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Abstract

The objective of this thesis is the Automatic Target Classification (ATC) based
on radar backscattered Ultra WideBand (UWB) signals. The classification of the tar-
gets is realized by making comparison between the deduced target properties and the
different target features which are already recorded in a database. First, the study
of scattering theory allows us to understand the physical meaning of the extracted
features and describe them mathematically. Second, feature extraction methods are
applied in order to extract signatures of the targets. A good choice of features is
important to distinguish different targets. Different methods of feature extraction
are compared including wavelet transform and high resolution techniques such as:
Prony’s method, Root-Multiple SIgnal Classification (Root-MUSIC), Estimation of
Signal Parameters via Rotational Invariance Techniques (ESPRIT) and Matrix Pencil
Method (MPM). Third, an efficient method of supervised classification is necessary to
classify unknown targets by using the extracted features. Different methods of clas-
sification are compared: Mahalanobis Distance Classifier (MDC), Näıve Bayes (NB),
k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM). A useful classifier
design technique should have a high rate of accuracy in the presence of noisy data
coming from different aspect angles. The different algorithms are demonstrated using
simulated backscattered data from canonical objects and complex target geometries
modeled by perfectly conducting thin wires. A method of ATC based on the use of
Matrix Pencil Method in Frequency Domain (MPMFD) for feature extraction and
MDC for classification is proposed. Simulation results illustrate that features ex-
tracted with MPMFD present a plausible solution to automatic target classification.
In addition, we prove that the proposed method has better ability to tolerate noise
effects in radar target classification. Finally, the different algorithms are validated
on experimental data and real targets.

Keywords: Backscattering, Ultra wideband radar, Feature extraction, Auto-
matic Target Classification, Matrix Pencil Method.
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Résumé

L’objectif de cette thèse est la classification automatique des cibles (ATC) en
utilisant les signaux rétrodiffusés par un radar ultra large bande (UWB). La classifi-
cation des cibles est réalisée en comparant les signatures des cibles et les signatures
stockées dans une base de données. Premièrement, une étude sur la théorie de dif-
fusion nous a permis de comprendre le sens physique des paramètres extraits et
de les éxprimer mathématiquement. Deuxièmement, des méthodes d’extraction de
paramètres sont appliquées afin de déterminer les signatures des cibles. Un bon choix
des paramètres est important afin de distinguer les différentes cibles. Différentes
méthodes d’extraction de paramètres sont comparées notamment : méthode de
Prony, Racine-classification des signaux multiples (Root-MUSIC), l’estimation des
paramètres des signaux par des techniques d’invariances rotationnels (ESPRIT), et
la méthode Matrix Pencil (MPM). Troisièmement, une méthode efficace de classifi-
cation supervisée est nécessaire afin de classer les cibles inconnues par l’utilisation de
leurs signatures extraites. Différentes méthodes de classification sont comparées no-
tamment : Classification par la distance de Mahalanobis (MDC), Näıve Bayes (NB),
k-plus proches voisins (k-NN), Machines à Vecteurs de Support (SVM). Une bonne
technique de classification doit avoir une bonne précision en présence de signaux
bruités et quelques soit l’angle d’émission. Les différents algorithmes ont été validés
en utilisant les simulations des données rétrodiffusées par des objets canoniques et
des cibles de géométries complexes modélisées par des fils minces et parfaitement con-
ducteurs. Une méthode de classification automatique de cibles basée sur l’utilisation
de la méthode Matrix Pencil dans le domaine fréquentiel (MPMFD) pour l’extraction
des paramètres et la classification par la distance de Mahalanobis est proposée. Les
résultats de simulation montrent que les paramètres extraits par MPMFD présentent
une solution plausible pour la classification automatique des cibles. En outre, nous
avons prouvé que la méthode proposée a une bonne tolérance aux bruits lors de la
classification des cibles. Enfin, les différents algorithmes sont validés sur des données
expérimentales et cibles réelles.

Mots clés: Rétrodiffusion, Radar ultra large bande, Extraction de paramètres,
Classification automatique de cibles, La méthode Matrix Pencil.
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1

Introduction

1.1 Overview

The work done in this thesis is in the framework of a co-degree program between Pas-

cal Institute in Blaise Pascal University (France) and Intelligent Systems Research

Institute in SungKyunKwan University (Republic of Korea) under the project enti-

tled Cognitive Personal Transport Service Robot sponsored by the Gyeonggi-province

International Collaboration Research Project. The project has the following research

objectives to accomplish:

• To develop original technologies, as well as designing and demonstrating a

prototype, for the Cognitive Personal Transport Service Robot capable of

autonomous and/or semi-autonomous individual robotic and environmentally

friendly call taxi service in towns, campuses, and tourist attractions where the

driving environments such as roads, traffic signs, moving traffics, pedestrians,

trees, animals, etc have to be recognized.

• To explore enabling technologies for extending the devloped Cognitive Personal

Transport Service Robot into a public ride-share system. The key technolo-

1



gies to be developed include: Autonomous navigation, Sociable multi-modal

human-vehicle interaction and Platforms for software, hardware and network

for a cognitive personal transport robot based ride share system.

Autonomous navigation of vehicles is a complex problem that has attracted the

attention of the research community and related companies. Systems capable of per-

forming efficient and robust autonomous navigation are of interest in many robotic

applications such as automatic industry, personal transportation, assistances to dis-

abled or elder people, surveillance, etc. In order to perform navigation, the vehicle

needs to interact with the environment, and for this purpose different types of sensors

can be used for extracting the meaningful information and then making a decision

for safe and unmanned navigation. From all of them, vision systems are the most

used because they provide very rich information. However, the visual systems can

become vulnerable when weather is severe and visibility is low (fogs, night, etc) or

when target is well protected and hidden such as deeply beneath the foliage. In this

case, using electromagnetic waves can be a good solution for target identification.

In the last fifteen years, the interest in Ultra Wideband (UWB) systems has grown

rapidly. One of several applications of the UWB is radar automatic target classifica-

tion in autonomous vehicles. UWB radar uses very short duration pulses resulting

in very wideband in frequency domain. The UWB technique has the advantage to

be used for localization, target identification, and communication between vehicles.

In this thesis, we propose to use UWB radar in order to automatically classify an

unknown target. In Automatic Target Classification (ATC), the two main steps are

feature extraction and classification. The identification of the target is realized by

making comparison between the deduced target properties and the different target

features which are already recorded in a database.

2



A good choice of features is important to distinguish different targets. The best

handling of the feature extraction consists of understanding the physical behavior

of a radar system in its environment. Based on this understanding, features must

then be mathematically described depending on the given requirements. When the

target is illuminated by ultra-wideband signals, the scattered transient response in

the time domain is composed from two successive parts [1]. First, an impulsive part,

corresponding to the early time response, comes from the direct reflection of the

incident wave on the object surface. Next, during the late time, the oscillating part

arises from resonance phenomena of the target. In the case where targets are perfect

conductors, resonances occur outside the object and correspond to surface creeping

waves.

Currently, there exist several techniques based on the analysis of the late time

impulse response in order to extract Complex natural resonances (CNRs) such as: the

E-pulse approach [2], the Tufts and Kumaresan method [3] , and the high resolution

methods like Matrix Pencil Method [4]. The late time part of the signal depends,

at least theoretically, on the target geometry and its physical properties. Thus, it

is independent of the aspect and polarization of the excitation source [5]. However,

the automatic determination of the late time is not an easy task [6]. CNRs can be

extracted in the frequency domain by using the Cauchy method. In [7], this method is

applied to compute the natural poles of an object in the frequency domain; however,

in real time applications, this method is inconvenient.

In this thesis, we propose an approach of feature extraction in frequency domain

by using Matrix Pencil Method. The proposed method takes into account not only

the magnitude of the signal in frequency domain but also its phase. Therefore,

all the physical characteristics of the target are taken into account. The physical

and geometrical characteristics of the considered object and the incident waveform

impact clearly the signatures of the treated targets and contribute efficiently to the
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classification of the objects. The separation between the early time and the late time

is not necessary by applying the proposed method. Moreover, we propose a powerful

method for UWB radar automatic target classification in white Gaussian noise and

different aspect angles between the radar and the target. The proposed method is

validated on complex objects by simulations and experiments.

1.2 Contributions and thesis organization

The remainder of this dissertation is organized as follows:

• Chapter 2 presents the different models of scattering. In particular, it presents

Singularity Expansion Method (SEM), Geometric Theory of Diffraction (GTD)

and its reduced complexity model. The chapter concludes by giving the theo-

retical analysis of the backscattered fields from canonical objects.

• Chapter 3 provides an overview of radars and the deficiencies of conventional

radars. Next, it gives the history, definition, application and advantages of

UWB radars. This chapter summarizes temporal and frequency techniques

used to obtain a UWB spectrum. Finally, it gives an overview of the UWB

radar in ATC.

• Chapter 4 presents the methods used for feature extraction including wavelet

transform and high resolution techniques. Next, it presents the methods used

for classification which include Mahalanobis Distance Classifier (MDC), Näıve

Bayes (NB), k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM).

This chapter explains the cross validation method which is applied in order to

evaluate and compare the different methods of classification.

• Chapter 5 gives the simulation and experiment results. The chapter proposes

a powerful method for UWB radar automatic target classification in white
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Gaussian noise and different aspect angles between the radar and the target.

• Chapter 6 provides the conclusion. It summarizes the main achievements of

this thesis and outlines future research directions.

The main contributions can be summarized as follows:

• Comparison of different methods of feature extraction in time domain and in

frequency domain.

• Proposition of a feature extraction method, called Matrix Pencil Method in

Frequency Domain (MPMFD), based on the extraction of parameters in fre-

quency domain.

• Comparison of different methods of classification including: MDC, NB, k-NN

and SVM.

• Proposition of a powerful method for UWB radar ATC in white Gaussian noise

and different aspect angles between the radar and the target.
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2

Electromagnetism and Scattering theory

2.1 Introduction

In this chapter we present some notions in electromagnetism. Next, we present the

scattering theory where we show the different models of scattering. In particular,

Singularity Expansion Method (SEM) , Geometric Theory of Diffraction (GTD)

and its reduced complexity model are presented. Then, we talk about the three

field regions surrounding a scattering object. Finally, theoretical analysis of the

backscattered fields from canonical objects is presented.

2.2 Notions of electromagnetism

2.2.1 Maxwell’s equations

James Clark Maxwell (1831-1879) published a complete form of equations that govern

the behavior of the electromagnetic phenomenon, it involves the behavior of two

vector fields: the electric field E⃗, and the magnetic induction B⃗.

The basic Maxwell equations in derivative form are given in time domain as:

r⃗ot(E⃗) = −∂B⃗
∂t

(2.1)
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div(B⃗) = 0 (2.2)

r⃗ot(B⃗) = µ(J⃗ + ϵ
∂E⃗

∂t
) (2.3)

div(E⃗) =
ρ

ϵ
(2.4)

J⃗ is the electric current density and ρ is the electric charge density. ϵ is the electric

permittivity, and µ is the magnetic permeability. The electric permittivity is related

to its relative permittivity ϵr and the permittivity of the vacuum by the relation:

ϵ = ϵ0ϵr. In the same way, the magnetic permeability is related to its relative

permeability and the permeability of the vacuum by the relation: µ = µ0µr. Further

discussion about the physical significance of each of these equations may be found

in [8, 9].

The constitutive relations describe the interaction between the fields and the

medium of propagation. For a linear, homogenous and isotropic medium these are

of the form:

D⃗ = ϵE⃗ (2.5)

B⃗ = µH⃗ (2.6)

2.2.2 Time harmonic fields

We usually use the Maxwell’s equations in their harmonic form, by considering that

fields and sources have sinusoidal dependence on time. Then, we can write the

electric field as:

E⃗(r⃗, t) = E⃗(r⃗)ejωt (2.7)

and Maxwell’s equations (2.1) and (2.3) become:

r⃗ot(E⃗) = −jωB⃗ (2.8)

r⃗ot(H⃗) = J⃗ + jωD⃗ (2.9)
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2.2.3 Propagation equations in unbounded media

We suppose that all sources are putted in the infinite, so they don’t appear in the

equations. In an unbounded, linear, homogenous and isotropic media, the Maxwell’s

equations allow to deduce the propagation equations in time domain of the electro-

magnetic fields E⃗ and H⃗:

∆E⃗ − 1

ν2
∂2E⃗

∂t2
= 0 (2.10)

∆H⃗ − 1

ν2
∂2H⃗

∂t2
= 0 (2.11)

where ∆ is the Laplacian. The propagation speed of the wave in infinite media is:

ν =
1

√
ϵµ

(2.12)

We seek solutions of fields that vary in time under the sinusoidal form. The

general form of the elementary solution is:

E⃗0 e
j(ωt−k⃗r⃗) (2.13)

E⃗0 is a constant vector, k⃗ is the wave vector. This solution represents a plane wave

because all points of a wave plan perpendicular to the vector of propagation k⃗ have

the same vibratory behavior.

The wave number k is defined as follows:

k =
2π

λ
(2.14)

where λ is the wavelength.

2.3 Scattering theory

Scattering is defined as the redirection of radiation out of the original direction of

propagation, usually due to interactions of the wave with the target. When the

10



scattering field is radiated in the backward direction to the incident wave, it is called

backscattered field.

Different models have been proposed for scattering using either resonances or scat-

tering centers. Baum [10], proposed a mathematical model in time domain called

Singularity Expansion Method (SEM) which is based on Complex Natural Reso-

nances (CNRs), where a portion of scattered fields in time domain, called late time,

is expressed as series of damped exponentials. As an alternative to resonance-based

processing, Geometric Theory of Diffraction (GTD) model is commonly used in fre-

quency domain to describe the characteristics of the scattering centers [11]. GTD

assumes that the target backscatter is issued from a series of discrete scattering

centers.

In this section, we firstly introduce the notion of Radar Cross Section (RCS).

Next, we present frequency regions. Then, the interactions between wave and target

are analyzed by giving basic propagation mechanisms. Next, we present the SEM.

After that, we talk about the GTD model. Finally, we present a reduced complexity

model in frequency domain.

2.3.1 The radar cross section

Any object illuminated by an electromagnetic wave disperses incident energy in all

directions. This spatial distribution of energy is called scattering, and the object

itself is called a scatterer. The energy scattered back to the source of the wave is

called backscattering and constitutes the radar echo of the object. The radar cross

section is used to quantify the intensity of the echo.

The RCS of an object, σ, is defined as an equivalent area intercepting the amount

of power that, when scattered isotropically, produces at the receiver a power density
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that is equal to the power density scattered by the actual target. This is given by:

σ = lim
r→∞

[
4πr2

|Es|2

|Ei|2

]
(2.15)

where

• Ei is the electric field strength of the incident wave impinging on the target,

(V.m−1)

• Es is the electric field strength of the scattered wave at the radar, (V.m−1)

• r is the distance from the target to the radar.

As the name suggests, the RCS has dimensions of area: metre-squared (m2).

2.3.2 Frequency regions

The radiation characteristics of a target depend strongly on the frequency of the

incident wave. There are three frequency regions where the RCS of the target is

very different. These regions are defined according to the ratio between the major

dimension D of the target and the wavelength λ of the incident signal.

Rayleigh region D << λ

At these wavelengths, the phase variation of the incident wave is small along the

target. Therefore, the current induced on the surface of the target has approximately

a constant phase and amplitude, regardless of the shape of the target. In this region,

the RCS varies as 1
λ4

and the target is called electrically small.

Mie region (Resonance region) D ≈ λ

At these wavelengths, the phase variation of the current on the body of the target

is significant. All parts of the target contribute to the scattering pattern. The RCS

oscillates as a function of the wavelength λ. This region is called resonance region.
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Optical region D >> λ

In this frequency region, the RCS can be independent of λ and the target is called

electrically large.
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Figure 2.1: The RCS of a sphere as function of k a (k is the wave number and a
is the radius of the sphere)

The RCS of a sphere illustrates these three frequency regions (Figure 2.1). For

k a < 0.5, where a is the radius of the sphere and k the wave number, the curve

is nearly linear, it is the Rayleigh region. For k a > 0.5, it begins to oscillate, this

is the resonance region. The oscillation is progressively damped for larger values of

k a. For k a ≥ 10, the curve is constant and equal to πa2, it is the optical region.

2.3.3 Propagation mechanisms

Many targets have complex geometries and must be modeled as a set of discrete

scattering points and mechanisms. There are seven basic scattering mechanisms [12].

All depend in varying degree on the target aspect angle as seen from the observation

point. Some of these seven mechanisms are dominant whereas others are weak.
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Reentrant structures

Reentrant Structures can be the cavities in a target, such as intake ducts, exhaust

ducts, and cockpits on airplanes. Metallic cavities produce strong scattering fields,

because any wave that enters into the cavities, will have internal reflections and will

go out.

Specular scatterers

Specular reflections result from surfaces that are perpendicular to the incident wave’s

line-of-sight. The generated fields are significant when the angle-of-incidence is nor-

mal but fall off quickly as the angle varies from 90◦.

Traveling wave fields

A surface travelling wave can be induced when the angle of incidence is small (the

line-of-sight is nearly parallel to the target). The surface wave will travel along the

surface of the target and can be reflected back toward the front by any discontinuity

at the rear. Travelling wave fields can be nearly as large as specular fields.

Diffraction

Tips, edges, and corners diffract the incident wave but the fields are less significant

than specular reflections. In the case where the other sources of fields don’t exist,

the intensity of the diffracted fields can be significant.

Surface discontinuities

Discontinuities such as gaps and rivets can reflect energy. The isolation and char-

acterization of the effects of surface discontinuities is not easy because these effects

tend to be small.
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Creeping waves

Creeping waves are generated by surface waves that follow the curvature of the target

and are launched back toward the observation point. The intensity of the creeping

waves is very small in comparison to the specular fields.

Interaction waves

Interaction waves result when the incident signal is reflected back toward the obser-

vation point after bouncing off two or more target surfaces. The generated fields are

relatively strong.

2.3.4 Singularity Expansion Method

When a target is illuminated by wideband signals, the scattered transient response

in the time domain is composed from two successive parts. First, an impulsive part,

corresponding to the early time response, comes from the direct reflection of the

incident wave on the object surface. Next, during the late time, the oscillating part

arises from resonance phenomena of the target. The resonances can be separated into

internal and external modes [13]. The internal resonances are caused by the internal

waves that experience multiple internal reflections, whereas the external resonances

are caused by the surface creeping waves. In the case where targets are perfect

conductors, resonances occur outside the object and correspond only to external

modes.

The singularity expansion method introduced by Baum has been applied to express

electromagnetic response in an expansion of complex resonances of the system. In

general, the signal model of the observed late time of an electromagnetic scattered

response from an object can be written as:

y(t) = x(t) + n(t) ≈
M∑
m=1

Rme
Smt + n(t) 0 ≤ t ≤ T, (2.16)
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where:

• y(t): denotes the time domain response,

• n(t): denotes the noise in the system,

• x(t): denotes the noiseless signal,

• Rm: are residues or complex amplitudes,

• Sm = αm + jωm,

• αm: are damping factors,

• ωm: are angular frequencies (ωm = 2πfm with fm the natural frequency),

• M is the total number of modes of the series.

After sampling, the time variable, t is replaced by kTs, where Ts is the sampling

period. The original continuous time sequence can be rewritten as:

y(kTs) = x(kTs) + n(kTs) ≈
M∑
m=1

Rmz
m
k + n(kTs) for k = 0, . . . , N − 1 (2.17)

zm = e(αm+jωm)Ts for m = 1, 2, . . . ,M (2.18)

We apply the Laplace transform of x(t) to obtain the transfer function H(s):

H(s) ≈
M∑
m=1

Rm

s− Sm
(2.19)

where s = σ + jω is the complex variable in the Laplace plane.
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2.3.5 Geometric Theory of Diffraction

The GTD was introduced by Keller [11] as an extension to geometrical optics to

include edge, vertex diffracted rays and perfectly conducting wedge. The GTD pre-

dicts that at high frequency, the backscattered field appears to originate from a set

of discrete scattering centers and follows a (j f
fc
)α frequency dependence where α

depends upon the target geometry. The backscattered field can be approximated by:

E(f) =
M∑
m=1

Am(j
f

fc
)αm ej2πftm (2.20)

where:

• M is the number of scattering-centres,

• Am is a complex amplitude associated with the reflectivity of themth scattering-

centre,

• f is the frequency,

• fc is the reference frequency, it is used for normalization,

• tm is the time delay between the observer and the mth scattering-centre,

• αm is the frequency dependence parameter of the mth scattering-centre.

For simple targets, the frequency dependence of canonical scattering geometries is

given in table 2.1 [14]. The scattering center analysis task is to determine the model

parameters {Am, tm, αm}Mm=1 that characterize the M individual scattering centers.

2.3.6 Reduced complexity model

In order to estimate the parameters of the scatterers from a set of radar data, the

scattering model chosen must be suitable for being used by rather simple mathemat-

ical techniques. For this reason, a reduced complexity model has been proposed.
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Table 2.1: Frequency dependence parameters for canonical scattering geometries

Value of α Scattering geometries
-1 corner diffraction
-1
2

edge diffraction
0 point scatterer; doubly curved surface reflection; straight edge specular
1
2

singly curved surface reflection
1 flat plate at broadside; dihedral

In frequency domain, the scattered fields Eν(ω, r) can be expressed as [15]:

Eν(ω, r) =
∞∑
m=1

Aνm(ω, r)exp(jωtm) (2.21)

where ν is any scattering field component of an orthogonal coordinate system (po-

larization), ω is the angular frequency, Aνm(ω, r) is the complex and frequency-

dependent amplitude of the mth scattering center depending on the scattering mech-

anism, r is the far-field position and tm is the time delay between the observer and

the mth scattering center. The time dependence exp(jωt) and the ν are dropped for

convenience throughout. The following approximation is used [16]:

Am(ω, r) ≈ am(r)e
γmω (2.22)

where am(r) is the amplitude, and γn is the phase which provides an approximate

match between Am(ω, r) and the exponential model. The approximation (2.22) can

only be met over a relatively narrow bandwidth. After using (2.22) into (2.21) and

the sampling procedure, the frequency response Y (kωs), which is the ratio between

the received and emitted fields, will be expressed as:

Y (kωs) ≈
M∑
m=1

âm(r)e
(γmkωs+jkωstm) + n(kωs)

≈
M∑
m=1

âm(r)xm + n(kωs)

k = 0, . . . , N − 1

(2.23)
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where ωs is the angular frequency sampling, N is the number of frequency samples,

M is the number of measurable wavefronts, âm(r) is the complex amplitude, n(kωs)

is the additive noise, and:

xm = e(γmkωs+jkωstm) (2.24)

2.4 Field regions

There are three regions surrounding an antenna or a scattering object as shown in

figure 2.2, the field structure is different in each region. There are various criteria to

identify these regions.

Figure 2.2: Three field regions surrounding a scattering object

2.4.1 Reactive near field region

This region surrounds immediately the scattering object. The outer boundary of

this region is commonly taken to exist at a distance R < 0.62
√

D3

λ
from the object

surface, where λ is the wavelength and D is the largest dimension of the object.

2.4.2 Radiating near field (Fresnel) region

This region is between the reactive near field region and the far field region wherein

radiation fields predominate and wherein the angular field distribution is dependent
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upon the distance from the object. If the dimension of the object is not large com-

pared to the wavelength, this region may not exist. The inner boundary is taken to

be the distance R ≥ 0.62
√

D3

λ
and the outer boundary the distance R < 2D2

λ
.

2.4.3 Far field (Fraunhofer) region

In this region, the angular field distribution is essentially independent of the distance

from the object. The far field region is commonly taken to exist at distances greater

than 2D2

λ
from the object ( D must be large compared to the wavelength).

2.5 Theoretical analysis of the backscattered field from
canonical objects

2.5.1 The conducting sphere

Because of its symmetry, the perfectly conducting sphere is the simplest of all three

dimensional scatterers, it is often used as a reference scatterer to measure the scat-

tering properties (such as the RCS) of other targets. Let us assume that the electric

field of a plane wave is polarized in the x direction and it is traveling along the z

axis as shown in figure 2.3.

The electric field of the incident wave can then be expressed as:

Ei = E0e
jkzex = E0e

jkrcosθex (2.25)

where E0 is the amplitude of the plane wave Ei, k is the wave number, and ex is the

unit vector in the direction of the coordinate axe x.

The component of the equation (2.25) can be transformed in spherical components

to:

Ei = Ei
rer + Ei

θeθ + Ei
ϕeϕ (2.26)

where:

Ei
r = Ei

x sinθ cosϕ = E0 sinθ cosϕ e
jkrcosθ (2.27)
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Figure 2.3: Normal plane wave incidence (θ = 90◦) on a conducting sphere

Ei
θ = Ei

x cosθ cosϕ = E0 cosθ cosϕ e
jkrcosθ (2.28)

Ei
ϕ = −Ei

x sinϕ = −E0 sinϕ e
jkrcosθ (2.29)

Scattering by a conducting sphere

The exact solution for the scattering by a conducting sphere is known as the Mie

series [17].

In far field observations, the backscattered field from a sphere is [18]:

Es
θ = E0

e−jkr

2kr

∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

(2.30)

• a: radius of the sphere,
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• r: distance from the sphere to the point of observation, and:

Ĥ(2)
n (x) = xh(2)n (x) =

√
πx

2
H

(2)

n+ 1
2

(x) (2.31)

where:

• h
(2)
n (x): are spherical Hankel functions of second order,

• H
(2)
n (x): are regular cylindrical Hankel functions of second order.

Finally, we can write:

H(2)′

n (x) =
1

2

√
π

2x
H

(2)

n+ 1
2

(x) +

√
πx

2
H

(2)′

n+ 1
2

(x)

=
1

2

√
π

2x
H

(2)

n+ 1
2

(x) +
1

2

√
πx

2

[
H

(2)

n− 1
2

(x)−H
(2)

n+ 3
2

(x)
] (2.32)

The figure 2.4, shows the magnitude of
Es

θ

E0
without e−jkr

r
as a function of the

electrical size of the sphere: ka. The amplitude rises quickly from a value of zero

to a peak near ka = 1 and then executes a series of decaying undulations as the

sphere becomes electrically larger. The undulations are due to the fact that there is

a region where specular reflected waves combine with backscattered creeping waves

both constructively and destructively as shown in figure 2.5. The undulations become

weaker with increasing ka because the creeping wave loses more energy the longer

the electrical path traveled around the shadowed side.

The monostatic RCS of the sphere can be expressed using (2.30) by:

σ = lim
r→∞

[
4πr2

|Es|2

|Ei|2

]
=

π

k2

∣∣∣∣∣
∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣∣∣∣∣
2

(2.33)

where Ei is the incident field.
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Figure 2.4: Magnitude of the backscattered field from a sphere (k is the wave
number and a is the radius of the sphere)

Figure 2.5: Addition of specular and creeping waves
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For very small values of the electrical size ka, the first term of (2.33) (n = 1) is

sufficient to accurately represent the RCS. Doing this we can approximate (2.33) by:

σ ≈ π

k2

∣∣∣∣∣ 3

Ĥ
(2)′

1 (ka)Ĥ
(2)
1 (ka)

∣∣∣∣∣
2

(2.34)

Since:

Ĥ
(2)
1 (ka) ≈ j

1

ka
(2.35)

Ĥ
(2)′

1 (ka) ≈ −j 1

(ka)2
(2.36)

(2.33) reduces to:

σ ≈ 9π

k2
(ka)6 (2.37)

which is representative of the Rayleigh region scattering.

For very large values of the electrical size ka, we can approximate the spherical

Hankel function and its derivative in (2.33) by:

Ĥ(2)
n (ka) ≈ e−j[ka(sin(α)−α cos(α))−π

4 ]√
sin(α)

(2.38)

Ĥ(2)′

n (ka) ≈
√
sin(α)e−j[ka(sin(α)−α cos(α))+π

4 ] (2.39)

cos(α) =
n+ 1

2

ka
(2.40)

Thus (2.33) reduces for very large values of the radius a to:

σ =
π

k2

∣∣∣∣∣
∞∑
n=1

(−1)n(2n+ 1)

Ĥ
(2)′
n (ka)Ĥ

(2)
n (ka)

∣∣∣∣∣
2

≈ πa2 (2.41)

which is representative of the optical region scattering.
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The CNRs of the sphere can be extracted theoretically by determining the poles

of the equation (2.30). To find the poles, we should develop the Hankel functions in

sum of series [19].

We develop the Hankel functions in sum of series in order to find the analytical

expressions of the poles and residues. By putting: z = ka, we can write [20]:

Ĥ(2)
n (z) = zh(2)n (z) = jn+1e−jz

n∑
β=0

(
n+

1

2
, β

)
(2jz)−β

= jn+1e−jz
n∑
β=0

(n+ β)!

β!Γ(n− β + 1)
(2jz)−β

= jn+1e−jz
n∑
β=0

(n+ β)!

β!(n− β)!
(2jz)−β

(2.42)

We put ζ = jz, hence:

Ĥ(2)
n (ζ) = jn+1e−ζ

n∑
β=0

(n+ β)!

β!(n− β)!
(2ζ)−β

= jn+1e−ζ
(
fn(ζ)

ζn

) (2.43)

where:

fn(ζ) =
n∑
β=0

(n+ β)!

β!(n− β)!

1

2β
ζn−β (2.44)

And:

Ĥ(2)′

n (ζ) = −jn+2e−ζ
n∑
β=0

(n+ β)!

β!(n− β)!
(2ζ)−β + jn+2e−ζ

n∑
β=0

(n+ β)!

β!(n− β)!

1

2β
(−β)ζ−β−1

= −jn+2e−ζ
n∑
β=0

(n+ β)!

β!(n− β)!

1

2β
(1 +

β

ζ
)ζ−β = jn

e−ζ

ζ

gn(ζ)

ζn

(2.45)
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where:

gn(ζ) =
n∑
β=0

(n+ β)!

β!(n− β)!

1

2β
(β + ζ)ζn−β (2.46)

The roots ζi of fn(ζ) and gn(ζ) are the poles of the backscattered field from a

sphere. There are n roots for each fn(ζ) function and n + 1 roots for each gn(ζ)

function.

Figure 2.6 shows a doubly infinite set of natural resonance frequencies for n =

43 which correspond to the zeros of the hankel function of second order and its

derivative. The zeros of fn(ζ) are represented by red circles, and the zeros of gn(ζ)

are represented by blue circles.
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Figure 2.6: Complex Natural Resonances of a conducting sphere

In the appendix A, we show how to obtain the analytical expression of residues

that are related to the poles.
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2.5.2 The thin wire

The scattering field by a thin wire can be analytically determined by a variety of

methods which allow computing the complex natural frequencies [21].

Scattering by a thin wire

The scattering geometry under consideration is shown in figure 2.7. The conducting

thin wire has radius a and length L, and it is located in free space. The scattered field

is produced by the incident field at angle θi and can occur at an arbitrary observation

angle θ0.

An approximation of the scattered field is given by [22]:

Figure 2.7: Geometry of the thin wire

r0E
sca
θ = −E0

Ω0

sinθ0
sinθi

1

sinkL

∫ L

0

[(coskz − ejkzcosθi)sinkL

− (coskL− ejkLcosθi)sinkz]ejkzcosθ0dz

(2.47)

where k is the wave number, r0 is the distance from the thin wire to the observation

point, and Ω0 = 2ln(L/a) is a factor used to describe the wire thikness.
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We evaluate the integral analytically, we put:∫ L

0

f(z)dz =
1

sinkL

∫ L

0

[(coskz − ejkzcosθi)sinkL

− (coskL− ejkLcosθi)sinkz]ejkzcosθ0dz

(2.48)

Then:

∫ L

0

f(z)dz =

∫ L

0

[
sink(L− z) + ejkLcosθisinkz

sinkL
ejkzcosθ0 − ejkz(cosθ0+cosθi)

]
dz (2.49)

By putting m = jkL, and doing some transformations we obtain:∫ L

0

f(z)dz =

∫ L

0

sh(m(1− z
L
))em

z
L cosθ0

sh(m)
dz +

∫ 0

L

emcosθish(m z
L
)em

z
L cosθ0

sh(m)
dz

−
∫ L

0

em
z
L
(cosθ0+cosθi)dz

(2.50)

After evaluating the three integrals we find:∫ L

0

f(z)dz =
L

m

[
( ch(m)
sh(m)

+ cosθ0)

sin2(θ0)
− emcosθ0

sh(m)sin2(θ0)

]

+
L

m

[
(
ch(m)

sh(m)
− cosθ0)

em(cosθ0+cosθi)

sin2(θ0)
− emcosθi

sh(m)sin2(θ0)

]

+
L

m

[
1

cosθ0 + cosθi
− em(cosθ0+cosθi)

cosθ0 + cosθi

]
(2.51)

=⇒
∫ L

0

f(z)dz =
L

m
(1− em(cosθ0+cosθi))(

1

cosθ0 + cosθi
+

cosθ0
sin2(θ0)

)

+
L

m sh(m)sin2(θ0)
(−emcosθ0 − emcosθi

+ ch(m) + ch(m)em(cosθ0+cosθi))

(2.52)

Figure 2.8, shows an example of the backscattered field calculated using this ap-

proximate method, and a comparison with the more accurate numerical results using
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the moment method. Consider the case of a thin wire scatterer with a length/radius

ratio L/a = 400. For this calculation the incident field is normal (θi = 90◦), and the

backscattered field is calculated (θ0 = 90◦). In this figure, log(|r0E|) is plotted for

both methods. As can be noted, the agreement between the two solutions is not too

bad away from the resonant frequencies of the wire. Near these frequencies, however,

the lack of radiation resistance in the approximate model cause rather large errors.

Nevertheless, the general trends in the data remain consistent for a wide range of

frequencies.
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Figure 2.8: Plot of the backscattered field of a thin wire for θi = θ0 = 90◦

Methods for Determining the Wire Resonant Frequencies

The natural resonances of the wire can be determined by two methods: using the

approximate solutions or using the integral equation solutions.

Approximate solutions Due to the relative difficulty in obtaining the resonances

of the wire, several different approximations have been developed in the literature.
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Lee and Leung [23] and Weinstein [24] use a Weiner-Hopf method, while Hoorfar and

Chang [24] an infinite wire solution for the current, with additional reflected traveling

current waves at the ends of the wire. Bouwkamp [25] and Marin and Liu [26] both

use the asymptotic antenna theory of Hallen to obtain the resonances.

The equation below shows the expression given by Lee and Leung for the complex

natural resonance frequencies in [23]:

sn = σn + jωn =
jnπc

L

[
1 +

1− j 2
π
ln(2nπ)

4n ln(1.781 anπ
L

)

]
n = 1, 2, 3, · · · (2.53)

The accuracy of all these approximate methods deteriorates as the wire becomes

thicker.

Solutions Based on the Integral Equation Solution The Pocklington equation

describes the current flowing on the wire for a scattering problem. This current

may be determined numerically by using the method of moments, as described by

Harrington [27]. This procedure results in a system impedance matrix equation

that contains information about all of the resonances of the wire. By generalizing

this integral equation solution to complex frequencies, the natural frequencies are

determined by searching for the zeros of the determinant of the system matrix.

Tesche in [28] describes the initial calculation of the natural resonances of the wire

structure through the use of Newton’s method in the complex s-plane. This amounted

to an iterative search for the zeros of the system determinant in the s-plane. As an

alternative to the Newton search method for finding the wire resonances from the

integral equation solution, a contour integration method proposed by Baum [29] can

be used. Giri and his co-authors in [30] used this contour integration method to

determine the frequencies in the s-plane.

The most recent contribution to the set of complex resonant frequencies based on

an integral equation for the wire is described in [31]. This analysis method results
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in a characteristic equation involving a complex propagation constant k, from which

the roots may be determined iteratively. The equation is shown below:

F (k) = (k2n − k2){2L
[
ln
2L

a
−
∫ L

0

dy

y
(1− ejkycos(kny))

]
+

i

k + kn

[
ej(k+kn)L − 1

]
+

i

k − kn

[
ej(k−kn)L − 1

]
} − (k2n + k2)

2

kn

∫ L

0

ejky

y
sin(kny)dy

(2.54)

The complex resonant frequencies sn are then found by numerically searching for the

roots to the equation:

F (
sn
jc

) = 0 for n = 1, 2, 3, · · · (2.55)
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Figure 2.9: Overlay plots of the normalized resonant frequencies as computed by
the methods of Giri, et al., Tesche and Myers, et al., for the wire with a/L = 0.005

Figure 2.9 shows a comparison of the first 10 normalized complex resonant fre-

quencies (σ+jω)L/c in layer 1, as computed by the methods of Giri [30], Tesche [28]
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and Myers [31], for the specific case of a wire with a/L = 0.005. Because the results

of [30] and [28] are both based on the same integral equation solution (but with a

different method of searching) the resonant frequencies are very close.

2.6 Conclusion

In this chapter, background information has been provided on the electromagnetic

theory. Next, the scattering theory has been presented which pointed the different

models proposed for scattering. In particular, SEM which is used in time domain

and GTD and its reduced complexity model which are used in frequency domain

are presented. Finally theoretical analysis of the backscattered field from canonical

objects has been presented. To have many CNRs or many scattering centers, the

use of wide band frequency is necessary. In the next chapter, the UWB radar is

presented in detail.
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3

UWB Radar

3.1 Introduction

This chapter provides an overview of radars and the deficiencies of conventional

radars. Next, we talk about the history, definition, application and advantages of

Ultra WideBand (UWB) radars. Temporal and frequency techniques used to obtain

a UWB spectrum are summarized in this chapter. Finally, we present an overview

of the UWB radar in Automatic target classification (ATC).

3.2 Radars

Radar is an acronym for Radio Detection And Ranging, and as the name implies,

radio energy is used to determine the attributes of a target. In its simplest form, a

radar system consists of three subsystems (Figure 3.1): a transmitter, a receiver, and

an antenna system. The transmitter generates an electrical signal that is radiated

by the antenna system. If the signal is incident on a target, such as an airplane,

vehicle, or an animal, it will be partially reflected back to the radar system. After

amplification by the receiver and with the aid of proper signal processing, a decision
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Figure 3.1: The radar system diagram

is made at the output of the receiver as to whether or not a target echo signal is

present. At that time, the target location and other information about the target

are acquired.

3.2.1 Information available from a radar

Several types of information can be collected by a radar:

• Detection. The radar is now employed in many divers uses, but its original

purpose of detecting objects in some volume of space still constitutes a major

part of all its applications. In this case, the user is interested in distinguish-

ing targets in the illuminated volume from the clutter and noise that tend to

obscure it.

• Range. The range to a target is determined by measuring the time it takes for

the radar signal to propagate at the speed of light out to the target and back

to the radar. No other sensor can measure the distance to a remote target at

long range with the accuracy of radar. At modest ranges, the precision can be

a few centimeters. The distance D is given by:

D =
c ·∆T

2
(3.1)
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Figure 3.2: Schematic of the calculation of the velocity

where c is the speed of light, and ∆T is the temporal shift between transmission

and reception of the radar signal.

• Radial Velocity. The radial velocity of a target is obtained from the rate of

change of range over a period of time. It can also be obtained from the measure-

ment of the Doppler frequency shift. The motion of the target implies that for

two consecutively transmitted impulses, the time separating the transmission

and reception of the radar echo is different for these two impulses. From this

difference, the velocity of the target is deduced. The system emits a signal each

TR and receives the radiated echo by the target together with the generated

temporal shift. If for the first echo, the shift is δt1 =
2·D1

c
with D1 the distance

radar/target, for the next echo and because of the target motion, the temporal

shift δt2 will equal to δt1 plus a quantity δt, positive if the target moves away

and negative if it comes closer. If VR is the velocity, then:

δt =
2 · VR · TR

c
(3.2)

So, the velocity VR of the target is:

VR =
c · δt
2 · TR

(3.3)

• Localization. It can be realized by two methods: The first method is to deter-

mine the direction of the target by determining the angle where the magnitude
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Figure 3.3: An air-surveillance radar

Figure 3.4: Target localization using three radars

of the echo signal from a scanning antenna is maximum. This usually re-

quires a directional antenna. An air-surveillance radar with a rotating antenna

beam determines angle in this manner (Figure 3.3). The second method is

to use collected data from many measures realized in different points of the

space. Multiple range measures between the target and the different radars are

combined to produce a position. The target will be localized by finding the

intersection point of different circles (Figure 3.4).

• Radar imaging. When the radar has sufficient resolution capability in range or
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angle, it can provide a measurement of the target extent in the dimension of

high resolution. Most of the imaging radars use two techniques, the first one

is to use a very narrow beamwidth antennae. The second technique, employs

the Doppler frequency domain based on Synthetic Aperture Radar (SAR) or

Inverse Synthetic Aperture Radar (ISAR). There needs to be relative motion

between the target and the radar, to obtain the synthetic aperture [12].

• Target identification. It can be done by comparing or correlating the received

response with known targets. Applying classification methods is crucial for

automatic target identification, more information will be given later in this

dissertation.

3.2.2 The deficiencies of conventional radars

The majority of traditional radio systems use a narrow band of signal frequencies

modulating a sinusoidal carrier signal. The reason is the simplicity of the oscillatory

system based on an LC circuit. The resonant properties of this system allow an easy

frequency selection of necessary signals. Therefore, frequency selection is the basic

way of information channel division in radio engineering, and the majority of radio

systems have a band of frequencies that is much lower than their carrier signal. The

theory and practice of modern radio engineering are based on this feature.

Narrowband signals limit the information capability of radio systems, because

the amount of the information transmitted in a unit of time is proportional to this

band. Increasing the system’s information capacity requires expanding its band of

frequencies. The only alternative is to increase the information transmitting time.

The use of a relatively small bandwidth results in poor down-range resolution

(with limited capability of discriminating between two closely spaced targets) and

inability to accurately determine the range of the target. Due to the same reason, it

is not capable of separating target from various sources of non-stationary clutter.
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The new applications of the radar mostly require the use of imaging, obstacle

crossing, target identification, and discretion. It is necessary to have important

quantity of information collected by the radar in order to identify the target and a

good accuracy to localize it. This requires radar working with a wideband frequency.

Indeed, the wider bandwidth a system has the important information about the

target it collects.

3.3 Historical review of UWB radar

The contributions to the development of Ultra WideBand radio frequency signals

and their applications started in the 50s and 60s of the 20th century. Within the

early phase of the development, terms such as baseband, carrier-free, impulse, time

domain, non-sinusoidal, were commonly used to describe wideband techniques [32].

The term Ultra Wideband was introduced by the DARPA (US Defense Advanced

Research Projects Agency) around 1990.

In the late 1960’s, Harmuth, Ross and Robbins, and Etten started contribut-

ing to the development of the field addressing UWB radio frequency signals. The

work of Harmuth was based on the basic design for UWB transmitters and re-

ceivers [33, 34, 35, 36, 37]. At approximately the same time and independently, Ross

and Robbins [38, 39, 40] worked on the use of UWB signals in several application

areas, including communications, radar, and using coding schemes. Both Harmuth,

Ross and Robbins applied the 50 years old concept of matched filtering to UWB

systems. Etten’s empirical test of UWB radar systems resulted in developing system

design and antenna concept [41]. In 1974, Morey designed a UWB radar system for

ground penetration [42]. Other subsurface UWB radar designs followed [43].

In the late 1960s, Tektronix and Hewlett Packard developed oscilloscopes for

UWB signals [44]; they also produced the first time domain instruments for diagnos-

tics. In the 1960s both Lawrence Livermore National Laboratory and Los Alamos
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National Laboratory performed original research on pulse transmitters, receivers and

antennae. Cook and Bernfeld [45] presented the developments in pulse compression,

matched filtering and correlation techniques that began in 1952 at the Sperry Gyro-

scope Company.

In the 1970s Lawrence Livermore National Laboratory expanded its laser-based

diagnostics research into pulse diagnostics. Thus, by the early 1970s basic designs

for UWB signal systems were done, however, no strong efforts could be observed

in perfecting such systems. In fact, by 1975 a UWB system for communications

or radar could be constructed from components purchased from Tektronix. After

the 1970s, the only innovations in the UWB field could come from improvements

of some parts within the UWB system. The basic known components were pulse

train generators, pulse train modulators, switching pulse train generators, detec-

tion receivers and wideband antennae. Moreover, particular information about the

subcomponents and methodologies were also known, such as avalanche transistor

switches, light responsive switches, use of ”subcarriers” in coding pulse trains, inte-

gration and averaging matched filters, template signal match detectors, correlation

detectors, signal integrators, synchronous detectors and antennae driven by stepped

amplitude input.

In 1978, Bennett and Ross [46] summarized the known pulse generation methods.

Since that time there have been numerous sessions at various conferences, where the

many approaches to pulse generation techniques have been, and, continue to be,

discussed.

In 1988, Barret was able to organize a UWB workshop for the US Department

of Defense’s Director of Defense Research and Engineering attended by over 100

participants [47]. At this time, there was already substantial progress in UWB

in the former Soviet Union/Russian Federation and China, which paralleled the

progress in the US. There were also very active academic programs (e.g., at LLNL,
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LANL, University of Michigan, University of Rochester and Polytechnic University,

Brooklyn) which focused on the interesting physics of short pulse transmissions that

differed from the physics of continuous or long pulse signals, especially with respect

to interactions with matter.

With the conference held at W.J. Schafer Associates [47] and one at Los Alamos

National Laboratory in 1991 [48], there have been numerous meetings held on impulse

radar/radio [49, 50, 51, 52, 53, 54, 55, 56].

In 1994, McEwan, invented the Micropower Impulse Radar (MIR) which pro-

vided for the first time a UWB operating at ultralow power, besides being extremely

compact and inexpensive [57]. This was the first UWB radar that required only

microwatts of power to operate.

During the 90s, activities in UWB communications and radar gradually increased.

Laboratories built experimental UWB radars: the BoomSAR of the Army Research

Laboratory for mine detection and foliage penetration [58]; and the Microwave Micro-

scope of the Naval Research Laboratory for characterizing the sea spikes associated

with ocean scattering in naval radars [59]. These research systems were accompa-

nied by several developments in the commercial sector like Multispectral Solutions,

Inc. and Time Domain, Inc. This commercial advocacy of UWB systems led to

the US FCC’s (Federal Communication Commission) Notice of Inquiry for Part 15

usage by UWB systems in 1998 and to the subsequent Report and Order for Part 15

acceptance of UWB systems in 2002 [60].

3.4 Definition of UWB

The term UWB is used to represent a radio technique which was studied under

various names. In the earliest works on this field, we can find the terms impulse radio,

carrier-free radio, baseband radio, time domain radio, non-sinusoid radio, orthogonal

function radio and large relative bandwidth radio. The term UWB was coined by

40



the US Department of Defense in the late 1980s [61].

According to the definition of US FCC, a signal is called UWB if it has an absolute

bandwidth of at least 500 MHz, or a fractional bandwidth larger than 0.2. The

absolute bandwidth is calculated as the difference between the upper frequency fH of

the -10 dB transmission point and the lower frequency fL of the -10 dB transmission

point:

B = fH − fL (3.4)

which is also called 10 dB bandwidth, as shown in figure 3.5. On the other hand,

the fractional bandwidth is defined as:

Bfrac =
B

fc
(3.5)

where fc is the center frequency given by:

fc =
fH + fL

2
(3.6)

From (3.4) and (3.6), the fractional bandwidth Bfrac in (3.5) can be expressed as:

Bfrac =
2(fH − fL)

(fH + fL)
(3.7)

According to the FCC, a UWB system with fc larger than 2.5 GHz must have an

absolute bandwidth larger than 500 MHz, and a UWB system with fc smaller than

2.5 GHz must have a fractional bandwidth larger than 0.2.

Due to their large bandwidth, UWB systems are characterized by very short

duration waveforms, usually on the order of a nanosecond.

Figure 3.6 illustrates the comparison between conventional radio systems, which

generally modulate a narrowband signal on a carrier frequency, wideband systems,

with spreading spectrum for example, and ultra-wideband systems, which show a

weak power spectral density. As a comparison, the bandwidth of UMTS (Universal
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Figure 3.5: A UWB signal is defined to have an absolute bandwidth B ≥ 500MHz,
or a fractional bandwidth greater than 0.2

Mobile Telecommunications System) signals, the third generation of mobile commu-

nication, is 5 MHz.

Figure 3.6: Comparison of various radio system spectrums
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3.5 Application of ultra-wideband sensing

As long as the UWB sensors should be accessible for a larger community, they must

be restricted to low power transmissions which entitles them to short range sensing,

up to about 100 m.

UWB techniques have been used for a variety of applications including:

• Ground penetrating radar (GPR). Ground-Penetrating Radar is a geophysical

method that uses radar pulses to image the subsurface. This method detects

the reflected signals from subsurface structures. GPR can be used in a vari-

ety of media, including rock, soil, ice, fresh water, pavements and structures.

It can detect objects, changes in material, and voids and cracks. GPRs are

typically carrier-free or employ a low frequency carrier (500 MHz); the low fre-

quency content of the transmitted signal allows it to penetrate materials such

as concrete and soil more readily than a higher frequency signal.

Consider a metallic object buried in the ground. The transmitted signal will

be reflected from the object and, after some time delay, the reflected signal will

be incident on the receive antenna. The distance to the buried object can be

determined based on the time delay; which means, GPR employs time-domain

techniques to locate any discontinuities in the otherwise opaque target.

The GPR has been widely used by engineers in civilian and military domains

since the 70s. However, the first GPRs allowing good performances have been

commercialized in the early 90s. Since then, the number of users of this tech-

nique has been growing, and the GPRs are today employed in a variety of appli-

cations: detection of buried mines, fossils detection, evalulation of pavements,

study of the subsurface structure of the moon, etc [62, 63, 64, 65, 66, 67, 68].

• Strong clutter penetration radar. Similar to GPR, Strong clutter penetrating
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radars utilize low frequency, wideband transmitted signals to detect and iden-

tify objects that are embedded in foliage, soil cover or buildings. The efficient

and accurate detection provides a broad range of applications, such as locating

weapon caches during military operations and rescuing people from natural di-

asters. In [69], a UWB radar was used to detect the target obscured by foliage

by applying signal processing approaches.

• Collision avoidance systems. the requirements for advanced automotive safety

and driver assistance systems are being made stricter to avoid or mitigate

accidents at an early stage. Radar sensors are commonly used because of their

robust obstacle detection even under adverse weather conditions. Because of

diverse highway and urban scenarios, radar sensors must cope with different

target types and scenarios. To realize automatic brake assistances or adaptive

cruise control systems, they must observe forward targets and determine their

exact location. In [70], a synthetic aperture radar is used in order to evaluate

3D scattering centers of two different vehicles.

• UWB for medicine. The inherent features of the UWB radio signals make them

highly suitable for less invasive medical application. For example, the UWB

radar may be used in novel noninvasive sensing and imaging techniques thanks

to its high temporal resolution for detecting backscattered signals. In [71],

the authors described their current research on the application of the UWB

technology to noninvasive measurement of blood pressure. In addition, they

reported a survey of recent research in UWB technology for medical sensing

and communications.

UWB radar can be used for early-breast cancer detection as it does not involve

the use of ionising radiation (as is the case of X-Ray mammography). The

UWB Radar Imaging involves illuminating the breast with a UWB pulse, and
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recording the resulting backscattered signals. Signal processing techniques such

as beamforming, or time-reversal imaging can then be applied to the received

space-time backscatter to detect and localize significant scattering regions, such

as malignant tumors [72].

• Short range communications. One of the most popular applications of UWB

is data transmission with a very high rate (more than 500 Mbit/s) [73]. The

range of such systems is limited to some 10 m. Networks that cover such a

short range are often called personal area networks (PANs). High-data-rate

PANs are used especially for consumer electronics and personal computing

applications. Examples include the transmission of HDTV (high definition

television) streams from a set-top box or a DVD player to the TV requires

high data rates and wireless USB (universal serial bus), which aims to transmit

data at 480 Mbit/s between different components of a computer. The company:

Samsung, made a monitor fitted with a UWB technology, which allows the user

to connect it to a notebook or a desktop wirelessly.

The UWB technology can also be used in low data rate communication. UWB

technology is less affected by shadows and allows the transmission through

objects. The innovative communication method of UWB at low data rate

gives numerous benefits to government and private sectors. For instance, the

wireless connection of computer peripherals such as mouse, monitor, keyboard,

joystick and printer can utilize UWB technology. UWB allows the operation

of multiples devices without interference at the same time in the same space.

• Postion location and tracking. locating patient in case of critical condition, hik-

ers injured in remote area, tracking cars, and managing a variety of goods in a

big shopping mall, are all an example of the benefits of position location and

tracking. For active RF tracking and positioning applications, the short-pulse
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UWB techniques offer distinct advantages in precision time-of-flight measure-

ment, multipath immunity for leading edge detection, and low prime power

requirements for extended-operation RF identification (RFID) tags. The rea-

son of supporting human-space intervention is to identify the persons and the

objects the user aims at, and identifying the target task of the user. Knowing

where a person is, we can figure out near to what or who this person is and

finally make a hypothesis what the user is aiming at [74].

3.6 Advantages of Ultra-Wideband Radar

Most of the advantages of UWB systems are associated with the bandwidth that

is achieved. Basically, the wider bandwidth a system has the better it performs.

Since UWB achieves the highest bandwidth, its performance is maximized. The

advantages of UWB radar are listed below:

• Identification of target class because a received signal carries the information

not only about the target as a whole, but also about its separate elements.

Furthermore, the large bandwidth improves the radar resolution, which allows

the discrimination of two or several closely located targets.

• Rise in protection against passive interference from rain, mist, aerosols, etc.

This is because the scattering cross-section of interference source within a small

pulse volume is less relative to the target scattering cross-section.

• Detection of hidden targets and investigation of opaque structures. At one

hand microwave penetration in most of substances or randomly distributed

bodies (foliage, soil) is restricted to low frequencies but on the other hand rea-

sonable range resolution requires bandwidth. To bring both aspects together,

the fractional bandwidth must be large. The absolute bandwidth is typically

limited by the properties of the propagation medium.
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• Typical power transmission levels for short-range UWB radar systems are in

the milliwatt range, although levels in the watt range are not uncommon.

• Simpler implementation and lower cost compared to the traditional radar.

• UWB radar can be used in intelligent vehicles for localization, communication

and obstacles detection. Due to the use of a very wide bandwidth, transmission

is achieved with high data rate, it is also possible to achieve high precision

ranging and positioning. Therefore, application of UWB is widely researched

in intelligent transport systems radars, indoor ranging and positioning, etc

[75, 76].

• Improvement of the radar’s immunity to external narrowband electromagnetic

radiation effects and noise.

3.7 UWB techniques

Several waveforms can be used to obtain a UWB spectrum, but two techniques can

be distinguished: temporal techniques where the emitted signals can be pulses or ran-

dom noises. And harmonic techniques which use sinusoidal signals with modulated

frequency like step frequency or Frequency Modulated Continuous Wave (FMCW).

In this case, the measure is performed in frequency domain. Figure 3.7 shows an

overview of the different UWB techniques.

3.7.1 Impulse radar

The principle of a UWB impulse radar consists of transmission of a sequence of

N ultra-short pulses u(t) with fixed time interval TR , also called Pulse Repetition

Interval (PRI):

s(t) =
N−1∑
n=0

u(t− nTR) (3.8)
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Figure 3.7: The different UWB techniques

The pulse widths are in the order of tens of picoseconds. The instantaneous equiv-

alent spectrum of the pulse is between several MHz and several GHz. The most

commonly generated pulse shapes are monopulse (Gaussian-like pulse), monocycle

(first-order derivative of the monopulse) and ramp pulse. In impulse radar a short

pulse is applied directly to the transmitter antenna. The transmitter antenna works

as a filter, therefore, a band pass signal is radiated from the antenna. The transfer

function of the antenna determines the shape and bandwidth of the radiated signal.

In order to shape the spectrum, a filter may also be put in front of the antenna. The

received signal needs to be sampled and stored for further treatment.

Due to baseband (carrier-less) nature of impulse radio UWB signals, frequency

upconversion and down-conversion is not required in the radar system. This reduces
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Figure 3.8: Impulse radar with sequential sampling

the complexity and power consumption of radar.

In reception, a real time sampling is used. But in UWB impulse radars, the high-

est frequency can be several GHz so that an Analog to Digital Converter (ADC) that

can sample at this speed with several bit resolution is very difficult to manufacture

and would be expensive and power consuming. A solution to this problem, called se-

quential sampling technique, is to take only one receive sample for each transmitted

pulse. Then the ADC only needs to take one sample every pulse repetition interval

(PRI) so the need for high speed ADC is avoided.

Figure 3.8 shows a block diagram of impulse radar with sequential sampling [77].

A noise generator is controlling the trigger of the transmitted pulse. This is to

randomize the PRI of the pulse train and thereby reduce peaks and smooth the

transmitted spectrum. The PRI-generator triggers the impulse transmitter. The

trigger signal is delayed a certain amount before being used to trigger the receiver

sampler to take one range sample. The delay is shifted before the next sample is
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Figure 3.9: Block diagram of a noise radar

taken. In this radar a multi bit high resolution ADC can be used.

3.7.2 Noise radar

A random noise signal is generated by a source and transmitted by an antenna

(Figure 3.9). A receiving antenna receives the reflected signal after a time given by

the two way travel time delay. After amplification, the received signal is correlated

with a reference signal. The reference signal, which is a delayed version of the

transmitted noise signal, when it is delayed the same amount as the received signal

a strong correlation value would be expected.

There are many ways to implement the delay line. A cable with a given length

providing the correct delay is the simple way.

Concerning the correlator, a mixer and a low pass filter can be used. Another

implementation is using a digital RF-memory where the transmitted signal is sam-

pled and delayed digitally before converted to analog signal and correlated with the
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received signal.

In order to have a long range, the radar must emit sufficient energy, thus, it

emits long signals in time. A long signal in time offers a low resolution because the

frequency band is inversely proportional to the temporal width.

To obtain high-range resolution with long signals, pulse compression method is

used in the noise radar [78]. Pulse compression can provide the fine range resolution

of impulse signals with the high signal energy of conventional narrowband radars.

Because range resolution depends solely on the bandwidth, encoding can increase

the signal bandwidth to give wideband signal resolution the longduration, low-power,

and high-energy signals needed for long-range target detection. Pulse compression

method is based on generating long waveforms by coding the transmitted signal and

the processing of the received signal by a correlation processor. There are a number

of codes that can be used for pulse compression. The codes are selected based on

their length and on their autocorrelation properties.

3.7.3 Step frequency radar

Radars employing a step-frequency waveform increase the frequency of successive

pulses linearly in discrete steps. The different pulses will sum up, and the transmit-

ted signal will be a pulse train. The repetition interval is determined by the distance

between the transmitted frequencies. A pulse train can also be synthesized by trans-

mitting the different frequencies one at a time and summing them up afterwards.

The step frequency radar does this and transmits single tone frequencies in sequence

where only one frequency is transmitted at a time.

Figure 3.10 shows a group of N coherent pulses whose frequencies are increased

from pulse to pulse by a fixed frequency increment df . The frequency of the nth pulse

can be written as:

fn = f0 + n · df (3.9)
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Figure 3.10: Step-frequency waveform

where f0 is the starting carrier frequency and df is the frequency step size, that

is, the change in frequency from pulse to pulse. Each pulse is τ seconds wide, and

the time interval between the pulses is equal to T . Note that the frequency stays

constant within each pulse.

A step-frequency radar has a narrow instantaneous bandwidth (corresponding to

individual pulse) and attains a large effective bandwidth (corresponding to frequency

spread of pulses within a burst) sequentially over many pulses in the processor.

As a result, the hardware requirements become less stringent. Lower-speed ADC

(commensurate with the low bandwidth of individual pulses) and slower processors

can be used for reduced data. The receiver bandwidth would be smaller, resulting

in lower noise bandwidth and a higher signal-to-noise ratio.

Figure 3.11 shows a block diagram of a step frequency radar. An oscillator

generates the correct frequency that is transmitted by an antenna. The received

signal is captured by the receiver antenna and amplified before it is multiplied with

the same signal as transmitted. The signal after the mixer is low pass filtered and

sampled in an I and Q detector. The I and Q detector can be implemented after

the signal has been sampled.
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Figure 3.11: Block diagram of step-frequency radar

3.7.4 Frequency modulated continuous wave radar

The Frequency Modulated Continuous Wave (FMCW) radar is widely used technique

in UWB systems. This radar is also collecting the data in the frequency domain as

with the step frequency radar technique. In stead of changing the frequency in

steps, the frequency is changed linearly as a function of time (Figure 3.12). A linear

frequency modulation is a particular case of FMCW that we will explain in this

subsection.

Figure 3.13 shows a block diagram of an FMCW radar. A voltage-controlled

oscillator (VCO) forms the signal source that is modulated as a linear frequency

ramp. The signal is then transmitted to the transmitter antenna. Next, the reflected

signal by a target is received by a receiver antenna, and it is treated to extract needed

information from it.

The FMCW radars are easily overwhelmed by interference from pulse radars.
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Figure 3.12: The principle of operation of an FMCW radar

Figure 3.13: Block diagram of an FMCW radar

Also, they potentially get confused by onboard reflectors such as masts and satellite

antennae.

3.7.5 Conclusion

In our experiments we use the impulse radar for several reasons. Firstly, the radar

system is simplified. It is composed by only a generator, sampler and antennae.

There is no demodulator, correlator, etc. Moreover, the impulse radar is robust
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against other perturbations like: clouds and rains. The radar can be designed

with coherent operation which allows energy received from subsequent pulses to

be summed and by integrating these multiple returns it is possible to increase the

Signal-to-Noise Ratio (SNR). In addition, it provides accurate, high rate range mea-

surements. Finally, the UWB chipset enables low cost, small size, and low power

operation which is convenient in autonomous vehicles.

3.8 UWB radar in Automatic target classification

The principal objective of ATC is to identify the target from UWB radar. The

identification of the target will be realized by the comparison between the deduced

target properties and the different target features already recorded in a database.

After the radar has transmitted the pulse train, the first step is to detect whether

or not a target is present in the data. At this stage it may be determined that no

targets of interest are present and it is not necessary to carry out further processing.

If a target exists there are two processing methods for target identification and

recognition. One method is based on the radar reconstruction of image to show the

detected target. The other method is based on ATC and exploits the information

stored in the signal echoes. In our work, we seek to determine the nature of the

target and not the target view, hence we opt for the second method. This method

is based on ATC and consists of the following successive stages:

• Signal preprocessing. The aim of signal preprocessing in ATC is to prepare

and condition the acquired signal in order to simplify the feature extraction

and later classification of the required target. Generally for the signal prepro-

cessing, filtering and normalization are used. Filtering is applied in order to

remove unwanted signals coming from all objects surrounding the radar. These

unwanted signals that are included in the recorded signal act as clutter and

55



Figure 3.14: Overview of the target recognition process

noise . The normalizing process conditions the signal to make it independent of

the data acquisition situation. For example, the amplitude of a scattered field

by an object will change if the distance of this object from the radar changes.

Therefore, the amplitude of the scattered field must be normalized before fea-

ture extraction.

In the case where we have a signal in time domain obtained by a radar us-

ing temporal technique, and we want to apply a feature extraction method

in frequency domain, an FFT is applied on the signal in this step of signal

preprocessing.
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• Feature extraction. Feature extraction is the process of obtaining a useful

subset of information about a target from an entire measured signal. The best

handling of the feature extraction consists of understanding the physical behav-

ior of a radar system in its environment. Based on this understanding, features

must then be mathematically described depending on the given requirements.

A variety of algorithms for feature extraction are possible. In our thesis, we

have used wavelet transform and high resolution methods.

• Classification and recognition algorithms. The previous two phases, preprocess-

ing and feature extraction, aimed to extract the essential information about the

observed signals and present it in the most appropriate and condensed form to

the classifier. From this point, the quality of decision made depends only on

the classifier choice and its implementation.

The extracted features are compared with the information in the reference li-

brary and classified to the object giving the best match. In general, there are

two phases in constructing a classification system: training phase and testing

phase. In the training phase, the learning algorithm is applied on a subset

of the dataset, called training data. This results in a trained model. In the

testing phase, another subset of the data, called test data, is evaluated using

the model created in the training phase.

3.9 Conclusion

In this chapter, the deficiencies of conventional radar have been presented. The

history, definition, application and advantages of UWB radar have been provided.

The temporal and frequency techniques used in UWB radar have been presented. We

showed the advantages of the impulse radar and why it is suitable for autonomous

vehicles. Finally, the different steps of automatic target classification by using UWB
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radar have been described. In the next chapter we will present the methods used for

feature extraction and for classification.
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4

Radar automatic target classification

4.1 Introduction

A major aim of this thesis is to investigate the variation of classification performance

with key parameters of the signal processing and feature extraction methods appli-

cable to backscattered signals from UWB radar. In ATC, the two main steps are

feature extraction and classification. In this chapter, firstly we present the meth-

ods used for feature extraction in our work which are wavelet transform and high

resolution techniques. Then, we present the methods used for classification which

include Mahalanobis Distance Classifier (MDC), Näıve Bayes (NB), k-Nearest Neigh-

bors (k-NN) and Support Vector Machine (SVM). In order to evaluate and compare

the different methods of classification, cross validation method is applied which is

explained in this chapter.

4.2 Feature extraction

The UWB backscattered signals from unknown targets are firstly processed through

a feature extraction method so that the most relevant features from each signal can
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be highlighted and forwarded to the classification algorithms. The methods used for

feature extraction in our work include wavelet transform and high resolution methods

which are detailed below.

4.2.1 Wavelet transform

The wavelet transform has been found to be particularly useful for analysing signals

which can best be described as aperiodic, noisy, transient, etc. Its ability to examine

the signal simultaneously in both time and frequency has generated a number of

sophisticated wavelet-based methods for signal processing. Many of the ideas be-

hind wavelet transforms have been in existence for a long time. However, wavelet

transform analysis as we now know it really began in the mid-1980s where they were

developed to interrogate seismic signals. The application of wavelet transform anal-

ysis in science and engineering really began to take off at the beginning of the 1990s,

with a rapid growth in the numbers of researchers turning their attention to wavelet

analysis during that decade.

Wavelets are used to transform the signal under investigation into another represen-

tation which presents the signal information in a more useful form. This transfor-

mation of the signal is known as the wavelet transform. Mathematically speaking,

the wavelet transform is a convolution of the wavelet function with the signal. The

Discrete Wavelet Transform (DWT) can be used as a feature extraction method by

producing wavelet coefficients which may be used as discriminant bases for classifica-

tion methods [79, 80]. Before explaining how we use the DWT for feature extraction,

we first present the Continuous Wavelet Transform (CWT).
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Continuous Wavelet Transform

The CWT of a signal x(t) is defined as [81]:

T (a, b) =

∫ +∞

−∞
x(t)ψ∗

a,b(t)dt = ⟨x(t), ψa,b(t)⟩ (4.1)

where (∗) denotes complex conjugate, ψ(t) is the mother wavelet function. The time

location is determined by the term:

ψa,b(t) =
1√
a
ψ(
t− b

a
) (4.2)

where ψa,b(t) is a set of wavelets generated from ψ(t), which expands and attenuates

as a increases or diminishes, respectively. In addition, ψ(t) shifts in the time domain

as b changes.

The energie E of a wavelet must be finite:

E =

∫ +∞

−∞
|ψ(t)|2 dt <∞ (4.3)

If ψ̂(f) is the Fourier transform of ψ(t):

ψ̂(f) =

∫ +∞

−∞
ψ(t)e−j(2πf)tdt (4.4)

The wavelet ψ(t) must have a zero mean:

∫ +∞

−∞
ψ(t)dt = 0 (4.5)

and therefore it must be oscillatory. In other words, ψ(t) must be a wave.

There is an inverse wavelet transform, defined as:

x(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

0

T (a, b)ψa,b(t)
da db

a2
(4.6)
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where:

Cψ =

∫ +∞

0

|ψ(f)|2

f
df <∞ (4.7)

This allows the original signal to be recovered from its wavelet transform by inte-

grating over all scales and locations, a and b.

Discrete Wavelet Transform

The DWT is obtained by considering that parameters of scaling a and shifting b take

discrete values: a = ai0, b = kb0a
i
0, with i, k ∈ Z, a0 > 1 and b0 > 0. Replacing these

values in (4.1) yields:

Ti,k =
1√
ai0

∫ +∞

−∞
x(t)ψ(a−i0 t− kb0)dt = ⟨x(t), ψi,k(t)⟩ (4.8)

When the DWT is applied to a set of radar target signals, the wavelet coefficients

are obtained by the decomposition Low-Pass Filter (LPF) and the decomposition

High-Pass Filter (HPF).

Given samples c(n) of the signal, two sets of coefficients are produced: approx-

imation coefficients cA1, and detail coefficients cD1. These vectors of coefficients

are obtained by convolving cn with the the low-pass filter for approximation, and

with the high-pass filter for detail, followed by decimation process which divides the

number of samples by two (figure 4.1).

cA1(n) =
∑
k

h(k − 2n)c(n) (4.9)

cD1(n) =
∑
k

g(k − 2n)c(n) (4.10)

Here, h(n) and g(n) are the associated filter coefficients that decompose c(n) into

cA1(n) and cD1(n) respectively. The coefficients of the filters h(n) and g(n) are

associated with the selected mother wavelet.
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Figure 4.1: Wavelet decomposition scheme

The chosen wavelets in our work are Coiflet 5 (coif 5) and Daubechies 4 (db4),

as they gave the best performance.

The next step splits the approximation coefficients cA1 in two parts using the

same scheme, replacing c(n) by cA1, and producing cA2 and cD2, etc. With these

coefficients it is possible to reconstruct the signal by inserting zeros between samples.

Then, these sequences are processed using the low pass and high pass filters.

Let’s M be the order of decomposition. The total energy of the discrete input

63



signal is given by:

E = (cAM)2 +
M∑
m=1

(cDm)
2 (4.11)

The (M + 1) terms of this equation are used to build the database corresponding to

wavelet feature data. In our simulations, we take M = 1, 2, . . . , 5.

4.2.2 High resolution methods

High resolution methods are applied on the desired and/or undesired signal compo-

nents present in a given set of data to estimate and/or detect them. The term high

resolution implies a good ability to separate very similar signal components. The

parametric high resolution methods result from ingenious exploitations of known

data structures.

In this section, we present four parametric methods: Prony’s method, Root-MUltiple

SIgnal Classification (Root-MUSIC), Estimation of Signal Parameters via Rotational

Invariance Techniques (ESPRIT) and Matrix Pencil Method (MPM).

Prony’s method

In 1795, Prony described a method for modeling experimental data as a linear combi-

nation of damped exponentials [82]. The principle of this method is to transform the

nonlinear problem of finding damping factors in a linear problem. The exponentials

that have to be found are the roots of a polynomial and estimating the coefficients

of this polynomial is a linear problem. Prony treated the case of real exponentials

but the principle remains the same if we extend the problem to the case of complex

exponentials.

Prony’s method is a decomposition of a signal y(t) withM complex exponentials.
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y(t) is written as follows:

y(t) =
M∑
i=1

Rie
(αi+jωi)t (4.12)

Firstly, Prony’s method regularly samples y(t) so that it will be written as:

y(nTs) =
M∑
i=1

Rie
(αi+jωi)nTs

=
M∑
i=1

Riz
n
i

(4.13)

The key to Prony’s Method is that the coefficients in the difference equation are

related to the following polynomial:

M∏
i=1

(1− zi
z
) =

M∑
i=0

piz
−i = 0 (4.14)

with p0 = 1.

Because the summation of complex exponentials is the homogeneous solution to

a linear difference equation, the following difference equation will exist:

y(n) = −
M∑
i=1

piy(n− i) (4.15)

Therefore, with 2M samples, the coefficients pi are calculated by solving the

following system:


y(M) y(M − 1) · · · y(1)

y(M + 1) y(M) · · · y(2)
...

...
...

...
y(2M − 1) y(2M − 2) · · · y(M)



p1
p2
...
pM

 = −


y(M + 1)
y(M + 2)

...
y(2M)

 (4.16)

65



Once the coefficients are computed, the ith root of the polynomial can be de-

termined by solving the equation (4.16). Finally, the complex amplitudes (Ri) are

calculated via linear least squares:


z1 z2 · · · zM
z21 z22 · · · z2M
...

...
...

...
zM1 zM2 · · · zMM



R1

R2
...
RM

 =


y(1)
y(2)
...

y(M)

 (4.17)

The Prony’s method is quite efficient and accurate for extracting the roots and

reconstructing the signal y(t); however, it is well known for its extreme sensitivity to

noise. Moreover, The number of zeros is directly linked to the number of considered

samples which involves two difficulties: the choice of M and solving a high size

system.

Root-MUSIC

The idea of MUSIC was developed in [83] to estimate the signal frequencies. The

signal model is expressed as follows:

x(k) =
M∑
i=1

Aie
jωik + n(k) (4.18)

where Ai ∈ C is a complex number representing the magnitude and phase of the ith

frequency component and n(k) represents the noise.

From the available N data samples, the discret autocorrelation sequence rx[k] is

computed:

Rx = E[xxH ] =

 rx(0) · · · rx(N − 1)
...

. . .
...

rx(N − 1) · · · rx(0)

 (4.19)

where E and H are the expectation and the conjugate-transpose operators, respec-

tively.
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After that, The autocorrelation matrix Rx is eigendecomposed as:

Rx = UΛxU
H (4.20)

where U = [u1, u2, . . . , uN ]. All eigenvalues can be partitioned as follows:

λ1 ≥ λ2 ≥ . . . λM︸ ︷︷ ︸
M signal eigenvalues

≥ λM+1 ≥ λK+2 ≥ . . . λN︸ ︷︷ ︸
N−M noise eigenvalues

(4.21)

Next, we put Ũ = [u1, u2, . . . , uM ] and we form annihilating filters using N −M

noise eigenfilters:

Ũi(z) =
N−1∑
m=0

ui(m)z−m; i =M + 1, . . . , N (4.22)

where ui(0) = 1, zi = e±jωiTs . Every eigenfilter has N−1 roots,M roots are common

for all eigenfilters. Now the following expression can be defined:

D(z) =
N∑

i=M+1

[Ũi(z)][Ũ
∗
i (1/z

∗)] (4.23)

The MUSIC spectrum can be obtained by evaluating D(z) on the unit circle

(D(z)z=ejωTs = D(ejωTs)).

Using the property that (zi)1≤i≤N are the roots of (4.22), the equation (4.23) can

be rewritten as:

D(z) =
M∏
i=1

(1− ziz
−1)(1− z∗i z)

·
N∏

i=M+1

(1− ziz
−1)(1− z∗i z)

= H1(z)H
∗
1 (1/z

∗)H2(z)H
∗
2 (1/z

∗)

(4.24)

where H1(z) contains the M significant zeros of (4.22) whereas H2(z) contains the

extraneous zeros which lie inside the unit circle. The root-MUSIC procedure uses the
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most straightforward way to find the roots of D(z) and to identify the frequencies

of the signal components by using the knowledge that all those roots lie close to the

unit circle.

ESPRIT

The original ESPRIT was described by Paulraj, Roy and Kailath [84].It is based on

a naturally existing shift invariance between the discrete time series which leads to

rotational invariance between the corresponding signal subspaces.

To illustrate the shift invariance, let’s consider the single signal case without

noise. Consider a vector of observations called X:

X = [x(0), x(1), . . . , x(N − 1)]

= A1

[
1, ejω1Ts , ejω12Ts , . . . , ejω1(N−1)Ts

] (4.25)

where x(n) is represented by one exponential component as follows:

x(n) = A1e
jω1nTs (4.26)

The vector X can be partitioned as follows:

X = [x(0), x(1), . . . , x(N − 2)︸ ︷︷ ︸
s1

, x(N − 1)]

= [x(0), x(1), . . . , x(N − 2), x(N − 1)︸ ︷︷ ︸
s2

]
(4.27)

We note that:

s1 = ejω1Tss2 (4.28)

This approach can be extended to the multiple signal case where M exponential

components are considered:

x(n) =
M∑
i=1

Aie
jωinTs (4.29)
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We compute the discret autocorrelation sequence rx(n) from the available N data

samples. The autocorrelation matrix is arranged as follows:

Rx = E(xxH) =

 rx(0) · · · rx(N − 1)
...

. . .
...

rx(N − 1) · · · rx(0)

 (4.30)

Now we can eigen-decompose the matrix Rx as: Rx = UΛxU
H , where U =

[u1, u2, . . . , uN ].

It is possible to partition a matrix by using special selector matrices which select

the first and the last (M − 1) columns of a (M ×M) matrix, respectively:

Γ1 = [IM−1 0(M−1)×1](M−1)×M

Γ2 = [0(M−1)×1 IM−1](M−1)×M

(4.31)

We use the selector matrices as follows:

S1 = Γ1Ũ

S2 = Γ2Ũ

(4.32)

where Ũ = [u1, u2, . . . , uM ].

For the matrices defined in equation (4.32), for every i denoting the different

frequency components, we have:

[Γ1Ũ ]Φ = Γ2Ũ (4.33)

Where:

Φ =


ejω1 0 · · · 0
0 ejω2 0 0
...

...
. . .

...
0 0 · · · ejωk

 (4.34)

The matrix Φ contains all information about frequency components. In order to

extract this information, it is necessary to solve the equation (4.33) for Φ. By using
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a unitary matrix (denoted as T ), the following equations can be derived:

Γ1(ŨT )Φ = Γ2(ŨT )

Γ1Ũ (TΦTH)︸ ︷︷ ︸
eig.ofΦ

= Γ2Ũ
(4.35)

In practice, the only interesting subspace is the signal subspace, spanned by signal

eigenvectors Us. Usually it is assumed that these eigenvectors correspond to the

largest eigenvalues of the correlation matrix and ESPRIT algorithm determines the

frequencies ejωkTs as the eigenvalues of the matrix Φ. In solving the rotational invari-

ance formula of equation (4.33) we can use the Least-Squares (LS) solution, which

is given by:

ΦLS = [Γ1Us]
−1Γ2Us (4.36)

Knowing that both S1 and S2 contain errors, estimating Φ using the Total Least

Squares (TLS) criterion is more appropriate. The TLS approach takes into account

possible errors (∆S1 ,∆S2) for both estimated matrices S1 and S2. The TLS problem

has the form:

(S1 +∆S1)Φ = S2 +∆S2 (4.37)

The TLS solution minimizes the Euclidean norm of the error matrix:

∥∆S1∆S2∥ (4.38)

The solution can be obtained using the singular value decomposition. Let V be

the matrix of right singular vectors of the matrix [S1 S2]. The matrix V can be

partitioned into four square parts of equal size, as follows:

V =

[
V11 V12
V21 V22

]
(4.39)

Then the solution is given by:

ΦTLS = −V12V −1
22 (4.40)
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Matrix Pencil Method

The matrix pencil method shows an improvement in terms of variance estimators

compared to previous methods. A matrix pencil is a linear combination of two

matrices Y1 and Y2, as in Y2 − λY1, in which λ is a scalar variable [4].

Theoretical backgrounds To explain the theory of MPM, we use as an example a

temporal noisy signal y(t) of a physical measurement, which has the following form:

y(t) = x(t) + n(t) 0 ≤ t ≤ T (4.41)

Where:

• y(t) = observed time response

• x(t) = signal

• n(t) = noise in the system

After sampling, the time variable, t, is replaced by kTs, where Ts is the sampling

period. Then, the signal x(t) can be expressed as:

x(kTs) =
M∑
i=1

Riz
k
i k = 1, . . . , N (4.42)

and:

zki = eSiTsk

= e(αi+jωi)Tsk
(4.43)

With:

• Si = αi + jωi

• Ri = residues or complex amplitudes
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• αi = damping factors

• ωi = angular frequencies

Finally, the complete equation will have the following form:

y(kTs) = x(kTs) + n(kTs)

≈
M∑
i=1

Riz
k
i + n(kTs)

(4.44)

In equation (4.44), the M complex values of zi and the complex residues Ri are the

unknowns that we need to estimate. The broad-band noise, n(kTs), is described by

its statistical properties:

E {n(kTs)n∗((k −m)Ts)} =

{
σ2
n, m = 0

0, m ̸= 0
(4.45)

where E(·) is the expectation operator, (∗) is the complex conjugate and σ2
n is the

variance. The signal-to-noise ratio is defined by:

SNR = 10 log10

(
Power(x)

Power(n)

)
dB (4.46)

Given a set of sampled data y(kTs), the data is formed into a data matrix called a

Hankel matrix. A Hankel matrix has the same value in each element along each anti-

diagonal, as shown in Equations (4.47) and (4.48) where Y1 and Y2 are constructed

by removing the last and first column respectively.

Y1 =


y(1) y(2) · · · y(L)
y(2) y(3) · · · y(L+ 1)
...

... · · · ...
y(N − L) y(N − L+ 1) · · · y(N − 1)


(N−L)×L

(4.47)
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Y2 =


y(2) y(3) · · · y(L+ 1)
y(3) y(4) · · · y(L+ 2)
...

... · · · ...
y(N − L+ 1) y(N − L+ 2) · · · y(N)


(N−L)×L

(4.48)

The matrix Y2 is shifted by one sample in comparison to the matrix Y1. The shape of

the Hankel matrices is determined by the free-moving window length L, also known

as the pencil parameter. The pencil parameter, L, is very useful in eliminating some

effects of noise in the data. For best estimation results, it is shown that [85, 86]:

N

3
≤ L ≤ N

2
(4.49)

The data matrix Y1 can be decomposed into three matrices, as:

Y1 = Z1 ·R · Z2 (4.50)

where Z1 and Z2 are Vandermonde matrices as follows:

Z1 =


1 1 · · · 1
z1 z2 · · · zM
...

... · · · ...
zN−L−1
1 zN−L−1

2 · · · zN−L−1
M


(N−L)×M

(4.51)

Z2 =


1 z1 · · · zL−1

1

1 z2 · · · zL−1
2

...
... · · · ...

1 zM · · · zL−1
M


M×L

(4.52)

and:

R =


R1 0 · · · 0
0 R2 · · · 0
...

... · · · ...
0 0 · · · RM


M×M

(4.53)
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The values Ri found on the main diagonal of R are the residues of the signal model

in equation (4.42). In a similar manner, Y2 can be decomposed as:

Y2 = Z1 ·R · Z0 · Z2 (4.54)

where Z1, Z2 and R are as defined in equations (4.51), (4.52) and (4.53), respectively,

and:

Z0 =


z1 0 · · · 0
0 z2 · · · 0
...

... · · · ...
0 0 · · · zM


M×M

(4.55)

Using equations (4.50) and (4.54), the matrix pencil Y2 − λY1 can be rewritten as:

Y2 − λY1 = Z1 ·R · Z0 · Z2 − λZ1 ·R · Z2

= Z1 ·R · [Z0 − λI] · Z2

(4.56)

where I is the (M ×M) identity matrix. The rank of the matrix pencil Y2 − λY1

is M , provided that M ≤ L ≤ N −M , for an arbitrary value of λ [4]. However, if

λ = zi, i = 1, . . . ,M , a row of [Z0 − λI] goes to zero, and the rank of the matrix

pencil is reduced by one. Hence, the parameters zi may be found by constructing

the following eigenvalue problem:

det {Y2 − λY1} = 0 (4.57)

or:

det
{
Y +
1 Y2 − λI

}
= 0 (4.58)

where Y +
1 is the Moore-Penrose pseudoinverse of Y1. This, in turn, is defined as:

Y +
1 = (Y H

1 · Y1)−1 · Y H
1 (4.59)

where the superscript H denotes the conjugate transpose.
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In the presence of noise, some prefiltering needs to be done. To avoid noise, the

total-least-squares Matrix Pencil has been found to be superior [85, 86]. With the

two matrices Y1 and Y2 from the noise-contaminated data y(t), we construct the data

matrix Y as follows:

Y =


y(1) y(2) · · · y(L+ 1)
y(2) y(3) · · · y(L+ 2)
...

... · · · ...
y(N − L) y(N − L+ 1) · · · y(N)


(N−L)×(L+1)

(4.60)

Note that Y1 is obtained from Y by deleting the last column, and Y2 is obtained

from Y by deleting the first column. The next step is to apply the singular value

decomposition of this matrix in order to separate the signal from noise.

Singular value decomposition of the data matrix Computing the eigenvalues and

eigenvectors of a matrix is one of the most important problems in linear numerical

analysis. The decomposition of a matrix in singular values is more robust from a

numerical point of view and more used in practice than other decompositions like

Jordan or Smith. The decomposition in singular values of a matrix Y ∈ R(N−L)×(L+1)

is as follows:

Y = UΣV H (4.61)

Where U of dimensions (N − L)× (N − L) and V of dimensions (L + 1)× (L + 1)

are unitary matrices of eigenvectors, while Σ of dimension (N − L) × (L + 1) is a

diagonal matrix of singular values σi. These matrices are such that:

UUH = I

V V H = I
(4.62)

Σ = diag {σ1, σ2, . . . , σh} , with h = min {N − L,L+ 1} (4.63)

With:

σ1 ≥ σ2 ≥ . . . ≥ σM ≥ σM+1 ≥ . . . ≥ σh (4.64)
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The parameter M is very important to separate the signal from the noise. It should

be estimated by the ratio of singular values to the largest one:

σM
σ1

≈ 10−p (4.65)

where p is the number of significant decimal digits in the data.

The decomposition in singular values of the matrix Y given in equation (4.61) will

allow to give the expressions of the decomposition of the matrices Y1 and Y2 given

in equations (4.47) and (4.48) as follows:

Y1 = UΣV H
1 (4.66)

Y2 = UΣV H
2 (4.67)

V1 is obtained by deleting the last row of V , and V2 is obtained by deleting the first

row of V . Let’s M be the number of significant singular values, we construct the

matrices U , V1, V2 and Σ by keeping only the useful part:

UM = U(1 : N − L, 1 :M)

V M
1 = V1(1 : L, 1 :M)

V M
2 = V2(2 : L+ 1, 1 :M)

ΣM = Σ(1 :M, 1 :M)

(4.68)

By using the equations (4.66) and (4.67), the equation (4.57) will become:

det
{
UMΣMV MT

2 − λUMΣMV MT
1

}
= 0 (4.69)

which is equivalent to:

det
{
V MT
2 − λV MT

1

}
= 0 (4.70)

The eigenvalue of lower matrix rank
{
V MT
2 − λV MT

1

}
provides the estimation of zi.

Once the zi are known, the residues Ri are solved by using the following least square
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equation: 
y(1)
y(2)
...

y(N)

 =


1 1 · · · 1
z1 z2 · · · zM
...

...
...

...
zN−1
1 zN−1

2 · · · zN−1
M



R1

R2
...
RM

 (4.71)

Model accuracy Let x̂(kTs) be the reconstructed signal by using the estimated

parameters by Matrix Pencil. In order to estimate the model accuracy, the following

expressions can be used:

• Comparison between the reconstructed signal and the corrupted signal using

the mean-square error:

C1 =
1

N

∑
k

|y(kTs)− x̂(kTs)|2 (4.72)

or the signal-to-residue ratio in dB:

C2 = 10 log10

∑
k |y(kTs)|

2∑
k |y(kTs)− x̂(kTs)|2

(4.73)

• Comparison between the reconstructed signal and the noise-free signal using

the mean-square error:

C3 =
1

N

∑
k

|x(kTs)− x̂(kTs)|2 (4.74)

or the signal-to-residue ratio in dB:

C4 = 10 log10

∑
k |x(kTs)|

2∑
k |x(kTs)− x̂(kTs)|2

(4.75)

The functions C3 and C4 are suitable for simulation only, because they require

knowledge of the uncorrupted signal x(kTs).
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4.3 Classification methods

4.3.1 Introduction

A major aim of this thesis is to investigate the variation of classification performance

with key parameters of the signal processing and feature extraction methods appli-

cable to backscattered signals from UWB radar. The objective is not the assessment

of novel classification algorithms. In the literature we can find many algorithms used

for classification [87]. In this thesis, we have used the following classifiers: MDC,

NB, k-NN and SVM. All these classification methods are applied to the processed

data using the cross-validation, or leave-one-out, method so that the performance

of each classifier is evaluated using a testing set independent from the training set,

hence minimising the generalisation error.

Learning techniques are classified in two classes: supervised learning and unsu-

pervised learning. In supervised learning, we assume that a set of training data is

available, and the classifier will be designed by exploiting this a priori known in-

formation. In unsupervised learning, the training data, of known class labels, are

not available. In this case, we are given a set of feature vectors and the goal is to

partition this data set into subsets (clusters) so that data in each subset ideally share

some common characteristics. In our work we want to classify specific objects, then

we use the supervised learning. This process has two phases: Training phase and

testing phase.

4.3.2 Cross Validation

Cross Validation is a statistical method of evaluating and comparing learning algo-

rithms by dividing data into two segments: one used to learn or train a model and

the other used to validate the model. The basic form of cross-validation is k-fold

cross-validation. The data is first partitioned into k equally (or nearly equally) sized
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segments or folds. Subsequently k iterations of training and validation are performed

such that within each iteration a different fold of the data is used for validation while

the remaining k − 1 folds are used for learning. Empirical studies showed that 10

seems to be an optimal number of folds [88]. Data is commonly stratified before

spliting them into k folds. Stratification is the process of rearranging the data as to

ensure each fold is a good representative of the whole.

A special case of k-fold cross-validation named Leave-one-out cross-validation

(LOOCV) can be used in the case where the size of the database is small. Using

this method, we split the data set of size m into m partitions of size 1. Each

partition is used for testing only once, whereas the remaining partitions are used

for training.The estimation of the overall accuracy is calculated as an average of the

individual accuracy measures

4.3.3 The Mahalanobis Distance Classifier

The Mahalanobis distance classifier uses statistics for each class. It assumes that the

data for each class are normally distributed; thus, the samples, xm (m = 1, . . . , K)

of each class will form a cluster in K dimensional space, with a center given by the

mean vector, Am calculated by the expected value E of the mth entry in the vector

xm, and shape dependent on the covariance matrix, Σ. Estimates are formed for

these parameters regarding each class, using the training vectors:

Am = E[xm] (4.76)

Σm = E[(xm − Am)(xm − Am)
T ] (4.77)

where T denotes the transpose.

The mahalanobis distance calculates the distance between a given vector x and

the mean vector Am for a given class which is normalized by the variance Σm of

training vectors in that direction. For a given class, m, the distance is calculated
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by [89]:

ρm(x) =
√

(x− Am)TΣ−1
m (x− Am) (4.78)

Classification is then performed by assigning a label to the given vector for which the

Mahalanobis distance is minimized. This Mahalanobis distance classifier is simple

to implement.

4.3.4 Näıve Bayes

Näıve Bayes is one of the most effective and efficient classification algorithm. It is

easy to construct and to interpret. It is based around Bayes’s theorem and makes

the näıve assumption that the elements of an input feature vector are statistically

independent. Despite this simplifying assumption the classifier achieves good results.

Let x = (x1, . . . , xN) be an N -dimensional instance which has no class label. Our

goal is to build a classifier to predict its unknown class label. Let C = (C1, . . . , CK)

be the set of the class labels. P (Ck) is the prior probability of Ck(k = 1, . . . , K);

P (x/Ck) is the conditional probability of the evidence x if the hypothesis Ck is true.

It is necessary to assess the class maximizing P (Ck/x). The class Ck which maximizes

P (Ck/x) is called the maximum a posteriori hypothesis. By using Bayes’s theorem,

we obtain:

P (Ck/x) =
P (x/Ck) · P (Ck)

P (x)
(4.79)

A näıve Bayes classifier assumes that the value of a particular feature of a class is

unrelated to the value of any other feature, so that:

P (x/Ck) =
N∏
j=1

P (xj/Ck) (4.80)
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4.3.5 k-NN

k-Nearest Neighbors is based on the principle that the instances within a dataset

will generally exist in close proximity to other instances having similar properties.

The k-Nearest Neighbors algorithm is based on learning by analogy, that is, by

comparing a given test example with training examples that are similar to it. The

training examples are described by n attributes. Each example represents a point in

an n-dimensional space. In this way, all of the training examples are stored in an n-

dimensional pattern space. When given an unknown example, a k-nearest neighbors

algorithm searches the pattern space for the k training examples that are closest to

the unknown example. These k training examples are the k ”nearest neighbors” of

the unknown example. ”Closeness” is defined in terms of a distance metric, such as

the Euclidean distance.

The k-nearest neighbors algorithm is amongst the simplest of all classification

algorithms: an example is classified by a majority vote of its neighbors, with the

example being assigned to the class most common amongst its k nearest neighbors,

k is a positive integer, typically small. If k = 1, then the example is simply assigned

to the class of its nearest neighbor.

The basic k-Nearest Neighbors algorithm is composed of two steps: Find the

k training examples that are closest to the unseen example. Take the most com-

monly occurring classification for these k examples. Usually the Euclidean distance

criterion is used. A Euclidean distance between any pair x1 = (x1,1, ..., x1,k) and

x2 = (x2,1, ..., x2,k) of instances is defined as:

d(x1, x2) =

√√√√ k∑
j=1

(x1,j − x2,j)
2 (4.81)

Let x = (x1, · · · , xN) be an N -dimensional instance which has no class label. The
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goal is to build a classifier to predict its unknown class label. Let C = {C1, · · · , CK}

be the set of the class labels. The classification rule consists of the following steps:

• Among the N training points, search for the k neighbors closest to x using a

distance measure. The parameter k is user-defined. Note that k should not be

a multiple of K in order to make a decision. Hence, for two classes k should

be an odd number.

• Out of the k-closest neighbors, identify the number kj of the points that belong

to class Cj. Obviously,
∑K

j=1 kj = k.

• Assign x to class Cj, for which kj > kn, j ̸= n. In other words, x is assigned

to the class in which the majority of the k-closest neighbors belong.

4.3.6 Support Vector Machine

Introduction

The support vector machine is a classification method introduced in 1992 by Boser,

Guyon, and Vapnik [90]. SVM maps the input vectors to a higher dimensional

space where a maximal separating hyper plane is constructed [91]. Two parallel

hyper planes are constructed on each side of the hyper plane separating the data.

The maximum distance between the parallel planes is known as the margin. SVM

maximizes the margin and thereby creates the largest possible distance between the

separating hyper plane and the examples in the training set on either side of it.

Linearly separable classes

We work with the two-class linearly separable task in order to explain the method.

Let
→
xi, i = 1, 2, · · · , N , be the feature vectors of the training set, X. These belong to

either of two classes, C1, C2, which are assumed to be linearly separable. The goal,
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Figure 4.2: Optimal separating hyperplane in a two-dimensional space

is to design a hyperplane:

g(
→
x) =

→
ω · →

x +ω0 = 0 (4.82)

that classifies correctly all the training vectors.
→
ω is known as the weight vector, and

ω0 is called the bias. Such a hyperplane is not unique. The algorithm may converge to

any one of the possible solutions. The very sensible choice for the hyperplane classifier

would be the one that leaves the maximum margin from both classes (Figure 4.2).

The margin is the region between the two parallel hyperplanes:

→
ω · →

x +ω0 = 1 (4.83)

and

→
ω · →

x +ω0 = −1 (4.84)
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The distance of a point from a hyperplane is given by:

z =

∣∣∣g(→x)∣∣∣∥∥∥→
ω
∥∥∥ (4.85)

We can scale
→
ω, ω0 so that the value of g(

→
x) at the nearest points in C1, C2, is

equal to 1 for C1 and, thus, equal to -1 for C2. This is equivalent with:

• Having a margin of 2∥∥∥→
ω
∥∥∥

• Requiring that

→
ω · →

x +ω0 ≥ 1, ∀ →
x∈ C1 (4.86)

→
ω · →

x +ω0 ≤ −1, ∀ →
x∈ C2 (4.87)

For each xi, we denote the corresponding class indicator by yi (+1 for C1, −1 for

C2). Our task can now be summarized as: Compute the parameters
→
ω, ω0 of the

hyperplane so that to:

minimize J(
→
ω, ω0) ≡

1

2

∥∥∥→
ω
∥∥∥2

(4.88)

subject to yi(
→
ω · →

x +ω0) ≥ 1, i = 1, 2, · · · , N (4.89)

This is a classic nonlinear optimization problem with inequality constraints. Such

an optimization problem is solved by using the lagrange function:

L(
→
ω, ω0,

→
λ) =

1

2

∥∥∥→
ω
∥∥∥2

−
N∑
i=1

λi[yi(
→
ω · →

xi +ω0)− 1] (4.90)

where the λi are Lagrange multipliers.

The KarushKuhnTucker conditions are used to minimize (4.88), (4.89) as follows:

∂

∂ω
L(

→
ω, ω0,

→
λ) = 0 (4.91)
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∂

∂ω0

L(
→
ω, ω0,

→
λ) = 0 (4.92)

λi ≥ 0, i = 1, 2, · · · , N (4.93)

λi[yi(
→
ω · →

xi +ω0)− 1] = 0, i = 1, 2, · · · , N (4.94)

where
→
λ is the vector of the Lagrange multipliers λi.

Combining 4.90 with 4.91 and 4.92 results in:

→
ω=

N∑
i=1

λiyi
→
xi (4.95)

N∑
i=1

λiyi = 0 (4.96)

To compute the involved parameters, the problem can be stated equivalently by

its Wolfe dual representation form, to finally obtain:

maxλ(
N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyj
→
xi ·

→
xj) (4.97)

subject to

N∑
i=1

λiyi = 0 (4.98)

λi ≥ 0 (4.99)

If λi = 0, then xi is not used in decision rule and can be discarded. Points xi such

that λi ̸= 0 lie on the margin and are called support vectors. They determine the

decision boundary.

Nonlinearly separable classes

When the classes are nonlinearly separable, the previous method can be applied but

some points will be misclassified. The main idea is that those points that lie on
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the wrong side of the hyperplane are explicitly penalized by introducing variables, ξ,

that control how far on the wrong side of a hyperplane a point lies. The optimization

problem becomes:

minimize
1

2

∥∥∥→
ω
∥∥∥2

+ C

N∑
i=1

ξi (4.100)

subject to:

yi(
→
ω · →

x +ω0) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , N (4.101)

where, C is the penalty parameter of the error term.

The dual then becomes:

maxλ(
N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyj
→
xi ·

→
xj) (4.102)

subject to 0 ≤ λi ≤ C, i = 1, 2, ..., N (4.103)

N∑
i=1

λiyi = 0 (4.104)

There are no general methods for choosing parameters ω0 and b in a non-separable

case. The parameters are usually found by optimizing some performance measure

on a training set.

For a more complex problem, using a kernel function is necessary.The main idea

behind using a kernel function is to map the data into a different space and to

construct a linear classifier in this space.

Given an appropriate mapping ϕ: x→ ϕ(x), we can put:

K(x, z) = ⟨ϕ(x), ϕ(z)⟩ (4.105)

where x, z ∈ Rn, ϕ ∈ Rm with m ≥ n and ⟨·, ·⟩ denotes the inner product operation.

Such functions K are called kernel functions.

Some examples of kernels include:
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• polynomial kernels:

K(x, z) = (xT z + 1)q, q > 0 (4.106)

• Radial Basis Functions:

K(x, z) = e−
∥x−z∥2

2σ2 (4.107)

• Hyperbolic Tangent:

K(x, z) = tanh(βxT z + γ) (4.108)

Once an appropriate kernel has been adopted, the Wolfe dual optimization task

becomes:

maxλ(
N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjK(xi, xj)) (4.109)

subject to 0 ≤ λi ≤ C, i = 1, 2, ..., N (4.110)

N∑
i=1

λiyi = 0 (4.111)

A major limitation of the support vector machines is that up to now there has

been no efficient practical method for selecting the best kernel function. Once a kernel

function has been adopted, the so-called kernel parameters (e.g., σ for the Radial

Basis Function kernel) aswell as the smoothing parameter,C,in the cost function are

selected so that the error performance of the resulting classifier can be optimized. In

our work we implement the radial basis function kernel.

The standard theory of SVM supports only binary classification problems. How-

ever, in our work we deal with classifying objects into more than two classes. The

most popular technique for multiclass classification using binary support vector ma-

chines is called one-versus-the-rest classification [92].
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In the one-versus-the-rest technique, given M classes, we construct M binary,

support vectorbased decision surfaces, say: g1, ..., gm. Each decision surface is trained

to separate one class from the rest. Therefore, the decision surface g1 is trained to

separate the class labeled 1 from all other classes, the decision surface g2 is trained to

separate the class labeled 2 from all other classes, and so on. To classify an unknown

point we use a voting scheme based on which of the M decision surfaces returns the

largest value for this unknown point. We then use the decision surface that returns

the largest value for the unknown point to assign this point to a class.

4.4 Conclusion

In this chapter, wavelet transform and high resolution methods which are used for

feature extraction have been presented. Wavelet transform is applied on the temporal

signal in the next chapter but high resolution methods can be applied on the temporal

or frequency signal. Four methods of supervised classification have been provided:

MDC, NB, k-NN and SVM. We gave more detail in the explanation of SVM because

the best results of classification accuracy are obtained with this method. However,

SVM is considered as black box in comparison to other methods of classification

because of the difficulty to understand the process of classifying. k-NN calculates the

distance to all training vectors that are stored in the database, but MDC calculates

the distance to only a given class which is represented by its mean and covariance

matrix. In the next chapter, we present the results obtained by simulations and

experiments.
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5

Simulation and experimental results

5.1 Introduction

In this chapter, we present simulation and experimental results found in this work.

Firstly, we present the simulation results of backscattered fields from canonical ob-

jects. Next, we show the results obtained by the comparison between the different

methods of feature extraction. After that, we present the results obtained by the

comparison between the different methods of classification. Then, we propose a pow-

erful method for radar UWB automatic target classification in white Gaussian noise

and different aspect angles between the radar and the target. Finally, we present the

experimental results.

5.2 Simulation results of backscattered fields from canon-
ical objects

In this section, we present the software tool and the simulation parameters used to

compute the free-space backscattered fields from canonical objects. An electromag-

netic commercial tool called FEKO [93], which is used by the laboratory, has been

used to compute the different backscattered fields of canonical objects.
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5.2.1 Presentation of FEKO and the simulation parameters

FEKO is a suite of tools that is used for electromagnetic field analysis of 3D struc-

tures. FEKO simulations are based on the Method of Moments (MoM). Other

techniques such as MultiLevel Fast Multipole Method (MLFMM), Finite Element

Method (FEM), Uniform Theory of Diffraction (UTD), Geometrical optics (ray

launching) and Physical Optics (PO) have been implemented to allow the solving of

electrically large problems and inhomogeneous dielectric bodies of arbitrary shape.

Electromagnetic fields are obtained by calculating the electric surface currents on

the conducting surfaces.

The choice of the method depends on the application case. Quasi-exact methods

such as MOM or FEM are adapted for electrically small objects. But, they become

inappropriate for electrically large objects. In this case, the processing requirements

increase rapidly. Then, it is better to use approximated methods such as PO or

UTD, which provide a compromise between the simulation time and the accuracy.

Note that all these methods are solved in the frequency domain.

To illustrate the calculated fields with FEKO, we use three perfectly electric

conducting objects: thin wire (length = 3 m and radius= 0.0025 m), sphere (radius

= 0.3 m), and cylinder (length = 0.6 m and radius = 0.2 m). A plane wave excitation

with normal incidence is used (figure 5.1).

5.2.2 The signals in time domain

We use TIME-FEKO to compute the free-space backscattered fields of the three

objects. With the TIME-FEKO program, electromagnetic fields are given in the

time domain. It is based on the FEKO program that does the relevant calculations

in the frequency domain and an IFFT algorithm that transforms the data to the

time domain. A Gaussian pulse is applied as an excitation plane wave. In the time
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(a) Thin wire (b) Sphere (c) Cylinder

Figure 5.1: Example of the three canonical objects
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Figure 5.2: Gaussian pulse time

domain, the expression of the Gaussian pulse waveform is given by:

g(t) = Ae−(
t−t0
σ

)2 (5.1)

where A stands for the amplitude and σ for the width of the Gaussian pulse. In our

simulations we have set A = 1, t0 = 10 ns, and σ = 0.454 ns (Figure 5.2).

σ is chosen such that the upper frequency:
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fmax ≈
4

πσ

√
ln(

√
2) ≈ 1.7 GHz (5.2)

This frequency is chosen by making a compromise between the calculation time and

having the radiation of the targets in resonance and optical regions. The number

of frequency samples is chosen to be at 256. The backscattered field is given in the

time domain without considering the factor e−jkR/R.

Figure 5.3 shows the backscattered fields form the three canonical objects in the

time domain. We can see from the figures that the wire is very resonant in comparison

to the sphere and the cylinder. Therefore, the contribution of the late time is very

small for the sphere and the cylinder which are considered as less resonant objects.

5.2.3 The signals in Frequency domain

The signals in frequency domain can be obtained directly from the FEKO software,

or they can be obtained from the time domain signals. To obtain the frequency

response from the temporal signal, we first need to transform it by means of the

fast Fourier transformed (FFT) technique and then dividing it by the FFT of the

Gaussian incident pulse. Figure 5.4 shows the backscattered fields from the three

canonical objects in the frequency domain. The real and imaginary parts of the

signals are presented.

5.3 Feature extraction results

5.3.1 Comparison between analytical and measured CNRs

In this subsection, the CNRs of thin wire extracted by high resolution methods are

compared to the CNRs calculated analytically. The high resolution methods used

in this comparison are: Root-MUSIC, LS-ESPRIT, TLS-ESPRIT and Matrix Pencil

Method. The comparison is made in terms of pole-position in the s-plane.

Figure 5.5 shows the backscattered noiseless signals in time domain from thin
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(b) Sphere
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(c) Cylinder

Figure 5.3: The backscattered fields form the three canonical objects in the time
domain
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(b) Sphere
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(c) Cylinder

Figure 5.4: The backscattered fields from the three canonical objects in the fre-
quency domain
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wire (a/L = 0.005) with three different incident angles θi = 50, 90 and 150◦.

In order to find the start of the late time, the following expression can be applied

[94]:

TL = Tb + 2Ttr + Tp (5.3)

where Tb is the time when incident wave strikes the leading edge of the target, Ttr is

the maximum transit time of the target, and Tp is the pulse width of the transmitted

waveform.

Figure 5.6 shows the normalized CNRs extracted by the four high resolution

methods compared to the analytical CNRs given by Teshe (subsection 2.5.2), with

the three incident angles. Analysis of the incident angles of 50◦ and 150◦ shows that

the measured CNRs by the four methods fit well with the analytical CNRs. All the

CNRs are well estimated except the last one. However with the incident angle of 90◦,

we can see that not all the CNRs are extracted. CNRs are known to be independent

of the aspect angle between the radar and the target, but with normal incidence,

some CNRs of the wire are not extracted because the resonance phenomena of the

wire are weak when the incidence is normal.

Figure 5.7 shows normalized CNRs location in the s-plane extracted with the four

high resolution methods with incident angle of 150◦ and SNR = 50 and 30 dB. With

SNR = 50 dB, all the angular frequencies are well estimated except one which is not

well estimated by Root-MUSIC. The first seven damping factors are well estimated

with SNR = 50 dB but the remaining are not well estimated. More the value of SNR

decreases, more the estimated angular frequencies and damping factors are different

from the analytical CNRs. With SNR = 30 dB, we can see that the two last angular

frequencies and damping factors are not well estimated.

Although all the four high resolution methods performed well, in the remaining

of the thesis we will use the Matrix Pencil Method. This choice is driven by the
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(b) Incident angle = 90◦
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(c) Incident angle = 150◦

Figure 5.5: The backscattered fields form thin wire (a/L = 0.005)
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(b) Incident angle = 90◦
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(c) Incident angle = 150◦

Figure 5.6: Normalized CNRs location in the s-plane with different incident angles
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Figure 5.7: Normalized CNRs location in the s-plane with different values of SNR

fact that MPM does not require estimation of an autocorrelation matrix which has

an expensive computation. In addition, The Matrix Pencil approach has a lower

variance of the estimates of the parameters of interest than the Prony’s Method, and

is also computationally more efficient and less sensitive to noise [4].

5.3.2 Matrix Pencil Method in Time Domain

In time domain we use the SEM presented in subsection 2.3.4. Simulations are

conducted by using the targets presented in subsection 5.2.1: thin wire (length = 3m
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Table 5.1: Features extracted by MPMTD from a thin wire (l = 3m), a sphere (r
= 0.3 m), and a cylinder (l= 0.6 m, r= 0.2 m) (poles× 109)

Thin wire Sphere Cylinder

P1,2 −0.080 ∓ 3.409j −1.859 ∓ 4.502j −1.313 ∓ 5.250j

P3,4 −0.053 ∓ 2.791j −1.401 ∓ 1.729j −1.248 ∓ 3.858j

P5,6 −0.044 ∓ 2.166j −0.438 ∓ 0.843j −0.520 ∓ 1.690j

P7,8 −0.038 ∓ 1.541j 0 −0.339 ∓ 0.849j

P9,10 −0.031 ∓ 0.917j 0 0

P11,12 −0.018 ∓ 0.297j 0 0

and radius= 0.0025m), sphere (radius = 0.3m), and cylinder (length = 0.6 m and

radius = 0.2 m). A plane wave excitation with normal incidence is used.

Table 5.1 shows the extracted features by MPMTD from a thin wire (l= 3m,

r=0.0025 m), a sphere (r = 0.3 m), and a cylinder (l = 0.6m, r = 0.2 m). Features

extracted by MPMTD are complex conjugates because the signal is real in time

domain. We used the expression (5.3) to find the start of the late time.

In Figure 5.8, the reconstructed late time signal with MPMTD compared to the

simulated one by Time-Feko of the three examples is depicted. The signal is well

reconstructed by the MPMTD.

To use the expression (5.3), we need to know in advance the size of the target to

calculate Ttr. This is inconvenient in the practical case, because we suppose that the

size of the target is unknown for us.

Another method can be applied based on the use of a sliding window and observ-

ing the stability of the poles after moving the beginning of the window. By displacing

the sliding window through the entire signal by small time steps and by applying

MPMTD to the sampled data, we represent the positive imaginary part of the poles

as a function of ti (ti is the beginning of the late time) in Figure 5.9. In Figure 5.9a
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(a) Thin wire (length = 3m)
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(b) Sphere (radius = 0.3 m)
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(c) Cylinder (length = 0.6m and radius = 0.2 m)

Figure 5.8: Simulated signal compared with reconstructed signal by MPMTD
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Figure 5.9: Variation of positive imaginary part of the poles with sliding time
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corresponding to the thin wire, we can see the 6 positive imaginary parts of the poles

shown in Table 5.1 at around ti = 10 ns, which corresponds to the start of the late

time.

The convergence to the natural resonances is stable in the thin wire when ti is

shifted in time (the stability is observed in the different wires that we have used),

which is not the case for less resonant objects as the sphere and the cylinder. Only

the first and second poles are stable (5.9b-5.9c). The instability of the convergence

to the natural resonances is due to the small contribution of the late time part of

the signal.

5.3.3 Matrix Pencil Method in Frequency Domain

Matrix Pencil Method in Frequency Domain (MPMFD) [95] is applied on the reduced

complexity model presented in section 2.3.6.

Table 2, shows the extracted features with MPMFD from the same targets: the

thin wire (l= 3m, r=0.0025 m), the sphere (r = 0.3 m) and the cylinder (l = 0.6m,

r = 0.2 m). With the poles shown in Table 5.2, the real and imaginary parts of the

signal have been reconstructed in Figure 5.10 for the three objects. The obtained

results agree with the simulated signal.

In frequency domain, all the physical characteristics of the objects are taken into

account. The real and imaginary parts of the signals are used to identify the objects.

In Figure 5.8 we can see the weak contribution of the late time signal in com-

parison to the contribution of the signal in the frequency domain which takes the

early time into consideration (Figure 5.10). The late-time signature for most realistic

targets is usually very weak and heavily corrupted by noise.
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(b) Sphere (radius = 0.3 m)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

f (GHz)

A
m

pl
itu

de

 

 

Real part of the signal
Reconstructed real part
Imaginary part of the signal
Reconstructed imaginary part

(c) Cylinder (length = 0.6m and radius = 0.2 m)

Figure 5.10: Simulated signal compared with reconstructed signal by MPMFD
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Table 5.2: Features extracted by MPMFD from a thin wire (l = 3m), a sphere (r
= 0.3 m), and a cylinder (l= 0.6 m, r= 0.2 m) (poles× 108)

Thin wire Sphere Cylinder

P1 −5.096 − 43.80j −0.600 − 2.970j −0.642 − 3.443j

P2 −4.678 − 33.57j −0.150 − 2.046j −0.184 − 1.994j

P3 −2.278 − 24.07j −1.013 − 1.108j −0.584 − 1.122j

P4 −1.169 − 19.47j −0.740 + 0.884j 0.093 − 0.583j

P5 −0.426 − 12.61j −0.002 + 1.242j 0.039 + 0.793j

P6 −10.80 − 7.60j 0 0.003 + 1.014j

P7 −4.173 − 6.851j 0 0

P8 −0.229 − 6.294j 0 0

P9 0.021 − 0.002j 0 0

P10 −0.292 + 0.534j 0 0

P11 −3.656 + 28.76j 0 0

P12 −4.743 + 39.70j 0 0

5.4 Classification results

In this section, we present classification results of extracted features in time and fre-

quency domains. The following classifiers are used: MDC, k-NN, NB and SVM. The

accuracy of classification is expressed in terms of percentage of correctly identified

objects. DWT and MPMTD are used as feature extraction methods in time domain

and MPMFD is used in Frequency domain.

We have used the leave-one-out cross-validation because the database has a small

size. By using this method, we split the data set of size m into m partitions of size

1. Each partition is used for testing only once, whereas the remaining partitions

are used for training. The estimation of the overall accuracy is calculated as an

average of the individual accuracy measures. In our work, we have used 8 examples

of different sizes for each one of the 3 canonical targets, so: m = 3× 8 = 24.
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In time domain, the feature extraction methods are applied to the late time

part of the backscattered signal from UWB radar. We used the expression (5.3) to

find the beginning of the late time. Three canonical objects are used to test the

classifiers accuracy: thin wire, sphere and cylinder. To apply the MPMFD, we work

with the frequency response, which can be obtained from the temporal response by

transforming it to the frequency domain by means of the fast Fourier transformed

technique and dividing it by the FFT of the Gaussian incident pulse.
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Figure 5.11: k-NN classification accuracy of wavelets

The database has been built by using 8 examples of different sizes for each per-
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fectly electric conducting target: thin wire (length: l = 1, 1.3, 1.5, 1.7, 2, 2.4, 2.5

and 3 m, and radius: r = 0.0025 m for all the wires), sphere (radius: r = 0.15, 0.2,

0.28, 0.3, 0.35, 0.4, 0.45 and 0.5 m), and cylinder (l = 0.4 and r = 0.17 m, l= 0.4

and r = 0.23 m, l = 0.5 and r = 0.15 m, l = 0.5 and r = 0.25 m, l= 0.6 and r= 0.2

m, l = 0.7 and r= 0.1 m, l= 0.8 and r= 0.19 m, and l= 1 and r = 0.15 m).

Time-FEKO has been used to compute the free-space backscattered fields of the tar-

gets. The upper frequency is chosen to be fmax = 1.7 GHz, This frequency is chosen

by making a compromise between the calculation times and having the radiation of

the targets in resonance and optical regions. The number of frequency samples is

chosen to be at 256. The backscattered field is given in the time domain without

considering the factor e−jkR/R.

Two types of wavelets were used for feature extraction: coif 5 and db 4. Fig-

ure 5.11 shows the classification accuracy of the k-NN classifier for coif 5 wavelet

(Figure 5.11a) and db4 wavelet (Figure 5.11b) as function of number of wavelet fea-

tures. The energy terms of the equation (4.11) are the corresponding features and

their number varies from two to six. As k should not be neither a multiple of three

(the number of objects) nor an even number, we gave the following values to k: 1,

5 and 7. The best accuracy of k-NN classifier with wavelet features is 75 %. This

accuracy is found by applying coif 5 wavelet with six wavelet features and k = 1, or

by applying db 4 wavelet with five or six wavelet features and k = 5.

Figure 5.12 shows the classification accuracy of the four classifiers for coif 5

wavelet (Figure 5.12a) and db4 wavelet (Figure 5.12b) as function of number of

wavelet features. The best accuracy is found to be 87.5 % and it is obtained with

SVM by using coif 5 wavelet with five features, or by using db 4 wavelet with five and

six features. The other classifiers: MDC, k-NN and NB have an accuracy between

70 and 80 % with five and six features for coif 5 and db4 wavelets. The best number

of wavelet features is five for all the classifiers.
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(a) Coif 5 wavelet
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Figure 5.12: Classification accuracy of wavelets for MDC, k-NN, NB and SVM

Concerning the extracted features by MPMTD, the real and the positive imagi-

nary parts of the extracted CNRs presented in table 5.1 are used for classification.

But, for classification by using the extracted features by MPMFD, all real and imag-

inary parts of the features are used.

Table 5.3 shows the classification accuracy of the four classifiers. In time domain,

MPMTD gives a good result with SVM, but it is less accurate when using the other

classifiers. MPMTD gives better results than wavelet by using MDC, k-NN and

SVM, but Wavelet is better than MPMTD with NB. The separation between early
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Table 5.3: Classification accuracy of each object (%)

Classifiers MDC NB k-NN SVM

k = 1 k = 5 k = 7

Wavelet db 4 70.83 79.17 70.83 75 70.83 87.5

MPMTD 83.33 75 83.33 79.17 50 91.67

MPMFD 100 100 100 91.67 87.5 100

and late time is the weakness of all classifiers in time domain, because the automatic

separation is not an easy task.

Applying MPMFD provides the best results with the four classifiers. Accuracy

of 100 % is reached with MDC, NB, k-NN (k= 1), and SVM. In this case, the

separation of the early and late time is not necessary. Moreover, with this method

we have reconstructed two parts of the signal: real and imaginary parts, thus making

the poles more distinctive without the need to use a large frequency band.

The results indicate that features extracted with MPMFD present a plausible

solution to automatic target classification especially for less resonant objects. With

this method the separation between the early and late time is not required. A

database containing object signatures can be built by using MPMFD. For resonant

objects, applying MPMTD to extract CNRs is a good solution; the advantage of

CNRs is their aspect independence.

5.5 Classification of complex objects in white Gaussian
noise

In real applications, the target to classify may have a complex shape like: tree,

animal, etc. Moreover, most of the time the backscattered signal is corrupted by

noise which comes from environment and objects surrounding the target. In this

section, we propose a powerful method for UWB ATC in white Gaussian noise and

different aspect angles between the radar and the target [96]. The method is based
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on the use of Matrix Pencil Method in Frequency Domain for feature extraction, and

Mahalanobis Distance Classifier for classification.

By applying MPMFD, we extract singular values from the backscattered fields.

Singular values are a projection of high dimensional UWB signal onto a low di-

mensional space, which allows the reduction of the database dimension. The MDC

is a simple method for classification in comparison to other methods, hence it is

convenient in real time applications.

We use MPMFD to classify complex objects in white Gaussian noise because of

the advantages that we showed earlier. However, the features extracted by MPMFD

have a random nature because they depend on the angle aspect. Thus, the statistical

approach, which is described in this section, is the most appropriate for automatic

target classification.

In order to test the accuracy of the proposed method, we have used complex target

geometries modeled by perfectly conducting, straight, thin wires. The performance

of the method is evaluated by adding Gaussian noise to the backscattered fields.

5.5.1 Classifier Design

Here, we show how we design the classifier based on the Mahalanobis distance. As

features, we use the singular values which are extracted from the two components of

the backscattered fields Eθ and Eφ. In the calculation of the Mahalanobis distance,

the features which are distorted by noise, have in average, a higher influence on the

distance measure than the less distorted features as they are further away from the

feature mean of the class. Therefore, it is important to take only the less distorted

features. By choosing M equal to six in the MPMFD, we have extracted six features

from each field component. But for classification we use only the first two significant

singular values of each field, so, the number of features Nf used in our work is equal

to four.
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Assume that we have No known objects of different form and Na angles of

backscattered fields from each object. In our simulation examples, we have taken

No equal to four and Na equal to eight. Let x = (x1, ..., xNf
) be an Nf -dimensional

testing data which has no class label. Our goal is to build a classifier to predict its

unknown class label C = (C1, ..., CNo).

To construct the training data, we have used Nm equal to twenty random mea-

sures at 10 dB SNR level for each angle. Therefore, the classifier contains ( Na ×

No × Nm) = (8 × 4 × 20) = 640 training vectors: y
(i,j)
k (i = 1, ..., No, j = 1, ..., Na

and k = 1, ..., Nm). Each training vector contains 4 samples corresponding to the

singular values.

Before calculating the Mahalanobis distance, we first need to determine for each

angle of each corresponding object a mean vector of the Nm training vectors, let us

say mi,j:

mi,j =
1

Nm

Nm∑
k=1

y
(i,j)
k (5.4)

Next, we calculate for each angle of each corresponding object a covariance matrix

of the Nm measures, let us say Σi,j.

The Mahalanobis distance of the unknown testing data, x, from the known train-

ing data that are characterized by their mi,j and Σi,j is:

Di,j =
√
(x−mi,j)T (Σi,j)−1(x−mi,j) (5.5)

where Di,j is the distance of x from the ith object with the jth angle. Di,j will have

small values when it is calculated by using training data of the same class like the

testing data x.

Finally, we calculate for each object the mean of the Mahalanobis distance as
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follows:

di =
1

Na

Na∑
j=1

Di,j (5.6)

The decision is made by taking the ith C corresponding to the minimum value of di.

(a) Object 1 (b) Object 2

(c) Object 3 (d) Object 4

Figure 5.13: The 4 target geometries

5.5.2 Simulation results

In this subsection, numerical examples are given to illustrate the above automatic

target classification method. To compute the free-space backscattered fields of the

targets, a plane wave with normal incidence and vertical polarisation of the E-field is
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Table 5.4: Dimensions of the four targets

Objects Wires
(m) Start Point (m) End Point (m)

x y z x y z

l1 = 0.53 0 0 0.25 0 0.2 -0.25

1 l2 = 0.53 0 0 0.25 0 -0.2 -0.25

l1 = 0.53 0 0 0.25 0 0.2 -0.25

2 l2 = 0.53 0 0 0.25 0 -0.2 -0.25

l3 = 0.25 0 0 0.25 0 0 0.5

l1 = 0.53 0 0 0.25 0 0.2 -0.25

l2 = 0.53 0 0 0.25 0 -0.2 -0.25

3 l3 = 0.5 0 0 0.25 0 0 0.75

l4 = 0.53 0 0 0.25 0 0.2 0.75

l5 = 0.53 0 0 0.25 0 -0.2 0.75

l1 = 0.53 0 0 0.25 0 0.2 -0.25

4 l2 = 0.5 0 0 0.25 0 0 -0.25

l3 = 0.53 0 0 0.25 0 -0.2 -0.25

used as excitation. The far-field backscattered responses are computed in frequency

domain over the bandwidth from 3.5 to 4.9 GHz at 256 frequency sample points,

from No = 4 complex target geometries modeled by perfectly conducting, straight,

thin wires and for Na = 8 monostatic aspect angles corresponding to: 5, 15, 25, 35,

45, 55, 65 and 75◦ (Figure 5.13).

The dimensions of the four targets are given in table 5.4. The object 1 is composed

of 2 wires, the objects 2 and 4 are composed of 3 wires, and the object 3 is composed

of 5 wires.The radius of the wires is 0.0025 m.

The backscattered fields Eθ and Eφ are given without considering the factor e−jkR

R
.

We assume that additive Gaussian noise is corrupting the real and imaginary

components of the backscattered field independently. The SNR values are chosen
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Table 5.5: Classification accuracy of each object (%)

SNR (dB) -10 -5 0 5 10 15 20

Object 1 100 100 100 100 100 100 100

Object 2 99.68 100 99.68 99.68 99.37 96.87 99.37

Object 3 100 100 100 100 100 100 100

Object 4 2.5 63.12 89.37 99.84 100 100 100

to have the values of: -10, -5, 0, 5, 10, 15 and 20 dB. The addition of the random

Gaussian noise to the ideal noise-free backscattered signals is repeated in 80 inde-

pendent trials at each SNR level to obtain reliable results for noise analysis. A total

of (4 targets) × (8 angles) × (7 SNR levels) × (80 trials) = 17920 noisy signals are

generated to test the performance of the classifier.

Figure 5.14 shows an example of the simulated backscattered field Eθ (real and

imaginary parts) from the object 1 with an aspect angle of 45◦ at 10 dB SNR, it

is compared to the reconstructed one by MPMFD. The signal is filtered and well

reconstructed by the MPMFD.

The figure 5.15 shows an example of the Mahalanobis distance D of a testing

objet 1 with an aspect angle of 45◦ at 10 dB SNR level from the 4 objects of the

training data as a function of the 8 aspect angles. The two components of the field are

used for the calculation of the Mahalanobis distance. We can see that the minimum

distance is from the object 1, and it is minumum for all the aspect angles. Therefore,

after the calculation of the mean of the Mahalanobis distance for the eight angles,

the testing object will be classified as object 1.

Using the two components of the backscattered fields Eθ and Eφ improves the

classification accuracy. In figure 5.16 we can see the improvement of the total classifi-

cation accuracy when using the two components Eθ and Eφ instead of one component

Eθ.

Table 5.5, shows the classification accuracy of the four targets. The two compo-
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Figure 5.14: Simulated signal compared with reconstructed signal by MPMFD

nents of the field Eθ and Eφ are used for this classification. The accuracy rate of the

classifier is observed to be 100 % for the object 1 and the object 3 at all the SNR

levels used in our work.

The object 4 is classified with a high accuracy at 20, 15, 10, and 5 dB. Accuracy

rate decreases to 89.37 % at 0 dB SNR, and drops to 2.5 % at the worst case of

-10 dB. With high noise level, the object 4 can not be discriminated from the other

objects.

The object 2 is well classified for all the SNR levels.
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Figure 5.15: The Mahalanobis distance of the object 1 with an aspect angle of 45◦

from the 4 targets
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Figure 5.16: Comparison between the total classification accuracy when using only
Eθ or both Eθ and Eφ

The results indicate that the classifier correctly identifies with very high accuracy

the test targets of different aspect angles and with high noise level.

We conclude that the designed classifier which is based on the use of Matrix Pencil

Method in Frequency Domain and Mahalanobis distance can be a good solution for

automatic target classification.
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Figure 5.17: UWB P400 MRM

Figure 5.18: Radar system

5.6 Experimental results

5.6.1 Measurement setup

The measurements are taken using UWB P400 Monostatic Radar Module (MRM)

manufactured by the Timedomain Co. Ltd (Figure 5.17). In the figure 5.18 we show

the P400 MRM connected to a PC by using an Ethernet cable.

The P400 MRM has a bandwidth of more than 2 GHz. The RF transmission is

from 3.1 GHz to 5.3 GHz, with center at approximately 4 GHz. It achieves an effective

RF bandwidth of 1.4 GHz. It has a pulse repetition frequency of 10 MHz and a data

step size in time of 61.024 ps. The figure 5.19 shows the transmitted waveform in
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time and frequency domain. For our experiments we used omnidirectional antennas,

but for real time application it is better to use directional antennas in front of the

vehicle to detect and identify targets ahead of the vehicle.
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Figure 5.19: Transmitted waveform

The P400 MRM provides raw scans for post processing. It has a small size and a

low power operation which allow it to be a good candidate for autonomous vehicles.
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5.6.2 Data processing and feature extractions

To test the developed algorithms of automatic target classification, we use three

targets: human, lamp and tree. We assume that the targets are stationary, have

been detected and the backscattered fields contain only a single target. The targets

are around 2 m far from the radar.

Figure 5.20: The indoor environment

The experiments are done in an indoor environment which is considered as a

hostile environment because of the multipath coming from the walls and objects

surrounding the target. Figure 5.20 shows the indoor environment with the lamp

as target. Figure 5.21a shows the environment without target as a function of time

and distance We can observe that returns from clutter within the first 1 m from the

radar have high amplitude. This clutter is due to direct coupling and objects close

to the radar.

Figure 5.21b shows the environment with target as a function of time and dis-

tance. To obtain the signature of the target only, we first eliminate the direct cou-
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Figure 5.21: Raw signal received by the radar

pling and returns from clutter. The clutter includes ground and objects surrounding

the target that generate reflections. The measured data are subtracted from a data

already stored when there is no target.

Figure 5.22 shows the three signatures of the three targets after removing the

environment as function of time.

Once the environment is removed, a window of 4.27 ns is taken around the sig-

natures of the targets. Next, we normalize the signatures in order to eliminate the
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(c) Signature of the tree

Figure 5.22: Signatures of the three targets after removing the environment

120



effects of differing target amplitudes depending on the distance. The signatures are

scaled so that all the peaks are equal to one (Figure 5.23).

Before applying MPMFD, we need to calculate the frequency response of the tem-

poral signal. Therefore, after using zero-padding in order to increase the frequency

resolution, we apply an FFT to the temporal signal to transform it to frequency

domain. The resulted signal is divided by the FFT of the transmitted waveform.

Finally, we apply MPMFD on the frequency responses of the three targets over the

bandwidth from 3.5 to 4.9 GHz. Figure 5.24 shows the measured and reconstructed

real and imaginary parts of the backscattered signal. With M = 6 in MPMFD, the

signals are well reconstructed.

5.6.3 Classification results

We use the singular values, which are extracted by MPMFD from the backscattered

fields, as features in the entrance of the classifiers. We take measures for 8 monostatic

aspect angles corresponding to: 5, 15, 25, 35, 45, 55, 65 and 75◦. And from each

angle we take 140 measures. Therefore, the data base contains 3 targets × 8 angles

× 140 measures = 3360 feature vectors.

Figure 5.25 shows a plot of the first three singular values for the angle 0◦ cal-

culated from 140 measures for each target. There are three distinct clouds of data

points in the feature space: one for human, one for lamp and one for tree. The

features of lamp and tree are condensed while the features of human are dispersed.

However, the three targets can be discriminated. In figure 5.26, we show a plot

of the first three singular values for the eight angles calculated from 140 measures

for each angle of each target. We can distinguish eight different clouds for the tree

corresponding to the eight angles. The features of lamp are condensed because the

lamp is symmetrical. The features of human are dispersed because the human is not

completely stationary like the two other targets. In addition the human target is
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Figure 5.23: Normalized signatures of the three targets
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Figure 5.24: Measured signal compared with reconstructed signal by MPMFD
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Figure 5.26: The first three singular values for all angles

made up of many scattering points that reflect the transmitted signal from different

distances with different reflection coefficients as the pulse reaches the target.

To estimate the performance of classifiers a stratified 10-fold cross-validation

approach is used. In 10-fold cross-validation the entire dataset is divided into 10

subsets (or folds) with approximately the same class distribution as the original

dataset (stratified). Each fold is used once to test the performance of the classifier

that is generated from the combined data of the remaining nine folds, leading to 10

independent performance estimates. The following classifiers are used: MDC, k-NN,
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Table 5.6: Classification accuracy of each target (%)

Number of σi 2 3 4 5 6

MDC 98.45 99.97 99.88 99.97 99.97

NB 72.47 71.37 79.26 79.26 79.26

k-NN 98.48 99.94 99.94 99.94 99.94

SVM 98.6 100 100 100 100

NB and SVM.

Table 5.6, shows the classification accuracy of the three targets as function of

the number of singular values. Except NB, all the other classifiers perform well even

with 2 singular values. The best accuracy is reached starting from 3 singular values,

it is 99.97 % for MDC, 99.94 % for k-NN (k = 1) and 100 % for SVM.

5.7 Conclusion

This chapter presented the software FEKO and the simulation parameters used in

this work. The signals are obtained either in frequency domain or in time domain.

Then, feature extraction results have been presented. We chose to use MPM as our

main method for feature extraction because of its simplicity in comparison to other

high resolution methods. In addition, it gave good results and it is less sensitive to

noise. The advantage of using MPMFD than MPMTD has been presented also.

Next, comparison of different classification methods has been done. MPMFD

gave the best results with all the classification methods that we used in this work.

After that, a powerful method for UWB radar automatic target classification in

white Gaussian noise and different aspect angles has been proposed. The method is

based on the use of MPMFD for feature extraction, and Mahalanobis Distance for

classification.

Finally, experimental results have been presented. We applied the developed

algorithms of ATC on real targets. Good accuracy of classification has been found
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by using: MDC, k-NN and SVM.
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6

Conclusions

In this thesis, the possibility of automatically classifying an unknown target by us-

ing UWB radar was studied. The identification of the target is realized by making

comparison between the deduced target properties and the different target features

which are already recorded in a database. The two main steps in ATC are feature

extraction and classification. The developed ATC technique has been demonstrated

using simulated backscattered data from canonical objects. These shapes may be

found as substructures on various vehicles. Also, ATC technique has been demon-

strated using simulated backscattered data from complex target geometries modeled

by perfectly conducting, straight, thin wires. Finally, it has been demonstrated using

real targets: human, lamp and tree.

In chapter 2, our goal was to understand the physical behavior of electromagnetic

waves when hitting the target (scattering). Based on this understanding, features

must then be mathematically described depending on the given requirements. We

found that different models have been proposed for scattering using either resonances

or scattering centers. The advantage of CNRs is their aspect independence; hence we

gave the analytical expressions of CNRs corresponding to the wire and the sphere.
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In chapter 3, we presented the advantages of using UWB radar rather than con-

ventional radars. Most of the advantages of UWB radars are associated with the

bandwidth that is achieved. Basically, the wider bandwidth a system has the better

it performs. Then we presented the different techniques used in UWB radar. We

can use temporal or frequency techniques. Finally, we presented the different steps

of ATC.

In chapter 4, we presented the methods that we used for feature extraction. In

time domain we used wavelet transform to produce wavelet coefficients and high

resolution methods to extract CNRs. In frequency domain, high resolution methods

can be applied by using a reduced complexity model. Then we presented the different

methods that we used for classification including: MDC, NB, k-NN and SVM. SVM

is the most accurate, however with SVM it is difficult to understand the process

of classifying. k-NN calculates the distance to all training vectors that are stored

in the database, but MDC calculates the distance to only given classes which are

represented by their mean and covariance matrix.

In chapter 5, we presented results obtained by simulations and experiments. Con-

cerning high resolution methods; we found that MPM is suitable for the rest of our

work for its simplicity and less sensitivity to noise in comparison to other methods.

In time domain, we found that finding the beginning of the late time is not an easy

task. In addition, there is a small contribution of the late time part of the signal,

therefore, if the signal is noisy the late time part will be heavily corrupted by noise.

The simulation results obtained by using canonical targets showed the importance

of feature extraction for targets classification. The results indicate that features

extracted with MPMFD present a plausible solution to automatic target classification

especially for less resonant objects. With this method the separation between the

early and late time is not required. A database containing object signatures can be

built by using MPMFD. For resonant objects, applying MPMTD to extract CNRs
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is a good solution; the advantage of CNRs is their aspect independence.

Then, a robust method for automatic target classification was presented in this

work. The accuracy of the proposed method is tested on four complex target geome-

tries with different aspect angles and in high noise level. Results indicate that the

designed classifier which is based on the use of MPMFD and MDC can be a good

solution for automatic target classification.

Finally, experimental results have been presented. We applied the developed

algorithms of ATC on real targets: human, lamp and tree. Good accuracy of clas-

sification has been found by using: MDC, k-NN and SVM. However, the features of

human are dispersed in comparison to the features of the lamp and the tree.

In this research, the simulated targets have been treated in a free-space environ-

ment and all measurements and predictions have separated the target from other

targets and media. In the future, taking into account the environment should be

explored. Future work should also validate the developed ATC technique on new

canonical objects (cube, strip, etc), complex objects (combination of canonical ob-

jects), and dielectric objects.

In this work, we used the vertical polarization in emission and we showed that the

classification accuracy increases by using features extracted from the two components

of the received signal. In the next stage, using the horizontal polarization in emission

in addition to the vertical polarization should be explored.

In order to classify humans, extracting time-varying signatures for constructing

input data features to a classification algorithm should be explored [97].

It is interesting to combine the developed method of ATC with algorithms of

localization and communication and implement them on electronic devices like FPGA

or DSP, so it can be used in autonomous vehicles.
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Appendix A

Analytical expression of the sphere’s residues

To obtain the analytical expression of the residues, we proceed as following:

First, we write:

Fn(ζ) =
(−1)n(2n+ 1)

Ĥ
(2)′
n (ζ)Ĥ

(2)
n (ζ)

=
(−1)nζ2n+1e2ζ(2n+ 1)

i2n+1gn(ζ)fn(ζ)
=
ζ2n+1e2ζ(2n+ 1)

ign(ζ)fn(ζ)
(A.1)

iFn(ζ)
e−2ζ

ζ
=
ζ2n(2n+ 1)

gn(ζ)fn(ζ)
=

n+1∑
k=1

rgn,k
ζ − ζgn,k

+
n∑
k=1

rfn,k

ζ − ζfn,k
(A.2)

To find residues corresponding to the poles of fn(ζ), we put:

fn(ζ
f
n,k) = 0 ∀ 1 ≤ k ≤ n (A.3)

Thus:

rfn,k =
(2n+ 1)(ζfn,k)

2n

f ′
n(ζ

f
n,k)gn(ζ

f
n,k)

(A.4)

To find residues corresponding to the poles of gn(ζ), we put:

gn(ζ
g
n,k) = 0 ∀ 1 ≤ k ≤ n+ 1 (A.5)
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Thus:

rgn,k =
(2n+ 1)(ζgn,k)

2n

fn(ζ
g
n,k)g

′
n(ζ

g
n,k)

(A.6)

Next, we write:

fn(ζ) =
n∑
β=0

aβζ
n−β (A.7)

gn(ζ) =
n∑
β=0

aβζ
n−β(ζ + β) = ζfn(ζ) +

n∑
β=1

βaβζ
n−β (A.8)

where:

aβ =
(n+ β)!

β!(n− β)!

1

2β
(A.9)

Therefore:

f
′

n(ζ) =
n∑
β=0

(n− β)aβζ
n−β−1 =

n−1∑
β=0

(n− β)aβζ
n−β−1 =

n

ζ
fn −

n∑
β=1

βaβ
ζn−β

ζ
(A.10)

g
′

n(ζ) =
n∑
β=0

(n− β)aβ(ζ + β)ζn−β−1 + aβζ
n−β

=
n∑
β=0

(n− β)aβ(ζ + β)ζn−β +
n∑
β=0

β(n− β)aβζ
n−β−1 +

n∑
β=0

aβζ
n−β

=
n−1∑
β=0

(n− β)aβζ
n−β +

n−1∑
β=1

β(n− β)aβζ
n−β−1 +

n∑
β=0

aβζ
n−β

= ζf
′

n(ζ) + fn(ζ) +
n∑
β=1

β(n− β)aβζ
n−β−1

(A.11)

We put: Sn,1(ζ) =
∑n

β=1 βaβζ
−β and Sn,2(ζ) =

∑n
β=1 β

2aβζ
−β

From (A.3): = ζfn,k: fn = 0, thus: gn =
∑n

β=1 βaβζ
n−β and:

rfn,k =
−(2n+ 1)ζfn,k(∑n
β=1 βaβ(ζ

f
n,k)

−β
)2 =

−(2n+ 1)ζfn,k(
Sn,1(ζ

f
n,k)

)2 (A.12)
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From (A.3): = ζgn,k: gn = 0, thus: fn = −1
ζ

∑n
β=1 βaβζ

n−β and:
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n
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ζ
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)
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Then:

rgn,k =
(2n+ 1)(ζgn,k)
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g
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] [
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