I. Protoporphyrine and D. , 79 II.2.1. Métallation de la protoporphyrine IX, p.82

I. Chapitre, Nanocristaux de cellulose à base de polyéthylèneimine : transfection, p.102

.. Etude-cytotoxique-et-transfection-des-sirna, 119 V.2.1. Stabilité et test de la protection des siRNA par les nanocristaux, p.120

V. 7. Synthèses and .. , 134 V.7.1. Synthèses des nanocristaux de cellulose (1), p.134

P. Torchilin, V. S. Trubetskoy, K. R. Whiteman, P. Caliceti, P. Ferruti et al., New Synthetic Amphiphilic Polymers for Steric Protection of Liposomes in Vivo, Journal of Pharmaceutical Sciences, vol.84, issue.9, pp.1049-1053, 1995.
DOI : 10.1002/jps.2600840904

D. Bangham, Liposomes: the Babraham connection, Chemistry and Physics of Lipids, vol.64, issue.1-3, pp.275-285, 1993.
DOI : 10.1016/0009-3084(93)90071-A

D. Bangham, M. M. Standish, and J. C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, Journal of Molecular Biology, vol.13, issue.1, pp.238-252, 1965.
DOI : 10.1016/S0022-2836(65)80093-6

T. Menon, M. Yin-yin, C. Misran, and . Surf, Preparation and characterization of liposomes coated with DEAE-Dextran, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.481, pp.345-350, 2015.
DOI : 10.1016/j.colsurfa.2015.05.036

Y. Zhao, Z. Liu, D. Gao, N. Gao, Y. Li et al., Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes, Materials Science and Engineering: C, vol.53, pp.196-203, 2015.
DOI : 10.1016/j.msec.2015.04.022

H. Gharib, S. Greige-gerges, C. Fourmentin, L. Charcosset, and . Auezova, Liposomes incorporating cyclodextrin???drug inclusion complexes: Current state of knowledge, Carbohydrate Polymers, vol.129, pp.175-186, 2015.
DOI : 10.1016/j.carbpol.2015.04.048

H. Liu, W. Tang, C. Li, and P. Lv, à 150 nm), il présente d'excellentes 71, Nanoscale Res. Lett, issue.1, pp.10-265, 2015.

Y. Pei, Q. Li, Q. Huang, F. Ren, T. Li et al., Quantum dots encapsulated glycopolymer vesicles: Synthesis, lectin recognition and photoluminescent properties, Colloids and Surfaces B: Biointerfaces, vol.127, pp.130-136, 2015.
DOI : 10.1016/j.colsurfb.2015.01.032

S. Stanisavljevic, M. Krizkova, R. Vaculovicova, V. Kizek, and . Adam, Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application, Biosensors and Bioelectronics, vol.74, pp.562-574, 2015.
DOI : 10.1016/j.bios.2015.06.076

V. L. Monthioux and . Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes?, Carbon, vol.44, issue.9, pp.1621-1623, 2006.
DOI : 10.1016/j.carbon.2006.03.019

A. Kasperski, L. Weibel, E. Datas, A. De-grave, C. Peigney et al., Large-Diameter Single-Wall Carbon Nanotubes Formed Alongside Small-Diameter Double-Walled Carbon Nanotubes, The Journal of Physical Chemistry C, vol.119, issue.3, pp.1524-1535, 2015.
DOI : 10.1021/jp509080e

G. Liu, L. Z. Zhao, N. An, D. S. Tong, W. H. Yu et al., Modification of inorganic porous materials as gene vectors: an overview, Journal of Porous Materials, vol.160, issue.4, pp.927-937, 2015.
DOI : 10.1007/s10934-015-9966-0

S. V. Singh and . Torti, Carbon nanotubes in hyperthermia therapy, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.2045-2060, 2013.
DOI : 10.1016/j.addr.2013.08.001

P. Kotchey, Y. Zhao, V. E. Kagan, and A. Star, Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.1921-1932, 2013.
DOI : 10.1016/j.addr.2013.07.007

J. Li, L. J. Zhou, and . Zhang, Part B: Polym. Phys, Polym. Sci. Biomacromolecules, vol.47, issue.9, p.57, 1069.

J. R. Capadona, K. Shanmuganathan, S. Trittschuh, S. Seidel, S. J. Rowan et al., Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose, Biomacromolecules, vol.10, issue.4, pp.712-101, 2008.
DOI : 10.1021/bm8010903

T. Loftsson and M. E. Brewster, Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization, Journal of Pharmaceutical Sciences, vol.85, issue.10, pp.1017-1025, 1996.
DOI : 10.1021/js950534b

L. Mosinger, K. Slav?tínská, P. Lang, P. Coufal, and . Kubát, Cyclodextrin carriers of positively charged porphyrin sensitizers, Organic & Biomolecular Chemistry, vol.186, issue.18, pp.3797-3804, 2009.
DOI : 10.1039/b908772a

K. Srinivasan, K. Kayalvizhi, T. Sivakumar, and . Stalin, Study of inclusion complex of ??-cyclodextrin and diphenylamine: Photophysical and electrochemical behaviors, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.79, issue.1, pp.169-178, 2011.
DOI : 10.1016/j.saa.2011.02.030

-. Chiang, Y. Shi, and Y. Cui, Temperature Dependence of the Complexation Mechanism of Celecoxib and Hydroxyl-??-cyclodextrin in Aqueous Solution, Pharmaceutics, vol.6, issue.3, pp.467-480, 2014.
DOI : 10.3390/pharmaceutics6030467

V. Rekharsky, R. N. Goldberg, F. P. Schwarz, Y. B. Tewari, P. D. Ross et al., Thermodynamic and Nuclear Magnetic Resonance Study of the Interactions of .alpha.- and .beta.-Cyclodextrin with Model Substances: Phenethylamine, Ephedrines, and Related Substances, Journal of the American Chemical Society, vol.117, issue.34, pp.8830-8840, 1995.
DOI : 10.1021/ja00139a017

P. Mura, Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review, Journal of Pharmaceutical and Biomedical Analysis, vol.113, pp.226-238, 2015.
DOI : 10.1016/j.jpba.2015.01.058

P. Bonenfant, M. Niquette, A. Mimeault, R. Furtos-matei, and . Hausler, UV-VIS and FTIR spectroscopic analyses of inclusion complexes of nonylphenol and nonylphenol ethoxylate with ??-cyclodextrin, Water Research, vol.43, issue.14, pp.3575-3581, 2009.
DOI : 10.1016/j.watres.2009.05.010

J. Szente and A. Szejtli, Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development, Advanced Drug Delivery Reviews, vol.36, issue.1, pp.17-28, 1999.
DOI : 10.1016/S0169-409X(98)00092-1

O. C. Celebioglu, T. Umu, T. Tekinay, and . Uyar, Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes, Colloids and Surfaces B: Biointerfaces, vol.116, pp.612-619, 2014.
DOI : 10.1016/j.colsurfb.2013.10.029

J. R. Lakkakula and R. W. Krause, A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications, Nanomedicine, vol.9, issue.6, pp.877-894, 2014.
DOI : 10.2217/nnm.14.41

S. Kongprathet and . Wanichwecharungruang, Sustaining guest molecules on bio-surfaces by grafting the surfaces with cyclodextrins, Carbohydrate Polymers, vol.119, pp.110-117, 2015.
DOI : 10.1016/j.carbpol.2014.11.051

S. Stepniak, S. Belica-pacha, J. Rozalska, P. Dlugonski, B. Urbaniak et al., Study on a host???guest interaction of ??-cyclodextrin with tebuconazole in water, Journal of Molecular Liquids, vol.211, pp.288-293, 2015.
DOI : 10.1016/j.molliq.2015.07.023

L. Gallego-yerga, K. Blanco-fernández, T. Urbiola, G. Carmona, J. M. Marcelo et al., Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material, Chemistry - A European Journal, vol.19, issue.34, pp.12093-12104, 2015.
DOI : 10.1002/chem.201501678

T. Loftsson and M. E. Brewster, Cyclodextrins as Functional Excipients: Methods to Enhance Complexation Efficiency, Journal of Pharmaceutical Sciences, vol.101, issue.9, pp.3019-3032, 2012.
DOI : 10.1002/jps.23077

G. Kurtulus, M. Yilmaz, M. Ucuncu, C. R. Emrullahoglu, V. Becer et al., A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics, Polym. Chem., vol.32, issue.5, pp.1593-1604, 2014.
DOI : 10.1039/C3PY01244A

D. Li, Y. Zhong, W. Zhang, N. Tuo, Q. Li et al., The effect of the gene carrier material polyethyleneimine on the structure and function of human red blood cells in vitro, Journal of Materials Chemistry B, vol.121, issue.14, pp.1885-1893, 2013.
DOI : 10.1039/c3tb00024a

Y. Li, W. He, Y. Sun, H. Luo, Y. Cai et al., Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging, Biomaterials, vol.35, issue.11, pp.3666-3677, 2014.
DOI : 10.1016/j.biomaterials.2014.01.011

Z. Jin, F. Wang, Z. Yan, F. Deng, J. Ni et al., A Novel Cationic Microbubble Coated with Stearic Acid-Modified Polyethylenimine to Enhance DNA Loading and Gene Delivery by Ultrasound, PLoS ONE, vol.35, issue.9, p.76544, 2013.
DOI : 10.1371/journal.pone.0076544.g009

Z. Zhou, F. Chen, X. Wang, B. Yang, and . Zhang, Multifunctional triblock co-polymer mP3/4HB-b-PEG-b-lPEI for efficient intracellular siRNA delivery and gene silencing, Acta Biomaterialia, vol.9, issue.4, pp.6019-6031, 2013.
DOI : 10.1016/j.actbio.2012.12.030

Y. Liu, X. Yang, Z. Li, Z. Liu, D. Cheng et al., Characterization of Polyethylene Glycol-Polyethyleneimine as a Vector for Alpha-Synuclein siRNA Delivery to PC12 Cells for Parkinson's Disease, CNS Neuroscience & Therapeutics, vol.1292, issue.Pt 5, pp.76-85, 2014.
DOI : 10.1111/cns.12176

S. K. Bajpai, N. Chand, S. Ahuja, and M. K. Roy, Curcumin/cellulose micro crystals/chitosan films: Water absorption behavior and in vitro cytotoxicity, International Journal of Biological Macromolecules, vol.75, pp.239-247, 2015.
DOI : 10.1016/j.ijbiomac.2015.01.038

P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, Bioavailability of Curcumin: Problems and Promises, Molecular Pharmaceutics, vol.4, issue.6, pp.807-818, 2007.
DOI : 10.1021/mp700113r

A. B. Goel, B. B. Kunnumakkara, and . Aggarwal, Curcumin as ???Curecumin???: From kitchen to clinic, Biochemical Pharmacology, vol.75, issue.4, pp.787-809, 2008.
DOI : 10.1016/j.bcp.2007.08.016

J. Li, S. Chen, J. Luo, K. Xu, T. Huang et al., Synthesis and assessment of the antioxidant and antitumor properties of asymmetric curcumin analogues, European Journal of Medicinal Chemistry, vol.93, pp.461-469, 2015.
DOI : 10.1016/j.ejmech.2015.02.005

Z. Shi, J. Zheng, Z. Li, W. Xiao, A. Qi et al., Curcumin inhibits A??-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways, Neuroscience Letters, vol.594, pp.105-110, 2015.
DOI : 10.1016/j.neulet.2015.03.045

E. Khoury, M. Abiad, Z. G. Kassaify, and D. Patra, Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity, Colloids and Surfaces B: Biointerfaces, vol.127, pp.274-280, 2015.
DOI : 10.1016/j.colsurfb.2015.01.050

J. Kumar, . Kamboj, S. Suman, and . Sharma, Overview for Various Aspects of the Health Benefits of Piper Longum Linn. Fruit, Journal of Acupuncture and Meridian Studies, vol.4, issue.2, pp.134-140, 2011.
DOI : 10.1016/S2005-2901(11)60020-4

R. Chaudhury, R. Chandrasekaran, and S. Mishra, Embryotoxicity and teratogenicity studies of an ayurvedic contraceptive ??? pippaliyadi vati, Journal of Ethnopharmacology, vol.74, issue.2, pp.189-193, 2001.
DOI : 10.1016/S0378-8741(00)00354-8

Y. Yang, S. Lee, H. Lee, M. Kim, S. Lee et al., Mosquito Larvae, Journal of Agricultural and Food Chemistry, vol.50, issue.13, pp.3765-3767, 2002.
DOI : 10.1021/jf011708f

S. Joshi, Y. N. Kamat, and A. K. Saksena, On the structure of piplartine and a synthesis of dihydropiplartine, Tetrahedron Letters, vol.9, issue.20, pp.2395-2400, 1968.
DOI : 10.1016/S0040-4039(00)76140-5

M. Boll, J. Hansen, O. Simonsen, and N. Thorup, Synthesis and molecular structure of piplartine (=piperlongumine), Tetrahedron, vol.40, issue.1, pp.171-175, 1984.
DOI : 10.1016/0040-4020(84)85116-9

N. Iwashita, S. Oka, M. Ohkubo, N. Saito, and . Nakahata, Piperlongumine, a constituent of Piper longum L., inhibits rabbit platelet aggregation as a thromboxane A2 receptor antagonist, European Journal of Pharmacology, vol.570, issue.1-3, pp.38-42, 2007.
DOI : 10.1016/j.ejphar.2007.05.073

P. Bezerra, C. Pessoa, M. O. De-moraes, N. Saker-neto, E. R. Silveira et al., Overview of the therapeutic potential of piplartine (piperlongumine), European Journal of Pharmaceutical Sciences, vol.48, issue.3, pp.453-463, 2013.
DOI : 10.1016/j.ejps.2012.12.003

L. Raj, T. Ide, A. U. Gurkar, M. Foley, M. Schenone et al., Selective killing of cancer cells by a small molecule targeting the stress response to ROS, Nature, vol.4, issue.7355, pp.231-234, 2011.
DOI : 10.1038/nature10167

M. Dykxhoorn, RNA interference as an anticancer therapy: a patent perspective, Expert Opinion on Therapeutic Patents, vol.19, issue.4, pp.475-491, 2009.
DOI : 10.1038/mt.2008.144

K. Buchman, E. Lellouche, S. Zigdon, M. Bechor, S. Michaeli et al., Silica Nanoparticles and Polyethyleneimine (PEI)-Mediated Functionalization: A New Method of PEI Covalent Attachment for siRNA Delivery Applications, Bioconjugate Chemistry, vol.24, issue.12, pp.2076-2087, 2013.
DOI : 10.1021/bc4004316

M. D. Godinho, J. R. Ogier, R. Darcy, C. M. Driscoll, and J. F. Cryan, Self-assembling Modified ??-Cyclodextrin Nanoparticles as Neuronal siRNA Delivery Vectors: Focus on Huntington???s Disease, Molecular Pharmaceutics, vol.10, issue.2, pp.640-649, 2013.
DOI : 10.1021/mp3003946

C. Liu, E. B. Gu, K. D. Cabigas, M. E. Pendergrass, Y. Brown et al., Functionalized dendrimer-based delivery of angiotensin type 1 receptor siRNA for??preserving cardiac function following infarction, Biomaterials, vol.34, issue.14, pp.3729-3736, 2013.
DOI : 10.1016/j.biomaterials.2013.02.008

J. Han, W. Cai, T. Borjihan, T. M. Ganbold, H. Rana et al., Preparation of novel curdlan nanoparticles for intracellular siRNA delivery, Carbohydrate Polymers, vol.117, pp.324-330, 2015.
DOI : 10.1016/j.carbpol.2014.09.069

. Brüker, Diffraction des rayons X Le spectre a été réalisé au SPCTS de l'université de Limoges par le Dr. Laval, à l'aide d'un Diffractomètre à Rayon X, p.5000

M. Instruments and . Royaume-uni, Pour la mesure du DLS, chaque échantillon a été analysé en triple à 20°C et à un angle de diffusion de 173°C, Les données de potentiel zêta à 20°C et 150 Vont été recueillies à partir de la mobilité électrophorétique et en utilisant le modèle de Smoluchowski, p.133

. Mn, La solution légèrement visqueuse obtenue est refroidie puis diluée dans 150 ml d'eau déminéralisée Après deux centrifugations successives (3700 rpm, 10 mn), le surnageant obtenu est purifiée par dialyse (coupure de membrane, 6-8 kDa) Au bout de 5 jours, la suspension est concentrée à 1 mg/ml

?. Ir, ?OH) ; 2896 (?CH); 1640 (?OH) ; 1430 (?sCH 2 ) ; 1368 (?CH) ; 1335 (?OH) (dans le plan) ; 1317 (CH 2 ou ?C-O-H) ; 1282 (?CH) ; 1280 (SO3 H ) ; 1201 (? s C-O : cycle pyranose) ; 1158 (? as C-O-C : pont) ; 1104 (?OH : cycle symétrique ou ? as : cycle, p.3340

?. Ir, ?OH) ; 2943 (?CH 2 ) ; 1640 (?OH) ; 1478 ((CH 3 ) 3 N + ) ; 1352 (?CH) ; 1335 (?OH) (dans le plan, ?CH, vol.1317, issue.1280, p.3306

?. Uv and . Visible, ? en nm (?. 10 -3 ) : 423 (118,5), p.1

?. Uv and . Visible, CHCl 3 ) ? en nm (?. 10 -3 ) : 409, pp.506-631

?. Uv-visible, CHCl 3 ) ? en nm (? x 10 -4, pp.408-506

?. Uv and . Visible, CHCl 3 ) ? en nm (?. 10 -3, pp.408-578

?. Uv and . Visible, CHCl 3 ) ? en nm (?. 10 -3, pp.417-546

?. Uv and . Visible, CHCl 3 ) ? en nm (? x 10 -3, pp.415-545

?. Uv and . Visible, CHCl 3 ) ? en nm (? x 10 -3 )

?. Rmn, 6 s ? RMN 1 H: ? ppm = 7, pp.90-97

?. Uv and . Visible, O) ? en nm (?, p.422

E. Effet, 0 x 10 -8 mol en curcumine) d'une solution de complexe 14 est ajouté délicatement dans une cuve en quartz contenant 2 mL de chloroforme. Après trois essais répétitifs dans les mêmes conditions, les pourcentages de relargage obtenus en curcumine sont de 20, pp.5-5

?. Uv and . Visible, O) ? en nm (?, p.330

?. Uv and . Visible, O) ? en nm (?, p.417

?. Uv and . Visible, O) ? en nm (?, p.415

?. Uv and . Visible, O) ? en nm (?, p.276

. De-la-lumière, Un excès d'éthylène glycol (1 mL) est ajouté après 100h de réaction. Le brut réactionnel est purifié par dialyse (seuil de coupure 6-8 kDa).Plusieurs dosages iodométriques de la solution de CNCox 19

?. Ir, ?OH) ; 2900 (?CH); 1634 (?OH) ; 1430 (?sCH 2 ) ; 1368 (?CH) ; 1335 (?OH) (dans le plan, pp.3340-1158

U. Mol and . Oxydées-de-surface, sont ajoutés goutte à goutte à l'aide d'une ampoule à brome à l'abri de la lumière et sous ultrasons dans un bain de glace. Après 1h d'agitation à température ambiante, quatre équivalents de NaBH 3 CN (2 mg) sont additionnés au mélange. Le milieu réactionnel est maintenu sous agitation ultrasonique dans un bain de glace pendant 3h puis sous agitation magnétique pendant 24h

?. Uv and . Visible, O) ? en nm (?, p.502

M. A. Gautier, V. Ndong-ntoutoume, J. Grassot, J. Chabanais, R. Petit et al., Vincent Sol PEI-Cellulose Nanocrystals Hydrids and their use as siRNA Delivery Agents Carbohydrate Polymers b-Publication en préparation Nicolas Drogat, Chlorin-p6/PEI -Cellulose Nanocrystals Hybrids: their in Vivo Evaluation as New Potential Anticancer Agents for Application in Photodynamic Therapy

G. Mark-arthur-ndong-ntoutoume and R. Granet, Vincent Sol Elaboration de nanocristaux de cellulose pour la vectorisation et le ciblage d'agents anticancéreux : curcumine et protoporphyrine IX de zinc

G. Mark-arthur-ndong-ntoutoume, R. Granet, and D. Léger, Bertrand Liagre Vincent Sol Synthesis and functionalization of cellulose nanocrystal for the vectorization of anticancer drugs SyCOCAL IX, 2014.

/. Chlorin and . Pei-, Cellulose Nanocrystals Hybrids: Synthesis, characterization and their in Vivo Evaluation as New Potential Anticancer Agents for Application in Photodynamic Therapy

G. Mark-arthur-ndong-ntoutoume, R. Granet, D. Leger, B. Liagre, and V. Sol, Development of cellulose nanocrystals for the vectorization of anticancer Drugs RCOM 8, 8ème rencontre de Chimie Organique de Marseille ? 12, Elaboration de complexes curcumine-cyclodextrine cationique fixés sur les nanocristaux de cellulose pour le ciblage des cellules cancéreuses. 9 ème journées Cancéropôle Grand Sud-Ouest (CGSO), pp.16-18, 2014.

G. Mark-arthur-ndong-ntoutoume, R. Granet, and F. Brégier, Vincent Sol Elaboration de nanocristaux de cellulose pour le transport d'agents thérapeutiques et le ciblage des cellules cancéreuses Glucidoc, 2013.

G. Mark-arthur-ndong-ntoutoume and R. Granet, Vincent Sol Elaboration de nanocristaux de cellulose à motifs porphyriniques pour une application en photothérapie dynamique des cancers