Analyse expérimentale et modélisation du comportement de structures précontraintes
Alexandre Michou

To cite this version:

HAL Id: tel-01316377
https://tel.archives-ouvertes.fr/tel-01316377v2
Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE DE DOCTORAT

pour obtenir le grade de :

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité : Mécanique - Génie Civil

École doctorale : Sciences mécaniques, acoustique, électronique
et robotique de Paris

réalisée au

Laboratoire de Mécanique et Technologie de Cachan

présentée par

Alexandre Michou

Sujet de la thèse :

Analyse expérimentale et modélisation
du comportement de structures précontraintes

soutenue le 30 novembre 2015 devant le jury composé de :

Hélène Dumontet Professeur, Université Pierre et Marie Curie Présidente
Alain Millard Ingénieur-Che.main HDR, CEA Saclay Rapporteur
Alain Sellier Professeur, Université Paul Sabatier Rapporteur
Jean-Philippe Charron Professeur, École Polytechnique de Montréal Examineur
Farid Benboudjema Professeur, ENS Cachan Encadrant
Georges Nahas Ingénieur-Che.main, IRSN Encadrant
Pierre Wyniecki Directeur scientifique, Nuvia Structure Encadrant
Yves Berthaud Professeur, Université Pierre et Marie Curie Directeur
Table des matières

Remerciements 1

Introduction 3

Démarche générale 7

1 État de l’art 11

 1.1 Comportement de structures en béton armé précontraint 12

 1.1.1 Précontrainte par torons adhérents 13

 1.1.2 Précontrainte par torons non-adhérents 15

 1.1.3 Limites des recherches sur le comportement à la fissuration 18

 1.1.4 Synthèse 21

 1.2 Comportement mécanique du matériau béton 22

 1.2.1 Prise en compte de la fissuration 22

 1.2.2 Localisation et régularisation 24

 1.2.3 Quantification d’ouvertures de fissures pour des modèles d’endommagement continu 27

 1.2.4 Synthèse 29

 1.3 Comportements évolutifs et différenciés du matériau béton 30

 1.3.1 Comportement au jeune âge 30

 1.3.2 Comportement à long terme 31

 1.3.3 Synthèse 37

 1.4 Liaison armatures passives - béton 38

 1.4.1 Rôle de la liaison acier-béton 38

 1.4.2 Identification des mécanismes et des paramètres d’influence 38

 1.4.3 Prise en compte numérique 43

 1.4.4 Synthèse 47

 1.5 Liaison torons de précontrainte - coulis d’injection 48

 1.5.1 Caractérisation des mécanismes 48

 1.5.2 Essais expérimentaux pour la prise en compte numérique 50

 1.5.3 Synthèse 53

 1.6 Synthèse générale 54

2 Comportement expérimental de poutres précontraintes 55

 2.1 Introduction 56

 2.2 Phase pré-tests 58
Table des matières

2.2.1 Préparation des spécimens ... 58
2.2.2 Chronologie générale .. 60
2.2.3 Propriétés mécaniques des matériaux 60
2.2.4 Dispositif expérimental de flexion 4 points 63

2.3 Comportement global : résultats expérimentaux 64
2.4 Comportement global : comparaison aux résultats analytiques 67
2.4.1 Force appliquée pour la plastification des aciers passifs inférieurs . 67
2.4.2 Force appliquée à la rupture .. 70

2.5 Comportement à la fissuration : résultats expérimentaux 72
2.5.1 Méthode de Corrélation d’Images Numériques CIN 72
2.5.2 Dispositif expérimental CIN .. 73
2.5.3 Extraction des ouvertures de fissures 74
2.5.4 Analyse expérimentale comparative 76

2.6 Comportement à la fissuration : comparaison aux résultats analytiques ... 82
2.7 Conclusion ... 87

3 Étude de la liaison torons de précontrainte - structure 89
3.1 Introduction ... 90
3.2 Instrumentation des torons de précontrainte par fibres optiques 91
3.2.1 Démarche d’instrumentation ... 91
3.2.2 Validation numérique .. 93
3.2.3 Validation expérimentale ... 98
3.3 Comportement *in situ* du toron gainé graissé 100
3.3.1 Résultats des mesures parfibres optiques 100
3.3.2 Comparaison mesures fibres optiques - mesures CIN 102
3.4 Prise en compte numérique du toron non-adhérent TGG 105
3.4.1 Liaison TGG - béton .. 105
3.4.2 Recul d’ancrage .. 106
3.5 Comportement *in situ* du toron adhérent 108
3.5.1 Résultats des mesures par fibres optiques : Toron 108
3.5.2 Résultats des mesures par fibres optiques : Coulis d’injection 109
3.5.3 Influence des déformations de retrait endogène du coulis d’injection 111
3.6 Prise en compte numérique du toron adhérent 114
3.6.1 Essais d’arrachement .. 114
3.6.2 Modélisation de l’interface ... 117

3.7 Conclusion ... 120

4 Étude de la liaison armatures passives - béton 121
4.1 Introduction ... 122
4.2 Essais d’arrachement pull-out .. 123
4.2.1 Préparation des spécimens et conception du montage 123
4.2.2 Résultats globaux .. 125
4.2.3 Résultats locaux d’interface acier-béton 126
4.3 Essais de traction sur tirants longs en béton armé 127
4.3.1 Préparation des spécimens et conception du montage 127
4.3.2 Analyse de la fissuration .. 128
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>Comportement de l’armature acier</td>
<td>129</td>
</tr>
<tr>
<td>4.4</td>
<td>Développement d’un modèle d’interface acier-béton</td>
<td>134</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Philosophie de modélisation</td>
<td>134</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Calibration du modèle d’interface sur essais d’arrachement</td>
<td>138</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Hétérogénéité des propriétés d’interface</td>
<td>140</td>
</tr>
<tr>
<td>4.5</td>
<td>Validation du modèle d’interface sur tirants longs en traction</td>
<td>143</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Simulations numériques des tirants : étape 1</td>
<td>143</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Prise en compte des déformations différées du béton</td>
<td>144</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Simulations numériques des tirants : étape 2</td>
<td>149</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>153</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>156</td>
</tr>
<tr>
<td>5.2</td>
<td>Éléments de modélisation</td>
<td>156</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulations numériques : étape 1</td>
<td>157</td>
</tr>
<tr>
<td>5.4</td>
<td>Prise en compte des déformations différées : étape 2</td>
<td>159</td>
</tr>
<tr>
<td>5.5</td>
<td>Comportement mécanique avec précontrainte TGG</td>
<td>163</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Comportements globaux</td>
<td>163</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Comportements locaux : fissuration</td>
<td>163</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Comportements locaux : tension du toron de précontrainte</td>
<td>165</td>
</tr>
<tr>
<td>5.6</td>
<td>Comportement mécanique avec précontrainte adhérente</td>
<td>167</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Trois cas d’étude</td>
<td>167</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Comportements globaux</td>
<td>168</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Comportements locaux : fissuration</td>
<td>169</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Comportements locaux : tension du toron de précontrainte</td>
<td>169</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusion</td>
<td>173</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>176</td>
</tr>
<tr>
<td>6.2</td>
<td>Dimensionnement de la précontrainte</td>
<td>177</td>
</tr>
<tr>
<td>6.3</td>
<td>Modélisation adoptée</td>
<td>178</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Approche générale</td>
<td>178</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Prise en compte du système couplé coulis d’injection - armatures de précontrainte</td>
<td>179</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Phasage de simulation</td>
<td>180</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Critères de rupture</td>
<td>181</td>
</tr>
<tr>
<td>6.4</td>
<td>Vérification de la tenue mécanique</td>
<td>181</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Cas non-adhérent : influence de la sur-tension</td>
<td>181</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Cas adhérent : influence de l’interface torons - coulis d’injection</td>
<td>183</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Comparaison Cas adhérent / Cas non-adhérent TGG</td>
<td>185</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Prise en compte des déformations différées</td>
<td>186</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusion</td>
<td>188</td>
</tr>
</tbody>
</table>

Conclusion générale

Perspectives
Remerciements

Je remercie en premier lieu Messieurs Alain Millard et Alain Sellier d’avoir accepté de rapporter cette thèse, d’avoir donné de leur temps pour une analyse critique détaillée et de m’avoir proposé de nombreux questionnements lors de la soutenance. Je remercie aussi Monsieur Jean-Philippe Charron pour avoir bien voulu examiner ces travaux et participer au jury. Il y a quatre ans, tu m’as initié au monde de la recherche par ce stage de master 1 à Montréal. À mon retour, l’idée de faire une thèse devint évidente. Merci.

Toute ma reconnaissance va également à Madame Hélène Dumontet pour avoir présidé mon jury de soutenance, mais aussi pour m’avoir fait confiance il y a six ans en m’acceptant en licence 3 à l’Université Pierre et Marie Curie. Avec émotion, merci.

Ces travaux n’auraient pas pu être aussi aboutis sans la participation de mes quatre encadrants. Vous m’avez laissé très libre dans mes choix, tout en étant présents et me guidant lorsque j’en avais besoin. Ceci a fait de cette thèse les années les plus épanouissantes de ma formation. Ma reconnaissante est grande, mais si je ne devais en retenir que quelques points ... Yves, merci pour ta disponibilité sans relâche jusqu’à la conclusion et pour ta sincérité tout au long du parcours ; Georges, merci pour ta volonté de vouloir en faire toujours plus, faisant de cette thèse ce qu’elle est aujourd’hui ; Pierre, merci d’avoir nourri le lien avec le monde industriel associé au projet et de m’avoir ouvert de belles perspectives pour la suite de ma carrière ; Farid, ce fut un immense plaisir de travailler avec toi. Retravailler ensemble dans le futur doit je l’espère ne pas s’écrire qu’au conditionnel. Merci.

Xavier Pinelli, Adrien Hilaire et Clément Desodt ont aussi contribué à ce travail en me formant et m’aidant sur différentes thématiques expérimentales, numériques et analytiques. Je leur en suis très reconnaissant. Je n’oublie pas non plus la participation d’Aghiad Khadour (IFSTTAR) qui a apporté son savoir scientifique pour l’utilisation et l’interrogation des capteurs à fibres optiques.

Cette thèse est le fruit d’une collaboration entre l’UPMC, le LMT Cachan et les sociétés Nuvia Structure et Freyssinet International. Je remercie Victor Petit et Julien Dubreuil pour avoir suivi ces travaux avec attention durant ces trois ans et pour avoir mis en œuvre les moyens technologiques, financiers et humains indispensables à la conception et à la préparation des essais expérimentaux.

Merci au LMT Cachan et à l’ensemble de ses doctorants et permanents pour cette ambiance de travail si agréable.

Ejona, merci de partager ma vie et de me combler de bonheur.
Introduction

La production d’électricité par l’énergie nucléaire est introduite en France dès les années 1960 et n’a cessé de s’amplifier jusqu’à nos jours. Aujourd’hui, 58 réacteurs composent le parc nucléaire français et assurent environ 75 % de la production totale d’électricité. Vis-à-vis de tels enjeux industriels, économiques et sociétaux, le maintien des installations sur leur durée d’exploitation et l’analyse des risques associés à cette technologie font l’objet d’une attention particulière. Les études génie civil se concentrent principalement sur la structure entourant le cœur du réacteur : l’enceinte de confinement.

L’enceinte de confinement d’une centrale nucléaire forme la dernière barrière de protection du bâtiment réacteur (Figure A). Elle doit répondre à trois exigences principales de sûreté :

1. Étanchéité de la structure en phase de service ou lors d’un accident de type Accident par Perte de Réfrigérant Primaire (APRP : montée en pression interne absolue à 0.5 MPa, montée en température à 150 degrés Celsius) : limitation éventuelle du taux de fuite de produits radioactifs.
2. Résistance structurelle lors d’un accident de type APRP.
3. Résistance structurelle dans le cas d’attaques extérieures (chute d’avion par exemple).

Les réacteurs de deuxième et troisième génération (paliERS P4, P’4, N4 et EPR) sont composés d’une enceinte à double paroi. La paroi externe en béton armé est dimensionnée pour répondre à la troisième exigence précédemment mentionnée. La paroi interne est...

L’objet de notre étude porte sur l’analyse du comportement mécanique de la paroi interne en béton armé précontraint tout au long de la durée d’exploitation de l’enceinte de confinement. La finalité de ces analyses vise à garantir et vérifier un niveau de dommage minimal et un maintien de l’étanchéité de l’enceinte de confinement soumise à des chargements courants ou accidentels (APRP).

La structure est précontrainte par post-tension dans les deux directions verticales et orthoradiales (Figure A). La mise en tension des câbles de précontrainte provoque, par équilibre d’efforts avec la structure, un état de compression bi-axiale dans le matériau béton. À l’état initial, les valeurs de contrainte dans le béton sont d’environ 12 MPa et de 8.5 MPa dans les directions horizontales et verticales, respectivement.

En France, une précontrainte par torons adhérents est aujourd’hui utilisée (Figure B-a). Les câbles de précontrainte, composés de plusieurs torons à 7 fils aciers torsadés, adhèrent à la structure béton par l’injection de coulis de ciment dans la gaine de précontrainte après mise en tension. Cette technique a comme avantages majeurs (i) de considérer a priori les câbles de précontrainte comme armatures passives, permettant de contrôler la fissuration provoquée par un chargement mécanique et (ii) d’assurer la protection des câbles contre la corrosion par l’injection au coulis. Cependant, trois inconvénients principaux ont aussi été répertoriés :

1. À la mise en tension, des pertes de précontrainte importantes par frottement sont mesurées sur des grandes longueurs de câble et dans les zones de déviation des câbles. Celles-ci sont compensées par une augmentation du nombre de torons.
2. Le transfert d’efforts du toron vers la structure peut être partiellement remis en cause par la qualité du coulis de ciment et les possibles défauts d’injection.
3. Durant la vie de l’ouvrage, les déformations différées du béton (retraits et fluages) et la relaxation des aciers de précontrainte peuvent induire des pertes de tension des câbles plus ou moins importantes. Le niveau de compression dans le matériau béton s’en voit par conséquent diminué, altérant la tenue mécanique de l’enceinte sous sollicitations accidentelles. L’impossibilité de retendre les torons entraîne des difficultés à contrebalancer ces modifications d’état de contrainte.

Une alternative à la précontrainte adhérente, la précontrainte par Torons non-adhérents Gainés Graissés TGG, se caractérise par l’utilisation de torons enrobés de graisse et entourés individuellement d’une gaine plastique en PEHD, sans adhérence entre le toron et le coulis d’injection environnant (Figure B-b). L’armature est restreinte dans son mouvement transversal par l’injection de coulis de ciment mais libre dans son mouvement axial. En cela résident les avantages principaux de cette technologie :

1. Le caractère glissant, avec faible frottement des torons, favorise une meilleure répartition de la tension le long des câbles et optimise ainsi le dimensionnement de la
précontrainte. Par rapport à une solution de précontrainte adhérente, une section plus faible de câble peut être envisagée pour un même niveau de contrainte dans le matériau béton.

2. Dans le cas de pertes de précontrainte importantes ou de dégradation des torons TGG, ces derniers peuvent être retendus ou échangés, ce qui pourrait favoriser la sûreté et la durabilité de l’enceinte de confinement et aussi augmenter sa durée d’exploitation.

3. La présence de la gaine PEHD et de la graisse garantit une protection accrue des câbles contre la corrosion.

Néanmoins, l’absence d’adhérence des torons TGG peut aussi être a priori préjudiciable pour le comportement mécanique d’une structure :

1. Aucune sur-tension locale des armatures non-adhérentes ne peut apparaître. Le TGG ne participe pas à la reprise locale de la fissuration, ce qui doit être compensé par un ferraillage adhérent additionnel. Par contre, une sur-tension globale peut être observée, corrélée à l’elongation globale de la structure. Celle-ci peut induire un complément de précontrainte au cours d’une sollicitation mécanique de l’ouvrage mais est aujourd’hui négligée dans les codes européens [Eurocode, 2005].

2. En cas de rupture de câble, celui-ci ne peut se ré-ancrer de part et d’autre. La tension s’annule sur toute la longueur des torons TGG.

L’objectif industriel de ces travaux vise à étudier le comportement mécanique de structures précontraintes par torons adhérents ou par torons non-adhérents
au cours de leur durée d’exploitation, pour une comparaison objective des deux solutions technologiques dans le contexte des enceintes de confinement de centrales nucléaires. Une attention particulière doit être portée sur le comportement à la fissuration des structures pour répondre aux exigences de sûreté et de durabilité.

De par la complexité du système d’étude, les objectifs scientifiques associés sont nombreux. Ils portent principalement sur la caractérisation et la modélisation de la dégradation des composantes du système à différentes échelles au cours du temps.

Objectifs principaux expérimentaux :

1. Besoin d’une base de données expérimentales sur la tenue structurelle et le comportement à la fissuration des structures précontraintes.
2. Analyser le transfert d’efforts des torons de précontrainte vers le matériau béton et étudier son influence sur la fissuration de la structure.
3. Caractériser le rôle de l’interface armatures passives - béton sur le comportement à la fissuration.

Objectifs principaux numériques :

1. Intégrer une modélisation réaliste des armatures passives, des torons adhérents et des torons non-adhérents pour un calcul de structure.
2. Évaluer l’influence des déformations différences du béton sur la réponse mécanique d’une structure.
3. Simuler de manière prédictive le comportement mécanique de structures précontraintes au cours du temps.

La démarche choisie pour répondre à ces problématiques est présentée dans le chapitre suivant. Elle est décomposée en différentes échelles et en différents mécanismes. Les outils expérimentaux et numériques peuvent ensuite être utilisés de façon séparée ou couplée.

Projet collaboratif industriel :

Ces travaux de thèse sont le fruit d’une collaboration entre le Laboratoire de Mécanique et Technologie de Cachan, l’Université Pierre et Marie Curie et les sociétés Nuvia Structure et Freyssinet International.

Intervention extérieure :

Une méthode d’instrumentation des torons de précontrainte par fibres optiques est développée dans ces travaux. L’interrogation des fibres optiques a été effectuée par Monsieur Aghiad Khadour (IFSTTAR).
Démarche générale

De nombreux phénomènes multi-physiques doivent être pris en compte pour une analyse fiable du comportement mécanique de structures. Mais pouvoir les quantifier dans leur intégralité s’avère souvent une tâche difficile, par manque de données expérimentales, de connaissances scientifiques ou de temps. Toute la problématique réside alors dans le niveau de simplification de la modélisation des mécanismes physiques au regard de la finesse d’analyse attendue.

Les travaux présentés s’inscrivent dans les problématiques de tenue structurelle des ouvrages armés précontraints et de leur durabilité dans le temps. Bien que la première ne requière pas une analyse fine des mécanismes physiques locaux, la problématique de durabilité se caractérise par une étude plus approfondie des facteurs de dégradation des structures et principalement de la fissuration du béton. Par conséquent, la connaissance, la caractérisation expérimentale et la prise en compte numérique des comportements locaux propres et couplés des différents composants du système font ici l’objet d’une attention particulière. Elles permettent d’appréhender de façon réaliste le comportement local et global des structures étudiées.

La démarche générale de ces travaux suit cette réflexion multi-composants et multi-échelles. Elle est présentée de manière synthétique à la Figure C. Trois étapes principales la composent et suivent un processus classique d’étude :

1. Essais expérimentaux sur structures avec instrumentation développée pour la caractérisation de grandeurs globales et locales.
2. Proposition d’une modélisation numérique de structure, validée par rapport aux grandeurs mesurées à l’étape 1.
3. Après validation, utilisation des outils numériques pour la simulation de structures armées précontraintes et plus spécifiquement sur une tranche d’enceinte de confinement de centrale nucléaire.

Toute la complexité des mécanismes multi-physiques locaux doit être principalement retranscrite dans la seconde étape, pour une validation objective de la modélisation structurelle proposée. L’attention est portée sur trois points clés :

2.1. Interface acier-béton : comportement caractérisé expérimentalement et modélisé numériquement pour une utilisation dans l’étape 2.

2.2. Interface toron-structure : comportement caractérisé expérimentalement et modélisé numériquement pour une utilisation dans l’étape 2.
2.3. Comportement évolutif du matériau béton au cours de la vie de l’ouvrage : propriétés mécaniques et déformations différées mesurées expérimentalement et prises en compte numériquement à l’échelle de la structure.

Fig. C Démarche générale des travaux présentés.

L’organisation du manuscrit se veut en cohérence avec la démarche générale proposée. Six chapitres inter-dépendants composent le document.

Le Chapitre 1 est un état de l’art portant successivement (i) sur le comportement mécanique de structures ou d’éléments de structure en béton armé précontraint, (ii) sur le comportement hydro-mécanique du matériau béton et (iii) sur les mécanismes de transfert d’efforts armatures passives - béton et torons de précontraintes - coulis d’injection et par conséquent sur la dégradation des interfaces mises en jeu entre les différents matériaux sous chargements mécaniques. Ce chapitre suit la démarche proposée sur la figure C. Il permet au final de détailler et justifier les choix préliminaires théoriques, expérimentaux et numériques utilisés par la suite.

Les essais expérimentaux sur structures sont présentés au Chapitre 2. Six poutres armées précontraintes sont testées en flexion 4 points jusqu’à rupture. L’influence du taux
d’armatures passives et de la solution de précontrainte adhérente ou non-adhérente sont ici mises en évidence. La résistance structurelle et la fissuration induite par le chargement sont analysées au cours de l’essai, grâce à des techniques de corrélation d’images numériques par exemple. Les résultats obtenus créent une base importante de données expérimentales pour une validation fiable des simulations numériques.

Une modélisation des poutres précontraintes est proposée au Chapitre 5. Elle utilise les outils numériques développés au Chapitre 3 et Chapitre 4 (modélisation du matériau béton, interface acier-béton, interface toron-structure, ancrage des torons) et est validée par rapport aux résultats expérimentaux du Chapitre 2 et Chapitre 3 (réponses globales force - flèche, mesures locales de fissuration, sur-tension du toron de précontrainte). L’historique pré-essai des structures est aussi étudié par l’intermédiaire de la prise en compte des déformations différées du béton. L’influence de ces dernières est mise en évidence dans les différentes phases de comportement de la structure (phase élastique, d’initiation et de propagation de la fissuration, de plastification des armatures passives).

Le Chapitre 6 présente une application industrielle portant sur la tenue mécanique d’une tranche d’enceinte de confinement de centrale nucléaire avec précontrainte adhérente ou non-adhérente TGG. Les outils développés et validés aux chapitres précédents sont ici utilisés.
Remarque : pour assurer la cohérence des résultats obtenus, inter-dépendants d’un chapitre à l’autre, tous les spécimens d’essai présentés ont été fabriqués simultanément avec le même béton d’une unique gâchée prête à l’emploi livrée au laboratoire, avec des barres d’armature de même géométrie extérieure pour un diamètre donné et avec des torons de précontrainte identiques T15S clairs ou gainés graissés. Ce choix limite la variabilité de comportement d’un essai à l’autre, favorise la compréhension des différents mécanismes étudiés et fiabilise la démarche générale proposée.
Chapitre 1

État de l’art

L’objectif de ce chapitre est d’illustrer les approches et résultats existants, issus de la littérature, afin de détailler et justifier les choix théoriques, numériques et expérimentaux servant à l’étude. L’organisation de cette partie suit la démarche proposée au chapitre précédent : analyse du comportement mécanique global de structures précontraintes, comportement hydro-mécanique du matériau béton, interface acier-béton, interface toron-structure. Un récapitulatif des choix effectués est présenté schématiquement en fin de chapitre.
1.1 Comportement de structures en béton armé précontraint

Pour des applications structurelles génie civil, le caractère armé précontraint se caractérise par la présence d’armatures passives en acier haute-adhérence et d’armatures actives (torons de précontrainte) utilisées pour la mise en compression de la structure (partially prestressed concrete structures dans la littérature). Dans le contexte des enceintes de confinement de centrales nucléaires, une précontrainte par post-tension est considérée, à l’inverse d’une mise en précontrainte par pré-tension généralement utilisée pour les éléments structuraux préfabriqués en usine. Technologiquement parlant, la précontrainte par post-tension requiert l’installation de gaines de précontrainte avant le coulage du béton. Celles-ci s’apparentent à des réservations pour l’enfilage ultérieur des torons de précontrainte, une fois le béton mis en place. Les torons sont mis en tension et ancrés de part et d’autre de la structure. Le transfert d’efforts des armatures actives vers le béton induit la mise en compression de la structure. Pour des applications industrielles « classiques », cette technologie permet (i) d’augmenter la capacité structurelle des éléments dimensionnés, en retardant l’apparition de zones de traction et (ii) d’augmenter les portées admissibles entre appuis dans le cas de poutres précontraintes par exemple. Pour des applications nucléaires, elle permet d’assurer l’étanchéité des enceintes de confinement, en limitant l’apparition de fissures dans l’épaisseur de la structure.

Deux techniques principales de précontrainte par post-tension existent et diffèrent par la nature de la transmission d’efforts de la structure vers les torons de précontrainte, et inversement. La première, nommée précontrainte par torons adhérents, induit l’adhérence directe des torons à la structure par l’injection des gaines de précontrainte au coulis de ciment après mise en tension. Outre la mise en compression initiale de la structure, cette technique permet de considérer les torons de précontrainte comme des armatures passives avec une sur-tension locale au droit des fissures. La fissuration peut ainsi être partiellement contrôlée par les armatures actives en plus du ferraillage passif. L’analyse et le dimensionnement d’une solution par torons adhérents peuvent ainsi être menés par une étude de section type béton armé. La seconde technique, nommée précontrainte par torons non-adhérents, est caractérisée par l’absence d’adhérence entre le toron et la structure. L’ancrage aux extrémités du câble permet l’application de la précontrainte initiale. Néanmoins, à la différence des torons adhérents, seule une sur-tension globale sur la longueur totale des torons non-adhérents est observée. Celle-ci dépend de la déformation globale de la structure. L’analyse et le dimensionnement d’une solution par torons non-adhérents impliquent alors la prise en compte du comportement mécanique de la structure dans son ensemble. Une seule étude analytique, avec équilibre d’une section courante, ne peut pas être envisagée. La figure 1.1 illustre les comportements des deux présentes solutions sur un élément de structure simple.

De nombreuses recherches ont été menées sur le comportement mécanique des structures précontraintes. Elles se sont axées sur des problématiques propres à chaque cas. Les mécanismes de longueur d’ancrage et de résistance au cisaillement de l’interface toron-coulis
1.1. Comportement de structures en béton armé précontraint

L’étude de la capacité portante, en service ou à rupture, peut suivre la même démarche qu’une analyse de structure en béton armé [Nilson, 1976] [Naaman, 1985]. Les hypothèses de planéité des sections droites et d’adhérence parfaite entre les armatures actives et passives avec le béton sont utilisées. Par contre, la déformation ϵ_p des armatures actives de précontrainte est décomposée de la façon suivante :

$$\epsilon_p = \epsilon_p^{\text{ini}} + \epsilon_p^{\text{dec}} + \epsilon_p^{\text{flex}},$$

(1.1.1)

avec ϵ_p^{ini} la déformation initiale de traction des torons après mise en précontrainte, ϵ_p^{dec} la déformation après décompression du béton sous chargement mécanique, c’est-à-dire après retour à contrainte nulle du béton à la position des torons et ϵ_p^{flex} la déformation additionnelle lors de la mise en traction locale de la structure béton. Pour un cas de flexion sur poutre armée précontrainte (Figure 1.2-a), la décomposition des déformations est illustrée sur la figure 1.2-b-c-d. La déformation initiale et la déformation de décompression sont facilement calculées par équilibre d’efforts sur une section non-fissurée. À tout instant du chargement, l’hypothèse de planéité des sections droites reste valable (Figure 1.2-d). La relation qui en découle peut s’écrire comme :

$$\frac{\epsilon_b}{c} = \frac{\epsilon_p^{\text{flex}}}{d_p - c} = \frac{\epsilon_a}{d_a - c},$$

(1.1.2)
Chapitre 1. État de l’art

Fig. 1.2 Comportement analytique de poutres précontraintes par torons adhérents : (a) section étudiée avec A_p et A_a sections d’armatures actives et passives, respectivement, (b) état de déformation après mise en précontrainte, (c) état de déformation après décompression, (d) état de déformation sous chargement quelconque.

avec c la position de l’axe neutre, calculée par l’équilibre en effort de la section. La contrainte dans les armatures de précontrainte est calculée de la façon suivante :

$$
\sigma_p = E_p(\epsilon_{p,\text{ini}} + \epsilon_{p,\text{dec}} + \epsilon_{p,\text{flex}}),
$$

(1.1.3)

avec E_p leur module de Young. Cette technique peut être utilisée à tout état de chargement pour une étude complète du comportement évolutif de la structure (phase élastique, phase de comportement linéaire des matériaux après fissuration, phase de plastification des aciers passifs inférieurs). Pour cela, des méthodes itératives ont été développées, prenant en compte les comportements non-linéaires des armatures passives, actives et du béton [Tadros, 1982] [Moustafa, 1986]. Elles aboutissent à une bonne estimation de la capacité portante ultime des structures.

Cependant, dans le cadre d’un dimensionnement analytique et semi-analytique, l’étude du comportement de la structure en service reste encore une problématique majeure. Le développement de la fissuration, provoquée par le chargement mécanique, est simultanément lié à un grand nombre de paramètres : (i) diamètres, sections, dispositions et profils géométriques des armatures actives et passives, (ii) tension des armatures passives, (iii) sur-tension $\Delta F_{\text{flex}} = E_p A_p \epsilon_{p,\text{flex}}$ des armatures de précontrainte après décompression et (iv) comportement des interfaces armature-structure [Suri et Dilger, 1986] [Rao et Dilger, 1992] [Piyasena et al., 2004]. Les codes européens [Eurocode, 2005] et américains [ACI, 2008] proposent, sur la base d’études antérieures, des formules pour la détermination des ouvertures moyennes ou maximales de fissures. Elles tiennent compte de la tension et sur-tension dans les armatures passives et actives, respectivement, ainsi que de leur nature géométrique. Néanmoins, de par la complexité des mécanismes mis en jeu, ces dernières ne peuvent fournir une description fiable du comportement à la fissuration.

Seules des études numériques fines peuvent aider à la compréhension de l’évolution de la fissuration au sein des structures étudiées. La modélisation des mécanismes de dégradation d’interface entre matériaux, et par conséquent les mécanismes de transfert d’efforts des
armatures vers le béton, doit être un point primordial de ces études numériques. Vu [Vu, 2007] propose une étude intéressante pour la modélisation numérique de poutres précontraintes. Sur la base de considérations analytiques, l’auteur développe des macro-éléments finis pour rendre compte, d’un point de vue numérique, du comportement global des structures. Ce modèle tient compte des longueurs de transfert d’efforts des armatures vers le béton et de la position évolutive de l’axe neutre pour déterminer les propriétés évolutives des macro-éléments (inertie moyenne homogénéisée), ainsi que les efforts internes qui leur sont appliqués. Les simulations montrent une bonne description du comportement global structure force appliquée - flèche, en phase élastique, après fissuration ou à rupture, en comparaison à des essais expérimentaux menés dans cette même étude. Néanmoins, l’auteur ne compare pas les faciès de fissuration expérimentaux et numériques, dans les différentes phases du chargement. L’influence des interfaces armature-structure ne peut ainsi être mise en évidence.

1.1.2 Précontrainte par torons non-adhérents

Comme énoncé précédemment, l’étude d’une précontrainte par torons non-adhérents s’avère plus complexe qu’une précontrainte par torons adhérents. La déformation des armatures de précontrainte ne peut être évaluée par l’hypothèse de planéité d’une section courante, mais seulement par la déformation globale de la structure. Une structure précontrainte par torons non-adhérents se présente couramment avec un taux additionnel d’armatures passives. Celui-ci permet de diffuser et contrôler la fissuration pouvant être provoquée par un chargement mécanique extérieur (Figure 1.3). L’absence d’armatures passives induit la localisation d’une ou deux fissures et la rupture rapide et brutale de la structure (Figure 1.3-a). Le comportement mécanique après localisation ne peut plus être défini avec une cinématique poutre, mais comme deux éléments dissociés retenus par le toron central (tied arch behavior dans la littérature).

![Section d’armatures passives](image)

Fig. 1.3 Faciès de fissuration - poutres précontraintes par torons non-adhérents [Campbell et Chouinard, 1991].

La majorité des études menées sur le comportement mécanique des structures armées précontraintes par torons non-adhérents se sont focalisées sur la résistance flexionnelle ultime. Cette dernière est intimement liée à la tension σ_p des armatures de précontrainte au sein de la structure étudiée, et par conséquent à la connaissance de la sur-tension $\Delta \sigma_p$ s’ajoutant à la tension initiale σ_{ini} après mise en précontrainte. Deux écoles peuvent être distinguées pour la quantification de $\Delta \sigma_p$ en phase de rupture de la structure.
Chapitre 1. État de l’art

Coefficient de réduction d’adhérence Ω [Naaman et Alkhairi, 1992]

L’objectif premier est de pouvoir étudier le comportement d’une structure précontrainte par torons non-adhérents de la même manière qu’une structure précontrainte par torons adhérents. Sur l’exemple de la Figure 1.2 et sur la base de l’équation 1.1.3, les auteurs définissent l’expression de la tension du câble non-adhérent comme :

$$\sigma_p = E_p (\varepsilon_p^{ini} + \Omega_u \varepsilon_p^{dec} + \Omega_u \varepsilon_p^{flex}) = \sigma_p^{ini} + E_p \Omega_u \varepsilon_p^{dec} + E_p \Omega_u c \left(\frac{d_p}{c} - 1 \right), \quad (1.1.4)$$

avec ε_p^{ini}, ε_p^{dec} et ε_p^{flex} la déformation initiale, la déformation de décompression et la déformation additionnelle de flexion dans le cas adhérent, respectivement. Le coefficient Ω_u est un scalaire (coefficient de réduction d’adhérence) compris généralement dans l’intervalle $[0,1]$. Le coefficient de réduction Ω_u à la rupture est calibré empiriquement sur 143 poutres précontraintes [Naaman et Alkhairi, 1991] et est défini comme :

$$\Omega_u = \frac{2.6}{L/d_p} \text{ (flexion 3 points)} ; \quad \Omega_u = \frac{5.4}{L/d_p} \text{ (flexion 4 points)}, \quad (1.1.5)$$

avec L la longueur de la poutre. Cette méthode montre une bonne prédiction des résultats expérimentaux obtenus sur poutres précontraintes sur deux appuis (Figure 1.4).

Analyse de la déformation globale de la structure [Pannell, 1969] [Harajli, 1990]

Par cette méthode, l’elongation des armatures de précontrainte est calculée par rapport à la courbure de la structure. Considérant que l’elongation n’est due qu’aux ouvertures
de fissures à rupture, les auteurs basent leur théorie sur une courbure fictive, nulle dans les zones élastiques et constante dans la zone de fissuration de largeur L_0 (Figure 1.5). Partant des hypothèses précédemment énoncées, la contrainte dans le câble peut être calculée comme :

$$\sigma_p = \sigma_{\text{ini}} + E_p \varepsilon_{\text{dec}} \frac{L_0}{L} + E_p \varepsilon_{\text{bu}} \left(\frac{d_p - c}{c} \right) \left(\frac{L_0}{L} \right). \quad (1.1.6)$$

Ces méthodes ont été étendues au comportement des structures en phase élastique et de fissuration. [Naaman et Alkhairi, 1992] définissent un coefficient de réduction Ω et Ω_{cr} pour les deux phases, respectivement. [Au et al., 2005] proposent quant à eux une méthode pour calculer numériquement l’évolution du coefficient ϕ au cours du chargement. En phase élastique, il est relativement aisé de déterminer les paramètres mis en jeu en calculant la courbure de la structure sur un ensemble de sections non-fissurées. En phase de fissuration, il devient plus complexe de justifier l’exactitude des méthodes autrement que sur des éléments de structures simples. Par exemple, [Du et al., 2008], [Ozkul et al., 2008] et [Kim
Chapitre 1. État de l’art

Afin d’étudier le comportement global de structures plus complexes et les mécanismes locaux de dégradation, les méthodes numériques éléments finis prennent tout leur intérêt. La modélisation de la précontrainte non-adhérente est considérée de différentes manières dans la littérature. [Vecchio et al., 2006] proposent une modélisation du toron non-adhérent avec éléments barres (Figure 1.6). Les nœuds des armatures sont reliés aux nœuds du béton par des éléments de liaison bi-directionnels. La raideur normale K_n est considérée tendre vers l’infini pour assurer la non-pénétration des armatures au sein du massif béton. Considérant un frottement sans cohésion initiale de type $\tau = k_1 \Delta$, avec Δ le déplacement axial relatif du nœud i par rapport au nœud j (direction t de la Figure 1.6-b), la raideur axiale K_t peut s’écritre comme $K_t = k_1 L p$, avec p le périmètre de l’armature et L la longueur de l’armature dépendante du nœud i. Par la présence d’un ancrage aux abouts de la structure, la sur-tension des armatures et son effet sur la structure sont implicitement pris en compte dans la modélisation. [Vu et al., 2010], comme pour le cas adhérent, développent des macro-éléments finis spécifiques aux structures armées précontraintes. La sur-tension des armatures est calculée par intégration de la courbure de la poutre et dépend de la position évolutive de l’axe neutre. Elle est prise en compte dans le torseur d’action s’exerçant sur le macro-élément fini. [Lou et al., 2013] considèrent la précontrainte et la sur-tension par une force extérieure appliquée aux abouts de la structure. Cet effort évolue avec le chargement, en fonction de la déformation globale de l’élément testé. Bien que la modélisation explicite du toron non-adhérent [Vecchio et al., 2006] puisse être jugée plus lourde numériquement, elle permet une plus grande souplesse pour prendre en compte des comportements locaux spécifiques (coefficients de frottement, comportements spécifiques d’ancrage).

1.1.3 Limites des recherches sur le comportement à la fissuration

Bien que le comportement global des structures armées précontraintes a été intensivement étudié dans la littérature, leur comportement à la fissuration n’a jamais fait l’objet
1.1. Comportement de structures en béton armé précontraint

de recherches spécifiques. Dans les travaux de [Mattock et al., 1971], des poutres armées précontraintes sont testées en flexion 3 points. Les poutres diffèrent par le caractère adhérent ou non-adhérent des torons de précontrainte. Le ferraillement passif additionnel est dimensionné pour obtenir une capacité portante à l’ultime identique pour les différentes structures. L’ouverture de fissure maximale est mesurée au cours de l’essai. Les résultats montrent un comportement à la fissuration similaire pour chaque poutre, dans le cas adhérent ou non-adhérent, en termes d’ouverture maximale et de faciès de fissuration global. Néanmoins, à cause de la disposition et du taux d’armatures passives variables, il est difficile de pouvoir étudier l’influence du type de précontrainte sur la fissuration provoquée par le chargement. Le faciès de fissuration est en effet intimement dépendant du ferraillement passif choisi [Campbell et Chouinard, 1991].

Une importante campagne expérimentale a aussi été menée par [Hussien et al., 2012] sur neuf poutres précontraintes. Les poutres B2 et B8 de cette étude présentent un même taux de ferraillement passif, ainsi qu’une précontrainte adhérente ou non-adhérente, respectivement (Figure 1.7-a). On peut remarquer que les deux structures montrent un comportement similaire en phase élastique et de fissuration, ainsi qu’un même moment ultime (Figure 1.7-c). Par contre, la ductilité de la poutre B2 (toron adhérent) est largement plus importante que pour la poutre B8 (toron non-adhérent). Par ailleurs, il est intéressant de pouvoir comparer les faciès de fissuration après rupture des structures (Figure 1.7-b). La fissuration de la poutre B8 semble plus diffuse, ce qui est en désaccord avec les attentes théoriques. Malheureusement, il n’est ici pas question de quantification des ouvertures de fissures au cours du chargement. Seule une analyse qualitative peut être menée.

Les travaux de [Vu, 2007] présentent aussi des tests de flexion sur poutres précontraintes adhérentes ou non-adhérentes. Une analyse des faciès de fissuration et un relevé des ouvertures des fissures ont été menés. Bien que les faciès soient similaires dans les deux cas, l’évolution de chaque fissure au cours du chargement n’est pas décrite dans ces travaux. Une comparaison qualitative du comportement à la fissuration semble donc difficilement
exploitable. De plus, la résistance de l'interface toron-structure n'a pas été étudiée, ce qui limite l'analyse de l'influence du comportement de la précontrainte adhérente sur la fissuration.
1.1. Comportement de structures en béton armé précontraint

1.1.4 Synthèse

Le comportement à rupture des structures précontraintes, par torons adhérents ou non-adhérents, a été intensément étudié dans la littérature. Les modèles analytiques proposés offrent une très bonne description de la tenue structurelle des ouvrages.

Par contre, les données expérimentales et les analyses numériques portant sur le comportement à la fissuration des structures précontraintes sont plus rares dans la littérature. Ce manque peut être dû à la difficulté expérimentale de quantification de la fissuration au cours d’un chargement mécanique, impliquant une difficulté de validation des simulations ultérieures. Des études spécifiques, portant sur la fissuration, sont pourtant menées sur des structures en béton armé [Matallah et al., 2010] [Oliver-Leblond, 2013], avec prise en compte du rôle de l’interface armature-béton [Sellier et al., 2013c]. Les résultats numériques présentés permettent de reproduire de manière efficace les faciès de fissuration et ses propriétés en comparaison à des essais expérimentaux. Une analyse spécifique de la fissuration des structures précontraintes adhérentes et non-adhérentes sera donc présentée dans ces travaux. Des techniques de mesures de champs de déplacements par corrélation d’images numériques seront utilisées.

Dans le cas adhérent, la résistance de la liaison toron-structure peut influer sur la limitation et la diffusion de la fissuration. Dans le cas non-adhérent, la sur-tension générée par le chargement mécanique induit un complément croissant de précontrainte au cours du chargement. L’.influence des armatures de précontrainte sur le comportement global et à la fissuration n’est pourtant pas décrite dans la littérature. Une instrumentation spécifique des torons de précontrainte par capteurs à fibres optiques sera donc proposée dans ces travaux afin d’analyser expérimentalement (i) l’évolution de la tension locale du câble et (ii) son influence sur la fissuration de la structure.
1.2 Comportement mécanique du matériau béton

La modélisation du matériau béton fait encore aujourd’hui l’objet de nombreuses recherches portant sur la prise en compte de la fissuration, de l’effet unilatéral ou des effets hystériques sous chargements cycliques par exemple. Cependant, pour les applications visées dans cette étude, seul le comportement quasi-fragile du matériau en traction sera considéré (Figure 1.8).

Dans des applications structurelles, la dégradation progressive s’opère majoritairement sous des sollicitations de traction. Synonyme de son caractère quasi-fragile, le béton tendu verra sa matrice cimentaire se micro-fissurer progressivement. La coalescence de micro-fissures induit la formation d’une ou de plusieurs macro-fissures, c’est-à-dire une discontinuité physique dans le matériau. Celle-ci peut porter atteinte à l’intégrité structurale de l’ouvrage dans le temps : dégradation interne du béton par des attaques chimiques extérieures, corrosion des armatures. Prévoir et être capable de modéliser la fissuration progressive de la structure est ainsi primordial pour la durabilité des ouvrages.

1.2.1 Prise en compte de la fissuration

La modélisation du comportement mécanique du matériau béton et, implicitement, la prise en compte de la fissuration progressive dépendent de l’objectif et de l’échelle d’analyse. Mener un calcul de structure avec représentation fine de la fissuration (fissures explicites, trajet, tortuosité) est très souvent inenvisageable à cause de temps de calcul trop importants. Le choix des modèles utilisés est ainsi lié au pragmatisme du modélisateur vis-à-vis des paramètres d’intérêt.

D’un point de vue mécanique, les modèles peuvent être classifiés en deux grandes familles : modèles basés sur la mécanique des solides rigides, modèles basés sur la mécanique des milieux continus (Figure 1.9). Dans le cadre de la mécanique des solides rigides, la méthode aux éléments discrets représente le matériau comme un assemblage de particules
rigides [Cundall et Strack, 1979] [D’Addetta et al., 2002] [Vassaux et al., 2015]. Des éléments unidimensionnels relient les centres des particules les uns aux autres pour assurer la cohésion du matériau. Des critères de rupture adjoints à ces éléments pilotent la micro- et macro-fissuration. Celle-ci est ainsi représentée explicitement grâce à la discontinuité physique entre particules. Cette méthode est peu adaptée à des calculs de structure à cause de la finesse de maillage inhérente à la caractérisation de la fissuration. Une extension couple la mécanique des solides rigides à la mécanique des milieux continus (discontinuous deformation analysis) par la prise en compte de la déformation des particules [Shi et Goodman, 1985].

$$\sigma_{ij} = C_{ijkl} (1 - D) \epsilon_{kl} ,$$ (1.2.1)
Chapitre 1. État de l’art

avec C_{ijkl} la matrice de rigidité du matériau sain. Les valeurs admissibles de D appartiennent à l’intervalle $[0,1]$. [Mazars, 1986] développe ce formalisme dans le cas des bétons. L’évolution de D est définie par un critère écrit en déformation équivalente $f = \epsilon_{eq} - \kappa$, avec $\kappa = \max(\epsilon_{eq}, \epsilon_{D_0})$ et ϵ_{D_0} une valeur seuil d’endommagement, ainsi que selon les conditions de Kuhn-Tucker : $f \leq 0$, $\dot{\kappa} \geq 0$ et $\dot{k}f = 0$. La définition de ϵ_{eq} est basée sur les déformations principales ϵ_i :

$$\epsilon_{eq} = \sqrt{\sum_{i=0}^{3} (\epsilon_i)^2},$$

avec l’introduction de la partie positive des déformations permettant de différencier les états d’extension et de contraction liés au chargement. La dissymétrie traction-compression est considérée par deux variables d’endommagement D_t et D_c définie comme :

$$D_i = 1 - \frac{\epsilon_{D_0}(1 - A_i)}{\kappa} - A_i \exp(-B_i(\kappa - \epsilon_{D_0})),$$

avec $i=$ traction ou compression pour les paramètres du modèles A_i et B_i. La variable D s’exprime alors comme une combinaison linéaire de D_t et D_c considérant une correction pour limiter l’endommagement de cisaillement [Pijaudier-Cabot et al., 1991]. Ce modèle s’illustre par sa relative simplicité et sa robustesse numérique. Dans le cas de chargements lents monotones, avec majoritairement des ouvertures de fissures en mode I, le comportement non-linéaire du matériau est bien décrit. Les applications traitées dans ce document se placent dans ce cadre.

D’autres définitions de la déformation équivalente peuvent être envisagées [De Vree et al., 1995] utilisant le premier et second invariants du tenseur des déformations et le rapport résistance à la traction - résistance à la compression. La dissymétrie traction-compression est considérée au niveau du critère, ce qui évite l’utilisation de deux variables d’endommagement. D’autres modèles d’endommagement rendent compte des phénomènes unilatéraux et hystérétiques sous chargements cycliques [La Borderie, 1991] [Richard et al., 2010a] [Sellier et al., 2013b] [Vassaux, 2015]. L’introduction de l’anisotropie permet aussi de simuler des chargements structuraux plus complexes [Desmorat et al., 2007] [Alliche et Dumontet, 2011] [Sellier et al., 2013b].

1.2.2 Localisation et régularisation

Les modèles d’endommagement locaux montrent une forte dépendance à la taille du maillage éléments finis. Prenons l’exemple d’une barre en traction (Figure 1.10-a) de section S, composée d’un matériau possédant une loi de comportement adoucissante présentée à la figure 1.10-b. Avant localisation, les champs de contrainte et de déformation sont uniformes dans la structure. L’élongation u de la barre peut ainsi s’écrire $u = \epsilon L$. Les déformations se localisent ensuite dans une bande de maille finie de largeur L_1, grâce à une hétérogénéité des propriétés matériaux par exemple. Le reste de la barre se décharge élastiquement. Le champ de contrainte reste par contre constant sur toute la longueur L. La variation d’élongation totale après localisation se calcule par conséquent comme :

$$du = \frac{d\sigma}{E}(L - L_1) + \frac{d\sigma}{H}L_1 = d\sigma \left(\frac{L}{E} + L_1 \left(\frac{1}{H} - \frac{1}{E} \right) \right).$$

(1.2.4)
Fig. 1.10 Localisation : essai de traction (a) sur matériau à comportement adoucissant (b).

Régularisation par l’énergie de fissuration

L’endommagement est localisé sur une bande de largeur \(L_1 \) [Bažant et Oh, 1983]. La technique de régularisation énergétique permet de contraindre la bande de localisation à dissiper une énergie définie (énergie de fissuration \(G_f \) pour le béton). Elle fait dépendre l’adoucissement, propre à la loi de comportement contrainte - déformation, de la taille du maillage [Hillerborg et al., 1976]. L’énergie de fissuration \(G_f \) peut être écrite comme :

\[
G_f = L_1 \int_0^\infty \sigma \, d\epsilon .
\]

(1.2.5)

Pour la simplicité du calcul de régularisation, la loi d’évolution de \(D \) en traction est de type exponentielle décroissante [Feenstra, 1993] :

\[
D = 1 - \frac{\epsilon_{D_0}}{\kappa} \exp(-B_t(\kappa - \epsilon_{D_0})).
\]

(1.2.6)

On obtient, en intégrant cette loi dans le calcul de l’énergie de fissuration, l’expression de \(B_t \) fonction de la taille des éléments et de l’énergie dissipée par le matériau :

\[
B_t = \frac{L_1 f_t}{G_f - \frac{L_1 \epsilon_{D_0} f_t}{2}},
\]

(1.2.7)

avec \(\epsilon_{D_0} \) le seuil d’endommagement et \(f_t \) la résistance à la traction du béton. La loi adoucissante dépend ainsi des propriétés intrinsèques du matériau et de la taille du maillage.
élements finis. Une borne supérieure sur la taille L_1 est définie par rapport à l’équation (1.2.7) et assure un comportement adoucissant de la loi de comportement :

$$L_1 < \frac{2GfE}{f^2}.$$

(1.2.8)

Un exemple est présenté sur la figure 1.11 d’un cube soumis à un chargement de traction. Celui-ci possède une bande de faiblesse matérielle avec une valeur de résistance à la traction inférieure de celle allouée au reste de la structure. L’énergie de fissuration est fixée à 100 J.m⁻². Seule la bande affaiblie s’endommage durant l’essai numérique. Les résultats montrent la forme de l’adoucissement choisi en traction, ainsi que l’indépendance à la finesse de maillage pour trois tailles différentes.

Cette méthode a l’avantage de localiser les déformations et l’endommagement, ce qui semble en accord avec notre objectif final de caractérisation de la fissuration. De plus, elle est très peu intrusive numériquement et les coûts de calcul sont bien inférieurs aux autres méthodes de régularisation. Néanmoins, il y a lieu de favoriser numériquement la localisation de l’endommagement dans la structure. Cette étape peut passer par l’introduction de champs aléatoires de propriétés du matériau. Physiquement, introduire des champs aléatoires sur les propriétés du matériau rend compte des caractères hétérogènes et aléatoires du béton. Numériquement, ceci permet de forcer la localisation des déformations

![Fig. 1.11](image)

Fig. 1.11 Essai de traction uniaxiale sur un cube de dimensions 0.1 m × 0.1 m - finesse de maillage variable : (a) réponse globale contrainte - déformation, (b) Champs d’endommagement finaux.
1.2. Comportement mécanique du matériau béton

dans le cas de modèles continus, et ainsi de favoriser la description de la fissuration de la structure étudiée. La Méthode des Bandes Tournantes (Turning Band Method TBM) introduite par [Matheron, 1973] est l’une des méthodes les plus utilisées pour la génération de champs aléatoires corrélés. Néanmoins, les caractéristiques du champ aléatoire à imposer à la structure ne font pas réel consensus. La longueur de corrélation peut être choisie égale à trois fois la taille du plus gros granulat [Haidar et al., 2005]. Le coefficient de variation est souvent défini de façon arbitraire suivant les cas rencontrés. La valeur moyenne du champ doit tenir compte des effets d’échelle par rapport à la valeur de résistance à la traction mesurée sur des éprouvettes de laboratoire [Rossi et al., 1994] [Sellier et Millard, 2014].

1.2.3 Quantification d’ouvertures de fissures pour des modèles d’endommagement continus

Dans le cas de modèles purement continus, la fissure n’est pas définie de manière explicite comme une discontinuité physique entre deux surfaces libres. Des méthodes de post-traitement ont été développées pour la quantification de la fissuration. Leurs spécificités s’appuient fortement sur la régularisation associée au modèle d’endommagement.

[Dufour et al., 2008] ont développé une méthode de post-traitement de calculs non-locaux, basée sur une comparaison numérique-analytique de variables non-locales. Une valeur d’ouverture de fissure peut être ainsi extraite d’un champ diffus d’endommagement. L’inconvénient principal de la méthode est de devoir connaître ou supposer la position de la fissure, ce qui n’est pas toujours aisé. Un algorithme de détection de fissures a ensuite été développé pour palier ce problème [Dufour et al., 2012].

Développée par [Matallah et al., 2010] et basée sur une régularisation en énergie de fissuration, une autre méthode fait l’hypothèse d’une localisation de l’endommagement dans une bande d’éléments fins de largeur L_1 [Bazant et Oh, 1983]. La déformation totale ϵ est décomposée en une déformation élastique ϵ^e et une déformation de fissuration ϵ^f. Il en résulte donc, dans le cas d’un endommagement isotrope :

$$\epsilon^f_{ij} = \epsilon_{ij} - \epsilon^e_{ij} = \frac{1}{1 - D} C^{-1}_{ijkl} \sigma_{ij} - C^{-1}_{ijkl} \sigma_{ij}, \quad (1.2.9)$$

avec C le tenseur de rigidité. L’ouverture de fissure w peut s’écrit grâce à la déformation de fissuration ϵ^f comme :

$$w = n_i L_1 \epsilon^f_{ij} n_j, \quad (1.2.10)$$

avec n le vecteur unitaire normal à la fissure. Dans un cas 1D, la figure 1.12 illustre la méthode sur un barreau en traction où l’endommagement se localise sur une bande de maille de largeur L_1. Cette méthode est utilisée pour la suite de l’étude, couplée à une régularisation énergétique sur un modèle d’endommagement isotrope. Les applications présentées dans ce document font apparaître principalement des ouvertures de fissures en mode I. La présente méthode est simple et suffisante pour rendre compte des dégradations mises en jeu.
En dernier lieu, il convient de souligner une technique de ré-analyse locale par un modèle discret [Oliver-Leblond et al., 2013]. Un calcul global sur structure est effectué avec un modèle continu d’endommagement. Des zones de dégradation sont identifiées et analysées localement par un modèle discret. La transmission de l’information entre les calculs globaux et locaux est imposée par le champ de déplacement extrait du calcul continu. Cette approche est intéressante car elle fait intervenir une description explicite de la fissuration dans la ré-analyse. Néanmoins, cette étape est relativement lourde en calculs et semble donc aujourd’hui difficilement adaptée à des calculs de structures avec fissurations multiples.

Fig. 1.12 Extraction de l’ouverture de fissure, cas 1D.
1.2.4 Synthèse

1.3 Comportements évolutifs et différés du matériau béton

1.3.1 Comportement au jeune âge

La phase du jeune âge est intimement liée à la réaction d’hydratation du ciment anhydre, propre à la fabrication du béton. Cette réaction est décrite par l’évolution du degré d’hydratation ξ, défini par exemple comme le ratio de la masse de ciment hydraté sur la masse totale de ciment. La réaction d’hydratation du ciment anhydre montre une exothermie importante et sa cinétique est aussi dépendante de la température. L’évolution des propriétés mécaniques au jeune âge se présente ainsi comme un problème thermochimique lié à la composition du béton (rapport e/c), à l’avancement de la réaction et aux conditions extérieures de température (échanges thermiques entre la structure et le milieu extérieur).

Une deuxième conséquence de la réaction d’hydratation est l’apparition d’une déformation volumique, dite de retrait endogène. En effet, la somme des volumes des réactifs est supérieure au volume des produits de la réaction. Après la prise du béton ($\xi \simeq 0.1$), la contraction est gênée par les granulats, ce qui mène à la création d’un système poreux dans le matériau. Avec la consommation de l’eau pour la réaction d’hydratation, les dépressions capillaires augmentent [Hua et al., 1995] et par conséquent, une déformation dite d’autodessiccation est observée. Cette déformation peut être prédominante pour des bétons hautes performances (faible e/c), mais est souvent négligée pour des bétons ordinaires devant les autres déformations mesurées.

Pour la suite de l’étude, nous nous intéresserons principalement à des structures de laboratoire de « faibles épaisseurs », composées d’un béton ordinaire ($e/c > 0.45$). L’influence des effets au jeune âge (température, retrait endogène) ne sera pas prise en compte.
1.3. Comportements évolutifs et diérents du matériau béton

1.3.2 Comportement à long terme

À long terme, les propriétés mécaniques du matériau sont considérées comme constantes (matériau mature) et ne dépendent plus du degré d’hydratation ξ. Dans le cas d’une structure en contact avec le milieu extérieur, la déformation totale ε^{tot} du matériau béton peut être décomposée de la façon suivante :

$$\varepsilon^{\text{tot}} = \varepsilon^e + \varepsilon^{\text{rd}} + \varepsilon^{\text{fp}} + \varepsilon^{\text{fd}}$$

avec ε^e la déformation élastique, ε^{rd} la déformation de retrait de dessiccation, ε^{fp} la déformation de fluage propre et ε^{fd} la déformation de fluage de dessiccation. Ces notions sont détaillées par la suite. Leur prise en compte numérique est aussi explicitée.

Déformation de retrait de dessiccation ε^{rd}

Le béton est un matériau poreux, initialement saturé en eau. En contact avec le milieu environnant, à humidité relative nettement inférieure à celle du matériau, la structure est initialement en déséquilibre hydrique et tend à équilibrer son humidité relative interne par migration de l’eau vers l’extérieur. Le processus de séchage est complexe à identifier et à modéliser, puisqu’il fait intervenir plusieurs mécanismes de transfert d’un mélange eau liquide - vapeur d’eau - air sec présent au sein de la porosité.

Les équations de conservation de la masse d’eau liquide, de vapeur d’eau et d’air sec peuvent être écrites de la façon suivante :

$$\begin{cases}
\rho_l \phi \frac{dS_l}{dt} + \text{div}(\rho_l \phi S_l \vec{v}_l) = -\dot{m}_{\text{vap}} \\
\rho_v \phi \frac{d(1-S_l)}{dt} + \text{div}(\rho_v \phi (1 - S_l) \vec{v}_v) = \dot{m}_{\text{vap}} \\
\rho_a \phi \frac{d(1-S_l)}{dt} + \text{div}(\rho_a \phi (1 - S_l) \vec{v}_a) = 0
\end{cases}$$

(1.3.2)
avec ρ_i la masse volumique du constituant i, \bar{v}_i la vitesse d’écoulement du constituant i, $i = l$ ou v ou a pour l’eau liquide, la vapeur d’eau ou l’air sec, respectivement. Le terme \dot{m}_{vap} est la masse d’eau évaporée par volume par seconde. Le transfert par perméation suit une loi de Darcy. Plusieurs hypothèses simplificatrices peuvent être formulées : $v_c = 0$, $v_a = 0$; la pression d’eau liquide est environ égale à la pression capillaire p_c (pression de vapeur négligeable, environ égale à la pression atmosphérique); la masse volumique de vapeur d’eau est négligeable devant celle de l’eau liquide.

L’équation différentielle régissant l’évolution du séchage, par l’évolution de la pression capillaire, peut ainsi s’écrire comme :

$$\frac{dS_l}{dp_c} = \text{div}(k_{il} \frac{K}{\phi \mu_l} \vec{\nabla} p_c),$$

avec k_{il} la perméabilité relative, K la perméabilité intrinsèque, ϕ la porosité du matériau et μ_l la viscosité dynamique de l’eau liquide. La relation entre S_l et p_c est décrite par [Van Genuchten, 1980] :

$$p_c = a(S_l^{-b} - 1)^{1-1/b},$$

avec a et b des coefficients matériaux pouvant être identifiés sur les isothermes de désorption. [Van Genuchten, 1980] propose aussi la relation qui relie la perméabilité relative au degré de saturation :

$$k_{il} = S_l^{\gamma} \left(1 - (1 - S_l^{b})^{1/b}\right)^2 \text{ avec } \gamma = 0.5.$$

La déformation de retrait de dessiccation ε^{rd} est la conséquence de la montée en pression capillaire dans le milieux poreux. Différentes approches sont proposées dans la littérature :

1. Dans une approche phénoménologique, la déformation ε^{rd} peut être reliée de façon linéaire à la variation d’humidité relative h [Bažant et Xi, 1994] :

$$\varepsilon^{rd} = k_h h.$$

L’humidité relative est calculée grâce à la pression capillaire par l’équation de Kelvin.

2. Toujours dans une approche phénoménologique, la déformation ε^{rd} peut être reliée de façon linéaire à la variation de teneur en eau w [Benboudjema, 2002] :

$$\varepsilon^{rd} = k_w w.$$

La relation peut être facilement identifiée sur une courbe retrait de dessiccation - perte en masse.

3. Une modélisation du retrait de dessiccation par la mécanique des milieux poreux non saturés [Schrefler et al., 1989] [Coussy, 1995] est aussi proposée, considérant le matériau béton comme un squelette solide et un réseau de pores contenant de l’eau liquide et du gaz. La déformation ε^{rd} peut finalement se calculer comme :

$$\varepsilon^{rd} = \frac{1 - 2\nu}{E} b S_l p_c,$$

avec b le coefficient de Biot. La déformation est calculée par la pression hydrostatique du fluide contenu dans la porosité sur le squelette solide.
Les paramètres des différents modèles sont calibrés sur des éprouvettes de laboratoire en conditions de séchage (éprouvettes 7x7x28 cm3 par exemple) et appliqués par la suite pour la simulation de la structure d’étude. On retirera que les différents modèles permettent tous de simuler correctement l’évolution du retrait de dessiccation d’une éprouvette en fonction du temps pour des tailles d’éprouvettes différentes [Benboudjema et Torrenti, 2013]. Seule la déformation simulée à très long terme (après deux ans) n’est pas en accord avec les résultats expérimentaux. Cette problématique long terme ne rentre pas dans le cadre de notre étude.

Le mécanisme de séchage est un phénomène diffusif. Par conséquent, la cinétique du retrait de dessiccation dépend de la taille de l’éprouvette considérée. La géométrie est considérée au travers du rayon moyen de séchage r_s, défini comme $r_s = k_s (V/S)$ avec V le volume de l’éprouvette, S la surface séchante et k_s un coefficient de forme [RILEM, 1995]. Pour un même béton, les évolutions de perte en masse d’éprouvettes de géométries différentes sont similaires en fonction de \sqrt{t}/r_s. Les résultats expérimentaux montrent que cette hypothèse analytique est vérifiée pour des éprouvettes de tailles différentes mais de formes voisines. Il devient difficile de supposer le coefficient k_s pour des éprouvettes de formes très distinctes. Considérant que la déformation de retrait de dessiccation est fonction de l’état hydrique du matériau, la cinétique de retrait peut aussi être déterminée en fonction de la variable \sqrt{t}/r_s. Les essais expérimentaux de [Almudaiheem et Hansen, 1987] et [Samouh et al., 2012] ont validé cette hypothèse (Figure 1.13).

![Graphique](image.png)

Fig. 1.13 Dépendance de la cinétique de retrait de dessiccation à la géométrie de l’éprouvette.

L’effet du retrait de dessiccation peut être observé à trois échelles différentes :

1. D’un point de vue global, un gradient de retrait de dessiccation peut être observé dans l’ouvrage à cause du séchage différentiel de la structure. Le retrait de dessiccation en surface est restreint par le cœur de la structure, ce qui induit des contraintes de traction et une fissuration généralisée de peau [Granger, 1995] ;

2. Le retrait de dessiccation est aussi restreint par le ferraillage et peut conduire à des contraintes de traction et/ou de la fissuration dans le béton. Des études au
Chapitre 1. État de l’art

jeune âge avec retrait endogène ont pu mettre en évidence l’influence structurelle des déformations différencées [Tanimura et al., 2007];

3. À une échelle inférieure, le retrait de dessiccation, concentré dans la pâte de ciment essentiellement, est restreint par les granulats inertes. Une fissuration intergranulaire peut ainsi être observée à cette échelle [Lagier et al., 2011] [De Sa et al., 2013].

Déformation de fluage propre ϵ_{fp}

À chargement constant, une structure en béton se déforme de manière différencée au cours du temps. Dans des applications structurelles de laboratoire, le chargement mécanique appliqué se place sur une échelle de temps inférieure à celle caractéristique des mécanismes de fluage. Les déformations de fluage propre ne sont ainsi pas considérées dans cette optique.

Cependant, l’étude de l’influence du retrait de dessiccation sur le comportement de structures en béton armé précontraint se doit de prendre en compte numériquement ce phénomène. En effet, la restreinte des déformations de retrait, en surface par le cœur de la structure ou interne par le ferraillement, induit des contraintes de traction au sein de l’ouvrage. Ne pas prendre en compte les déformations de fluage propre reviendrait à sur-estimer l’influence du séchage sur la dégradation structurelle (fissuration surestimée par exemple).

Des observations expérimentales diverses sont à l’origine des modèles phénoménologiques proposés dans la littérature. Nous ne nous intéresserons pas aux phénomènes de fluage au jeune âge. Seul un béton mature est considéré. Les principales caractéristiques du phénomène sont ici résumées :

- à chargement constant sur une éprouvette en béton, les déformations de fluage propre évoluent de manière logarithmique en fonction du temps à long terme;
- l’âge du chargement influe grandement sur la cinétique : plus le matériau est chargé tard après fabrication, plus les déformations du fluage propre diminuent;
- la composition du matériau a un impact significatif sur les amplitudes de fluage : les mécanismes s’opèrent principalement au sein de la pâte de ciment et non dans les granulats ; les déformations de fluage augmentent avec le rapport e/c;
- le degré de saturation influe sur la déformation de fluage : un béton pré-séché flue moins qu’un béton saturé en eau;
- après décharge, une réversibilité partielle des déformations est observée expérimentalement : environ 30 % réversible, 70 % irréversible;
1.3. Comportements évolutifs et différés du matériau béton

– la symétrie du fluage propre en traction et en compression ne fait pas consensus dans la littérature. Il est aujourd’hui impossible de distinguer une tendance sur ce point.

Le schéma choisi, développé par [Hilaire, 2014], présente l’assemblage d’une chaîne de Kelvin-Voigt en série avec un amortisseur vieillissant (Figure 1.14-a). Le modèle a été développé pour rendre compte du comportement complet d’une structure massive, depuis sa fabrication jusqu’à son service. La phase du jeune âge peut ainsi être prise en compte, par la dépendance des paramètres au degré d’hydratation \(\xi \). Seul le comportement à long terme est ici présenté, en relation avec les applications de notre étude. Le couplage en série d’une chaîne de Kelvin-Voigt et d’un amortisseur induit une dépendance logarithmique de la déformation de fluage \(\varepsilon_{\text{fp}} \) par rapport au temps (Figure 1.14-b). La viscosité \(\eta_{\text{am}} \) est considérée linéaire par rapport au temps pour la prise en compte de l’influence de l’âge du chargement sur la déformation de fluage :

\[
\eta_{\text{am}} = \eta_{\text{am}}^\infty t.
\] (1.3.9)
L’irréversibilité partielle de la déformation totale ϵ^p est induite par l’amortisseur de viscosité η_{am} (Figure 1.14-b). L’incrément de déformation ϵ_{am} est calculé par décomposition des contraintes de traction et de compression :

$$\epsilon_{am} = \alpha_{bc} \frac{<\sigma>_+}{\eta_{am}(t)} + \frac{<\sigma>_+}{\eta_{am}(t)}.$$

(1.3.10)

Le paramètre α_{bc} permet de rendre compte de dissymétrie de fluage en traction et en compression. Enfin, les paramètres k_{kv} et η_{am} sont considérés inversement proportionnels au degré de saturation S_l, en accord avec la proportionnalité de la déformation de fluage avec le degré de saturation. En effet, plus S_l diminue, plus les déformations de fluage mesurées sont faibles.

Les paramètres présentés seront, par la suite, identifiés sur des essais de fluage en compression menés dans l’étude. L’hypothèse d’une symétrie traction-compression sera faite en raison de l’absence de données expérimentales et de consensus dans la littérature. Notons que la prise en compte du phénomène de fluage est ici couplée avec le retrait de dessiccation, dans le but de ne pas surestimer l’influence des déformations différences dues au séchage du béton. Par une calibration spécifique des phénomènes, nous estimons qu’un autre modèle rhéologique de fluage aurait pu être utilisé, sans grandes variations dans les résultats simulés numériquement. En effet, il n’est pas nécessaire de tenir compte des effets de l’hydratation, de la température ou d’une variation de l’humidité relative.

Déformation de fluage de dessiccation ϵ^{fd}

La prise en compte d’une déformation de fluage de dessiccation est issue d’observations paradoxales sur des essais de fluage. Bien que la diminution du degré de saturation induise une diminution des déformations de fluage propre, il peut être observé une augmentation de la déformation de fluage total sur une éprouvette en condition de séchage, par rapport à une éprouvette en condition endogène (sans échanges hydriques avec le milieu extérieur).

Ce phénomène, dénommé effet Pickett, trouve plusieurs explications dans la littérature. Nous resterons ici sur une approche purement phénoménologique qui vise à montrer que la déformation de fluage de dessiccation est une augmentation de la déformation de retrait sous contrainte. Ainsi, ϵ^{fd} est considérée proportionnelle à la déformation de retrait de dessiccation ϵ^{rd} et à la contrainte appliquée σ [Gamble et Parrott, 1978] :

$$\epsilon^{fd} = \lambda_{fd} \epsilon^{rd} \sigma,$$

(1.3.11)

avec λ_{fd} une constante. Celle-ci peut être identifiée facilement sur des essais de fluage de dessiccation. Cependant, [Gamble et Parrott, 1978] et [Hilaire, 2014] ont montré une relation affine liant λ_{fd} au rapport c/c. En l’absence de données expérimentales, la constante λ_{fd} peut être identifiée de cette manière. Pour des bétons ordinaires ($c/c \approx 0.5$), elle peut être évaluée à environ 0.1 MPa^{-1}.

1.3.3 Synthèse

Le comportement d’une structure sous sollicitations mécaniques dépend de son historique de chargement depuis sa fabrication et par conséquent de l’influence des conditions environnementales sur l’ouvrage. L’analyse de ces phénomènes passe par la prise en compte du comportement hydro-mécanique et des déformations différences du matériau béton.

Les éprouvettes testées dans cette étude présentent de « faibles dimensions » et sont fabriquées avec un béton ordinaire. Le comportement des structures au jeune âge ne sera donc pas considéré.

Une attention particulière sera par contre portée sur l’influence du retrait de dessiccation sur les éprouvettes testées. Une modélisation basée sur la mécanique des milieux poreux non saturés sera utilisée. Le fluage propre et le fluage de dessiccation seront aussi intégrés dans l’analyse afin de ne pas surestimer l’effet du retrait de dessiccation sur la fissuration des structures. Les différents modèles seront calibrés sur des essais expérimentaux de caractérisation.
1.4 Liaison armatures passives - béton

1.4.1 Rôle de la liaison acier-béton

Historiquement, les armatures d’acier ont été introduites dans les structures béton pour palier à la faible résistance du matériau béton en traction et garantir l’intégrité structurelle des ouvrages. La liaison chimique et physique entre les deux matériaux permet la transmission des efforts des armatures vers le béton, et inversement. Au droit d’une fissure, seule l’armature induit localement la continuité des efforts. Le béton est complètement déchargé au niveau de cette discontinuité. De part et d’autre des lèvres de la fissure, par le phénomène d’adhérence, l’armature retransmet progressivement les efforts vers le béton, sur une longueur l_a, nommée longueur d’ancrage (Figure 1.15). La longueur d’ancrage dépend de la qualité de la liaison entre les deux matériaux. Une liaison parfaite induira une valeur de l_a très faible, alors qu’une liaison dégradée augmentera cette dernière. Pour l’étude du comportement à la fissuration des structures en béton armé, il y a lieu de pouvoir appréhender correctement ces phénomènes. En effet, l’espacement entre fissures, et par conséquent leur ouverture respective, sont intimement liés à la longueur d’ancrage l_a. Bien que d’une grande importance, il n’est pas toujours aisé de caractériser expérimentalement les mécanismes locaux mis en jeu : dispositifs de mesure de la longueur d’ancrage sur structure en béton armé, observation post-mortem des dégradations à l’interface acier-béton. De nombreux travaux de recherche ont néanmoins étudié les mécanismes locaux de dégradation progressive de la liaison acier-béton, la caractérisation expérimentale des comportements locaux et globaux, ainsi que leur prise en compte numérique.

1.4.2 Identification des mécanismes et des paramètres d’influence

Trois composantes sont à l’origine de la liaison entre les deux matériaux [Lutz et Gergely, 1967] :

1. Une adhérence chimique initiale.
2. Un frottement entre les deux surfaces développées en contact.
3. La compatibilité géométrique de la surface crénelée d’une armature Haute Adhérence (HA) vis-à-vis du béton, entrainant des interactions mécaniques au niveau des crénelures.

Fig. 1.15 Illustration du phénomène de longueur d’ancrage sur une structure béton armé.
À la différence d’une barre lisse, qui présente un comportement frottant avec perte d’adhésion chimique, le comportement d’interface d’une armature HA est principalement contrôlé par les interactions mécaniques au niveau des crénelures. Ces mécanismes locaux évolutifs de dégradation de l’interface acier-béton ont été identifiés dès les premières recherches sur ce sujet [Lutz et Gergely, 1967], puis confirmés par la suite par [Eligehausen et al., 1983] [Soroushian et Choi, 1989].

Une étude expérimentale intéressante met en évidence ces dégradations via un essai de traction sur tirant en béton armé [Goto, 1971] (Figure 1.16-a). Une barre d’armature coulée dans un massif béton est mise en traction jusqu’à plastification. De multiples fissures transversales apparaissent le long du spécimen. À la fin du chargement, les spécimens sont découpés. Une injection à l’encre montre la fissuration interne à l’interface acier-béton (Figure 1.16-b). Outre les fissures transversales observées, on peut remarquer des fissures inclinées le long du spécimen autour de l’armature d’acier (observation et représentation schématique sur la figure 1.16-b et la figure 1.16-c, respectivement). Celles-ci sont générées au cours du chargement par la présence de crénelures. De plus, [Goto, 1971] observe des décohésions locales du béton par rapport à la barre, au droit des fissures transversales. Les zones dégradées (décohésion, fissuration inclinée) informent, de manière très qualitative, de l’état local de la liaison acier-béton. Ces observations peuvent fournir une information intéressante de la longueur d’ancrage l_a au droit des fissures. Cette étude est aussi remarquable car elle met expérimentalement en exergue les mécanismes théoriques proposés.

![Figure 1.16](image.png)
Plus récemment, une étude expérimentale, portant sur le comportement d’interface local, a été menée par [Ouglova, 2004] [Tran et al., 2007] sur des essais d’arrachement dénommés essais PIAF (Figure 1.17-a-b-c). Une armature de section carrée est coulée dans une éprouvette béton. Deux faces sont visuellement accessibles et permettent l’étude du comportement de l’interface acier-béton, sous un chargement d’arrachement, par corrélation d’images numériques (CIN). Les auteurs ont pu mettre en évidence les glissements locaux à l’interface, ainsi que des discontinuités de déplacements au droit des crénelures (fissuration). De plus, les auteurs portent une attention particulière à la gestion des conditions aux limites et de leurs effets sur le comportement à l’interface. Le système bi-rotulé permet de diminuer le confinement parasite dans cette zone par rapport à un essai pull-out classique. Les essais PIAF ont par la suite été modélisés avec l’utilisation d’un modèle méso- scopique éléments finis pour le béton (pris en compte des granulats et de la pâte de ciment) et la modélisation explicite des crénelures de l’armature [Daoud et al., 2013]. Outre le comportement global des essais, les mécanismes locaux ont pu être identifiés (Figure 1.17) : micro-fissuration autour de l’armature, propagation de macro-fissures au droit des crénelures. Ces observations numériques semblent en accord avec celles obtenues par [Goto, 1971].

Bien que les mécanismes agissent au niveau très local (interaction crénelures-béton, frottement acier-béton entre crénelures), le comportement de la liaison est considéré de manière plus global : sur une longueur d’armature définie (série de crénelures successives), la contrainte d’adhérence τ est considérée comme constante sur cette zone et calculée en
fonction de la variation des efforts internes de l’armature (Figure 1.18) ; le déplacement relatif local u de l’armature par rapport au massif béton environnant peut être relié à la contrainte d’adhérence τ pour définir le comportement de la liaison.

$$\tau = \frac{\Delta F}{2\pi r \Delta x}$$

avec r le rayon de l’armature

Fig. 1.18 Schématisation de la contrainte d’adhérence à l’interface acier-béton.

Initialement, l’armature est en adhérence parfaite avec le béton. L’adhérence chimique et le comportement élastique du béton induisent une transmission d’efforts entre les deux matériaux, sans glissement relatif. Relativement tôt, des fissures coniques apparaissent au droit des crénelures, une fois la résistance à la traction du béton atteinte (point A Figure 1.19). Notons que pour une barre lisse, une fois l’adhérence chimique dépassée, seul le frottement acier-béton contrôle la transmission d’efforts de l’armature vers le béton. La contrainte d’adhérence est ainsi maximale au point A. Pour une armature HA, le béton forme des butées au droit des crénelures. Le gain d’adhérence qui s’en suit est contrôlé par l’interaction crénelures-béton dans ces zones de mise en compression. Par ailleurs, le béton « s’écrase » localement au niveau du profil géométrique de l’armature. Par conséquent, un déplacement relatif u apparaît (point B Figure 1.19) et illustre les premières zones de dégradation de la zone d’interface. On remarque qu’à ce stade la résistance à la compression du matériau béton contrôle le comportement de la liaison. L’augmentation des efforts transmis mène à la création de fissures de cisaillement dans les zones inter-crénelures. La coalescence de ces fissures est synonyme de la résistance maximale de la liaison (point C Figure 1.19). La liaison ne peut plus transmettre d’efforts supplémentaires. Seuls des mécanismes de frottement béton-béton contrôlent l’adhérence des deux matériaux (béton emporté par les crénelures vs. béton « sain » du massif environnant) (point D Figure 1.19). Une dégradation progressive s’en suit jusqu’à atteindre la contrainte résiduelle de frottement (point E Figure 1.19). Le déplacement relatif u_E correspond à la distance entre deux crénelures successives.

Au vu des mécanismes présentés précédemment, les paramètres pouvant influencer le comportement de la liaison sont nombreux et ont pu être identifiés dans la littérature. Les résultats s’appuient sur des tests d’arrachement (pull-out ou push-in), des essais tirants ou bien des essais sur des poutres en flexion faiblement ferraillées. L’historique complet des recherches sur le sujet a déjà été détaillé dans de nombreuses thèses, [Dominguez, 2005], [Phan, 2012] par exemple. Nous proposons ici de résumer quelques points principaux :

- **diamètre de l’armature** : l’influence du diamètre de l’armature sur le comportement de la liaison ne fait pas consensus. [Eligehausen et al., 1983] montre que le diamètre n’influence que très peu sur le comportement de la liaison ; d’après [Daoud et al., 2002], la contrainte d’adhérence maximale augmente avec le diamètre ; [Gambarova et Rosati, 1997] concluent l’inverse ;
Chapitre 1. État de l’art

Fig. 1.19 Mécanismes de dégradation de l’interface acier-béton [Dominguez, 2005].

- **nature des matériaux à l’interface** : l’état de corrosion de l’acier peut être pris en compte. À faible taux de corrosion, une augmentation des propriétés de l’interface est généralement observée [Ouglova et al., 2008]. À taux plus élevé, une diminution est par contre remarquée, les produits de corrosion n’ayant pas de propriétés mécaniques satisfaisantes. La nature du matériau béton est aussi investigée dans certains travaux. L’effet de la vibration n’a que peu d’influence sur la liaison [Grampeix, 2013]. La même conclusion est portée sur l’effet d’un béton auto-plaçant, par rapport à un béton ordinaire vibré [Daoud, 2003] ;
1.4 Liaison armatures passives - béton

À ce stade, il semble difficile de décrire de manière prédictive le comportement d’une liaison acier-béton donnée. Seule une étude spécifique, pour une application donnée, semble justifiable aujourd’hui pour la simulation numérique ultérieure du comportement d’une structure. Cette étude peut passer par des essais expérimentaux d’arrachement afin de calibrer un modèle numérique de liaison. Cependant, l’hétérogénéité des propriétés d’interface, en relation aux hétérogénéités des propriétés mécaniques du béton, est souvent difficilement identifiable expérimentalement à cause d’un manque de moyens de mesures locales. Une instrumentation par fibres optiques de l’armature peut fournir ces informations importantes [Tixier, 2013].

1.4.3 Prise en compte numérique

Une multitude de modèles peuvent être identifiés dans la littérature. De la même manière que le choix d’un modèle béton, le choix d’un modèle d’interface acier-béton requiert l’attention et le pragmatisme du modélisateur. La prise en compte du comportement de liaison passe par l’introduction numérique d’éléments finis propres à l’interface. On adjoint à ces derniers un modèle de liaison spécifique, représenté par sa loi de comportement.

Il ne semble pas aisé de pouvoir définir une classification claire des approches proposées dans la littérature. En effet, le comportement de l’interface est très souvent couplé au comportement du matériau béton dans les modélisations. Le travail conjoint des deux milieux favorise différents mécanismes, propres au matériau béton ou à l’interface. Le modèle béton associé a donc une part importante sur le comportement global de la liaison. Nous pensons plus judicieux de classifier les approches selon le type d’éléments finis choisis. Le choix de ces derniers semble en effet être le premier verrou numérique à définir pour la modélisation de l’interface acier-béton. Les modèles associés à ces éléments seront définis au fur et à mesure de la classification.

Une première approche est de considérer l’armature comme un assemblage d’éléments finis 1D à deux nœuds, positionnés dans un massif béton avec éléments volumiques. Par des relations cinématiques liant les nœuds de l’acier et du béton, une adhérence parfaite peut être proposée. Cette technique est très répandue pour des calculs industriels, les maillages des deux constituants étant très facilement générés. Néanmoins, elle ne permet pas de prendre en compte le phénomène de dégradation de l’interface acier-béton. Partant de ce constat d’intérêt numérique certain mais de manque de pertinence physique, [Casanova et al., 2012] développent une approche similaire (armature 1D, béton 3D). Cependant, les auteurs introduisent : des relations cinématiques spécifiques, afin de définir un glissement progressif des nœuds de l’armature par rapport aux nœuds du béton ; des efforts internes aux nœuds de l’armature et du béton, pour la prise en compte du frottement entre les deux matériaux (Figure 1.20). Des lois, plus ou moins complexes, contrainte d’adhérence - glis-
Fig. 1.20 Approche de [Casanova et al., 2012] pour la modélisation de l’interface acier-béton.

Les modèles peuvent être associés à cette modélisation, sur la base de propositions empiriques ou analytiques. Des relations linéaires [Ngo et Scordelis, 1967], bi-linéaires [Khalfallah et Ouchenane, 2007], tri-linéaires [Kwak et Kim, 2001] ont pu être proposées dans la littérature. La loi de référence reste celle proposée par [Eligehausen et al., 1983]. Elle se compose de quatre branches définies par l’évolution du glissement \(u \) : branche ascendante \(\tau = \tau_{\text{max}} \left(\frac{u}{u_1} \right)^n \) si \(0 < u < u_1 \); branche constante \(\tau = \tau_{\text{max}} \) si \(u_1 < u < u_2 \); branche adoucissante \(\tau = \tau_{\text{max}} - (\tau_{\text{max}} - \tau_{\text{res}}) \left(\frac{u_2}{u_3} - \frac{u_2}{u_3} \right) \) si \(u_2 < u < u_3 \); résistance résiduelle \(\tau = \tau_{\text{res}} \) si \(u_3 < u \). L’approche proposée par [Casanova et al., 2012] semble très intéressante pour des calculs de structures massives. Néanmoins, l’implémentation numérique reste délicate et se doit d’être validée en comparaison à des essais expérimentaux à l’échelle de l’interface.

La deuxième approche propose la modélisation explicite de l’armature (cylindre en 3D) et du béton environnant. Des éléments d’interface à épaisseur nulle, éléments joints, sont placés entre les nœuds du béton et de l’acier. La loi de comportement associée à ces éléments est écrite en vecteur contrainte - déplacement. Une matrice de rigidité lie ces derniers. Une raideur normale permet la non-pénétration des deux surfaces. Une raideur tangentielle représente le cisaillement à l’interface. La loi de comportement en cisaillement peut être basée sur les modèles analytiques, présentés précédemment. Le modèle de [Eligehausen et al., 1983] est ainsi proposé sur des éléments joints dans le code aux éléments finis Cast3m. [Daoud, 2003] utilise aussi une loi analytique tri-linéaire, en parallèle d’un modèle béton endommageable. La dégradation de l’interface est ainsi dépendante du couplage des comportements des deux constituants. [Clément, 1987] base la loi de comportement de l’élément joint sur la théorie de l’endommagement. La dégradation progressive de la liaison est une conséquence de la perte de raideur tangentielle. La limite du modèle semble se poser sur l’impossibilité de simuler de grands glissements à l’interface. Les modèles basés sur la théorie de la plasticité sont plus à même de reproduire de larges glissements [Désir et al., 1999]. Le couplage endommagement-plasticité est utilisé par [Dominguez, 2005] [Ragueneau et al., 2006] (éléments finis dégénérés), puis par [Richard et al., 2010b] (éléments joints) pour rendre compte simultanément de la dégradation de l’interface - du glissement - du frottement entre matériaux. Une validation numérique sur essais d’arrachement confinés expose des comportements très satisfaisants (Figure 1.21). Bien que physiquement valide, l’introduction d’éléments joints présente deux désavantages principaux. Tout d’abord, ces derniers provoquent un alourdissement des calculs...
numériques. Un calcul de structure devient quasiment inenvisageable avec l’utilisation de ces éléments. De plus, des instabilités numériques peuvent être observées avec le problème de raideur normale et de non-pénétrabilité des deux surfaces en contact.

Tout en gardant un critère de Von Mises, [Sellier et al., 2013c] fait dépendre le seuil du critère au glissement relatif entre les deux matériaux. La variation progressive du seuil est basée sur la loi analytique de [Eligehausen et al., 1983]. Il convient alors de remarquer la pertinence des simulations numériques par rapport aux essais expérimentaux d’arrachement de [Kolani, 2012] [Sellier et al., 2013a]. Par contre, le nombre de paramètres

Fig. 1.22 Modélisation de l’interface acier-béton avec éléments d’interface volumique : (a) cas 2D [Reinhardt et al., 1984], (b) cas 3D [Kolani, 2012].
1.4.4 Synthèse

La prise en compte d’une **zone d’interface volumique 3D** présente une grande robustesse numérique (cadre continu) et une simplicité de mise en œuvre. Un modèle plastique lui étant associé, la **dégradation progressive** et le **glissement** entre les deux matériaux peuvent être représentés. Un développement local sera proposé dans la suite de l’étude afin de prendre en considération l’influence de la **géométrie de l’armature** sur le comportement de liaison.
1.5 Liaison torons de précontrainte - coulis d’injection

1.5.1 Caractérisation des mécanismes

Le rôle de la précontrainte a été mis en évidence précédemment dans ce chapitre. Une précontrainte non-adhérente ne fait pas l’objet de liaison avec la structure. Par contre, le cas d’une précontrainte adhérente est ici à détailler par rapport à sa capacité de transfert d’efforts avec la structure environnante. De la même manière que le ferrailage passif, les armatures actives adhérentes de précontrainte (torons de précontrainte pour la post-tension) participent théoriquement au contrôle de la fissuration, même partiellement. Leur géométrie particulière induit néanmoins des mécanismes différents de dégradation à l’interface comparés à ceux mis en évidence pour des barres HA. On remarquera cependant que peu de recherches scientifiques se sont intéressées à l’interface toron-coulis d’injection dans le cas d’une précontrainte par post-tension. Les travaux existants se focalisent surtout sur le comportement de la précontrainte par pré-tension (transmission d’efforts du câble vers le béton pour la mise en précontrainte) et sur des systèmes d’ancrage injectés pour du renforcement de massifs rocheux.

Les mécanismes de dégradation de l’interface toron - structure sont intimement liés aux conditions aux limites appliquées. Cet aspect a été identifié depuis de nombreuses années, tout d’abord sur des applications de génie minier avec renforcement de massifs rocheux par torons injectés [Bawden et al., 1992]. Prenant le cas d’un chargement d’arrachement direct, les auteurs considèrent une condition limite libre ou restreinte en rotation, sur la partie non chargée de l’armature (Figure 1.23-a). Dans les deux cas, une première phase est observée avec une augmentation de l’effort à faible déplacement. Cette première étape correspond à l’adhérence chimique initiale des deux matériaux. À rotation libre, un palier d’effort est observé par la suite. La rotation du toron induit en effet un phénomène de dévissage du toron au sein du matériau d’injection. Ce dernier n’est pas soumis à une
dégradation généralisée par l’action de l’armature. Seul un frottement acier-béton est à l’origine du maintien de l’effort à déplacement croissant. À l’inverse, la rotation restreinte entraîne une meilleure tenue du système d’ancrage. La perte de rigidité progressive de la liaison est, dans ce cas, liée à la dégradation du produit d’injection entourant l’armature.

Les mécanismes physiques contrôlant la phase post-adhésion chimique restent encore discutés de nos jours. La forme géométrique du toron de précontrainte est reconnue comme particulièrement importante et joue sur le comportement de l’interface par interaction mécanique avec le matériau d’injection environnant [Stocker et Sozen, 1969]. Ce phénomène se rapproche du comportement d’une barre HA. Par ailleurs, l’état de contrainte de traction dans le toron tend à provoquer une augmentation de son pas de toronnage. Ce dernier est restreint par le milieu environnant. Un moment de torsion est ainsi généré et provoque une interaction additionnelle (mécanismes de frottement principalement) entre l’armature et le milieu environnant. L’impact de ce mécanisme, en comparaison à l’interaction géométrique, ne fait pas l’unanimité dans la littérature [Russell et Burns, 1993]. Cependant, à la différence d’une barre HA, le mouvement relatif du toron provoque une dégradation généralisée du matériau d’injection. Théorisée par [Hyett et al., 1992], et identifiée expérimentalement par [Ito et al., 2001], la pression radiale exercée par le toron entraîne une fissuration radiale du matériau d’injection. Les observations au tomographe de [Ito et al., 2001] montrent l’état de fissuration autour de l’armature. Les fissures radiales suivent la forme héliocidale de l’armature (Figure 1.24).

Fig. 1.24 Dégradation généralisée du matériau d’injection de l’armature toronnée sous chargement d’arrachement : observation aux rayons X, tous les 1 cm le long du toron [Ito et al., 2001].
1.5.2 Essais expérimentaux pour la prise en compte numérique

Dans la littérature, la caractérisation de l’interface passe principalement par des essais d’arrachement. Au vu des mécanismes présentés, il y a lieu de se questionner sur les paramètres d’influence du comportement de la liaison toron-structure.

L’étude de [Hyett et al., 1992] semble très pertinente vis-à-vis de la caractérisation de l’influence du confinement passif. Des essais d’arrachement sont menés, comme illustré sur la figure 1.25-a. La gaine extérieure, entourant le système d’ancrage, est modifiée par la nature du matériau la constituant. Quatre tests sont proposés : sans gaine, gaine PVC, gaine aluminium, gaine acier. Par la pression du toron sur le matériau d’injection, générée par la rotation restreinte, une pression radiale est exercée sur la gaine extérieure. Les propriétés mécaniques de cette dernière, différentes pour chaque essai, induisent indirectement un confinement passif progressif sur l’interface toron-structure. Les auteurs mettent en évidence des comportements très différents d’un test à l’autre (Figure 1.25-b). La pression exercée par le toron sur le matériau d’injection est visiblement non négligeable. Afin de véritablement quantifier l’effet du confinement sur le comportement de l’interface, [Hyett et al., 1995] ont développé par la suite une cellule de confinement actif, disposée sur le
1.5. Liaison torons de précontrainte - coulis d’injection

montage présenté précédemment (Figure 1.25-a). Les résultats obtenus leur ont permis de développer un modèle analytique de liaison toron-structure. Celui-ci considère la pression directement générée par le toron et son influence en termes de confinement passif sur l’interface. Dans la même étude, l’influence des propriétés mécaniques du matériau d’injection a aussi été évaluée. Trois matériaux différents ont pu être testés, à différents rapports \(e/c \). On peut observer une augmentation des propriétés d’adhérence pour le matériau à faible \(e/c \) (ce matériau présente des propriétés mécaniques supérieures : module de Young, résistance à la compression) (Figure 1.26).

La modélisation des mécanismes locaux de dégradation ne peut être retranscrite dans un calcul de structure, au vu des résultats détaillés par [Ito et al., 2001]. Seul le comportement global de transfert d’efforts du toron vers le massif béton est aujourd’hui simulé par le biais d’une loi d’adhérence. Les auteurs se basent principalement sur un comportement local tri-linéaire [Benmokrane et al., 1995], calibré sur des essais d’arrachement sur torons injectés avec une longueur d’adhérence égale à quatre fois le diamètre de l’armature. Les résultats présentent une tendance typique du comportement de l’interface toron -matériau d’injection sans adoucissement (Figure 1.27). L’influence du confinement passif et des propriétés matériaux du coulis d’injection sont implicitement prises en compte. Cette loi simplifiée a été validée de nombreuses fois et est reconnue comme satisfaisante pour rendre compte du comportement de l’interface [Blanco Martin, 2012].

Les calculs numériques éléments finis, avec prise en compte de l’interface toron - coulis d’injection pour des applications de précontrainte par post-tension, semblent très rares dans la littérature. Historiquement, les structures précontraintes par post-tension étaient dimensionnées pour éviter la fissuration générée par un chargement mécanique. L’influence de la liaison armatures-structure sur le contrôle de la fissuration n’était donc pas un point d’étude spécifique. L’évolution des applications génie civil requiert néanmoins de comprendre l’apport de la précontrainte adhérente sur le comportement à la fissuration.

2. La précontrainte de structures génie civil présente très rarement un système mono-toron injecté, mais plutôt des câbles multi-torons. Pourtant, le comportement global à l’arrachement d’un système multi-torons n’est pas référencé dans la littérature. De plus, dans le cas de structures courbes, les câbles sont plaqués contre la gaine de précontrainte lors de la mise en tension. L’injection ne permet pas forcément une bonne adhérence de la totalité du pourtour géométrique des câbles.

1.5.3 Synthèse

Les mécanismes de comportement et de dégradation de l’interface toron-structure sont très différents de ceux propres à l’interface acier-béton. Par la torsion du toron de précontrainte sous chargement mécanique, une fissuration radiale en hélice est observée dans le coulis d’injection et un confinement passif est généré par la restreinte de la structure environnante.

Seule une prise en compte numérique globale du comportement de l’interface semble judicieuse pour un calcul de structure. Comme pour l’interface acier-béton, une zone d’interface 3D à comportement plastique sera utilisée.

Les paramètres du modèle d’interface seront calibrés par rapport à des essais d’arrachement de torons. Le confinement passif et les propriétés du coulis d’injection ont un impact significatif sur la résistance à l’arrachement. La géométrie des spécimens devra donc être en accord avec les conditions d’essai sur poutres pour que les paramètres identifiés au niveau local puissent être transposés aux calculs de structure.
1.6 Synthèse générale

1. Données expérimentales
 - comportement global : flexion 4 points ;
 - fissuration : CIN ;
 - toron : fibres optiques.

2. Validation modélisation
 Grandeurs globales et locales

2.1. Interface acier-béton
 Expérimentation :
 - essais d’arrachement ;
 - traction tirants longs.
 Instrumentation :
 - béton : CIN ;
 - armatures : fibres optiques.
 Modélisation :
 - zone d’interface 3D ;
 - comportement plastique.

2.2. Interface toron-structure
 Expérimentation :
 - essais d’arrachement.
 Exigences :
 - confinement passif ;
 - comportement coulis.
 Modélisation :
 - zone d’interface 3D ;
 - comportement plastique.

2.3. Comportement hydro-mécanique du béton
 Expérimentation :
 - propriétés mécaniques ;
 - déformations différées.
 Mécanique :
 - matériau élasto-endommageable ;
 - régularisation en énergie de fissuration.
 Déformations différées :
 - retrait de dessiccation ;
 - fluages propre et de dessiccation.

3. Simulations numériques de structures
 Capacité portante, fissuration
Chapitre 2

Comportement expérimental de poutres précontraintes

Ce chapitre expose l’initiation de la démarche globale proposée dans ce manuscrit. Six poutres précontraintes sont testées en flexion 4 points. Le comportement global (capacité portante) et le comportement à la fissuration des structures sont étudiés. L’apport d’une précontrainte adhérente ou non-adhérente, couplé à un taux d’armatures passives additionnelles, est mis en évidence expérimentalement. Les résultats expérimentaux obtenus peuvent aussi être confrontés aux résultats analytiques. Ils permettent de définir une riche base de données expérimentales pour la suite de l’étude.
2.1 Introduction

Dans le contexte des centrales nucléaires françaises, l’enceinte de confinement interne, armée et précontrainte, est dimensionnée pour résister à un accident de type APRP. Cet accident est synonyme d’une élévation de pression interne de 0.5 MPa et d’une élévation de température interne d’environ 150 degrés Celsius. En accord avec la géométrie circulaire de la structure, et avec la présence d’un dôme sphérique en partie supérieure, l’élévation de pression interne induit principalement un état de bi-traction en partie couvrante (contraintes σ_{yy} et σ_{zz}). Le dimensionnement de la structure s’effectue sur les sections d’acier passif et de précontrainte, avec comme objectif de limiter et contrôler la fissuration provoquée par ce chargement mécanique.

Expérimentalement, et en accord avec le contexte structurel visé, un chargement de traction directe sur structure a été tout d’abord envisagé, afin de rendre compte de la sollicitation réelle de l’enceinte de confinement. Des essais de ce type ont déjà été menés en laboratoire par le passé sur des spécimens de grandes dimensions [Mivelaz, 1996] [Nahas et al., 2014]. Néanmoins, la mise en œuvre du chargement de traction reste très complexe : contrôle simultané des vérins hydrauliques, transfert de la sollicitation des vérins vers le spécimen. Un choix plus pragmatique a par la suite été porté sur un chargement de flexion 4 points sur poutres précontraintes. Cette sollicitation permet d’obtenir une zone à moment constant sans efforts tranchants entre les deux points d’application d’effort. La fissuration provoquée par le chargement mécanique peut ainsi s’initier en fibre inférieure de façon aléatoire dans cette zone et se propager en mode I à la verticale. L’étude de l’évolution de la fissuration des spécimens peut être ainsi corrélée au dimensionnement de précontrainte et d’armatures passives additionnelles.

Pour étudier simultanément l’impact mécanique du type de précontrainte et du taux d’armatures passives, six poutres armées précontraintes sont testées en flexion 4 points. Les dimensions retenues sont une section de 0.22 x 0.3 m2 et une longueur de 3 m dans un souci de relative facilité de mise en œuvre et de test. La distance entre appuis est choisie égale 2.5 m avec une zone à moment constant de 1 m (entre les points d’application d’effort). La géométrie générale des six spécimens est présentée sur la figure 2.1 et la figure 2.2.

![Fig. 2.1 Géométrie longitudinale des poutres précontraintes testées (représentation demi-poutre).](image_url)
Les spécimens diffèrent par la nature de la précontrainte et par la section d’armatures passives additionnelles en fibre inférieure. Quatre poutres sont précontraintes par un unique toron gainé graissé (TGG), couplé à un taux d’armature croissant. Deux poutres sont, pour comparaison, précontraintes par un unique toron adhérent (TA). Leur dénomination et descriptif sont présentés dans le tableau 2.1.

<table>
<thead>
<tr>
<th>Dénomination</th>
<th>Précontrainte</th>
<th>Section d’acier passif fibre inférieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA - D8</td>
<td>toron adhérent TA</td>
<td>3 HA8 = 151 mm²</td>
</tr>
<tr>
<td>TGG - D8</td>
<td>toron gainé graissé TGG</td>
<td>3 HA8 = 151 mm²</td>
</tr>
<tr>
<td>TGG - D10</td>
<td>toron gainé graissé TGG</td>
<td>3 HA10 = 236 mm²</td>
</tr>
<tr>
<td>TA - D12</td>
<td>toron adhérent TA</td>
<td>3 HA12 = 339 mm²</td>
</tr>
<tr>
<td>TGG - D12</td>
<td>toron gainé graissé TGG</td>
<td>3 HA12 = 339 mm²</td>
</tr>
<tr>
<td>TGG - D14</td>
<td>toron gainé graissé TGG</td>
<td>3 HA14 = 462 mm²</td>
</tr>
</tbody>
</table>

Table 2.1 Dimensionnement des poutres précontraintes testées.

Des cadres transversaux sont disposés dans les zones d’efforts tranchants (Figure 2.1). Afin d’éviter une localisation définie de la fissuration dans la zone à moment constant, seul un cadre transversal est disposé dans cette zone en section centrale, servant simplement à assurer la stabilité de la cage de ferrailage lors du coulage du béton.

Le toron est placé au sein d’une gaine de précontrainte en feuillard d’acier (Figure 2.2) de faible raideur en flexion. La gaine est injectée au coulis de ciment après mise en tension du câble. L’injection assure l’adhérence du toron avec la structure dans le cas d’une précontrainte dite adhérente. Par l’utilisation d’un toron gainé graissé, l’injection, en contact avec la gaine plastique du TGG, restreint le déplacement transversal du câble sans empêcher son mouvement axial.

La contrainte initiale dans le toron est imposée à $\sigma_{p}^{\text{ini}} = 100 \text{ MPa}$ sur les six poutres précontraintes. Cette valeur est relativement faible par rapport à la capacité de mise en tension des torons T15S à 1500 MPa environ. Cependant, avec comme objectif d’étudier
l’influence du type de précontrainte et non du niveau de précontrainte initiale, cette valeur est ici justifiée. De plus, en lien avec la capacité maximale de chargement du vérin hydraulique utilisé (250 kN), un faible niveau de précontrainte initiale permet de ne pas maximiser le comportement élastique des structures et permet ainsi de différencier les phases successives de dégradations ultérieures (phases de fissuration du béton en traction, de plastification des aciers passifs inférieurs et de rupture).

2.2 Phase pré-tests

2.2.1 Préparation des spécimens

Les poutres sont préparées et coulées dans des coffrages modulaires à ossatures métalliques et parements bois (Figure 2.3-a). Les six cages de ferraillage ont été livrées soudées afin d’assurer leur maintien lors de leur manutention et lors du coulage.

La gaine de précontrainte est installée à l’intérieur de la cage de ferraillage (Figure 2.3-b). Elle est composée d’un feuillard d’acier de diamètre 50 mm et de longueur 2 m en partie centrale, assemblé aux abouts des poutres avec une gaine en cuivre de diamètre 40 mm. Ceci permet de disposer facilement deux événets d’injection de coulis de ciment par assemblage d’éléments cuivrés (Figure 2.3-c). Les crénelures prononcées sur le feuillard d’acier assurent une adhérence entre celui-ci et le béton environnant, ainsi qu’avec le coulis de ciment injecté ultérieurement.

Fig. 2.3 Préparation des poutres précontraintes : (a) vue générale avant coulage, (b) gaine de précontrainte en feuillard d’acier, (c) évent d’injection de la gaine de précontrainte.

Deux plaques d’acier d’épaisseur 1 cm et percées au niveau de la gaine de précontraintes sont disposées aux abouts des poutres en coffrage perdu. Deux mois après le coulage du
béton, le toron est mis en tension en imposant une contrainte initiale de 100 MPa. Un ancrage passif et un ancrage actif sont placés au droit des plaques métalliques d’about. Celles-ci permettent de diffuser la transmission d’efforts du câble vers la structure. L’ancrage passif est composé d’un pot mono-toron et d’une clavette d’ancrage (Figure 2.4-a). L’ancrage actif est composé quant à lui d’un système vis-écrou, couplé à un pot mono-toron et une clavette d’ancrage (Figure 2.4-b). La mise en tension est effectuée du côté de l’ancrage actif à l’aide d’une chaise de mise en tension et d’un vérin. La gaine de pré-

Fig. 2.4 Ancrage du toron de précontrainte : (a) ancrage passif, (b) ancrage actif.

contrainte est ensuite injectée au coulis de ciment de type LANKO 737. Cette étape est effectuée à l’aide d’un pot à pression (Figure 2.5-a) relié par flexibles à l’évent d’injection de la poutre précontrainte (Figure 2.5-b). Une pression de 0.7 MPa est imposée à l’intérieur du pot contenant le coulis à injecter. Une fois la gaine remplie, l’évent opposé est obturé. La pression dans le pot est alors imposée à 0.2 MPa pendant deux minutes pour assurer un bon remplissage de la gaine.

Fig. 2.5 Injection des poutres après mise en tension : (a) pot à pression, (b) évênts d’injection avec obturation.
2.2.2 Chronologie générale

Après coulage du béton, les six spécimens sont gardés 17 jours dans leur coffrage. Un film plastique est disposé sur la partie supérieure pour empêcher la dessication.

Les poutres sont ensuite décoffrées et laissées en contact direct avec le milieu environnant. Des mesures temporelles de température et d’humidité relative ont été menées dans l'espace de stockage des poutres. Sans variations importantes, la température moyenne est mesurée à 22 degrés Celsius ; l’humidité relative moyenne à 40 %.

Deux mois après coulage, les six poutres sont mises en tension. L’injection des gaines de précontrainte s’effectue le même jour.

Les tests de flexion 4 points sont menés entre 4.5 et 5 mois après coulage.

2.2.3 Propriétés mécaniques des matériaux

Béton

Les six poutres ont été coulées avec une unique gâchée de béton prêt à l’emploi (gâchée de 2.5 m3). Rappelons pour la suite que les essais parallèles de caractérisation des interfaces ont été préparés dans le même temps avec la même gâchée de béton (Chapitre 3 & 4). Ceci permet de réduire la variabilité des propriétés matériaux pour l’ensemble des essais menés. La composition du matériau béton est détaillée dans le tableau 2.2. La grande fluidité du matériau est choisie pour la facilité de mise en œuvre au coulage. Un affaissement au cône de 20 cm est mesuré (classe S4 : affaissement compris entre 15 et 20 cm). La masse volumique du matériau est égale à 2262.8 kg.m$^{-3}$. Le rapport eau efficace - liant équivalent est égal à 0.48.

Les propriétés mécaniques du matériau béton sont mesurées à 28 jours après coulage (module de Young E_{c28}, résistance moyenne à la compression f_{c28}) et à 90 jours après coulage (module de Young E_{c90}, résistance moyenne à la compression f_{c90} et à la traction f_{t90}, énergie de fissuration G_{f90}). Les propriétés mécaniques sont considérées constantes après 90 jours. Le détail des mesures est donné dans le tableau 2.3.

Les valeurs de module de Young, résistance à la traction, résistance à la compression sont mesurées sur éprouvettes cylindriques de diamètre 16 cm et de hauteur 32 cm. Notons que...
2.2. Phase pré-tests

la valeur de résistance à la traction est obtenue par des tests brésiliens. La valeur de G_f est obtenue par un test de flexion 3 points sur éprouvettes $10 \times 10 \times 84$ cm3 entaillées, avec 80 cm entre appuis (Figure 2.6-a) selon la norme [RILEM, 1985]. La hauteur de l’entaille est égale à 5 cm (demi-hauteur de la poutre testée). L’énergie de fissuration est calculée comme l’aire sous la courbe force appliquée - flèche (Figure 2.6-b). La correction du poids propre n’est ici pas prise en compte.

![Image](image_url)

Table 2.3 Propriétés mécaniques du béton : 28 et 90 jours.

![Diagram](image_url)

Fig. 2.6 *Test de caractérisation de l’énergie de fissuration sur poutres entaillées testées en flexion 3 points : (a) dispositif expérimental, (b) résultats globaux force - flèche.*

Coulis d’injection

Le coulis d’injection est un LANKO 737. Sa composition ne peut pas être connue. En suivant les recommandations du fournisseur, le rapport e/c est égal à 0.45. Les propriétés mécaniques du matériau sont mesurées à 90 jours, en accord avec la date des tests sur poutres : résistance à la compression f_{cco90}, résistance à la traction f_{tco90}, module de Young E_{cco90}. Le détail des mesures est présenté dans le tableau 2.4.

Des essais de flexion 3 points sur des éprouvettes prismatiques $4 \times 4 \times 16$ cm3 sont utilisées pour définir la résistance en traction du matériau coulis d’injection. Un essai de compression directe est ensuite mené sur les « deux morceaux » formés par l’essai de flexion.
Chapitre 2. Comportement expérimental de poutres précontraintes

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Valeur moyenne</th>
<th>Valeurs mesurées</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{co90} [GPa]</td>
<td>10.0</td>
<td>9.2 - 10.2 - 10.7</td>
</tr>
<tr>
<td>f_{cco90} [MPa]</td>
<td>83.4</td>
<td>78.2 - 83.2 - 88.9</td>
</tr>
<tr>
<td>f_{ico90} [MPa]</td>
<td>1.88</td>
<td>1.78 - 1.86 - 2.0 (flexion 3 points)</td>
</tr>
<tr>
<td>f_{tco90} [MPa]</td>
<td>2.0</td>
<td>1.9 - 1.95 - 2.11 (essai brésilien)</td>
</tr>
</tbody>
</table>

Table 2.4 Propriétés mécaniques du coulis d’injection : 90 jours.

(norme NF EN 13892-2) (Figure 2.7-a). Le module de Young est mesuré sur une éprouvette cylindrique, de diamètre 4 cm et de hauteur 10 cm, testée en compression (Figure 2.7-b). Un extensomètre appliqué sur les spécimens permet la mesure de la déformation. Une autre mesure de la résistance en traction par essai brésilien est aussi menée (Figure 2.7-c). On remarque une bonne concordance des résultats entre la flexion 3 points et l’essai brésilien. Bien que la composition du matériau ne soit pas connue, l’observation post-test des éprouvettes cylindriques montre une couleur bleu-vert (Figure 2.7-d). Une composition à base de laitier peut être supposée.

Armatures passives et de précontrainte

Les propriétés mécaniques des aciers passifs ou des torons de précontrainte n’ont pas été mesurées. On retiendra pour la suite de l’étude les propriétés suivantes définies au Tableau 2.5.

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Valeur choisie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limite d’élasticité HA</td>
<td>$f_{ya} = 500$ MPa</td>
</tr>
<tr>
<td>Module de Young HA</td>
<td>$E_a = 200$ GPa</td>
</tr>
<tr>
<td>Limite d’élasticité toron T15S</td>
<td>$f_{yp} = 1650$ MPa</td>
</tr>
<tr>
<td>Module de Young toron T15S</td>
<td>$E_p = 195$ GPa</td>
</tr>
</tbody>
</table>

Table 2.5 Propriétés mécaniques des armatures actives et passives.
2.2. Phase pré-tests

Les propriétés géométriques des torons de précontrainte sont identiques pour le cas adhérent ou non-adhérent. La section du toron est de 150 mm2. Le diamètre extérieur est égal à 15.7 mm. Le fil central du toron présente un diamètre supérieur à celui des fils périphériques (5.4 mm pour le fil central, 5.2 mm pour les fils périphériques).

2.2.4 Dispositif expérimental de flexion 4 points

Les six poutres précontraintes sont testées en flexion 4 points jusqu’à rupture. Le chargement est effectué à l’aide d’un unique vérin hydraulique de capacité 250 kN en déplacement imposé du vérin à la vitesse de 10 µm.s$^{-1}$. L’effort est transmis à la structure par l’intermédiaire d’une traverse métallique pour l’application de la flexion 4 points (Figure 2.8-a). Un appui rotulé et un appui glissant sont disposés aux abouts de la structure et permettent le déplacement horizontal de la poutre. De la même manière, l’application de l’effort s’effectue par un appui rotulé et un appui glissant. Ce montage a précédemment été utilisé pour les travaux de thèse de [Torre-Casanova, 2012].

Le déplacement vertical est mesuré par trois capteurs de déplacement. Au niveau des deux points d’application de l’effort, la mesure du déplacement permet de vérifier la symétrie-dissymétrie du chargement, en phase élastique et post-élastique. Un capteur en section centrale garantit la mesure de la flèche. Les mesures ne se font que sur un côté de la poutre (Figure 2.8-b), afin de ne pas gêner la mesure du champ de déplacement par corrélation d’images numériques sur la face opposée. Par la présence de rotules sur les conditions aux limites, on peut néanmoins considérer une uniformité du chargement sur la largeur de la poutre. Le déplacement horizontal hors-plan n’est pas mesuré et est considéré comme négligeable.
2.3 Comportement global : résultats expérimentaux

Les résultats globaux présentés mettent en évidence l’évolution de la force totale F appliquée par le vérin en fonction de la flèche v mesurée en section centrale sur la structure.

Poutres précontraintes par TGG

Les résultats obtenus pour les quatre poutres précontraintes par toron non-adhérent gainé graissé TGG sont exposés sur la figure 2.9.

![Graphique des résultats globaux](image)

Fig. 2.9 Résultats globaux Force appliquée F vs. Flèche v - poutres précontraintes par TGG.

Le comportement mécanique peut se décomposer en quatre phases :

1. Une première phase élastique est observée entre 0 kN et 20 kN environ. Les raideurs initiales des quatre tests présentés ne présentent pas de différences significatives.

2. La localisation de la fissuration dans la zone à moment constant provoque une perte progressive de raideur globale, synonyme du déplacement de l’axe neutre vers la fibre supérieure de la poutre. On remarquera que la perte de raideur se produit pour une force appliquée relativement similaire d’une poutre à l’autre. Après propagation verticale des différentes fissures localisées, la position de l’axe neutre se stabilise. Ceci marque la seconde phase du comportement global des structures. La fissuration stabilisée s’ouvre progressivement en mode I. La hauteur des différentes fissures ne varie que très peu dans cette phase. Par conséquent, la raideur globale des différents spécimens devient quasi-constante. Logiquement, elle dépend de la section d’armatures passives et augmente avec cette dernière. En calculant la pente stabilisée post-élastique et post-localisation R_f [kN.mm$^{-1}$], on trouve une relation affine entre cette dernière et la section d’armatures passives en fibre inférieure (Figure 2.10).
2.3. Comportement global : résultats expérimentaux

3. Une seconde perte de raideur est ensuite observée. Celle-ci s’apparente à la plastification des armatures passives inférieures. La force appliquée F_p menant à la plastification est aussi comparée à la section d’armatures passives inférieures. Une relation affine est aussi calculée (Figure 2.10). Le toron de précontrainte garde dans cette nouvelle phase un comportement élastique. La raideur résiduelle des structures est contrôlée par la section d’armatures actives. En effet, la pente après plastification est quasi-identique pour les différents essais.

4. Finalement, les structures sont menées à rupture. Les poutres TGG-D8, TGG-D10 et TGG-D12 perdent leur capacité portante par dégradation du béton en compression en fibre supérieure de la poutre. Seule la poutre TGG-D14 n’a pas été menée à rupture à cause d’un manque de capacité du vérin hydraulique. L’ajout de ferraillage passif permet une meilleur capacité portante mais diminue la ductilité flexionnelle de la structure. Ce point reste néanmoins à nuancer. Les observations faites ne s’appliquent que pour la configuration de précontrainte présentée. Le faible niveau de précontrainte ne peut conduire à la rupture du toron. Une force de précontrainte plus élevée pourrait induire une perte de capacité portante par rupture des câbles de précontrainte ou par dégradation en compression du béton, sans plastification des armatures passives additionnelles. Les tendances concernant la ductilité flexionnelle pourraient s’en voir modifiées.

Poutres précontraintes par Torons Adhérents TA

Les résultats obtenus pour les poutres précontraintes par toron adhérent TA sont comparés aux résultats sur poutres précontraintes par TGG (Figure 2.11), pour un même taux d’armatures passives.
Fig. 2.11 *Comparaison des comportements globaux des poutres précontraintes par torons adhérents et par TGG.*

On remarque la faible influence de la précontrainte adhérente sur le comportement global des structures. Seule la raideur globale après plastification des aciers inférieurs est impactée par l’adhérence du toron. En considérant la section de toron adhérent comme armatures passives, ces observations expérimentales semblent contre-intuitives. En effet, les résultats avec TGG ont montré l’importance de la section d’acier passif sur la rigidité globale après fissuration et sur la force menant à la plastification des aciers inférieurs (Figure 2.10). Principalement pour les poutres TA-D8 et TGG-D8, dimensionnées avec une section de toron égale à la section d’armatures passives (bien que situées à des hauteurs différentes dans la poutre), l’apport d’une précontrainte adhérente devrait ici être mis en évidence. De plus, la rupture finale s’est produite par rupture des aciers passifs inférieurs pour la poutre TA-D8, et par rupture du béton en partie supérieure pour la poutre TA-D12. Le mécanisme de rupture de la poutre TA-D8 peut ainsi sembler contradictoire avec les attentes théoriques issues de la littérature.

2.4 Comportement global : comparaison aux résultats analytiques

2.4.1 Force appliquée pour la plastification des aciers passifs inférieurs

La force F_p menant à la plastification des armatures passives inférieures est ici calculée analytiquement. Le raisonnement s'effectue sur une section fissurée, comme illustré sur la figure 2.12.

Bien que le comportement réel des armatures passives ne soit pas connu (limite élastique f_{ya} par exemple), les calculs analytiques permettent de mettre en évidence l’apport théorique des armatures pour un cas de chargement donné. Les hypothèses suivantes sont faites pour simplifier la mise en équation :

1. Le béton reste élastique en compression en partie supérieure.
2. La résistance à la traction du béton est négligée.
3. La force initiale de précontrainte est supposée constante le long du toron.
4. Les sections droites restent planes.
5. La déformation de décompression $\epsilon_{p}^{\text{dec}}$ est négligeable devant la déformation initiale $\epsilon_{p}^{\text{ini}}$ et la déformation supplémentaire de flexion $\epsilon_{p}^{\text{flex}}$.

Le cas adhérent ou non-adhérent peut être traité de la même manière par l’utilisation du coefficient de réduction Ω_f [Naaman et Alkhairi, 1992]. Dans ce cas, la déformation additionnelle de flexion $\epsilon_{p}^{\text{flex}+}$ peut s’écrire comme :

$$\epsilon_{p}^{\text{flex}+} = \Omega_f \epsilon_{p}^{\text{flex}}. \tag{2.4.1}$$

Le cas $\Omega_f = 0$ représente la prise en compte du toron non-adhérent, sans considérer la sursaison du câble par flexion. Ce choix est aujourd’hui retenu dans les dimensionnements.
normatifs. Le cas $\Omega = 1$ représente la prise en compte complète du toron adhérent comme armature passive. Le cas $0 < \Omega < 1$ considère un toron gainé graissé avec prise en compte de la sur-tension. Les valeurs théoriques de Ω seront discutées par la suite.

L’hypothèse de planéité de la section droite fissurée peut s’écrire de la manière suivante :

$$\frac{\epsilon_b}{c} = \frac{\epsilon_{as}}{c - r} = \frac{\epsilon_p^{\text{flex}}}{d_p - c} = \frac{\epsilon_{ai}}{d_a - c}.$$ \hspace{1cm} (2.4.2)

L’équilibre en effort de la section s’écrit aussi comme :

$$\frac{1}{2} b c E_b \epsilon_b + A_{as}(E_a - E_b)\epsilon_{as} = E_p A_p \epsilon_p^{\text{flex}+} + E_p \sigma_p^{\text{ini}} + A_{ai} f_{ya}.$$ \hspace{1cm} (2.4.3)

Coupler les équations 2.4.2 et 2.4.3 et considérer la première plastification des armatures passives inférieures ($f_{ya} = E_a \epsilon_{ai}$) permet d’obtenir la position de l’axe neutre c, racine positive de l’équation de second degré en c de la forme :

$$Ac^2 + Bc + C = 0,$$ \hspace{1cm} (2.4.4)

avec

$$\left\{ \begin{array}{l}
A = \frac{b E_b}{2 E_a} f_y \\
B = \Omega t A_p \frac{E_p}{E_a} f_y + A_p \sigma_p^{\text{ini}} + A_{ai} f_y + A_{as}(1 - \frac{E_b}{E_a}) f_y \\
C = A_{as}(1 - \frac{E_b}{E_a}) r f_y - \Omega t \frac{E_p}{E_a} A_p \sigma_p^{\text{ini}} - d_a A_{ai} f_y
\end{array} \right.$$ \hspace{1cm} (2.4.5)

Le moment de flexion à la plastification des armatures M_p^{plas} est facilement calculé avec la connaissance de la position de l’axe neutre. En ne prenant pas en compte l’influence du poids propre, la force totale appliquée F_p peut en être déduite. Sachant que la zone à moment constant est distante de 0.75 m de l’appui, la force appliquée F_p suit la relation suivante :

$$F_p = \frac{2 M_p^{\text{plas}}}{0.75} = \frac{2}{0.75} \left(F_{ai}(d_a - d_p) + F_c(d_p - \frac{1}{3} c) + F_{as}(d_p - r) \right).$$ \hspace{1cm} (2.4.6)

Reste ici à définir la valeur du coefficient de réduction Ω. Ceci ne semble aisé et ne fait pas consensus dans la littérature. En effet, à la ruine de la structure, [Naaman et Alkhairi, 1992] proposent un coefficient de réduction Ω_u, défini dans le cas d’un chargement en flexion 4 points comme :

$$\Omega_u = \frac{5.4}{L/d_p},$$ \hspace{1cm} (2.4.7)

avec L la longueur totale du câble de précontrainte. Pour notre cas d’étude, la valeur est calculée et est égale à $\Omega_u = 0.41$. En phase élastique, sur une section non-fissurée, les auteurs proposent aussi un coefficient de réduction Ω_{elas} calculé analytiquement grâce à
2.4. Comportement global : comparaison aux résultats analytiques

la courbure de la poutre. Pour un chargement symétrique de la structure et un toron rectiligne, l’expression de Ω_{elas} est la suivante :

$$\Omega_{\text{elas}} = \frac{2}{M^\text{max}_f} \int_0^{L/2} M_i(x) \, dx . \tag{2.4.8}$$

Dans le cas présent, la valeur est calculée et est égale à $\Omega_{\text{elas}} = 0.7$.

Le problème réside par contre dans la quantification du coefficient de réduction Ω_f dans la phase intermédiaire de fissuration. Une proposition avait été formulée et pondérait la valeur de Ω_{elas} par le ratio de l’inertie de la section fissurée et de l’inertie de la section saine. Cette proposition passe obligatoirement par un processus itératif analytique ou numérique, l’inertie de la section fissurée étant elle-même dépendante de la valeur de Ω_f.

La méthode présentée est appliquée aux structures testées TA-D8 et TGG-D8, afin de garantir l’élasticité du béton en fibre supérieure. Les résultats sont présentés sur la figure 2.13. Au vu des résultats analytiques, il semble évident que la sur-tension du TGG influe grandement sur les structures testées de petites dimensions. Son apport réel doit être envisagé sur des simulations numériques éléments finis. Néanmoins, la seule sur-tension ne peut expliquer la similarité de comportement des deux structures. Le même constat peut être fait pour le couple de structures TA-D12 et TGG-D12.

Fig. 2.13 Comparaison résultats expérimentaux - résultats analytiques à la plastification des armatures passives inférieures des poutres précontraintes.
2.4.2 Force appliquée à la rupture

Le comportement analytique à rupture est considéré par la dégradation du béton en fibre supérieure. Les armatures passives inférieures sont plastifiées. Le toron de précontrainte reste toujours dans son régime élastique.

Pour une analyse simplifiée (Figure 2.14), le comportement en compression du béton est pris en compte par une répartition rectangulaire, de hauteur λ_c avec $\lambda = 0.8$ et de norme $b\lambda_c f_{cd}$ (f_{cd} est la résistance de calcul du béton à la compression). Cette simplification suit les prescriptions de l’eurocode 2 [Eurocode, 2005].

Fig. 2.14 Équilibre de section à la rupture par dégradation en compression du béton en fibre supérieure : (a) géométrie de la section, (b) état de déformation de la section, (c) équilibre d’efforts.

Exceptée celle concernant le comportement du béton en compression, les hypothèses de calcul restent identiques par rapport à celles énoncées dans la partie précédente. La résistance de calcul du béton est quant à elle définie comme la résistance moyenne à 90 jours mesurée expérimentalement, $f_{cd} = f_{90}$. La déformation ultime ϵ_{bu} est aussi égale à 3.5×10^{-3}. Les armatures passives supérieures ne sont ici pas prises en compte. Celles-ci ne travaillent quasiment pas, placées sur l’axe neutre final à rupture.

Comme précédemment, l’équilibre d’efforts sur la section fissurée, coupé à l’hypothèse de planéité des sections droites, conduit à la résolution d’une équation du second degré en c.

Elle est ici exprimée en fonction de la déformation ultime du béton :

\[
\begin{cases}
Ac^2 + Bc + C = 0 \\
A = \lambda b f_{cd} \\
B = \Omega_u A_p E_p \epsilon_{bu} - A_p \sigma_{p}^{\text{ini}} - A_{ai} f_y \\
C = -\Omega_u A_p E_p d_p \epsilon_{bu}.
\end{cases}
\] (2.4.9)

Connaissant la position de l’axe neutre c, la force appliquée à rupture F_u peut ainsi se calculer de la façon suivante :

\[
F_u = \frac{2 M_{r}^{\text{rupt}}}{0.75} = \frac{2}{0.75} \left(b \lambda c f_{cd}(d_p - \frac{\lambda_c}{2}) + A_{ai} f_y (d_a - d_p) \right). \] (2.4.10)
L’analyse est menée sur les quatre poutres TA-D8, TGG-D8, TA-D12 et TGG-D12. Les résultats analytiques et expérimentaux sont comparés sur la figure 2.15. Comme pour l’analyse de la phase de plastification, la sur-tension du câble joue un rôle majeur dans le comportement des structures à rupture. L’introduction du coefficient de réduction \(\Omega_u = 0.41 \) [Naaman et Alkhairi, 1992] permet de rendre compte efficacement de la capacité portante à rupture des poutres précontraintes par torons non-adhérents (TGG-D8 et TGG-D12). Ne pas considérer la sur-tension revient à sous-estimer fortement la ruine de la structure (\(\Omega_u = 0 \)).

Les résultats permettent aussi de remettre en cause le caractère d’adhérence parfaite sur toron adhérent injecté. En effet, un \(\Omega_u \) égal à 1 induit une surestimation de la capacité portante ultime de la structure précontrainte par toron adhérent (TA-D12). La même conclusion ne peut être faite pour la poutre TA-D8, menée à la ruine par traction des armatures passives inférieures. Cependant, ce résultat expérimental semble au premier abord illogique. La déformation analytique à rupture des armatures passives inférieures est en effet égale à 2.8 % avec \(\Omega_u = 0.41 \), et égale à 2 % avec \(\Omega_u = 1 \). Un défaut de l’armature pourrait expliquer ce résultat expérimental. Autrement, un champ de fissuration localisé et non diffus sur la zone à moment constant pourrait aussi induire une localisation préférentielle de la déformation dans les armatures passives inférieures. Le comportement à la fissuration est étudié par la suite. L’hétérogénéité du champ d’ouvertures de fissures permettra une analyse plus approfondie des comportements globaux.

Fig. 2.15 Comparaison analytique-expérimentale de la capacité portante à rupture des poutres précontraintes TA-D8, TGG-D8, TA-D12 et TGG-D12.
Chapitre 2. Comportement expérimental de poutres précontraintes

2.5 Comportement à la fissuration : résultats expérimentaux

Outre le comportement global présenté dans la partie précédente, une analyse de la dégradation progressive des spécimens est menée. Celle-ci rend compte des mécanismes locaux de fissuration des structures. Le chargement de flexion 4 points implique un moment fléchissant constant dans la zone centrale, et par conséquent une localisation aléatoire de la fissuration dans cette zone. La mise en œuvre de mesures ponctuelles d’ouvertures de fissures est dans ce cas difficilement concevable. Des mesures de champs de déplacement semblent plus appropriées. L’analyse de champs fournit une information riche sur la fissuration progressive de la structure étudiée. La méthode de Corrélration d’Images Numériques est ainsi utilisée et exploitée pour la caractérisation quantitative des faciès de fissuration (nombre de fissures, ouvertures, hauteur, espace-ment).

2.5.1 Méthode de Corrélration d’Images Numériques CIN

Le comportement à la fissuration des structures est un point d’étude primordial dans de nombreuses applications structurelles. Néanmoins, sa quantification in situ reste encore difficile à évaluer. Le manque de moyens expérimentaux de mesure en est souvent la cause. La technique de corrélation d’images numériques CIN est utilisée à cet effet. Originellement développée par [Sutton et al., 1983], elle vise à étudier l’évolution du champ de déplacement sur une surface d’un échantillon soumis à un chargement mécanique. Un mouchetis de peinture (noir et blanc) est appliqué sur la surface d’étude. Au cours du chargement, des photographies sont prises successivement et se caractérisent par un champ de niveau de gris par pixel. Autrement dit, une photographie à l’instant \(t \) peut être définie comme une fonction \(f(x) \) de niveau de gris, avec \(x \) les coordonnées de chaque pixel. À l’instant \(t + 1 \), l’image déformée est définie comme une fonction \(g(x) \). Avec l’hypothèse de la conservation du flux optique, la relation entre \(f \) et \(g \) peut s’écrire :

\[
g(x) = f(x + u(x)),
\]

avec \(u(x) \) le déplacement 2D entre l’instant \(t \) et \(t + 1 \). L’estimation de \(u(x) \) passe par la minimisation de la fonctionnelle de corrélation d’images \(\Phi_c \) :

\[
\Phi_c = \int \int_\Omega \left(f(x + u(x)) - g(x) \right)^2 dx,
\]

avec \(\Omega \) le domaine spatial d’étude de corrélation. La résolution peut être faite localement et de manière indépendante pour chaque pixel. Dans le but de réduire les incertitudes de mesures, [Besnard et al., 2006] [Hild et Roux, 2008] proposent une approche globale, basée sur la continuité du champ de déplacement. Le champ \(u(x) \) est décomposé sur une base de fonctions de forme type éléments finis. Les fonctions linéaires sont majoritairement choisies (Figure 2.16). Les éléments Q4 représentent le groupement de plusieurs pixels. Ces travaux font l’objet d’un logiciel dédié Correli-Q4, développé au LMT [Hild et Roux, 2008]. Une procédure multi-échelle est aussi intégrée. Elle permet une meilleure convergence des calculs de corrélation et une diminution des incertitudes de mesure. L’incertitude
2.5. Comportement à la fissuration : résultats expérimentaux

Fig. 2.16 Maillage de référence et déformé sur une base éléments finis : continuité du champ de déplacement [Mathieu, 2013].

est dépendante de beaucoup de paramètres : qualité des photographies, luminosité, état du mouchetis. Néanmoins, des incertitudes de l’ordre du centième de pixel sont souvent envisageables. À une échelle fine, [Lagier et al., 2011] ont pu mettre en évidence la fissuration induite par la restreinte des déformations de retrait de la pâte de ciment par les granulats inertes. À l’échelle de la structure, la fissuration d’une poutre béton armé testée en flexion 4 points a aussi pu être observée au cours du chargement [Jason et al., 2013].

2.5.2 Dispositif expérimental CIN

La surface d’étude choisie pour l’analyse de champ se compose de la zone à moment constant, ainsi que des zones voisines de largeur 50 cm, où peuvent se développer des fissures supplémentaires de flexion. Pour cela, quatre appareils photo CANON 60D sont disposés sur un support fixe aluminium au droit de la surface étudiée (Figure 2.17-a). Ces appareils sont montés avec un objectif 50 mm à focale fixe. La taille respective des quatre zones étudiées est de 0.3 m (hauteur de la poutre) × 0.6 m. Une largeur de recouvrement de 10 cm est choisie entre zones mitoyennes. Une fissure apparaissant dans

Fig. 2.17 Dispositif expérimental de corrélation d’images (a) avec mouchetis associé (b).
Chapitre 2. Comportement expérimental de poutres précontraintes

cette bande mitoyenne peut être analysée et comparée, de manière indépendante, par la corrélation d’images issues de deux appareils photos. Un éclairage adéquat, composé de deux panneaux de LED, est installé au droit de la surface d’étude. Il sature le flux lumineux sur la structure et prévient de variations dans le flux lumineux ambiant pouvant impacter le calcul de corrélation d’images.

L’analyse par CIN utilise l’hétérogénéité des niveaux de gris de la surface d’étude. Pour le matériau béton, il est envisageable de mener l’analyse sur la surface brute, celle-ci présentant naturellement une variation importante de niveaux de gris. Néanmoins, afin d’assurer notre démarche, un mouchetis de peinture est ici appliqué sur la longueur de la poutre (Figure 2.17-b). Celui-ci se compose d’une première couche fine uniforme de peinture blanche. À l’aide d’une grille métallique perforée, des tâches noires y sont ensuite superposées. Cette « méthode blanc-noir » permet d’obtenir un bon contraste sur les images analysées. La régularité du motif n’impacte pas le calcul de corrélation. En effet, le niveau de gris moyen diffère dans chaque tâche noire respective.

Les appareils photos sont déclenchés automatiquement et simultanément par le système de pilotage du vérin hydraulique. Une image toutes les dix secondes est prise. Cette fréquence d’acquisition permet une analyse ultérieure approfondie des différents instants de chargement successifs. L’incertitude sur la mesure du champ de déplacement est déterminée par l’erreur commise dans le calcul de corrélation. Elle est calculée a priori et égale à environ 1.5 % de pixel. Au vu de la géométrie des éprouvettes et de la disposition des appareils photos, un pixel représente 250 µm réel. L’incertitude en déplacement est ainsi d’environ 4 µm.

Deux procédures CIN peuvent être menées. Prenons l’exemple de N images successives à analyser. La première approche considère l’image 1 comme l’état de référence et effectue la corrélation de l’image n ∈ [2,N] par rapport à l’état défini de référence. Dans le cas de grandes déformations ou de fissuration, la convergence du calcul de corrélation peut néanmoins être difficile, l’image déformée pouvant être très différente de l’image de référence. La deuxième approche consiste à corrélérer l’image n à l’image précédente n − 1. La somme des variations successives de champs de déplacement permet d’obtenir le champ total évolutif. Bien que favorisant la convergence des calculs, les erreurs de corrélation sont sommées au fur et à mesure de la procédure d’analyse. Une telle méthode n’est pas envisageable pour une étude quantitative des ouvertures de fissures par exemple. Une approche intermédiaire consiste à utiliser la première méthode sur un nombre choisi d’images (N_1 images, avec N_1 < N, corrélasses à l’état de référence image 1), et d’actualiser l’image de référence pour la suite du calcul ((N − N_1) images restantes corrélasses à l’état de référence actualisé image N_1). Cette approche est utilisée dans notre cas d’étude, avec plusieurs actualisations au cours du chargement.

2.5.3 Extraction des ouvertures de fissures

La technique de CIN est ici utilisée pour la caractérisation du comportement à la fissuration des six structures testées. À chaque instant de chargement, le champ de déplacement 2D est calculé sur la zone d’étude. Notre intérêt se porte ici sur la direction horizontale
du champ de déplacement. En effet, les fissures se propagent verticalement dans les structures. Leur ouverture respective est définie selon l’axe de la poutre. Après fissuration, le champ de déplacement horizontal reste continu mais fait apparaître des sauts de déplacement au droit des fissures créées. L’amplitude du saut, en un point donné, représente la valeur locale d’ouverture de la fissure en question (Figure 2.18).

![Figure 2.18 Extraction des ouvertures de fissures sur champs de déplacement mesurés par CIN.](image)

Reste ici à automatiser cette caractérisation quantitative locale à chaque instant de chargement. Une procédure de post-traitement a ici été mise en place dans cet objectif. Pour un ensemble de \(N \) images à analyser par rapport à l’image 1 de référence, les différentes étapes de quantification de l’ouverture locale de fissure sont définies ci-après :

1. **Choix de la position verticale d’extraction de l’ouverture** : en flexion 4 points, la fissure ne présente logiquement pas une ouverture constante sur sa longueur. L’ouverture est maximale en fibre inférieure et nulle au niveau de l’axe neutre (en négligeant la résistance en traction du béton) (Figure 2.18). Afin de pouvoir comparer les différentes structures, nous faisons le choix d’extraire les ouvertures de fissures à la position de l’axe des armatures passives inférieures, c’est-à-dire à une distance d’environ 40 mm de la fibre inférieure de la poutre.

2. **Position axiale des fissures** : elle n’est *a priori* pas connue. Dans la zone à moment constant, en l’absence de cadres transversaux, la fissuration peut se localiser de façon aléatoire. Pour cela, le champ de déplacement horizontal, issu de la corrélation de l’image \(N \) est extrait. Celui-ci est numériquement étudié le long d’un axe défini (axe horizontal AB à hauteur des aciers passifs inférieurs dans notre cas, Figure 2.19-a). Le long de l’axe AB, les variations en déplacement sont calculées. Une variation supérieure à 0.1 pixel est considérée comme étant représentative d’une fissure. Les positions axiales correspondantes sont mémorisées.
3. Calcul de l’ouverture de fissure à l’image n (1 < n ≤ N) : le champ de déplacement est calculé le long de l’axe AB. Connaissant la position \(x_i \) de la fissure i (étape 2), deux régressions linéaires \(f \) et \(g \) sont construites de part et d’autre de la fissure. L’ouverture \(w_i \) de la fissure i est facilement calculée par la différence : \(w_i = f(x_i) - g(x_i) \) (Figure 2.19-b). Ce processus est généralisé aux différentes fissures définies à l’étape 2. Notons que l’introduction des multiples régressions linéaires permet de s’affranchir des erreurs locales de corrélation sur les lèvres de la fissure (Figure 2.19-b).

La procédure de post-traitement présentée évalue l’évolution des ouvertures de chaque fissure respective. Ces informations locales seront utilisées par la suite pour définir des critères de comparaison des différentes structures.

2.5.4 Analyse expérimentale comparative

De nombreux indicateurs de caractérisation de la fissuration peuvent être définis : nombre de fissures, espacements, ouverture moyenne, ouverture maximale. Ces critères caractérisent de façon directe le faciès de fissuration d’une structure. Ils peuvent être reliés au comportement mécanique structurel. De manière indirecte, le faciès de fissuration peut être aussi analysé vis-à-vis de son impact sur les propriétés de transfert à travers le milieu fissuré. Ces dernières permettent de répondre aux problématiques de durabilité ou de confinement des structures (cas de l’enceinte de confinement de centrale nucléaire).

Analyse qualitative

En premier lieu, la technique CIN permet de qualifier globalement les faciès évolutifs de fissuration des six structures. L’intérêt majeur de la technique réside dans la possibilité d’identifier la présence d’une fissure pourtant invisible à l’œil nu. Néanmoins, au vu de
la disposition choisie dans nos applications, les fissures de très petite taille ne peuvent être distinguées. L’incertitude sur la mesure a été évaluée à environ 4 µm. Il devient donc impossible d’identifier une ouverture inférieure à 10 - 15 µm. Cette limitation reste très raisonnable par rapport à l’objectif de caractériser les macro-fissures verticales se développant dans la structure.

Pour une analyse purement qualitative des faciès de fissuration, une méthode simple est de visualiser le champ d’erreur de corrélation. En effet, la création d’une fissure induit aussi la création de niveaux de gris supplémentaires sur l’image. L’erreur de corrélation sera ainsi très élevée au droit de la fissure.

Réunissant les champs d’erreur de corrélation des quatre zones CIN, le faciès de fissuration des structures est globalement illustré, en fonction d’un niveau d’effort appliqué $F = 80$ kN par exemple (Figure 2.20). Les résultats des poutres TGG-D10 et TGG-D14 ne sont

ici pas présentés. Leur présentation visuelle n’apporte en effet que peu d’intérêt comparée aux autres structures. De multiples fissures apparaissent dans la zone centrale à moment constant, quelques autres dans les zones d’efforts tranchants au droit des points d’application du chargement. Il apparaît que les différentes fissures se propagent verticalement vers la fibre supérieure de la poutre. Ce résultat semble logique pour la zone centrale. À l’extérieur de ce domaine, les cadres transversaux en acier peuvent guider la fissuration de façon verticale. La hauteur de fissure, le nombre de fissures et l’espacement entre fissures semblent relativement constants, quelque soit le taux de ferraillage passif ou le type de précontrainte utilisé. Pour les quatre faciès présentés, il s’avère difficile de mener en l’état une comparaison objective des différentes structures sur leur comportement à la fissuration.

Les mêmes conclusions sont apportées par l’analyse des faciès de fissuration à un niveau de flèche v donnée (Figure 2.21). L’augmentation de la section de ferraillage passif semble mener à une légère diffusion du nombre de fissures observées. Néanmoins, une tendance claire du comportement à la fissuration ne peut pas être objectivement détaillée. Les informations quantitatives d’ouvertures de fissures sont ainsi primordiales pour la suite de l’étude.
Chapitre 2. Comportement expérimental de poutres précontraintes

Fig. 2.21 Faciès de fissuration global poutres précontraintes à \(v = 5 \text{ mm} \).

Analyse quantitative : somme des ouvertures de fissures

Comme détaillé précédemment, l’ouverture de chaque fissure est évaluée au niveau des armatures passives inférieures. Considérant toujours une analyse globale, un premier critère de comparaison est défini comme l’évolution de la somme \(S_{\text{ouv}} \) des ouvertures de fissures :

\[
S_{\text{ouv}}(F) = \sum_{i} (w_i(F)), \tag{2.5.3}
\]

avec \(w_i(F) \) l’ouverture de la fissure \(i \) à \(F \) donné. L’application de ce critère aux six poutres testées est illustrée sur la figure 2.22-a.

Seules les phases élastiques et de fissuration avant plastification des aciers passifs inférieurs sont étudiées. Jusqu’à un effort d’environ 20 kN, les structures travaillent dans leur régime élastique. Aucune fissure n’est observée et mesurée dans cette phase. \(S_{\text{ouv}} \) augmente ensuite progressivement à partir de 20 kN. On remarque que l’augmentation du taux de
2.5. Comportement à la fissuration : résultats expérimentaux

Ferraillage passif conduit à une diminution de la vitesse d’évolution de S_{ouv} en fonction de F. Ce résultat est en accord avec les comportements globaux présentés précédemment. La rigidité globale flexionnelle augmentant avec l’ajout d’armatures passives, la déformation globale axiale s’en voit par conséquent diminuée. Après localisation de la fissuration, la déformation globale axiale est majoritairement contrôlée par la somme des ouvertures de fissures. De la même manière, la rigidité globale flexionnelle similaire pour les couples de poutres TA-D8 / TGG-D8 et TA-D12 / TGG-D12 entraîne une évolution similaire de la somme des ouvertures de fissures.

L’évolution de S_{ouv} est aussi évaluée par rapport à la flèche v mesurée en section centrale :

$$S_{ouv}(v) = \sum_i (w_i(v)). \quad (2.5.4)$$

Les résultats sont illustrés sur la figure 2.22-b. Ces derniers montrent une évolution identique pour les six structures testées. Une relation linéaire, après fissuration, est obtenue entre S_{ouv} et la flèche v. On retrouve par ces résultats la cinématique d’une structure de type poutre, liant la flèche à la déformation axiale locale d’une section fissurée ou non-fissurée, par l’intermédiaire du moment fléchissant et de l’inertie de la structure. Plus qu’un résultat intéressant vis-à-vis de la validation de la simulation numérique ultérieure, la démarche et les mesures par CIN sont ici validées par cette évolution attendue.

Ceci étant, ce premier critère ne caractérise pas les propriétés locales du faciès de fissuration. Il est simplement une cause / conséquence du comportement global force appliquée - flèche. Par contre, il peut être aussi vu comme un critère de durabilité. Considérant un transfert par diffusion (liquide ou gaz) à travers un milieu fissuré (Figure 2.23), le flux molaire apparent J_{app} est défini par la loi de Fick, et est fonction du gradient de concentration de l’espèce et du coefficient de diffusion apparent D_{app} du milieu fissuré. La caractérisation de D_{app} peut se faire par décomposition du flux apparent J_{app} en un flux J_c, à travers le milieu sain, et un flux J_f, à travers les fissures :

$$L J_{app} = (L - w_1 - w_2) J_c + (w_1 + w_2) J_f \Rightarrow D_{app} = D_c + (D_f - D_c) \frac{w_1 + w_2}{L}. \quad (2.5.5)$$

![Fig. 2.23](image-url) Transfert par diffusion à travers un milieu fissuré.
La somme des ouvertures de fissures contrôle ainsi le flux diffusif, phénomène déjà mesuré expérimentalement [Djerbi et al., 2008] par exemple.

Analyse quantitative : distribution des ouvertures de fissures

Pour une analyse plus locale du faciès de fissuration, la distribution des ouvertures est tout d’abord étudiée. Nous choisissons ici de l’évaluer en fonction d’une flèche donnée \(v \), la somme des ouvertures ayant montré une dépendance linéaire à cette dernière (Figure 2.22-b).

Les distributions sont quasi-identiques pour chaque poutre précontrainte par toron gainé graissé (Figure 2.24-a), en termes de valeur minimale et de valeur moyenne. La section d’armatures passives ne joue pas ici un rôle significatif. L’ouverture maximale est par contre plus dispersée d’une poutre à l’autre.

La figure 2.24-b présente la comparaison des résultats des poutres précontraintes par torons adhérents et gainés graissés. Pour une même section d’armatures passives, on retrouve une distribution plus dispersée des ouvertures, une ouverture maximale plus élevée et un nombre de fissures moins élevé dans le cas adhérent. Ces résultats sont en contradiction avec les analyses théoriques. Cependant, un tel critère local est fortement dépendant de l’hétérogénéité des propriétés matériaux. Mener plusieurs tests de même type aurait pu valider les observations présentes. Ceci ne pouvait pas être envisagé dans ces travaux.

![Fig. 2.24 Distribution des ouvertures de fissures à \(v = 8 \) mm.](image)

Analyse quantitative : ouverture maximale

Pour faire le lien avec la partie précédente, l’ouverture de fissure maximale \(w_{\text{max}} \) est évaluée en fonction de l’effort appliqué \(F \) et de la flèche \(v \) :

\[
w_{\text{max}}(F) = \max(w_i(F)) \quad ; \quad w_{\text{max}}(v) = \max(w_i(v)).
\] (2.5.6)
2.5. Comportement à la fissuration : résultats expérimentaux

Les résultats des différentes poutres sont présentés sur la figure 2.25.

L’augmentation du taux de ferraillage induit une diminution de l’ouverture maximale pour un niveau d’effort donné. On retrouve ici la même tendance que pour l’évolution S_{souv}. Néanmoins, ce critère est fortement influencé par le manque d’homogénéité du faciès de fissuration, induit par l’hétérogénéité du matériau béton et la possible dissymétrie du chargement de flexion. Par exemple, l’évolution de w_{max} est similaire pour les poutres TGG-D12 et TGG-D14.

Les poutres précontraintes par torons adhérents montrent dans les deux cas une évolution de w_{max} légèrement supérieure au cas non-adhérent TGG. Un mécanisme particulier pouvant expliquer cette tendance est difficilement envisageable. Comme précédemment, l’hétérogénéité des propriétés matériaux est ici avancée.

Analyse quantitative : somme des ouvertures de fissures au cube

Un dernier critère de comparaison est défini comme la somme S_{souv}^3 des ouvertures de fissures au cube :

$$S_{souv}^3(F) = \sum_i (w_i^3(F)).$$

(2.5.7)

L’évolution de S_{souv}^3 se présente comme un critère global-local. Il couple le nombre de fissures et leur ouverture respective. De plus, il rend compte de la distribution des ouvertures de fissures. Un « poids » plus important est en effet apporté aux ouvertures élevées. En l’état, il n’a cependant pas de signification physique. Par contre, la somme des ouvertures de fissures au cube est liée indirectement à une problématique de durabilité des structures. Les propriétés d’un transfert par perméation à travers une fissure seront dépendantes de son ouverture au cube. Considérons par exemple une fissure d’ouverture w, représentée par deux plans infinis parallèles (Figure 2.26 avec $L >> w$). Par le différentiel de pression
Chapitre 2. Comportement expérimental de poutres précontraintes

Pression d’entrée P_e

$P_e > P_s$

Pression de sortie P_s

\[Q_m = \rho \frac{w^3 L}{12 \mu} \text{grad}(P) \]
(écoulement incompressible)

\[Q_m = \frac{w^3 L}{24 \mu} \frac{M}{RT} \text{grad}(P^2) \]
(écoulement compressible)

avec ρ la masse volumique constante du fluide (cas incompressible), M la masse molaire du fluide, R la constante des gaz parfaits, T la température et μ la viscosité dynamique du fluide. Ces relations dérivent des équations de conservation de la masse et de quantité de mouvement.

Dans la littérature, on retrouve des travaux expérimentaux sur des écoulements d’eau à travers un milieu fissuré type béton armé [Desmettre et Charron, 2011]. Sur des éprouvettes en traction (essais tirants), les auteurs lient le débit mesuré aux ouvertures de fissures et à la contrainte dans les armatures passives. La somme des ouvertures de fissures S_{ouv}^3 peut ainsi être représentative du débit de fluide traversant le milieu fissuré. Les résultats sont illustrés sur la figure 2.27 en fonction de l’effort appliqué F et de la flèche v.

En accord avec les évolutions de S_{ouv} et w_{max} en fonction de F, la somme des ouvertures de fissures au cube diminue avec le taux de ferraillement passif. Observant le même nombre de fissures d’une structure à l’autre, on ne peut pas parler de diffusion de la fissuration avec le taux de ferraillement, mais seulement de diminution des ouvertures respectives. Les structures avec torons adhérents exposent aussi une évolution plus rapide de S_{ouv}^3 par rapport aux structures avec torons non-adhérents TGG.

L’évolution de S_{ouv}^3 en fonction de la flèche v présente un fuseau de comportement, en accord avec l’analyse des résultats de w_{max} et l’analyse de la distributions des ouvertures.

Les simulations numériques ultérieures permettront une confrontation objective avec les tests expérimentaux.

2.6 Comportement à la fissuration : comparaison aux résultats analytiques

Les normes européennes eurocodes [Eurocode, 2005] proposent une formule semi-empirique pour le calcul des ouvertures de fissures sur structures en béton armé. L’ou-

Fig. 2.26 Perméabilité d’un milieu fissuré : écoulement à travers une fissure.
2.6. Comportement à la fissuration : comparaison aux résultats analytiques

Fig. 2.27 Évolution de la somme des ouvertures de fissures au cube en fonction de l’effort appliqué F aux structures.

La somme d’ouverture de fissure w est définie comme le produit de l’espacement maximal entre fissures $S_{r,\text{max}}$ et de la déformation relative entre l’acier ϵ_a et le béton ϵ_b :

$$w = S_{r,\text{max}}(\epsilon_a - \epsilon_b).$$

(2.6.1)

La formule de $S_{r,\text{max}}$ a été calibrée initialement sur des structures en béton armé :

$$S_{r,\text{max}} = k_3 r + k_1 k_2 k_4 \frac{\phi_{\text{eq}}}{\rho_{\text{p.eff}}},$$

(2.6.2)

avec r l’enrobage, $k_1 = k_{1,\text{HA}} = 0.8$ pour HA ou $k_1 = k_{1,\text{To}} = 1.6$ pour torons (coefficient d’adhérence), $k_2 = 0.5$ (chargement de flexion), $k_3=3.4$ (recommandation), $k_4 = 0.425$ (recommandation), ϕ_{eq} le diamètre équivalent des armatures. Pour des diamètres différents ϕ_1 et ϕ_2 par exemple, la relation suivante est proposée :

$$\phi_{\text{eq}} = \frac{n_1 \phi_1^2 + n_2 \phi_2^2}{n_1 \phi_1 + n_2 \phi_2},$$

(2.6.3)

avec n_i le nombre de barres de diamètre ϕ_i. Dans notre cas de structure, la présence simultanée d’armatures passives et de torons de précontrainte doit être prise en compte. Les armatures passives ne présentant qu’un seul diamètre ϕ_{HA} pour chaque poutre, la formule suivante est retenue :

$$S_{r,\text{max}} = k_3 r + k_2 k_4 \frac{3k_{1,\text{HA}} \phi_{HA}^2 + k_{1,\text{To}} \phi_{To}^2}{3\phi_{HA} + \phi_{To}},$$

(2.6.4)

avec ϕ_{To} le diamètre équivalent d’un toron de précontrainte. Le paramètre $\rho_{\text{p.eff}}$ est défini comme le ratio de la section efficace des armatures et de la section effective de béton :

$$\rho_{\text{p.eff}} = \frac{A_a + \xi_1^2 A_p}{A_{b,\text{eff}}},$$

(2.6.5)
Chapitre 2. Comportement expérimental de poutres précontraintes

avec A_a la section d’armatures passives, A_p la section d’armatures de précontrainte, ξ_1 le rapport de la capacité d’adhérence des armatures de précontrainte vis-à-vis de celle des armatures HA ($\xi_1 = \sqrt{0.5 \phi_{HA}/\phi_{TR}}$ pour un béton inférieur à un C50/60), $A_{b,eff}$ la section effective de béton autour des armatures ($A_{b,eff} = b \min[2.5(h - d);(h - c)/3;h/2]$ avec b et h la largeur et hauteur de la poutre, d la position des armatures actives et passives à partir de la fibre supérieure, et c la position de l’axe neutre).

Initialement proposée pour des structures béton armé, la déformation relative entre l’acier et le béton s’appuie sur la contrainte σ_s dans les armatures tendues :

$$\epsilon_a - \epsilon_b = \frac{\sigma_s - k_t f_t (1 + \alpha_e \rho_p,eff)}{E_a} \quad (2.6.6)$$

avec $k_t = 0.6$ pour un chargement de courte durée, f_t la résistance en traction du béton, α_e le rapport des modules de Young de l’acier E_a et du béton E_b. Pour une structure armée précontrainte, l’apport des armatures actives doit aussi être pris en compte par la sur-tension locale des torons. La contrainte σ_s peut être définie de la façon suivante :

$$\sigma_s = \frac{A_a E_a \epsilon_a + A_p E_p \epsilon_p,\text{flex}}{A_a + A_p} \quad (2.6.7)$$

Ces recommandations sont établies pour le cas d’une précontrainte adhérente, injectée au coulis de ciment. Le cas d’une précontrainte non-adhérente par TGG revient à négliger normativement l’effet de la sur-tension globale. Les équations précédentes peuvent être alors utilisées avec : $A_p = 0$. La précontrainte initiale est néanmoins prise en compte et influe sur la position de l’axe neutre c. Par ailleurs, la valeur de f_t peut être choisie comme la résistance à la traction mesurée expérimentalement $f_{t,90} = 2.9$ MPa. Cette dernière ne permet cependant pas de retrouver la force de première fissuration des différentes poutres. Une résistance effective corrigoee, $f_{t,cor} = 2.2$ MPa environ, conduit analytiquement à une force de première fissuration de 20 kN comme mesuré expérimentalement. Cette correction peut être expliquée par les effets d’échelle ou par une auto-contrainte initiale de traction au sein de la structure provoquée par la restreinte des déformations différées par le ferraillement actif et passif. Ces points seront abordés par la suite au Chapitre 5.

La méthode est utilisée pour les poutres TA-D8, TGG-D8, TA-D12 et TGG-D12. La distinction du cas adhérent ou non-adhérent est considérée par la valeur de la section d’armatures de précontrainte : $A_p = 150$ mm2 pour les poutres TA, $A_p = 0$ mm2 pour les poutres TGG. Les deux valeurs de résistance à la traction, $f_{t,90}$ et $f_{t,cor}$, sont aussi prises en compte. Le résultat d’ouverture de fissure w est comparé à l’évolution de l’ouverture maximale expérimentale w_{max}, théoriquement égale à l’ouverture moyenne dans la zone à moment constant. Les résultats sont illustrés sur la figure 2.28.

Tout d’abord, la résistance à la traction f_t n’influence pas sur la vitesse d’évolution de l’ouverture maximale. Néanmoins, elle peut avoir un impact significatif sur la valeur de w_{max} à un effort donné. L’effet est amplifié pour de faibles taux de ferraillement passif (poutre TGG-D8 Figure 2.28-b). L’analyse des cas de précontrainte adhérente (Figures 2.28-a-c) montre que l’on sous-estime la vitesse d’évolution et les valeurs associées d’ouverture.
2.6. Comportement à la fissuration : comparaison aux résultats analytiques

maximale de fissures en considérant la totalité de la section de précontrainte. Il est courant, pour un dimensionnement d’enceinte de confinement par exemple, de ne considérer qu’une section partielle de précontrainte pour l’analyse de la fissuration (40 % A_p). Ceci va dans le sens des résultats sous-estimés et peut permettre de rendre compte du comportement à la fissuration observé. À l’inverse, l’analyse du cas non-adhérent TGG fait apparaître une importante surestimation des ouvertures de fissures au cours du chargement (Figures 2.28-b-d). De façon similaire à l’étude analytique de la capacité portante à l’ultime, ne pas prendre en compte la sur-tension du toron provoque une importante diminution de la rigidité globale en phase de fissuration et ainsi une augmentation de l’ouverture maximale de fissures.

Fig. 2.28 Comparaison expérimentale - analytique de l’évolution de l’ouverture maximale des fissures au cours du chargement.
Sur la base de ces résultats, il serait possible de proposer un coefficient majorateur sur l’influence du câble non-adhérent TGG et un coefficient minorateur sur celle du câble adhérent, afin de prendre en compte la sur-tension et la faible adhérence, respectivement. Cependant, une généralisation de ces coefficients correcteurs peut sembler difficile, ne pouvant s’appliquer que dans un cas particulier donné. De plus, on peut penser que les mécanismes mis en jeu sont grandement non-linéaires (dégradation progressive de l’interface toron - coulis d’injection par exemple). Un coefficient constant, applicable aux différentes phases de dégradation de la structure (élastique, fissuration béton, plastification des armatures), est difficilement envisageable. L’analyse complète du comportement structurel doit ainsi passer par une analyse numérique fine, prenant en compte la dégradation progressive des différentes interfaces acier-béton et toron-coulis d’injection, et par conséquent un transfert d’efforts réaliste entre les différentes composantes de la structure.
2.7 Conclusion

L'étude expérimentale présentée dans ce chapitre se base sur six poutres précontraintes, testées en flexion 4 points jusqu'à rupture. Les structures testées diffèrent par le type de précontrainte mis en place - adhérente par injection de coulis après mise en tension, ou non-adhérente par Toron Gainé Graissé TGG - et par le taux de ferraillage passif additionnel. Les résultats produisent une importante base de données sur le comporte ment global des différentes structures et sur leur comportement à la fissuration. Le post-traitement des mesures par corrélation d’images numériques offrent une caractérisation globale et locale de la fissuration provoquée par le chargement.

Il convient ici d’étudier plus en détail le comportement local du toron de précontrainte au cours du chargement. Seule une mesure expérimentale in situ pourra permettre de corréler l’apport du toron de précontrainte à la fissuration de la structure et à son comportement global. Une instrumentation originale par fibres optiques des torons de précontrainte est présentée au chapitre suivant (Chapitre 3). Les mesures seront utilisées pour la validation d’un modèle spécifique d’interface toron - structure. La prise en compte de la dégradation évolutive de l’interface permettra de s’affranchir de l’hypothèse d’adhérence parfaite communément utilisée. Elle permettra aussi de généraliser l’analyse à différents types de structures. De plus, les essais expérimentaux présentés ont mis en évidence l’importance des armatures passives dans le comportement local des structures précontraintes. La caractérisation expérimentale et la modélisation numérique associée de l’interface acier-béton seront exposées au Chapitre 4, dans le but final de simuler le comportement mécanique des structures testées.
Chapitre 2. Comportement expérimental de poutres précontraintes
Chapitre 3
Étude de la liaison torons de précontrainte - structure

Le comportement mécanique du toron de précontrainte et son interaction avec la structure sont étudiés dans ce chapitre. Une méthode d’instrumentation originale par fibres optiques est ici développée afin de mesurer la tension du câble de précontrainte in situ au cours du chargement de flexion 4 points. L’instrumentation est appliquée dans les deux cas d’une précontrainte adhérente ou non-adhérente. À partir des mesures obtenues et des mécanismes identifiés, la modélisation de l’interface toron de précontrainte - structure est aussi abordée. Des essais d’arrachement de torons ancrés permettent de calibrer des modèles spécifiques, utilisables pour des calculs de structure.

L’interrogation des fibres optiques pour la mesure de déformation a été faite par Monsieur Aghiad Khadour (IFSTTAR).
3.1 Introduction

L’importance de l’interface toron de précontrainte - structure a été identifiée au chapitre précédent. Le comportement global et la fissuration des structures sont fortement influencés par l’état progressivement dégradé de cette liaison. Néanmoins, la problématique d’une mesure locale in situ de la tension du toron de précontrainte reste encore ouverte.

Dans le cas d’un toron non-adhérent TGG, un capteur annulaire de force aux abouts peut être utilisé pour la mesure de la tension. En effet, l’absence de liaison avec la structure et le très faible coefficient de frottement du toron dans sa gaine graissée en PEHD permettent de considérer un champ de déformation quasi-uniforme le long du câble de précontrainte. Il n’en est pas de même pour une précontrainte adhérente injectée au coulis de ciment. Aujourd’hui, seule des mesures locales sont proposées et appliquées pour des tests de laboratoire. Des jauges de déformation, collées sur la surface du toron, permettent par exemple une évaluation du comportement du toron en quelques points de mesure. Une mesure de champ linéique sur la longueur du toron semble ainsi plus adéquate.

Pour cela, de nombreuses solutions innovantes à base de fibres optiques ont été développées durant les deux dernières décennies [Li et al., 2004] [Deng et Cai, 2007]. Ces capteurs fonctionnent suivant le principe qu’une variation du phénomène mesuré (déformation par exemple) modifie la propagation du signal lumineux le long de la fibre de silice. Suivant ce principe, ont été développés pour des applications en génie civil des capteurs permettant de réaliser des mesures réparties sur toute la longueur de la fibre optique. Les systèmes de mesure de déformation (ou de température) dans les fibres optiques contiennent une unité opto-électronique active, qui est reliée à la fibre optique passive. L’unité opto-électronique transmet la lumière dans la fibre par un laser accordable en fréquence ou par une source à large bande. Les caractéristiques de propagation de la lumière à travers la fibre sont modifiées en fonction des déformations de celle-ci (ou de la température). Ainsi, la lumière rétrodiffusée, détectée par l’unité opto-électrique, rend compte de ces modifications. Le signal rétrodiffusé est analysé puis converti en données de déformation (ou de température). L’élément essentiel du système de détection pour la réalisation des mesures distribuées est un réflectomètre qui permet d’obtenir une haute résolution spatiale. Dans de nombreux cas, les systèmes utilisés fonctionnent avec un réflectomètre optique temporel (OTDR), dans lequel l’unité de contrôle transmet une impulsion lumineuse courte et utilise le temps de propagation de la lumière diffusée en retour pour déterminer la position de la réflexion. Pour la technologie de capteur de Rayleigh, une résolution plus élevée peut être réalisée (< 1 mm) en utilisant un réflectomètre cohérent dans le domaine de fréquence optique, C-OFDR (Figure 3.1).

L’OFDR utilise un laser à fréquence variable, couplé dans un interféromètre de Mach-Zehnder. Les composantes de fréquence dans le signal détecté définissent la position respective de la réflexion. Pour réaliser des mesures exactes de déformation (et/ou température), le signal de rétrodiffusion de la fibre optique est divisé en petites fenêtres d’analyse (largeur des gauges, 1 mm dans notre cas). Le signal de chaque fenêtre est transféré dans le domaine fréquentiel. Le résultat est une fluctuation du spectre de réflexion en fonction de la fréquence. Les variations des déformations appliquées à la fibre optique conduisent
3.2 Instrumentation des torons de précontrainte par fibres optiques

3.2.1 Démarche d’instrumentation

La mesure de champs linéiques de déformation par fibres optiques est choisie dans cette étude. Développée pour des maquettes de laboratoire à l’échelle de la structure (poutres précontraintes dans notre étude) et possiblement pour des ouvrages de génie civil, cette instrumentation se doit de répondre à plusieurs problématiques :

Résolution spatiale : afin d’identifier des mécanismes locaux, une grande résolution
Chapitre 3. Étude de la liaison torons de précontrainte - structure

Fig. 3.2 Résultats expérimentaux de détection de fissures par fibres optiques - poutre BA testée en flexion 4 points [Henault et al., 2012].

spatiale du champ linéique de déformation doit être obtenue. La technique utilisant la rétrodiffusion Rayleigh peut répondre à cet objectif (pas de mesure environ égal à 1 mm).

Robustesse du capteur : une unique fibre optique se compose d’un cœur dirigeant la lumière, entouré d’une gaine optique (d’indice de réfraction légèrement inférieur à celui du cœur) et d’un revêtement de protection. L’ensemble présente un diamètre extérieur d’environ 250 µm. L’utilisation d’une telle fibre, collée directement sur un matériau donné, montre d’excellents résultats pour une mesure de déformation [Khadour et al., 2013], le transfert d’efforts du matériau vers la fibre n’étant moyenné que par la présence du revêtement de protection. Cependant, ce capteur se caractérise aussi par sa fragilité. Il semble difficile de pouvoir l’utiliser pour des applications de structures. Les phases d’installation des torons, de mise en tension et d’injection du coulis de ciment pourraient endommager l’instrumentation. Notre choix se porte plutôt sur un système de câble à fibres optiques (Figure 3.3-a). Un ensemble de plusieurs fibres optiques est intégré dans une gaine plastique de diamètre extérieur 2 mm. Sa solidité en fait un système spécifique d’instrumentation de structures génie civil [Henault et al., 2012].

Robustesse du collage : le câble à fibres optiques est collé sur le toron, entre deux fils périphériques extérieurs, suivant la forme hélicoïdale du toron de précontrainte T15S (Figure 3.3-b-c). Une colle de type cyanoacrylate est utilisée pour une mise en place sur un toron de précontrainte propre et dégraissé. Dans le cas du TGG, le toron est a posteriori graissé et placé dans la gaine plastique en PEHD. Notons que cette instrumentation s’avère simple à mettre en place, de par la colle utilisée et par le guidage linéique du câble entre deux fils extérieurs du toron. La solidité du collage a été vérifiée en arrachant manuellement la fibre à son support. Elle sera validée par la suite sur des essais de traction directe de torons instrumentés. Par contre, la robustesse du collage dans le temps ne sera pas ici étudiée. Elle devient une problématique importante pour l’instrumentation d’ouvrages de génie civil.
3.2. Instrumentation des torons de précontrainte par fibres optiques

Dans l’hypothèse de vérification des problématiques technologiques précédentes, l’objectif est de relier le champ de déformation linéique mesuré par la fibre optique au champ de déformation axiale du toron de précontrainte, et par conséquent à sa tension locale en régime élastique. Deux points restent ici à être étudiés :

1. **Influence du collage hélicoïdal de la fibre optique** : le câble à fibres optiques est positionné entre deux fils périphériques et suit la forme hélicoïdale du toron. Ce choix présente un aspect pratique pour la mise en place du capteur : enroulement régulier le long du toron, intégration du capteur peu intrusive par rapport à un collage point par point linéique, protection du capteur vis-à-vis du milieu environnant (coulis de ciment dans le cas adhérent, gaine PEHD dans le cas TGG). La problématique associée est la suivante : Comment relier la déformation curviligne mesurée à la déformation axiale du toron de précontrainte ?

2. **Influence de la position du câble à fibres optiques dans l’espace inter-fils périphériques** : bien que sa position globale soit guidée par la forme géométrique du toron, la surface de collage locale ne peut pas être connue exactement. En parallèle de la problématique précédente, la position locale aléatoire du câble à fibres optiques influe-t-elle sur la mesure de la déformation axiale ?

Une procédure de validation numérique et expérimentale est mise en place pour répondre à ces différentes problématiques.

3.2.2 Validation numérique

Une première étude numérique est menée sur des torons soumis à un chargement de traction.

Tout d’abord, dans le but de valider la modélisation numérique proposée du toron de précontrainte, les essais expérimentaux de [Utting et Jones, 1987a] [Utting et Jones, 1987b] sont simulés. Six torons de type 6+1 (un fil central et six fils périphériques hélicoïdaux) sont testés en traction. Pour chaque toron, le diamètre du fil central est de 3.94 mm et
le diamètre des six fils périphériques est de 3.73 mm. Le module de Young des fils est de 197.9 GPa. Les torons diffèrent cependant par leur angle d’hélice respectif, de 73 à 80.8 degrés. Dans le cas d’une rotation bloquée aux abouts du toron, le couple C_{z}^{exp} porté par l’axe du toron et provoqué par le chargement de traction est mesuré expérimentalement. C_{z}^{exp} est linéaire par rapport à l’effort axial F appliqué. Les six torons sont maillés et testés en traction avec rotation bloquée aux abouts (Figure 3.4). Le couple généré C_{z}^{num}

![Fig. 3.4 Maillage 3D des torons de précontrainte](image)

est calculé sur une section transversale de normale z, portée par le plan (x,y) :

$$C_{z}^{\text{num}} = \sum_{i=1}^{N_{\text{nœuds}}} (x_{i} F_{yi} - y_{i} F_{xi}),$$

(3.2.1)

avec $N_{\text{nœuds}}$ le nombre de nœuds de la section considérée, (x_{i},y_{i}) les coordonnées spatiales du nœud i et (F_{xi},F_{yi}) les efforts internes au nœud i dans la direction x et y, respectivement. L’origine du repère est considérée au centre de la section du toron.

En accord avec la géométrie du toron, aucune condition de contact n’est considérée entre deux fils périphériques consécutifs [Huang, 1978]. En effet, ces derniers ne sont pas en contact à l’état initial non chargé et tendent à se séparer sous le chargement de traction. Il n’en est pas de même si le diamètre du fil central est inférieur à celui des fils périphériques. Cette disposition géométrique implique un contact prédominant entre fils périphériques [Jiang et al., 2008], devant alors être pris en compte. De plus, une liaison parfaite est considérée entre les fils périphériques et le fil central. Pour des angles d’enroulement faibles (inférieurs à 20 degrés), cette hypothèse a été validée numériquement par [Ghoreishi et al., 2007]. Notons que l’angle d’enroulement β est défini comme $\beta = 90$ degrés - α, avec α l’angle d’hélice du toron.

La comparaison numérique-expérimentale est présentée dans le tableau 3.1. Le couple C_{z}^{num} étant aussi linéaire par rapport à l’effort F appliqué, seule la valeur normée par rapport à l’effort F est ici présentée. On remarque une bonne concordance des résultats numériques et expérimentaux, permettant une première validation de la modélisation proposée. La légère surestimation numérique peut cependant être expliquée par la condition
3.2. Instrumentation des torons de précontrainte par fibres optiques

Table 3.1 Validation de la modélisation du toron de précontrainte : couples générés numériques comparés aux résultats expérimentaux de [Utting et Jones, 1987a].

<table>
<thead>
<tr>
<th>Toron</th>
<th>α (°)</th>
<th>(C_{\exp}^{\alpha} / F) [N.m.kN(^{-1})]</th>
<th>(C_{\text{num}}^{\alpha} / F) [N.m.kN(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>73</td>
<td>0.86</td>
<td>0.92</td>
</tr>
<tr>
<td>II</td>
<td>76</td>
<td>0.72</td>
<td>0.75</td>
</tr>
<tr>
<td>III</td>
<td>77.1</td>
<td>0.69</td>
<td>0.70</td>
</tr>
<tr>
<td>IV</td>
<td>77.8</td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td>V</td>
<td>79</td>
<td>0.58</td>
<td>0.60</td>
</tr>
<tr>
<td>VI</td>
<td>80.8</td>
<td>0.47</td>
<td>0.50</td>
</tr>
</tbody>
</table>

limite expérimentale imparfaite de blocage en rotation. La rotation parasite est expliquée par la déformation de la résine d’ancrage et a été mesurée par les auteurs.

Les mêmes essais numériques avec rotation libre aux abouts exposent logiquement un couple nul dans la structure. La rigidité axiale des torons est comparée aux essais expérimentaux de [Utting et Jones, 1987a], en conditions de rotation libre ou rotation bloquée aux abouts. Le comportement global effort axial \(F \) - déformation axiale est présenté à la figure 3.5 pour le toron II (Tableau 3.1). La rigidité globale du système se voit grandement impactée par les conditions aux limites aux abouts. Celle-ci diminue fortement si la rotation du toron est libre autour de son axe. La simulation numérique permet de reproduire correctement cet aspect. La modélisation aux éléments finis est de ce fait validée et peut être utilisée par la suite pour le toron T15S, utilisé dans les applications structurelles de poutres précontraintes.

Le toron T15S étudié possède les dimensions géométriques présentées dans le tableau 3.2. La faible valeur de l’angle d’enroulement et les données géométriques du toron permettent

Table 3.2 Propriétés géométriques du toron T15S.

d’utiliser la modélisation présentée précédemment, avec l’hypothèse de contact parfait entre le fil central et les fils périphériques et l’absence de contact entre les fils périphériques. Le module de Young des fils est égal à 200 GPa. Le module de Young global est quant à lui égal à 195 GPa en rotation bloquée aux abouts. Le toron T15S est soumis à un chargement de traction en rotation bloquée aux abouts, représentant les conditions expérimentales sur structures. Afin de répondre aux problématiques expérimentales, une procédure en deux temps est adoptée :

1. Deux repères sont introduits : un repère global \((x, y, z)\) avec \(z\) l’axe du toron et un repère local \((1, 2, 3)\) avec \(3\) l’axe du fil périphérique et \(1\) la normale sortante du fil périphérique au point considéré (Figure 3.6-a). Le champ de déformation peut être analysé et comparé dans les deux repères.

2. Le champ de déformation est aussi analysé sur six génératrices hélicoïdales, comme présenté sur la figure 3.6-b. Ces génératrices représentent les positions aléatoires, admissibles expérimentalement, du câble à fibres optiques et permettent une étude de sensibilité de l’influence de cette position sur le champ de déformation calculé.

Tout d’abord, le champ complet de déformation est tracé le long de la génératrice 1 dans le repère local à un effort \(F = 10 \text{kN}\) (Figure 3.7-a). Seules les composantes \(\epsilon_{11}, \epsilon_{22}\) et \(\epsilon_{33}\) sont non nulles. Cela revient à négliger le cisaillement et la torsion dans les fils périphériques sous un chargement de traction du toron. De plus, le coefficient de Poisson \(\nu\) des fils est
3.2. Instrumentation des torons de précontrainte par fibres optiques

pris égal à 0.3. On retrouve logiquement la relation entre les déformations transversales \(\varepsilon_{11}, \varepsilon_{22} \) et la déformation axiale \(\varepsilon_{33} \):

\[
\varepsilon_{11} = \varepsilon_{22} = -\nu \varepsilon_{33} .
\]

(3.2.2)

La quantité \(\varepsilon_{33} \) représente la déformation axiale locale, susceptible d’être mesurée expérimentalement par le câble à fibres optiques. La déformation \(\varepsilon_{33} \) est évaluée sur les six génératrices considérées et, par la suite, transposée dans le repère global sous la forme d’une déformation axiale globale \(\varepsilon_{zz} \). En condition bloquée aux abouts, le passage du repère local au repère global peut être écrit comme :

\[
\varepsilon_{33} = \cos^2 \beta \varepsilon_{zz} = 0.98 \varepsilon_{zz} ,
\]

(3.2.3)

avec \(\beta = 7.3 \) degrés l’angle d’enroulement du toron. Les résultats sont tracés sur la figure 3.7-b pour un chargement \(F = 10 \) kN. Ces derniers sont comparés à la déformation axiale théorique \(\varepsilon_{zz}^{\text{theo}} \), définie comme :

\[
\varepsilon_{zz}^{\text{theo}} = \frac{F}{S_{T15S}E} ,
\]

(3.2.4)

avec \(E = 195 \) GPa le module de Young global du toron T15S. Les déformations sont relativement perturbées aux abouts à cause des conditions d’ancrage. En partie centrale, les six génératrices présentent une déformation axiale constante. Néanmoins, on peut remarquer un faible écart d’une génératrice à l’autre. Le chargement de traction génère ainsi une légère flexion des fils périphériques. Celle-ci est négligeable, en comparaison à la valeur de déformation axiale calculée. En effet, on calcule une erreur maximale de 1.8 % entre les déformations numériques et la déformation théorique. Cette étude valide donc la possibilité d’une mesure expérimentale de champ de déformation le long du toron de précontrainte. Une deuxième validation expérimentale est proposée par la suite pour une certification définitive de l’instrumentation.

\[\text{Fig. 3.7} \quad \text{Champs de déformation numérique du toron T15S en traction - } F = 10 \text{ kN : (a) tenseur complet sur génératrice 1, (b) déformation axiale suivant la génératrice choisie.}\]
3.2.3 Validation expérimentale

Deux torons sont testés en traction pure (Figure 3.8-a). Les torons sont instrumentés par un câble à fibres optiques, comme illustré sur la figure 3.8-a. Le premier test est mené en rotation libre aux abouts, le second en rotation bloquée. Une jauge de déformation est collée en section centrale pour le premier test, selon l’axe d’un fil périphérique choisi (Figure 3.8-b). La jauge de déformation, collée sur le second toron à rotation bloquée, n’a pu être exploitée. Les déformations mesurées sont aussi comparées aux valeurs théoriques.

Dans ce but, les notations théoriques choisies sont tirées de [Ghoreishi et al., 2007]. Le comportement global du toron en traction peut être défini de la façon suivante :

\[
\begin{bmatrix}
F

C_z
\end{bmatrix} = \begin{bmatrix}
k_{ee} & k_{e\theta} \\
k_{e\theta} & k_{\theta\theta}
\end{bmatrix} \times \begin{bmatrix}
\epsilon_{zz} \\
\theta_{zz}
\end{bmatrix},
\] (3.2.5)

avec \(F \) l’effort de traction appliqué, \(C_z \) le couple généré en conditions bloquées, \(\epsilon_{zz} \) la déformation axiale dans le repère global, \(\theta_{zz} \) l’angle généré pour un mètre de toron en rotation libre et \(k_{ii} \) les composantes de la matrice de rigidité. Ces composantes sont calculées par [Machida et Durelli, 1973], en complément des travaux de [Hruska, 1951] et sont définies comme :

\[
\begin{align*}
k_{ee} &= EA_e + 6EA_e \cos^3 \beta \\
k_{e\theta} &= 6EA_e R_h \cos^2 \beta \sin \beta \\
k_{e\theta} &= 6 \left(EA_e R_h \cos^2 \beta \sin \beta - 2 \frac{EI_e}{R_h} \cos^2 \beta \sin^3 \beta \right. \\
& \quad \left. + \frac{GJ_e}{R_h} \cos^2 \beta \sin \beta (1 - 2 \cos^2 \beta) \right) \\
k_{\theta\theta} &= GJ_c + 6 \left(EA_e R_h^2 \sin^2 \beta \cos \beta + 2EI_e \cos^3 \beta \sin^2 \beta \right. \\
& \quad \left. + GJ_c \cos^3 \beta (1 - 2 \sin^2 \beta) \right)
\end{align*}
\] (3.2.6)
3.2. Instrumentation des torons de précontrainte par fibres optiques

avec A_c et A_e les sections des fils centraux et périphériques, respectivement ; E le module de Young des fils centraux et périphériques ; $R_h = (D_c + D_e)/2$; G le module de cisaillement ; J et I les moments d’inertie de torsion et de flexion, respectivement. La déformation axiale locale ϵ_{33} est calculée selon l’équation suivante [Hruska, 1951] :

$$\epsilon_{33} = \cos^2 \beta \epsilon_{zz} + R_h \theta_{zz} \sin \beta \cos \beta .$$

(3.2.7)

En condition de rotation bloquée, θ_{zz} est égal à zéro. La relation entre l’effort F et la déformation mesurée ϵ_{33} peut ainsi être écrite comme :

$$F = \frac{k_{\epsilon \epsilon}}{\cos^2 \beta} \epsilon_{33} .$$

(3.2.8)

En condition de rotation libre, C_z est égal à zéro. L’équation précédente peut alors être ré-écrite comme :

$$F = (k_{\epsilon \epsilon} - \frac{k_{\theta \theta} k_{\epsilon \epsilon}}{k_{\theta \theta}}) (\cos^2 \beta - R_h \frac{k_{\theta \theta}}{k_{\theta \theta}} \sin \beta \cos \beta)^{-1} \epsilon_{33} .$$

(3.2.9)

Pour les deux tests expérimentaux, la longueur totale du toron testé est de 70 cm. L’analyse du champ de déformation par fibre optique n’est cependant effectuée que sur 30 cm en partie centrale. Cette partie représente la zone utile de l’essai, en s’affranchissant de l’analyse de l’état de déformation perturbé au niveau des ancrages. La figure 3.9-a présente les résultats d’essai, en condition de rotation libre, pour trois niveaux d’effort. À F donné, le champ de déformation mesuré par fibres optiques est quasi-constant sur la longueur de la zone utile. On remarque une bonne corrélation avec la mesure locale par jauge de déformation, ainsi qu’avec la valeur théorique calculée. De la même manière, la figure 3.9-b présente les résultats, en condition de rotation bloquée. La mesure locale par

![Fig. 3.9 Mesures expérimentales de champs de déformation par fibres optiques sur torons en traction.](image)
Chapitre 3. Étude de la liaison torons de précontrainte - structure

jauge de déformation n’a pas pu être exploitée, à cause d’un défaut de mesure. Néanmoins, il convient de remarquer la bonne corrélation des résultats de champs de déformation par rapport aux résultats théoriques.

a posteriori

pour la modélisation complète des structures.

3.3 Comportement in situ du toron gainé graissé

3.3.1 Résultats des mesures par fibres optiques

La poutre TGG-D12 est instrumentée par deux câbles à fibres optiques, collées de façon diamétralement opposée sur le toron de précontrainte. La longueur totale du toron est de 3 m. La mesure de déformation par fibres optiques ne s’effectue cependant que sur 2.5 m, depuis un about de la poutre. En effet, les câbles à fibres optiques ne peuvent être extraits de la structure au niveau de l’ancrage. Leur extraction se fait par la gaine de précontrainte avant ancrage. Cela explique l'impossibilité d’interroger un des abouts du toron.

Au cours du chargement mécanique de flexion 4 points, des pauses à déplacement imposé permettent d’interroger les deux fibres optiques. En accord avec la technique d’ancrage aux deux extrémités, le toron peut être considéré en condition de rotation bloquée. Il est ainsi aisé de pouvoir corrélérer la déformation mesurée avec la variation de contrainte axiale dans le toron. Notons que l’état de référence des mesures est pris comme l’état de déformation après mise en tension. La déformation initiale de précontrainte n’est ici pas mesurée.

Les résultats obtenus sont présentés sur la figure 3.10 pour deux niveaux de chargement $F = 48.8 \text{ kN}$ et $F = 97.7 \text{ kN}$. À un niveau de chargement donné, on remarque un signal oscillant issu de la fibre optique, en « opposition de phase » avec le signal de la fibre optique diamétralement opposée. Cet effet n’est pas corrélé à la fissuration de la structure. Il pourrait être visiblement synonyme d’un état de flexion dans le toron, le câble à fibres optiques passant périodiquement de la partie supérieure à la partie inférieure du toron. La période du signal est en effet égale à environ 25 cm, pas de l’hélice du toron. Néanmoins, il est difficile de pouvoir concevoir et confirmer cet état de contrainte, le toron étant non adhérent avec la structure environnante. Un autre explication est aussi avancée. Le câble à fibres optiques peut être soumis à des efforts latéraux (pression de la gaine PEHD, efforts inter-fils périphériques). Ceci peut induire des déformations supplémentaires sur le câble, et ainsi ces oscillations sur le signal mesuré.
3.3. Comportement in situ du toron gainé graissé

Fig. 3.10 Mesures directes de déformation par fibres optiques sur toron non-adhérent TGG.

Le signal moyenné $\epsilon_{\text{moy}} = (\epsilon_1 + \epsilon_2)/2$, issu des signaux des deux fibres optiques OF1 et OF2, est calculé et se trouve être quasi-constant sur la longueur totale de la poutre. Sans plastification du toron de précontrainte, la contrainte axiale σ_{pre} peut être calculée comme :

$$\sigma_{\text{pre}} = \sigma_{\text{ini}} + \Delta \sigma = \sigma_{\text{ini}} + \frac{E}{\cos^2 \beta} \epsilon_{\text{moy}},$$

(3.3.1)

avec $\sigma_{\text{ini}} = 100$ MPa la contrainte initiale de précontrainte et $E = 195$ GPa le module de Young global du toron en condition de rotation bloquée.

La variation de contrainte axiale $\Delta \sigma$ au cours du chargement est présentée sur la figure 3.11-a pour quatre niveaux d’effort. L’état de contrainte dans le toron est uniforme le long de la poutre. En comparaison aux faciès de fissuration de la structure (Chapitre 2), on remarque qu’aucune localisation n’apparaît dans le toron au droit des fissures. Ces mesures permettent de valider le caractère glissant sans frottement du toron au sein de la poutre précontrainte.

L’évolution de la tension totale uniforme σ_{pre} peut être aussi évaluée au cours du chargement, de la phase élastique jusqu’à rupture. L’évolution, fonction de l’effort mécanique appliqué à la structure, est illustrée à la figure 3.11-b. Elle présente trois phases distinctes du comportement mécanique du toron. Ces résultats sont en accord avec le comportement global de la structure Force appliquée F - Flèche mesurée v. Après la phase élastique ($F = 20$ kN), la vitesse de sur-tension du toron de précontrainte augmente progressivement avec la fissuration de la poutre, due à l’évolution de la position de l’axe neutre de la structure. La vitesse se stabilise une fois la fissuration établie. Après plastification des aciers passifs inférieurs ($F = 150$ kN), la vitesse de sur-tension augmente une nouvelle
Chapitre 3. Étude de la liaison torons de précontrainte - structure

3.3.2 Comparaison mesures fibres optiques - mesures CIN

Dans le cas d’un ancrage parfait du toron de précontrainte, sans pertes instantanées ou différées, la variation de longueur du câble de précontrainte est égale à la variation de longueur de la structure, calculée à la hauteur du câble. On se propose ici de comparer ces deux évolutions.

La première peut être facilement calculée grâce aux mesures de déformation par fibres optiques. Par intégration de la déformation moyenne \(\varepsilon_{\text{moy}} \) sur la longueur totale (3 m), la variation de longueur du toron \(\Delta L_p \) peut être calculée comme :

\[
\Delta L_p(F) = \int_{x=0}^{3} \varepsilon_{\text{moy}}(x,F) \, dx .
\] (3.3.2)

La variation de longueur de la structure est difficilement identifiable par les mesures CIN. En effet, la structure n’est pas analysée dans son intégralité. Néanmoins, il est possible d’approximer la variation de longueur à la somme des ouvertures de fissures. En phase élastique, l’approximation n’est pas valable. Après localisation et propagation des différentes fissures, la variation de longueur est néanmoins principalement contrôlée par les discontinuités créées. La somme \(S_{\text{ouv}} \) des ouvertures de fissures est définie de la façon suivante :

\[
S_{\text{ouv}}(F) = \sum_i (w_i(F)) ,
\] (3.3.3)

Fig. 3.11 Calculs de la tension du toron à partir des mesures expérimentales in situ de déformation par fibres optiques sur TGG : (a) champ d’évolution spatiale de sur-tension \(\Delta \sigma \), (b) tension totale \(\sigma_{\text{pre}} \) au cours du chargement

fois. La rigidité de la structure est principalement contrôlée par le toron de précontrainte dans cette phase.
3.3. Comportement \textit{in situ} du toron gainé graissé

avec w_i l’ouverture de la fissure i calculée \textit{à la hauteur du toron de précontrainte} par CIN.

La Figure 3.12 compare les deux évolutions au cours du chargement. On reconnaît, dans l’évolution de ΔL_p, les trois phases de comportement définies précédemment pour la tension totale du câble. En phase élastique, la déformation du toron reste faible. Elle est simplement due à la déformation élastique du béton environnant. La somme des ouvertures de fissures est en effet nulle dans cette phase. Notre intérêt se porte principalement sur la phase post-élastique de fissuration de la structure (40 - 150 kN). Bien que théoriquement similaires, on remarque une forte différence de vitesses d’évolution entre S_{ouv} et ΔL_p, la déformation totale du toron évoluant moins rapidement que la déformation structurelle. Les techniques et résultats de mesure ne sont ici pas remis en question. Ceux-ci ont été validés indépendamment \textit{a priori}. Par contre, l’hypothèse d’un ancrage parfait peut être remise en cause. L’influence des conditions d’ancrage est par la suite étudiée.

\textbf{Comportement de l’ancrage à clavette}

Comme défini au Chapitre 2, l’ancrage est formé d’un pot conique mono-toron et d’une clavette d’ancrage. Celle-ci peut, sous tension, progressivement s’insérer au sein du pot et ainsi induire des pertes de tension dans le toron, en comparaison à un ancrage parfait. Ce phénomène explique les pertes instantanées lors de la mise en tension. Néanmoins, à cause de la sur-tension progressive du toron au cours du chargement de la structure, le même phénomène peut aussi être observé. Son influence est dépendante de la longueur du câble. Pour des poutres précontraintes de longueur 3 m, le recul d’ancrage peut avoir un effet non négligeable sur le comportement global du câble de précontrainte. Celui-ci n’a pas été mesuré directement lors des essais de flexion. Son influence est ainsi étudiée \textit{a posteriori}, afin d’expliquer les comportements observés.
Trois essais sont menés sur un ancrage passif à clavette (Figure 3.13-a). Le toron claveté est positionné dans un pot mono-toron et soumis à un chargement de traction progressive, effort F_{pres}. Afin de reproduire le comportement d’ancrage des structures testées, une traction initiale de 15 kN est imposée au système. Celle-ci représente l’effort initial de précontrainte $S_{T15S} \sigma_{\text{ini}}$. Le déplacement relatif r de l’extrémité non-chargée du toron, par rapport au support fixe, est mesuré par un capteur de déplacement. Le recul d’ancrage avant mise en tension initiale n’est ici pas pris en compte. Les résultats d’essai sont présentés sur la figure 3.13-b. À partir de ces résultats, la variation de longueur ΔL_p du toron de précontrainte peut être fictivement corrigée. La valeur corrigée ΔL_p^r représente le cas d’une sur-tension de câble en présence d’un ancrage parfait sans reculs. À effort structural F donné, ΔL_p^r est calculé de la façon suivante :

$$
\begin{align*}
F_{\text{toron}} &= (\sigma_{\text{ini}} + \Delta \sigma_{\text{mesure}}) S_{T15S} \\
\Delta L_p^r &= \Delta L_p + 2r(F_{\text{toron}})
\end{align*}
$$

avec F_{toron} la tension totale dans le toron, calculée grâce aux mesures de déformation par fibres optiques.

La comparaison des évolutions mesurées et corrigées est illustrée sur la figure 3.14. On remarque que l’influence des reculs d’ancrage est significative sur le comportement global du toron TGG dans le cas des poutres testées. Ils expliquent la différence mesurée entre la déformation de la structure et la déformation du toron de précontrainte.

Deux points importants peuvent être explicités par ces résultats. Tout d’abord, la mesure par fibre optique informe sur le comportement réel du toron de précontrainte. Elle rend compte de l’apport mécanique de la sur-tension sur le comportement structurel global.
3.4 Prise en compte numérique du toron non-adhérent TGG

3.4.1 Liaison TGG - béton

Au vu des résultats expérimentaux présentés précédemment, le toron non-adhérent TGG peut être considéré comme glissant parfaitement selon son axe par rapport au massif environnant. La non-pénétration transversale doit cependant être considérée. En effet, le mouvement transversal du toron doit suivre le mouvement global de la structure, ce qui induit le phénomène de sur-tension. Dans un souci de facilité de maillage, l’armature de précontrainte est maillée avec des éléments finis 1D à deux nœuds. Au sein d’un massif béton, maillé en 3D avec des éléments finis cubiques à 8 nœuds par exemple, la liaison TGG-structure doit suivre les relations suivantes :

\[
\begin{align*}
 u_{p,x} &= \sum_{i=1}^{8} N_i(x_p,y_p,z_p)u_{i,x} \\
 u_{p,y} &= \text{libre} \\
 u_{p,z} &= \sum_{i=1}^{8} N_i(x_p,y_p,z_p)u_{i,z}
\end{align*}
\]

(3.4.1)

avec \((u_{p,x}, u_{p,y}, u_{p,z})\) les composantes du déplacement du point P de l’armature, \((u_{i,x}, u_{i,y}, u_{i,z})\) les composantes du déplacement du nœud \(i\) du béton, \(N_i\) est la fonction de forme associée.
au nœud i (Figure 3.15).

![Diagram](image.png)

Fig. 3.15 Armature, éléments finis seg2, au sein d’un massif béton 3D, éléments finis cub8.

Les mécanismes de non-pénétration transversale et de glissement axial sont ainsi vérifiés. Ces dispositions numériques sont déjà prises en compte dans le code aux éléments finis Cast3m [Cast3m, 2011] : commande \textit{RELA} ‘GLISSANT’.

3.4.2 Recul d’ancrage

Le comportement d’ancrage doit être pris en compte numériquement, afin de rendre compte de la tension du toron mesurée expérimentalement. Pour des poutres courtes de 3 m, celui-ci joue un rôle significatif. Il peut être négligé sur des structures de grandes longueurs, précontraintes par TGG. Le toron est modélisé par des éléments linéiques à deux nœuds, au sein du massif béton. Les conditions de liaison de glissement axial et de non-pénétration lui sont associées. On propose ici de juxtaposer à l’about de la poutre un massif d’ancrage infiniment rigide (Figure 3.16). L’armature TGG est reliée à un système linéique connecteur - barre ancrée, positionné au sein du massif d’ancrage. La barre ancrée est parfaitement adhérente au massif. Le connecteur suit quant à lui les mêmes conditions de liaison que l’armature TGG (glissement axial, non-pénétration). Pour un effort de précontrainte F_{pres} dans l’armature TGG, la loi de comportement associée au connecteur doit

![Diagram](image2.png)

Fig. 3.16 Prise en compte du recul d’ancrage par un connecteur élasto-plastique : (a) vue transversale, (b) vue 3D.
3.4. Prise en compte numérique du toron non-adhérent TGG

reproduire les mécanismes d’ancrage. Sa déformation sous charge représente implicitement le recul de la clavette de précontrainte aux abouts.

Tout d’abord, le recul d’ancrage instantané, à la mise en tension, n’a pu être mesuré expérimentalement. Il est aussi compliqué de pouvoir l’estimer. Le système pot monotoron / clavette est en effet pré-chargé avant la mise en tension. Le choix est fait de ne pas prendre en compte ces pertes instantanées dans la modélisation. Le comportement initial du connecteur est donc proposé comme élastique, infiniment rigide. Après mise en tension ($\sigma_{\text{ini}} = 100$ MPa), le recul d’ancrage a été mesuré expérimentalement sur des essais de traction. Il est ici modélisé par la plasticité du connecteur. Un comportement durcissant linéaire est choisi pour l’évolution du comportement post-élastique. De façon arbitraire, le massif d’ancrage est choisi d’épaisseur 12 cm. Le connecteur et la barre ancrée sont de longueur 6 cm, respectivement. Leur section est choisie égale à celle de l’armature TGG, $S_{\text{connecteur}} = 150$ mm2. Le connecteur doit rester élastique lors de la mise en tension. Sa limite élastique est prise égale à 105 MPa, légèrement supérieure à σ_{ini}. La loi de comportement est présentée sur la figure 3.17-a.

Un essai numérique 3D (Figure 3.16-b) est mené avec la loi de comportement du connecteur. Le résultat est présenté sur la figure 3.17-b, comparé aux résultats expérimentaux. Le recul d’ancrage est quasi-nul jusqu’à 15 kN, lors de la phase de mise en tension. Celui-ci évolue ensuite linéairement par la plasticité du connecteur. On peut noter que l’on ne peut pas reproduire la non-linéarité du comportement de l’ancrage. La modélisation proposée reste néanmoins une bonne approximation de ce comportement. Il pourrait être envisagé d’étudier plus en détail la loi d’évolution de la déformation plastique du connecteur pour reproduire l’évolution non-linéaire du recul d’ancrage. Ceci ne sera pas fait dans cette étude. La modélisation proposée sera validée ultérieurement avec la simulation numérique des poutres précontraintes (Chapitre 5).
3.5 Comportement in situ du toron adhérent

3.5.1 Résultats des mesures par fibres optiques : Toron

De la même manière que pour le toron non-adhérent TGG, deux câbles à fibres optiques diamétralement opposés sont collés sur le toron adhérent. Après mise en tension et injection, les câbles à fibres optiques se positionnent à l’interface toron - coulis d’injection. Sans protection supplémentaire, la mesure de déformation pourrait être influencée simultanément par le comportement du toron et du coulis environnant. Pour mesurer exclusivement la déformation de l’armature active, une protection locale au silicone est appliquée autour du câble à fibres optiques (Figure 3.18). Une attention particulière est portée à son application sur le support, ne devant pas perturber sensiblement l’état de l’interface toron - coulis.

Fig. 3.18 Protection locale au silicone du câble à fibres optiques dans le cas toron adhérent.

Le champ de déformation est aussi mesuré sur une longueur de 2.5 m à partir d’une des deux extrémités de la poutre. Des pauses dans le chargement, à déplacement imposé, permettent l’interrogation des deux capteurs de déformation. L’état de référence est aussi considéré à chargement mécanique nul, en début d’essai. La phase de mise en tension n’est pas mesurée.

Les premières mesures sont prises dans la phase élastique à $F = 12.2$ kN. Les champs de déformation des deux fibres, OF1 et OF2, sont illustrés sur la figure 3.19. Elles sont comparées à la déformation théorique, calculée analytiquement sur une section non-fissurée homogénéisée sur les propriétés du béton. On peut remarquer tout d’abord une bonne concordance des deux mesures expérimentales. L’adhérence du toron induit une évolution globale de sa déformation axiale en accord avec la courbure théorique de la poutre. Ce comportement est sensiblement différent de celui présenté pour la poutre précontrainte par TGG. Néanmoins, deux points importants peuvent être soulignés :

1. Dans la zone à moment constant, les mesures ne présentent pas une déformation constante du toron de précontrainte. Ces résultats tendent à remettre en cause l’état initial d’interaction toron - coulis. La dégradation rapide de ce dernier peut en effet induire une diffusion de la déformation sur la longueur du toron, comme ici observé.

2. De la même manière, on remarque une déformation du toron non nulle au niveau de l’about. La même explicitation physique peut être apportée à cette observation. De plus, à la différence du feuillard d’acier crénélé positionné en partie centrale, la gaine de précontrainte est constituée, aux extrémités, d’un tube lisse sur une longueur de 50 cm (Chapitre 2). La liaison coulis - gaine de précontrainte ne peut être assurée...
3.5. Comportement in situ du toron adhérent

de façon fiable. La rupture de cette liaison pourrait provoquer une déformation quasi-constante du toron de précontrainte dans cette zone.

Fig. 3.19 Mesures des champs de déformation du toron adhérent en phase élastique de la structure TA-D12.

La sur-tension \(\Delta \sigma \) est calculée par rapport aux mesures de déformation par fibres optiques, de la même manière que pour le cas non-adhérent. Au cours du chargement à différents paliers d’effort (Figure 3.20-a), la sur-tension aux abouts augmente continûment. La liaison toron - coulis - gaine de précontrainte ne peut assurer qu’une transmission d’efforts partielle vers le béton.

Ces résultats exposent aussi le comportement évolutif du toron de précontrainte dans la zone fissurée à moment constant (\(F = 48.8 \text{ kN} / 97.6 \text{ kN} / 146.4 \text{ kN} \)). Ils répondent à une des problématiques majeures de l’étude, portant sur l’apport mécanique local des armatures actives de post-tension. Bien que la structure présente de multiples fissures verticales (Figures 3.20-b-c), aucune sur-tension locale n’est observée au droit des fissures, et ce à toutes les phases du chargement. Les mesures remettent en cause la participation locale du toron adhérent et son apport sur le comportement à la fissuration des structures. Seules les armatures passives peuvent ici contrôler correctement l’évolution des ouvertures de fissures.

Une loi d’interface spécifique doit être ici considérée pour rendre compte des comportements observés. L’utilisation classique numérique d’éléments barres à deux nœuds, en adhérence parfaite avec le béton, n’est pas ici valide vis-à-vis des transferts locaux d’efforts entre le toron et la structure. La caractérisation de l’interface est étudiée par la suite par des essais d’arrachement.

3.5.2 Résultats des mesures par fibres optiques : Coulis d’injection

Une troisième fibre optique (fibre 3 - OF3) est positionnée de manière rectiligne au sein du coulis d’injection. La distance qui sépare la fibre du toron est d’environ 1 cm. La
Fig. 3.20 Sur-tension du toron adhérent au cours du chargement mécanique de la structure TA-D12 (a) avec faciès de fissuration associés (b) & (c).

Deux conclusions peuvent être ici apportées :

1. Dans la phase élastique ($F = 24.4$ kN) ou de fissuration ($F = 48.8$ kN et $F = 97.6$ kN), la déformation mesurée ne suit pas la déformation théorique propre au chargement de flexion 4 points. Principalement pour la phase élastique, elle se présente plutôt comme un champ « constant » sur la zone d’étude. Un glissement coulis - gaine de précontrainte peut être à l’origine de ces résultats. Le transfert d’efforts de la structure vers le coulis d’injection ne peut se faire de façon optimale.

2. Les champs de déformation oscillent fortement et la perturbation observée s’accentue au cours du chargement. Pourtant, la localisation des déformations n’est pas corrélée aux fissures observées par CIN. Seule une fissuration diffuse et généralisée du coulis d’injection peut expliquer les présentes mesures.
3.5. Comportement in situ du toron adhérent

3.5.3 Influence des déformations de retrait endogène du coulis d’injection

Une fissuration très précoce survient dans le coulis de ciment, ne pouvant pas être expliquée seulement par le chargement mécanique. Il y a ainsi lieu de se questionner sur l’état initial de dégradation du matériau. L’influence des déformations différées du coulis est ici étudiée.

Le matériau n’est pas soumis au phénomène de séchage, étant confiné au sein de la gaine de précontrainte. Seul le retrait endogène est présent dans notre cas d’étude. La déformation de retrait endogène a été mesurée expérimentalement sur des éprouvettes prismatiques 4×4×16 cm³, emballées dans un film aluminium (Figure 3.22-a). L’évolution des déformations en fonction du temps est très peu dispersée entre les deux essais (Figure 3.22-b) mais présente une amplitude très importante à 28 jours. La restreinte d’un tel niveau de déformation par le toron et la gaine de précontrainte rigides induit un état de traction dans le matériau, pouvant conduire à une fissuration généralisée de ce dernier.

L’étude de la restreinte des déformations de retrait endogène reste complexe à appréhender. Elle doit être menée dans la phase de jeune âge du matériau et doit donc prendre en compte l’évolution de ses propriétés mécaniques (module de Young, résistance à la traction, énergie de fissuration) et la relaxation des contraintes par le fluage propre. Ces données n’ont pas été mesurées expérimentalement dans notre étude.

Nous proposons cependant de tester numériquement la sensibilité du système toron - coulis - gaine de précontrainte vis-à-vis de cette problématique avec différentes amplitudes de

Fig. 3.21 Déformation mesurée fibre 3 - poutre TA-D12.
Chapitre 3. Étude de la liaison torons de précontrainte - structure

Fig. 3.22 Mesure de la déformation de retrait endogène du coulis d’injection : (a) dispositif expérimental, (b) évolution en fonction du temps.

déformation de retrait endogène. Le toron de précontrainte et le coulis de ciment sont maillés explicitement en 3D (Figure 3.23). La gaine de précontrainte n’est pas considérée. Son influence est implicitement prise en compte par les conditions aux limites imposées au problème.

Les hypothèses suivantes sont choisies :
- l’adhérence toron-coulis est considérée comme parfaite ;
- la face extérieure du coulis est bloquée selon l’axe z pour représenter la restriction axiale des crénelures de la gaine de précontrainte ;
- le coulis est considéré comme un matériau mature, élasto-endommageable aux propriétés mécaniques définies au Chapitre 2 ;
- le toron est considéré comme élastique ;
- une déformation uniforme est imposée au coulis d’injection.

Les champs d’endommagement obtenus sont présentés sur la figure 3.24 pour différentes amplitudes de déformation imposée \(\epsilon_{\text{imp}} \). Pour de faibles déformations, l’endommagement s’initie à l’interface toron-coulis (Figure 3.24-b). La localisation à l’interface s’accentue par la suite, mais est couplée à un endommagement diffus au sein du matériau (Figure 3.24-c-d). Ce dernier ne montre pas de stabilisation et augmente pour des valeurs élevées de déformation. L’hypothèse d’une fissuration diffuse généralisée au sein du coulis d’injection est par conséquent pleinement justifiée dans notre cas d’étude. Des études supplémentaires sur le comportement au jeune âge du matériau (évolution des propriétés mécaniques, déformation de fluage) seraient utiles pour une analyse plus approfondie de la dégradation et de son influence sur le comportement à l’interface toron-coulis.
3.5. Comportement in situ du toron adhérent

Fig. 3.23 Maillage explicite du système toron - coulis d’injection.

Fig. 3.24 Champs d’endommagement d’une coupe de coulis de ciment : restreinte de la déformation imposée ϵ_{imp} par le toron de précontrainte.
3.6 Prise en compte numérique du toron adhérent

3.6.1 Essais d’arrachement

Dans le but de caractériser le comportement de l’interface toron de précontrainte adhérent - coulis d’injection, des essais d’arrachement sont menés sur des torons ancrés. Nous suivons les recommandations de la FIB - bulletin 7 - annexe 8 dans la définition de la géométrie des spécimens. Le diamètre équivalent \(d_b \) de l’armature est choisi comme référence pour la détermination de la longueur d’ancrage et des dimensions du massif béton (Figure 3.25). Le diamètre \(d_1 \) de la gaine de précontrainte ne rentre pas en considération dans la géométrie proposée. Un effort de traction \(F \) est appliqué à une extrémité de l’armature. Le glissement \(u \) entre l’armature et le massif béton est mesuré sur l’extrémité non chargée par un capteur de déplacement. La géométrie présente une faible longueur d’ancrage \(l_b \). La contrainte d’adhérence \(\tau \) peut être considérée comme uniforme sur cette longueur. Par conséquent, cette dernière est calculée de la façon suivante :

\[
\tau = \frac{F}{l_b p_b}, \tag{3.6.1}
\]

avec \(p_b \) le périmètre de l’armature en contact avec le coulis d’injection. Pour un toron de précontrainte à sept fils, le périmètre peut être calculé analytiquement comme :

\[
p_b = 6\pi \sqrt{\frac{A_p}{7\pi}}, \tag{3.6.2}
\]

avec \(A_p \) la section du toron considéré.

Cinq spécimens sont préparés pour cette étude expérimentale. Le toron T15S est de section \(A_p = 150 \text{ mm}^2 \). Par conséquent, la longueur d’adhérence normative est égale à 69.1 mm.
3.6. Prise en compte numérique du toron adhérent

Pour la suite, nous choisirons \(l_b = 70 \text{ mm} \). Les dimensions du massif béton ne suivent pas les prescriptions FIB. Dans un souci de représentativité par rapport aux essaisstructuraux sur poutres, le massif béton se présente comme un cube de côté \(3l_b = 15d_b = 21 \text{ cm} \) (similaire à la largeur des poutres précontraintes). Les spécimens sont préparés dans des moules en bois (Figure 3.26-a). La gaine de précontrainte en feuillard d’acier, de diamètre 5 cm, est positionnée en leur milieu sur toute la longueur. Un événement d’injection est installé sur la gaine métallique. Après coulage du massif béton, le toron est centré au sein de la gaine de précontrainte. Celle-ci étant ensuite entièrement injectée, le toron doit être protégé du contact avec le coulis sur les longueurs non-adhérentes. Des tubes plastiques sont placés de part à d’autre de la longueur d’adhérence (Figure 3.26-b). Seuls 7 cm sont en contact avec le coulis après injection (Figure 3.26-c).

![Figure 3.26 Fabrication des spécimens d’arrachement de torons de précontraintes : (a) moule en bois, (b) longueur d’adhérence, (c) état final pour injection.](image)

Une attention particulière est portée aux conditions aux limites de l’essai. L’effort d’arrachement est appliqué par un vérin hydraulique. Due à la forme de l’armature, la traction du toron entraîne une torsion globale de sa structure en hélice. En l’absence de blocage, une rotation de la tête du vérin pourrait être observée. L’essai se caractériserait alors comme un essai de dévissement de l’armature (simple frottement acier - béton), et non un essai arrachement avec prise en considération de l’interaction géométrie acier - coulis [Bawden et al., 1992]. La tête du vérin doit ainsi être bloquée en rotation pour empêcher ce phénomène. À ce stade, un second phénomène peut être observé sur la longueur non-adhérente du toron, comprise entre la tête du vérin hydraulique et la zone ancrée. À cause du blocage en rotation, le toron a tendance à se détréfiler, conséquence de la tension axiale. Ceci peut induire des contraintes parasites et impacter le comportement d’adhérence sur la longueur ancrée. Sur les cinq tests proposés, trois essais sont menés avec une soudure complète des différents brins du toron, sur la longueur non-ancrée chargée en traction (Figure 3.26-c). Le dispositif expérimental est présenté sur la figure 3.27-a. L’éprouvette est placée sur un support fixe métallique, accroché aux traverses verticales de la machine d’essai uniaxiale 100 kN. La tête du vérin est bloquée en rotation par un système de serrage coulissant sur une traverse verticale. Le déplacement relatif du toron par rapport à la structure est mesuré par deux capteurs de déplacement, fixés à l’armature sur le côté non-chargé (Figure
La moyenne des deux capteurs permet de s'affranchir des défauts de mesure, dans le cas d'une rotation de l'armature non parfaitement perpendiculaire au massif béton.

Fig. 3.27 Dispositif expérimental des essais d'arrachement de torons de précontrainte : (a) montage général, (b) mesure du glissement sur le côté non-chargé.

Les résultats des différents essais sont présentés sur la figure 3.28. Ils expriment l'évolution de la contrainte d'adhérence τ en fonction du glissement mesuré. À la différence des essais Test 4 et Test 5, les essais Test 1, Test 2 et Test 3 présentent une soudure complète du toron sur la longueur non-ancrée, soumise au chargement de traction. On peut remarquer qu'il n'y a pas grande différence de comportement entre les deux séries de test. Ce phénomène de détréfilage ne semble pas jouer un rôle prépondérant sur la caractérisation de la liaison.

Une première phase de cohésion entre les deux matériaux, à glissement quasi-nul, est observée pour chaque essai. La décohésion apparaît par la suite et semble très dispersée, variant de 0.2 MPa à 0.7 MPa. Ces valeurs sont aussi relativement faibles, en comparaison à des essais d'arrachement sur barres lisses ou crénelées ancrées dans du béton (2 - 3 MPa). Après décohésion, la liaison toron - structure présente un gain continu de résistance, en fonction de l'augmentation progressive de la contrainte d'adhérence. Néanmoins, la rigidité globale reste très faible après décohésion, au vu des glissements importants mesurés.

Notons que ces essais ne caractérisent pas directement l'interface toron - coulis d'injection. Ils rendent compte, de manière globale, de la transmission d’efforts du toron vers le massif béton, via le coulis d’injection et la gaine de précontrainte. Les trois interfaces toron - coulis, coulis - gaine et gaine - béton sont mises en jeu dans ces tests. Cette analyse globale du comportement de la liaison est utilisée par la suite pour construire un modèle spécifique d’interface. La grande dispersion des résultats ne facilite pas la démarche de modélisation.

Par ailleurs, la contrainte d’adhérence calculée et la rigidité globale de la liaison semblent très faibles pour chaque essai. L’hypothèse d’une fissuration généralisée du coulis par retrait restreint peut expliquer ces résultats.
3.6. Prise en compte numérique du toron adhérent

Une analyse post-mortem de deux éprouvettes est néanmoins menée. Les éprouvettes sont découpées à la scie à béton jusqu’au cœur de la structure (Figure 3.29-a). La découpe peut engendrer une fissuration du coulis d’injection. Ceci ne pose ici pas de problèmes majeurs, l’objectif principal étant de vérifier le bon remplissage de la gaine de précontrainte, non d’en étudier la dégradation. Les observations visuelles sur les deux éprouvettes ne font pas apparaître de vides. Elles confirment une injection correcte sur toute la longueur du spécimen.

Fig. 3.29 Découpe post-test des spécimens d’arrachement de toron de précontrainte : (a) extraction du quart de l’éprouvette, (b) observation visuelle du coulis d’injection.

3.6.2 Modélisation de l’interface

est maillé en 1D par des éléments finis de type barre à deux nœuds. Celui-ci est entouré d’une zone d’interface volumique de section égale à la section du toron (S = 150 mm2). La zone d’interface est liée au coulis d’injection, lui-même lié au massif béton. Le transfert local des efforts internes du béton vers le toron, et inversement, est possible par la prise en compte d’une adhérence parfaite entre les différents composants. Pour la simulation numérique de l’essai d’arrachement, la longueur de la zone d’interface est égale à 7 cm, en accord avec les dispositions expérimentales.

Fig. 3.30 Modélisation (1/4) d’un essai d’arrachement : prise en compte de l’interface toron-coulis d’injection.

Le modèles associés aux différents composants sont définis ci-après :

1. Le **toron de précontrainte** est considéré comme élastique.

2. Le **massif béton** est modélisé comme un matériau élasto-endommgeable. Le critère de Mazars [Mazars, 1986] est utilisé et le modèle est régularisé en énergie de fissuration [Hillerborg et al., 1976] (cf. Chapitre 1). Les propriétés mécaniques lui étant associées sont précisées au Chapitre 2 : $E_c = 35$ GPa, $f_{t,1} = 2.9$ MPa, $G_f = 94.8$ J.m$^{-2}$.

3. Le même modèle élasto-endommageable est utilisé pour le **coulis d’injection**. Les propriétés mécaniques lui étant associées sont précisées au Chapitre 2 : $E_{co} = 10.0$ GPa, $f_{t,co} = 2.0$ MPa, $G_f = 94.8$ J.m$^{-2}$.

4. Au vu des résultats présentés sur la figure 3.28, un comportement élasto-plastique est défini pour la **zone d’interface**. Le module de Young est considéré égal à celui du coulis d’injection $E_{co} = 10.0$ GPa. L’écoulement plastique et l’évolution du seuil plastique permettent de reproduire le glissement relatif entre les deux matériaux et l’augmentation progressive de la contrainte d’adhérence, respectivement. Un critère de von Mises avec évolution du seuil en fonction de la déformation plastique cumulée est ici retenu :

$$ \left\{ \begin{align*}
\sigma_{eq} &= K \\
\mathrm{d}K &= Hdp
\end{align*} \right. $$

(3.6.3)
3.6. Prise en compte numérique du toron adhérent

avec \(\sigma_{eq} \) la contrainte équivalente de Von Mises, \(K \) le seuil plastique initial, \(H > 0 \) le paramètre régissant l’écrouissage positif et \(p \) la déformation plastique équivalente cumulée. Les paramètres \(K \) et \(H \) doivent être calibrés sur les essais expérimentaux d’arrachement.

Une telle modélisation, calibrée sur les essais d’arrachement, considère implicitement l’influence de la restreinte des déformations différées de retrait endogène sur le comportement de l’interface toron - coulis d’injection. Il serait néanmoins judicieux de définir un module de Young dégradé \(E_{co}^* < E_{co} \) pour les zones de coulis d’injection et d’interface, afin de prendre en compte l’influence de la pré-fissuration généralisée du matériau. Par manque de données expérimentales, ceci ne peut pas être fait dans notre étude. Des études supplémentaires sur le comportement au jeune âge du matériau d’injection sont là encore justifiées.

Par la grande dispersion des résultats expérimentaux, nous choisissons ici de proposer deux calibrations distinctes (Figure 3.31). Les résultats sont présentés sur la figure 3.31 avec les paramètres \(K \) et \(H \) correspondants. Les simulations rendent compte du comportement global des essais expérimentaux d’arrachement : cohésion initiale et perte de raideur après décohésion.

Le modèle proposé sera utilisé pour la simulation numérique des poutres précontraintes (Chapitre 5). L’influence des deux jeux de paramètres proposés sur le comportement global et local des structures sera analysée.
3.7 Conclusion

Ce chapitre avait pour objectif d’étudier le comportement mécanique de l’interface acier-béton et son influence sur la structure. Les cas d’une précontrainte non-adhérente TGG et adhérente sont détaillés.

Une instrumentation par fibres optiques du toron de précontrainte a permis d’évaluer son comportement mécanique dans les structures poutres au cours du chargement :
- pour le cas non-adhérent, les mesures montrent une sur-tension uniforme du TGG, jusqu’à rupture de la structure. Un comportement glissant sans frottement du toron peut être déduit de ces résultats. Par contre, par comparaison de l’élongation globale du toron avec l’élongation globale de la structure (somme des ouvertures de fissures), les pertes de précontrainte par recul d’ancrage ont pu être mesurées. Celles-ci sont significatives et doivent être prises en compte pour des calculs de structure. Une modélisation de l’ancrage est ici proposée, basée sur l’introduction d’un connecteur plastique aux abouts de la poutre ;
- pour le cas adhérent, les mesures montrent une sur-tension globale plus importante en comparaison à celle mesurée sur TGG pour un même niveau d’effort appliqué à la structure. L’influence de l’adhérence toron-coulis d’injection est ici bien visible. Néanmoins, on note aussi l’absence de sur-tension locale du toron au droit des fissures créées par le chargement de flexion 4 points. La résistance de l’interface toron - coulis d’injection peut donc être remise en cause.

Pour une analyse numérique ultérieure, la modélisation des deux types de précontrainte est aussi détaillée :
- le TGG doit être considéré comme glissant sans frottement : à l’aide d’éléments barres en libre mouvement axial par rapport à la structure, mais restreints dans leur mouvement transversal ;

Les données expérimentales de sur-tension locale et globale des torons de précontrainte serviront à la validation des simulations numériques sur structures poutres (Chapitre 5). Les outils d’interface proposés dans le présent chapitre seront utilisés dans le même temps.
Chapitre 4
Étude de la liaison armatures passives - béton

L’interrogation des fibres optiques pour la mesure de déformation a été faite par Monsieur Aghiad Khadour (IFSTTAR).

4.1 Introduction

La fissuration des structures est aujourd'hui un sujet d'étude ouvert. Elle fait référence principalement aux problématiques de durabilité, vis-à-vis des attaques chimiques du milieu environnant ou à celle de l'étanchéité des structures, pour les enceintes de confinement de centrale nucléaire par exemple. Ces problématiques sont intimement liées aux mécanismes de transfert, liquide ou vapeur, à travers le matériau béton. La présence de fissures induit une augmentation significative des transferts par diffusion ou perméation [Bažant et al., 1987] [Jourdain et al., 2014] [Djerbi et al., 2008] pouvant mener à une dégradation interne du matériau béton ou à la corrosion des armatures par exemple.

L'évolution de la fissuration dépend principalement du transfert d'efforts des armatures passives vers le béton, et ainsi du comportement de l'interface acier-béton. La simulation numérique de structures armées et/ou précontraintes doit ainsi prendre en considération cette dernière pour rendre compte, de manière prédictive, de l'évolution des dégradations locales de la structure.

Comme détaillé au Chapitre 1, la prédiction a priori du comportement d'interface semble difficile. De nombreux paramètres influent fortement sur l'interaction des deux matériaux mis en jeu, et principalement les propriétés mécaniques du béton et la géométrie de l'armature. Les nombreux modèles d'interface, proposés dans la littérature, s'appuient en premier lieu sur des essais locaux pour la simulation ultérieure d'une structure. Cette démarche d'identification est ici menée. L'analyse proposée suit les étapes suivantes :

2. Influence de l'interface sur le comportement de structures, type tirants longs en traction.
3. Développement d'un modèle d'interface basé sur les mécanismes locaux de dégradation.
5. Validation du modèle sur les essais tirants.

Une problématique importante a aussi retenu notre attention. La validation des modèles d'interface se fait en général sur des éprouvettes de laboratoire (essais tirants), un modèle béton leur étant associé. Il y a ici lieu de se questionner sur l'effet des déformations différencées sur le comportement de l'ensemble du système. Dans le cas d'un effet significatif non pris en compte numériquement, l'identification basée sur les essais expérimentaux deviendrait obsolète. Notons aussi que le modèle développé sera ensuite utilisé pour la simulation des structures précontraintes testées. Les spécimens de caractérisation de l'interface (arrachements et tirants) ont ainsi été fabriqués en même temps que les poutres précontraintes. La même gâchée de béton est utilisée pour réduire l'effet de la variabilité des propriétés mécaniques.
4.2 Essais d’arrachement pull-out

4.2.1 Préparation des spécimens et conception du montage

Quatre diamètres de barres HA sont testés sous arrachement statique. Pour un souci de représentativité du comportement d’interface au sein des poutres testées, les barres utilisées sont identiques à celles utilisées pour les poutres précontraintes. Il s’agit d’armatures à empreintes de diamètres 8 mm, 10 mm, 12 mm et 14 mm. Suivant les recommandations RILEM, l’armature de diamètre d est coulée au sein d’un cube en béton de côté $15d$, avec une longueur d’ancrage égale à $5d$ (Figure 4.1-a). Les spécimens sont coulés dans des moules en bois. Des réservations en plastique sont ajoutées pour obtenir l’ancrage souhaité (Figure 4.1-b).

Fig. 4.1 Géométrie des spécimens d’arrachement : (a) géométrie RILEM, (b) préparation expérimentale.

Une force F est appliquée sur un côté de l’armature en déplacement imposé. Le glissement relatif de la barre par rapport au massif béton est mesuré par un capteur de déplacement sur le côté non chargé (Figure 4.1-a). Les dimensions choisies du cube béton favorisent l’extraction de la barre par glissement et dégradation de l’interface acier-béton, et non par rupture du massif. Afin d’assurer la co-axialité de l’armature avec le vérin hydraulique, deux plaques rotulées en acier sont positionnées entre le support fixe et le spécimen (Figure 4.2-a et b). Elles favorisent un chargement uniaxial et limitent les efforts parasites à l’interface acier-béton. Pour annuler le frettage entre le massif béton et la plaque rotulée en cours d’essai, et ainsi diminuer de la même manière les efforts parasites, des plaques en téflon sont aussi disposées comme illustré sur la figure 4.2-a.

Ce test normalisé a pour objectif de déterminer la contrainte maximale d’adhérence de la liaison acier-béton, pouvant être utilisée pour des calculs analytiques réglementaires ou des modèles numériques d’interface. En considérant une contrainte de cisaillement homogène sur la longueur d’ancrage, la contrainte d’adhérence τ_{max} de la liaison peut être définie comme :

$$\tau_{\text{max}} = \frac{F_{\text{max}}}{5\pi d^2}$$

(4.2.1)
Afin de valider cette hypothèse, il semble important de quantifier le comportement de l’armature sur la longueur ancrée. Une instrumentation par jauges de déformation, collées sur la surface extérieure de l’acier, peut être envisagée. Néanmoins, elle s’avère relativement intrusive et peut modifier les propriétés de l’interface. Une instrumentation par fibres optiques est ici retenue pour une mesure d’un champ linéique de déformation sur la longueur d’ancrage au cours du chargement. Le principe de la mesure est détaillé au Chapitre 3. Cette technique a déjà été utilisée sur des barres d’acier pour alimenter des modèles de comportement d’interface acier-béton [Tixier, 2013] [Khadour et al., 2013].

Deux spécimens sont instrumentés par fibres optiques (avec \(d = 10 \) mm). Pour se faire, une engravure de côté 1 mm est usinée sur la longueur de l’armature (Figure 4.3). Une fibre optique y est tendue et collée par une colle de type cyanoacrylate prise rapide. La fibre est interrogée au cours de l’essai et rend compte de l’évolution du champ de déformation de l’armature. L’instrumentation utilisée n’affecte que très peu le comportement de l’armature et son interface avec le béton. En effet, l’engravure de côté 1 mm représente 1.3 % de la section transversale d’une barre HA10. La surface d’interface modifiée par la présence de l’engravure/colle est, quant à elle, de 3.2 %. L’intérêt est aussi d’avoir accès à un champ de déformation de résolution spatiale 1 mm. Cette information n’est pas comparable à quelques mesures ponctuelles obtenues par jauges de déformation par exemple.
4.2 Essais d’arrachement pull-out

4.2.2 Résultats globaux

Les résultats globaux des essais d’arrachement sont présentés sur la figure 4.4. Trois essais sont menés pour chaque type de barre, exceptionnellement pour le diamètre 14 mm. Pour chaque spécimen, une phase initiale de cohésion à glissement nul apparaît, suivie d’une perte de raideur jusqu’à une valeur maximale d’effort de liaison. La force nécessaire au glissement décroît par la suite, rendant compte de la dégradation progressive totale de l’interface acier-béton. Une phase finale de frottement barre-béton se remarque pour des glissements élevés. La force oscille légèrement due à l’effet persistant de la géométrie nervurée de l’acier. En effet, le pas des oscillations est environ égal au pas géométrique entre nervures.

![Graphique des résultats d’arrachement](image)

Fig. 4.4 Résultats Force appliquée vs. glissement - essais d’arrachement à \(d \) variable.

Les valeurs de \(\tau_{\text{max}} \), calculées sur les essais d’arrachement, sont présentées dans le tableau 4.1. On observe une augmentation de \(\tau_{\text{max}} \) avec le diamètre de barre, qui peut s’expliquer par la géométrie nervurée différente d’un diamètre à l’autre. Les essais montrent une bonne reproductibilité, avec un faible écart-type. La contrainte maximale d’adhérence s’avère relativement inférieure à celle d’autres essais de la littérature [Daoud, 2003] [Casanova et al., 2013]. La géométrie à empreintes peut expliquer ce résultat, en comparaison avec des armatures à verrous aux propriétés d’adhérence plus importantes [Hamad, 1995].

<table>
<thead>
<tr>
<th>Diamètre</th>
<th>Moyenne de (\tau_{\text{max}}) [MPa]</th>
<th>Minimum [MPa]</th>
<th>Maximum [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA8</td>
<td>11.8</td>
<td>10.7</td>
<td>13.4</td>
</tr>
<tr>
<td>HA10</td>
<td>10.8</td>
<td>9.5</td>
<td>11.9</td>
</tr>
<tr>
<td>HA12</td>
<td>13.7</td>
<td>12.4</td>
<td>14.6</td>
</tr>
<tr>
<td>HA14</td>
<td>15.3</td>
<td>15.2</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Table 4.1 Valeurs de \(\tau_{\text{max}} \) sur essais d’arrachement.
4.2.3 Résultats locaux d’interface acier-béton

L’instrumentation par fibres optiques est utilisée sur deux tests d’arrachement de diamètre $d = 10$ mm. Des pauses de quelques secondes, au cours du chargement à déplacement imposé, permettent l’interrogation de la fibre optique. L’état de contrainte est considéré comme quasi-constant durant cette période. En effet, de très faibles décharges en effort ont été observées lors de l’interrogation. Les résultats sont présentés sur la figure 4.5.

Fig. 4.5 Déformation armature HA10 mesurée par fibres optiques avant le maximum de contrainte d’adhérence : (a) Test 1, (b) Test 2.

Une résolution spatiale de 1 mm sur la mesure de déformation a été obtenue expérimentalement. Néanmoins, les résultats présentés sont moyennés sur 5 mm, permettant de masquer le bruit de mesure et des effets parasites locaux (dus à la présence des crénelures par exemple). Les résultats sont illustrés pour trois niveaux d’effort : 4 kN, 10 kN, et l’effort maximal d’adhérence. Ils sont comparés à la valeur théorique, prenant en compte l’hypothèse d’une contrainte de cisaillement constante τ sur la longueur d’ancrage. Dans ce cas, la déformation théorique locale ϵ_{theo} peut s’écrire comme :

\[
\begin{align*}
\epsilon_{\text{theo}} &= 0 \quad \text{si} \quad x < 0 \\
\epsilon_{\text{theo}} &= \frac{\tau \pi dx}{E_{a}S} \quad \text{si} \quad 0 < x < 5d \quad \text{(longueur d’ancrage)} \\
\epsilon_{\text{theo}} &= \frac{5\tau \pi d^{2}}{E_{a}S} \quad \text{si} \quad 5d < x
\end{align*}
\tag{4.2.2}
\]

avec E_{a} le module de Young de l’acier et S la section de l’armature HA10.

Hors zone d’adhérence acier-béton, les mesures montrent une déformation nulle du côté non-chargé et une déformation quasi-constante du côté de l’application de l’effort. Cette
observation est en accord avec les attentes théoriques et permet de valider l’instrumentation par fibres optiques. L’intérêt principal est porté sur le comportement de l’armature dans la zone d’adhérence, de longueur 50 mm pour le cas HA10. À faible charge ($F = 4 \text{ kN}$), le champ de déformation mesuré est relativement similaire au champ analytique calculé. L’hypothèse d’une contrainte d’adhérence uniforme peut être ici validée. Néanmoins, après décohésion de la barre d’acier, à 10 kN et à la charge maximale admissible pour la liaison, la déformation présente une évolution fortement non-linéaire. Dans cette phase de dégradation de la liaison, l’hypothèse d’uniformité de la contrainte d’adhérence ne semble plus valable. Cette hypothèse mène aussi à une sous-estimation de la contrainte d’adhérence maximale locale (cette dernière est dépendante de la dérivée par rapport à l’abscisse du champ de déformation avec l’armature en régime élastique).

Les non-linéarités observées ne semblent pas être une conséquence de la géométrie du test. En effet, l’évolution du champ de déformation est relativement différente entre le test 1 et le test 2. Ces mesures rendent plutôt compte d’une dégradation non-uniforme de la liaison acier-béton. La géométrie de l’acier n’étant pas remise en cause, l’influence de l’hétérogénéité du matériau béton est ici avancée : distribution des granulats autour de l’armature, distribution de pores, etc. Cet aspect sera étudié par la suite d’un point de vue numérique.

4.3 Essais de traction sur tirants longs en béton armé

4.3.1 Préparation des spécimens et conception du montage

Les essais de traction sur tirants longs en béton armé sont menés dans le but d’étudier l’influence de l’adhérence acier-béton sur la fissuration des structures. La géométrie des spécimens est choisie en référence aux essais de [Daoud, 2003] et est présentée sur la figure 4.6-a. Leur longueur totale est de 1.15 m avec 1 m d’armature ancrée, de diamètre 12 mm. Des réservations en plastiques aux abouts permettent l’obtention des zones non-adhérentes de 7.5 cm (Figure 4.6-b). Trois essais sont menés dans le cadre de cette étude.
Chapitre 4. Étude de la liaison armatures passives - béton

Les tirants sont chargés en déplacement imposé par un vérin hydraulique de capacité 150 kN, jusqu’à plastification de l’acier. La configuration présentée permet l’apparition de multiples fissures sur la longueur du tirant.

Les essais sont analysés par CIN (cf. Chapitre 2) pour l’étude de la fissuration sur une face du spécimen. Un mouchetis de peinture, identique à celui appliqué sur les poutres précontraintes, est projeté sur la surface d’étude. Deux caméras CANON 60D sont placées au droit de l’essai et analysent, respectivement, une zone de largeur 60 cm environ (Figure 4.7). L’erreur commise sur le champ de déplacement est d’environ 4 µm, avec une dimension de pixel d’environ 250 µm. Pour deux essais (Test 2 et Test 3), l’armature est aussi instrumentée par une fibre optique appliquée par collage dans une engravure faisant toute la longueur du spécimen. Ses dimensions sont, comme pour les essais d’arrachement, 1\times1 mm². Dans le cas d’une armature de diamètre 12 mm, l’engravure représente 0.9 % de la section d’acier et 2.7 % de la surface de contact acier-béton. L’erreur commise sur la mesure de déformation par fibres optiques est d’environ 10⁻⁶ pour une résolution spatiale de 1 mm. Ces informations locales le long de l’armature permettent de comprendre la transmission d’efforts entre les deux matériaux acier - béton. L’intérêt de l’instrumentation réside aussi dans son caractère non-intrusif. La méthode usuelle d’utilisation de jauges de déformation détériore les propriétés d’interface et favorise la localisation de la fissuration par le câblage des jauges.

Fig. 4.7 Dispositif expérimental des essais de traction sur tirants longs, analysés par Corrélation d’Images Numériques CIN.

Notons que les éprouvettes ont été protégées de la dessiccation, dans leur coffrage, pendant 17 jours après coulage. Après décoffrage, les éprouvettes sont gardées dans une atmosphère identique aux poutres précontraintes (Chapitre 2). Les essais mécaniques de traction sont menés 110 jours après fabrication. Les spécimens subissent donc une période de séchage d’environ 90 jours.

4.3.2 Analyse de la fissuration

Comme détaillé au Chapitre 2, une procédure automatique de détection d’ouvertures de fissures est utilisée. Elle permet de définir l’ouverture locale en un point donné de la structure. Néanmoins, on définit dans cette partie l’ouverture d’une fissure comme la moyenne des ouvertures locales de la fissure étudiée, sur la hauteur du spécimen. Cette...
définition est utilisée par la suite dans les critères de comparaison des trois spécimens tirants en traction.

D’un point de vue qualitatif, les trois essais tirants montrent des facteurs finaux de fissuration similaires au moment de la plastification de l’armature (Figure 4.8). Cinq ou six fissures apparaissement en cours de chargement, bien reparties sur la longueur du tirant. D’un point de vue plus quantitatif, on se propose de comparer les essais sur tirants selon deux critères en fissuration : somme des ouvertures de fissures, ouverture maximale. L’évolution de la somme des ouvertures de fissures est un critère global du comportement de l’essai, rendant compte de l’élongation globale longitudinale au cours du chargement. Les résultats des trois essais sont présentés sur la figure 4.9-a. Ces derniers montrent une bonne similarité de comportement entre les trois essais. Une première phase entre 0 kN et environ 20 kN est synonyme du comportement élastique de la structure avant fissuration. La fissuration apparait vers un effort de 20 kN et laisse place à une phase de macro-fissuration multiple (jusqu’à environ 40 kN pour le Test 1 par exemple). Aucune fissure supplémentaire ne peut alors se localiser sur la longueur. Cette phase de localisation progressive laisse place à une phase d’amplification des ouvertures jusqu’à la plastification de l’armature ($F \approx 60$ kN). Ce critère ne prend pas en compte la déformation totale du spécimen, autrement dit la déformation élastique du béton. Des capteurs de déplacement LVDT étaient disposés aux abouts du tirant pour étudier la rigidité initiale globale. Dues à des mouvements parasites, ces mesures n’ont pas pu être validées. Les mesures de déformation par fibres optiques, présentées par la suite, sont utilisées à cet effet.

Des informations plus locales sur le comportement du tirant sont illustrées par l’évolution de l’ouverture maximale de fissures. Après la première localisation à 20 kN, l’ouverture maximale (et donc celle de l’unique fissure provisoire) est d’environ 200 µm pour chaque essai (Figure 4.9-b). Elle augmente ensuite au cours du chargement pour atteindre une valeur entre 600 µm et 800 µm à la plastification de l’armature.

4.3.3 Comportement de l’armature acier

Outre la fissuration de la structure, le comportement de l’interface acier-béton est étudié, via le comportement de l’armature acier. Les tirants, intitulés Test 2 et Test 3,
Chapitre 4. Étude de la liaison armatures passives - béton

Fig. 4.9 Caractérisation de la fissuration par CIN des tirants longs : (a) somme des ouvertures de fissures, (b) ouverture maximale.

sont instrumentés par une fibre optique dans une engravure usinée. Plusieurs mesures sont effectuées au cours du chargement, avant et après fissuration. Une résolution spatiale de 1 mm est obtenue pour l’acquisition. Les champs de déformation sont moyennés par la suite sur une plage de 5 mm. La figure 4.10 présente les champs de déformation obtenus sur le tirant Test 2 et Test 3 sur la longueur d’ancrage de 1 m, en phase élastique et de fissuration.

Avant fissuration, trois zones peuvent être distinguées:

Fig. 4.10 Champ de déformation de l’armature sur tirants longs en traction - mesures par fibres optiques : (a) Test 2, (b) Test 3.
4.3. **Essais de traction sur tirants longs en béton armé**

1. Aux deux abouts de la structure, une longueur d’ancrage de longueur comprise entre 15 et 20 cm est observée. Cette zone fait la transition entre l’armature seule en traction et l’armature pleinement ancrée dans la structure en béton. Les variations de déformation dans cette zone sont difficilement explicables. On peut avancer l’hypothèse d’une fissuration à l’interface acier-béton aux abouts perturbant le champ de déformation de l’armature. Cet état de fissuration peut être dû au chargement mécanique imposé ou aussi à un état initial de contrainte et/ou de fissuration avant l’essai provoqué par retrait de dessiccation restreint par exemple.

2. La déformation de l’armature est par contre quasi-constante dans la zone centrale, d’une valeur moyenne de 71.5 µε et 68 µε pour les Test 2 et Test 3, respectivement. En considérant une adhérence parfaite entre les deux matériaux, ainsi qu’un module de Young béton de 35 GPa, la contrainte correspondante dans la section de béton est ainsi égale à 2.50 MPa et 2.38 MPa pour les Test 2 et Test 3, respectivement. Ces valeurs sont néanmoins inférieures à la résistance en traction du béton mesurée. Ceci peut indiquer l’existence d’un état de pré-contrainte avant l’essai mécanique. En effet, les déformations différées du béton sont restreintes par l’armature d’acier, ce qui induit l’apparition de contraintes de traction dans la section de béton. La charge utile mécanique pour localiser la fissuration s’en voit alors diminuée. Cette hypothèse est ensuite étudiée et validée par des simulations sur tirants, avec prise en compte des déformations différées.

Une fois la résistance en traction du béton atteinte localement et aléatoirement sur la longueur ancrée de l’armature (hors zones d’ancrage aux abouts), une première fissure transverse apparaît. La charge F est entièrement reprise par l’armature en ce point (Figure 4.10). Une longueur d’ancrage, de part et d’autre de la fissure, est observée et est mesurée égale à 15 cm environ. La localisation d’une fissure à une abscisse x induit la création de deux tirants de longueur respective x et $(L - x)$, avec L la longueur totale de la structure. Par suite logique, n fissures apparaissent ensuite de manière évolutive avec création de $n + 1$ tirants (exemple de la deuxième localisation sur la figure 4.10).

Une problématique supplémentaire porte sur l’évolution locale de la déformation de l’armature au droit des fissures créées. Pour le Test 2 (Figure 4.10-a), le champ de déformation est très perturbé dans ces zones. Une fissuration importante radiale à l’interface acier-béton, au droit des crénelures de l’armature, pourrait expliquer ce résultat. L’évolution de la déformation locale est, quant à celle, bien différente pour le Test 3 (Figure 4.10-b). Plusieurs hypothèses sont avancées : double fissuration interne coalescente en surface, flexion locale de l’armature. Aucune hypothèse n’a pu être vérifiée dans cette étude. Néanmoins, l’étude du champ de déformation après plastification de l’armature montre une localisation franche et unique au droit des discontinuités (Figure 4.11). La position des fissures en surface est, de plus, relativement cohérente avec les localisations de déformation plastique sur l’armature. Les légères différences s’expliquent par l’irrégularité de la discontinuité sur la section transversale de béton.

Deux informations intéressantes supplémentaires peuvent être tirées de ces mesures : la variation de longueur totale Δu de l’armature ancrée et l’évolution des contraintes de cisaillement à l’interface acier-béton au niveau des zones de ré-ancrage de l’armature.
Chapitre 4. Étude de la liaison armatures passives - béton

1. L’élongation Δu, à F donné, est calculée par intégration des mesures expérimentales de déformation ϵ_a de l’armature sur une longueur d’un mètre :

$$\Delta u(F) = \int_{x=0}^{1} \epsilon_a(x,F) \, dx.$$ \hspace{1cm} (4.3.1)

Par corrélation avec l’effort appliqué par le vérin hydraulique, le comportement global des deux tirants peut en être déduit. Les résultats sont présentés sur la figure 4.12. En complément de l’analyse de la fissuration des spécimens, on obtient par ce biais la rigidité initiale avant fissuration. La phase élastique est suivie d’une phase de localisation, stabilisation de la fissuration et enfin de plastification de l’armature. Ces résultats peuvent être comparés aux évolutions de la somme des ouvertures de fissures (Figure 4.9-a). Après fissuration, la variation de longueur globale de l’acier est très proche de la somme des ouvertures de fissures. Seule l’armature a une influence sur le comportement global de la structure.

2. En considérant une liaison parfaite entre l’acier et le béton, les contraintes de cisaillement $\tau(x)$ peuvent être calculées par rapport au champ de déformation ϵ_a de l’armature :

$$\tau(x) = \frac{E_aS}{2\pi r} \frac{d\epsilon_a}{dx}(x),$$ \hspace{1cm} (4.3.2)

avec E_a le module de Young de l’acier, S la section d’acier et r le rayon de l’armature. On se limitera ici à l’étude de ces contraintes jusqu’à la deuxième fissure transverse. Les résultats post-traités sont présentés sur la figure 4.13 pour les tests Test 2 et Test 3. De façon logique, en référence au champ de déformation de l’armature (Figure 4.10), les contraintes de cisaillement sont nulles en zone centrale.

Fig. 4.11 Comparaison de la position des localisations : CIN vs. Fibres optiques - tirants longs en traction : (a) Test 2, (b) Test 3.
4.3. Essais de traction sur tirants longs en béton armé

Fig. 4.12 Comportement global essais tirants, δu mesuré par fibres optiques.

Fig. 4.13 Contraintes de cisaillement à l’interface acier-béton, essais tirants : (a) Test 2, (b) Test 3.

avant fissuration, et évoluent seulement aux abouts au niveau des zones d’ancrage. Après fissuration, la contrainte de cisaillement devient non nulle au droit de la fissure créée. Son évolution montre un changement de signe de part et d’autre de la discontinuité. Le signal est relativement perturbé dans cette zone, principalement pour l’essai Test 2. Ce fait peut être expliqué par une forte dégradation de l’interface acier-béton au droit de la fissure [Goto, 1971]. Néanmoins, en comparaison aux essais d’arrachement, on remarque que les contraintes de cisaillement mesurées (maximum de 12 MPa) induisent une dégradation de l’interface acier-béton et implicitement une perte de raideur de la liaison. Par contre, elles ne dépassent pas
la contrainte maximale d’adhérence τ_{max} obtenue sur les essais pull-out. Le modèle numérique associé doit ainsi principalement rendre compte de la partie pré-pic du comportement de la liaison acier-béton pour simuler la localisation progressive de la fissuration. Contrairement à la théorie, la contrainte de cisaillement maximale n’est pas identique d’une fissure à l’autre, et n’est pas forcément symétrique (en valeur absolue) de part et d’autre des fissures. Ceci est la cause et la conséquence d’une ouverture préférentielle de certaines fissures. L’hétérogénéité des propriétés d’interface peut en être la cause, ce qui semble en accord avec les résultats d’arrachement pull-out.

4.4 Développement d’un modèle d’interface acier-béton

4.4.1 Philosophie de modélisation

D’un point de vue numérique, comme détaillé au Chapitre 2, l’utilisation d’une interface volumique est ici retenue pour la modélisation du comportement de l’interface acier-béton. La modélisation d’une armature et de son interface associée suit le schéma présenté sur la figure 4.14-a. L’armature est modélisée en éléments finis 1D de type barres. Celle-ci est entourée par une zone d’interface volumique (de section égale à la section réelle de l’armature), en contact avec le béton environnant. La modélisation des essais d’arrachement est présentée sur la figure 4.14-b. La longueur d’adhérence, de l’armature de diamètre d avec le béton environnant, est égale à $5d$. La zone d’interface volumique est introduite sur cette zone.

Fig. 4.14 Modélisation de l’interface volumique acier-béton : (a) principe général, (b) modélisation de l’essai d’arrachement.

4.4. Développement d’un modèle d’interface acier-béton

dans nos applications, en considérant des chargements monotones statiques, un critère de Von Mises avec écrouissage négatif peut être retenu. Celui-ci suit l’équation définie ci-après :

\[
\begin{align*}
\sigma_{eq} &= K \\
\frac{dK}{dp} &= H dp,
\end{align*}
\] (4.4.1)

avec \(\sigma_{eq} \) la contrainte équivalente de Von Mises, \(K \) le seuil plastique initial, \(H \) le paramètre régissant l’écrouissage et \(p \) la déformation plastique cumulée.

Pour un chargement de cisaillement pur dans le plan (1,2), la plastification apparaît pour une contrainte de cisaillement \(\tau_{12,\text{plas}} = K/\sqrt{3} \). Un écoulement associé induit un comportement linéaire \(\tau_{12} - \epsilon_{12} \) en phase plastique. L’écrouissage positif ou négatif est régi par le signe de \(H \). Afin d’identifier l’influence de l’interface acier-béton, un essai d’arrachement avec HA12 est simulé et comparé avec les essais expérimentaux présentés précédemment. Le béton est modélisé comme un matériau élasto-endommageable aux propriétés homogènes définies au Chapitre 2. L’acier est considéré comme élastique, de module de Young défini au Chapitre 2. Une interface volumique est maillée sur la zone d’ancrage de 5\(d \) (Figure 4.14-b). À la différence d’une modélisation avec interface parfaite, ne faisant pas intervenir de contrainte maximale d’adhérence, la modélisation avec interface volumique permet de reproduire la contrainte maximale d’adhérence \(\tau_{\text{max}} \) et l’adoucissement post-pic (Figure 4.15-a). Le module de Young de l’interface est considéré comme égal à celui du matériau béton. Les paramètres \(K \) et \(H \) sont identifiés par analyse inverse par rapport aux essais expérimentaux. La perte de rigidité observée en phase pré-pic est due à la dégradation progressive quasi-uniforme de l’interface acier-béton (Figure 4.15-b). Néanmoins, il semble difficile de représenter la perte de rigidité expérimentale, et implicitement le glissement entre l’acier et le béton au pic de contrainte.

Une solution est issue des travaux de [Sellier et al., 2013c]. Les auteurs complexifient la surface d’écoulement plastique, considérée alors comme multi-linéaires sur la base des modèles analytiques de [Eligehausen et al., 1983]. Il convient de souligner le nombre plus important de paramètres à identifier pour la caractérisation de l’interface.

Nous proposons dans ces travaux un développement supplémentaire à la modélisation volumique présentée en premier lieu. La proposition se base sur la dégradation physique de l’interface acier-béton, définie au Chapitre 1. Après la perte d’adhérence chimique entre les deux matériaux à faible charge, la transmission d’efforts de l’acier vers le béton ne s’opère qu’au droit des crénelures. Une fissuration conique apparaît localement, accompagnée d’une perte de rigidité globale de la liaison, jusqu’à atteindre la résistance maximale de l’interface. Partant de ces observations, la philosophie de la modélisation développée peut être décomposée en trois étapes :

1. Avant tout chargement extérieur sur la zone d’interface, la liaison acier-béton peut être considérée comme parfaite et non-endommagée. L’adhérence chimique globale entre les deux matériaux à faibles charges est assurée. La zone d’interface peut ainsi être considérée dans son ensemble comme élastique avec les propriétés du matériau béton environnant.
Chapitre 4. Étude de la liaison armatures passives - béton

2. La perte d’adhérence chimique survient à un certain niveau de chargement. Sans la présence de crénelures sur l’acier, la transmission d’efforts entre les deux matériaux n’est assurée que par frottement. Il en résulte un glissement important de l’acier à charge constante. Cette observation peut être modélisée par une interface plastique parfaite. Un critère de von Mises est imposé de manière globale à cette zone :

\[
\begin{align*}
\sigma_{eq} &= K_1 \\
\text{d}K_1 &= 0.
\end{align*}
\]

(4.4.2)

Une hypothèse forte est ici faite en négligeant l’effet du confinement latéral sur la contrainte limite d’adhérence chimique dans nos essais. L’effet d’un confinement actif [Tran et al., 2007] ou passif [Eligehausen et al., 1983] peut être cependant pris en compte via un critère de Drucker-Prager : ajout du terme \(\alpha \text{Tr}(\sigma) \) au critère de von Mises ; la composante en trace du tenseur de contraintes influant sur le seuil plastique.

3. La présence de crénelures sur l’acier induit, quant à elle, un gain de résistance de la liaison. Ceci s’apparente à un maintien en position géométrique. L’effort est repris principalement de manière locale au niveau des crénelures, l’espace inter-crénelures pouvant être considéré comme une barre lisse. Il serait donc intéressant, couplé au critère défini à l’équation 4.4.2, de prendre en compte l’influence locale des nervures sur le comportement de la liaison. Il n’est ici pas question de mailler explicitement la géométrie réelle de l’armature, mais bien de modéliser de manière implicite le gain local de résistance apportée. Ainsi, en complément du critère 4.4.2, on ajoute...
4.4. Développement d’un modèle d’interface acier-béton

périodiquement un autre critère local de von Mises, écrit comme :
\[
\begin{align*}
\sigma_{eq} & = K_2 \\
\frac{dK_2}{dp} & = H_2 \quad \text{(4.4.3)}
\end{align*}
\]
avec \(K_2 > K_1 \) et \(H_2 < 0 \) pour permettre un comportement adoucissant local, après avoir atteint le seuil \(K_2 \). La périodicité du critère local doit correspondre à la géométrie réelle de la barre d’armature considérée.

La géométrie des différentes armatures est analysée. Présentant le même profil global, une unique géométrie idéalisée est proposée pour tous les diamètres (Figure 4.16). En accord avec cette dernière, la Figure 4.17 schématisa la modélisation proposée précédemment.

Il est à noter que la modélisation choisie demande une grande finesse de maillage. Il n’est donc pas envisageable de l’utiliser pour des calculs de structures massives (enceintes
de confinement complète par exemple). Néanmoins, l’interface crénelée est utilisée par la suite pour simuler les différents tests de la campagne expérimentale (essais d’arrachement, essais tirants, essais sur poutres). Ce fait nous informe sur la viabilité numérique, en termes de convergence ou de temps de calcul par exemple, de la modélisation proposée. Il serait aussi envisageable de l’utiliser dans des calculs de structures massives, de manière locale dans une zone d’intérêt particulière. Le nombre de paramètres du modèle peut aussi être mis en avant. Au total, quatre paramètres doivent être identifiés : Module de Young, K_1, K_2, H_2. Le module de Young de la zone d’interface est considéré comme égal à celui du béton. Le seuil K_1 peut être défini par rapport à des essais de la littérature sur l’adhérence chimique acier-béton [Ouglova et al., 2008]. On retiendra que seuls deux paramètres restent finalement à être identifiés. On propose par la suite une identification sur les essais d’arrachement et une validation ultérieure sur les essais tirants.

4.4.2 Calibration du modèle d’interface sur essais d’arrachement

Les essais d’arrachement sont simulés numériquement en prenant en compte la modélisation de l’interface développée précédemment. Un pas de 8 mm (distance moyenne entre crénelures) est imposé au champ de propriétés de l’interface crénelée. Le module de Young de la zone d’interface est pris égal à celui du béton ($E_{ISO} = 35$ GPa). La détermination du paramètre K_1 se fait par rapport à des essais de la littérature sur acier lisse. Les essais PIAF [Ouglova, 2004], menés sur barres lisses à section carrée, ont montré une contrainte d’adhérence chimique d’environ 1.5 MPa sans confinement sur la liaison, et pouvant varier jusqu’à 2.5 MPa pour un confinement de 5 MPa [Tran et al., 2007]. La valeur d’adhérence limite au glissement $\tau_g = 1.5$ MPa est retenue pour cette étude. Considérant un état de cisaillement parfait à l’interface acier-béton, la valeur du paramètre K_1 est ainsi déduite comme :

$$K_1 = \tau_g \sqrt{3} = 2.6 MPa.$$

Les paramètres K_2 et H_2 sont identifiés simultanément par analyse inverse sur les essais d’arrachement testés.

Prenons tout d’abord l’exemple des tests avec barre HA12. Les paramètres K_2 et H_2 sont identifiés et égaux à 200 MPa et -300 MPa, respectivement. Le comportement global de la liaison, à faibles glissements, est présenté sur la figure 4.18-a et comparé à un modélisation volumique avec propriétés homogènes. La perte de rigidité progressive pré-pic de la liaison est plus représentative des essais expérimentaux. En effet, après avoir atteint globalement le seuil K_1, seul les zones locales (représentatives des crénelures) peuvent apporter un gain de transmission d’efforts entre les deux matériaux. Le glissement au pic de résistance s’en voit alors augmenté, avant diminution de l’effort par le paramètre local H_2.

La dégradation du matériau béton, au droit de la zone d’interface, est localisée de manière périodique (Figure 4.18-b), à l’inverse d’une dégradation globale avec modélisation volumique homogène (Figure 4.15-b). On retrouve ici les modes de rupture locaux, représentatifs des observations expérimentales. La zone de béton fissurée autour de l’interface est d’épaisseur environ égale à un diamètre de barre. La représentation explicite de la dégradation locale à l’interface semble ici justifiée pour une analyse fine du transfert d’efforts de l’armature vers le béton et du comportement à la fissuration des structures. Elle
4.4. Développement d’un modèle d’interface acier-béton

peut aussi avoir un intérêt particulier pour la simulation de transferts à travers des parois fissurées en béton armé [Jourdain et al., 2014], intimement dépendants de l’état de fissuration de la structure [Desmettre et Charron, 2011].

![Graphique](image1.png)

Fig. 4.18 Essai numérique d’arrachement HA12 : (a) évolution de τ à faibles glissements, (b) champ d’endommagement avec interface volumique « crénelée » à $\tau = 8$ MPa.

Le comportement de la liaison est présenté dans sa totalité sur la figure 4.19 et comparé aux trois essais d’arrachement expérimentaux. Seule la phase de frottement final acier-béton n’est pas pris en compte dans le comportement modélisé. Ceci est un choix numérique, basé sur le comportement couplé de la fissuration du béton et de l’armature. En effet, au droit d’une fissure traversante dans une structure béton armé, la transmission des efforts ne s’opère que par la présence d’une armature d’acier. Numériquement, par la théorie de l’endommagement, une perte de raideur dans le béton induit une déformation localisée de l’armature et de l’interface. Le comportement de l’interface doit ainsi converger vers 0, afin de retranscrire l’unique participation de l’armature dans cette zone.

L’identification des paramètres pour chaque diamètre de barre est résumée dans le tableau 4.2. Ces valeurs sont utilisées par la suite dans les simulations numériques du comportement de tirants en traction, et de poutres armées précontraintes.

<table>
<thead>
<tr>
<th>Armature</th>
<th>Diamètre interface [mm]</th>
<th>K_1 [MPa]</th>
<th>K_2 [MPa]</th>
<th>H_2 [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA8</td>
<td>8</td>
<td>2.6</td>
<td>130</td>
<td>-180</td>
</tr>
<tr>
<td>HA10</td>
<td>10</td>
<td>2.6</td>
<td>170</td>
<td>-180</td>
</tr>
<tr>
<td>HA12</td>
<td>12</td>
<td>2.6</td>
<td>200</td>
<td>-300</td>
</tr>
<tr>
<td>HA14</td>
<td>14</td>
<td>2.6</td>
<td>210</td>
<td>-220</td>
</tr>
</tbody>
</table>

Table 4.2 Identification des paramètres d’interface sur essais d’arrachement.
Hétérogénéité des propriétés d’interface

Tout d’abord, l’essai d’arrachement HA10 est simulé numériquement. Les propriétés d’interface sont définies comme au Tableau 4.2. L’hétérogénéité du matériau béton est étudiée par la génération de plusieurs champs aléatoires corrélés sur la déformation limite élastique ε_{D0} (Figure 4.20). La valeur moyenne des différents champs est gardée identique et égale à f_{90}/E_{90}. Le coefficient de variation est choisi égal à 15 %. La longueur de corrélation l_c est considérée comme égale à trois fois la taille du plus gros granulat, $l_c = 6 \text{ cm}$. Les résultats des trois simulations indépendantes d’arrachement sont présentés à la Figure 4.21. L’hétérogénéité des propriétés du béton n’influence que très peu sur le comportement global de l’essai. Seule la zone d’interface contrôle l’évolution de la dégradation progressive entre les deux matériaux. Le champ aléatoire généré aura néanmoins une influence non négligeable sur le comportement réel d’une structure, vis-à-vis de la localisation de la fissuration.

Par ailleurs, l’analyse du champ de contrainte axiale de l’armature, lors de la montée en charge ($F = 15 \text{ kN}$) de l’essai Aléa béton 1, montre une évolution quasi-linéaire sur la zone d’ancrage avec le béton. Les propriétés d’interface choisies induisent donc un cisaillement constant sur cette zone. En comparaison aux essais expérimentaux (Figure 4.5), la simulation ne permet pas de reproduire la non-linéarité de la déformation ou de
4.4. Développement d’un modèle d’interface acier-béton

Fig. 4.20 Essais d’arrachement HA : champs aléatoires sur la déformation limite élastique ϵ_{D0} (représentation d’une demi-structure).

Fig. 4.21 Simulations d’essais d’arrachement HA10 sur plusieurs tirages aléatoires de propriétés mécaniques béton : (a) comportement global, (b) champ de contrainte axiale de l’armature à $F = 15$ kN.

la contrainte axiale le long de l’armature. Celle-ci doit être plutôt la conséquence directe de l’hétérogénéité des propriétés mécaniques de la zone d’interface développée.

A priori, deux paramètres matériaux peuvent être considérés comme hétérogènes au niveau de la liaison acier-béton : K_2 et H_2. En phase pré-pic, le comportement local de l’interface est majoritairement contrôlé par le paramètre K_2. En phase post-pic, seul le paramètre H_2 est à l’origine de l’adoucissement de la liaison acier-béton. Nous nous intéressons principalement à l’influence du paramètre seuil K_2 sur le comportement global et local de l’interface. Dans le cas présent, la zone d’interface présente six « crénelures », caractérisées implicitement par le critère local de von Mises de seuil initial K_2. Un champ hétérogène de ce seuil est introduit par la suite dans les simulations (Figure 4.22). Aucune donnée expérimentale ne peut être utilisée pour la caractérisation de ce champ. L’objectif
ne sera pas ici de définir une évolution physique du paramètre en question, mais plutôt
de rendre compte de la sensibilité de la simulation à cette dernière.

Fig. 4.22 Hétérogénéité des propriétés de l’interface 'crénelée' acier-béton.

Quatre cas sont simulés par la suite et définis dans le tableau 4.3. Le cas 1 correspond
aux simulations précédemment menées, avec seuil uniforme le long de l’armature. Pour
les autres cas, la valeur moyenne est conservée à 170 MPa. Une évolution simplement
croissante ou décroissante est choisie. Le sens de variation est étudié dans les cas 2 et 3.
L’influence de l’écart-type est étudiée dans les cas 3 et 4. Chaque simulation est menée
jusqu’à la résistance maximale de la liaison. Les résultats sont présentés sur la figure 4.23.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas 1</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Cas 2</td>
<td>270</td>
<td>230</td>
<td>190</td>
<td>150</td>
<td>110</td>
<td>70</td>
</tr>
<tr>
<td>Cas 3</td>
<td>70</td>
<td>110</td>
<td>150</td>
<td>190</td>
<td>230</td>
<td>270</td>
</tr>
<tr>
<td>Cas 4</td>
<td>20</td>
<td>80</td>
<td>140</td>
<td>200</td>
<td>260</td>
<td>320</td>
</tr>
</tbody>
</table>

Table 4.3 Essais d’arrachement HA : Simulations numériques avec différents profils de
valeur seuil K_2, avec $H_2 = -180$ MPa constant.

Le comportement global pré-pic se trouve significativement modifié par l’hétérogénéité des
propriétés de la liaison. La rigidité globale de cette dernière, après décohésion entre les
deuX matériaux, est intimement dépendante au profil d’évolution du paramètre seuil K_2.
Par contre, les différents essais convergent vers un comportement similaire, passé le pic de
résistance maximale. De plus, ces simulations numériques exposent une non-linéarité dans
le champ de contrainte axiale de l’armature. Elles permettent de reproduire le comportement
local expérimental des essais d’arrachement. Une telle modélisation peut faire l’objet
de l’étude intéressante à l’échelle d’une structure, pouvant mettre en évidence l’influence
des propriétés locales de la liaison sur les caractéristiques de fissuration obtenues. Malheureusement, il semble aujourd’hui difficile de pouvoir définir un cadre physique admissible à
l’hétérogénéité des propriétés de l’interface. Plusieurs problématiques peuvent être posées
ici :

1. Quel coefficient de variation introduire sur le champ aléatoire de K_2 ?
2. Faut-il prendre en compte un champ corrélé ou complètement décorrélé d’une cré-
 nelure à l’autre ?
3. Quelle est l’influence de l’hétérogénéité expérimentale des propriétés mécaniques du
 béton sur l’hétérogénéité numérique introduite pour l’interface ?
4. Quelle est l’influence de la géométrie de l’armature sur l’hétérogénéité numérique introduite pour l’interface ?

Fig. 4.23 Simulations d’essais d’arrachement HA10 avec plusieurs champs d’évolution du paramètre seuil K_2 : (a) comportement global, (b) champ de contrainte axiale de l’armature à $F = 15$ kN.

4.5 Validation du modèle d’interface sur tirants longs en traction

4.5.1 Simulations numériques des tirants : étape 1

Une première simulation est menée sur le tirant HA12. Une modélisation similaire à l’essai d’arrachement est utilisée. Par contre, pour des raisons de temps de calcul, seul un quart de structure est considéré. Les propriétés mécaniques de chaque matériau sont choisies de la façon suivante :

- Armature : $E_a = 200$ GPa (valeur usuelle pour des barres HA) ;
- Béton : $E_b = 35$ GPa, $f_t = 2.9$ MPa, $G_f = 94.8$ J.m$^{-2}$ (comme défini au Chapitre 2). Un champ aléatoire sur la résistance en traction est aussi introduit de moyenne f_t, de coefficient de variation 5 % et de longueur de corrélation 6 cm ;
Chapitre 4. Étude de la liaison armatures passives - béton

- Zone d’interface : $E_{in} = 35$ GPa (égal au module de Young du béton). Les paramètres K_1, K_2 et H_2 sont issus de la calibration du modèle d’interface sur les essais pull-out (Tableau 4.2) : $K_1 = 2.6$ MPa, $K_2 = 200$ MPa et $H_2 = -300$ MPa.

Le comportement global obtenu est présenté sur la figure 4.24, comparé aux résultats expérimentaux. La raideur initiale est bien reproduite par la simulation. Par contre, ces résultats se caractérisent principalement par la franche surestimation de la force de première fissuration ($F \approx 33$ KN).

Deux hypothèses peuvent être avancées pour expliquer les résultats numériques surestimés :

1. Le champ aléatoire imposé au béton ne représente pas efficacement l’hétérogénéité du matériau.
2. L’absence de prise en compte de la restreinte des déformations différées du béton par la barre d’armature explique la surestimation de la force de première fissuration.

La deuxième hypothèse est ici retenue et étudiée.

4.5.2 Prise en compte des déformations différées du béton

Comme détaillé précédemment, les spécimens tirants ont été protégés de la dessiccation pendant 17 jours après fabrication et testés 110 jours après fabrication. Numériquement, prendre en compte les déformations différées du béton revient à décomposer la déformation totale en une déformation élastique $\varepsilon^{\text{elas}}$, une déformation de retrait endogène $\varepsilon^{\text{endo}}$, une déformation de retrait de dessiccation ε^{d}, une déformation de fluage propre ε^{fp} et une déformation de fluage de dessiccation ε^{fd}, selon l’équation :

$$\varepsilon^{\text{tot}} = \varepsilon^{\text{elas}} + \varepsilon^{\text{endo}} + \varepsilon^{d} + \varepsilon^{fp} + \varepsilon^{fd}. \quad (4.5.1)$$
4.5. Validation du modèle d’interface sur tirants longs en traction

Ne prenant pas en compte les effets du jeune âge, la déformation thermique n’est ici pas considérée. De plus, le béton est considéré comme mature à partir du début de la dessiccation jusqu’au test. Des mesures de retrait endogène, de perte en masse, de retrait de dessiccation et de flueage ont été menées sur le matériau béton utilisé. Ces mesures sont effectuées sur des éprouvettes 7×7×28 cm³.

Retrait endogène et de dessiccation

Six éprouvettes 7×7×28 cm³ sont préparées pour la mesure de retrait endogène et de dessiccation. Elles sont toutes protégées de la dessiccation pendant les 17 jours après coulage à l’aide d’une protection aluminium appliquée sur les spécimens. Trois éprouvettes sont ensuite déballées et soumises au séchage simultanément au décoffrage des tirants. La mesure du retrait s’effectue sur un bâti fixe avec acquisition automatique des mesures de retrait (Figure 4.25-a). Pour les éprouvettes soumises au séchage, la déformation de retrait de dessiccation est calculée par la soustraction du retrait endogène au retrait total mesuré.

Les évolutions moyennes des déformations sont tracées en fonction du temps sur la figure 4.25-b. On remarque que la déformation de retrait endogène $\varepsilon^{\text{endo}}$ est relativement faible par rapport à la déformation de retrait de dessiccation ε^{d}. De plus, son évolution rapide se produit dans la phase du jeune âge sur un matériau non mature à la rigidité faible. $\varepsilon^{\text{endo}}$ n’est donc pas considérée dans les simulations numériques. Seul le retrait de dessiccation est pris en compte. Avec l’objectif d’étudier principalement l’influence de la restreinte des déformations par l’armature ancrée, la déformation ε^{d} est considérée comme uniforme dans la structure. Cela revient à négliger les auto-restrintes créées par le gradient hydrique dans la structure. En relation avec son caractère diffusif, le phénomène de séchage est une fonction du temps et de la taille du spécimen. La déformation de retrait
de dessiccation, imposée au tirant \(\epsilon^d_{\text{tirant}} \), est ainsi calculée en fonction de la déformation mesurée sur éprouvettes 7×7×28 cm\(^3\) \(\epsilon^d_{\text{mesure}} \), suivant une loi d’effet temporel et d’échelles [Almudaiheem et Hansen, 1987] :

\[
\epsilon^d_{\text{tirant}} \left(\frac{\sqrt{t}}{r_{\text{tirant}}} \right) = \epsilon^d_{\text{mesure}} \left(\frac{\sqrt{t}}{r_{\text{mesure}}} \right),
\]

(4.5.2)

avec \(r_{\text{tirant}} \) et \(r_{\text{mesure}} \) la taille caractéristique du tirant et de l’éprouvette 7×7×28 cm\(^3\), respectivement. La taille caractéristique est définie comme la fraction du volume du spécimen sur la surface de séchage (Chapitre 1). La déformation de retrait de dessiccation imposée numériquement au tirant est ainsi présentée sur la figure 4.26. Les tirants subissent une période de séchage d’environ 90 jours après décoffrage. La déformation de retrait au moment de l’essai est d’environ 350 µ.

![Fig. 4.26 Évolution temporelle du retrait de dessiccation imposé au spécimens tirants longs.](image)

Fluage propre

Deux tests de fluage propre ont été menés sur éprouvettes 7×7×28 cm\(^3\). Elles sont disposées dans deux bâtis à pression et mises en charge manuellement. La contrainte de compression générée est de 10 MPa dans les deux cas (Figure 4.27-a). Pour une question d’organisation interne au laboratoire, les essais ont démarré 122 jours après coulage, pour une durée de 22 jours sous charge, et quelques jours à chargement nul pour l’étude de la recouvrance. Une mesure manuelle de déformation est effectuée sur chaque face à intervalle régulier. La déformation de fluage propre, à \(t \) donné, est calculée par la moyenne des mesures issues des quatre faces. La figure 4.27-b présente les évolutions expérimentales de fluage propre spécifique (déformation de fluage rapportée à la contrainte mécanique appliquée) des deux éprouvettes (en ayant retranché la déformation élastique).
4.5. Validation du modèle d’interface sur tirants longs en traction

Fig. 4.27 Mesures expérimentales de fluage propre avec simulation associée : (a) dispositif expérimental de mesures, (b) évolutions temporelles expérimentales et numériques.

Une modélisation numérique de l’essai est menée pour reproduire le comportement différé de l’éprouvette en condition endogène. Sur un béton considéré comme mature, le modèle de [Hilaire, 2014] est utilisé. Quatre paramètres doivent être identifiés (cf. Chapitre 1) : \(k_{kv} \), \(\tau = \eta_{kv}/k_{kv} \), \(\eta_{am}^{\infty} \), \(\alpha_{bc} \). Sans essais expérimentaux comparatifs de fluage propre en traction et en compression, nous considérons une symétrie des comportements avec \(\alpha_{bc} = 1 \). Les paramètres \(k_{kv} \) et \(\tau \) de la chaîne de Kelvin-Voigt peuvent être identifiés sur la partie réversible de la déformation de fluage propre. Le paramètre \(\eta_{am}^{\infty} \) est au final identifié sur l’évolution de la déformation sous charge. L’évolution numérique du fluage propre est présentée sur la figure 4.27-b. Le jeu de paramètres associés est présenté dans le tableau 4.4.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>(k_{kv})</th>
<th>(\tau)</th>
<th>(\eta_{am}^{\infty})</th>
<th>(\alpha_{bc})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>242 GPa</td>
<td>5 h</td>
<td>20.8 GPa</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.4 Paramètres de fluage propre sur modèle de [Hilaire, 2014].

Fluage de dessiccation

Deux essais de fluage total ont aussi été menés en condition de dessiccation. La déformation de fluage de dessiccation peut être calculée en retranchant à la déformation de fluage total les déformations élastique, de fluage propre, et de retrait de dessiccation (en négligeant la déformation de retrait endogène). Ces essais n’ont pas pu être exploités à cause d’un défaut de mesure sur le retrait de dessiccation. Considérant le fluage de dessiccation \(\varepsilon_{fd} \) dépendant du retrait des dessiccation \(\varepsilon^{rd} \), avec la relation \(\varepsilon_{fd} = \lambda_{fd} \varepsilon^{rd} \sigma \) (Chapitre 1), le paramètre \(\lambda_{fd} \) peut être identifié sur des essais de la littérature. Pour un
béton mature de rapport $e/c = 0.48$, une valeur de 0.1 MPa$^{-1}$ est considérée (Chapitre 1).

Influence sur la structure tirant

Une période de 90 jours de retrait de dessiccation est simulée sur l’éprouvette. Avec la prise en compte du retrait de dessiccation comme uniforme dans la structure, les calculs se focalisent principalement sur la restriction de la déformation par l’armature ancrée. Ainsi, aucune dégradation du béton n’est observée sur les faces extérieures de la structure avec l’absence d’un gradient de déformation. Cependant, une légère dégradation est observée le long de l’interface acier-béton, due à l’incompatibilité de déformation entre l’armature acier et le béton (Figure 4.28).

![Fig. 4.28](image)

Fig. 4.28 **Champs d’endommagement et de contraintes après 90 jours de séchage - simulation quart de tirant.**

On remarque la localisation de l’endommagement et des contraintes axiales au droit des points durs (« crénelures ») modélisés dans la zone d’interface acier-béton. La restriction induite par l’armature engendre le développement d’une contrainte axiale quasi-uniforme dans la structure (Figure 4.28). Après 90 jours de séchage, celle-ci atteint environ 0.75 MPa, égale à environ un quart de la résistance en traction du béton.

La prise en compte des déformations de fluage propre et de fluage de dessiccation est ici impérative dans les simulations. Elles permettent de relaxer les contraintes provoquées par la restriction des déformations de retrait par l’armature. Ne pas les prendre en compte reviendrait à surestimer l’influence de la restriction et, par conséquent, à sous-estimer la force de première fissuration.
4.5. Validation du modèle d’interface sur tirants longs en traction

4.5.3 Simulations numériques des tirants : étape 2

Comportement global

Partant de cet état initial de contrainte et d’endommagement, l’essai mécanique de traction peut être à nouveau simulé. L’état initial de contrainte axiale se répercute logiquement sur le comportement mécanique du tirant en traction, et principalement sur la force de première fissuration. En comparaison aux essais expérimentaux, la prise en compte des déformations différées permet de simuler correctement l’initiation des premières fissures au sein du tirant en traction (Figure 4.29). Elle induit une légère perte de raideur initiale, en accord avec la dégradation superficielle de l’interface acier-béton avant l’essai mécanique (Figure 4.28) et en accord avec les essais expérimentaux. Il conviendrait ainsi de ne prendre en compte l’influence des déformations différées que par une diminution initiale de la résistance en traction du béton. Cependant, dans le cas d’un retrait de dessiccation ou d’un taux d’armatures plus élevés, l’interface acier-béton pourrait se dégrader de manière plus importante. Un calcul éléments finis spécifique est alors justifié. Par ailleurs, les résultats montrent l’importance de considérer l’état de contrainte initial avant essai provoqué par le comportement hydro-mécanique évolutif du matériau béton.

Comportement local avant fissuration transverse

Le champ d’endommagement est présenté sur la figure 4.30-a dans la phase élastique de l’essai (F = 20 kN avant la première fissure transverse). On retrouve en partie centrale la dégradation du béton à l’interface due à la restreinte des déformations de retrait. Une dégradation supplémentaire se localise aux abouts du tirant, due aux contraintes de cisaillement importantes dans cette zone. Il n’est pas possible de comparer cet état...
d’endommagement avec des données expérimentales. Par contre, le champ de déformation de l’armature peut être évalué, numériquement et expérimentalement, au même instant de chargement (Figure 4.30-b). La simulation est cohérente avec les résultats expérimentaux, en termes de longueur d’ancrage aux abouts. Cette étape marque la première étape de validation du modèle d’interface.

Fig. 4.30 Comportement mécanique des tirants longs en phase élastique : (a) champ d’endommagement à l’interface - $F = 20$ kN, (b) champ de déformation axiale dans l’armature - $F = 20$ kN.

Comportement local après fissuration transverse

Dans cette partie, le comportement mécanique est étudié jusqu’à plastification de l’armature. Afin d’assurer une objectivité des résultats présentés, trois simulations sont présentées avec trois réalisations aléatoires portant sur la résistance à la traction du béton. Les comportements globaux $F - \Delta u$ et les faciès de fissuration sont présentés sur la figure 4.31.

Les multiples chutes d’effort dans le comportement global sont liées à la localisation progressive de la fissuration le long du spécimen. Jusqu’à plastification de l’armature, la simulation est bien corrélée aux résultats expérimentaux. Les trois champs aléatoires utilisés n’ont pas une influence significative à cette échelle.

Les champs d’ouvertures de fissures sont obtenus par post-traitement des champs de déformation [Matallah et al., 2010]. Le nombre de fissure varie peu d’un essai à l’autre et est équivalent à celui obtenu expérimentalement. Pour une analyse plus locale, les valeurs d’ouverture de chaque fissure sont extraites. L’ouverture d’une fissure est considérée égale à la moyenne des ouvertures locales de la discontinuité étudiée sur la surface extérieure. L’évolution numérique de la somme des ouvertures de fissures S_{ouv} est comparée à celle obtenue expérimentalement (Figure 4.32-a). S_{ouv} est fortement dépendant de la rigidité globale de la structure (et réciproquement). Il semble ainsi logique de pouvoir simuler correctement ce critère de façon numérique, au regard des résultats globaux présentés.
4.5. Validation du modèle d’interface sur tirants longs en traction

Fig. 4.31 Comportement mécanique des tirants longs : (a) comportement global, (b) champs d’ouvertures de fissures à la plastification de l’armature ($F = 56$ kN).

Une légère sous-estimation est observée avant plastification de l’armature, corrélée à la rigidité globale légèrement surestimée (Figure 4.31).

Fig. 4.32 Comportement à la fissuration des tirants longs : (a) somme des ouvertures de fissures, (b) ouverture maximale.

L’évolution de l’ouverture maximale de fissures est aussi présentée sur la figure 4.32-b. La simulation sous-estime légèrement ce critère local. Numériquement, la distribution des ouvertures de fissures est relativement homogène. L’ouverture maximale est donc proche de l’ouverture moyenne des fissures. Expérimentalement, on observe des vitesses d’ouverture différentes d’une fissure à l’autre. Ceci peut s’expliquer par les conditions aux limites non parfaites ou aussi par l’hétérogénéité des propriétés d’adhérence locale entre l’acier et le béton (comme identifié précédemment sur les essais d’arrachement instrumentés par fibres optiques). L’ouverture maximale mesurée est, dans ce cas, plus importante que l’ouverture...
moyenne des fissures. Ainsi, pour une même évolution d’un critère global de fissuration, telle que la somme des ouvertures de fissures, plusieurs évolutions de l’ouverture maximale sont admissibles.

Prendre en compte numériquement l’hétérogénéité des propriétés d’interface favoriserait la localisation préférentielle d’une fissure par rapport à une autre. Les essais numériques d’arrachement ont en effet montré que la variabilité des propriétés de liaison, K_2 et H_2, permettent de rendre compte de la variabilité du transfert d’eﬀorts local entre les deux matériaux. La longueur de transfert entre l’acier et le béton serait dépendante des caractéristiques locales de liaison. L’ouverture des fissures en serait par conséquent inﬂuencée. La question à appréhender porte cependant sur les caractéristiques de ces champs aléatoires d’interface (coefficient de variation principalement). Comme détaillé précédemment, un grand nombre d’essais d’arrachement instrumentés peut conduire à la caractérisation des variations locales d’interface.

![Fig. 4.33 Contraintes de cisaillement à l’interface après l’apparition de la seconde fissure transverse.](image-url)
4.6 Conclusion

La modélisation est par la suite utilisée pour la simulation du comportement des structures armées précontraintes. Bien qu’elle tende à représenter finement le comportement local à l’interface, les hétérogénéités de propriétés de liaison acier-béton ne sont pas considérées. Il y a cependant lieu de remarquer leur influence significative sur le comportement à la fissuration des structures. Une étude supplémentaire, expérimentale ou numérique, pourrait être menée dans ce sens.

Les résultats expérimentaux et numériques présentés dans ce chapitre font aujourd’hui l’objet d’une publication portant sur la caractérisation et la modélisation de l’interface acier-béton [Michou et al., 2015].
Chapitre 4. Étude de la liaison armatures passives - béton
Chapitre 5

Modélisation du comportement de poutres précontraintes

Ce chapitre fait référence à l’étape 2 de la démarche générale. Il propose une modélisation structurelle en référence aux essais expérimentaux sur poutres précontraintes présentés aux Chapitres 2 et 3. Les outils numériques développés aux Chapitres 3 et 4 sont utilisés dans ce chapitre. Les résultats des simulations numériques présentées valident la démarche et les outils numériques proposés.
5.1 Introduction

Les Chapitres 2 et 3 ont fourni une base importante de données expérimentales portant sur le comportement mécanique de poutres armées précontraintes. L’influence du taux d’armatures passives et du type de précontrainte (adhérente ou non-adhérente) sur la tenue structurelle globale et la fissuration ont été mises en évidence. Les résultats expérimentaux obtenus servent ici de référence pour la validation d’une modélisation structurelle de structures précontraintes.

Pour assurer une modélisation objective du comportement des structures, les outils numériques développés et calibrés aux Chapitres 3 et 4 (ancrage de précontrainte, interface toron-coulis d’injection, interface armatures passives-béton) sont utilisés simultanément dans cette partie de l’étude. L’identification de comportements globaux et locaux est alors menée sur les simulations numériques présentées. Elle porte principalement sur la tenue structurelle des poutres précontraintes, sur la quantification de leur comportement à la fissuration et sur le comportement du toron de précontrainte adhérent ou non-adhérent. La comparaison numérique-expérimentale de ces différents critères permet de valider la modélisation de structure proposée.

5.2 Éléments de modélisation

Les différents ingrédients de la modélisation proposée sont détaillés ci-après et illustrés sur la figure 5.1 dans le cas d’une précontrainte adhérente :

1. Seul un quart de la structure est considéré dans un souci de limitation du temps de calcul.
3. Armatures passives : matériau élasto-plastique, éléments barres à deux nœuds, propriétés mécaniques définies au Chapitre 2, section variable pour chaque structure.
6. Toron de précontrainte T15S : matériau élastique, éléments barres à deux nœuds, propriétés mécaniques définies au Chapitre 2.
7. Connecteur intégré dans le massif d’ancrage du toron de précontrainte : matériau élasto-plastique, éléments barres à deux nœuds, propriétés mécaniques définies au Chapitre 3.

Outre la section d’armatures passives, la différence majeure entre les différentes structures porte sur la prise en compte d’une précontrainte adhérente ou non-adhérente. Dans le cas d’une précontrainte adhérente, une zone d’interface volumique toron-coulis d’injection entoure le toron de précontrainte et est liée au coulis d’injection environnant (Figure
5.1. Les propriétés géométriques et mécaniques de cette zone d’interface sont définies au Chapitre 3. Dans le cas d’une précontrainte non-adhérente, les résultats du chapitre 2 (mesures par fibres optiques) ont montré un glissement sans frottement du toron au sein de sa gaine plastique en PEHD. Aucune zone d’interface toron-coulis n’est alors considérée. Le toron de précontrainte est directement introduit dans la zone de coulis d’injection. Par des relations cinématiques, le toron est libre de mouvement selon son axe mais restreint dans ses mouvements transversaux par le matériau d’injection environnant (cf. Chapitre 3).

5.3 Simulations numériques : étape 1

Deux poutres précontraintes par toron non-adhérent TGG sont étudiées dans un premier temps : TGG-D8 (taux d’armatures passives faible) et TGG-D14 (taux d’armatures passives élevé). Le phase de chargement se décompose en trois étapes :

1. Mise en précontrainte : contrainte initiale dans le toron σ_{ini} égale à 100 MPa puis équilibre avec la structure.
2. Chargement continu de poids propre.
3. Chargement de flexion 4 points en déplacement imposé.

Un champ aléatoire corrélé portant sur la résistance à la traction du béton est introduit dans les simulations. L’influence de trois tirages indépendants est étudiée pour les deux
structures. Pour les trois tirages, la valeur moyenne et la longueur de corrélation sont imposées à 2.9 MPa (Chapitre 2) et à 6 cm (Chapitre 1 et 4), respectivement. Par contre, le coefficient de variation varie d’un champ à l’autre : 5 %, 10 % et 20 %.

Les présentes simulations se focalisent sur les phases élastique et d’initiation de la fissuration.

Les comportements globaux Force-Flèche sont tout d’abord présentés sur la figure 5.2. Les rigidités initiales simulées sont en accord avec celles obtenues expérimentalement, bien que légèrement surestimées. Cependant, deux observations attirent ici l’attention :

1. Le coefficient de variation du champ aléatoire n’influence pas significativement sur le comportement global des deux structures. Seule une légère diminution de la force de première fissuration peut être remarquée.
2. Dans la phase post-élastique, une différence significative entre le comportement expérimental et les comportements numériques est à noter. Pour une flèche v donnée, la force appliquée F est largement surestimée ($\approx 30 \%$).

Parallèlement, le comportement à la fissuration des deux structures est aussi étudié. Le champ d’ouvertures de fissures est calculé par post-traitement à partir du champ de déformation obtenu numériquement [Matallah et al., 2010]. Plusieurs fissures s’initient et se propagent dans la zone à moment constant et au droit du point d’application de l’effort (Figure 5.3-a-b). Logiquement, on observe une diminution des valeurs d’ouverture avec l’augmentation du taux de ferraillement passif.

En accord avec les essais expérimentaux, l’ouverture w_i de chaque fissure i est évaluée à hauteur des aciers passifs inférieurs. La somme des ouvertures de fissures est alors calculée...
5.4. Prise en compte des déformations différées : étape 2

comme :

\[S_{\text{ouv}}(F) = 2 \sum_i (w_i(F)) , \quad (5.3.1) \]

avec l’hypothèse forte d’un champ de fissures symétrique par rapport à la section centrale. Les évolutions de \(S_{\text{ouv}} \) pour les deux structures et pour les trois tirages aléatoires sont présentées sur la figure 5.3-c-d, en comparaison aux évolutions expérimentales. Les mêmes conclusions que celles apportées pour le comportement global Force-Flèche sont ici obtenues : (i) le coefficient de variation du champ aléatoire n’impacte pas significativement le comportement à la fissuration, (ii) pour un effort \(F \) donné, la somme numérique des ouvertures de fissures sous-estime fortement l’évolution expérimentale.

Fig. 5.3 Comportement à la fissuration des poutres TGG-D8 et TGG-D14 : étape 1.

5.4 Prise en compte des déformations différées : étape 2

Les résultats précédents ne considèrent pas l’influence des déformations différées sur le comportement mécanique des structures. Comme pour l’analyse mécanique du tirant
Chapitre 5. Modélisation du comportement de poutres précontraintes

long en traction, les déformations de retrait et de fluage peuvent provoquer un champ d’auto-contrainte et d’endommagement significatif dans la structure et par conséquent induire une diminution de la force de première fissuration.

Un nouveau phasage de chargement est donc mis en place pour prendre en compte la vie de la structure depuis sa fabrication jusqu’au test mécanique de flexion 4 points. Celui-ci est en accord avec le phasage expérimental détaillé au Chapitre 2 :

1. Les poutres sont gardées en conditions endogènes pendant 17 jours après fabrication : effets au jeune âge et déformations de retrait endogène négligés (cf. Chapitre 4).
2. Séchage des structures sur une période de 50 jours.
3. Mise en précontrainte : contrainte initiale dans le toron \(\sigma_{ini} \) égale à 100 MPa puis équilibre avec la structure.
4. Séchage des structures sur une période de 75 jours supplémentaires.
5. Chargement continu de poids propre.
6. Chargement de flexion 4 points en déplacement imposé.

Comme détaillé au Chapitre 4, la déformation totale du béton est décomposée en une déformation élastique, de retrait de dessiccation, de fluage propre et de fluage de dessiccation. Les paramètres des modèles de fluage restent inchangés. Par contre, la déformation de retrait de dessiccation n’est plus considérée comme uniforme dans la structure. Par un calcul de séchage préliminaire, celle-ci est calculée localement en fonction du degré de saturation et de la pression capillaire par la mécanique des milieux poreux non saturés. L’influence des gradients hydriques sur la fissuration de la structure est donc ici prise en compte.

Le Chapitre 1 détaille les équations de séchage et de retrait associé. Nous retiendrons ici que seuls 4 paramètres doivent être calibrés expérimentalement : \(a \) et \(b \) paramètres de Van Genuchten [Van Genuchten, 1980], \(K/\phi \) de l’équation de séchage, \(b \) coefficient de Biot. La procédure d’identification est détaillée ci-après :

1. Les paramètres de Van Genuchten sont calibrés par rapport à des isothermes de désorption de la littérature [Philajavaara, 1974] : \(a = 31.8 \) MPa, \(b = 2.15 \).
2. Le rapport \(K/\phi \) est calibré sur l’évolution expérimentale de perte en masse en fonction du temps d’une éprouvette \(7 \times 7 \times 28 \) cm\(^3\) : \(K/\phi = 1.5 \times 10^{-20} \) m\(^2\). La comparaison numérique-expérimentale est présentée sur la figure 5.4-a.
3. Le coefficient de Biot \(b \) est calibré sur l’évolution expérimentale du retrait de dessiccation en fonction de la perte en masse d’une éprouvette \(7 \times 7 \times 28 \) cm\(^3\) : \(b = 0.25 \). La comparaison numérique-expérimentale est présentée sur la figure 5.4-b.

Les calculs de séchage et de retrait (avec mise en précontrainte intermédiaire après 50 jours) sont appliqués aux deux poutres TGG-D8 et TGG-D14. La présence des armatures passives induit un champ auto-équilibré de contrainte dans la structure, de la même manière qu’au Chapitre 4. À cela s’ajoute des contraintes de traction localisées sur les surfaces en contact avec le milieu environnant, dues au gradient hydrique. Le champ d’endommagement provoqué par la phase de séchage de 125 jours est présenté sur la
5.4. Prise en compte des déformations différées : étape 2

Les chargements de poids propre et de flexion 4 points (phases 4 et 5) provoquent par la suite une mise en compression des éléments situés au dessus de l’axe neutre. Les éléments endommagés doivent reprendre progressivement leur raideur initiale par le phénomène de re-fermeture des fissures (effet unilatéral [Sellier et al., 2013b] [Vassaux, 2015]). Le modèle de Mazars utilisé ne considère pas l’effet unilatéral dans sa version d’origine. Par conséquent, le champ d’endommagement est ici idéalisé en imposant une valeur $D = 0$ en partie supérieure (Figure 5.5-b). Ce choix correspond à une reprise instantanée de la raideur locale des éléments concernés.

Fig. 5.4 Calibration des modèles de séchage et de retrait de dessiccation sur des épreuves 7×7×28 cm3.

Figure 5.5-a pour la poutre TGG-D14. On retrouve un endommagement localisé sur les surfaces extérieures (gradient hydrique) et autour des aciers passifs inférieurs (gradient hydrique et restreinte des déformations de retrait par les armatures).

Fig. 5.5 Champ d’endommagement après 125 jours de séchage - poutre TGG-D14 (seuil à $D = 0.5$) : (a) issu de la simulation des phases 1, 2 et 3, (b) idéalisé pour la suite de la simulation phases 4 et 5.
Considérant le champ de contrainte et le champ d’endommagement idéalisé issus des phases 1, 2 et 3, les chargements mécaniques de poids propre et de flexion 4 points (phases 4 et 5) sont ensuite simulés. Les résultats sont présentés sur la figure 5.6, focalisés sur les phases élastique et d’initiation de la fissuration :

– le champ initial d’endommagement provoque une perte de raideur dans la phase élastique (Figure 5.6-a-b). La rigidité élastique est de ce fait bien corrélée aux résultats expérimentaux ;
– la prise en compte du champ initial de contrainte permet de correctement simuler la perte progressive de raideur due à la fissuration et la phase post-élastique ;
– par conséquent, l’évolution de la somme des ouvertures de fissures est aussi correctement simulée (Figure 5.6-c-d), et non sous-estimée comme à l’étape 1.

Fig. 5.6 Comportement global et comportement à la fissuration des poutres TGG-D8 et TGG-D14 avec prise en compte de la phase de séchage pendant 125 jours, comparaison aux résultats expérimentaux et aux résultats numériques de l’étape 1.
5.5. Comportement mécanique avec précontrainte TGG

Ces résultats valident l’importance de la prise en compte des déformations différences du béton pour des calculs de structure. Principalement en phase d’initiation de la fissuration (phase de service des ouvrages de Génie Civil), les simulations présentées permettent de prédire objectivement le comportement global et à la fissuration des structures armées précontraintes.

5.5 Comportement mécanique avec précontrainte TGG

La même démarche est appliquée aux quatre poutres précontraintes par toron non-adhérent TGG. Le comportement mécanique est simulé jusqu’à la phase de plastification des aciers passifs inférieurs.

5.5.1 Comportements globaux

Les simulations numériques montrent une bonne corrélation numérique-expérimentale des réponses globales Force-Flèche jusqu’à la plastification des aciers passifs inférieurs (Figure 5.7-a-b). Par la prise en compte de la période séchage, la phase d’initiation de la fissuration (perte progressive de raideur globale après la phase élastique) est correctement prédite. S’en suit une pente quasi-constante (phase de propagation verticale des fissures) qui dépend du taux d’armatures passives dans la structure. Celle-ci est aussi en accord avec la réponse expérimentale post-élastique.

Néanmoins, on peut remarquer une moins bonne prédiction de la force nécessaire à la plastification des aciers passifs inférieurs. En effet, le comportement post-élastique des armatures n’a pas été étudié expérimentalement : limite élastique et écoulement plastique. Arbitrairement, elles suivent ici un comportement élasto-plastique parfait avec une limite élastique f_y égale à 500 MPa. Ceci explique le manque de pertinence de la simulation dans cette phase de plastification des armatures.

Logiquement, la simulation réaliste de la réponse globale Force-Flèche entraîne une bonne prédiction de l’évolution de la somme des ouvertures de fissures S_{ouv} : initiation des fissures vers $F \simeq 20$ kN, vitesse d’évolution dans la phase post-élastique (Figure 5.7-c-d). Pour faire le lien avec l’analyse de durabilité des structures présentée au Chapitre 2, les présents résultats de fissuration peuvent permettre de correctement simuler un transfert par diffusion au travers d’une structure précontrainte fissurée. En effet, le flux diffusif est intimement lié à la somme des ouvertures de fissures.

5.5.2 Comportements locaux : fissuration

En référence aux critères de comparaison définis au Chapitre 2, le faciès de fissuration numérique est évalué plus localement : ouverture maximale de fissures w_{max}, distribution des ouvertures de fissures à un instant donné.

L’évolution de l’ouverture maximale est présentée sur la figure 5.8-a pour les poutres TGG-D8 et TGG-D14, en comparaison aux évolutions expérimentales. L’augmentation de la section d’armatures passives en partie inférieure induit une diminution de l’ouverture
maximale de fissures pour un effort \(F \) donné. Cependant, la vitesse d’évolution expérimentale quasi-constante en phase post-élastique n’est pas retrouvée par les simulations proposées. Numériquement :

- la croissance de \(w_{\text{max}} \) s’initie plus tardivement (\(F \approx 40 \text{ kN} \)). Cette observation est la conséquence d’un endommagement diffus en fibre inférieure de la zone à moment constant, sans localisation préférentielle d’une fissure par rapport à l’autre ;
- la vitesse d’évolution de \(w_{\text{max}} \) augmente fortement avec la localisation d’une fissure donnée (positionnée généralement au droit du point d’application de l’effort) ;
- l’évolution se stabilise par la suite (intervalle 50-80 kN pour la poutre TGG-D14 par exemple) et suit la croissance expérimentale de \(w_{\text{max}} \) ;
- un ralentissement de la vitesse d’évolution est finalement observé (intervalle 80-180

Fig. 5.7 Réponses globales Force - Flèche (a) (b) et Somme des ouvertures de fissures - Force (c) (d) des quatre poutres précontraintes par torons non-adhérents TGG.
kN pour la poutre TGG-D14 par exemple) avant plastification des aciers passifs inférieurs. De nouvelles fissures se créent au cours du chargement, sans localisation préférentielle d’une fissure par rapport à l’autre.

Ce dernier point est validé par l’analyse de la distribution des ouvertures de fissures (Figure 5.8-b). Expérimentalement, les résultats présentés au Chapitre 2 ont montré des distributions quasi-identiques (nombre de fissures, ouverture moyenne, ouverture maximale) pour les quatre poutres précontraintes par toron non-adhérent TGG, pour une flèche \(v \) donnée. Ces résultats ne peuvent pas être retrouvés par les simulations proposées.

Numériquement, l’augmentation du taux d’armatures passives induit une diminution de l’ouverture maximale et une augmentation du nombre de fissures. La problématique majeure réside ainsi dans la difficulté numérique de localiser préférentiellement une fissure par rapport à l’autre. Cela rejoint les conclusions proposées au Chapitre 4 sur l’analyse de l’essai de traction sur tirant long.

Fig. 5.8 Comportement local à la fissuration : (a) évolution de l’ouverture maximale, (b) distribution des ouvertures de fissures à \(v = 8 \) mm.

Outre l’absence de propriétés hétérogènes pour la zone d’interface acier-béton (cf. Chapitre 4) qui favorise l’uniformité des ouvertures de fissures, les simulations (1/4) proposées considèrent aussi implicitement une symétrie de comportement par rapport à la section centrale de la poutre. Une simulation numérique prenant en compte la longueur totale de la structure et autorisant une possible dissymétrie du chargement entre les deux points d’application de l’effort serait ici judicieuse. Par les propriétés hétérogènes du matériau béton, ceci pourrait favoriser la croissance préférentielle d’une ou plusieurs fissures.

5.5.3 Comportements locaux : tension du toron de précontrainte

Par les conditions d’adhérence du TGG, la tension du toron est uniforme sur toute sa longueur. Elle évolue au cours de la vie de la structure en fonction de la réponse de cette dernière vis-à-vis des chargements extérieurs hydro-mécaniques :
1. σ_{ini}: imposée initialement au toron.
2. $\sigma_{\text{ini,eq}} < \sigma_{\text{ini}}$: après équilibre d’efforts avec la structure.
3. $\sigma_{\text{ret}} < \sigma_{\text{ini,eq}}$: après période de séchage de 75 jours.
4. $\sigma_{\text{ini}}^* > \sigma_{\text{ret}}$: après chargement de poids propre.

Les champs de contrainte axiale σ_{ini}, σ_{ret} et σ_{ini}^* sont tracés sur la figure 5.9 pour les poutres TGG-D8 et TGG-D12. Les pertes de précontrainte après la phase de séchage sont ici significatives (50%-60% de σ_{ini}). Elles sont la conséquence de la déformation de retrait de dessiccation et des déformations de fluage propre et de dessiccation. La valeur de σ_{ret} est aussi dépendante de la section d’armatures passives. Plus cette dernière augmente, plus les pertes de précontrainte diminuent à cause de la restreinte des déformations différées par le ferraillement.

![Figure 5.9](image.png)

Fig. 5.9 Évolution de la tension du toron de précontrainte au cours des phases successives pré-essai - poutres TGG-D8 et TGG-D12.

En comparaison aux données expérimentales, la sur-tension $\Delta \sigma$ du TGG par rapport la tension initiale σ_{ini}^* de l’essai de flexion 4 points est évaluée numériquement sur la poutre TGG-D12. Les résultats comparatifs sont présentés sur la figure 5.10.

Dans la phase élastique, la sur-tension du toron est correctement simulée. Elle est la conséquence de la déformation élastique du matériau béton sous chargement. Après fissuration, sa vitesse d’évolution en fonction de l’effort F appliqué augmente (Figure 5.10-a). Pour un effort donné, seule une légère surestimation de la sur-tension est observée.

Plutôt dépendant de la cinématique de la structure poutre et de sa déformation axiale (par les ouvertures de fissures principalement), la sur-tension est linéaire par rapport à la flèche v mesurée. On retrouve ici une bonne corrélation des résultats numériques et expérimentaux.
5.6 Comportement mécanique avec précontrainte adhérente

5.6.1 Trois cas d’étude

Dans cette partie, l’adhérence toron-coulis d’injection doit être prise en compte. Cependant, en référence aux observations des chapitres 2 et 3, le transfert des efforts internes du toron vers la structure n’est pas garanti aux abouts de la poutre sur 50 cm (présence d’une gaine de précontrainte lisse en cuivre : possible glissement coulis-gaine caractérisé par une tension quasi-uniforme du toron dans cette zone). Par conséquent, l’hypothèse suivante est choisie : sur la longueur du toron de précontrainte égale à 1.5 m (simulation (1/4)), une condition de glissement sans frottement sur 50 cm à partir de l’about de la poutre est imposée, suivie d’une adhérence toron-coulis d’injection sur une longueur d’un mètre.

Trois cas d’adhérence toron-coulis d’injection sont considérés pour la simulation numérique de structure :

1. **Cas 0 : adhérence parfaite** sans zone d’interface volumique.

2. **Cas 1 : zone d’interface volumique** (Figure 5.1) au comportement plastique ; propriétés mécaniques définies au Chapitre 3 : $K = 0.8$ MPa, $H = 2.2$ MPa.

3. **Cas 2 : zone d’interface volumique** (Figure 5.1) au comportement plastique ; propriétés mécaniques définies au Chapitre 3 : $K = 0.4$ MPa, $H = 1.1$ MPa.

Fig. 5.10 Sur-tension du TGG par rapport à la tension initiale σ^*_{ini} de l’essai - poutres TGG-D8 et TGG-D12.

Ces résultats sont le fruit de la prise en compte d’un ancrage spécifique du toron de précontrainte (connecteur calibré au Chapitre 3). Considérer un ancrage parfait aurait induit une élongation globale du toron égale à la somme des ouvertures de fissures à la hauteur du TGG (cf. Chapitre 3).
L’influence des propriétés d’adhérence est évaluée ci-après sur des critères globaux et locaux. Il est entendu que la période de séchage de 125 jours des structures est aussi considérée dans cette partie.

5.6.2 Comportements globaux

Le comportement des deux structures TA-D8 et TA-D12 est analysé jusqu’à la plastification des aciers passifs inférieurs (Figure 5.11). Grâce à la prise en compte des déformations différées du béton, les phases successives de dégradation des deux structures sont bien simulées par la modélisation proposée.

Les propriétés d’adhérence n’ont qu’une influence négligeable sur le comportement global des deux poutres précontraintes avant plastification des armatures passives inférieures. Pour une flèche v donnée, seule une légère diminution de la force appliquée est observée pour les cas 1 et 2 par rapport au cas 0 avec adhérence parfaite.

On remarque par contre une diminution de l’effort utile à la plastification des armatures pour les cas 1 et 2. En effet, ces dernières sont ici plus sollicitées à cause de la dégradation progressive de l’interface toron-coulis d’injection et le manque de reprise locale de la fissuration par l’armature de précontrainte. L’analyse de la contrainte axiale du toron au cours du chargement validera cette hypothèse.

L’évolution de la somme des ouvertures de fissures n’est ici pas présentée, puisqu’elle est une conséquence directe du comportement global force-flèche (Figure 5.6).
5.6. Comportement mécanique avec précontrainte adhérente

5.6.3 Comportements locaux : fissuration

L’évolution de l’ouverture maximale de fissures w_{max} est présentée sur la figure 5.12. En comparaison aux résultats obtenus pour les poutres précontraintes par torons non-adhérents, on note la même difficulté à représenter ce critère : augmentation tardive de l’ouverture de première fissuration, ralentissement de la cinétique d’ouverture au cours du chargement (après $F = 80$ kN pour la poutre TA-D12 par exemple).

Comme énoncé précédemment, ce point devra faire l’objet d’une attention particulière future : hétérogénéité des propriétés d’interface, simulation complète des structures avec possibilité de dissymétrie dans le chargement imposé.

![Figure 5.12](image_url)

Fig. 5.12 Comportement local à la fissuration des deux poutres précontraintes par torons adhérents : influence des propriétés d’adhérence.

5.6.4 Comportements locaux : tension du toron de précontrainte

On s’intéresse dans cette dernière sous-partie à l’évolution de la tension du toron adhérent pour la poutre TA-D12. La tension est aussi imposée égale à 100 MPa à l’instant initial. La phase de séchage de 75 jours provoque la diminution progressive de la contrainte axiale, celle-ci restant quasi-uniforme sur la longueur du toron. Après le chargement de poids propre, la contrainte σ_{ini} est présentée sur la figure 5.13 en comparaison à la contrainte obtenue pour la poutre TGG-D12. Les pertes de précontrainte sont moins importantes dans le cas d’une précontrainte adhérente que d’une précontrainte non-adhérente. Ce résultat est en accord avec ceux obtenus sur la figure 5.9, limitant les pertes de précontrainte avec l’augmentation de la section de ferraillage passif.

La sur-tension $\Delta \sigma$ par rapport à la tension σ_{ini} est ensuite évaluée au cours du chargement pour les trois cas d’adhérence. Elle est comparée aux résultats expérimentaux issus des mesures de déformation par fibres optiques. Il semble plus logique de comparer les champs
Chapitre 5. Modélisation du comportement de poutres précontraintes

Fig. 5.13 Tension du toron de précontrainte σ_{ini}^* à l’instant initial de l’essai : comparaison poutres avec précontrainte adhérente / non-adhérente.

de sur-tension numériques et expérimentaux pour une flèche v donnée, ces derniers étant corrélés à la cinématique de la structure poutre. Par conséquent, les résultats sont présentés sur la figure 5.14 pour des valeurs de flèche égales à 0.6 mm, 2 mm, 6.3 mm et 10.7 mm qui correspondent à un effort appliqué expérimental de 24.4 kN, 48.8 kN, 97.6 kN et 146.4 kN, respectivement (cf. Chapitre 3).

Notons tout d’abord qu’à chaque instant de chargement, la sur-tension est constante à l’about de la structure (2.5 m - 3 m) et varie en partie centrale (1.5 m - 2.5 m). Ce constat est la conséquence des conditions de glissement sans frottement et des conditions d’adhérence toron-coulis d’injection, respectivement.

Dans la phase élastique ($v = 0.6$ mm), les simulations montrent une évolution quasi-constante de la sur-tension dans la zone à moment constant (1.5 m - 2 m) puis une décroissance dans la zone annexe (2 m - 2.5 m). Les propriétés d’adhérence n’influencent pas à ce niveau de chargement, l’interface toron-coulis d’injection n’étant pas endommagée. L’évolution numérique est bien corrélée à celle expérimentale, avec seulement une légère surestimation des valeurs de sur-tension dans la zone centrale. À ce stade, considérer une interface parfaite est suffisante pour la simulation du comportement des structures en phase élastique.

Dans la phase d’initiation de la fissuration ($v = 2$ mm), l’influence des propriétés d’interface devient significative :

- le cas 0 avec adhérence parfaite présente une localisation préférentielle de la contrainte axiale du toron dans la zone centrale provoquée par la fissuration de la structure. Ce résultat est en désaccord avec les champs mesurés. De plus, la sur-tension est sous-estimée aux abouts ;
- le cas 1 avec interface toron-coulis d’injection reproduit l’absence de localisations préférentielles de la sur-tension au droit des fissures grâce à la modélisation du
5.6. Comportement mécanique avec précontrainte adhérente

Fig. 5.14 Évolution de la tension du toron de précontrainte au cours du chargement.

Le glissement relatif entre le toron et la structure environnante. Ce cas de modélisation permet de reproduire efficacement les résultats expérimentaux :

Les mêmes observations peuvent être faites dans la phase de propagation de la fissuration ($v = 6.3$ mm et $v = 10.7$ mm) :
– le cas 0 ne présente plus de localisations à cause de la dégradation du matériau coulis d’injection. Cependant, la sur-tension est fortement surestimée dans la zone centrale ;
– le cas 1 reproduit le mieux les résultats expérimentaux. Seule une légère surestimation de la contrainte dans la zone d’about est remarquée à $v = 6.3$ mm, possiblement...
due au comportement d’ancrage ;
– l’évolution simulée avec le cas 2 confirme la surestimation de la dégradation d’interface, comme identifié dans la phase précédente.

Les propriétés d’adhérence n’ont montré qu’une faible influence sur le comportement global et sur le comportement à la fissuration des deux structures précontraintes par torons adhérents. Cependant, l’évolution du champ simulé de sur-tension du toron est quant à lui grandement dépendant de la résistance de l’interface toron-coulis d’injection. Le cas numérique 1 est ici le plus représentatif des comportements globaux et locaux expérimentaux.
5.7 Conclusion

Ce chapitre avait pour objectif de valider la modélisation proposée de structure sur les essais expérimentaux menés au Chapitre 2. Les outils numériques développés aux Chapitres 3 et 4 ont ici été utilisés simultanément pour enrichir la modélisation des comportements locaux jouant un rôle majeur dans le comportement structurel global.

De manière générale, les déformations différencées du béton dans la phase pré-essai mécanique ont montré une influence significative sur les réponses globales et locales des structures soumises à un chargement ultérieur de flexion 4 points. Leur prise en compte est primordiale pour une estimation cohérente du comportement mécanique des structures, principalement dans la phase élastique et d’initiation de la fissuration.

La simulation du comportement de structures précontraintes par torons non-adhérents TGG a ici été validée. La réponse Force-Flèche, l’évolution de la somme des ouvertures de fissures et l’évolution de la sur-tension du TGG sont correctement prédites par le calcul numérique.

Il en est de même pour le cas d’une précontrainte adhérente. Néanmoins, la résistance mécanique de l’interface toron-coulis d’injection doit être correctement évaluée a priori pour le calcul de l’évolution du champ de sur-tension du toron adhérent. Sur la base des essais d’arrachement présentés au Chapitre 4, un jeu de paramètres d’interface toron-coulis a été validé par rapport aux données expérimentales.

Pour toutes les simulations présentées, seuls les critères très locaux de fissuration (ouverture maximale, distribution des valeurs d’ouverture) n’ont pas pu être simulés correctement. Comme détaillé précédemment, l’homogénéité des propriétés d’interface et le choix d’une simulation (1/4) peuvent en être à l’origine.
Chapitre 5. Modélisation du comportement de poutres précontraintes
Chapitre 6

Application industrielle : enceinte de confinement

Ce chapitre porte sur l’analyse de la tenue structurelle et du comportement à la fissuration d’une tranche d’enceinte de confinement de centrale nucléaire. Il compare l’influence de deux dimensionnements de précontrainte : par torons adhérents ou par torons non-adhérents TGG. La comparaison s’appuie sur un critère global d’étanchéité et de durabilité de structure : évolution de la somme des ouvertures de fissures.
6.1 Introduction

Depuis la construction des premières centrales nucléaires françaises dans les années 1970, une importante évolution dans le dimensionnement des enceintes de confinement est à noter. Nous nous baserons dans cette partie sur le palier P’4 défini sur la figure 6.1. Le diamètre intérieur de la structure interne précontrainte est de 43.8 m et son épaisseur de 1.2 m. Les sections ortho-radiales d’armatures passives et de précontrainte adhérente (dimensionnement actuel) sont illustrées sur une section répresentative d’une hauteur de 1 m. L’influence de la précontrainte verticale ne sera pas abordée dans cette partie.

L’enceinte de confinement est dimensionnée pour résister mécaniquement et garantir l’étanchéité de la structure lors d’un accident de type APRP (Accident par Perte de Réfrigérant Primaire) : montée rapide à une pression interne absolue de 0.5 MPa (0.4
MPa de sur-pression par rapport à la pression atmosphérique) et élévation de la tempé-
ration à une valeur de 150 degrés Celsius. Le rôle de la précontrainte est ainsi primordial
pour garantir l’étanchéité de l’enceinte sous ce type de chargement accidentel.

Deux dimensionnements de l’enceinte P’4 sont étudiés et comparés dans ce chapitre :
solution avec précontrainte adhérente, solution avec précontrainte non-adhérente TGG.
La tenue mécanique de la structure est évaluée jusqu’à rupture. L’influence du chargement
thermique ne sera par contre pas considérée.

6.2 Dimensionnement de la précontrainte

Lors de la mise en tension d’un câble de précontrainte, la contrainte axiale n’est pas
uniforme sur sa longueur en raison des pertes par frottement avec la gaine de précontrainte.
Elle suit la relation suivante :

\[\sigma(x) = \sigma_0 \exp(-\mu (k x + \theta)), \]
(6.2.1)

avec \(\sigma_0 = 1488 \text{ MPa} \) la tension imposée à l’extrémité (limite de tension des câbles environ
égale à \(0.9 f_y \)) [Isard et al., 2013], \(x \) l’abscisse curviligne, \(k \) le coefficient de perte en ligne,
\(\mu \) le coefficient de frottement, \(\theta \) la déviation angulaire cumulée. Les valeurs de \(k \) et \(\mu \) sont
données dans le tableau 6.1 dans le cas d’une précontrainte adhérente et non-adhérente
TGG.

<table>
<thead>
<tr>
<th></th>
<th>(\mu) [rad(^{-1})]</th>
<th>(k) [rad(^{-1}.m^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>0.17</td>
<td>0.007</td>
</tr>
<tr>
<td>TGG</td>
<td>0.05</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Table 6.1 Coefficient pour le calcul des pertes de précontrainte par frottement [Isard
et al., 2013]

La figure 6.2 montre l’évolution de la tension de deux câbles de précontrainte ancrés sur des
nervures d’ancrage opposées. Les pertes par frottement sont nettement moins importantes
dans le cas non-adhérent TGG. Ceci permet donc d’envisager une diminution de la section
d’armatures de précontrainte TGG par rapport au cas adhérent, tout en garantissant une
contrainte initiale identique de compression dans le matériau béton. Notons que les pertes
instantanées par rentrée de clavette ne sont ici pas intégrées.

En prenant l’hypothèse d’une variation quasi-linéaire de la tension, la contrainte moyenne
\(\sigma_{moy} \) des deux câbles voisins est uniforme sur le périmètre de l’enceinte. Ainsi, la section
\(S_{TGG} \) à considérer est calculée comme :

\[S_{TGG} = S_{TA} \frac{\sigma_{TGG}^{moy}}{\sigma_{TA}^{moy}} = 10886 \text{ mm}^2, \]
(6.2.2)

avec \(S_{TA} \) la section de précontrainte adhérente issue du dimensionnement actuel.

Avec comme objectif d’imposer un état initial de compression de -12 MPa dans
le matériau béton, la solution d’une précontrainte TGG permet de diminuer
d’environ 15 % la section d’armatures de précontrainte horizontale par rapport
à la solution avec précontrainte adhérente.
Fig. 6.2 *Champ de tension des armatures de précontrainte ancrées sur des nervures opposées (Cas TA et TGG)*.

6.3 Modélisation adoptée

6.3.1 Approche générale

L'étude porte sur un anneau complet de 360 degrés et d'une hauteur de 1 m, comme défini sur la figure 6.1. La structure est soumise à une sur-pression interne croissante.

Le matériau béton est considéré comme élasto-endommageable suivant un critère de Mazars [Mazars, 1986] régularisé en énergie de fissuration [Hillerborg *et al.*, 1976]. Les propriétés mécaniques suivent des valeurs classiques : module de Young $E_b = 30$ GPa, énergie de fissuration $G_f = 100$ J.m$^{-2}$, résistance caractéristique à la compression $f_{ck} = 35$ MPa, résistance moyenne à la traction $f_t = 3$ MPa mesurée sur des éprouvettes cylindriques de diamètre 16 cm et de hauteur 32 cm.

Il y a néanmoins lieu de prendre en compte les effets d'échelle sur la résistance à la traction, entre celle mesurée sur des éprouvettes de laboratoire et celle caractéristique de la structure. Suivant les recommandations de [CEOS.fr, 2015], la résistance à la traction moyenne de la structure $f_{t_{stru}}$ peut s'écrire comme :

$$f_{t_{stru}} = f_{t_{ref}} \left(\frac{V_{ref}}{V_{stru}} \right)^{1/k},$$

(6.3.1)

avec $f_{t_{ref}} = f_t = 3$ MPa, V_{ref} le volume en traction de l’éprouvette de référence (cylindre de diamètre 16 cm et de hauteur 32 cm), V_{stru} le volume en traction de la structure et k l’exposant de Weibull. Ce dernier est défini comme :

$$k = (0.25 - 3.6 \times 10^{-3} f_{cm} + 1.3 \times 10^{-5} f_{cm}^2)^{-1},$$

(6.3.2)
avec f_{cm} la résistance moyenne du béton égale à 43 MPa (résistance caractéristique + 8 MPa selon l’Eurocode 2). De plus, le volume V_{stru} est borné à environ 2 m3 pour des structures de grandes dimensions.

Il en résulte une résistance f_{stru}^{t} égale à 1.2 MPa, diminuée de 60 % par rapport à la résistance mesurée en laboratoire. Afin de favoriser la localisation de l’endommagement, un champ aléatoire corrélé sur la résistance à la traction du béton est imposé à la structure : valeur moyenne f_{stru}^{t}, écart-type de 10 % et longueur de corrélation de 1 m. La valeur choisie pour la longueur de corrélation est discutable physiquement mais permet de ne pas trop raffiner le maillage et de ne pas augmenter fortement les temps de calcul. Un même tirage aléatoire sera utilisé pour chaque simulation. Il est illustré sur la figure 6.3.

![Fig. 6.3 Champ aléatoire sur la résistance à la traction du béton - enceinte de confinement.](image)

Les armatures passives sont maillées avec des éléments barres. Une adhérence parfaite armature-béton est considérée. Leur limite élastique est choisie forfaitairement égale à 500 MPa.

6.3.2 Prise en compte du système couplé coulis d’injection - armatures de précontrainte

Quatre cas seront étudiés dans ce chapitre. Ils se distinguent par la prise en compte d’une précontrainte adhérente ou non-adhérente, ainsi que de l’interface torons-coulis d’injection associée :

1. TA - cas 1 : interface torons - coulis considérée comme parfaite.
2. TA - cas 2 : zone d’interface volumique torons - coulis définie au Chapitre 3.
3. TGG - cas 1 : glissement sans frottement du câble de précontrainte ; sur-tension négligée selon les normes européennes actuelles.
4. **TGG - cas 2** : glissement sans frottement du câble de précontrainte ; sur-tension prise en compte.

Les simulations *TA-cas1*, *TGG - cas 1* et *TGG - cas 2* s’appuient sur la modélisation présentée sur la figure 6.4-a. Les propriétés du coulis d’injection sont aussi définies sur des valeurs classiques : module de Young $E_{co} = 10$ GPa, énergie de fissuration $G_f = 100$ J.m$^{-2}$, résistance à la traction $f_{t,co} = 1.2$ MPa (en l’absence de données précises sur les propriétés de ce matériau, la résistance à la traction est considérée égale à celle du matériau béton).

La simulation *TA - cas 2* s’appuie quant à elle sur la modélisation présentée sur la figure 6.4-b. La section de la zone d’interface est égale à la section d’armatures de précontrainte A_p. Son module de Young suit celui du coulis d’injection. Les paramètres K et H du critère de von Mises (Chapitre 3) sont calibrés numériquement par rapport aux réponses expérimentales Contrainte de cisaillement - Glissement obtenues sur les essais d’arrachement au Chapitre 3 : $K = 2$ MPa, $H = 50$ MPa.

![Fig. 6.4 Modélisation de la section d’enceinte étudiée : (a) contact direct toron-coulis d’injection avec adhérence (TA) ou glissement (TGG), (b) présence d’une zone d’interface toron-coulis d’injection (TA).](image)

6.3.3 Phasage de simulation

Le phasage des quatre simulations est en lien avec les contraintes technologiques associées à l’utilisation de torons adhérents ou de torons non-adhérents TGG. Dans le cas adhérent, l’injection du coulis de ciment n’est effectuée qu’après la mise en tension des torons. Le coulis n’est par conséquent pas précontraint avec la structure (état de contrainte nul du matériau sans sollicitations mécaniques extérieures). À l’inverse, l’injection est effectuée avant mise en tension des torons non-adhérents TGG. Le coulis est ainsi précontraint par la suite avec le reste de la structure.

Ces contraintes technologiques sont retranscrites dans les simulations numériques proposées. Pour les cas *TA - cas 1* et *TA - cas 2*, les propriétés mécaniques du coulis et de l’interface torons-coulis ne sont activées qu’après mise en tension de la structure.
6.4. Vérification de la tenue mécanique

La contrainte moyenne initiale $\sigma_{\text{moy.ini}}$ dans le câble de précontrainte est calculée afin d’obtenir une contrainte de compression de -12 MPa dans le matériau béton :

- cas adhérent : $\sigma_{\text{moy.ini}}^{\text{TA}} = 1116$ MPa ;
- cas non-adhérent TGG : $\sigma_{\text{moy.ini}}^{\text{TGG}} = 1318$ MPa.

Les pertes instantanées de précontrainte par rentrée de clavette ne sont ici pas prises en compte.

6.3.4 Critères de rupture

Une sur-pression interne croissante est imposée aux quatre configurations de structure. Leur comportement mécanique est étudié jusqu'à la première plastification des armatures passives ($f_y = 500$ MPa) ou de précontrainte ($f_y = 1650$ MPa). Les simulations doivent permettre de garantir et vérifier la tenue mécanique de l’enceinte de confinement sous un chargement de type APRP (sur-pression de 0.4 MPa).

Le terme de « rupture » sera utilisé par la suite et aura pour signification « la première plastification des armatures passives ou des câbles de précontrainte ». Il n’est donc pas synonyme de la résistance structurelle ultime.

6.4 Vérification de la tenue mécanique

6.4.1 Cas non-adhérent : influence de la sur-tension

Les configurations TGG - cas 1 et TGG - cas 2 sont étudiées dans cette partie. Pour rappel, les deux simulations diffèrent par l’absence ou la prise en compte de la sur-tension du câble de précontrainte au cours du chargement.

Le comportement mécanique est évalué par l’évolution de la somme des ouvertures moyennes de fissures (moyenne des valeurs obtenues à l’intrados et à l’extrados de l’enceinte) en fonction de la sur-pression appliquée. Les résultats sont donnés sur la figure 6.5.

La première fissuration s’initie à une sur-pression de 0.71 MPa et 0.75 MPa pour les cas TGG - cas 1 et TGG - cas 2, respectivement. Ces valeurs de pression sont bien supérieures à la pression de dimensionnement APRP. La sur-tension du câble ne joue pas un rôle prédominant dans cette phase. Cependant, le comportement post-fissuration est grandement dépendant de l’évolution de la contrainte axiale dans les armatures de précontrainte :

- TGG - cas 1 : après fissuration, les valeurs d’ouvertures de fissures augmentent fortement et le critère de rupture de la structure est rapidement atteint par la plastification des aciers passifs ($\Delta p = 0.72$ MPa) ;
- TGG - cas 2 : après l’initiation à $\Delta p = 0.75$ MPa, la fissuration augmente progressivement jusqu’à la plastification des armatures de précontrainte ($\Delta p = 0.87$ MPa).
La contrainte axiale du câble précontraint est tracée pour les deux configurations sur la figure 6.6. On retrouve une contrainte constante pour la simulation *TGG - cas 1*. À l’inverse, pour la simulation *TGG - cas 2*, elle croît en deux phases d’évolution pré- et post-fissuration. À rupture, la sur-tension maximale est calculée égale à 332 MPa, c’est-à-dire à environ 25% de la tension initiale $\sigma_{\text{moy,ini}}^{\text{TGG}}$.

Les codes actuels européens proposent de négliger la sur-tension des torons de précontrainte pour le dimensionnement de structures. Dans notre cas d’étude, cette hypothèse est justifiable pour l’estimation de la pression de première fissuration. Par contre, elle...
devient extrêmement conservatrice pour l’analyse du comportement post-fissuration. Le calcul de la sur-tension des câbles de précontrainte doit par conséquent faire partie des phases de conception pour une estimation réaliste du comportement mécanique de l’enceinte de confinement sous chargements mécaniques divers. Elle peut être calculée directement par des calculs aux éléments finis (comme proposé dans cette étude) ou par des calculs analytiques se basant sur la déformation totale de la structure (Chapitre 1).

6.4.2 Cas adhérent : influence de l’interface torons - coulis d’injection

La prise en compte d’une interface spécifique torons - coulis d’injection a montré précédemment une influence importante sur le comportement des câbles par rapport à une interface parfaite (Chapitre 5). Elle est à nouveau évaluée pour cette application structurelle d’enceinte de confinement par les simulations TA - cas 1 et TA - cas 2.

De la même manière, le comportement global des deux structures est étudié par l’évolution de la somme des ouvertures moyennes de fissures au cours du chargement de montée en pression interne (Figure 6.7). La fissuration s’initie pour une même valeur de sur-pression dans les deux cas ($\Delta p = 0.76 \text{ MPa}$). Les caractéristiques mécaniques de l’interface torons - coulis d’injection ont une influence négligeable sur le comportement post-fissuration. Le critère de rupture des deux structures est atteint à environ $\Delta p = 0.95 \text{ MPa}$ par la plastification des armatures passives.

![Figure 6.7 Comportement mécanique d’une enceinte soumise à une pression interne : TA - cas 1 et TA - cas 2.](image)

L’analyse porte aussi sur l’évolution de la contrainte axiale du câble adhérent au cours du chargement pour les deux configurations proposées. La figure 6.8 montre les champs de tension à trois instants de chargements ($\Delta p = 0.77 \text{ MPa}$, $\Delta p = 0.80 \text{ MPa}$ et $\Delta p = 0.90 \text{ MPa}$) sur un quart d’enceinte (90 degrés). Pour de faibles niveaux de pression, de légères localisations de contrainte apparaissent au droit des zones endommagées. Les valeurs maximales de sur-tension sont similaires pour les deux configurations.
Il semble par conséquent évident que la précontrainte par torons adhérents ne garantit pas un ancrage suffisant des torons de précontrainte dans les zones inter-fissures. En effet, on peut observer une augmentation généralisée de la tension sur la longueur du câble. Cette tendance converge vers un champ quasi-uniforme de tension pour d’importants niveaux de sur-pression ($\Delta p = 0.90 \text{ MPa}$). L’analyse de la dégradation du coulis d’injection au cours du chargement permet d’apporter une explication à ces résultats. Pour la configuration $TA - cas 2$, la figure 6.9 illustre les champs d’endommagement des matériaux béton et coulis d’injection dans les phases pré-fissuration et post-fissuration du béton, $\Delta p = 0.70 \text{ MPa}$ et $\Delta p = 0.77 \text{ MPa}$, respectivement.

Fig. 6.8 Contraire axiale du câble de précontrainte adhérent TA au cours du chargement : $TA - cas 1$ et $TA - cas 2$.

Fig. 6.9 Champs d’endommagement béton et coulis d’injection : configuration $TA - cas 2$.
Le coulis d’injection se dégrade prématurément, antérieurement à la pression de première fissuration du matériau béton. En effet, l’injection est effectuée après mise en tension des câbles de précontrainte. Le coulis n’est par conséquent pas précontraint avec le reste de la structure et atteint rapidement sa limite élastique $f_{l,co} = 1.2 \text{ MPa}$ lors la montée en pression. Ceci limite le transfert d’efforts du béton vers les armatures actives et explique la sur-tension quasi-uniforme du câble de précontrainte.

La dégradation prématurée du matériau d’injection inhibe l’effet de l’interface torons - coulis et valide donc les comportements mécaniques similaires des configurations TA - cas 1 et TA - cas 2.

6.4.3 Comparaison Cas adhérent / Cas non-adhérent TGG

La comparaison du comportement mécanique d’une tranche d’enceinte de confinement précontrainte par torons adhérents ou par torons non-adhérents (TA - cas 2 et TGG - cas 2) montre une évolution similaire de la somme des ouvertures de fissures pour les deux configurations (Figure 6.10). Pour une valeur de sur-pression donnée, la légère différence de comportement est la conséquence de la diminution de la section de précontrainte TGG, qui réduit la variation des efforts internes dans le câble par rapport au cas adhérent.

La localisation de l’endommagement au cours du chargement est par ailleurs différente pour les deux configurations. Avec le cas adhérent, de multiples points de localisation répartis « uniformément » sur le périmètre de l’enceinte apparaissent dès la phase d’initiation de la fissuration (Figure 6.11-a). Leur nombre n’augmente pas significativement au cours du chargement (Figure 6.11-c). À l’inverse, la configuration TGG - cas 2 fait apparaître une dégradation plus localisée du matériau béton (Figure 6.11-b). Lors de la
Chapitre 6. Application industrielle : enceinte de confinement

(a) TA - $\Delta p = 0.77$ MPa (b) TGG - $\Delta p = 0.77$ MPa

(c) TA - $\Delta p = 0.80$ MPa (d) TGG - $\Delta p = 0.80$ MPa

Fig. 6.11 Champ d’endommagement de l’enceinte de confinement : TA - cas 2 et TGG - cas 2.

montée en pression, l’endommagement diffuse sur le périmètre de l’enceinte à partir des points de localisation initialement créés (Figure 6.11-d).

À ce stade, l’utilisation d’une précontrainte non-adhérente TGG peut sembler légèrement plus préjudiciable que le cas adhérent lors d’une montée en sur-pression élevée ($\Delta p > 0.75$ MPa). Elle fait néanmoins intervenir une section de câble diminuée de 15 % par rapport au cas adhérent. Les deux cas répondent, avec la même marge de sécurité d’environ 90 %, aux exigences de tenue structurelle et d’étanchéité par rapport à la surpression interne de dimensionnement de 0.4 MPa. Notons cependant qu’une étude plus détaillée avec prise en compte de la montée en température interne à 150 degrés Celsius doit être menée pour quantifier l’influence structurelle d’un accident de type APRP.

6.4.4 Prise en compte des déformations différées

Les simulations numériques précédentes se basaient sur un état de contrainte représentatif de l’état initial de la structure après la mise en tension des câbles. Aucunes pertes de précontrainte provoquées par les déformations différées du béton n’étaient alors prises en compte. Néanmoins, des déformations différées relativement élevées dans le matériau béton ont pu être relevées sur certaines enceintes de confinement en France [Ragouin,
Vérification de la tenue mécanique

2014. Elles peuvent atteindre des valeurs de l’ordre de -1800×10^{-6} dans la direction ortho-radiale après 40 ans de mise en service (somme de la déformation élastique et des déformations différées).

La perte de tension associée dans les câbles est de l’ordre de 300 MPa. Il en résulte une diminution de la contrainte de compression dans le matériau béton d’environ 25 %. Cet état modifié de compression est irréversible dans le cas adhérent. À l’inverse, par la re-tension des torons non-adhérents TGG, l’état de contrainte initial peut être garanti au cours de la vie de l’ouvrage.

Le comportement mécanique des configurations TA - cas 2 et TGG - cas 2 est ainsi réévalué à partir de ce nouvel état de contrainte. Les résultats sont présentés sur la figure 6.12. Sans commenter le comportement évolutif à la fissuration des deux structures, il est important de noter que les deux solutions technologiques garantissent toujours le maintien structurel de l’enceinte lors d’un accident APRP. Néanmoins, la marge de sécurité pour la configuration adhérente est fortement diminuée par l’influence des déformations différées du béton sur la structure. La solution par torons gainés graissés TGG permet de répondre, grâce à une re-tension des câbles de précontrainte, aux exigences de sûreté et de durabilité des installations. Les déformations différées pourraient être en effet compensées en permanence par la précontrainte au cours de la durée d’exploitation de l’enceinte de confinement.

![Fig. 6.12](image)

Comportement mécanique d’une enceinte soumise à une pression interne avec prise en compte des déformations différées : déformations totales de -1800×10^{-6} après 40 ans.
6.5 Conclusion

Ce chapitre portait sur l’étude du comportement mécanique d’une partie courante d’enceinte de confinement. Deux dimensionnements caractérisés par une précontrainte adhérente ou non-adhérente TGG étaient comparés.

Il ressort tout d’abord de l’analyse que la section de précontrainte peut être diminuée d’environ 15\% dans le cas TGG par rapport à la solution adhérente. Ceci est la conséquence d’une meilleure répartition de la tension le long des câbles grâce à la diminution des pertes par frottement. La solution non-adhérente présente ainsi un atout économique certain pour ce type de structures au regard des sections de précontrainte mises en jeu.

À partir des simulations présentées, deux points majeurs ont pu être identifiés :

1. Dès lors qu’une fissuration généralisée de la structure peut advenir (sans localisation préférentielle de la fissuration), il y a lieu de considérer la sur-tension des torons non-adhérents TGG pour l’analyse du comportement à la fissuration des structures.

2. L’interface torons - coulis d’injection n’a qu’une influence négligeable sur le présent cas d’étude avec précontrainte adhérente. La dégradation généralisée du coulis d’injection dans la phase de pré-fissuration en est la raison.

Les deux solutions de précontrainte garantissent de manière similaire la résistance structurelle et l’étanchéité de l’enceinte sous un chargement de sur-pression interne croissante :

– en négligeant les déformations différées, le comportement à la fissuration pour les deux simulations est relativement similaire. La fissuration s’initie à une valeur de sur-pression d’environ 0.75 MPA et se généralise ensuite sur le pourtour de la structure. Seule une légère augmentation des valeurs d’ouvertures de fissures est observée dans le cas non-adhérent ;

– par la re-tension des torons TGG, la solution non-adhérente permet de garantir une marge de sécurité importante par rapport à la sur-pression de dimensionnement APRP sur la durée de mise en service de l’enceinte.

La prise en compte du chargement thermique (montée en température à 150 degrés Celsius) devra faire l’objet d’une étude supplémentaire afin de prédire la marge de sécurité admissible de l’enceinte lors d’un accident de type APRP.

En conclusion, pour le dimensionnement d’une partie courante d’enceinte de confinement, le cas de charge APRP ne dimensionne pas la section d’armatures passives. Il ne semble donc pas nécessaire de proposer un supplément de section d’armatures passives pour compenser l’absence d’adhérence des torons TGG. La sur-tension globale des torons doit néanmoins être intégrée dans les calculs réglementaires pour une meilleure prédiction du comportement mécanique de la structure étudiée.

Enfin, nous n’avons pas proposé dans cette partie de critères locaux de comparaison tels que l’évolution de l’ouverture maximale des fissures ou du nombre de fissures par exemple. Ils demandent une meilleure description de la structure (Chapitre 4 et 5) pour être prédictifs et une grande finesse de maillage pour être réalistes.
Conclusion générale

L’objectif premier de ces travaux était d’étudier le comportement mécanique de structures précontraintes par post-tension et d’évaluer l’influence de la technologie de précontrainte utilisée : précontrainte adhérente au coulis d’injection et précontrainte non-adhérente avec torons gainés graissés. Vis-à-vis des critères de sûreté et de durabilité adjoints aux installations nucléaires et à l’enceinte de confinement du bâtiment réacteur, l’attention a été portée principalement (i) sur l’évolution de la fissuration des structures soumises à des chargements mécaniques divers et (ii) au rôle de l’interface torons de précontrainte - structure sur ce même comportement.

De façon schématique, les structures étudiées sont un assemblage de trois composants : le matériau béton, les câbles de précontrainte et les armatures passives. L’analyse du comportement structural doit donc intégrer le comportement à l’échelle locale des différents composants et leur interaction au sein du système. La démarche proposée a été construite dans cette optique et a permis une analyse découpée des différents mécanismes de dégradation à l’échelle de la structure ou du matériau.

Échelle de la structure : élaboration d’une base de données expérimentales

Les chapitres introductifs identifiaient un manque de données expérimentales sur la dégradation locale des structures précontraintes. Ces travaux proposent une étude détaillée du comportement mécanique de six poutres précontraintes testées en flexion 4 points. Avec l’utilisation de systèmes multiples d’instrumentation, les résultats obtenus ont mis en lumière les éléments suivants :

1. La solution de précontrainte adhérente ou non-adhérente par TGG n’a pas montré d’influence significative sur la réponse globale des éprouvettes. Seul le taux de ferraillage passif provoque une augmentation de la raideur structurelle en phase de fissuration et une augmentation de la résistance mécanique à rupture.

2. Une analyse de l’évolution de la fissuration par corrélation d’images numériques a été menée sur les six éprouvettes au cours du chargement. Sur la base de critères globaux (somme des ouvertures de fissures) ou locaux (nombre de fissures, ouverture maximale de fissures, somme au cube des ouvertures de fissures), il a été observé que le comportement à la fissuration n’était pas impacté par la solution de précontrainte considérée. L’augmentation du taux de ferraillage passif a mené, quant à elle, à une diminution de la somme des ouvertures de fissures et de l’ouverture maximale, sans modifications du faciès général (nombre de fissures constant d’une poutre à l’autre). La section d’armatures passives contrôlait, presque à elle seule, le processus de fissuration.
3. Enfin, le comportement local du toron de précontrainte adhérent ou non-adhérent a été mis en évidence expérimentalement. En collaboration avec l’IFSTTAR, une méthode d’instrumentation par fibres optiques a été développée dans ces travaux. Le champ de déformation du toron peut être évalué au cours de la sollicitation mécanique appliquée à la structure. Cette méthode se caractérise principalement (i) par sa faible intrusivité dans le système, (ii) par sa robustesse lors de la manutention, de l’installation et de la mise en tension du toron et (iii) par la haute résolution spatiale de l’interrogation. Les mesures obtenues ont permis de caractériser le caractère glissant sans frottement des torons non-adhérents TGG et l’absence de déformations localisées au droit des fissures pour les torons adhérents au coulis d’injection. Ce dernier point a été validé par une analyse qualitative de la dégradation progressive du coulis d’injection grâce à un capteur à fibres optiques coulé dans ce matériau.

Échelle locale : caractérisation expérimentale de la résistance aux interfaces

En parallèle, les comportements des interfaces torons adhérents - structure et armatures passives - béton ont été étudiés expérimentalement dans le but de quantifier localement le transfert d’efforts des armatures vers le béton. Cette analyse à l’échelle locale est complémentaire par rapport à celle précédemment mentionnée à l’échelle de la structure. Elle utilise en effet les mêmes matériaux (même gâchée de béton pour la fabrication de tous les spécimens de l’étude) et des géométries spécifiques dans un souci de représentativité et de limitation de la variabilité. On retiendra de ces essais les conclusions suivantes :

1. Des essais d’arrachement ont été menés sur des torons ancrés dans une gaine de précontrainte injectée. Ils avaient pour objectif de caractériser de manière globale le transfert d’efforts du toron vers le massif béton par l’intermédiaire de l’interface toron - coulis, du matériau coulis et de l’interface coulis - gaine de précontrainte. La contrainte de cisaillement mesurée s’est avérée très faible ce qui ne permet pas de garantir un ancrage suffisant du toron adhérent au sein de la structure.

Simulations numériques de structures : modèles et méthodologies

Une méthodologie numérique est proposée dans ces travaux de thèse pour la simulation de structures précontraintes. Elle est validée par rapport aux essais expérimentaux de poutres précontraintes sur les critères globaux et locaux définis précédemment.

Dans un premier temps, il y a lieu de prendre en compte de manière réaliste le comportement mécanique des différents composants du système d’étude :
1. Matériau béton : La modélisation du matériau béton n’a pas fait ici l’objet de développements. Il nous a semblé judicieux par rapport aux applications visées d’utiliser un modèle d’endommagement simple pour représenter le comportement du matériau en traction uniaxiale sous sollicitations monotoniques.

2. Torons de précontrainte adhérents et non-adhérents : la précontrainte et son interface avec le coulis d’injection sont considérées explicitement dans les calculs. Les torons non-adhérents sont modélisés par le biais d’éléments barres glissants axialement. La sur-tension des câbles est alors obtenue de manière directe dans les simulations. Les torons adhérents sont aussi modélisés par des éléments barres, mais une zone d’interface volumique au comportement plastique durcissant la relie au reste de la structure. Ses propriétés mécaniques ont pu être calibrées sur les essais d’arrachement de toron. Il en résulte une meilleure prédictive de la tension du câble de précontrainte dans la structure par rapport à une interface considérée comme parfaite : absence de sur-tension au droit de la fissuration, diffusion de la dégradation progressive à l’interface.

3. Massif d’ancrage de la précontrainte : par rapport à des mesures expérimentales de rentrée de clavette, une modélisation du massif d’ancrage a été intégrée aux simulations de structures. Les pertes de précontrainte provoquées par ce mécanisme sont alors considérées, ce qui favorise une bonne prédictive de la sur-tension globale ou locale du toron de précontrainte.

Une partie importante de ces travaux s’est penchée sur l’influence des déformations différencées du béton (retraits et fluages) sur la fissuration et la réponse mécanique globale des structures. Les déformations différencées de retrait de dessiccation sont restreintes par les armatures passives et actives. Ceci génère un état de pré-contrainte et d’endommagement dans le matériau qui modifie significativement le comportement mécanique structurel. Appliquées aux structures poutres, les simulations ont montré l’importance de la prise en compte des phases de séchage et de retrait de dessiccation, couplées aux déformations de fluages limitant les effets du retrait, pour une analyse mécanique prédictive des structures. En toute rigueur, l’effet unilatéral du matériau béton doit être intégré aux simulations numériques. Il est ici considéré de manière simplifiée par une modification du champ d’endommagement.
Application aux enceintes de confinement

Le rôle d’une précontrainte adhérante et non-adhérante est mis en évidence dans un calcul de structure sur une partie courante d’enceinte de confinement de centrale nucléaire. Il ressort de ces simulations que l’interface torons - coulis d’injection joue un rôle limité sur le comportement de l’ouvrage soumis à une sur-pression interne croissante. La dégradation prématurée du coulis d’injection ne garantit pas un transfert optimal d’efforts des câbles de précontrainte vers le massif béton. En outre, les solutions de précontrainte adhérante et non-adhérante sont sensiblement équivalentes pour un même niveau de contrainte initiale dans le matériau béton. L’utilisation des torons gainés graissés TGG répond cependant, grâce à la possibilité de re-tension des câbles, aux exigences de tenue structurelle, d’étanchéité et de durabilité des enceintes dans le temps. Elle présente un avantage certain vis-à-vis de la prolongation de la durée d’exploitation des centrales nucléaires.
Perspectives

Sur la base des travaux initiés dans ce manuscrit, quatre axes principaux de recherche attirent notre attention. Ils sont présentés dans cette section et feront l’objet de projets futurs.

Extension numérique et expérimentale à une solution de précontrainte multitornons

Les travaux présentés dans cette étude se sont focalisés sur une précontrainte monotoron dans les essais sur poutres et les essais d’arrachement associés. Une telle solution est pourtant rare dans les structures de génie civil et ne représente pas le dimensionnement de précontrainte propre aux enceintes de confinement. Les câbles de précontrainte sont en effet composés de plusieurs tornons regroupés en un seul ensemble.

Une nouvelle campagne expérimentale a été engagée dans ce sens. Deux poutres de longueur 6 m et de section 0.22 × 0.3 m² sont précontraintes par 4 tornons réunis dans une même gaine en feuillard d’acier. Une poutre est précontrainte par tornons adhérents (poutre 1 - TA) et la deuxième est précontrainte par tornons gainés graissés TGG (poutre 2 - TGG). Les caractéristiques géométriques des deux structures sont illustrées sur la figure A. À la différence des six poutres testées précédemment, celles-ci présentent une section

![Diagramme de poutres multi-tornons](image.png)

Fig. A Géométrie des deux poutres multi-tornonnées de longueurs 6 m.
de précontrainte largement supérieure à la section d’armatures passives. L’influence du type de précontrainte adhérente ou non-adhérente peut ainsi être mise en évidence.

La tension initiale dans les câbles est imposée égale à 627 MPa dans les torons supérieurs et à 209 MPa dans les torons inférieurs. Les deux poutres sont injectées a posteriori avec un coulis de ciment utilisé pour l’injection des conduits verticaux de centrales nucléaires.

Les essais mécaniques de flexion 4 points ont aujourd’hui été menés au laboratoire. Les résultats globaux Force - Flèche obtenus sont présentés sur la figure B. La rupture des deux structures s’est produite par endommagement du béton en compression. Une analyse locale de la fissuration par corrélation d’images numériques est en cours de traitement. Les résultats pourront être comparés et corrélatés aux données d’essais issues de la première campagne expérimentale.

Fig. B Configuration et résultats expérimentaux de flexion 4 points : poutre 1 - TA et poutre 2 - TGG.

En parallèle, des essais d’arrachement seront aussi proposés sur un système de quatre torons ancrés (Figure C). L’influence de leur position dans la gaine de précontrainte sera mise en évidence expérimentalement. Ces tests serviront à calibrer une modélisation de la liaison mécanique entre le câble multi-torons et le coulis d’injection. Son utilisation ultérieure dans les simulations numériques des deux poutres précontraintes de 6 m offrira une validation de la démarche proposée.

Coulis d’injection : influence des propriétés mécaniques et des déformations différées sur la résistance résiduelle de l’interface torons - coulis

Le transfert d’efforts des torons de précontrainte vers la structure est intimement lié au comportement mécanique et à l’état de dégradation du coulis d’injection et de l’interface torons - coulis. Il a été observé au chapitre 3 que ce matériau présentait des valeurs élevées de déformation de retrait endogène. Ces dernières sont restreintes par le câble et la gaine de précontrainte, ce qui provoque un état de contrainte de traction et un endommagement progressif dans le matériau. Cependant, en l’absence de données
supplémentaires sur le comportement mécanique et différé du coulis d’injection (évolution des propriétés mécaniques, déformation de fluage propre), ces mécanismes n’ont pas pu être considérés directement dans cette étude. Ils étaient seulement pris en compte par une dégradation de la résistance mécanique de l’interface torons - coulis.

Modèle d’interface acier-béton : identification physique des paramètres

Vers les problématiques d’étanchéité et de durabilité des structures

Les projets de recherche sur la fissuration des structures en béton ont souvent pour finalité l’analyse de la durabilité des ouvrages ou de leur étanchéité dans le cas de structures nucléaires à risque. La fissuration peut en effet provoquer une augmentation significative de la perméabilité et de la diffusivité d’une paroi béton et remet donc au cause l’étanchéité de cette dernière par une augmentation des débits de fuite. Parallèlement, elle favorise aussi le transport d’espèces chimiques au cœur de la structure qui peuvent altérer son intégrité : corrosion des armatures avec perte de tenue structurelle et fissuration induite additionnelle [Millard et L’Hostis, 2012].

L’étude de la fissuration et des ouvertures de fissures ne peuvent pourtant pas se réduire au simple cas d’un chargement mécanique extérieur à un instant donné. Elles demandent une compréhension plus large de nombreux mécanismes multi-physiques depuis la fabrication du béton :

- fissuration en peau et en cœur au très jeune âge : gradient thermique (montée en température) et évolution des propriétés mécaniques du matériau (refroidissement);
- décohésion des supports au droit des reprises de bétonnage;
- fissuration inter-granulaire : retrait de la pâte de ciment gêné par les granulats;
- fissuration généralisée : retrait du béton gêné par les armatures aciers;
- fissuration en peau : gradient hydrique par le phénomène de séchage;
- fermeture de fissures par auto-cicatrisation;
- fissuration provoquée par une sollicitation mécanique de la structure.

De nombreux travaux ont été initiés dans ce sens au LMT Cachan [De Sa et al., 2013] [Jourdain, 2014] [Hilaire, 2014] [Olivier, 2015]. Leur utilisation couplée et leur validation sur des projets expérimentaux portant sur des structures massives (projet CEOS.fr [CEOS.fr, 2015], projet Vercors) iront dans le sens d’une meilleure prédiction des exigences de durabilité et d’étanchéité des ouvrages.
Bibliographie

