +WiS̃jk ≤ −2νS̃jk

∣

∣Λ̄
∣

∣

−1
, (4.126)

for all i = 1, . . . , N , and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if

µ < 0, then conditions (4.45), (4.46), and (4.47) are satisfied for all x ∈ [0, 1].

Proof. As in the proofs of Proposition 4.10, 4.11 we multiply (4.126) by αi, and make the sum for

i = 1, . . . , N , getting

− 2µS̃jk + S̃jkW (x)⊤ +W (x)S̃jk ≤ −2νS̃jk
∣

∣Λ̄
∣

∣

−1
, (4.127)

for all x ∈ [0, 1], (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0, (j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0. Using
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Lemma 4.2 and the definition of Λ̄ in (4.106), one gets (4.47). Condition (4.45) is automatically

satisfied because of the diagonal form of S− and S+. Condition (4.46) is exactly condition (4.125).

This concludes the proof of Proposition 4.14.

Proposition 4.15. Let an integer ℓ > 0 be given. If there exist ν > 0, µ in (−1, 1), matrices Ui
in R

p×n, i = 1, . . . , ℓ, and positive definite diagonal matrices S− in R
m×m, S+ in R

(n−m)×(n−m)

such that the following conditions hold

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
⊤

+
ℓ
∑

i=1

min
x∈[0,1]

αi(x)
(

Îjkn,m

)−1

U⊤
i Z

⊤
ι2

+

ℓ
∑

i=1

min
x∈[0,1]

αi(x)Zι2Ui

(

Îjkn,m

)−1

≤ −2ν
∣

∣Λ̄
∣

∣

−1
Sjk , (4.128)

(Rι1 − µIn)Sjk + Sjk (Rι1 − µIn)
⊤

+

ℓ
∑

i=1

max
x∈[0,1]

αi(x)
(

Îjkn,m

)−1

U⊤
i Z

⊤
ι2

+

ℓ
∑

i=1

max
x∈[0,1]

αi(x)Zι2Ui

(

Îjkn,m

)−1

≤ −2ν
∣

∣Λ̄
∣

∣

−1
Sjk , (4.129)





Ŝ01

(

GŜ00

)⊤

GŜ00 Ŝ10



 ≥ 0 , (4.130)

for all ι1 = 1, . . . ,M1, ι2 = 1, . . . ,M2, and (j, k) ∈ {(0, 0), (1, 0), (1, 1)} if µ > 0,

(j, k) ∈ {(0, 0), (0, 1), (1, 1)} if µ < 0, then conditions (4.63), (4.64), and (4.65) are satisfied for all

x ∈ [0, 1].

Proof. Using Lemma 4.2 and the proof of Proposition 4.12 the result follows.

Since this section gathers a lot of results we propose a summary table.

Exponential ker-

nel

Affine kernel

Analysis
Non Spatially

Varying

Proposition 4.4 Proposition 4.7

Spatially Vary-

ing

Proposition 4.10 Proposition 4.13

Controller Design

Boundary
Non Spatially

Varying

Proposition 4.5 Proposition 4.8

Spatially Vary-

ing

Proposition 4.11 Proposition 4.14

Distributed
Non Spatially

Varying

Proposition 4.6 Proposition 4.9

Spatially Vary-

ing

Propostion 4.12 Proposition 4.15

Table 4.1: Summary table of the results of Section 4.4.
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4.5 Numerical Experiments

In this section, several examples are presented to illustrate the results of the chapter. All the

solutions of the LMIs have been computed with the Multi-Parametric Toolbox (MPT) [60].

4.5.1 Stability Analysis, illustrating Proposition 4.4

Example 4.1. Let us consider the following matrices

Λ = diag [−3, 1] , (4.131)

F =

[

−1 0.2

1 0.2

]

, (4.132)

G =

[

0.2 −0.3

0.6 0.1

]

. (4.133)

The matrix F in (4.132) is non-Hurwitz and the matrix G in (4.133) is such that ρ (G) < 1. This

last property is classical for the stability analysis of linear and quasi-linear hyperbolic system [27],

[35].

Figure 4.2 shows that the result obtained with only three points for the polytope is optimal. In-

deed, the numerical ν obtained with three points is the same than with higher number of points.

This result might be expected because all the constraints of the LMI are enclosed by the overap-

proximation with the polytope described by three points. The lower curve corresponds to the result

of the algorithm when the objective is to maximize ν. In order to make this objective tractable,

a relaxation on the right-hand side of the inequality (4.9) is made. The upper curve is the result

of the algorithm when the objective is to minimize the trace of Q(0). Unexpectedly, the second

algorithm gives a better ν than the first one.

The Lyapunov function (4.6) with the affine kernel (4.21) does not converge, which is not surprising

when we look at LMIs (4.86) and (4.87). Indeed, to satisfy these latter LMIs we need a large positive

µ, that means a µ near to be one, but in the same time increasing the µ will make the verification

of (4.88) complex. Hence, the Lyapunov function (4.6) with the affine kernel (4.21) may not give

results when the matrix F is not Hurwitz.

Example 4.2. Let us consider the following matrices

Λ = diag [−1, 1] , (4.134)

F =

[

−0.3 0.1

0.1 −0.3

]

, (4.135)

G =

[

0.1 −0.8

0.6 −0.4

]

. (4.136)

In this example the matrix F in (4.135) is Hurwitz and the matrix G in (4.136) is contractive that

is ρ(G) < 1.

Figure 4.3 shows that the algorithm for which the objective is to minimize the trace of Q(0) seems
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Figure 4.2: Evolution of ν as a function of µ for Example 4.1 for the gridding method depending
on the number of points.

to give a better ν than the algorithm for which the objective is to maximize ν. Moreover it shows

that the Lyapunov function (4.6) with the affine kernel (4.21) gives a better ν for the first µ than

the exponential kernel (4.7), and gives solutions at some µ while the other kernel fails. Moreover,

the shape of the curve obtained in this example is not the same as the one presented in Example 4.1.

This comes from the fact that the matrix F is Hurwitz, hence increasing µ moves the eigenvalues

of |Λ|−1
F − µI2 in the left half-plane of C, so it will increase the parameter ν. The algorithm

stops due to LMI (4.10) which is no more solvable for large µ. Thus, this example illustrates also

Proposition 4.2.

4.5.2 Controller Design, illustrating Theorems 4.1, 4.2, and 4.3

Example 4.3. Let us consider system (4.1)–(4.3) with

Λ = diag [−1, 2] , (4.137)

F =

[

−0.1 0.1

0.5 −0.8

]

, (4.138)

under the boundary control (4.34) where

T =

[

−0.5 1

0.5 1

]

,

L⊤ =
[

0.5 −1
]

.
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Figure 4.3: Evolution of ν as a function of µ for Example 4.2.

Let us choose ν = 0.1. The design algorithm using the Proposition 4.5 gives

µ = 0.1580 , (4.139)

KB =
[

0.5596 0.7910
]

, (4.140)

which leads to the following boundary control

G =

[

−0.2202 1.3955

−0.0596 0.2090

]

. (4.141)

We check numerically the behavior of the solution of (4.1)–(4.3) with the matrix G given by (4.141),

with a two-step variant of the Lax-Friedrichs (LxF) method [102]. The initial condition is chosen

as

y0(x) =

[ √
2 sin (πx)√
2 sin (2πx)

]

, x ∈ [0, 1] . (4.142)

Figure 4.4 shows the evolution of the state of the system (4.1)–(4.3) with initial condition given

by (4.142) and under the boundary control (4.141).

Example 4.4. Let us consider system (4.1)–(4.3) with

Λ = diag [−2, 1] , (4.143)

G =

[

0.5 −0.4

0.2 0.8

]

, (4.144)
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Figure 4.4: Evolution of the first component y1 (left) and of the second component y2 (right) of
system (4.1)–(4.3) with Λ and F given, respectively, by (4.137) and (4.138) and initial
condition given by (4.142) and under the boundary control (4.141).

under the distributed control (4.55) where

H =

[

−0.5 0.2

0.2 0.5

]

,

B⊤ =
[

0.5 1
]

,

(ℓ, α) = (1, 1) .

Numerically, ν is fixed to 0.3. The design algorithm using Proposition 4.6 gives gives

µ = 0.15 ,

KD =
[

−0.3130 −1.1485
]

,

which leads to

F =

[

−0.6565 −0.3743

−0.1130 −0.6485

]

. (4.145)

Figure 4.5 shows the evolution of the state of the system (4.1)–(4.3) with initial condition given

by (4.142) and under the distributed control (4.145).

4.5.3 Saint-Venant Equations

We illustrate Proposition 4.10 with the Saint-Venant equations for a prismatic horizontal chan-

nel, meaning that Sb = 0 in (1.31). We consider the linearization of the model around a non-

uniform steady-state (H∗, V ∗) as introduced in Subsection (1.2.3). The numerical values chosen

are L = 1 km, g = 9.81 m.s−2, C = 0.002 s2.m−1, Q∗ = H∗V ∗ = 1 m3.s−1 and the initial condition

V ∗
0 = 0.5 m.s−1. We compute numerically the matrices Wi for

µ = 1.4 . (4.146)
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Figure 4.5: Evolution of the first component y1 (left) and of the second component y2 (right) of
system (4.1)–(4.3) with Λ and G given, respectively, by (4.143) and (4.144) and initial
condition given by (4.142) and under the distributed control (4.145).

The set W defined in (4.102) is described by 16 matrices. Furthermore, the channel is provided

with some control devices allowing to assign the flow-rate on both sides of the channel, that is

Q1(t) = H(t, 0)V (t, 0) , (4.147)

Q2(t) = H(t, L)V (t, L) . (4.148)

Let us assume the controllers (4.147) and (4.148) are such that in the characteristic coordinates

one has

[

y1(t, 1)

y2(t, 0)

]

=

[

0 0.2

0.3 0

][

y1(t, 0)

y2(t, 1)

]

. (4.149)

It must be stressed that all of this values may be prone to numerical errors since the explicit

expression of V ∗ is unknown. Next, we compute matrices Q− and Q+ such that Proposition 4.10

holds. Conditions (4.104)–(4.105) are checked with

Q− = 1 , (4.150)

Q+ = 10.8171 , (4.151)

ν = 4.8432 . (4.152)

Thus, this numerical method is effective on physical device.
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5 • Conclusion and Perspectives

5.1 Conclusion

Let us sum up the materials presented in this thesis. We have analyzed different aspects of linear

hyperbolic systems in one space dimension.

In a first part, we have considered switching boundary controllers. By a Lyapunov analysis we have

derived three switching rules which allow to stabilize in different sense systems of balance laws. The

first one is a switching rule based on a steepest descent criteria, we have called it argmin switching

rule. The drawback of this rule is the possible non-existence of solution globally in time, which have

been shown to hold through the construction of a specific example. To encompass this limitation

and to limit the number of switches per time unit we have added a hysteresis phenomenon to the

previous equation, giving our second switching rule. We have proved that with this modification

the system is well-posed (existence of a unique solution for all time). Moreover, we have shown that

with a mild modification of this latter switching rule, it has ISS stability and robustness properties

with respect to measurement noise. Keeping the idea to reduce the number of switches per time

unit we have proposed to add a low-pass filter to hysteresis. The resulting switching rules have been

shown to be well-posed. Besides, as for the hysteresis switching rule, a slightly modified version of

the low-pass filter has been shown to get ISS stability and robustness properties with respect to

measurement noise. A main interest of such switching rules is the possible stabilization of system

for which every individual system is unstable, as it was illustrated. Moreover, switched boundary

controllers seem to improve convergence of the system, as illustrated with the multi-reach governed

by the Saint-Venant equations example.

In a second part, we have considered a 2×2 hyperbolic system of balance laws with anti-collocated

boundary input and output. The first objective was to generate the trajectory for the system to

guarantee that the output follows a desired given trajectory. The problem was solved by back-

stepping. Then, we have moved on to the tracking issue which is the natural prolongation of such

framework. To insure that the output follows the desired output we have used a PI-controller.

Through a Lyapunov analysis we have proved that the L2-norm of the resulting augmented system

(states of the system and integrator) goes to zero. We have investigated the question of presence of

distributed and boundary disturbances in the system. It was shown that when considering solution

in L2 the disturbance output are rejected in time-averaged, while considering solution in C1 the

disturbance output is rejected asymptotically for the C0-norm. Finally, we have illustrated the
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trajectory generation with a wave equation with indefinite in-domain and boundary damping. The

tracking result has been illustrated with the Aw-Rascle-Zhang equations.

In the third and last part of this thesis, we have considered linear hyperbolic systems with spatially

varying coefficients. We have given LMI conditions for their stability. These LMIs are infinite

due to the dependence on the space variable. Hence, we have reduced this complexity with an

embedding of the constraints in polytopes. Then, we have considered the design of boundary

and distributed controllers. The conditions are written as the conditions for stability. Hence,

the overapproximation techniques have been shown to be effective in the same way. We have

illustrated these results through academic examples and the Saint-Venant equations containing a

friction coefficient.

5.2 Perspectives

Concerning switched systems of balance laws a lot of things have to be done. Indeed, it is a very

new field of research for the control theory of PDEs community.

5.2.1 Other Switched Hyperbolic PDEs

First of all, the generalization of an output feedback law for systems where a switching appears

also for the velocities, that is

∂ty(t, x) + Λσ(t)∂xy(t, x) = Fσ(t)y(t, x) ,

is a challenging question from an existence of solution point of view. In the same way designing

output feedback laws with a switched source term, when they are non-dissipative individually,

seems a challenging question from the stability point of view.

Another idea for switched hyperbolic systems is to investigate systems of the form

∂ty(t, x) + Λσ(t) (y(t, x)) ∂xy(t, x) = Fσ(t)y(t, x)

with boundary conditions
[

y+(t, 0)

y−(t, 1)

]

= G

([

y+(t, 1)

y−(t, 0)

])

.

In other words, it consists in analyzing a non-linear hyperbolic system for which switching appears

in the velocities and source term but not at the boundary. Hence, discontinuities may not appear

in the solution. The question is: is it possible to find a stabilizing switching for the system ?

Finally, a last idea is to consider the stabilization of a hyperbolic system coupled with a switched

system in finite dimension. For instance, let us consider a system similar to the one considered in

[1] and [3], that is a 2 × 2 hyperbolic systems perturbed by a switched finite dimensional linear

systems at the left boundary
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∂ty1(t, x) + λ1(x)∂xy1(t, x) = γ1(x)y2(t, x)

∂ty2(t, x) − λ2(x)∂xy2(t, x) = γ2(x)y1(t, x) ,

with

y1(t, 0) = qy2(t, 0) + CiX(t)

y2(t, 1) = U(t)

Ẋ(t) = AiX(t) ,

where i ∈ I := {1, . . . , N}, Ai ∈ R
n×n, Ci ∈ R

1×n for all i ∈ I. Moreover, we may suppose that

the value of X is reset at the time instant of switch tk, that is

X
(

t+k
)

= DiX
(

t−k
)

,

with Di ∈ R
n×n.

5.2.2 Supervisory Control and Estimation

In finite dimension, switching is very practical for system where large uncertainties exist. In this

case the classical adaptive control is irrelevant or not very effective. Hence, a supervisory control

is adopted, for instance, see [110], [61], [76], and the references therein. The same idea could be

extended for PDEs. For instance, let us consider the 2 × 2 hyperbolic system

∂ty1(t, x) + ε1(x)∂xy1(t, x) = γ1(x)y2(t, x)

∂ty2(t, x) − ε2(x)∂xy2(t, x) = γ2(x)y1(t, x)

with boundary conditions

y1(t, x) = q∗y2(t, x)

y2(t, x) = U(t) ,

where q∗ is an unknown parameter lying in some “large” range
[

q, q
]

. The control U may be

designed with backstepping for instance, but the solution of the backstepping kernels depends on

the value of q∗. Thus, the system may be unstable for large value of γ1(x) and γ2(x). The idea

consists in partitioning the range
[

q, q
]

by N values qi, i = 1, . . . , N . We aim at constructing a

supervisory control with the only measurement of y2(t, 0). Let us define the yi1, yi2 as the solution

of the following system

∂ty
i
1(t, x) + ε1(x)yi1(t, x) = (−1 + γ1(x)) yi2(t, x)

∂ty
i
2(t, x) − ε2(x)yi2(t, x) = (−1 + γ2(x)) yi1(t, x) ,
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with boundary conditions

yi1(t, 0) = qiy
i
2(t, 0)

yi2(t, 1) = U(t) .

These latter systems are estimator systems. The estimation errors

e
p∗

1 (t, x) = y
p∗

1 (t, x) − y1(t, x)

e
p∗

2 (t, x) = y
p∗

2 (t, x) − y2(t, x) ,

satisfy

∂te
p∗

1 (t, x) + ε1(x)∂xe
p∗

1 (t, x) = −ep
∗

2 (t, x)

∂te
p∗

2 (t, x) − ε2(x)∂xe
p∗

2 (t, x) = −ep
∗

1 (t, x) ,

with boundary conditions

e
p∗

1 (t, 0) = 0

e
p∗

2 (t, 1) = 0 .

This system is exponentially stable no matter what the control U(t) is. The supervisory control

may be defined as taking the value qi such that the error estimation

µi(t) =

∫ t

0

(

ei2(s, 0)
)2
ds

is minimized. To reduce the complexity of the computation of µi, a multi-estimator may be

designed as in finite dimension, see, for instance, [61], [76]. Let us define two new systems, the

first one is

∂tz1(t, x) + ε1(x)∂xz1(t, x) = (−1 + γ1(x)) z2(t, x)

∂tz2(t, x) − ε2(x)∂xz2(t, x) = (−1 + γ2(x)) z1(t, x) ,

with the boundary conditions

z1(t, 0) = y2(t, 0)

z2(t, 1) = 0 .

The second one is

∂tw1(t, x) + ε1(x)∂xw1(t, x) = (−1 + γ1(x))w2(t, x)

∂tw2(t, x) − ε2(x)∂xw2(t, x) = (−1 + γ2(x))w1(t, x) ,
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with boundary conditions

w1(t, 0) = 0

w2(t, 1) = U(t) .

We get

[

yi1(t, x)

yi2(t, x)

]

=

[

qiz1(t, x) + w1(t, x)

qiz2(t, x) + w2(t, x)

]

.

A possible control Ui for the mode i would be

Ui(t) =

∫ 1

0

K
βα
i (1, ξ)yi1(t, ξ)dξ +

∫ 1

0

K
ββ
i (1, ξ)yi2(t, ξ)dξ ,

where Kβα
i and Kββ

i are the kernels of the backstepping transformation associated with the value

qi, see Chapter 3. The natural questions which may be handled are: the existence of solutions,

their regularity, the stabilization, the switching phenomena (does it stop ?), etc.

Recently in [18], the supervisory strategy has been adopted for the parameter and state estimations.

In the same idea, a system as the one tackled in [34] could be treated. More precisely, these systems

take the following form

∂ty(t, x) + Λ∂xy(t, x) = Fy(t, x)

where Λ = diag [λ1, . . . , λn,−µ] with λi > 0 for i = 1, . . . , n and µ > 0 and F [n + 1, n + 1] = 0.

The boundary conditions at x = 0 for state associated to the positive velocities are







y1(t, 0)

. . .

yn(t, 0)






=









q1yn+1(t, 0)
...

qnyn+1(t, 0)









+









θ1

...

θn









,

and the last boundary condition, for the state whose velocity is negative, is

yn+1(t, 1) =

n
∑

i=1

ρiyi(t, 1) + U(t) ,

where U(t) is the control input. The θi are supposed to lie in a range
[

θi, θi
]

, i = 1, . . . , n and

are uncertain parameters. In [18], the problem is solved with backstepping, and Gradient Descent

algorithm. The idea that we have is that a supervisory strategy as described above could be more

effective for a large range for the θi. Moreover, one could imagine to use methods as developed in

[18] with a dynamical gridding of the parameter sets to obtain more accurate estimates.
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5.2.3 Perspectives for the Lyapunov Analysis

The perspectives above show that a wide horizon for switched hyperbolic systems exists. Still,

for unswitched hyperbolic systems it remains works to be done. For instance, the perspectives

for the work of Chapter 3 are to tighten the conditions on kP and kI such that the conditions of

Theorem 3.2 hold. A possibility would be to pass to a domain frequency approach. Nonetheless,

in the optic of applying PI-controller for the non-linear version of the system of Chapter 3, the

frequency domain approach would be irrelevant. Moreover, the form of Lyapunov function (diag-

onal, non-diagonal, degree,. . . ) for system of conservation laws is not yet understood. Some work

should be led on these crucial questions.



Appendix

Lemma A (Gronwall’s Lemma [65]). Suppose y ∈ C1 ([0, T ] ;R), ψ ∈ C ([0, T ] ;R) satisfy

y′(t) ≤ cy(t) + ψ(t) , 0 ≤ t ≤ T , (1)

for some c ≥ 0. Then

y(t) ≤ ect
(

y(0) +

∫ t

0

|ψ(s)| ds
)

, 0 ≤ t ≤ T . (2)

Lemma B (Picard’s Lemma [65]). Let ηk(t), k ∈ N denote a sequence of nonnegative continuous

functions which satisfy the inequalities

ηk+1(t) ≤ a+ b

∫ t

0

ηk(s)ds , 0 ≤ t ≤ T , (3)

with nonnegative constant a, b. Then

ηk(t) ≤ a

k−1
∑

i=0

biti

i!
+
bktk

k!
max

0≤s≤t
η0(s) , (4)

for 0 ≤ t ≤ T and k ∈ N. In particular, the sequence ηk(t), 0 ≤ t ≤ T , is uniformly bounded. If

a = 0, then the sequence converges uniformly to zero.

Theorem A (Arzelà-Ascoli Theorem [14]). Let K be a compact metric space and let H be a

bounded subset of C (K;R). Let us assume that H is uniformly equicontinuous that is

∀ε > 0 ∃δ > 0 such that d(x1, x2) < δ ⇒ |f (x1) − f (x2)| < ε ∀f ∈ H . (5)

Then H is relatively compact in C (K;R).
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Control of hyperbolic systems by Lyapunov analysis

Abstract:

In this thesis we have considered different aspects for the control of hyperbolic systems.

First, we have studied switched hyperbolic systems. They contain an interaction between a con-

tinuous and a discrete dynamics. Thus, the continuous dynamics may evolve in different modes:

these modes are imposed by the discrete dynamics. The change in the mode may be controlled (in

case of a closed-loop system), or may be uncontrolled (in case of an open-loop system). We have

focused our interest on the former case. We procedeed with a Lyapunov analysis, and construct

three switching rules. We have shown how to modify them to get robustness and ISS properties.

We have shown their effectiveness with numerical tests.

Then, we have considered the trajectory generation problem for 2 × 2 linear hyperbolic systems.

We have solved it with backstepping. Then, we have considered the tracking problem with a

Proportionnal-Integral controller. We have shown that it stabilizes the error system around the

reference trajectory with a new non-diagonal Lyapunov function. The integral action has been

shown to be able to compensate in-domain, as well as boundary disturbances.

Finally, we have considered numerical aspects for the Lyapunov analysis. The conditions for the

stability and design of controllers by quadratic Lyapunov functions involve an infinity of matrix

inequalities. We have shown how to reduce this complexity by polytopic embeddings of the con-

straints.

Many obtained results have been illustrated by academic examples and physically relevant dynam-

ical systems (as Shallow-Water equations and Aw-Rascle-Zhang equations).

Keywords :
Hyperbolic systems; switched systems; Lyapunov function; LMI.
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