A. Cotte and D. Aude, Le chrome trivalent : intérêts et limites des supplémentations, 2010.

P. Pascal, A. Pacault, and G. Pannetier, Nouveau traité de chimie minérale, 1958.

D. Alain, Métallurgie du chrome, pp.2245-2246, 1998.

G. Darrie, . Ebdon, . Pitts, . Cornelis, . Crews et al., Trace element speciation for environment. Food and Health, pp.315-328, 2001.

C. Földi, R. Dohrmann, K. Matern, and T. Mansfeldt, Characterization of chromium-containing wastes and soils affected by the production of chromium tanning agents, Journal of Soils and Sediments, vol.194, issue.6, pp.1170-1179, 2013.
DOI : 10.1007/s11368-013-0714-2

J. Kota? and Z. Stasicka, Chromium occurrence in the environment and methods of its speciation, Environmental Pollution, vol.107, issue.3, pp.263-283, 2000.
DOI : 10.1016/S0269-7491(99)00168-2

A. Prasad-das, Bioreduction based bioremediation of hexavalent chromium Cr (VI) through potential indigenous microbes, NATIONAL INSTITUTE OF TECHNOLOGY, 2009.

V. Desjardin, Réduction du chrome (VI) par la souche Streptomyces thermocarboxydus NH50 isolée à partir dâun sol pollué, 2002.

H. Rousseau, Contribution à l'étude de l'acide chromique, des chromates et de quelques composés du chrome (physiologie, thérapeutique et toxicologie), 1878.

S. Langrrd, One hundred years of chromium and cancer: A review of epidemiological evidence and selected case reports, American Journal of Industrial Medicine, vol.43, issue.2, pp.189-214, 1990.
DOI : 10.1002/ajim.4700170205

T. Berner, R. Murphy, and . Slesinski, Determining the safety of chromium tripicolinate for addition to foods as a nutrient supplement, Food and Chemical Toxicology, vol.42, issue.6, pp.1029-1042, 2004.
DOI : 10.1016/j.fct.2004.02.015

C. Pellerin, M. Susan, and . Booker, Reflections on Hexavalent Chromium: Health Hazards of an Industrial Heavyweight, Environmental Health Perspectives, vol.108, issue.9, p.402, 2000.
DOI : 10.1289/ehp.108-a402

D. Matthew, . Stout, A. Ronald, . Herbert, E. Grace et al., Hexavalent chromium is carcinogenic to f344/n rats and b6c3f1 mice after chronic oral exposure, Environ Health Perspect, vol.117, issue.5, pp.716-722, 2009.

T. Burke, J. Fagliano, M. Goldoft, E. Robert, R. Hazen et al., Chromite ore processing residue in Hudson County, New Jersey, Environmental Health Perspectives, vol.92, p.131, 1991.
DOI : 10.1289/ehp.9192131

R. Anderson, Chromium in the prevention and control of diabetes, 2008.

R. Jonathan, K. Davidson, . Abraham, M. Kathryn, . Connor et al., Effectiveness of chromium in atypical depression : a placebo-controlled trial, Biological Psychiatry, vol.53, issue.3, pp.261-264, 2003.

M. Franklin and J. Odontiadis, Effects of Treatment with Chromium Picolinate on Peripheral Amino Acid Availability and Brain Monoamine Function in the Rat, Pharmacopsychiatry, vol.36, issue.05, pp.176-180, 2003.
DOI : 10.1055/s-2003-43046

K. R. , D. Bona, S. Love, R. Nicholas, D. Rhodes et al., Chromium is not an essential trace element for mammals : effects of a âlow-chromiumâ diet, JBIC Journal of Biological Inorganic Chemistry, vol.16, issue.3, pp.381-390, 2011.

B. John and . Vincent, Recent developments in the biochemistry of chromium (iii) Biological trace element research, pp.1-16, 2004.

A. Kabata-pendias, Trace metals in soils-a current issue in poland. Acta Universitatis Wratislaviensis, pp.13-20, 2001.

P. Abgrall, C. Lattes, V. Conédéra, X. Dollat, S. Colin et al., A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films, Journal of Micromechanics and Microengineering, vol.16, issue.1, p.113, 2006.
DOI : 10.1088/0960-1317/16/1/016

R. Rakhunde, L. Deshpande, and H. Juneja, Chemical speciation of chromium in water : a review. Critical reviews in environmental science and technology, pp.776-810, 2012.

N. Vanessa, . Alves, M. Nívia, and . Coelho, Selective extraction and preconcentration of chromium using moringa oleifera husks as biosorbent and flame atomic absorption spectrometry, Microchemical Journal, vol.109, pp.16-22, 2013.

H. Zhang, Q. Liu, T. Wang, Z. Yun, G. Li et al., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples, Analytica Chimica Acta, vol.770, pp.140-146, 2013.
DOI : 10.1016/j.aca.2013.01.042

W. Yang, Z. Zhang, and W. Deng, Speciation of chromium by in-capillary reaction and capillary electrophoresis with chemiluminescence detection, Journal of Chromatography A, vol.1014, issue.1-2, pp.203-214, 2003.
DOI : 10.1016/S0021-9673(03)00940-3

J. Malherbe and F. Claverie, Toward chromium speciation in solids using wavelength dispersive X-ray fluorescence spectrometry Cr K?? lines, Analytica Chimica Acta, vol.773, pp.37-44, 2013.
DOI : 10.1016/j.aca.2013.02.035

P. Kubá?, P. Kubá?, and V. Kubá?, Speciation of chromium (III) and chromium (VI) by capillary electrophoresis with contactless conductometric detection and dual opposite end injection, ELECTROPHORESIS, vol.24, issue.9, pp.1397-1403, 2003.
DOI : 10.1002/elps.200390179

M. Tsai and P. Chen, Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media, Talanta, vol.76, issue.3, pp.533-539, 2008.
DOI : 10.1016/j.talanta.2008.03.043

K. Tirez, W. Brusten, A. Cluyts, J. Patyn, and N. D. Brucker, Determination of hexavalent chromium by species specific isotope dilution mass spectrometry and ion chromatography???1,5-diphenylcarbazide spectrophotometry, J. Anal. At. Spectrom., vol.70, issue.8, pp.922-932, 2003.
DOI : 10.1039/B302313C

A. Eaton, M. Lisa, A. Ramirez, and . Haghani, The erin brockovich factor-analysis of total and hexavalent chromium in drinking waters, AWWA Water Quality Technology Conference, 2001.

Y. Choi and S. Moon, Determination of Cr(VI) using an Ion Selective Electrode with SLMs containing Aliquat336, Environmental Monitoring and Assessment, vol.92, issue.1-3, pp.163-178, 2004.
DOI : 10.1023/B:EMAS.0000014512.18816.cb

F. Marcio, D. P. Bergamini, M. Santos, . Valnice-boldrin, and . Zanoni, Development of a voltammetric sensor for chromium (vi) determination in wastewater sample, Sensors and Actuators B : Chemical, vol.123, issue.2, pp.902-908, 2007.

F. Nigel, . Carter, R. Geoffrey, . Chambers, J. Graham et al., Electrochemical sensor, US Patent, vol.5628, p.890, 1997.

H. Joseph, R. Schulman, and . Shah, Electrochemical sensor and integrity tests therefor, US Patent, vol.6, p.88608, 2000.

M. Mazloum-ardakani, A. Dastanpour, and M. Salavati-niasari, Novel Coated-Wire Membrane Sensor Based on Bis(Acetylacetonato) Cadmium(II) for the Determination of Chromate Ions, Microchimica Acta, vol.150, issue.1, pp.67-72, 2005.
DOI : 10.1007/s00604-005-0319-6

Y. Choi and S. Moon, A study on hexachromic ion selective electrode based on supported liquid membranes, Environmental Monitoring and Assessment, vol.70, issue.1/2, pp.167-180, 2001.
DOI : 10.1023/A:1010674414809

S. Saad, . Hassan, . Shahawi, M. Othman, and . Mosaad, A potentiometric rhodamine-b based membrane sensor for the selective determination of chromium ions in wastewater, Analytical sciences, vol.21, issue.6, pp.673-678, 2005.

A. Zazoua, . Zougar, . Kherrat, N. Samar, A. Jaffrezic-renault et al., Development of a hexavalent chromium ISFET sensor with a polymeric membrane including tributylphosphate, Materials Science and Engineering: C, vol.26, issue.2-3, pp.568-570, 2006.
DOI : 10.1016/j.msec.2005.10.010

URL : https://hal.archives-ouvertes.fr/hal-00141449

A. Jain, P. Singh, and . Jain, A solid membrane sensor for chromate ions, Sensors and Actuators B: Chemical, vol.25, issue.1-3, pp.729-732, 1995.
DOI : 10.1016/0925-4005(95)85161-5

A. Antonio, Y. Alfaya, and . Gushikem, The preparation and application of silicazirconia xerogel as potentiometric sensor for chromium (vi), Journal of colloid and interface science, vol.209, issue.2, pp.428-434, 1999.

L. Lin, S. Nathan, S. Lawrence, J. Thongngamdee, Y. Wang et al., Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode, Talanta, vol.65, issue.1, pp.144-148, 2005.
DOI : 10.1016/j.talanta.2004.05.044

I. Svancara, P. Foret, and K. Vytras, A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants, Talanta, vol.64, issue.4, pp.844-852, 2004.
DOI : 10.1016/j.talanta.2004.03.062

E. Lee, A. J. Korshoj, R. Y. Zaitouna, and . Lai, Methylene blue-mediated electrocatalytic detection of hexavalent chromium, Analytical chemistry, vol.87, issue.5, pp.2560-2564, 2015.

J. Wang, J. Wang, J. Lu, B. Tian, D. Macdonald et al., Flow probe for in situ electrochemical monitoring of trace chromium, The Analyst, vol.124, issue.3, pp.349-352, 1999.
DOI : 10.1039/a807639a

L. Malic, D. Brassard, T. Veres, and M. Tabrizian, Integration and detection of biochemical assays in digital microfluidic LOC devices, Lab Chip, vol.1, issue.4, pp.418-431, 2010.
DOI : 10.1039/B917668C

E. Castillo, M. Granados, and J. L. Cortina, Liquid-supported membranes in chromium(VI) optical sensing: transport modelling, Analytica Chimica Acta, vol.464, issue.2, pp.197-208, 2002.
DOI : 10.1016/S0003-2670(02)00473-7

E. Castillo, M. Granados, and J. L. Cortina, Chemically facilitated chromium(VI) transport throughout an anion-exchange membrane, Journal of Chromatography A, vol.963, issue.1-2, pp.205-211, 2002.
DOI : 10.1016/S0021-9673(02)00362-X

P. Suresh-kumar, T. Lee, . Vallabhan, P. Vpn-nampoori, and . Radhakrishnan, Design and development of an LED based fiber optic evanescent wave sensor for simultaneous detection of chromium and nitrite traces in water, Optics Communications, vol.214, issue.1-6, pp.25-30, 2002.
DOI : 10.1016/S0030-4018(02)02146-6

P. Bouguer, Essai d'Optique sur la Gradation de la Lumi??re, Journal of the R??ntgen Society, vol.18, issue.71, p.1729
DOI : 10.1259/jrs.1922.0026

P. Cazeneuve, Sur la diphenylcarbazide reactif tres sensible de quelques composés metalliques , cuivre, mercure, fer au maximum, acide chromique, Bull. Soc. Chim. Paris, vol.23, pp.701-706, 1900.

A. Apha and . Wef, standard methods for the examination of water and wastewater, 2005.

N. Asger-mortensen, S. Xiao, and J. Pedersen, Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications, Microfluidics and Nanofluidics, vol.424, issue.6950, pp.117-127, 2008.
DOI : 10.1007/s10404-007-0203-2

R. Aaron, H. Hawkins, and . Schmidt, Optofluidic waveguides : Ii. fabrication and structures, Microfluidics and nanofluidics, vol.4, issue.12, pp.17-32, 2008.

B. Richard and . Fair, Digital microfluidics : is a true lab-on-a-chip possible ?, Microfluidics and Nanofluidics, vol.3, issue.3, pp.245-281, 2007.

H. Sung-kwon-cho, C. Moon, and . Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Microelectromechanical Systems, Journal, vol.12, issue.1, pp.70-80, 2003.

E. Bahaa, M. C. Saleh, . Teich, E. Bahaa, and . Saleh, Fundamentals of photonics, 1991.

R. Drever, L. John, . Hall, . Kowalski, . Hough et al., Laser phase and frequency stabilization using an optical resonator, Applied Physics B Photophysics and Laser Chemistry, vol.17, issue.2, pp.97-105, 1983.
DOI : 10.1007/BF00702605

J. Strutt, The Problem of the Whispering Gallery, Philosophical Magazine, vol.20, pp.1001-1004, 1910.
DOI : 10.1017/CBO9780511704000.077

Y. Sanogo, Conception et fabrication de capteurs et de leur technique d'interrogation pour des applications dans les domaines de la santé et de l'environnement, 2012.

C. Ciminelli, C. M. Campanella, F. Dellâolio, C. E. Campanella, and M. N. Armenise, Label-free optical resonant sensors for biochemical applications, Progress in Quantum Electronics, pp.51-107, 2013.
DOI : 10.1016/j.pquantelec.2013.02.001

C. Chao, Polymer microring resonator and its application as a biosensor, 2005.

E. Brent, . Little, T. Sai, . Chu, A. Hermann et al., Microring resonator channel dropping filters, Lightwave Technology Journal, vol.15, issue.6, pp.998-1005, 1997.

J. Wu, Y. X. Shi-xing-jia, J. Wang, and . Zhu, Study on the Gold-Gold Thermocompression Bonding for Wafer-Level Packaging, Advanced Materials Research, pp.325-329, 2009.
DOI : 10.4028/www.scientific.net/AMR.60-61.325

K. Tamee, K. Chaiwong, K. Yothapakdee, P. Preecha, and . Yupapin, Muscle Sensor Model Using Small Scale Optical Device for Pattern Recognitions, The Scientific World Journal, vol.11, issue.4, 2013.
DOI : 10.1109/JSEN.2011.2108997

J. Alejandro, N. Grine, K. Quack, . Grutter, O. Tristan et al., Wafer-scale silica optomechanical oscillators with low threshold power and low phase noise for monolithic optical frequency references, 2012 International Conference on Optical MEMS and Nanophotonics, 2012.

J. Laine, C. Tapalian, B. Little, and H. Haus, Acceleration sensor based on high-q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler. Sensors and Actuators A : Physical, pp.1-7, 2001.

W. Bogaerts, T. Peter-de-heyn, K. Van-vaerenbergh, . De-vos, T. Shankar-kumar-selvaraja et al., Silicon microring resonators, Laser & Photonics Reviews, vol.20, issue.16, pp.47-73, 2012.
DOI : 10.1002/lpor.201100017

G. Dominik and . Rabus, Integrated ring resonators, 2007.

A. Hermann, . Haus, A. Milos, . Popovic, R. Michael et al., Optical resonators and filters, 2004.

N. Suwanpayak, M. Jalil, . Aziz, . Ismail, P. Ali et al., Blood cleaner on-chip design for artificial human kidney manipulation, International journal of nanomedicine, vol.6, pp.957-964, 2011.

N. Suwanpayak, M. A. Jalil, C. Teeka, J. Ali, P. Preecha et al., Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications, Biomedical Optics Express, vol.2, issue.1, pp.159-168, 2011.
DOI : 10.1364/BOE.2.000159

M. Aziz, N. Suwanpayak, M. A. Jalil, . Jomtarak, J. Saktioto et al., Gold nanoparticle trapping and delivery for therapeutic applications, International journal of nanomedicine, vol.7, issue.11, 2012.

M. Andrea, . Armani, P. Rajan, . Kulkarni, E. Scott et al., Label-free, single-molecule detection with optical microcavities, science, issue.5839, pp.317783-787, 2007.

R. Venkata, S. Dantham, C. Holler, D. Barbre, V. Keng et al., Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity, Nano letters, vol.13, issue.7, pp.3347-3351, 2013.

S. Matthew, . Luchansky, C. Ryan, and . Bailey, High-q optical sensors for chemical and biological analysis, Analytical chemistry, vol.84, issue.2, pp.793-821, 2011.

A. Yariv, Critical coupling and its control in optical waveguide-ring resonator systems, IEEE Photonics Technology Letters, vol.14, issue.4, pp.483-485, 2002.
DOI : 10.1109/68.992585

C. Chao, W. Fung, and J. Guo, Polymer microring resonators for biochemical sensing applications. Selected Topics in Quantum Electronics, IEEE Journal, vol.12, issue.1, pp.134-142, 2006.

A. Ramier, Intégration de guides d'onde et microrésonateurs à modes de galerie par assemblage à puce retournée, 2014.

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson et al., Cavity-enhanced ir absorption in planar chalcogenide glass microdisk resonators : experiment and analysis, Journal of Lightwave Technology, vol.27, issue.23, pp.5240-5245, 2009.

M. Vittorio, B. Passaro, M. L. Troia, F. D. Notte, and . Leonardis, Photonic resonant microcavities for chemical and biochemical sensing, RSC Advances, vol.3, issue.1, pp.25-44, 2013.

F. Vollmer and L. Yang, Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices, Nanophotonics, vol.1, issue.3-4, pp.267-291, 2012.
DOI : 10.1515/nanoph-2012-0021

A. Nitkowski, L. Chen, and M. Lipson, Cavity-enhanced on-chip absorption spectroscopy using microring resonators, Optics Express, vol.16, issue.16, pp.11930-11936, 2008.
DOI : 10.1364/OE.16.011930

T. Christopher and O. , A Broadband Optical Ring Resonator for Absorption and Refractive Index Detection, 2013.

E. Le-coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand et al., Wavelength-scale stationary-wave integrated Fourier-transform spectrometry, Nature Photonics, vol.69, issue.8, pp.473-478, 2007.
DOI : 10.1038/nphoton.2007.138

URL : https://hal.archives-ouvertes.fr/hal-00166129

S. Olyaee and A. M. Bahabady, Design and optimization of diamondshaped biosensor using photonic crystal nano-ring resonator, Optik-International Journal for Light and Electron Optics, 2015.

M. Häyrinen, M. Roussey, A. Säynätjoki, M. Kuittinen, and S. Honkanen, Slot waveguide ring resonators for visible wavelengths in ald titanium dioxide, SPIE OPTO International Society for Optics and Photonics, pp.936513-936513, 2015.

W. Joshua, H. Parks, L. Cai, . Zempoaltecatl, D. Thomas et al., Hybrid optofluidic integration, Lab Chip, vol.13, issue.20, pp.4118-4123, 2013.

H. Schmidt, R. Aaron, and . Hawkins, Atomic spectroscopy and quantum optics in hollow-core waveguides, Laser & Photonics Reviews, vol.75, issue.6, pp.720-737, 2010.
DOI : 10.1002/lpor.200900040

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann et al., A small mode volume tunable microcavity: Development and characterization, Applied Physics Letters, vol.105, issue.12, p.121105, 2014.
DOI : 10.1063/1.4896415

M. George, . Hale, R. Marvin, and . Querry, Optical constants of water in the 200-nm to 200-µm wavelength region, Applied optics, vol.12, issue.3, pp.555-563, 1973.

J. Hu, N. Carlie, L. Ning-ning-feng, A. Petit, K. Agarwal et al., Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing, Optics Letters, vol.33, issue.21, pp.2500-2502, 2008.
DOI : 10.1364/OL.33.002500

L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang et al., Silicon photonic resonator sensors and devices, Laser Resonators, Microresonators, and Beam Control XIV, pp.823620-823620, 2012.
DOI : 10.1117/12.916860

M. Samantha, . Grist, A. Shon, J. Schmidt, V. Flueckiger et al., Silicon photonic micro-disk resonators for label-free biosensing, Optics express, vol.21, issue.7, pp.7994-8006, 2013.

D. Psaltis, R. Stephen, C. Quake, and . Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature, vol.34, issue.7101, pp.381-386, 2006.
DOI : 10.1038/nature05060

B. Berge, Electrocapillarity and wetting of insulator films by water, Comptes Rendus De L'Academie Des Sciences Serie II, vol.317, pp.157-163, 1993.

J. Berthier, Microdrops and digital microfluidics, 2008.

G. Lippmann, Relations entre les phénomènes électriques et capillaires, 1875.

J. T. Stock, Gabriel Lippmann and the capillary electrometer, Bulletin for the History of Chemistry, vol.29, issue.1, pp.16-20, 2004.

G. Beni and S. Hackwood, Electro???wetting displays, Applied Physics Letters, vol.38, issue.4, pp.207-209, 1981.
DOI : 10.1063/1.92322

S. Chevalliot, Advancing the Frontiers of Low Voltage Electrowetting on Dielectrics through a Complete Understanding of Three Phases System Interactions, 2012.

B. Berge, Electrocapillarité et mouillage de films isolants par l'eau. Comptes rendus de l'Académie des sciences, Sciences de l'univers, Sciences de la Terre, pp.157-163, 1993.

J. Berthier, Micro-drops and digital microfluidics, 2012.

F. Mugele and J. Baret, Electrowetting: from basics to applications, Journal of Physics: Condensed Matter, vol.17, issue.28, 2005.
DOI : 10.1088/0953-8984/17/28/R01

URL : http://doc.utwente.nl/54091/1/electrowetting.pdf

B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: An application of electrowetting, The European Physical Journal E, vol.3, issue.2, pp.159-163, 2000.
DOI : 10.1007/s101890070029

S. Kuiper and B. Hendriks, Variable-focus liquid lens for miniature cameras, Applied Physics Letters, vol.85, issue.7, pp.1128-1130, 2004.
DOI : 10.1063/1.1779954

R. Neil, . Smith, C. Don, . Abeysinghe, W. Joseph et al., Agile wide-angle beam steering with electrowetting microprisms, Optics Express, vol.14, issue.14, pp.6557-6563, 2006.

J. Heikenfeld, N. Smith, M. Dhindsa, K. Zhou, M. Kilaru et al., Recent progress in arrayed electrowetting optics. Optics and photonics news, pp.20-26, 2009.

L. Hou, . Zhang, . Smith, J. Yang, and . Heikenfeld, A full description of a scalable microfabrication process for arrayed electrowetting microprisms, Journal of Micromechanics and Microengineering, vol.20, issue.1, p.15044, 2010.
DOI : 10.1088/0960-1317/20/1/015044

A. Robert, B. Hayes, and . Feenstra, Video-speed electronic paper based on electrowetting, Nature, vol.425, issue.6956, pp.383-385, 2003.

V. Srinivasan, K. Vamsee, . Pamula, B. Richard, and . Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluidsThe Science and Application of Droplets in Microfluidic Devices.Electronic supplementary information (ESI) available: five video clips showing: high-speed transport of a droplet of blood across 4 electrodes; sample injection into an on-chip reservoir using an external pipette; droplet formation from an on-chip reservoir using only electrowetting forces; droplets moving in-phase on a 3-phase transport bus; and a pipelined glucose assay, showing sample and reagent droplet formation, mixing, splitting and colorimetric reaction. See http://www.rsc.org/suppdata/lc/b4/b403341h/, Lab on a Chip, vol.4, issue.4, pp.310-315, 2004.
DOI : 10.1039/b403341h

H. Liu, S. Dharmatilleke, D. K. Maurya, A. , and O. Tay, Dielectric materials for electrowetting-on-dielectric actuation. Microsystem Technologies, pp.449-460, 2010.

F. Lapierre, Electromouillage sur diélectrique (EWOD) : conception et réalisation de dispositifs microfluidiques originaux sur surfaces superhydrophobes, Thèse de doctorat en Micro et Nano Technologies, 2011.

Y. Lin, D. Randall, E. Evans, B. Welch, . Hsu et al., Low voltage electrowetting-on-dielectric platform using multi-layer insulators, Sensors and Actuators B: Chemical, vol.150, issue.1, pp.465-470, 2010.
DOI : 10.1016/j.snb.2010.06.059

D. Brassard, L. Malic, F. Normandin, M. Tabrizian, and T. Veres, Water-oil core-shell droplets for electrowetting-based digital microfluidic devices, Lab on a Chip, vol.17, issue.8, pp.1342-1349, 2008.
DOI : 10.1039/b803827a

G. Michael, R. B. Pollack, A. D. Fair, and . Shenderov, Electrowettingbased actuation of liquid droplets for microfluidic applications, Applied Physics Letters, issue.11, p.771725, 2000.

R. Baviere, Y. Boutet, and . Fouillet, Dynamics of droplet transport induced by electrowetting actuation, Microfluidics and Nanofluidics, vol.34, issue.4, pp.287-294, 2008.
DOI : 10.1007/s10404-007-0173-4

H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. Kim, An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS, Lab on a Chip, vol.34, issue.9, p.1213, 2006.
DOI : 10.1039/b601954d

S. Wu and W. Hsu, Wireless EWOD/DEP chips powered and controlled through LC circuits and frequency modulation, Lab on a Chip, vol.8, issue.16, pp.3101-3109, 2014.
DOI : 10.1039/C4LC00421C

Z. Kai-di, Z. Xiang-yu, Z. Zeng, and T. Guo-wei, Reliability of a Compact and Portable Chemiluminescence Detector, International Journal of Automation and Smart Technology, vol.4, issue.4, pp.222-227, 2014.
DOI : 10.5875/ausmt.v4i4.845

D. Chatterjee, B. Hetayothin, and A. Wheeler, Droplet-based microfluidics with nonaqueous solvents and solutions, Lab on a Chip, vol.61, issue.2, 2005.
DOI : 10.1039/b515566e

. Sk-fan, . Huang, Y. Wang, and . Peng, Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting, Lab Chip, pp.1325-1331, 2008.

C. Li and H. Jiang, Fabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens. Micromachines, pp.432-441, 2014.

C. Wu, Dispositif microfluidique utilisant la technologie d'électromouillage sur isolant dédié à la préparation d'échantillons pour des analyses biologiques : application au suivi en ligne de bioprocédés, Thèse de doctorat en Micro et Nano Technologies, 2012.

A. Daniel, R. W. Bartholomeusz, J. D. Boutté, and . Andrade, Xurography : rapid prototyping of microstructures using a cutting plotter, Journal of Microelectromechanical Systems, vol.14, issue.6, pp.1364-1374, 2005.

Y. Lin, E. R. Welch, B. Richard, and . Fair, Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms, Sensors and Actuators B: Chemical, vol.173, pp.338-345, 2012.
DOI : 10.1016/j.snb.2012.07.022

Y. Li, . Parkes, . Haworth, . Stokes, . Muir et al., Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication, Solid-State Electronics, vol.52, issue.9, pp.1382-1387, 2008.
DOI : 10.1016/j.sse.2008.04.030

M. Dhindsa, S. Kuiper, and J. Heikenfeld, Reliable and low-voltage electrowetting on thin parylene films, Thin Solid Films, vol.519, issue.10, pp.3346-3351, 2011.
DOI : 10.1016/j.tsf.2010.12.094

P. Dimitrios, A. Papageorgiou, . Tserepi, G. Andreas, . Boudouvis et al., Superior performance of multilayered fluoropolymer films in low voltage electrowetting, Journal of colloid and interface science, vol.368, issue.1, pp.592-600, 2012.

H. Ping-yi, L. Hsin-yi, F. Shih-kang, and L. Yen-wen, Mechatronic Systems in Digital Microfluidics, International Journal of Automation and Smart Technology, vol.4, issue.4, pp.216-221, 2014.
DOI : 10.5875/ausmt.v4i4.841

H. Ding, S. Sadeghi, G. J. Shah, S. Chen, P. Y. Keng et al., Accurate dispensing of volatile reagents on demand for chemical reactions in EWOD chips, Lab on a Chip, vol.54, issue.22, p.123331, 2012.
DOI : 10.1039/c2lc40244k

M. J. Schertzer, R. Ben-mrad, and P. E. Sullivan, Using capacitance measurements in EWOD devices to identify fluid composition and control droplet mixing, Sensors and Actuators B: Chemical, vol.145, issue.1, pp.340-347, 2010.
DOI : 10.1016/j.snb.2009.12.019

R. Fobel, C. Fobel, and A. R. Wheeler, DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement, Applied Physics Letters, vol.102, issue.19, pp.1-5, 2013.
DOI : 10.1063/1.4807118

E. Marcatili, Bends in Optical Dielectric Guides, Bell System Technical Journal, vol.48, issue.7, pp.2103-2132, 1969.
DOI : 10.1002/j.1538-7305.1969.tb01167.x

B. Agnarsson, Symmetric Evanescent-Wave Platform for Optical Excitation and Sensing in Aqueous Solutions, 2010.

T. Tamir, Integrated optics ch. 2, Topics in Applied Physics, vol.7, 1979.

J. Bigeon, Propagation sub-longueur d'onde au sein de nanotubes et nanofils polymères passifs et actifs, 2014.

C. Chao and L. Guo, Design and optimization of microring resonators in biochemical sensing applications, Journal of Lightwave Technology, vol.24, issue.3, p.1395, 2006.
DOI : 10.1109/JLT.2005.863333

G. Kim, G. Son, . Hak-soon, K. Lee, S. Kim et al., Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers, Optics Communications, vol.281, issue.18, pp.2814644-4647, 2008.
DOI : 10.1016/j.optcom.2008.06.006

C. Delezoide, J. Lautru, J. Zyss, I. Ledoux-rak, and C. T. Nguyen, Vertically coupled polymer microresonators for optofluidic label-free biosensors, Integrated Optics: Devices, Materials, and Technologies XVI, pp.826416-826416, 2012.
DOI : 10.1117/12.908444

F. Ghasemi, A. Ali, . Eftekhar, S. David, X. Gottfried et al., Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications X, pp.85940-85940, 2013.
DOI : 10.1117/12.2005653

L. Gao, L. Lin, J. Hao, W. Wang, R. Ma et al., Fabrication of split-ring resonators by tilted nanoimprint lithography, Journal of Colloid and Interface Science, vol.360, issue.1, pp.320-323, 2011.
DOI : 10.1016/j.jcis.2011.04.086

H. Allen, D. Yang, and . Erickson, Optofluidic ring resonator switch for optical particle transport, Lab on a Chip, vol.10, issue.6, pp.769-774, 2010.

M. Specht, N. Huby, H. Lhermite, R. Castro-beltran, and B. Bêche, Fabrication and optical characterization of pedestal micro-structures on DUV210 polymer: waveguides structures towards micro-resonators, The European Physical Journal Applied Physics, vol.71, issue.1, p.30503, 2015.
DOI : 10.1051/epjap/2015150207

URL : https://hal.archives-ouvertes.fr/hal-01166476

A. Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electronics Letters, vol.36, issue.4, pp.321-322, 2000.
DOI : 10.1049/el:20000340

K. Fuwa and B. Valle, The Physical Basis of Analytical Atomic Absorption Spectrometry. The Pertinence of the Beer-Lambert Law., Analytical Chemistry, vol.35, issue.8, pp.942-946, 1963.
DOI : 10.1021/ac60201a006

M. Bahadoran, A. F. , A. Noorden, K. Chaudhary, F. Sadat-mohajer et al., Modeling and Analysis of a Microresonating Biosensor for Detection of Salmonella Bacteria in Human Blood, Sensors, vol.14, issue.7, pp.12885-12899, 2014.
DOI : 10.3390/s140712885

C. Chaichuay, P. Preecha, P. Yupapin, and . Saeung, The serially coupled multiple ring resonator filters and vernier effect, Opt. Appl, vol.39, issue.1, pp.175-194, 2009.

S. Mandal, K. Dasgupta, S. Basak, and . Ghosh, A generalized approach for modeling and analysis of ring-resonator performance as optical filter, Optics Communications, vol.264, issue.1, pp.97-104, 2006.
DOI : 10.1016/j.optcom.2006.02.028

M. La-notte, B. Troia, T. Muciaccia, C. E. Campanella, F. D. Leonardis et al., Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors, Sensors, vol.14, issue.3, pp.4831-4855, 2014.
DOI : 10.3390/s140304831

M. Sumetsky, Optimization of optical ring resonator devices for sensing applications, Optics Letters, vol.32, issue.17, pp.2577-2579, 2007.
DOI : 10.1364/OL.32.002577

C. Delezoide, M. Salsac, J. Lautru, H. Leh, C. Nogues et al., Vertically coupled polymer microracetrack resonators for label-free biochemical sensors. arXiv preprint, 2014.

C. Chao and L. Guo, Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique, IEEE Photonics Technology Letters, vol.16, issue.6, pp.1498-1500, 2004.
DOI : 10.1109/LPT.2004.827413

P. Girault, N. Lorrain, L. Poffo, M. Guendouz, J. Lemaitre et al., Integrated polymer micro-ring resonators for optical sensing applications, Journal of Applied Physics, vol.117, issue.10, p.117104504, 2015.
DOI : 10.1063/1.4914308

URL : https://hal.archives-ouvertes.fr/hal-01137612

J. Zhang, H. Tan, and . Gong, Characterization of the polymerization of su-8 photoresist and its applications in micro-electro-mechanical systems (mems) Polymer testing, pp.693-701, 2001.

K. Chen and H. Chan, Silicon Oxynitride Optical Waveguide Ring Resonator Utilizing a Two-Mode Interferometer Structure, International Journal of Photoenergy, vol.12, issue.5, 2011.
DOI : 10.1016/j.optcom.2010.06.077

U. Hollenbach, H. Böhm, J. Mohr, L. Ross, and D. Samiec, Uv light induced single mode waveguides in polymer for visible range application, Proceedings of the European Conference on Integrated Optics (ECIO), paper THD3, pp.25-27, 2007.

R. Daviau, Fabrication of surface plasmon waveguides on cytop, 2009.

S. Arscott, SU-8 as a material for lab-on-a-chip-based mass spectrometry, Lab on a Chip, vol.86, issue.124, pp.3668-3689, 2014.
DOI : 10.1039/C4LC00617H

URL : https://hal.archives-ouvertes.fr/hal-01058486

M. De-vittorio, . Todaro, . Stomeo, . Cingolani, D. Cojoc et al., Twodimensional photonic crystal waveguide obtained by e-beam direct writing of su8-2000 photoresist, Microelectronic engineering, pp.388-391, 2004.

M. Shaw, . Nawrocki, D. Hurditch, and . Johnson, Improving the process capability of su-8. Microsystem Technologies, pp.1-6, 2003.

O. Prakash, P. , and N. Bhat, Characterization of optical properties of su-8 and fabrication of optical components, Proceedings of the International Conference on Optics and Photonics, 2009.

R. Feng, J. Richard, and . Farris, Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings, Journal of Micromechanics and Microengineering, vol.13, issue.1, p.80, 2003.
DOI : 10.1088/0960-1317/13/1/312

S. Tuomikoski and S. Franssila, Free-standing su-8 microfluidic chips by adhesive bonding and release etching. Sensors and Actuators A : Physical, pp.408-415, 2005.

J. Zhang, . Tan, . Hong, H. Yang, and . Gong, Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS, Journal of Micromechanics and Microengineering, vol.11, issue.1, p.20, 2001.
DOI : 10.1088/0960-1317/11/1/304

. Xi-bin, J. Wang, C. Sun, X. Chen, F. Sun et al., Thermal uv treatment on su-8 polymer for integrated optics, Optical Materials Express, vol.4, issue.3, pp.509-517, 2014.

Y. Shang, D. Qing-yan-ni, N. Ding, T. Chen, and . Wang, Fabrication of optical fiber sensor based on double-layer SU-8 diaphragm and the partial discharge detection, Optoelectronics Letters, vol.23, issue.1, pp.61-64, 2015.
DOI : 10.1007/s11801-015-4209-9

R. Walczak, P. Sniadek, and J. A. Dziuban, Su-8 photoresist as material of optical passive components integrated with analytical microsystems for real-time polymerase chain reaction, Optica Applicata, vol.41, issue.4, pp.873-884, 2011.

A. Bettiol, . Sum, F. Van-kan, and . Watt, Fabrication of micro-optical components in polymer using proton beam micro-machining and modification. Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with, Materials and Atoms, vol.210, pp.250-255, 2003.

K. Gut, D. Pustelny, and . Nabaglo, The influence of the rotational speed of the polymer su8 on the thickness of the waveguide layer. Acta Physica Polonica-Series A General Physics, p.1136, 2010.

K. Gut and D. Nabaglo, Measurements of the attenuation by means of the scattered light of planar waveguide structure, basing on the polymer su8 on a substrate of sodium-calcium glass. Acta Physica Polonica-Series A General Physics, p.307, 2009.

L. Yang and D. Dai, Jianjun He, and Sailing He. Observation of the thermal nonlinear optical effect in a microring resonator based on a small su-8 polymer ridge optical waveguide, Asia Communications and Photonics. International Society for Optics and Photonics, pp.76310-76310, 2009.

C. Lacava, P. Mj-strain, I. Minzioni, M. Cristiani, and . Sorel, Integrated nonlinear Mach Zehnder for 40 Gbit/s all-optical switching, Optics Express, vol.21, issue.18, pp.21587-21595, 2013.
DOI : 10.1364/OE.21.021587

D. Liang, High-index-contrast Ridge Waveguide Devices for Integrated Photonic and Optoelectronic Applications, 2007.

F. Prieto, . Sepulveda, A. Calle, C. Llobera, A. Domínguez et al., An integrated optical interferometric nanodevice based on silicon technology for biosensor applications, Nanotechnology, vol.14, issue.8, p.14907, 2003.
DOI : 10.1088/0957-4484/14/8/312

M. Zourob and A. Lakhtakia, Optical guided-wave chemical and biosensors II, 2010.
DOI : 10.1007/978-3-642-02827-4

Y. Vlasov and S. Mcnab, Losses in single-mode silicon-on-insulator strip waveguides and bends, Optics Express, vol.12, issue.8, pp.1622-1631, 2004.
DOI : 10.1364/OPEX.12.001622

A. Densmore, D. Xu, P. Waldron, S. Janz, P. Cheben et al., A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor, IEEE Photonics Technology Letters, vol.18, issue.23, pp.182520-2522, 2006.
DOI : 10.1109/LPT.2006.887374

M. Webster, . Pafchek, T. Mitchell, and . Koch, Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguides, IEEE Photonics Technology Letters, vol.19, issue.6, pp.429-431, 2007.
DOI : 10.1109/LPT.2007.891979

P. Muellner, N. Finger, and R. Hainberger, Lateral leakage in symmetric SOI rib-type slot waveguides, Optics Express, vol.16, issue.1, pp.287-294, 2008.
DOI : 10.1364/OE.16.000287

R. Synowicki, K. Greg, G. Pribil, . Cooney, M. Craig et al., Fluid refractive index measurements using rough surface and prism minimum deviation techniques, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, pp.3450-3453, 2004.
DOI : 10.1116/1.1813455

G. Walter, W. Driscoll, and . Vaughan, Handbook of optics, 1978.

L. Jin, M. Li, and J. He, Optical waveguide double-ring sensor using intensity interrogation with a low-cost broadband source, Optics Letters, vol.36, issue.7, pp.1128-1130, 2011.
DOI : 10.1364/OL.36.001128

R. Fontana, . Katine, . Rooks, . Viswanathan, . Lille et al., E-beam writing: a next-generation lithography approach for thin-film head critical features, IEEE Transactions on Magnetics, vol.38, issue.1, pp.95-100, 2002.
DOI : 10.1109/TMAG.2002.988918

A. Finn, Direct patterning of optical coupling devices in polymer waveguides, 2014.

J. Harry and . Levinson, Principles of lithography, SPIE Bellingham, 2005.

. Burn-jeng-lin, Optical lithography : here is why, SPIE Bellingham, 2010.

J. Cognard, Science et technologie du collage, PPUR presses polytechniques, 2000.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson et al., Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments, Microelectronic Engineering, vol.87, issue.1, pp.56-61, 2010.
DOI : 10.1016/j.mee.2009.05.016

P. Degenaar, . Le-pioufle, . Griscom, Y. Tbrier, Y. Akagi et al., A Method for Micrometer Resolution Patterning of Primary Culture Neurons for SPM Analysis, Journal of Biochemistry, vol.130, issue.3, pp.367-376, 2001.
DOI : 10.1093/oxfordjournals.jbchem.a002995

URL : https://hal.archives-ouvertes.fr/hal-00786168

H. Allen, D. Yang, and . Erickson, Optofluidic ring resonator switch for optical particle transport, Lab on a chip, vol.10, pp.769-774, 2009.

L. Sarah, J. Westcott, . Zhang, K. Robert, . Shelton et al., Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator, Review of Scientific Instruments, issue.3, p.79033106, 2008.

Y. Stephen, . Chou, R. Peter, . Krauss, J. Preston et al., Imprint of sub-25 nm vias and trenches in polymers, Applied physics letters, vol.67, issue.21, pp.3114-3116, 1995.

J. Viheriälä, J. Kontio, M. Pessa, and T. Niemi, Nanoimprint lithographynext generation nanopatterning methods for nanophotonics fabrication, 2010.

A. Stephen and . Campbell, The science and engineering of microelectronic fabrication, 1996.