A. Khinchin, The Mathematical Foundations of Statistical Mechanics, 1949.

D. Ruelle, Statistical Mechanics: Rigorous Results; Benjamin: Amsterdam, The Netherlands, 1969.
DOI : 10.1142/4090

R. S. Ellis and . Entropy, Large deviations and statistical mechanics, 1985.
DOI : 10.1090/conm/041/814705

I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Journal of The Electrochemical Society, vol.110, issue.4, 1967.
DOI : 10.1149/1.2425756

D. Groot, S. Mazur, and P. , Non-Equilibrium Thermodynamics, 2011.

B. Derrida, Non-equilibrium steady states: fluctuations and large deviations of the density and of the current, Journal of Statistical Mechanics: Theory and Experiment, vol.2007, issue.07, pp.10-1088, 2007.
DOI : 10.1088/1742-5468/2007/07/P07023

T. Chou, K. Mallick, and R. K. Zia, Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport, Reports on Progress in Physics, vol.74, issue.11, pp.74-116601, 2011.
DOI : 10.1088/0034-4885/74/11/116601

M. D. Donsker and S. R. Varadhan, Asymptotic evaluation of certain markov process expectations for large time, I, Communications on Pure and Applied Mathematics, vol.XIX, issue.3, pp.1-47, 1975.
DOI : 10.1002/cpa.3160280102

M. D. Donsker and S. R. Varadhan, Asymptotic evaluation of certain markov process expectations for large time, II, Communications on Pure and Applied Mathematics, vol.28, issue.2, pp.279-301, 1975.
DOI : 10.1002/cpa.3160280206

M. D. Donsker and S. R. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time???III, Communications on Pure and Applied Mathematics, vol.19, issue.4, pp.389-461, 1976.
DOI : 10.1002/cpa.3160290405

M. D. Donsker and S. R. Varadhan, Asymptotic evaluation of certain markov process expectations for large time. IV, Communications on Pure and Applied Mathematics, vol.58, issue.2, pp.183-212, 1983.
DOI : 10.1002/cpa.3160360204

R. A. Blythe and M. R. Evans, Nonequilibrium steady sstates of matrix product form: A solver's guide J. Phys. A, pp.333-441, 2007.

M. Gorissen, A. Lazarescu, K. Mallick, and C. Vanderzande, Exact Current Statistics of the Asymmetric Simple Exclusion Process with Open Boundaries, Physical Review Letters, vol.109, issue.17, 2012.
DOI : 10.1103/PhysRevLett.109.170601

G. W. Paltridge, Global dynamics and climate - a system of minimum entropy exchange, Quarterly Journal of the Royal Meteorological Society, vol.19, issue.429, pp.475-484, 1975.
DOI : 10.1002/qj.49710142906

H. Ozawa, A. Ohmura, R. Lorenz, and T. Pujol, The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle, Reviews of Geophysics, vol.45, issue.2, pp.4110-1029, 2003.
DOI : 10.1029/2002RG000113

C. Herbert, D. Paillard, M. Kageyama, and B. Dubrulle, Present and Last Glacial Maximum climates as states of maximum entropy production, Quarterly Journal of the Royal Meteorological Society, vol.45, issue.657, pp.1059-1069, 2011.
DOI : 10.1002/qj.832

URL : https://hal.archives-ouvertes.fr/cea-00917319

R. C. Dewar, Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states, Journal of Physics A: Mathematical and General, vol.36, issue.3, pp.631-641, 2003.
DOI : 10.1088/0305-4470/36/3/303

G. Grinstein and R. Linsker, Comments on a derivation and application of the ???maximum entropy production??? principle, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.31, pp.9717-9720, 2007.
DOI : 10.1088/1751-8113/40/31/N01

S. Bruers, A discussion on maximum entropy production and information theory, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.27, pp.7441-7450, 2007.
DOI : 10.1088/1751-8113/40/27/003

C. Monthus, Non-equilibrium steady states: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.03, pp.10-1088, 2011.
DOI : 10.1088/1742-5468/2011/03/P03008

A. Parmeggiani, T. Franosch, and E. Frey, Phase Coexistence in Driven One-Dimensional Transport, Physical Review Letters, vol.90, issue.8, pp.90-086601, 2003.
DOI : 10.1103/PhysRevLett.90.086601

P. Billingsley, Ergodic Theory and Information, 1965.

E. D. Andjel, Invariant Measures for the Zero Range Process, The Annals of Probability, vol.10, issue.3, pp.525-547, 1982.
DOI : 10.1214/aop/1176993765

R. Balian, Physique statistique et themodynamique hors équilibre, 1992.

P. Billingsley, Ergodic theory and information, 1965.

Z. Burda, J. Duda, J. M. Luck, and B. Waclaw, Localization of the Maximal Entropy Random Walk, Physical Review Letters, vol.102, issue.16, p.160602, 2009.
DOI : 10.1103/PhysRevLett.102.160602

R. C. Dewar and A. Maritan, A Theoretical Basis for Maximum Entropy Production, Beyond the Second Law, pp.49-71, 2014.
DOI : 10.1007/978-3-642-40154-1_3

C. Domb, Phase transitions and critical phenomena, 2000.

J. Gómez-gardeñes and V. Latora, Entropy rate of diffusion processes on complex networks, Physical Review E, vol.78, issue.6, p.65102, 2008.
DOI : 10.1103/PhysRevE.78.065102

S. Großkinsky, G. M. Schütz, and H. Spohn, Condensation in the zero range process: stationary and dynamical properties, Journal of Statistical Physics, vol.113, issue.3/4, pp.389-410, 2003.
DOI : 10.1023/A:1026008532442

C. Herbert, D. Paillard, M. Kageyama, B. J. Dubrulle, and . Roy, Present and Last Glacial Maximum climates as states of maximum entropy production, Quarterly Journal of the Royal Meteorological Society, vol.45, issue.657, pp.1059-1069, 2011.
DOI : 10.1002/qj.832

URL : https://hal.archives-ouvertes.fr/cea-00917319

E. Levine, D. Mukamel, and G. Schütz, Zero-Range Process with Open Boundaries, Journal of Statistical Physics, vol.70, issue.5-6, pp.759-778, 2005.
DOI : 10.1007/s10955-005-7000-7

L. M. Martyushev and V. D. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Physics Reports, vol.426, issue.1, pp.1-45, 2006.
DOI : 10.1016/j.physrep.2005.12.001

M. Mihelich, B. Dubrulle, D. Paillard, H. , and C. , Maximum Entropy Production vs. Kolmogorov-Sinai Entropy in a Constrained ASEP Model, Entropy, vol.16, issue.2, pp.1037-1046, 2014.
DOI : 10.3390/e16021037

URL : https://hal.archives-ouvertes.fr/cea-01384251

C. Monthus, Non-equilibrium steady states: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.03, p.3008, 2011.
DOI : 10.1088/1742-5468/2011/03/P03008

J. M. Murphy, D. M. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb et al., Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, vol.430, issue.7001, pp.768-772, 2004.
DOI : 10.1038/nature01092a

L. Onsager, Reciprocal Relations in Irreversible Processes. I., Physical Review, vol.37, issue.4, pp.2265-2279, 1931.
DOI : 10.1103/PhysRev.37.405

G. W. Paltridge and . Roy, Global dynamics and climate - a system of minimum entropy exchange, Quarterly Journal of the Royal Meteorological Society, vol.19, issue.429, pp.475-484, 1975.
DOI : 10.1002/qj.49710142906

S. Pascale, J. M. Gregory, M. H. Ambaum, and R. Tailleux, A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM, Climate Dynamics, vol.21, issue.24, pp.1211-1227, 2012.
DOI : 10.1007/s00382-011-0996-2

L. D. Rotstayn, On the ???tuning??? of autoconversion parameterizations in climate models, Journal of Geophysical Research: Atmospheres, vol.125, issue.D12, pp.15495-15507, 1984.
DOI : 10.1029/2000JD900129

I. Troen and L. Mahrt, A simple model of the atmospheric boundary layer; sensitivity to surface evaporation, Boundary-Lay, Meteorol, vol.37, pp.129-148, 1986.

B. Turkington, An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics, Journal of Statistical Physics, vol.43, issue.5???6, pp.569-597, 2013.
DOI : 10.1007/s10955-013-0778-9

J. M. Wallace and P. V. Hobbs, Atmospheric science: an introductory survey, 2006.

P. Bhakta, S. Miracle, D. Randall, and A. P. Streib, Mixing Times of Markov Chains for Self-Organizing Lists and Biased Permutations, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.1-15, 2013.
DOI : 10.1137/1.9781611973105.1

V. Guruswami, Rapidly mixing markov chains: A comparison of techniques Available: cs. washington, 2000.

J. Gómez-gardeñes and V. Latora, Entropy rate of diffusion processes on complex networks, Physical Review E, vol.78, issue.6, p.65102, 2008.
DOI : 10.1103/PhysRevE.78.065102

Z. Burda, J. Duda, B. Luck, and . Waclaw, Localization of the Maximal Entropy Random Walk, Physical Review Letters, vol.102, issue.16, p.160602, 2009.
DOI : 10.1103/PhysRevLett.102.160602

P. Billingsley, Ergodic theory and information, 1965.

S. Boyd, P. Diaconis, and L. Xiao, Fastest Mixing Markov Chain on a Graph, SIAM Review, vol.46, issue.4, pp.667-689, 2004.
DOI : 10.1137/S0036144503423264

P. Bremaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues, 1999.
DOI : 10.1007/978-1-4757-3124-8

C. Monthus, Non-equilibrium steady states: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.03, p.3008, 2011.
DOI : 10.1088/1742-5468/2011/03/P03008

M. Mihelich, B. Dubrulle, D. Paillard, and C. Herbert, Maximum Entropy Production vs. Kolmogorov-Sinai Entropy in a Constrained ASEP Model, Entropy, vol.16, issue.2, pp.1037-1046
DOI : 10.3390/e16021037

URL : https://hal.archives-ouvertes.fr/cea-01384251

G. Lebon, D. Jou, and J. Casas-vázquez, Understanding non-equilibrium thermodynamics: foundations, applications, frontiers, 2008.
DOI : 10.1007/978-3-540-74252-4

M. Pleimling, B. Schmittmann, and R. Zia, Convection cells induced by spontaneous symmetry breaking, EPL (Europhysics Letters), vol.89, issue.5, p.50001, 2010.
DOI : 10.1209/0295-5075/89/50001

X. Huang, B. Cui, and X. Yi, ENTROPY AND SPECIFIC HEAT FOR OPEN SYSTEMS IN STEADY STATES, Modern Physics Letters B, vol.25, issue.03, p.175, 2011.
DOI : 10.1142/S0217984911025572

E. Ising, Zeitschrift für Physik A Hadrons and Nuclei 31, 1925.

P. Garrido and J. Marro, Physica A: Statistical Mechanics and its Applications, p.585, 1987.

P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn, Long-range correlations for conservative dynamics, Physical Review A, vol.42, issue.4, p.1954, 1990.
DOI : 10.1103/PhysRevA.42.1954

Z. Cheng, P. Garrido, J. Lebowitz, and J. Vallés, Long-Range Correlations in Stationary Nonequilibrium Systems with Conservative Anisotropic Dynamics, Europhysics Letters (EPL), vol.14, issue.6, p.507, 1991.
DOI : 10.1209/0295-5075/14/6/002

E. L. Praestgaard, B. Schmittmann, and R. Zia, A lattice gas coupled to two thermal reservoirs: Monte Carlo and field theoretic studies, The European Physical Journal B, vol.18, issue.4, p.675, 2000.
DOI : 10.1007/PL00011078

C. Maes and F. Redig, Anisotropic perturbations of the simple symmetric exclusion process : long range correlations, Journal de Physique I, vol.1, issue.5, p.669, 1991.
DOI : 10.1051/jp1:1991161

URL : https://hal.archives-ouvertes.fr/jpa-00246361

P. Bak, Physica A: Statistical Mechanics and its Applications 163, p.403, 1990.

B. Khouider and A. J. Majda, A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part I: Linear Analysis, Journal of the Atmospheric Sciences, vol.63, issue.4, p.1308, 2006.
DOI : 10.1175/JAS3677.1

. Bibliographie1, V. Filyukov, and . Karpov, Description of steady transport processes by the method of the most probable path of evolution, Journal of engineering physics, vol.13, issue.5, p.326329, 1967.

G. Paltridge, Global dynamics and climate - a system of minimum entropy exchange, Quarterly Journal of the Royal Meteorological Society, vol.19, issue.429, p.475484, 1975.
DOI : 10.1002/qj.49710142906

S. Shimokawa and H. Ozawa, On the thermodynamics of the oceanic general circulation : entropy increase rate of an open dissipative system and its surroundings, Tellus A, vol.53, issue.2, p.266277, 2001.

D. Pa²ko-šupanovi¢, S. Jureti¢, and . Botri¢, Kirchhoff???s loop law and the maximum entropy production principle, Physical Review E, vol.70, issue.5, p.56108, 2004.
DOI : 10.1103/PhysRevE.70.056108

M. Yu and . Ivanchenko, High-eciency frequency generation in a periodic array of josephson junctions, Physical Review B, vol.54, issue.18, p.13247, 1996.

R. Evans, Detailed balance has a counterpart in non-equilibrium steady states, Journal of Physics A: Mathematical and General, vol.38, issue.2, p.293, 2004.
DOI : 10.1088/0305-4470/38/2/001

C. Monthus, Non-equilibrium steady states: maximization of the Shannon entropy associated with the distribution of dynamical trajectories in the presence of constraints, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.03, p.3008, 2011.
DOI : 10.1088/1742-5468/2011/03/P03008

J. Kirkaldy, Entropy criteria applied to pattern selection in systems with free boundaries, Metallurgical Transactions A, vol.14, issue.10, p.17811797, 1985.
DOI : 10.1007/BF02670366

T. Christen, Application of the maximum entropy production principle to electrical systems, Journal of Physics D: Applied Physics, vol.39, issue.20, p.4497, 2006.
DOI : 10.1088/0022-3727/39/20/030

L. Martyushev and V. Seleznev, Maximum entropy production principle in physics, chemistry and biology, Physics Reports, vol.426, issue.1, p.145, 2006.
DOI : 10.1016/j.physrep.2005.12.001

R. Balian, Physique statistique et themodynamique hors équilibre, Ecole Polytechnique, 1992.

H. Ozawa, R. Ohmura, and . Lorenz, The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle, Reviews of Geophysics, vol.45, issue.2, p.1018, 2003.
DOI : 10.1029/2002RG000113

C. Herbert, . Paillard, B. Kageyama, and . Dubrulle, Present and Last Glacial Maximum climates as states of maximum entropy production, Quarterly Journal of the Royal Meteorological Society, vol.45, issue.657, p.10591069, 2011.
DOI : 10.1002/qj.832

URL : https://hal.archives-ouvertes.fr/cea-00917319

C. Herbert, D. Paillard, and B. Dubrulle, Entropy production and multiple equilibria : the case of the ice-albedo feedback, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00917353

C. Roderick and . Dewar, Information theory explanation of the uctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states, J. Phys. A : Math. Gen, vol.36, issue.3, p.631, 2003.

C. Roderick and . Dewar, Maximum entropy production and the uctuation theorem, J. Phys. A : Math. Gen, vol.38, issue.21, p.371, 2005.

I. Prigogine, Introduction à la thermodynamique des processus irréversibles, 1968.

S. R. De-groot and P. Mazur, Non-equilibrium thermodynamics. Dover publications, 2011.

V. Bertola and E. Cafaro, A critical analysis of the minimum entropy production theorem and its application to heat and uid ow, Int. J. Heat Mass Transfer, vol.51, issue.7, p.19071912, 2008.

A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of lebesgue spaces, Doklady of Russian Academy of Sciences, vol.119, issue.5, p.861864, 1958.

P. Billingsley, Ergodic theory and information, 1965.

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, 1995.
DOI : 10.1017/CBO9780511809187

Y. Benoist and F. Paulin, Systèmes dynamiques élémentaires, Cours de Magistère ENS, vol.3, 2002.

Z. Burda, J. Duda, B. Luck, and . Waclaw, Localization of the Maximal Entropy Random Walk, Physical Review Letters, vol.102, issue.16, p.160602, 2009.
DOI : 10.1103/PhysRevLett.102.160602

J. Gómez-gardeñes and V. Latora, Entropy rate of diffusion processes on complex networks, Physical Review E, vol.78, issue.6, p.65102, 2008.
DOI : 10.1103/PhysRevE.78.065102

C. Maes, F. Redig, and A. Van-moaert, On the denition of entropy production, via examples, Journal of mathematical physics, vol.41, issue.3, p.15281554, 2000.

C. Maes, K. Neto£n-y, and B. Wynants, On and beyond entropy production : the case of markov jump processes, 2007.

M. Qian, G. Qian, and . Gong, The reversibility and the entropy production of Markov processes, Contemp. Math, vol.118, p.255261, 1991.
DOI : 10.1090/conm/118/1137974

P. Gaspard, Time-reversed dynamical entropy and irreversibility in Markovian random processes, J. Stat. Phys, vol.117, issue.3, p.599615, 2004.

D. Chowdhury, L. Santen, and A. Schadschneider, Statistical physics of vehicular trac and some related systems, Physics Reports, vol.329, issue.4, 2000.

E. Soewono, K. Asep, and . Supriatna, A two-dimensional model for the transmission of dengue fever disease, Bull. Malay. Math. Sci. Soc, vol.24, p.4957, 2001.

B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, Journal of Statistical Physics, vol.54, issue.3-4, pp.3-4667687, 1992.
DOI : 10.1007/BF01050430

M. Gorissen, . Lazarescu, C. Mallick, and . Vanderzande, Exact Current Statistics of the Asymmetric Simple Exclusion Process with Open Boundaries, Physical Review Letters, vol.109, issue.17, p.170601, 2012.
DOI : 10.1103/PhysRevLett.109.170601

F. Spitzer, Interaction of markov processes, Advances in Mathematics, vol.5, issue.2, p.246290, 1970.

R. Martin, T. Evans, and . Hanney, Nonequilibrium statistical mechanics of the zero-range process and related models, Journal of Physics A : Mathematical and General, vol.38, issue.19, p.195, 2005.

S. Groÿkinsky, M. Gunter, H. Schütz, and . Spohn, Condensation in the zero range process : stationary and dynamical properties, Journal of statistical physics, vol.113, pp.3-4389410, 2003.

E. Levine, G. Mukamel, and . Schütz, Zero-Range Process with Open Boundaries, Journal of Statistical Physics, vol.70, issue.5-6, pp.5-6759778, 2005.
DOI : 10.1007/s10955-005-7000-7

J. Carlson, E. Grannan, and G. Swindle, Self-organizing systems at finite driving rates, Physical Review E, vol.47, issue.1, p.93, 1993.
DOI : 10.1103/PhysRevE.47.93

M. Evans, Bose-Einstein condensation in disordered exclusion models and relation to traffic flow, Europhysics Letters (EPL), vol.36, issue.1, p.13, 1996.
DOI : 10.1209/epl/i1996-00180-y

G. Bianconi and A. Barabási, Bose-Einstein Condensation in Complex Networks, Physical Review Letters, vol.86, issue.24, p.5632, 2001.
DOI : 10.1103/PhysRevLett.86.5632

V. Latora, M. Baranger, A. Rapisarda, and C. Tsallis, The rate of entropy increase at the edge of chaos, Physics Letters A, vol.273, issue.1-2, p.97103, 2000.
DOI : 10.1016/S0375-9601(00)00484-9

H. Poincaré and R. Magini, Les méthodes nouvelles de la mécanique céleste. Il Nuovo Cimento (1895-1900), p.128130, 1899.

D. George and . Birkho, On the periodic motions of dynamical systems, Acta Mathematica, vol.50, issue.1, p.359379, 1927.

M. Falcioni, L. Palatella, and A. Vulpiani, Production rate of the coarse-grained Gibbs entropy and the Kolmogorov-Sinai entropy: A real connection?, Physical Review E, vol.71, issue.1, p.16118, 2005.
DOI : 10.1103/PhysRevE.71.016118

P. Ehrenfest and T. Ehrenfest, Encyklopädie der math, Wissensch., IV, 1911.

N. Alexander and . Gorban, Basic types of coarse-graining, Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, p.117176, 2006.

M. Peña and E. Kalnay, Separating fast and slow modes in coupled chaotic systems, Nonlinear Processes in Geophysics, vol.11, issue.3, p.319327, 2004.

G. Kenneth, J. Wilson, and . Kogut, The renormalization group and the expansion, Physics Reports, vol.12, issue.2, p.75199, 1974.

D. Ruelle, Statistical Mechanics : Rigorous Results, 1969.
DOI : 10.1142/4090

D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, Journal of Statistical Physics, vol.95, issue.12, p.393468, 1999.

P. Gaspard, Entropy production in open volume-preserving systems, Journal of Statistical Physics, vol.6, issue.5-6, pp.5-612151240, 1997.
DOI : 10.1007/BF02732432

T. Gilbert and J. Dorfman, Entropy production : from open volumepreserving to dissipative systems, Journal of Statistical Physics, vol.96, issue.1/2, pp.225-269, 1999.
DOI : 10.1023/A:1004576517254

N. Edward and . Lorenz, Deterministic nonperiodic ow, Journal of the atmospheric sciences, vol.20, issue.2, p.130141, 1963.

S. Boyd, P. Diaconis, and L. Xiao, Fastest Mixing Markov Chain on a Graph, SIAM Review, vol.46, issue.4, p.667689, 2004.
DOI : 10.1137/S0036144503423264

R. Ravi, P. Montenegro, and . Tetali, Mathematical aspects of mixing times in Markov chains, 2006.

Y. David-asher-levin, E. L. Peres, and . Wilmer, Markov chains and mixing times, 2009.

W. Parry, Intrinsic markov chains. Transactions of the, p.5566, 1964.

L. Young, Entropy in dynamical systems, In Entropy, p.313327, 2003.

E. Sheldon and . Newhouse, Entropy and volume. Ergodic Theory and Dynamical Systems, p.283299, 1988.

Y. Yomdin, Volume growth and entropy, Israel Journal of Mathematics, vol.57, issue.3, p.285300, 1987.
DOI : 10.1007/BF02766215

C. Herbert, Application de la mécanique statistique à la modélisation du climat, 2012.

D. Bolton, The computation of equivalent potential temperature. Monthly weather review, p.10461053, 1980.

R. Goody, Maximum Entropy Production in Climate Theory, Journal of the Atmospheric Sciences, vol.64, issue.7, 2007.
DOI : 10.1175/JAS3967.1

A. Kleidon, D. Ralph, and . Lorenz, Non-equilibrium thermodynamics and the production of entropy : life, earth, and beyond, 2005.
DOI : 10.1007/b12042