O. Nea, I. J. Lamarsh, A. J. Baratta, J. M. Book, P. Broughton et al., A SCENARIO OF THE THREE MILE ISLAND UNIT ? ACCIDENT The Development of and Lessons from the Fukushima Daiichi Nuclear Accident The severe accident mitigation concept and the design measures for core melt retention of the European Pressurized Reactor (EPR) Contribution des Essais en Matériaux Prototypiques sur la Plate-Forme PLINIUS à l'Etude des Accidents Graves de Réacteurs Nucléaires Current knowledge on core degradation phenomena, a review The kinetics of the uranium dioxide?Zircaloy reactions at high temperatures, Nucl. Saf. Nucl. Eng. Des. J. Nucl. Mater. J. Nucl. Mater, vol.87, issue.83 2-3, pp.34-53, 1979.

D. R. Olander, The UO2-Zircaloy chemical interaction, Journal of Nuclear Materials, vol.115, issue.2-3, pp.271-285, 1983.
DOI : 10.1016/0022-3115(83)90318-5

P. Hofmann and D. Kerwin-peck, UO2/Zircaloy-4 chemical interactions from 1000 to 1700??C under isothermal and transient temperature conditions, Journal of Nuclear Materials, vol.124, issue.2, pp.80-105, 1984.
DOI : 10.1016/0022-3115(84)90013-8

W. Dienst and P. Hofmann, Chemical Interations between UO 2 and Zircaloy-4 from 1000 to 2000 o C, Nucl. Technol, vol.65, pp.109-124, 1984.

P. Nikolopoulos, P. Hofmann, and D. Kerwin-peck, Determination of the interfacial energy and work of adhesion in the UO2/Zircaloy-4 diffusion couple, Journal of Nuclear Materials, vol.124, pp.106-113, 1984.
DOI : 10.1016/0022-3115(84)90014-X

P. Hofmann, S. Hagen, V. Noack, G. Schanz, and L. Sepold, Chemical-Physical Behavior of Light Water Reactor Core Components Tested Under Severe Reactor Accident Conditions in the CORA Facility, Nuclear Technology, vol.118, issue.3, pp.200-224, 1997.
DOI : 10.13182/NT118-200

J. M. Seiler, B. Tourniaire, F. Defoort, and K. Froment, Consequences of material effects on in-vessel retention, Nuclear Engineering and Design, vol.237, issue.15-17, pp.1752-1758, 2007.
DOI : 10.1016/j.nucengdes.2007.03.007

B. Spindler, B. Tourniaire, and J. M. Seiler, Simulation of MCCI with the TOLBIAC-ICB code based on the phase segregation model, Nuclear Engineering and Design, vol.236, issue.19-21, pp.2264-2270, 2006.
DOI : 10.1016/j.nucengdes.2006.03.023

J. P. Van-dorsselaere, C. Seropian, P. Chatelard, F. Jacq, J. Fleurot et al., Modular Accident Analysis Program User's Manual, THE ASTEC INTEGRAL CODE FOR SEVERE ACCIDENT SIMULATION, vol.18

N. Saunders, A. Miodokwin, and . Book, CALPHAD -Calculation of Phase Diagrams, A Comprehensive Guide, 1998.

H. Lukas, S. Fries, B. Sundman, and . Book, Computational Thermodynamics -The Calphad Method, 2007.

T. Saller, A. F. Rough, J. M. Fackelmann, A. A. Bauer, J. R. Doig et al., Phase relations in the uranium-zirconium-oxygen systems involving zirconium and uranium dioxide Battelle Memorial Institute Physico-chemical studies of clad UO 2 under reactor accident conditions Untersuchungen im Dreistoffsystem Uran-Zirkon-Sauerstoff, High Temperature Phase Relation in the U-Zr-O system 5th International Meeting on Thermal Nuclear Reactor Safety, pp.1035-1041, 1961.

]. P. Hayward, I. M. George8-]-p, I. M. Hayward, . J. George-]-p, I. M. Hayward et al., Dissolution of UO 2 in molten Zircaloy-4 Part 1: Solubility from 2000 to 2200 o C Dissolution of UO 2 in molten Zircaloy-4 Part 2: Phase evolution during dissolution and cooling, Dissolution of UO 2 in molten Zircaloy-4 part 3: Solubility from, pp.35-42, 1994.

P. J. Hayward and I. M. George, Dissolution of UO2 in molten Zircaloy-4 Part 4: Phase evolution during dissolution and cooling of 2000 to 2500??C specimens, Journal of Nuclear Materials, vol.232, issue.1, pp.13-22, 1996.
DOI : 10.1016/0022-3115(96)00197-3

A. Maurizi, Réactivité chimique a haute température dans le système (U,Zr,Fe,O) contribution a l'étude de la zircone comme récuperatéur de 'corium, 1996.

C. Guéneau, V. Dauvois, P. Pérodeaud, C. Gonella, and O. Dugne, Liquid immiscibility in a (O,U,Zr) model corium, Journal of Nuclear Materials, vol.254, issue.2-3, pp.2-3, 1998.
DOI : 10.1016/S0022-3115(98)00002-6

D. Manara, M. Sheindlin, W. Heinz, and C. Ronchi, New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating, Review of Scientific Instruments, vol.79, issue.11, 2008.
DOI : 10.1063/1.3005994

S. V. Bechta, V. S. Granovsky, V. B. Khabensky, V. V. Gusarov, V. I. Almiashev et al., Corium phase equilibria based on MASCA, METCOR and CORPHAD results, Nuclear Engineering and Design, vol.238, issue.10, pp.2761-2771, 2008.
DOI : 10.1016/j.nucengdes.2008.04.018

W. A. Lambertson and M. Mueller, Uranium Oxide Phase Equilibrium Systems: III, UO2-ZrO2, Journal of the American Ceramic Society, vol.36, issue.10, pp.365-368, 1953.
DOI : 10.1103/PhysRev.74.605

N. M. Voronov, E. A. Voitekhova, and A. S. Danilin, Phase Equilibrium Diagrams of the UO 2 -ZrO 2 and ThO 2 -ZrO 2 Systems, Proc. 2nd Conf. Peaceful Uses of Atomic Energy, 1958.

I. Cohen and B. Shaner, A metallographic and X-ray study of the UO2-ZrO2 system, Journal of Nuclear Materials, vol.9, issue.1, pp.18-52, 1963.
DOI : 10.1016/0022-3115(63)90166-1

L. G. Wisnyi and S. W. Pijanowski, The thermal stability of uranium dioxide, 1957.

K. A. Romberger, C. F. Baes, and H. H. Stone, Phase equilibrium studies in the UO2???ZrO2 system, Journal of Inorganic and Nuclear Chemistry, vol.29, issue.7, pp.1619-1630, 1967.
DOI : 10.1016/0022-1902(67)80205-7

M. Baïchi, Contribution à l'étude du corium d'un réacteur nucléaire accidenté : aspects puissance résiduelle et thermodynamique des systèmes U-UO 2 et UO 2 -ZrO 2, 2001.

K. Une and M. Oguma, Oxygen Potential of U0.85Zr0.15O2+x Solid Solutions at 15000oC, Journal of the American Ceramic Society, vol.36, issue.7, p.179, 1983.
DOI : 10.1107/S0567739476001551

J. O. Paschoal, H. Kleykamp, and F. Thummler, Phase equilibria in the pseudoquaternary BaO-UO2-ZrO2-MoO2 system, Journal of Nuclear Materials, vol.151, issue.1, pp.10-21, 1987.
DOI : 10.1016/0022-3115(87)90050-X

V. Stolyarova, A. Shilov, and M. Shultz, Thermodynamic properties of the UO2???ZrO2 system studied by the isothermal mass spectrometric vaporization method, Journal of Nuclear Materials, vol.247, pp.41-45, 1997.
DOI : 10.1016/S0022-3115(97)00029-9

M. Baïchi, C. Chatillon, and C. Guéneau, Mass spectrometric study of UO2???ZrO2 pseudo-binary system, Journal of Nuclear Materials, vol.294, issue.1-2, pp.84-87, 2001.
DOI : 10.1016/S0022-3115(01)00477-9

P. Hofmann, H. Holleck, C. Politis, and A. Skokan, Konstitution und Reaktionsverhalten von LWR-Komponenten beim Coreschmelzen, Kernforschungszentrum Karlsruhe, 1976.

D. Labroche, Contribution à l'étude thermodynamique du système ternaire U-Fe-O, 2000.

W. D. Evans and J. White, Equilibrium Relationships in the System UO 2 -Fe 3 O 4 -O, Trans. Br. Ceram. Soc, vol.63, issue.12, pp.705-724, 1964.

B. Riley, The UO 2 -Fe 2 O 3 and PuO 2 -Fe 2 O 3 System in Air, Trans. Am. Nucl. Soc, vol.12, pp.543-544, 1969.

S. V. Bechta, E. V. Krushinov, V. I. Almjashev, S. A. Vitol, L. P. Mezentseva et al., Phase diagram of the UO2???FeO1+x system, Journal of Nuclear Materials, vol.362, issue.1, pp.46-52, 2007.
DOI : 10.1016/j.jnucmat.2006.11.004

S. Bechta, E. V. Krushinov, V. I. Almyashev, S. A. Vitol, L. Mezentseva et al., Phase Transformation in the Binary Section of the UO 2 -FeO-Fe System, Radiochemistry, vol.49, issue.1, pp.20-24, 2007.

Y. Petrov, Y. P. Udalov, J. Subrt, S. Bakardjieva, P. Sazavsky et al., Phase equilibria during crystallization of melts in the uranium oxide-iron oxide system in air, Glass Physics and Chemistry, vol.35, issue.3, pp.298-307, 2009.
DOI : 10.1134/S1087659609030109

T. S. Jones, S. Kimura, and A. Muan, Phase Relations in the System FeO-Fe2O3-ZrO2-SiO2, Journal of the American Ceramic Society, vol.28, issue.166, pp.137-142, 1967.
DOI : 10.1016/0039-9140(60)80131-2

R. H. Kiminami, Estudo do sistema ZrO 2 -FeO-Fe 2 O 3 através da termogravimetria à pressao parcial de oxygeno do ar e temperaturas de até 1500 o C, Ceramica, vol.33, issue.213, pp.207-210, 1987.

T. Katsura, M. Wakihara, S. Hara, and T. Sugihara, Some thermodynamic properties in spinel solid solutions with the Fe3O4 component, Journal of Solid State Chemistry, vol.13, issue.1-2, pp.107-113, 1975.
DOI : 10.1016/0022-4596(75)90087-0

Y. B. Petrov, Y. P. Udalov, J. Slovak, and Y. G. Morozov, Liquid Immiscibility Phenomena in Melts of the ZrO 2 -FeO-Fe 2 O 3 System, Glas. Phys. Chem, vol.266, issue.3, pp.139-146, 2002.

S. V. Bechta, E. V. Krushinov, V. I. Almjashev, S. A. Vitol, L. P. Mezentseva et al., Phase diagram of the ZrO2???FeO system, Journal of Nuclear Materials, vol.348, issue.1-2, pp.114-121, 2006.
DOI : 10.1016/j.jnucmat.2005.09.009

D. F. Carroll, The System PuO2-ZrO2, Journal of the American Ceramic Society, vol.46, issue.4, pp.194-195, 1963.
DOI : 10.1111/j.1151-2916.1963.tb11716.x

P. G. Mardon, D. J. Hodkin, and J. T. Dalton, Some observations on the Pu???Zr???0 system, Journal of Nuclear Materials, vol.32, issue.1, pp.126-134, 1969.
DOI : 10.1016/0022-3115(69)90148-2

T. Albiol, H. Serizawa, and A. Yasuo, Studies in the PuO 2 -ZrO 2 Pseudo-binary Phase Diagram, J. Nucl. Sci. Technol, vol.3, pp.834-837, 2002.

C. Guéneau, N. Dupin, B. Sundman, C. Martial, J. C. Dumas et al., Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U???Pu???O???C systems, Journal of Nuclear Materials, vol.419, issue.1-3, pp.1-3, 2011.
DOI : 10.1016/j.jnucmat.2011.07.033

D. Manara, R. Böhler, K. Boboridis, L. Capriotti, A. Quaini et al., The Melting Behaviour of Oxide Nuclear Fuels: Effects of the Oxygen Potential Studied by Laser Heating, Procedia Chemistry, vol.7, pp.505-512, 2012.
DOI : 10.1016/j.proche.2012.10.077

P. Hofmann, S. Hagen, G. Schanz, and A. Skokan, Chemical interaction of reactor core materials up to very high temperature, Kernforschungszentrum Karlsruhe, 1984.

V. I. Almjashev, M. Barrachin, S. Bechta, D. Bottomley, F. Defoort et al., Eutectic crystallization in the FeO1.5???UO2+x???ZrO2 system, Journal of Nuclear Materials, vol.389, issue.1, pp.52-56, 2009.
DOI : 10.1016/j.jnucmat.2009.01.006

V. I. Almjashev, M. Barrachin, S. Bechta, D. Bottomley, F. Defoort et al., Phase equilibria in the FeO1+x???UO2???ZrO2 system in the FeO1+x-enriched domain, Journal of Nuclear Materials, vol.400, issue.2, pp.119-126, 2010.
DOI : 10.1016/j.jnucmat.2010.02.020

V. I. Almjashev, M. Barrachin, S. V. Bechta, D. Bottomley, S. A. Vitol et al., Ternary eutectics in the systems FeO-UO2-ZrO2 and Fe2O3-U3O8-ZrO2, Ternary eutectics in the systems FeO-UO 2 -ZrO 2 and Fe, pp.13-18, 2011.
DOI : 10.1134/S1066362211010024

T. Uchida, S. Hirooka, H. Sugata, K. Shibata, D. Sato et al., Melting Temperature of the ZrO 2 -MOX System, pp.1549-1553, 2013.

K. Minato, W. Hering, and S. Hagen, Zircaloy Oxidation and Cladding Deformation in PWR- Specific CORA Experiments, Kernforschungszentrum Karlsruhe, 1991.

S. V. Bechta, V. B. Khabensky, S. A. Vitol, E. V. Krushinov, D. B. Lopukh et al., Experimental studies of oxidic molten corium???vessel steel interaction, Nuclear Engineering and Design, vol.210, issue.1-3, pp.193-224, 2001.
DOI : 10.1016/S0029-5493(01)00377-6

B. R. Sehgal and B. W. Spencer, ACE Program Phase D: Melt Attack and Coolability Experiments (MACE) Program, Second OECD (NEA) Specialist Meeting on Molten Core Debris-Concrete Interaction, pp.345-356, 1992.

B. W. Spencer, M. T. Farmer, D. R. Armstrong, D. J. Kilsdonk, and E. Al, Results of MACE test M0 and M1, Second OECD (NEA) Specialist Meeting on Molten Core Debris-Concrete Interaction, pp.357-373, 1992.

I. Huhtiniemi, D. Magallon, and H. Hohmann, Results of recent KROTOS FCI tests: alumina versus corium melts, Nuclear Engineering and Design, vol.189, issue.1-3, pp.379-389, 1999.
DOI : 10.1016/S0029-5493(98)00269-6

W. Steinwarz and M. Sappok, Large-scale experiments on ex-vessel core melt behavior, Nucl. Technol, vol.125, pp.363-370, 1999.

T. Sevon, T. Kinnunen, J. Virta, S. Holmstrom, T. Kekki et al., HECLA experiments on interaction between metallic melt and hematite-containing concrete, Nuclear Engineering and Design, vol.240, issue.10, pp.3586-3593, 2010.
DOI : 10.1016/j.nucengdes.2010.04.039

C. Journeau, F. Sudreau, S. Magne, and G. Cognet, Physico-chemical analyses and solidification path reconstruction of multi-component oxidic spread melts, Materials Science and Engineering: A, vol.299, issue.1-2, pp.249-266, 2001.
DOI : 10.1016/S0921-5093(00)01404-0

C. Journeau, J. Piluso, P. Haquet, S. Saretta, E. Boccaccio et al., Oxide-Metal Corium-Concrete Interaction Test in the VULCANO Facility, Proceeding of ICAAP 2007, p.7328, 2007.

C. Journeau, P. Piluso, P. Correggio, L. Ferry, G. Fritz et al., Contribution of the VULCANO experimental programme to the understanding of the MCCI phenomena, Nucl. Eng. Des, vol.44, issue.3, pp.261-272, 2012.

L. Kaufman, H. Bernstein, H. Book, S. Lukas, B. Fries et al., CALPHAD -Calculation of Phase Diagrams, A Comprehensive Guide Computational Thermodynamics -The Calphad Method The Thermo-Calc Databank System TALISMAn project Available: http://www.talisman-project Contribution à l'étude du corium d'un réacteur nucléaire accidenté : aspects puissance résiduelle et thermodynamique des systèmes U-UO 2 et UO 2 -ZrO 2, Mass spectrometer study of the UO 2 -ZrO 2 pseudobinary system Untersuchungen im Dreistoffsystem Réactivité chimique a haute température dans le système, pp.153-190, 1970.

E. F. Juenke and J. F. White, Physico-chemical studies of clad UO 2 under reactor accident conditions, General Electric Company, 1970.

C. Guéneau, V. Dauvois, P. Pérodeaud, C. Gonella, and O. Dugne, Liquid immiscibility in a (O,U,Zr) model corium, Journal of Nuclear Materials, vol.254, issue.2-3, pp.2-3, 1998.
DOI : 10.1016/S0022-3115(98)00002-6

S. V. Bechta, V. S. Granovsky, V. B. Khabensky, V. V. Gusarov, V. I. Almiashev et al., Corium phase equilibria based on MASCA, METCOR and CORPHAD results, Nuclear Engineering and Design, vol.238, issue.10, pp.2761-2771, 2008.
DOI : 10.1016/j.nucengdes.2008.04.018

D. Manara, F. De-bruycker, K. Boboridis, O. Tougait, R. Eloirdi et al., High temperature radiance spectroscopy measurements of solid and liquid uranium and plutonium carbides, Journal of Nuclear Materials, vol.426, issue.1-3, pp.1-3, 2012.
DOI : 10.1016/j.jnucmat.2012.03.041

URL : https://hal.archives-ouvertes.fr/hal-00816053

D. Manara, H. F. Jackson, C. Perinetti-casoni, K. Boboridis, M. J. Welland et al., The ZrC???C eutectic structure and melting behaviour: A high-temperature radiance spectroscopy study, Journal of the European Ceramic Society, vol.33, issue.7, pp.1349-1361, 2013.
DOI : 10.1016/j.jeurceramsoc.2012.12.008

U. Nunez, D. Prieur, R. Bohler, and D. Manara, Melting point determination of uranium nitride and uranium plutonium nitride: A laser heating study, Journal of Nuclear Materials, vol.449, issue.1-3, pp.1-3, 2014.
DOI : 10.1016/j.jnucmat.2014.02.021

R. Böhler, M. J. Welland, D. Prieur, P. Cakir, T. Vitova et al., Recent advances in the study of the UO2???PuO2 phase diagram at high temperatures, Journal of Nuclear Materials, vol.448, issue.1-3, pp.330-339, 2014.
DOI : 10.1016/j.jnucmat.2014.02.029

R. Böhler, A. Quaini, L. Capriotti, P. Cakir, A. Guiot et al., The solidification behaviour of the UO2???ThO2 system in a laser heating study, Journal of Alloys and Compounds, vol.616, pp.5-13, 2014.
DOI : 10.1016/j.jallcom.2014.07.055

D. Manara, M. Sheindlin, W. Heinz, and C. Ronchi, New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating, Review of Scientific Instruments, vol.79, issue.11, 2008.
DOI : 10.1063/1.3005994

C. Cagran, C. Brunner, A. Seifter, and G. Pottlacher, Liquid-phase behaviour of normal spectral emissivity at 684.5??nm of some selected metals, High Temperatures-High Pressures, vol.34, issue.6, pp.669-679, 2002.
DOI : 10.1068/htjr067

C. Cagran, B. Wilthan, and G. Pottlacher, Optical properties (at 684.5 nm) and radiance temperatures at the melting point of group VIIIb transition metals cobalt, nickel, palladium, and platinum, High Temperatures-High Pressures, vol.35, issue.6, pp.667-675, 2007.
DOI : 10.1068/htjr138

S. Krishnan and P. C. Nordine, Spectral emissivities in the visible and infrared of liquid Zr, Ni, and nickel???based binary alloys, Journal of Applied Physics, vol.80, issue.3, pp.1735-1742, 1996.
DOI : 10.1063/1.363025

S. Krishnan, J. K. Richard-weber, C. D. Anderson, and P. C. Nordine, Spectralemissivity and optical properties at for liquid uranium and zirconium at high temperatures, Journal of Nuclear Materials, vol.203, issue.2, pp.112-121, 1993.
DOI : 10.1016/0022-3115(93)90047-3

F. and D. Bruycker, High Temperature Phase Transitions in Nuclear Fuels of the Fourth Generation, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00608065

G. Neuer, L. Fiessler, M. Groll, and E. Schreuben, Critical analysis of the different methods of multiwavelength pyrometry, " in Temperature: its measurement and control in science and industry, pp.787-789, 1996.

T. Uchida, S. Hirooka, H. Sugata, K. Shibata, D. Sato et al., Melting Temperature of the ZrO 2 -MOX System, pp.1549-1553, 2013.

D. Manara, R. Böhler, K. Boboridis, L. Capriotti, A. Quaini et al., The Melting Behaviour of Oxide Nuclear Fuels: Effects of the Oxygen Potential Studied by Laser Heating, Procedia Chemistry, vol.7, pp.505-512, 2012.
DOI : 10.1016/j.proche.2012.10.077

J. M. Haschke, Reaction of Plutonium Dioxide with Water: Formation and Properties of PuO2+x, Science, vol.287, issue.5451, pp.285-287, 2000.
DOI : 10.1126/science.287.5451.285

C. Guéneau, N. Dupin, B. Sundman, C. Martial, J. C. Dumas et al., Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U???Pu???O???C systems, Journal of Nuclear Materials, vol.419, issue.1-3, pp.1-3, 2011.
DOI : 10.1016/j.jnucmat.2011.07.033

M. Kato, K. Morimoto, H. Sugata, K. Konashi, M. Kashimura et al., Solidus and liquidus temperatures in the UO2???PuO2 system, Journal of Nuclear Materials, vol.373, issue.1-3, pp.237-245, 2008.
DOI : 10.1016/j.jnucmat.2007.06.002

P. Lajarge and J. Somers, Fabrication of ZrO 2 PuO 2 pellets for phase diagram measurements in the Safety of Conventional Nuclear Fuel action, 2008.

A. Quaini, C. Guéneau, S. Gossé, B. Sundman, D. Manara et al., High temperature investigation of the solid/liquid transition in the PuO2???UO2???ZrO2 system, Journal of Nuclear Materials, vol.467, issue.2, pp.660-676, 2015.
DOI : 10.1016/j.jnucmat.2015.10.007

M. J. Welland, W. T. Thompson, B. J. Lewis, and D. Manara, Computer simulations of non-congruent melting of hyperstoichiometric uranium dioxide, Journal of Nuclear Materials, vol.385, issue.2, pp.358-363, 2009.
DOI : 10.1016/j.jnucmat.2008.12.023

M. Bober, Spectral reflectivity and emissivity of solid and liquid UO 2 as a function of wavelength, angle of incidence and polarization, pp.297-306, 1980.

H. Shy, M. Chu, and P. Zhang, Optical properties of UO2 and PuO2, Journal of Nuclear Materials, vol.400, issue.2, pp.151-156, 2010.
DOI : 10.1016/j.jnucmat.2010.02.024

S. M. Avdoshenko and A. Strachan, simulations: role of defects and disorder, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.7, pp.75004-75005, 2014.
DOI : 10.1088/0965-0393/22/7/075004

M. K. Pu-u, P. Pu-zr, J. C. Toffolon-masclet, C. Brachet, J. M. Servant et al., Private communication Thermodynamic database on U-Pu-Zr-Np-Am-Fe alloy system II -Evaluation of Np, Am, and Fe containing systems - Contribution of Thermodynamic Calculation to Metallurgical Studies of Multi- Component Zirconium Based Alloys An assessment of the Fe-O System Thermodynamic Assessment of the Zr-O Binary System Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems Private communication, Contribution à l'étude du corium d'un réacteur nucléaire accidenté ? aspects puissance résiduelle et thermodynamique des systèmes U-UO 2 et UO 2 -ZrO 2, pp.3-4, 1991.

A. Maurizi, Réactivité chimique à haute température dans le système (U,Zr,Fe,O) contribution a l'étude de la zircone comme récupérateur de 'corium, 1996.

M. Baichi, C. Chatillon, and C. Guéneau, Mass spectrometric study of UO2???ZrO2 pseudo-binary system, Journal of Nuclear Materials, vol.294, issue.1-2, pp.84-87, 2001.
DOI : 10.1016/S0022-3115(01)00477-9

I. Cohen and B. Shaner, A metallographic and X-ray study of the UO2-ZrO2 system, Journal of Nuclear Materials, vol.9, issue.1, pp.18-52, 1963.
DOI : 10.1016/0022-3115(63)90166-1

W. A. Lambertson and M. Mueller, Uranium Oxide Phase Equilibrium Systems: III, UO2-ZrO2, Journal of the American Ceramic Society, vol.36, issue.10, pp.365-368, 1953.
DOI : 10.1103/PhysRev.74.605

E. F. Juenke and J. F. White, Physico-chemical studies of clad UO 2 under reactor accident conditions, Untersuchungen im Dreistoffsystem, 1976.

A. Skokan, A High Temperature Phase Relation in the U-Zr-O system, 5th Internation Meeting on Thermal Nuclear Reactor Safety, pp.1035-1041, 1984.

M. Barrachin, P. Y. Chevalier, B. Cheynet, and E. Fischer, New modelling of the U???O???Zr phase diagram in the hyper-stoichiometric region and consequences for the fuel rod liquefaction in oxidising conditions, Journal of Nuclear Materials, vol.375, issue.3, pp.397-409, 2008.
DOI : 10.1016/j.jnucmat.2008.02.003

C. Guéneau, V. Dauvois, P. Pérodeaud, C. Gonella, and O. Dugne, Liquid immiscibility in a (O,U,Zr) model corium, Journal of Nuclear Materials, vol.254, issue.2-3, pp.2-3, 1998.
DOI : 10.1016/S0022-3115(98)00002-6

S. V. Bechta, V. S. Granovsky, V. B. Khabensky, V. V. Gusarov, V. I. Almiashev et al., Corium phase equilibria based on MASCA, METCOR and CORPHAD results, Nuclear Engineering and Design, vol.238, issue.10, pp.2761-2771, 2008.
DOI : 10.1016/j.nucengdes.2008.04.018

H. A. Saller, A. F. Rough, J. M. Fackelmann, A. A. Bauer, and J. R. Doig, Phase relations in the uranium-zirconium-oxygen systems involving zirconium and uranium dioxide, Battelle Memorial Institute, 1955.
DOI : 10.2172/4363703

S. Yamanaka, M. Katsura, S. Imoto, and M. Miyaket, Study of the U???Zr???O ternary system, Inorganica Chimica Acta, vol.140, pp.127-131, 1987.
DOI : 10.1016/S0020-1693(00)81067-1

P. Hofmann and C. Politis, The kinetics of the uranium dioxide???Zircaloy reactions at high temperatures, Journal of Nuclear Materials, vol.87, issue.2-3, pp.375-397, 1979.
DOI : 10.1016/0022-3115(79)90575-0

S. V. Bechta, E. V. Krushinov, V. I. Almjashev, S. A. Vitol, L. P. Mezentseva et al., Phase diagram of the ZrO2???FeO system, Journal of Nuclear Materials, vol.348, issue.1-2, pp.114-121, 2006.
DOI : 10.1016/j.jnucmat.2005.09.009

R. H. Kiminami, Estudo do sistema ZrO 2 -FeO-Fe 2 O 3 através da termogravimetria à pressao parcial de oxygeno do ar e temperaturas de até 1500 o C, Ceramica, vol.33, issue.213, pp.207-210, 1987.

T. Katsura, M. Wakihara, S. Hara, and T. Sugihara, Some thermodynamic properties in spinel solid solutions with the Fe3O4 component, Journal of Solid State Chemistry, vol.13, issue.1-2, pp.107-113, 1975.
DOI : 10.1016/0022-4596(75)90087-0

T. S. Jones, S. Kimura, and A. Muan, Phase Relations in the System FeO-Fe2O3-ZrO2-SiO2, Journal of the American Ceramic Society, vol.28, issue.166, pp.137-142, 1967.
DOI : 10.1016/0039-9140(60)80131-2

O. Fabrichnaya and D. Pavlyuchkov, Assessment of Experimental Data and Thermodynamic Modeling in the Zr-Fe-O System, Metallurgical and Materials Transactions A, vol.19, issue.213, 2015.
DOI : 10.1007/s11661-015-2805-8

S. V. Bechta, E. V. Krushinov, V. I. Almjashev, S. A. Vitol, L. P. Mezentseva et al., Phase diagram of the UO2???FeO1+x system, Journal of Nuclear Materials, vol.362, issue.1, pp.46-52, 2007.
DOI : 10.1016/j.jnucmat.2006.11.004

P. G. Mardon, D. J. Hodkin, and J. T. Dalton, Some observations on the Pu???Zr???0 system, Journal of Nuclear Materials, vol.32, issue.1, pp.126-134, 1969.
DOI : 10.1016/0022-3115(69)90148-2

T. Albiol, H. Serizawa, and A. Yasuo, Studies in the PuO 2 -ZrO 2 Pseudo-binary Phase Diagram, J. Nucl. Sci. Technol, vol.3, pp.834-837, 2002.

H. Kinoshita, M. Uno, and S. Yamanaka, Phase relation assessment of the O???Pu???Zr system by thermodynamic modelling, Journal of Alloys and Compounds, vol.354, issue.1-2, pp.129-137, 2003.
DOI : 10.1016/S0925-8388(02)01340-3

H. Kinoshita, M. Uno, and S. Yamanaka, Stability evaluation of fluorite structure phases in ZrO2-MO2 (M=Th, U, Pu, Ce) systems by thermodynamic modelling, Journal of Alloys and Compounds, vol.370, issue.1-2, pp.25-30, 2004.
DOI : 10.1016/j.jallcom.2003.09.010

S. Yamanaka, H. Kinoshita, and K. Kurosaki, Phase relation assessment for O???Pu???U ternary system, Journal of Nuclear Materials, vol.326, issue.2-3, pp.185-194, 2004.
DOI : 10.1016/j.jnucmat.2004.01.011

M. Kato, K. Morimoto, H. Sugata, K. Konashi, M. Kashimura et al., Solidus and liquidus temperatures in the UO2???PuO2 system, Journal of Nuclear Materials, vol.373, issue.1-3, pp.237-245, 2008.
DOI : 10.1016/j.jnucmat.2007.06.002

F. De-bruycker, K. Boboridis, D. Manara, P. Poml, M. Rini et al., Reassessing the melting temperature of PuO2, Materials Today, vol.13, issue.11, pp.52-55, 2010.
DOI : 10.1016/S1369-7021(10)70204-2

F. and D. Bruycker, High Temperature Phase Transitions in Nuclear Fuels of the Fourth Generation
URL : https://hal.archives-ouvertes.fr/tel-00608065

A. Quaini, C. Guéneau, S. Gossé, B. Sundman, D. Manara et al., High temperature investigation of the solid/liquid transition in the PuO2???UO2???ZrO2 system, Journal of Nuclear Materials, vol.467, issue.2, pp.660-676, 2015.
DOI : 10.1016/j.jnucmat.2015.10.007

R. Böhler, M. J. Welland, D. Prieur, P. Cakir, T. Vitova et al., Recent advances in the study of the UO2???PuO2 phase diagram at high temperatures, Journal of Nuclear Materials, vol.448, issue.1-3, pp.330-339, 2014.
DOI : 10.1016/j.jnucmat.2014.02.029

R. G. Haire, P. E. Raison, and Z. Assefa, Systematics of the Fundamental Chemistry of the Pyrochlore oxides: An 2 Zr 2 O 7, J. Sci. Technol, pp.616-619, 2002.

P. Raison, R. G. Haire, and T. Ogawa, Fundamental and Technological Aspects of Actinide Oxide Pyrochlores: Relevance For Immobilization Matrices, MRS Proceedings, vol.32, 1999.
DOI : 10.1016/S0022-3115(96)00751-9

D. Wang, Y. Guo, K. Liang, and K. Tao, Crystal structure of zirconia by Rietveld refinement, Science in China Series A: Mathematics, vol.14, issue.14, pp.80-86, 1999.
DOI : 10.1007/BF02872053

T. Yamashita, N. Nitani, T. Tsuji, and H. Inagaki, Thermal expansions of NpO2 and some other actinide dioxides, Journal of Nuclear Materials, vol.245, issue.1, pp.72-78, 1997.
DOI : 10.1016/S0022-3115(96)00750-7

L. Lutterotti and P. Scardi, Simultaneous structure and size???strain refinement by the Rietveld method, Journal of Applied Crystallography, vol.23, issue.4, pp.246-252, 1990.
DOI : 10.1107/S0021889890002382

W. Steinwarz and M. Sappok, Large-scale experiments on ex-vessel core melt behavior, Nucl. Technol, vol.125, pp.363-370, 1999.

C. Journeau, P. Piluso, I. , R. N. Dpam-semic, B. Spindler et al., Core concrete interaction Tranches nucléaires REP 900 et 1300 MWe -Procedures U4 et U5 Assessment of Ablation Temperature of Concretes from Past MCCI and Thermodynamic Experiments Simulation of MCCI with the TOLBIAC-ICB code based on the phase segregation model Simulation of MCCI with the TOLBIAC-ICB code based on the phase segregation model An assessment of the CaO-SiO 2 The calculation of phase equilibria of oxide core-concrete systems Private communication, Comprehensive Nuclear Materials, pp.635-654, 1985.

D. P. Dewitt, G. D. Nutter, ]. V. Book4, J. C. Sarou-kanian, F. Rifflet et al., Theory and practice of radiation thermometry Techniques de l'Ingenieur -Pyrometrie optique Mesure et analyse de l'émittance spectrale d'oxydes diélectriques à haute température -une approache des phénomenes préfusionnels IR Radiative Properties of Solid and Liquid Alumina: Effects of Temperature and Gaseous Environment Spectral emissity and radiance temperature plateau of selfsupporting alumina melt at rapid solidification Simultaneous Measurement Method of Normal Spectral Emissivity and Optical Constants of Solid at High Temperature in Vacuum, Spectral Emissivity of Dielectric Oxides, Below and Above the Melting Point Fiftheenth Symposium on Thermophysical Properties Etude expérimentale et théorique de l'émission infrarouge de ceramiques à haute température. Application aux barrieres thermiques, pp.1263-1275, 1988.

D. P. De-witt, G. D. Nutter, F. De-bruycker-manara, M. Sheindlin, W. Heinz et al., High Temperature Phase Transitions in Nuclear Fuels of the Fourth Generation PhD Thesis Universite d'Orleans, ?010 New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating Liquid-phase behaviour of normal spectral emissivity at 684.5 nm of some selected metals, Spectral emissivity and optical properties at l=6??.8 nm for liquid uranium and zirconium at high temperatures, pp.669-679, 1988.

]. C. References3, J. C. Toffolon-masclet, C. Brachet, J. M. Servant, P. Joubert et al., Am-Fe alloy system II -Evaluation of Np, Am, and Fe containing systems - Contribution of Thermodynamic Calculation to Metallurgical Studies of Multi- Component Zirconium Based Alloys Thermodynamic assessment of the Pu-U, Pu-Zr and Pu-U-Zr systems Private communication, " ?006 Thermodynamic assessment of the Fe-U, U-Zr adn Fe-U-Zr systems An assessment of the Fe-O System, Thermodynamic modelling of the Cr-Fe-Ni-O system Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems, pp.12023-101122, 1991.

P. Liang, N. Dupin, S. Fries, H. J. Seifert, I. Ansara et al., Thermodynamic Assessment of the Zr-O Binary System, Zeitschrift fur Met, vol.92, issue.7, pp.747-756, 2001.

R. J. Ackermann, S. P. Garg, and E. G. Rauh, High-Temperature Phase Diagram for the System Zr., Journal of the American Ceramic Society, vol.37, issue.10, pp.341-345, 1977.
DOI : 10.1016/0022-3115(77)90078-2

E. G. Rauh and S. P. Garg, The ZrO?-x (cubic)-ZrO2-x (cubic+tetragonal) Phase Boundary, J. Am. Ceram. Soc, vol.63, pp.3-4, 1980.

M. Hillert, B. Jansson, B. Sundman, J. Agren, C. Guéneau et al., CALPHAD -Calculation of Phase Diagrams, A Comprehensive Guide Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems Thermodynamic Assessment of the Zr-O Binary System Private communication Assessment of Experimental Data and Thermodynamic Modeling in the Zr-Fe-O System, Sublattice Model for Molten Solutions with Different Tendency for Ionization Phase Relation in the System FeO-Fe 2 O 3 -ZrO 2 -SiO Estudo do sistema ZrO 2 -FeO-Fe 2 O 3 através da termogravimetria à pressao parcial de oxygeno do ar e temperaturas de até 1500 o C, " Ceramica Equiíbrio de fases do sistema ZrO 2 -FeO-Fe 2 O 3 à pO 2 =2 10 -3 atm, pp.261-266, 1967.

T. Katsura, M. Wakihara, S. Hara, and T. Sugihara, Some thermodynamic properties in spinel solid solutions with the Fe3O4 component, Journal of Solid State Chemistry, vol.13, issue.1-2, pp.107-113, 1975.
DOI : 10.1016/0022-4596(75)90087-0

]. B. Sundman-fe-o-system, C. Guéneau, N. Dupin, B. Sundman, C. Martial et al., Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U-Pu-O-C systems SGTE data for pure elements Calphad Thermodynamic Assessment of the Zr-O Binary System Thermodynamic database on U-Pu-Zr-Np-Am-Fe alloy system II -Evaluation of Np, Am, and Fe containing systems - Contribution of Thermodynamic Calculation to Metallurgical Studies of Multi- Component Zirconium Based Alloys Private communication, Phase Equilibria Contribution à l'étude du corium d'un réacteur nucléaire accidenté ? aspects puissance résiduelle et thermodynamique des systèmes U-UO 2 et UO 2 -ZrO 2, pp.127-140, 1991.

O. Fabrichnaya and D. Pavlyuchkov, Assessment of Experimental Data and Thermodynamic Modeling in the Zr-Fe-O System, Metallurgical and Materials Transactions A, vol.19, issue.213, 2015.
DOI : 10.1007/s11661-015-2805-8

M. Kurata, Private communication, p.14

L. Kjellqvist, M. Selleby, and B. Sundman, Thermodynamic modelling of the Cr???Fe???Ni???O system, Calphad, vol.32, issue.3, pp.577-592, 2008.
DOI : 10.1016/j.calphad.2008.04.005

M. Kurata, Thermodynamic assessment of the Pu-U, Pu-Zr, and Pu-U-Zr systems, Calphad, vol.23, issue.3-4, pp.3-4, 1999.
DOI : 10.1016/S0364-5916(00)00004-3

D. E. Erminy, B. Rousseau, J. F. Brun, D. S. Meneses, and P. Echegut, Some Approximations to the Planck Function in the Intermediate Region with Applications in Optical Pyrometry, ] V. der Vaart, Book, Asymptotic statistics Etude expérimentale et théorique de l'émission infrarouge de ceramiques à haute température. Application aux barrieres thermiques, pp.107-117, 1967.
DOI : 10.1364/AO.6.000107

J. M. Seiler, B. Tourniaire, F. Defoort, and K. Froment, Consequences of material effects on in-vessel retention, Nuclear Engineering and Design, vol.237, issue.15-17, p.1752, 2007.
DOI : 10.1016/j.nucengdes.2007.03.007

N. Saunders and A. Miodokwin, CALPHAD -Calculation of Phase Diagrams, A Comprehensive Guide, 1998.

H. Lukas, S. Fries, and B. Sundman, Computational Thermodynamics -The Calphad Method, 2007.

C. Politis, Untersuchungen Im Dreistoffsystem Uran-Zirkon-Sauerstoff, 1976.

E. F. Juenke and J. F. White, Physico-Chemical Studies of Clad UO 2 under Reactor Accident Conditions, General Electric Company, 1970.

M. Baichi, Contribution à L'Étude Du Corium D'un Réacteur Nucléaire Accidenté ? Aspects Puissance Résiduelle et Thermodynamique Des Systèmes U-UO2 et UO2- ZrO2, 2001.

C. Journeau, Contribution Des Essais En Matériaux Prototypiques Sur La Plate-Forme PLINIUS à l'Etude Des Accidents Graves de Réacteurs Nucléaires, 2008.

L. Kaufman and H. Bernstein, Computer Calculation of the Phase Diagram: With Special Reference to Refractory Metals, 1970.

F. and D. Bruycker, High Temperature Phase Transitions in Nuclear Fuels of the Fourth Generation
URL : https://hal.archives-ouvertes.fr/tel-00608065

M. Barrachin, Assessment of Ablation Temperature of Concretes from Past MCCI and Thermodynamic Experiments, 2011.