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Titre : Optimisation Distribuée dans les Systèmes Larges Interconnectés

Mots clés : Optimisation distribuée, Smart Grid, DC-OPF, ADMM, Caching, Réseaux
cellulaires, 5G

Résumé : Cette thèse porte sur la construction des algorithmes distribués pour
l’optimisation de la production et du partage de ressources au sein d’un réseau de large
dimension. Notamment, on se concentre sur les réseaux lectriques et les réseaux cellulaires
5G.
On considère dans le cas des réseaux électriques le problème OPF (Optimal Power Flow)
dans lequel on vise à faire la gestion et l’optimisation de la production de l’énergie
électrique d’une manière distribuée. On se concentre sur une version linéarisée du
problème, la DC-OPF (Direct-Current Optimal Power Flow). Comme le problème
d’optimisation est convexe dans ce cas, on vise à minimiser le coût de production de
l’énergie tout en respectant les limites des lignes de transmission et les contraintes car-
actéristiques du système.
Dans le cas des réseaux cellulaires, on formule un problème de Caching. On a pour but
de réduire l’utilisation du backhaul liant les stations de base et le contrôleur du réseau.
Les stations de base sont équipées d’une capacité de stockage limitée. Ils visent à trouver
d’une manière optimale les fichiers à stocker dans le but de réduire une certaine fonction
de coût sur l’utilisation du backhaul et sur le partage des fichiers avec les autres stations
de base.
L’approche adoptée dans cette thèse consiste à appliquer l’ADMM (Alternating Direction
Method of Multipliers), une méthode d’optimisation de manière itérative, à un problème
d’optimisation que l’on a préalablement reformulé de faon adéquate. Ce problème permet
à la fois de décrire le DC-OPF et le problème de Caching.
On démontre la convergence de cette méthode quand elle est appliquée noeud par noeud
d’une manière totalement distribuée. Ainsi que dans le cas où le réseau est divisé en
plusieurs zones. Ces zones peuvent se chevaucher mais aussi elles peuvent être séparées
ou indépendantes. De plus, dans le contexte d’un réseau à zones, on démontre que
l’application de l’ADMM d’une manière aléatoire par une seule zone converge aussi vers
la solution optimale du problème.



Title: Distributed Optimization in Large Interconnected Systems

Keywords: Distributed Optimization, Smart Grid, DC-OPF, ADMM, Caching, Cellular
Networks, 5G

Abstract: This thesis focuses on the construction of distributed algorithms for optimizing
resource production in a large interconnected system. In particular, it focuses on power
grid and 5G cellular networks.
In the case of power grid networks, we consider the OPF (Optimal Power Flow) prob-
lem in which one seeks to manage and optimize the production of electrical energy in a
distributed manner. We focus on a linearized version of the problem, the DC-OPF (Direct-
Current Optimal Power Flow) problem. This optimization problem is convex; the aim is
to minimize the cost of energy generation while respecting the limits of the transmission
line and the power flow constraints.
In the case of 5G cellular networks, we formulate a caching problem. We aim to offload the
backhaul link usage connecting the small bases stations (SBSs) to the central scheduler
(CS). The SBSs are equipped with a limited storage capacity. We seek to find the optimal
way to store files so as to reduce the cost on the use of backhaul and sharing files with
other SBSs.
The approach adopted in this thesis is to apply the ADMM (Alternating Direction Method
of Multipliers), an optimization method that is applied iteratively, to an optimization
problem that we adequately formulated previously. This problem can both describe the
DC-OPF problem and the Caching problem. We prove the convergence of the method
when applied node by node in a fully distributed manner. Additionally, we prove its
convergence in the case where the network is divided into multiple areas or nations that
may or may not overlap. Furthermore, in the context of a network with multiple areas,
we show that the application of ADMM in a random manner by a single randomly chosen
area also converges to the optimal solution of the problem.
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Chapter 1

Résumé

Contexte et Motivation

Cette thèse se concentre sur les problèmes d’optimisation dans les systèmes
larges interconnectés. Les problèmes étudiés sont généralement de grande
taille et nécessitent des calculs encombrants. Normalement les problèmes
à considérer possèdent certaines caractéristiques qui peuvent être exploitées
par une modélisation appropriée.

Résoudre ces problèmes tout en tenant compte d’un centre de fusion cen-
tral c’est-à-dire, d’une manière centralisée, est pratiquement intraitable et
parfois non faisable ni fiable. Ainsi, une technique d’optimisation centralisée
est prohibitive dans le cas des grands réseaux spécifiquement quand les agents
sont physiquement éloignés et ont des problèmes de confidentialité.

Les méthodes d’optimisation distribuées apparaissent comme une solution
attrayante dans de ce cas. Selon le problème étudié et la zone d’application,
plusieurs approches peuvent être utilisées pour atteindre la cible souhaitée.
Plus précisément, nous nous concentrons dans cette thèse sur deux domaines
d’aplication différents. Le premier domaine d’intérêt est le réseau électrique
intelligent ou Smart Grid. Dans cette partie, nous nous focalisons sur le
problème des flux de puissance optimale à courant continu (Direct-Current
optimal power flow, DC-OPF ). Ceci est un problème fondamental qui est
utilisé par de nombreusx opérateurs des systèmes électriques. Nous cher-
chons à trouver, d’une manière distribuée, la production d’énergie optimale
en utilisant le minimum possible en terme de ressources. Cette solution de-
vrait minimiser le coût de la production globale de l’ensemble du système
interconnecté tout en obéissant aux caractéristiques de ce réseau. Princi-
palement, on décrit un algorithme, ”Alternating direction Method of Multi-
pliers (ADMM) qui est approprié pour les réseaux statiques et dynamiques.
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Cet algorithme est synchrone par défaut. Il exige une coordination entre
les différents processeurs composants le système. Un inconvénient qui peut
limiter les performances du système quand il est réuni avec les capacités
hétérogènes de chaque processeur. Nous prouvons dans cette thèse que cet
algorithme peut-être applicable de manière asynchrone. Ainsi, nous four-
nissons une méthode d’optimisation distribuée asynchrone où les processeurs
agissent de manière indépendante.

Cette méthode a le pouvoir et lasouplesse d’être projeté dans d’autre
domaines d’application juste en changeant les paramètre suivant les car-
actéristique du système considéré.

On se concentre sur un autre domaine d’application, celui des réseaux
cellulaires 5G. Nous cherchons à trouver d’une manière distribuée le meilleur
vecteur de stockage (caching vector) pour chaque station de base, tout en
minimisant l’utilisant des liens backhaul entre ces stations et le centre de
fusion ”Central Scheduler” (CS). Nous modélisons le problème de stockage
que nous visons également à résoudre par une approche distribuée en utilisant
la même méthode ADMM.

Opération économique des réseaux électriques

L’énergie électrique a été découvert il ya plus de cent ans, depuis lors elle
a joué un rôle majeur dans l’amélioration de notre mode de vie. Plusieurs
applications et technologies ont vu le jour, de plus en plus des services sont
offertess aux consommateurs que aident à garder le fonctionnement de notre
société [1, 2].

La construction d’un système interconnecté comprenant des grandes sta-
tions centrales génératrices d’électricité, des lignes de transmission Haute-
tension à courant alternatif (HVAC) et à courant continu (HVDC), et des
lignes de distribution de basse tension AC et DC à travers les pays a donné
lieu à la création d’une organisation internationale du réseau électrique.

En Europe par exemple, le réseau européen des opérateurs du système
de transmission, comprend des opérateurs de 34 pays. La plupart de ces
systèmes sont connectés en utilisant des technologies HVDC qui présentent
une plus grande efficacité et permettent la transmission entre les systèmes
AC non-synchronisés avec des pertes minimales sur les longues distances [3].

Développer et gérer à la fois les systèmes de transmission et de distribution
sont des facteurs clés pour le succès dans les sociétés modernes [1,2] et jouent
un rôle majeur dans la capacité du réseau européen à devenir un marché
unique de l’énergie [3]. Avec pour objectif d’atteindre un réseau intelligent
”Smart Grid”, plusieurs améliorations ont été apportées au réseau électrique,
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ED AC-OPF DC-OPF

SC-ACOPF SC-DCOPF
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DC Power 

flow

Security constraints Security constraints

Figure 1.1: Opération économique du réseau électrique

et beaucoup d’autres sont à l’étude ou encore des perspectives.

Dans le but d’avoir un réseau intelligent, le système de service d’énergie
électrique a été soumis à diverses améliorations liées à la surveillance, aux
communications informatiques et à la sécurité. Ces améliorations doivent
leur existence au système de gestion de l’énergie (EMS) et le système de su-
pervision, de contrôle et d’acquisition de données (SCADA). l’EMS est utilisé
par les opérateurs du réseaux afin de surveiller, de contrôler et d’optimiser
la performance du système production et/ou de transmission dans une cer-
taine zone. Le Système SCADA est un système de contrôle d’automatisation
industrielle qui fournit des fonctions de surveillance et de contrôle des com-
posants distants du système électrique.

Les mesures sur le terrain sont envoyés via le système SCADA vers le
centre de contrôle. Le flux de données est comme suit, des capteurs mesurent
les magnitudes et les angles de tension et les injections de puissance au niveau
des noeuds . Un estimateur d’état convertit les lectures redondantes et les
autres informations disponibles en une estimation de l’état réel du système
tout en filtrant les bruit de mesure [4–6]. Ces estimations de l’état du réseau
sont ensuite utilisées pour la surveillance et le fonctionnement réseau.

L’EMS vise à fournir un approvisionnement fiable pour les utilisateurs
finales à un coût économique tout en préservant la sécurité et la stabilité du
système. à cette fin, il utilise des outils tels que Economic Dispatch (ED) et
Optimal Power Flow (OPF) [1, 4–8].

L’ED planifie la sortie des installations de production d’électricité de
façon à répondre à la charge du système au plus bas coût d’opérations tout
en respectant les contraintes opérationnelles et de tansmission [9, 10]. Il
détermine la puissance générée la plus économique qui sert à servir une cer-
taine charge. L’ED est formulé comme un problème d’optimisation convexe
avec une fonction résumant les coûts individuels de chaque générateur et
des contraints qui representent la réunion de la demande et de la charge du
réseau.

Notre objectif ici est le problème OPF qui est très important dans la plan-
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ification efficace de la production d’électricité. Les modèles de l’OPF sont
essentiellement classés en i) Alternating-Current Optimal Power Flow (AC-
OPF), ii) Direct-Current Optimal Power Flow (DC-OPF), et iii) Security-
Constrained Optimal Power Flow (SC-OPF). Le passage d’un modèle à
l’autre est représenté dans Fig.1.1.

AC-OPF, ou tout simplement OPF, intègre les contraintes AC du réseau
de transmission à l’ED. L’objectif le plus commun dans l’AC-OPF est la
minimisation des coûts de production, avec ou sans considération des pertes
du système. De cette façon, l’AC-OPF étend le problème de l’ED classique:
l’ED contrôle seulement les unités génération tandis que l’OPF contrôle aussi
les flux d’énergie dans le système [11]. Si nous cherchons à minimiser le coût
de production, la fonction globale du système représente la somme du coût
de production à chaque noeud, qui est souvent estimé à l’aide des courbes du
second degré [12,13]. Les contraintes considérées sont aussi quadratiques, le
problème d’optimisation est ainsi non convexe.

Une des simplifications les plus courantes de l’OPF est le DC-OPF [14].
Le DC-OPF a été utilisé par de nombreux utilitaires pour la prévision des
prix et la planification du système [15,16]. Il gagne de plus en plus d’intérêt
en raison de l’utilisation et le développement des technologies DC et HVDC.
Le DC-OPF est utilisé par les opérateurs de système indépendant (ISO)
dans l’Amérique du Nord pour le fonctionnement au jour le jour. Il peut être
considéré comme un problème d’optimisation convexe avec des contraintes
linéaires. Principalement on l’utilise en cas d’absence de données de contrôle
de tension Var fiables, ou en raison d’un besoin de compatibilité croisée entre
deux ou plusieurs applications connexes [14–17].

Ces deux modèles sont considérés comme des modèles de l’OPF sans con-
tingence. Ils représentent un cas de base et ne garantissent le respect des
contraintes d’opértion du réseau que dans les conditions normales de fonc-
tionnement. L’intégration des concernes de sécurité dans l’un d’eux conduit
au problème de SC-OPF.

Le SC-OPF considère les pannes qui peuvent survenir sur les lignes de
transmission et/ou installations de génération [18]. Ce modèle comprend
plusieurs cas d’urgence outre que le cas de base. Le problème tend à être
de grande dimension, selon le type et le nombre de contingences considérées.
Pour chaque contingence considérée, nous devons tenir compte d’une nou-
velle série de contraintes. En outre, un ensemble de variables additionnel,
les variables du cas d’urgence, doit être considéré avec quelques contraintes
d’inégalité reliant ces variables aux variables de base.
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Gestion des réseaux cellulaire

L’augmentation de la demande des utilisateurs mobiles [19] dessine des dis-
cussions à la fois dans l’industrie et dans le milieu acdémique, poussant
l’infrastructure mobile actuelle à évoluer vers la prochaine génération (5G)
des réseaux cellulaires mobiles [20]. Une des solutions pour satisfaire cette
demande et de décharger le backhaul et de stocker de manière proactive le
contenu des utilisateurs à la périphérie du réseau mobile, soit dans les stations
de base (SBS) ou les terminaux d’utilisateurs

Notre contribution principale dans ce domaine est de formuler la poli-
tique de stockage comme un problème d’optimisation convexe et de fournir
un algorithme distribué mis en oeuvre à chaque SBS. Plus précisément, nous
définissons une fonction de coût convexe globale comme la somme de fonc-
tions convexes locales qui dépendent de la demande et de la topologie du
réseau. Des contraintes linéaires sont données sur le partage d’un fichier et
sa disponibilité; et sur la capacité de stockage de chaque SBS. Pour résoudre
ce problème, nous adoptons une approche similaire à 5 où nous avons utilisé
ADMM. Ceci permet à chaque SBS de résoudre un sous-problème de com-
plexité réduite obtenu en utilisant cet algorithme

En bref, la motivation d’utiliser une telle approche distribuée est à 1)
éviter la surcharge de communication entre SBS et de le CS qui est en charge
du mécanisme de décision, et 2) répartir l’opération de calcul entre les SBS.

Dans cette partie, nous considérons le problème de la mise en cache dis-
tribuée dans les réseaux cellulaires de prochaine génération 5G où les sta-
tions de base de petites densément déployées sont capables de stocker et de
livrer le contenu des utilisateurs. En particulier, nous formulons la politique
d’allocation de cache optimale comme un problème d’optimisation convexe
où un sous-ensemble de SBS ont leur propre fonction locale de coût qui capte
l’aspect de l’utilisation du backhaul en termes de bande passante et un en-
semble de paramètres du réseau et les contraintes de stockage ainsi que les
dépenses sur le partage du contenu avec d’autres SBS. Dans ce contexte, une
SBS peut priviléger l’option de partage du contenus avec ses voisins lorsque
le coût du partage est moins que le coût d’aller chercher le fichier du CS.
Compte tenu du fait que la coordination est impliquée entre SBS et en rai-
son de la capacité de l’ADMM pour résoudre un tel problème d’optimisation
compliquée d’une manière simplifiée, nous fournissons une solution distribuée
pour le problème de stockage en utilisant ADMM. L’application de l’ADMM
dans un tel contexte converge et la solution optimale pour le problème de
caching est atteinte.
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Plan de la thèse et contributions

Deux problèmes différents sont ainsi élaborés dans cette thèse, naturellement
le rapport est divisé en deux parties le long des chapitres suivants.

Gestion distribué de l’énergie dans les réseaux électriques

Dans le chapitre 3 nous commençons par rappeler la transition du réseau
électrique classique vers le Smart Grid. On énonce l’intervention faite sur les
différents niveaux composant ce réseau. Certaines améliorations, en partic-
ulier la partie relative au gestion du réseau, doivent leur existence au système
de gestion d’énergie (EMS) qui traite le problème des flux de puissance op-
timale (Otpimal power flow, OPF ) et ses différents modèles. Nous nous
concentrons ici sur la version à courant continu du problème, le DC-OPF,
une version linéaire du problème de l’OPF. Nous présentons quelques-unes
des méthodes utilisées pour résoudre ce problème et on cite le travail qui a
été effectué dans la littérature connexe existante.

Nous détaillons le problème DC-OPF au chapitre 4. Nous introduisons
le problème distribué du partage de la production (Ditributed Production
Sharing, DPS ) et le modèle du réseau interconnecté. Nous utilisons la for-
mulation DPS comme un modèle générique auquel le problème DC-OPF
peut être projeté comme une simple instanciation. Ainsi, nous nous concen-
trons notre attention au réseau électrique, nous introduisons les notations de
base qui nous permettent de formuler les équations de l’OPF. En utilisant ces
équations ainsi que le but de minimiser le coût de fonctionnement économique
du réseau électrique; nous formulons le problème DC-OPF. Après avoir re-
marqué que ce problème peut être représenté en utilisant la formulation DPS,
nous passons notre intérêt à résoudre le problème DPS.

En raison des inconvénients de résoudre un tel problème d’une manière
centralisée, nous cherchons maintenant à le résoudre distributivement. Du
fait des limites de performance des méthodes existantes, nous tournons notre
attention vers l’ADMM dans le chapitre 5. Nous commençons par intro-
duire quelques notions de la théorie des opérateurs monotones qui seront
nécessaires à la compréhension de la plupart des résultats développés dans
le cadre de ce chapitre. Ensuite, nous utilisons ces notions sur le dual du
problème DPS. Ainsi un mécanisme de fractionnement, connu comme le
Douglas-Rachford Splitting Method est utilisé avec l’algorithme de point prox-
imal Proximal Point Algorithm (PPA) afin de dériver l’ADMM répartis par
zone et de montrer sa convergence.

Dans le chapitre 6 nous appliquons cette méthode sur le problème DPS.
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L’ADMM a été prouvée de tourner très bien dans un tel cas d’optimisation
distribuée dans les réseaux interconnectés. Mais elle souffre d’être syn-
chrone comme les autres méthodes existantes. Les agents ou processeurs
ne possédent pas les mêmes tâches ni les mêmes caractéristiques techniques.
Ces différences intensifient les inconvénients du comportement synchrone de
la méthode. Ainsi, un système de communication asynchrone est considéré
dans ce chapitre et il est prouvé à converger lorsqu’il est appliqué à un tel
système.

La convergence est limitée au cas où les zones se chevauchent. A savoir ce
chevauchement signifie que les zones sont obligées à partager certains noeuds.
Dans les réseaux électriques cette situation peut conduire à des conflits
dans la prise de décision. Ainsi, nous étendons l’application des algorithmes
ADMM sychrones et asynchrones au cas où les zones ne se chevauchent pas.
Dans ce cas, chaque noeaud appartient à une seule zone. Ce résultat est
obtenu par l’introduction de noeuds fictifs sur les lignes d’interconnexion re-
liant les noeuds qui appartiennent à différents zones. Le réseau étudié dans ce
cas est considéré dans un état statique. Aucin caractère aléatoire est présenté
par les composantes du réseau et le partage est effectué géographiquement.

Dans le chapitre 7 nous introduisons un réseau constitué de générateurs
conventionnels et des sources d’énergie renouvelables. Certains noeuds dans
le réseau sont également équipés de dispositifs de stockage. L’existence d’un
tel équipement fournit au réseau une flexibilité de partage de l’énergie à
l’échelle du temps. Après avoir décrit le modèle dans la main, nous formulons
le problème q’on résoud en utilisant les techniques de Lyapunov et ADMM.

Avec ce travail, nous arrivons au chapitre 8 de cette thèse. Dans ce
chapitre, nous nous rappelons les résultats des chapitres précédents et nous
fournissons des implémentations des algorithmes ADMM sur différents réseaux.
On utilise les systèmes IEEE−30 et 118 bus pour la mise en oeuvre du
problème DC-OPF dans les réseaux classiques avec des sources d’énergie
conventionelles. Nous comparons plusieurs implémentations de l’algorithme
sous de multiples scénarios afin de démontrer leurs propriétés de convergence
et d’adaptabilité. Enfin, le système de test IEEE−6 Bus est utilisé pour le
cas d’un réseau intégrant des unités de production renouvelables et des bat-
teries de stockage. Nous suivons l’effet du partage dans le temps en raison
de la présence de dispositifs de stockage avant de conclure ce chapitre.

Caching distribué dans les réseaux 5G

Avec le chapitre 9 on effectue la transition à la deuxième partie de cette thèse.
Le stockage ou cahcing dans les réseaux 5G est notre sujet d’intérêt à ce point.
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Nous commençons par une brève introduction où nous résumons les travaux
connexes dans ce domaine. Ensuite, nous introduisons le modèle du réseau
et on formule le problème de caching comme un problème d’optimisation
convexe qui peut également être projeté sur le problème DPS.

Classiquement ce problème doit être résolu par le CS de manière cen-
tralisée. Nous reformulons le problème d’une manière distriuée et nous ap-
pliquons l’ADMM afin de le résoudre au niveau des noeuds avec une coordina-
tion limitée entre les stations de base en fonction de la situation considérée.
Les noeuds sont autorisés à partager leur contenu, le problème tend à de-
venir compliqué et nécessite une modélisation sophistiquée. Nous essayons
de simplifier le développement de l’application de l’ADMM en fournissant
un exemple de 3 noeuds. L’algorithme que nous développons dans le présent
chapitre est élaboré pour un réseau plus général ayant un nombre quelconque
de noeuds et de fichiers à stocker. Le problème évolue avec le nombre de
noeuds, les connexions et les contenus qui rendent l’optimisation distribuée
par ADMM plus attrayante pour un tel domaine d’application.
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Chapter 2

Introduction

This thesis focuses on optimization problems in networked systems compris-
ing interconnected agents. The studied problems are usually large-scale and
computationally cumbersome, though they have some characteristics that
can be exploited by appropriate modeling.

Solving such problems while considering a central fusion center i.e., in a
centralized fashion, is computationally intractable and sometimes not feasible
nor reliable. Thus, a centralized optimization technique is prohibitive in such
large networks specifically when agents are physically distant and have some
privacy concerns.

Distributed optimization methods appear as an appealing solution in such
cases. Depending on the studied problem and the area of application, mul-
tiple approaches can be used to achieve the desired target. Specifically, we
focus in this thesis on two different areas. The first area of interest is the
smart power grid. In this part, we focus on the Direct-Current optimal power
flow problem. This is a fundamental problem that underlies many power sys-
tems operations and planning. We seek to find, distributively with the least
resources usage, the optimal power dispatch. This solution should minimize
the global generation cost of the whole interconnected system while obeying
to its characteristics. Mainly, we derive an algorithm that is suitable for static
and dynamic networks. This algorithm is synchronous per default. It requires
coordination between the different agents. A drawback that may limit the
system performances when joined together with the heterogeneous capabili-
ties of each agent. We prove this algorithm to be applicable asynchronously.
Thus, we provide an asynchronous distributed optimization method where
the agents act independently.

Such a method have the flexibility to manage other problems in differ-
ent areas by tuning the parameters with respect to the desired application.
We study another area of application, the 5G networks. We seek to find
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distributively the best caching vector for each agent while minimizing the
back-haul links usage. We model the caching problem that we also aim at
solving distributively using the same method.

Two different problems are thus studied, naturally the thesis report is
divided into two parts along the following chapters.

Distributed Energy Management in Power Systems

In Chapter 3 we start by recalling the transition from the conventional
power grid to the smart grid and the intervention made on different levels.
Some of these improvements, specifically in the management part, owe their
existence to the energy management system (EMS) that deals with the op-
timal power flow problem (OPF) and its different models. We focus here
on the Direct-Current optimal power flow (DC-OPF) problem, a linear ver-
sion of the optimal power flow problem. We introduce some of the methods
used to solve such problems and cite the work done by the existing related
literature.

We entail the DC-OPF problem in Chapter 4. We introduce the Dis-
tributed Production-Sharing (DPS) problem and the model of the intercon-
nected network. We use the DPS formulation as a general model to which
the DC-OPF problem can be projected. Then, switching our attention to
the power grid network, we introduce the basic notations that allow us to
formulate the power flow equations. Using these equations along with the
objective of minimizing the economic operation cost of the power grid; we
formulate the DC-OPF problem. After noticing that this problem can be
cast using the DPS formulation, we switch our interest to solving the DPS
problem. Due to the drawbacks of centrally solving such a problem, we now
seek to solve it distributively. Drawn by the performance limitations of the
existing methods, we turn our attention to the Alternation Direction Method
of Multipliers (ADMM) in Chapter 5. We start by introducing some notions
from the monotone operator theory necessary to the understanding of most
of the results developed in the course of this chapter. Then, we use these
notions on the dual of the DPS problem. Next a splitting mechanism, known
as the Douglas-Rachford splitting method is used along the proximal point
algorithm in order to derive the area-based distributed ADMM and show its
convergence.

In Chapter 6 we apply this method to the DPS problem. ADMM has been
proved to perform very well for such distributed optimization over networks
but it suffers from the synchronous curse of the other existing methods. Not
all the agents have the same loads nor the same technical characteristics.
These differences intensify the drawbacks of the synchronous behavior of the
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method. Thus, an asynchronous communication scheme is considered in this
chapter and is proven to converge when applied to such networked system.
The convergence is limited to the case where the areas overlap. I.e., the
areas are obliged to share some nodes. In power grid networks this situation
may lead to conflicts in decision making. Thus, we extend the application of
the ADMM algorithms to the case where the areas do not overlap. This is
achieved by introducing dummy nodes on the tie-lines connecting the nodes
belonging to different areas.

The network under study is only considered in static case, no randomness
is exhibited by the network components themselves and sharing is performed
geographically. In Chapter 7 we introduce a network consisting of conven-
tional generators and renewable energy sources. Some of the nodes in the
network are also equipped with storage devices. The existence of such equip-
ment provides the network with the flexibility of sharing energy across time.
After describing the model in hand we formulate the problem and we solve
it using Lyapunov techniques and ADMM.

With this work, we arrive to Chapter 8 of this dissertation. In this chapter
we recollect the results of the previous chapters and provide implementations
of the ADMM algorithms on different networks. IEEE−30 and 118 Bus
test systems were used for the implementation of the DC-OPF problem in
conventional networks. We compare several implementations of the algorithm
under multiple scenarios to demonstrate their convergence and scalability
properties. Finally, the IEEE−6 Bus test system is used for the case of a
network with integration of distributed generation units. We track the effect
of sharing across time due to the presence of storage devices before concluding
this chapter.

Distributed Caching in 5G Networks

With Chapter 9 we transit to the second part of this dissertation. Caching
in 5G networks is our concern at this point. We start with a brief introduc-
tion where we summarize the related works in this field. Next we introduce
the network model and formulate the caching problem as a convex optimiza-
tion problem that can also be projected onto the Production-Sharing scheme.
Conventionally this problem has to be solved by the central scheduler in a
centralized fashion. We reformulate the problem and apply ADMM in order
to solve the caching problem distributively at node level with limited coordi-
nation between the agents, depending on the considered situation. The nodes
are allowed to share contents, the problem tends to become complicated and
requires a sophisticated modeling. We try to simplify the development of the
ADMM application by providing an example of 3 nodes. The algorithm we
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develop in this Chapter is elaborated for a more general network with arbi-
trary number of nodes and contents. The problem scales with the number
of nodes, connections and contents which make the distributed optimization
through ADMM more appealing for such area of application.
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Chapter 3

State of the art

Introduction

Electric power was discovered over a hundred years ago, since then it has
played a major role in the enhancement of our way of life. Several applica-
tions and technologies have emerged, more and more services are offered to
consumers and that help keeping our society functioning and improving the
economies operating [1, 2].

The construction of an interconnected system of large, central generat-
ing stations, High-Voltage Alternating-Current (HVAC) and Direct-current
(HVDC) transmission lines, and lower voltage AC and DC distribution lines
across the countries resulted in the creation of an international power grid.
In Europe for example, the European Network of Transmission System Op-
erators, comprises of operators of 34 countries. Several of these systems are
connected using HVDC technologies that exhibit greater efficiency and allow
transmission between non-synchronized AC systems with lower losses at long
distances [3].

Developing and managing both the transmission and distribution systems
are key factors for the success in modern societies [1,2] and play a major role
in the ability of Europe’s grid networks to become a single energy market [3].
With aiming to reach the Smart Gird goal, several improvements were im-
plemented to the power grid, and many others are under study or yet only
perspectives.

We go through few of these improvements in the next section followed
by a study of the economic operation of the grid which leads us to the core
subject of this thesis. We motivate our work, and provide a general overview
of related works.
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3.1. From conventional to Smart Grid

3.1 From conventional to Smart Grid

Smart Grid, also called smart electrical/power grid is a term used to represent
the future electric power grid [1, 2, 21–24]. Smart Grid is expected to bring
enhancements into the current power grid on three main levels.

1. Smart infrastructure: On the one hand, the smart grid infrastructure
should allow for advanced power generation, delivery, and consump-
tion technologies. This is achieved through distributed generation by
integrating renewable power generation resources such as wind or solar
cells to generate more green power; and by incorporating distributed
storage devices to balance the variability and intermittency of such
power sources. It also allows for integration of new paradigms such as
Plug-in electric vehicles and plug-in hybrid electric vehicles that feature
batteries. These can be plugged in at end-user premises at charging
stations, they can lead to great environmental and economic benefits.
On the other hand, integration of advanced distributed metering sys-
tem and communication technologies represent a key component of a
smart grid. This point represents a crucial requirement for enabling
intelligent decision making.

2. Smart management: Leveraging the advanced infrastructure in order
to achieve advanced management control objectives, makes the grid
”smarter”. Operation cost reduction, supply and demand balance,
emission control, and utility maximization are considered as the main
management objectives to be realized for a smarter power grid. Vari-
ous management tools can be adopted to achieve these goals, such as
optimization, game theory, machine learning.

3. Smart protection: Providing advanced grid services is a key feature of
smart grid. Insuring the system reliability and failure protection while
preserving the privacy and security protection of information (meter-
ing, monitoring and measurement) and communication are important
requirements for smart grid stability and availability.

Achieving these goals require the intervention at different sectors and lev-
els (power generation, transmission and distribution; information collecting,
communicating and utilization, etc.) of the multiple actors composing the
network (generation and distribution facilities, consumers, markets and op-
erations, etc) [24]. Next, we give further details regarding the management
of the power generation and transmission in the power grid. We concentrate
on the economic operation of the grid, mainly the case of a single energy
market comprising different operators/countries.
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3.2. Economic operation of the power grid
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Figure 3.1: Economic operations of the grid.

3.2 Economic operation of the power grid

As previously mentioned, in the purpose of having a Smart Grid, the elec-
trical power utility system has been subject to various improvements related
to computer monitoring, communications and security. These improvements
owe for their existence to the Energy Management System (EMS) and the
Supervisory Control and Data Acquisition system (SCADA). EMS is used by
the network operators to mainly monitor, control, and optimize the perfor-
mance of the generation and/or transmission system within a certain area.
SCADA system is an industrial automation control system that provides
monitoring and control functions of electrical power system remote devices.

Measurements from the field are sent via SCADA system to the control
center. Data flow is as follows, sensors measuring voltage magnitudes and
angles and power injections at nodes or power flows and currents on lines. A
state estimator converts redundant readings and other available information
into an estimate of the true state of the system filtering out measurement
noise [4–6]. These estimates of the network status are then used for network
monitoring and operation.

EMS aims at providing reliable supply for the users at an economi-
cal cost while maintaining system’s security and stability. To this end, it
employs tools such as Economic Dispatch (ED) and Optimal Power Flow
(OPF) [1, 4–8]. ED schedules the output of the electricity generation facili-
ties so as to meet the system load at the lowest cost subject to transmission
and operational constraints [9,10]. It determines the most economically gen-
erated power output to serve given a certain load. ED is formulated as a
convex optimization problem with an objective function summarizing the in-
dividual costs of each generator constrained by having the demand meeting
the network load.

Our focus here is the OPF problem which is very important in plan-
ning efficiently the schedule of power generation. OPF models are basically
categorized in i) Alternating-Current Optimal Power Flow (AC-OPF), ii)
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3.2. Economic operation of the power grid

Direct-Current Optimal Power Flow (DC-OPF), and iii) Security constrained
Optimal Power Flow (SC-OPF). The transition from one model to the other
is represented in Fig.3.1.

AC-OPF, or simply OPF, incorporates AC transmission network con-
straints into ED. The most common AC-OPF objective is the minimization
of generation costs, with or without consideration of system losses. In this
way, AC-OPF extends the classic economic dispatch problem: classic eco-
nomic dispatch controls only which generation units to dispatch while OPF
controls all power flows within the system [11]. If we aim to minimize the
generation cost then, the objective function represents the sum of the gen-
eration cost at each node, which is often approximated using quadratic cost
curves [12, 13]. The considered equality constraints are also quadratic thus,
this is a non-convex optimization problem. The variables considered can be
divided into state variables and control variables. Control variables define
the system and govern the evolution of system from one state to another
state. State variables describe the behavior of the system on any stage. Lim-
its on power generation and injection have to be met, they are modeled as
inequality constraints on the corresponding variables. Typical approaches
rely on Karush−Kuhn−Tucker (KKT) conditions [25–27]. Several methods
have been suggested for the non-convex OPF problem (explained later on),
see [28–31] and references within. The drawbacks of most of the methods are
that either they can only guarantee local optimum or that they are based on
heuristic for which optimality cannot be proved.

One of the most common simplifications of OPF is the DC-OPF [14] for-
mulation. The DC-OPF has been used by many utilities for price forecasting
and system planning [15,16]. It is gaining more and more interest due to the
increasing use and development of DC and HVDC technologies. DC-OPF
is used by several North American Independent System Operators (ISO) for
day-to-day operation. It can be seen as a convex optimization problem with
linear constraints. Although it is limited to the MW-oriented applications,
sometimes there may be no other alternative to the use of this DC model.
Mainly in the absence of reliable voltage-VAr control data, or due to a need
of cross-compatibility between two or more related applications. It may also
exists that markets only have access to linear theory and/ or calculations
techniques so they leverage under these circumstances the DC model of the
OPF. Mainly when the network tends to get larger, a large volume of com-
puting is required, this would be prohibitive using AC-OPF model [14–17].

Both of these models are considered as contingency free OPF models.
They represent a base case and only guarantees that the operating con-
straints are satisfied only under normal operating conditions. Incorporating
security concerns in either of them leads to the SC-OPF problem. SC-OPF
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3.3. OPF and DC-OPF methods

considers outages that may occur in transmission lines and/ or generation
plants [18]. This model includes several contingency cases along the base
case. The problem tends to be very large, depending on the type and num-
ber of contingencies considered. For each contingency considered, we have
to account for a new set of equality and inequality constraints. Additionally,
another set of variables, the contingency case variables, has to be considered
along with some inequality constraints linking these variables to the base
variables.

We recall the main methods used for OPF and DC-OPF in the next
section and the related work in the final section. We try to mainly focus on
the DC-OPF model.

3.3 OPF and DC-OPF methods

Various approaches have been taken to solve power system OPF and DC-OPF
problems, references [30–38] identify the most common conventional opti-
mization methods advantages, drawbacks, and application. As for the artifi-
cial intelligence based methods, we can cite the fuzzy logic approach [39–41],
the artificial neural network method [42] and the particle swarm optimization
technique [43–47]. In this thesis, we focus on solving the power flow problem
using conventional methods. The majority of the conventional techniques
discussed in the literature falls under the following categories [30–38]:

1. Gradient methods: use the 1st order derivative vector of the objective
function to determine improving directions for the solution in iterative
steps. Gradient methods are considered slow compared to higher order
methods.

2. Simplex Method: Considered as the most well-known and robust formal
optimization method for Linear programming (LP). It tests adjacent
vertices of the feasible set in sequence so that at each new vertex the
objective function improves or remains unchanged.

3. Sequential Linear Programming (SLP): Extends the LP method and
solves problems with nonlinear characteristics via a series of linear ap-
proximations. SLP is known to easily handle all types of continuous
constraints.

4. Sequential Quadratic Programming (SQP): Solves a series of QP prob-
lems that converge to the optimal solution of the original problem. At
each iteration, a quadratic program (QP) that approximates the be-
havior of the problem about a particular operating point is generated.
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3.4. Related work

The obtained optimal solution of the QP is then used as the starting
point for the next iteration, and the process is repeated to convergence.

5. Newton’s method: Represents a 2nd order derivative method, usually
applied to unconstrained problems with a guaranteed quadratic conver-
gence. Both OPF and DC-OPF have equality constraints, this is why
Lagrangian function has to be utilized. Inequality constraints are either
treated as equality constraints or omitted. To enhance the convergence
speed, other methods used an augmented version of the Lagrangian.

6. Interior Point methods (IPMs): Solve the problem or the KKT con-
ditions of the problem by applying a variant of Newtons method to a
sequence of equality constrained problems, or to a sequence of modified
versions of the KKT conditions. A key feature of IPMs is that they
constrain the search to the feasible region by introducing barrier terms
to the augmented objective function or by manipulating the required
KKT conditions.

We provide in the next section a general overview of the related works
that use these methods.

3.4 Related work

The electric power system tends to be a very large scale system, it may span
multiple states, countries, and even continents. The responsibility for the
control of such a system is therefore shared among multiple entities. In the
smart grid paradigm, more renewable energy sources will be incorporated
into the system, especially in distribution networks, and the problem size
will also grow tremendously.

One way to solve the DC-OPF problem is for each party involved to share
their problem data with a central station that solves the problem. Most real
world OPF applications are related with large scale networks, and therefore
direct applications of centralized methods can be ineffective. For this reason
we are inspired to go for a distributed algorithm where the network is seen
as a cluster of connected sub-networks. The network can be seen as a set of
nodes and a set of edges connecting them. It is interesting to note that most
real world examples of power networks are sparse, each node in the network
is only connected to few others through power lines [48]. In this context, we
can consider the existence of a processor per sub-network (also called area in
this work), or even a processor per network’s node. The optimal is to have
these processors or agents performing local updates using only their private

20



3.4. Related work

cost function. They can also communicate locally with directly connected
neighbors using the edges of the underlying communication graph. The DC-
OPF represented as a convex optimization problem with linear constraints
has been a subject of study for many years now. In the following, we describe
several techniques that has been used to solve distributively the DC-OPF
problems.

Linearized Augmented Lagrangian [49, 50] approaches can be found in
references [51,52]. In these works, the authors replaced the constrained opti-
mization problem by a series of unconstrained problems. Using the Auxiliary
problem principle (APP) [53,54], the problem is parallelized by decomposing
it into regions. The variables corresponding to border nodes are duplicated,
and coupling constraints linking these variables are imposed. Additionally,
quadratic penalty terms are added to the objective function. Only inter-
regional communication, related to these border nodes, is required. The
overall Communication overhead will be smaller than the centralized solu-
tion [51, 55]. But the problem became a little bit complicated and synchro-
nization is required.

Approximate Newton directions [56], can be seen in the work of Conejo et
al. [57]. In this work, the authors solve the problem using an approximation
to the KKT system of equations and a preconditioned conjugate gradient
procedure to guarantee convergence. A linear system needs to be solved at
the central controller, and convergence is not always guaranteed [58]. This
method can be also seen as a particular case of the Lagrangian relaxation
technique.

IPMs can be found in the papers [59–61] and the references within. A well-
known implementation of an interior point method to the optimal reactive
dispatch problem is described in [60]. This technique is shown to be very
effective to relatively large scale problems as the number of required iterations
is not very sensitive to network size or number of control variables.

These methods are however computationally cumbersome [62, 63]. They
share the same synchronization that ties the different areas and demand
strong coordination. Each area optimizes its variables in every iteration and
communicates with its adjacent areas before moving to another iteration.
The synchronous burden tends to cause degradation in their performance
mainly because of the inherent communication overhead and the idle pro-
cessing time [64]. Among those methods, there is a technique known as
the Alternating Direction Method of Multipliers (ADMM) [65–69]. While
sharing the same performance limitations, ADMM has the advantage of con-
verging faster than the aforementioned methods [68, 70]. It is easier to be
implemented centrally and distributively, and requires less time and compu-
tational capacity at each processor. ADMM also relies on the augmented
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Lagrangian to improve the convergence rate. The structure of the iterations
in this method makes their distribution among the existing processors easier
than the previously mentioned methods [70].

ADMM has gained a big interest lately, multiple applications to ADMM
can be found in [58,71–76] and the references within. In [71], the authors aim
at optimizing the power grid monitoring infrastructure by treating the prob-
lem of power system state estimation in a network of connected areas. The
linearized problem in solved distributively using ADMM. Few minimal data
exchanges were required between the neighboring areas in order to converge
to the optimal solution. As for its implementation to OPF problems, refer-
ence [76] used Semidefinite programming (SDP) relaxation to convert OPF
into a convex problem then ADMMwas applied. In the OPF context, ADMM
ensures scalability with respect to the network size, robustness to commu-
nication outages and failures, while preserving data privacy and integrity.
Tomaso Erseghe, presented in [58] a fully distributed scalable application of
ADMM with no need to a central coordinator, but clock synchronization is
always required.

Recently [77] proposed a fully asynchronous distributed version of the
ADMM that is applied sequentially by randomly selected area of the net-
work. The problem was tuned for the find the consensus on the minimizer
of the aggregate cost of the nodes. The union of these areas covers the
whole network. All of them must overlap i.e., they have to share some nodes.
Despite the synchronicity, by relying on a careful analysis of the proximal
splitting method [68] of which the ADMM is a special instance, it is proved
that such an algorithm converges. The asynchronous ADMM algorithm for-
mulated in [77] was not designed for problems resembling to the DC-OPF. It
only considers unconstrained consensus problems where all the nodes share
the same scalar optimization unconstrained variable. Additionally, the di-
vision of the network has to be done using an overlapping architecture. A
node sharing is not feasible in reality. It requires multiple authorities taking
action on the same generation plant for example.
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Chapter 4

DC-OPF as a distributed
production sharing problem

4.1 Introduction

Focusing on efficiently planning the schedule of the power generation and
sharing in the power grid, the EMS employs the DC-OPF problem. This
problem can be formulated as convex optimization problem with linear equal-
ity, inequality and box constraints. The equality constraints represent the
DC power flow equations that has to be met in order for the solution to be
applicable. The inequality constraints are relative to the thermal line lim-
its. They constrain the sharing capacities between the directly connected
nodes. As for the box constraints, we have the lower and upper bounds on
the generated power; and the feasible values for the voltage phase angle of
the buses. In this chapter we formulate the DC-OPF problem and project it
into a general model that can compass it along with other convex problems.
We call this problem the Production-Sharing problem. Then, following the
need to distribute the computations over different processors, we motivate a
distributed formulation of this Production-Sharing problem.

4.2 Production-Sharing Problem

4.2.1 Network Model

Consider a group of N agents/nodes connected by an undirected connected
graph G = (V,E), where V = {1, ..., N} is the set of nodes and E is the
set of bidirectional edges/branches. The nodes can be considered as agents
in many applications, we will use these two terms interchangeably. Nodes
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4.2. Production-Sharing Problem

i and j are considered as neighbors if {i, j} ∈ E, the link between them is
denoted by i ∼ j. Assume the neighbors of node j are identified through the
set Nj = {i ∈ V : j ∼ i}.

We introduce symmetric edge weights wi,j = wj,i such that wi,j > 0
if and only if {i, j} ∈ E and 0 elsewhere. The matrix W defined by the
entries {wi,j} is called the weighted adjacency matrix. The diagonal matrix
D such that Di,i =

∑

j∈V wi,j is called the degree matrix, and L = D−W is
called the Laplacian matrix of the graph. Let M be the weighted branch-bus
incidence matrix. Each non-zero element in M corresponds to the sharing
ability between the corresponding nodes and the weight of such connection.
Let e=̂{i, j} ∈ E, then we suppose Mei = wi,j, Mej = −wi,j and Mek =
0, ∀ k 6= {i, j}.

Each agent j ∈ V produces and/or consumes some resources (typically
electric power in the power grid case) represented by a real value, and the
agents can exchange these resources using the links of the aforementioned
graph. More precisely, each agent has a production ability in the form of an
interval. This range is reduced to 0 when the node does not contribute in
resource production.

4.2.2 Formulation of the Production-Sharing Problem

Assume that, at each node j, a local cost is associated to active power pro-
duction through a function depending on the quantity produced (which will
be assumed convex in the following).

The natural problem ensuing is thus to minimize the total production
cost under the constraints that:

i) The demands are satisfied.

ii) The network is able to dispatch correctly the resource.

This last point can take multiple forms depending on the resource type
and will be made explicit when considering the DC-OPF problem next. How-
ever, we will write it generically as “the vector of the differences between pro-
duction and consumption at each agent belongs to the span of the Laplacian
matrix”.

We write this problem formally as a convex optimization problem1 with
linear constraints:

1the introduction of the excess variable y is not mandatory but it is kept for clarity
purposes.
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Production-Sharing Problem

min
x,y,z∈RN

∑

j∈V fj(xj)

subject to







y = x− d

y = Lz

x ≤ x ≤ x

p ≤ Mz ≤ p

(4.1)

where, each agent j has a demand dj, a resource production xj in a certain
range [xj, xj] at a price given by the local cost function fj. x is the resource
production vector, d is the demand vector, L is the Laplacian of graph G, y
and z are the intermediate vectors casting the sharing between the connected
nodes, and finally M is the weighted branch-bus incidence matrix.

The last constraint on the production sharing is closely related to the net-
work characteristics and the studied problem. Depending on the considered
problem, this constraint can be neglected or taken in consideration. If ne-
glected, the problem in hand is designated as unlimited Production-Sharing
problem. In this case, the nodes can share as much production as they wish
with no constraints limiting these exchanges.

Unlimited Production-Sharing Problem

min
x,y,z∈RN

∑

j∈V fj(xj)

subject to







y = x− d

y = Lz

x ≤ x ≤ x

(4.2)

A problem with a similar formulation to the Unlimited Production-Sharing
Problem was treated by the authors in [70]. In this work we will focus on the
Production-Sharing problem. All the results obtained for this latter problem
can be directly applied to the unlimited Production-Sharing problem after
relaxing the limits on z.

In order to be able to perform meaningful derivations, we will make the
following standard assumption.

Assumption 1. The functions {fj}j∈V are convex, proper, lower semi-continuous
and the graph G is undirected and connected. Furthermore, the set of vari-
ables minimizing Problem (4.1) is non-empty.
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A function fj is convex if and only if its epigraph defined as

epi f = {(xj, c) ∈ R× R : fj(xj) ≤ c},

is a convex set.

Additionally, fj is closed if its epigraph is also closed. Note that fj is
proper if its effective domain dom fj 6= ∅. The effective domain of fj repre-
sents the set of points for which it takes finite values

dom fj = {xj ∈ R : fj(xj) < +∞}.

Thus, fj is proper if

∃ xj ∈ R such that fj(xj) < +∞; and ∀yj ∈ R, fj(yj) > −∞

A simple example: Consider a complete graph with unit edge weights
and say that each of the N agents has a unit demand (d = [1, ..., 1]T ). Because
the graph is complete L = NI − J where I is the identity matrix and J is
filled with ones. This means that the second condition of the above problem
simply translates to “the mean of the resource production vector x is one”.
Now, assume that half of the agents cannot produce any resource (for them,
xj = xj = 0 thus xj = 0) while the other half can produce any quantity x

(xj = 0, xj = +∞) with cost ax (for every producer j, fj(xj) = axj and a >

0); it is immediate to see that each producer will produce the same quantity (as
they are indistinguishable in the problem with a complete unweighted graph)
and this quantity must be 2 (as only half of the agents produce and the mean
of the production vector has to be one).

Additional variables, equality and inequality constraints can be easily
incorporated to the previous Production-Sharing problem. Inequality con-
straints linking different variables are replaced by equality constraints via the
use of slack variables. Additional cost on a certain variable can also be in-
corporated to the existing cost function (it should comply with the previous
assumption). All of these modifications do not interfere with the results of
the next chapters, they induce no complexity as the algorithm can adapt to
such requirements.

Now, let us see how this problem can encompass problems encountered
in power networks such as the DC-OPF.
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4.3 DC-OPF as a Production-Sharing Prob-

lem on a Graph

4.3.1 Power grid modeling

A power network consists of a set of agents/buses V and a set of edges E

linking these nodes. Each agent j ∈ V can generate a power pGj with a cost

fj(p
G
j ) in its generation ability range [pGj , p

G
j ] (possibly reduced to {0} if the

agent is not a generator) and has a power demand pDj [2, 78, 79]. Let |voj |
2

and θj be the voltage magnitude and phase at node j, and icj be the current
injected at the same nod.

Using Kirchoff’s Current Law (KCL)3 and Ohm’s Law 4, we obtain a
linear relation between the current injected icj at node j and the voltage
angle of the nodes in its neighborhood set Nj,

icj =
∑

i∈Nj

yji(v
o
j − voi )

where, yij = gij + bij is the circuit admittance between nodes j and i. Note
that the circuit admittance is the same when seen from node i or j perspec-
tive yij = yji. All the circuits are supposed to have purely inductive series
components thus, susceptance bij is negative.

Writing this equation for all the nodes of the network, we obtain:

ic = Yvo

where, ic is the vector of injected current, Y is the admittance matrix and
vo is the nodal voltage vector. The admittance matrix Y is symmetric, i.e.,
Yij = Yji = −yij = −yji, and Yjj =

∑

i∼j yij
5.

4.3.2 Alternating Current to Direct Current power flow
equations

Line i ∼ j is characterized by its resistance rij (in ohms) and its reactance
xij (in ohms). As previously mentioned, the admittance of the circuit i ∼ j

2All the quantities are assumed to be in per unit.
3 KCL requires that each of the current injections be equal to the sum of the currents

flowing out of the bus and into the lines connecting the bus to other buses.
4Ohm’s Law states that the current through a conductor between two points is directly

proportional to the voltage difference across the two points.
5The admittance-to-ground yj at node j is neglected.
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is given by
yij = gij + jbij,

where,

gij =
rij

x2
ij + r2ij

and

bij =
−xij

x2
ij + r2ij

.

Each couple of nodes can exchange their resources using the power line
linking them. Let us consider the AC real and reactive power flow equations
at node j:

pj =
∑

i∈Nj

|vj||vi|(Gji cos(θj − θi) + Bji sin(θj − θi) (4.3)

qj =
∑

i∈Nj

|vj||vi|(Gji sin(θj − θi)− Bji cos(θj − θi) (4.4)

where, pj and qj are the real and reactive power flow at node j respectively,
Gij and Bij are the real and imaginary parts of Yij respectively.

Many commercial and industry OPF formulations use the DC power flow
equations instead of AC power flow [80, 81]. This formulation allows the
development of a fully linear set of constraints.

The DC version of the power flow equations can be derived using the
following three basic considerations.

• The lines are supposed to be purely inductive i.e., rij ≪ xij. Thus, we
can approximate gij = 0 and bij =

−1
xij

. Susceptance bij is negative and

all the real parts of the admittance matrix Y will be equal to zero.

• The angle separation across any circuit i ∼ j is small, that is |θj−θi| <
π
12
. Thus, cos(θj − θi) ≈ 1 and sin(θj − θi) ≈ (θj − θi).

• In the per-unit system, the numerical values of voltage magnitudes |vj|
and |vi| are assumed to be unity.

Using these considerations, the reactive power flow can be ignored and
the real power flow equation, known as the DC power flow equation, reduces
to:

pj =
∑

i∈Nj

Bji(θj − θi) (4.5)

This DC power flow equation only calculates real (MW) flows on net-
work’s lines and gives no answers to what happens to voltage magnitudes or
reactive (MVAR) flows.
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4.3.3 DC power network model

The network of N agents are linked by transmission lines E, and G = (V,E)
forms a connected undirected graph. We start by introducing the constraints
that has to be taken into consideration at each node in the network. A vec-
torial presentation complying with the Production-Sharing problem is then
given and followed by the formulation of the DC-OPF problem.

• Node local formulation:

– The resource production at a certain node is limited, the real
power production box constraint for each node j ∈ V :

pGj ≤ pGj ≤ pGj . (4.6)

– In the DC model, the flow of real power along each line i ∼ j is
computed using Bji(θj − θi). The real power thermal box con-
straint for each branch i ∼ j is given by:

pij ≤ Bji(θj − θi) ≤ pij. (4.7)

Normally, pij = −pij. Let pij=̂Bji(θj − θi). Thus, this constraint
on transmitted power can be rewritten as:

|pij| ≤ pij. (4.8)

– We introduce the notion of excess power pEj of node j to designate
the power injected (or withdrawn) at node j ∈ V (4.5). The real
power balance constraint for each node j ∈ V can be written as:

pEj = pGj − pDj . (4.9)

– As previously explained, KCL and the DC model conditions im-
pose the excess power (which is possibly negative) to be transmit-
ted through the adjacent transmission lines. Formally, for every
agent j, this sums up to:

pEj =
∑

i∼j

Bji(θj − θi). (4.10)

• Global vectorial presentation:
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– Let M be the weighted branch-bus incidence matrix. Then, the
power flow box constraints for all the branches can be regrouped
as:

|Mθ| ≤ p, (4.11)

where, θ = (θ1, . . . , θN) is the phase vector and p is the vector of
edges’ thermal limits.

– Let pE = (pE1 , . . . , p
E
N) be the the power injection vector, pG =

(pG1 , . . . , p
G
N) be the power generation vector and pD = (pD1 , . . . , p

D
N)

be the power demand vector. The vectorial presentation of the real
power balance constraint:

pE = pG − pD. (4.12)

– The real power flow condition can also be rewritten in a vectorial
manner as the following multivariate power model:

pE = LBθ, (4.13)

where LB is the Laplacian matrix obtained from the weighted
adjacency matrix B. B is symmetric and positive semi-definite
with Bjj = 0 and Bji = −bji

6.

Using these vectorial presentation of the constraints, a first formulation
of the DC-OPF Production-Sharing problem is given as follows.

DC-OPF Production-Sharing Problem

min
pG,pE ,θ∈RN

∑

j∈V fj(p
G
j )

subject to







pE = pG − pD

pE = LBθ

pG ≤ pG ≤ pG

|Mθ| ≤ p

(4.14)

It is straightforward to see that the above problem has the same form
as Problem (4.1). It is important to notice that the matrix B (through its
Laplacian) suffices to structure the generated power vector to comply with
electrical equality constraints across the power network.

6 Bji corresponds to the imaginary part of the entry Yji of admittance matrix Y.
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4.4 Centralized Production-Sharing

The Production-Sharing problem introduced previously is essentially central-
ized. Indeed, while the underlying graph is presented through the Laplacian
matrix, the condition y = Lz on the transmission of the excess production
implies a coordinated action of the whole network.

The traditional way to deal with such Production-Sharing problem, in a
large network of connected agents, relies on the existence of a central fusion
center. This fusion center makes a decision with the aggregated data collected
from all the agents, then transmits each value to its corresponding node in
the network.

A large-scale centralized Production-Sharing problem suffers from several
technical and institutional drawbacks. On the one hand, this centralized opti-
mization method is prohibitive in systems that spread over several physically
distant devices due to the communication burden and the delays induced by
the required computations and communication [21]. On the other hand, the
privacy concerns of the end users and/or authorities (in case of an environ-
ment with multiple authorities), and the security issues related to having
only one central coordinator (e.g., single point of failure, bottleneck and
agreement in taking decisions) make it impossible to efficiently implement
the centralized optimization [82].

In order to decrease the communication cost and the computation capac-
ity requirements at the fusion center, it is advisable to distribute the compu-
tation load over different devices. A goal that can be easily met, by leveraging
on the presence of independent processors in each component of the power
grid. Thus, a distributed implementation of the Production-Sharing problem
is preferable and practically applicable.

4.5 Distributed Production-Sharing (DPS)

Operating in a distributed multiprocessor environment can potentially greatly
increase the available computational capacity and decrease the communica-
tion burden. Controlling a power system requires high-speed calculation
which can be obtained using existing multiprocessors allocated to subsys-
tems.

In this section, we design an equivalent problem where the network con-
dition is split into overlapping sub-graphs and add an additional indicator
function in order to ensure the equivalence with the former problem. Thus,
we convert the centralized Production-Sharing problem into a distributed
one.
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4.5.1 Distributed Formulation of the Problem

Firstly , the relation between y and z, y = Lz can be substituted in y =
x− d. Problem (4.1) is reformulated as follows:

min
x,y,z∈RN

∑

j∈V fj(xj)

subject to







Lz = x− d

x ≤ x ≤ x

p ≤ Mz ≤ p

(4.15)

Secondly, if we consider the boundaries on the sharing operation i.e.,
p ≤ Mz ≤ p. Then, we can modify these constraints by mean of slack
variables in order to obtain a system with only equality constraints. Let
s1 = (s1,1, . . . ,1,m ) and s2 = (s2,1, . . . , s2,m) be the two set used for this
purpose. The number of these inequality constraints is m = |E|, the slack
variables are chosen such that s1,i ≥ 0 and s1,i ≥ 0, ∀i . This leads to the
following problem:7

min
x,y,z∈RN

∑

j∈V fj(xj)

subject to







y = x− d

y = Lz

x ≤ x ≤ x

Mz + s1 = p

−Mz + s2 = −p

(4.16)

In the DC-OPF case, x is used to represent the power generation vector
pG, y for the power injections pE, and z to symbolize the voltage phase
vector θ. Additionally, d represents the power demand vector pD.

Starting from Problem (4.16), as every agent can control its resource
production (and thus its excess) as well as its network intermediate vector
(its phase in the DC-OPF case), it is convenient to stack these variables into
a vector of size 2N + 2m, u = [x; z; s1; s2].

With this new vector u that sketches the global network state, it is useful
to introduce a function F that corresponds to the function we seek to mini-

7We chose to relax the constraints on the maximal power sharing between connected
nodes or to incorporate these constraints into the global cost function. In this case we
can discard the weighted incidence matrix M and the corresponding clack variables. The
formulation of the problem become much simpler.

32



4.5. Distributed Production-Sharing (DPS)

mize in (4.1). F is applied to u and it encompasses the range conditions8:

F : R2N+2m −→ (−∞,+∞]

u =








x

z

s1

s2








7−→







∑

j∈V

fj(xj) if ∀j, xj ∈ [xj, xj]

+∞ elsewhere

(4.17)

One can remark that, provided the functions {fj}j∈V are convex, F is
also convex. Now, the rest of the conditions can be written linearly as:








I L 0 0

0 M I 0

0 −M 0 I








︸ ︷︷ ︸

A








x

z

s1

s2








︸ ︷︷ ︸

u

=






d

p

−p






︸ ︷︷ ︸

d̃

(4.18)

Hence, Problem (4.16) rewrites as

min
u∈R2N+2m

F (u)

subject to Au = d̃
(4.19)

Let us recall that in our scheme, each agent j has the knowledge of its own
cost function fj, its production-related variables xj, zj, the j-th row/column
of the Laplacian matrix L and the j-th column of the branch-bus incidence
matrix M.

In order to derive a distributed algorithm, a common solution is to in-
troduce one variable per condition line per agent and an indicator function
ensuring that for each condition line, the sum of the agents related variables
is equal to the corresponding value in d̃. Let [A]i represent the ith line of
matrix A. Formally, we define the matrix:

Ã =






diag([A]1)
...

diag([A]N+2m)




 (4.20)

8In the same way we can encompass other range conditions e.g., limits on z, y, s1 and
s2
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and the indicator function9,

C : R(N+2m)(2N+2m) −→ (−∞,+∞]

v 7−→







0 if ∀i = 1 . . . N + 2m,

2i(N+m)
∑

j=2(i−1)(N+m)+1

vj = d̃i

+∞ elsewhere

(4.21)
One can note that vector v has a lot more components than actually

needed. Due to the sparsity of the matrix A, several components in v are
equal to zero and can be omitted. But, for notation simplicity, the full vector
will be kept until we provide the actual algorithm derivation, where we will
eliminate unnecessary components and precise the actual number of variables
to be updated per agent.

Finally, we obtain the following distributed problem.

Distributed Production-Sharing Problem

min
u∈R2N+2m

F (u) + C(Ãu) (4.22)

By construction, the solutions of this problem allow to derive the solutions
of the original problem as mentioned in the following lemma.

Lemma 1. Let Assumption 1 hold. Then, the solutions of Problem (4.22) are
of the form u⋆ = [x⋆; z⋆; s⋆

1
; s⋆

2
] where (x⋆, z⋆) is a solution of Problem (4.15).

4.6 Conclusion

In this chapter, we provided in details how the DC-OPF problem can be
obtained from the AC power flow problem. We formulated the DC-OPF as
convex problem with linear equality, inequality and box constraints. We mo-
tivated a general model, the Production-Sharing problem. This model can
compass the DC-OPF problem along with other convex problems. In order
to cope with the need of distributing the computation process along differ-
ent actors, we provided distributed formulation of this Production-Sharing
problem. Next, we demonstrate how efficiently can the problem be solved
using the Alternating direction method of multipliers (ADMM) and how this
method can be obtained.

9throughout this paper, we call indicator function, a function which returns 0 when
the argument is in some set C and +∞ elsewhere. It is immediate to check that is C is
closed and convex, then the indicator of set C is convex and lower semi-continuous.
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Chapter 5

Area-based ADMM

5.1 Introduction

We consider the DPS formulation that we derived in the previous chapter.
Following the work of Eckstein [69] and Iutzeler [77], we provide step by
step the area-based distributed ADMM algorithm using monotone operator
theory. We start with some preliminaries regarding the basics of monotone
operator theory. We shift the given problem to the dual domain . After
which, we cite the Proximal Point Algorithm (PPA) and we show how it can
be used along the Douglas-Rachford (DR) splitting method in order to derive
the Alternating Direction Method of Multipliers (ADMM) algorithm.

5.2 Background Material from Monotone Op-

erator Theory

Take an Euclidean space set Y . We define its power set, denoted P(Y) = 2Y ,
as the family of all subsets of Y including the empty set ∅ and Y itself. An
operator D : X → Y maps every point x ∈ X to a point Dx ∈ Y , while a set
valued operator D : X → 2Y maps every point x ∈ X to a subset Dx ⊂ Y .

An operator D (single-valued or multi-valued), is characterized by its:

• graph: gra (D) = {(x,y) ∈ X × Y | y ∈ Dx} ;

• domain: dom (D) = {x ∈ X |∃y ∈ Y : y ∈ Dx} ;

• inverse: D−1 = {(y,x) ∈ Y × X | (x,y) ∈ gra (D)} ;

• zero’s set: Zer (D) = D−10 = {x ∈ X | 0 ∈ Dx} ;
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5.2. Background Material from Monotone Operator Theory

• set of fixed points: Fix (D) = {x ∈ X | x ∈ Dx} .

An operator D : Y → 2Y is

• monotone if,
〈x− x′,y − y′〉 ≥ 0 ∀ (x,y) , (x′,y′) ∈ gra (D);

• maximal if,
∄D′ : Y → 2Y , such that gra (D) ⊂ gra (D′);

• non-expansive if,
‖x− x′‖ ≥ ‖y − y′‖ ∀ (x,y) , (x′,y′) ∈ gra (D);

• firmly non-expansive if,
〈x− x′,y − y′〉 ≥ ‖y − y′‖2 ∀ (x,y) , (x′,y′) ∈ gra (D).

Let I be the identity operator, for an operator D : Y → 2Y the following
expressions are equivalent

• D is firmly non-expansive,

• I −D is firmly non-expansive,

• D−1 − I is maximally monotone,

Let D be an operator, the resolvent of operator D is defined as

JρD = (I + ρD)−1

From [83], [68] and [84] we can deduce the following:

Lemma 2. An operator D is monotone if and only if JρD is firmly non-
expansive. Additionally, if D was maximal the, JρD has a full domain.

The sub-gradient mapping ∂h of a proper convex function h : Y → R ∪
{+∞} is a monotone operator [85]. It is given by

∂h : Y → Y

∂h(x) = {y | ∀x′ ∈ Y , 〈x′ − x, y〉+ h(x) ≤ h(x′)} . (5.1)

Additionally, if h is closed then, the sub-gradient mapping ∂h of h is
maximally monotone on Y [85]. Furthermore, finding the minimum of h is
equivalent to finding the zero of ∂h.

36



5.3. Dual problem

5.3 Dual problem

We consider the following optimization problem:1

min
u∈R2(N+m)

F (u)

subject to Au = d̃,
(5.2)

where, F is a convex cost function, u ∈ R2(N+m) and d̃ ∈ RN+2m.
From A we define the following matrix:

Ã =






diag([A]1)
...

diag([A]N+2m)




 (5.3)

and the indicator function:23

C : R(N+2m)(2N+2m) −→ (−∞,+∞]

v 7−→







0 if ∀i = 1 . . . N + 2m,

2i(N+m)
∑

j=2(i−1)(N+m)+1

vj = d̃i,

+∞ elsewhere.

(5.4)
Using Ã and the indicator function C, we reformulate (5.2) as follows:

min
u∈R3N

F (u) + C(Ãu). (5.5)

Let λ be the vector of Lagrangian multipliers associated to the new set
of constraints Ãu = v. λ and v have the same size which is equal to number
of elements in A. The dual of the reformulated problem is given by [86]:

minimize
λ

{

F ∗(−Ã∗λ) + C∗(λ)
}

, (5.6)

where, functions F ∗ and C∗ are the Fenchel’s conjugate of f and g respec-
tively, i.e., F ∗(u) = sup

x

{〈x,u〉 − f(x)}. ÃT is the transpose of Ã.

1We considered these sizes for the variables and matrices in order to comply with the
distributed DC-OPF Production-Sharing problem formulated in Chapter 2.

2Throughout this paper, we call indicator function, a function which returns 0 when
the argument is in some set C and +∞ elsewhere. It is immediate to check that is C is
closed and convex, then the indicator of set C is convex and lower semi-continuous.

3 When A is a (N + 2m)× (2N + 2m) matrix, then v and λ which have the same size
are a (N +m)(2N + 2m)× 1 vectors. For simplicity we will only use |v| and |λ| to refer
to their size.
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5.4. Proximal Point Algorithm (PPA)

By strong duality, we now seek to calculate the minimum of this dual4.
The value minimizing it coincides with the opposite of the solution of the
original problem [87, Prop 3.31]. Thus, we shift to the dual domain where
finding this minimum can be achieved by utilizing the proximal point algo-
rithm (PPA).

5.4 Proximal Point Algorithm (PPA)

We denote by

D = −Ã ∂F ∗ ◦ (−ÃT ) + ∂C∗ (5.7)

the sub-gradient mapping the dual problem (5.6).
We suppose that λ is the minimum of this dual (5.6). Then by Fermat’s

rule [86, Th 16.2], λ is also the zero of D. Additionally, the operator D is
a single valued maximal monotone operator [85]. Thus, by [87, Th 3.6] and
for any ρ > 0, the resolvent of D defined as

JρD = (I + ρD)−1 (5.8)

is a single valued firmly non-expansive operator with full domain. The fol-
lowing Lemma is then applicable.

Lemma 3. [83, PPA] : Given a maximal monotone operator D, such that
Zer (D) 6= ∅. Then Fix (JρD) is a singleton and Zer (D) = Fix (JρD). More-
over, starting from any initial point ζ0 ∈ dom (D), ζk → Fix (JρD), where
ζk+1 = JρD(ζ

k), k ≥ 1.

As previously mentioned, the minimum of the dual problem (5.6) coin-
cides with the zero of its sub-gradient mapping D. By Lemma 3, instead
of searching for Zer (D), we can iteratively find Fix (JρD). That is, starting
from any initial point ζ0, we iterate ζk+1 = JρD(ζ

k) until convergence.
Thus, PPA can be applied to the sub-gradient of the dual problem in

order to find its minimum. However, we should calculate the resolvent JρD

which appears to be a complicated task. This results from the fact that
the sub-gradient D of the dual problem comprises at the same time the
global objective function and the constraints which are of heterogeneous na-
tures. Most of the optimization methods solve this problem by splitting
it [88]. For this reason, we make use of the Douglas-Rachford (DR) splitting

4 The original dual form is maximize
λ

−
{

F ∗(−ÃTλ) + C∗(λ)
}

, for simplicity we use

its opposite given by equation (5.6)
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5.5. Douglas-Rachford Splitting Method

method [68,89,90] in order to separate D into components that are easier to
be manipulated. This method is considered because D can be seen as

D = −Ã∂F ∗ ◦ (−ÃT )
︸ ︷︷ ︸

T

+ ∂C∗
︸︷︷︸

U

(5.9)

where T and U are two maximal monotone operators [85].

5.5 Douglas-Rachford Splitting Method

The DR splitting method is used to find the zero of the sum of two maximal
monotone operators. The structure of D which can be written as the sum
of two maximal monotone operators T and U naturally calls for the DR
splitting method in which the operators T and U are employed in separate
steps [85].

The DR splitting operator derived by Lions and Mercier [90], on which
we apply PPA, is given by

R = {(ν + ρv,λ− ν) ; (ν,α) ∈ T, (λ,v) ∈ U and ν + ρα = λ− ρv}.
(5.10)

Let us rephrase the following result [90] regarding the monotonicity of R.

Theorem 1. Let ρ > 0. If T and U are monotone, then R is monotone; fur-
thermore, the resolvent S=̂Jρ(T+U) = (R+I)−1 of R is firmly non-expansive.
If T and U are maximal monotone operators, then R is also a maximal mono-
tone operator; furthermore, S is firmly non-expansive and has full domain.

Thus, since T and U are maximal monotone operators, R is also a max-
imal monotone operator [68,90]. The resolvent S =(R+ I)−1 of R is firmly
non-expansive with full domain, it is given by

S = JλT ◦ (2JλU − I) + (I − JλU)

= {(λ+ ρv,ν + ρv) ; (ν,α) ∈ T, (λ,v) ∈ U and ν + ρα = λ− ρv},
(5.11)

with Fix (S) = {λ+ ρv; (λ,v) ∈ U, (λ,−v) ∈ T} .

Instead of computing Zer (T + U), we can calculate ζ̄ = Zer (R) from
which we extract Zer (T + U) = JρU(ζ̄) as shown in the following Lemma.

Lemma 4. [90] If ζ̄ = Zer (R), then λ̄ = JρU(ζ̄) = Zer (T +U), where JρU

is the resolvent of U given by JρU = {(λ+ ρv,λ) ; (λ,v) ∈ U}.
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5.6. Distributed ADMM

Proof: Let ζ̄ = Zer (R) then, ζ̄ = Fix (S). From the definition of Fix (S),
there is a unique couple (λ̄, v̄) ∈ U verifying ζ̄ = λ̄ + ρ v̄ and T (λ̄) = −v̄.
Then, from the definition of the resolvent of U we obtain JρU(ζ̄) = JρU(λ̄+
ρ v̄) = λ̄ and (T + U)(λ̄) = T (λ̄) + U(λ̄) = 0. Thus, λ̄ = Zer (T + U).

The DR splitting operator R is a maximal monotone operator hence,
we can apply PPA on R. This is easier than applying PPA directly on
D = T + U . Thus, we will recursively search for ζ̄ = Fix (S).

In the next section we demonstrate how this calculation leads to the
solution of our original optimization problem.

5.6 Distributed ADMM

5.6.1 PPA and DR splitting method combined

Using PPA on the DR splitting operator, we establish in this section the
distributive computation of the minimum of the convex optimization prob-
lem (5.2). Associating PPA with the splitting operator R leads to the
ADMM.

At this point and by applying the PPA, we aim to iteratively calculate
Zer (R). In order to develop this iterative process explicitly, we make use of
the following Lemma.

Lemma 5. [68] For any ζ = λ+ρv, such that (λ,v) ∈ U and λ = JρU(ζ),
there is a variable u such that the following is valid

i) S(ζ) = λ+ ρÃu,

ii) u=argminu Lρ(u,v;λ),

where, ρ > 0 is a penalty parameter and Lρ(u,v;λ) is the augmented La-
grangian of the general problem (5.2) given by

Lρ(u,v;λ)
∆
= F (u) + C(v) +

〈

λ, Ãu− v
〉

+
ρ

2

∥
∥
∥Ãu− v

∥
∥
∥

2

. (5.12)

Proof: Let ζ = λ+ ρv, such that (λ,v) ∈ U and λ = JρU(ζ).

i) R(ζ)=λ−ν where (ν,α) ∈ T and ν+ρα = λ−ρv. T is the maximal
monotone operator given by T = −Ã∂F ∗ ◦ (−ÃT ). Therefore,

α ∈ −Ã∂F ∗(−ÃTν)
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5.6. Distributed ADMM

and there is a unique
u ∈ ∂F ∗(−ÃTν)

such that
α = −Ãu.

From (5.11) we have

S(ζ) = ν + ρv = λ− ρα.

But the following equality holds

α = −Ãu.

Thus, we conclude that

S(ζ) = λ+ ρÃu.

ii) Since F is a closed proper convex function, then by the Fenchel-Young
inequality [86, Prop 16.9] the following expression

u ∈ ∂F ∗(−ÃTν)

is equivalent to
−ÃTν ∈ ∂F (u).

It follows that
0 ∈ ∂F (u) + ÃTν.

From the output of (5.10), we have

ν = λ− ρ(v +α).

Additionally, α can be obtained using

α = −Ãu,

then, we obtain:
ν = λ+ ρ(Ãu− v).

Subsequently, the expression

0 ∈ ∂F (u) + ÃTν

translates to
0 ∈ ∂F (u) + ÃTλ+ ρÃT (Ãu− v).

Using these results, we can conclude that

u = argminu Lρ(u,v;λ).

Using Lemma 3 − 5, we can give explicitly the kth recursion of the PPA
applied to R, i.e., the iteration ζk+1 = S(ζk). From this iteration we extract
the update expressions of uk, vk and λk as proven next.
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5.6. Distributed ADMM

5.6.2 Area-based ADMM

The graph G s decomposed into L overlapping areas Al, l ∈ {1, . . . , L}. For
each area we assign a unique sub-problem where it seeks to update the cor-
responding variables while having limited coordination with the surrounding
areas.

Each area Al has a subset of vertices Vl ⊂ V and a subset of edges
El = {{u, v}; (u, v) ∈ V 2

l }∩E such that the following assumptions hold true.

Assumption 2. For any l ∈ {1, ..., L}, let G(Vℓ) , (Vℓ, Eℓ) be the sub-graph
of area Aℓ, the following properties are assumed:

1.
⋃L

l=1 Vℓ = V ,

2.
⋃L

l=1 G(Vℓ) is connected.

For this decomposition to be clear, we use the following operator:

Definition 1. We define the linear operator
∏

Vl
(v)

∏

Vl

: R|v| −→ Rnl

v 7−→ (vβ)(i,j)∈Il (5.13)

where, β = 2(i − 1)N + 2(i − 1)m + j, Il =
{

(i, j);Aij 6= 0, j ∈
⋃

j∈Vl
Jj

}

,

Jj = {j, j +N, j + 2N, j + 2N +m}, and nl = |Il|.

Additionally, let ṽ = [v1; . . . ;vL], λ̃ = [λ1; . . . ;λL] where vl =
∏

Vl
(v)

and λl =
∏

Vl
(λ) respectively.

We adopt the area-based formulation of the problem given below:5

min
u

F (u) + C(ṽ)

subject to B̃u = ṽ
(5.14)

where, C is always defined as an indicator function on the values of v, B̃ is
the diagonal map of B. This latter is obtained after projecting A on area
basis using the projection operator defined previously. Thus,

A −→∏ B = [A1; . . . ;AL] −→
diag

B̃ = [diag (B)].

5Depending on the size of the areas, this formulation can be also used to depict a
centralized scheme when L is chosen equal to 1. In this case we can apply PPA and DR
splitting method on order to obtain the centralized ADMM without the need of the new
to project any of the vectors/matrices.
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5.6. Distributed ADMM

Al is the subblock of A that corresponds to area Al. It should be noted that
size of B and B̃ depends on the number of overlapping areas and the number
of shared nodes.

At this point, we only substitute Ã,v and λ by B̃, ṽ and λ̃ respectively.
PPA and DR splitting methods remain applicable.

Using this decomposition, the area-based distributed ADMM algorithm
is obtained by the following Lemma.

Lemma 6.

i) Let ζ0 = λ̃0 + ρṽ0 such that λ̃0 = JρU(ζ
0) and (ṽ0, λ̃0) ∈ U . Define

∀ k ≥ 0, ζk+1 = S(ζk). Let λ̃k = JρU(ζ
k) where (ṽk, λ̃k) ∈ U , and

uk+1 was uniquely defined by Lemma 5 such that S(ζk) = λ̃k + ρB̃u6.
Then the following holds:

uk+1 = argmin
u

Lρ(u, ṽ
k; λ̃k),

ṽk+1 = argmin
ṽ

Lρ(u
k+1, ṽ; λ̃k),

λ̃k+1 = λ̃+ ρ(B̃uk+1 − ṽk+1).

ii) Additionally, let Sl(ζ
k) = λk

l +
∏

Vl
(B̃uk+1) be the lth sub-block of

S(ζk) = [λk
1 +

∏

V1
(B̃uk+1); . . . ;λk

L +
∏

VL
(B̃uk+1)] and ul =

∏

Vl
(u).

The sub-problem to be solved by the processor of areas Al is given by:

uk+1
l =argmin

ul

∑

j∈Vl

fj(uj) + λk
l

T
∏

Vl

(B̃u) +
ρ

2
‖
∏

Vl

(B̃u)− vk
l ‖

2, (5.15)

vk+1
l =argmin

vl

− λk
l

T

vl +
ρ

2
‖
∏

Vl

(B̃uk+1)− vl‖
2, (5.16)

λk+1
l =λk

l + ρ(
∏

Vl

(B̃uk+1)− vk+1
l ), (5.17)

Proof: For the completeness of our work, we provide this proof that
follows the work in [68].

i) Let ζk = λ̃k + ρṽk, by Lemma 3 there is a unique uk+1 such that

S(ζk) = νk + ρṽk = λ̃k + ρB̃uk+1

6B is obtained through the projection of A to the subset Vl of each area Al, and
B̃ = diag [B]
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and
uk+1 = argminu Lρ(u, ṽ

k; λ̃k).

As for λk+1 and vk+1, we derive their corresponding expressions using
the following hypothesis on ζ:

ζk+1 = S(ζk).

On the one hand, let ζk+1 = λ̃k+1 + ρṽk+1 where (λ̃k+1, ṽk+1) ∈ U and
λ̃k+1 = JρU(ζ

k+1) then,

λ̃k+1 = ζk+1 − ρṽk+1.

On the other hand, S(ζk) = λ̃k + ρB̃uk+1 = ζk+1. Thus,

λ̃k+1 = λ̃k + ρB̃uk+1 − ρṽk+1.

Moreover
ṽk+1 ∈ U(λ̃k+1)

then, by the Fenchel-Young inequality [86, Prop 16.9] this is equivalent
to

λ̃k+1 ∈ ∂C(ṽk+1).

Thus, we have
0 ∈ ∂C(ṽk+1)− λ̃k+1.

It follows that

0 ∈ ∂C(ṽk+1)− λ̃k + ρṽk+1 − ρB̃uk+1,

which is equivalent to

ṽk+1 = argminṽ Lρ(u
k+1, ṽ; λ̃k).

We conclude that there is a unique uk+1 such that S(ζk) = νk+ρṽk =
λ̃k + ρB̃uk+1 where,

uk+1 = argminu Lρ(u, ṽ
k; λ̃k) (5.18)

ṽk+1 = argminṽ Lρ(u
k+1, ṽ; λ̃k) (5.19)

λ̃k+1 = λ̃k + ρ(B̃uk+1 − ṽk+1). (5.20)

ii) Hereafter, we show that the decomposition stated in this Lemma is
true for the update expression of u.
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uk+1 =argmin
u

F (u) + C(ṽk) + 〈λ̃k, B̃u− ṽk〉+
ρ

2
‖B̃u− ṽk‖2

= argmin
u

F (u) +
L∑

l=1

{

λk
l

T
∏

Vl

(B̃u) +
ρ

2
‖
∏

Vl

(B̃u)− vk
l ‖

2

}

.

(5.21)

This expression is separable into L independent parts uk+1
l , l ∈ {1, . . . , L}.

Each is given by ul =
∏

Vl
(u).

The sub-block uk+1
l is assigned to Al and contains only the components

of uk+1 corresponding to the nodes j ∈ Vl.

uk+1
l = argmin

ul

∑

j∈Vl

fj(uj)+λk
l

T
∏

Vl

(B̃u) +
ρ

2
‖
∏

Vl

(B̃u)− vk
l ‖

2 (5.22)

As for ṽ, we have:

ṽk+1 =argmin
ṽ

F (uk+1) + C(ṽ) + 〈λ̃k, B̃uk+1 − ṽ〉+
ρ

2
‖B̃uk+1 − ṽ‖2

= argmin
ṽ

C(ṽ) +
L∑

l=1

{

−λk
l

T

vl +
ρ

2
‖
∏

Vl

(B̃uk+1)− vl‖
2

}

.

(5.23)

Thus, each area has to solve:

vk+1
l = argmin

vl

C(ṽ)−λk
l

T

vl +
ρ

2
‖
∏

Vl

(B̃uk+1)− vl‖
2 (5.24)

and,

λk+1
l =λk

l + ρ(
∏

Vl

(B̃uk+1)− vk+1
l ). (5.25)

At this point, we were able to demonstrate how efficiently we can obtain
the area-based ADMM equations using PPA and DR splitting method.

5.6.3 Classical ADMM

If we did not decompose the graph into overlapping areas then, the direct
application of the PPA and DR splitting method would have led to the
classical ADMM algorithm.

45



5.7. Conclusion

This can be also seen as a special case of the area based distributed
ADMM algorithm where we only have one area of size N is considered.

An iteration of the classical ADMM algorithm that we obtain is given by:

uk+1 = argmin
u

{

F (u) +
ρ

2

∥
∥
∥
∥
Ãu− vk +

λk

ρ

∥
∥
∥
∥

2
}

(5.26a)

vk+1 = argmin
v

{

C(v) +
ρ

2

∥
∥
∥
∥
Ãuk+1 − v +

λk

ρ

∥
∥
∥
∥

2
}

(5.26b)

λk+1 = λk + ρ
(

Ãuk+1 − vk+1
)

(5.26c)

5.7 Conclusion

We showed how the ADMM method can be applied to the Production-
Sharing problem to make it distributed on area basis. In this context, the
problem is divided into different overlapping areas. Each sub-problem is
solved by a dedicated processor in the corresponding area. In the next chap-
ter we will provide the main results of our work. We present the classical
ADMM application to the DPS problem then, we demonstrate how an asyn-
chronous version of the area based ADMM can be applied effectively on
the DPS problem. We also extend these results to a network with non-
overlapping areas.
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Chapter 6

DPS w/ADMM

6.1 Introduction

We derived in the previous chapters a DPS problem. The DC-OPF problem
was shown to be a special case of the DPS problem. We also demonstrated
that the DPS problem is well suited for the distributed ADMM. We provide
in this chapter the detailed application of the ADMM to the DPS problem,
starting from its classical form. Then, we consider the case where the net-
work is divided into multiple overlapping areas and we present the distributed
ADMM application. Confronted by the synchronicity of this application, we
present an asynchronous application of the ADMM and prove its conver-
gence. Additionally, we extend our results to the case of a network with
non-overlapping areas, a case that appears more feasible and realistic.

6.2 Classical ADMM application to the

Production-Sharing problem

One can remark that the DPS problem (4.22) is composed of i) a convex
function F ; ii) and (sum of) indicator function C; and iii) a relation matrix
Ã. While there is not a lot of assumptions on function F , function C and
matrix Ã have a very specific structure.

Indeed, C is an indicator function of certain structure in its argument
and Ã is a network related matrix; their composition leads to a function
ensuring that the optimization variable verifies the original constraints of
Problem (4.1).

As explained in the previous chapter, it is interesting to break the com-
position C ◦ Ã; and split the resolution of the problem between F and C.
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To do so, it is common to consider the dual of the problem, we also split
the use of sub-gradient of the dual function using DR splitting [68]. This
conjunction along with PPA actually leads to the well-known ADMM.

Writing an iteration of the ADMM algorithm on Problem (4.22) leads to
the following set of equations

uk+1 = argmin
u

{

F (u) +
ρ

2

∥
∥
∥
∥
Ãu− vk +

λk

ρ

∥
∥
∥
∥

2
}

(6.1a)

vk+1 = argmin
v

{

C(v) +
ρ

2

∥
∥
∥
∥
Ãuk+1 − v +

λk

ρ

∥
∥
∥
∥

2
}

(6.1b)

λk+1 = λk + ρ
(

Ãuk+1 − vk+1
)

(6.1c)

where, ρ > 0 is a free hyper-parameter and λ is the vector of Lagrangian
multipliers.

We decompose these equations as follows.
For every node j ∈ V , let Ij = {i : Aip 6= 0, p = {j, j+N, j+2N, j+2N+

m}} be the set of constraints in which node j is involved. The minimization
step (6.1a) can be written as follows:

uk+1 =argmin
xj ,zj ,

j=1,...,N

I+(s1) + I+(s2) +
N∑

j=1

fj(xj)

+
N+2m∑

i=1

ρ

2

{
N∑

j=1

{
∥
∥
∥
∥
∥
Aijxj +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
Aij+N

zj +
λk
β+N

ρ
− vkβ+N

∥
∥
∥
∥
∥

2
}

+
m∑

j=1

{
∥
∥
∥
∥
∥
Aij+2N

s1,j +
λk
β+2N

ρ
− vkβ+2N

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
Aij+2N+m

s2,j +
λk
β+2N+m

ρ
− vkβ+2N+m

∥
∥
∥
∥
∥

2
}
}

(6.2)

where, β = β(i, j) = 2N(i− 1)+2m(i− 1)+ j is used as a compact notation
to index the values of v and λ corresponding to the element Aij. Similarly
β + N , β + 2N and β + 2N +m correspond to Aij+N

, Aij+2N
and Aij+2N+m

respectively.
This expression is separable into node basis because the expressions used

to update xj and zj depend only on the previous values calculated for node
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j and its one-hop neighbors. Thus the iteration on u can be implemented in
a distributed manner where each node j ∈ V update its variables xj, zj by
solving the following update steps.1

xk+1
j =argmin

xj

fj(xj) +
ρ

2

N+2m∑

i=1

‖Aijxj +
λk
β

ρ
− vkβ‖

2 (6.3)

zk+1
j =argmin

zj

ρ

2

N+2m∑

i=1

‖Aij+N
zj +

λk
β+N

ρ
− vkβ+N‖

2 (6.4)

sk+1
1,j =argmin

s1,j

ρ

2

N+2m∑

i=1

‖Aij+2N
s1,j +

λk
β+2N

ρ
− vkβ+2N‖

2 (6.5)

sk+1
2,j =argmin

s2,j

ρ

2

N+2m∑

i=1

‖Aij+2N+m
s2,j +

λk
β+2N+m

ρ
− vkβ+2N+m‖

2 (6.6)

These update steps can be further simplified using the specific structure
of matrix A and compact notations α = β(j, j) = (2N + 2m+ 1)(j − 1) + 1,
γ = β(i+N, j) = 2N(i+N − 1)+2m(i+N − 1)+ j, ω = β(i+N +m, j) =
2N(i+N +m− 1) + 2m(i+N +m− 1) + j, κ = β(i, i−N) = 2N(i− 1) +
2m(i−1)+i−N , and χ = β(i, i−N−m) = 2N(i−1)+2m(i−1)+i−N−m.

First we need to explicit the update step on the auxiliary variables (6.1b):

vk+1 = argmin
v

C(v) +
ρ

2

N+2m∑

i=1

{
N∑

j=1

{
∥
∥
∥
∥
Aijx

k+1
j − vβ +

λβ
k

ρ

∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
Aij+N

zk+1
j − vβ+N

+
λβ+N

k

ρ

∥
∥
∥
∥
∥

2
}

+
m∑

j=1

{
∥
∥
∥
∥
∥
Aij+2N

sk+1
1,j − vβ+2N

+
λβ+2N

k

ρ

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥
Aij+2N+m

sk+1
1,j − vβ+2N+m

+
λβ+2N+m

k

ρ

∥
∥
∥
∥
∥

2
}
}

subject to
2N+2m∑

j=1

vβ = d̃i, ∀i = 1, . . . , N + 2m. (6.7)

This expression can be divided into a set of four equations using the

1The indicator on the sign of s1,j and s2,j will appear later as a projection of these
variables into the set of positive numbers.
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compact notation β as follows:

vk+1
β = argmin

vβ

ρ

2

∥
∥
∥
∥
Aijx

k+1
j − vβ +

λβ
k

ρ

∥
∥
∥
∥

2

(6.8a)

vk+1
β+N

= argmin
vβ+N

ρ

2

∥
∥
∥
∥
∥
Aij+N

zk+1
j − vβ+N

+
λβ+N

k

ρ

∥
∥
∥
∥
∥

2

(6.8b)

vk+1
β+2N

= argmin
vβ+2N

ρ

2

∥
∥
∥
∥
∥
Aij+2N

sk+1
1,j − vβ+2N

+
λβ+2N

k

ρ

∥
∥
∥
∥
∥

2

(6.8c)

vk+1
β+2N+m

= argmin
vβ+2N

ρ

2

∥
∥
∥
∥
∥
Aij+2N+m

sk+1
2,j − vβ+2N+m

+
λβ+2N+m

k

ρ

∥
∥
∥
∥
∥

2

(6.8d)

subject to
N∑

j=1

(vβ + vβ+N
) +

m∑

j=1

(vβ+2N
+ vβ+2N+m

) = d̃i, ∀i = 1, . . . , N + 2m.

In order to solve this set of minimization steps we introduce the vector
of Lagrangian multipliers π = (π1, . . . , πN+2m)

T to the set of constraints
Ãu = d̃. Thus, π correspond to the set of constraints on the entries of v.
After some algebra we obtain:

vk+1
β =

1

ρ
(−πk+1

i + λk
β) + Aijx

k+1
j (6.9a)

vk+1
β+N

=
1

ρ
(−πk+1

i + λk
β+N

) + Aij+N
zk+1
j (6.9b)

vk+1
β+2N

=
1

ρ
(−πk+1

i + λk
β+2N

) + Aij+2N
sk+1
1,j (6.9c)

vk+1
β+2N+m

=
1

ρ
(−πk+1

i + λk
β+2N+m

) + Aij+2N+m
sk+1
2,j . (6.9d)

We substitute these results into their corresponding constraints which
gives us:

πk+1
i =

1

d(i)

{

ρri(u
k+1) +

N∑

j=1

(λk
β + λk

β+N
) +

m∑

j=1

(λk
β+2N

+ λk
β+2N+m

)
}

(6.10)

where d(i) is the degree of the ith constraint (i.e., the count of its nonzero
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elements), and rki =̂[A]iu
k − d̃i. The residual of the i

th constraint is given by:

rki = −di + 1i≤N(
N∑

j=1

xk
j + Lijz

k
j )

+ 1N<i≤N+m(
N∑

j=1

Mijz
k
j +

m∑

j=1

sk1,j)

+ 1i>N+m(
N∑

j=1

−Mijz
k
j +

m∑

j=1

sk2,j) (6.11)

where 1i<N = 1 when i < N and 0 otherwise, vice versa for 1i>N .

As for the dual variable update step (6.1c), we can substitute it with a set
of separated updates of its components λβ. Then, by making use of (6.9a)
we can reduce the computational complexity of the dual update step (6.1c)
by replacing it with a set of updates on π. This is proved as follows,

λk+1 = λk + ρ
(

Ãuk+1 − vk+1
)

⇒λk+1
β = λk

β + ρ(Aijx
k+1
j − vk+1

β ) (6.12a)

λk+1
β+N

= λk
β+N

+ ρ(Aij+N
zk+1
j − vk+1

β+N
) (6.12b)

λk+1
β+2N

= λk
β+2N

+ ρ(Aij+2N
sk+1
1,j − vk+1

β+2N
) (6.12c)

λk+1
β+2N+m

= λk
β+2N+m

+ ρ(Aij+2N+m
sk+1
2,j − vk+1

β+2N+m
). (6.12d)

Equation (6.12a) yields

λk+1
β =λk

β + ρ(Aijx
k+1
j −

1

ρ
(−πk+1

i + λk
β)− Aijx

k+1
j )

=πk+1
i , ∀j = 1, . . . , N. (6.13)

The same equality holds for the other entries of λ i.e., for each constraint
i = 1, . . . , N + 2m we have the equality between every corresponding entry
in λ and the corresponding πi. That is, λ

k+1
β = πk+1

i , ∀j = 1, . . . , 2N + 2m.
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We plug this last result into (6.9a) (6.9b) and (6.9d), we obtain:

vk+1
β = Aijx

k+1
j −

rk+1
i

d(i)
(6.14a)

vk+1
β+N

= Aij+N
zk+1
j −

rk+1
i

d(i)
(6.14b)

vk+1
β+2N

= Aij+2N
sk+1
1,j −

rk+1
i

d(i)
(6.14c)

vβ+2N+m
= Aij+2N+m

sk+1
2,j −

rk+1
i

d(i)
. (6.14d)

Which can be reduced using (6.11) into:

vk+1
β = 1i=j x

k+1
j −

rk+1
i

d(i)
(6.15a)

vk+1
β+N

= 1i≤NLi−N j z
k+1
j −

rk+1
i

d(i)
(6.15b)

vk+1
β+2N

= 1N<i≤N+m sk+1
1,j −

rk+1
i

d(i)
(6.15c)

vβ+2N+m
= 1i>N+m sk+1

2,j −
rk+1
i

d(i)
. (6.15d)

After a careful look at these equations we can deduce that a big numbers
of the entries in v are always zeroes, these entries correspond to the zero
elements in A. These updates correspond to the difference between the
updated primal variables and the corresponding constraints’ residuals. Thus,
they can be directly taken into account in the other steps of the distributed
optimization algorithm.

As for (6.10), it reduces to the following:

πk+1
i =

ρ

d(i)
rk+1
i + πk

i . (6.16)
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We adopt a new formulation for the residual r = (r1, r2, r2) where,

rk1,i=̂rki =1i=jx
k
j +

N∑

j=1

Lijz
k
j − di, ∀i = 1, . . . , N (6.17)

rk2,i=̂rki+N
=1i=js

k
1,j +

N∑

j=1

Mijz
k
j − di+N , ∀i = 1, . . . ,m (6.18)

rk3,i=̂rki+N+m
=1i=js

k
2,j −

N∑

j=1

Mijz
k
j − di+N+m, ∀i = 1, . . . ,m. (6.19)

In the same manner, we divide π into π1 ∈ RN , π2 ∈ Rm and π3 ∈ Rm,
after some algebra we obtain:

πk+1
1,i =̂πk+1

i =
ρ

d1(i)
rk+1
1,i + πk

1,i (6.20)

πk+1
2,i =̂πk+1

i+N
=

ρ

d2(i)
rk+1
2,i + πk

2,i (6.21)

πk+1
3,i =̂πk+1

i+N+m
=

ρ

d3(i)
rk+1
3,i + πk

3,i (6.22)

where, d1(i), d2(i) and d3(i) represent the degree of constraint i, i+N and
i+N +m respectively.

Finally, we can rewrite the primal variables update steps (6.3) and (6.4)
as:

xk+1
j = argmin

xj

fj(xj) +
ρ

2

N∑

i=1

‖Aijxj +
λk
β

ρ
− vkβ‖

2 +
ρ

2

N+2m∑

i=N+1

‖
λk
β

ρ
− vkβ‖

2

= argmin
xj

fj(xj) +
ρ

2
‖xj +

λk
α

ρ
− vkα‖

2 (6.23)

zk+1
j = argmin

zj

ρ

2

{ N∑

i=1

‖Lijzj +
λk
β+N

ρ
− vkβ+N

‖2 +
N+m∑

i=N+1

‖Mi−N jzj +
λk
β+N

ρ
− vkβ+N

‖2

+
N+2m∑

i=N+m+1

‖ −Mi−N−mjzj +
λk
β+N

ρ
− vkβ+N

‖2
}

= argmin
zj

ρ

2

N∑

i=1

‖Lijzj +
λk
β+N

ρ
− vkβ+N

‖2+

+
ρ

2

m∑

i=1

{

‖Mijzj +
λk
γ+N

ρ
− vkγ+N

‖2‖ −Mijzj +
λk
ω+N

ρ
− vkω+N

‖2
}

(6.24)
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In the same manner, we can simplify the slack variables update steps (6.5)
and (6.6) as follows:

sk+1
1,j = argmin

s1,j

ρ

2
‖s1,j +

λk
κ+2N

ρ
− vkκ+2N

‖2 (6.25)

sk+1
2,j = argmin

s2,j

ρ

2
‖s2,j +

λk
χ+2N+m

ρ
− vkχ+2N+m

‖2 (6.26)

Using the previous results on the auxiliary variables and Lagrangian mul-
tipliers, we obtain the following update steps for the primal and slack vari-
ables:

xk+1
j =argmin

xj

{

fj(xj) +
ρ

2
‖xj +

πk
1,j

ρ
− xk

j +
rk1,j

d1(j)
‖2

}

(6.27)

zk+1
j =argmin

zj

N∑

i=1

‖Lijzj +
πk
1,i

ρ
− Lijz

k
j +

rk1,i

d1(i)
‖2

+
m∑

i=1

{

‖Mijzj +
πk
2,i

ρ
−Mijz

k
j +

rk2,i

d2(i)
‖2

+‖ −Mijzj +
πk
3,i

ρ
+Mijz

k
j +

rk3,i

d3(i)
‖2
}

(6.28)

sk+1
1,j =max

{

0, zk1,j −
πk
2,j

ρ
−

rk2,j

d2(i)

}

(6.29)

sk+1
2,j =max

{

0, zk2,j −
πk
3,j

ρ
−

rk3,j

d3(i)

}

(6.30)

Solving the update steps leads to Algorithm 1 on Production-Sharing
algorithm using ADMM.
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Algorithm 1: Production-Sharing optimization w/ ADMM

1. Initialize u and π to the initial values u0 and π0.

2. At iteration k:

(a) For every agent j = 1, . . . , N update xj and zj:

xk+1
j =argmin

xj

fj(xj) +
ρ

2
‖xj +

πk
1,j

ρ
− xk

j +
rk1,j

d1(j)
‖2 (6.31a)

zk+1
j =zkj −

1
∑N

i=1 L
2
ij + 2

∑m

i=1 M
2
ij

(
N∑

i=1

Lij

(πk
1,i

ρ
+

rk1,i

d1(i)

)

+
m∑

i=1

Mij

(πk
2,i

ρ
+

rk2,i

d2(i)

)

−
m∑

i=1

Mij

(πk
3,i

ρ
+

rk3,i

d3(i)

))

.

(6.31b)

For each connection j = 1, . . . ,m, the corresponding nodes update
s1,j and s2,j using:

sk+1
1,j =max

{

0, zk1,j −
πk
2,j

ρ
−

rk2,j

d2(i)

}

(6.32a)

sk+1
2,j =max

{

0, zk2,j −
πk
3,j

ρ
−

rk3,j

d3(i)

}

. (6.32b)

(b) Exchange of zj and π1,i

(c) For each constraint i ∈ Ij = {i; ∃Aip 6= 0, p = {j, j+N}}, compute

πk+1
1,i =̂πk+1

i =
ρ

d1(i)
rk+1
1,i + πk

1,i (6.33a)

πk+1
2,i =̂πk+1

i+N
=

ρ

d2(i)
rk+1
2,i + πk

2,i (6.33b)

πk+1
3,i =̂πk+1

i+N+m
=

ρ

d3(i)
rk+1
3,i + πk

3,i (6.33c)

where, d1(i), d2(i) and d3(i) represent the degree of constraint i,
i+N and i+N+m respectively; r1,i,r2,i and r3,i are their residuals.

3. If the stopping criterion is not satisfied, increase k and go to 2). Oth-
erwise, retain xk+1

j and zk+1
j .
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Algorithm 1 is effectively distributed; for each agent j only local informa-
tion (fj, Lj,·) and exchanges with the neighbors are required to compute its
personal variables. We can also remark that, contrary to the consensus-based
distributed ADMM [91], the relations between the agents are directly linked
to the original constraints and not due to a reformulation of an originally
centralized problem.

It is straightforward to see that the conditions for convergence of the
ADMM algorithm are met provided that Assumption 1 is verified.

Theorem 2. Let Assumption 1 hold. Then, the generated sequence

uk = ([xk, zk, sk
1
, sk

2
])

for k > 0 converges to

u⋆ = [x⋆;y⋆; z⋆, s⋆
1
, s⋆

2
]

where
(x⋆,y⋆, z⋆)

is a solution of Problem (4.1).

This results from the relation linking ζ to u and v. Iterating on ζ will
lead to ζ∗ and intuitively we will converge to u∗ and v∗.

This algorithm can be implemented either as a fully distributed ADMM
application which requires synchronization and communication between all
the connected nodes (by aid of the results of Section 6.5); or as a centralized
application which requires a central fusion central communicating with all the
nodes and with high computational capacities. Next, we give the distributed
ADMM application to the production sharing problem that was provided in
the previous chapter.

The initial conditions u0 and π0 can be any convenient starting point
such as a previous solution or flat start.

6.3 Synchronous DPS w/ADMM

In the case of a network of agents with multiple authorities or when the net-
work is divided into multiple micro-networks, it is advised to use area-based
distributed mechanisms to manage efficiently the network. Interestingly, the
components of λ and v are linked either to a node or to an edge of net-
work; thus, updating only a part of these components sums up to performing
computations and exchanges only on a sub-graph.
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Power generation Power transmission

Area 1
Area 2

Power demand

Figure 6.1: Power grid and its graph presentation divided into 2 overlapping
areas.

Let us decompose the graph G into L connex areas Aℓ, l ∈ {1, . . . , L}
(see Fig. 6.1). Each area will act as a local processor exchanging data with
its closest neighbors. Area Aℓ is a graph with vertices Vℓ ⊂ V and edges
Eℓ = {{i, j}; (i, j) ∈ V 2

ℓ } ∩E such that the following assumptions hold true.

Assumption 3. For any l ∈ {1, ..., L}, let G(Vℓ) , (Vℓ, Eℓ) be the sub-graph
of area Aℓ, the following properties are assumed:

1.
⋃L

l=1 Vℓ = V ,

2.
⋃L

l=1 G(Vℓ) is connected.

This means that in order to ensure convergence, the areas must overlap
(i.e. have at least an agent in common, see Fig. 6.1), which can be restrictive.
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At each iteration k, every areaAl, l ∈ {1, . . . , L} will apply equations (6.1a)
and (6.1b) for the components of u and v that correspond to them. A com-
munication step is then required before solving the components of (6.1c)
assigned to the constraints of the nodes in Vl. This communication step is
only performed between the neighboring areas sharing common nodes. It can
be conducted through the shared nodes in an implicit manner, or through
the processors of the overlapping areas. The synchronous distributed pro-
duction sharing algorithm using ADMM is given as follows. This algorithm
is obtained through similar calculations as in Algorithm 1. We only need to
follow the same steps while considering the division of the network between
multiple areas.

Algorithm 2: Synchronous DPS optimization w/ ADMM

1. Initialize u and π to the initial values u0 and π0.

2. At iteration k, each area Al becomes operational, for each agent j ∈ Vl

the processor in this area performs the following steps:2

(a) Updates xj, zj, s1,j and s2,j using equations (6.31a), (6.31b),
(6.32a) and (6.32b).

(b) Communicates the values zk+1
j of border nodes to the neighboring

areas.

(c) Let Ij = {i; ∃Aip 6= 0, p = {j, j + N}} be the set of constraints
corresponding to nodes j ∈ Vl. For each constraint i ∈ Ij, the
processor computes rk+1

1,i , rk+1
2,i , rk+1

3,i and update πk+1
1,i , πk+1

2,i and

πk+1
3,i using equations (6.33a) to (6.33c) respectively.

3. If the stopping criterion is not satisfied, increase k and go to 2). Oth-
erwise, retain xk+1

j and zk+1
j .

Algorithm 2 shares the same synchronization problem as Algorithm 1
that was given in the previous section. This property induces latency in the
computation. All the processors are activated during every iteration and
regular communication are required between all them. Next, we adopt an
asynchronous version of this algorithm where only one portion of the network
is updated in a given iteration.

2If however each node had a processor, then each node can perform the computation
of its variables and the communication with its neighbors.
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6.4 Randomized DPS w/ ADMM

6.4.1 Theoretical foundations

In the previous sections, we presented two algorithms for solving Prob-
lem (4.1) in a distributed manner over the graph associated with L. However,
it is not always possible nor appropriate to compute a full iteration of this
algorithm. For example, some agents of the network can randomly fail to
exchange or compute their updates. Also, it may be faster to solve the prob-
lem by taking into account only a random subset of the agents/links at each
iteration in the spirit of mini-batch algorithms.

For these reasons, it is interesting to consider a randomized version of
the previous algorithm where only some parts of the network are active at a
given iteration.

This can be achieved by following the ADMM randomization scheme
proposed in [77]. At each iteration k, this method consists of picking a
random set of coordinates ξk (or equivalently a random subset of agents and
links), and performing the updates of equations (6.1b) and (6.1c) only for
the coordinates of ξk, the other ones being kept at their former value. As for
the first update equation (6.1a), only the coordinates needed for the partial
update of equations (6.1b) and (6.1c) are to be computed.

In this way, provided that the random coordinate selection sequence
(ξk)k>0 is i.i.d. and such that the selection probability is positive for every
coordinate, the randomized algorithm converges almost surely to a sought
solution [77] (see also [92] for refinements).

6.4.2 Randomized algorithm

As indicated previously, when we iterate ζk+1 =S(ζk), we obtain an algo-
rithm that imitates the behavior of the well-known synchronous ADMM al-
gorithm.

In order to obtain an asynchronous algorithm, we endow this updating
process with a random behavior. To this end, let ζ = [ζ1; . . . ; ζL] where
ζl = λl + ρvl, λl and vl are the vector containing the Lagrangian multipliers
and the components of v that corresponds to the nodes and edges in area Al.
Suppose S(ζ) = [S1(ζ); . . . ;SL(ζ)], we define for each area Al, the operator
Ŝl : Y → Y as:

Ŝl(ζ) = [ζ1; . . . ; ζl−1;Sl(ζ); ζl+1; . . . ; ζL)] (6.34)

which implies to have only one area’s process activated at every iteration.
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After decomposing the network into overlapping areas such that Assump-
tion 2 holds true, we assume the following assumption of the choice of ξk.

Assumption 4. The area selection sequence (ξk)k>0, valued in the set of the
subsets of {1, ..., L}, is independent and identically distributed and such that
∀ℓ, P[ℓ ∈ ξ1] > 0.

This assumption is needed to ensure that the area selection process is
i.i.d. It is required to make sure that each component of λ or v has a positive
update probability which is required conditions for the convergence [77].

The following theorem is applicable.

Theorem 3. [77, Th. 2]: Take a firmly non-expansive operator S = [S1; . . . ;SL]
with full domain on Y and a sequence of i.i.d. random variables (ξk)k∈N such
that Assumption 3 holds. Then, starting from any initial value ζ0, the ran-
dom iterates, ζk+1 = Ŝξk+1(ζk) converges almost surely3 to a random variable
supported by Fix (S) (when Fix (S) 6= ∅).

Thus, as can be concluded from Theorem 3, applying the area-based
ADMM algorithm by random areas leads to a solution of the DPS prob-
lem (4.1).

The Asynchronous Distributed Production-Sharing algorithm with over-
lapping areas is stated in Algorithm 3. We will extend its application to the
non-overlapping case in next section.

Mainly, at each iteration k the algorithm can be seen as applying equa-
tions (6.1a)-(6.1c) but keeping only the components related to the randomly
chosen area of ξk+1. This is obtained through similar calculations to those
used to obtain Algorithm 1. We only need to take into consideration the
decomposition of the graph into multiple areas.

We remark that Algorithm 3 is effectively randomized in the sense that
only the agents of the chosen areas perform computations and exchanges.
The performance of this algorithm as well as details about the choice of
the area selection sequence will be provided in Chapter 8. Furthermore, its
convergence result is a direct consequence of Theorem 3.

3ζk converges almost surely to ζ if Pr( lim
k→∞

ζk = ζ) = 1.
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Algorithm 3: Asynchronous DPS optimization w/ ADMM

1. Initialize u and π to the initial values u0 and π0.

2. At iteration k, a random area Aξk becomes operational, and for each
agent j ∈ Vξk the following steps should be performed:

(a) Update xj, zj, s1,j and s2,j using equations (6.31a), (6.31b), (6.32a)
and (6.32b).

(b) Communicate zk+1
j to the neighboring nodes.

(c) For each constraint i ∈ Ij, compute rk+1
1,i , rk+1

2,i , rk+1
3,i and update

πk+1
1,i , πk+1

2,i and πk+1
3,i using equations (6.33a) to (6.33c).

3. If the stopping criterion is not satisfied, increase k and go to 2). Oth-
erwise, retain xk+1

j and zk+1
j .

Theorem 4. Let Assumptions 1 and 3 hold. Then, the sequence (uk)k>0 =
([xk,yk, zk])k>0 generated by Asynchronous DPS optimization w/ ADMM
converges almost surely to u⋆ = [x⋆;y⋆; z⋆] where (x⋆,y⋆, z⋆) is a solution
of Problem (4.1).

The application of the asynchronous DPS algorithm using ADMM can
be implemented either as a case of random failures within the network or in
a way to reduce the computation and communication by turning areas on
and off. Both schemes are implemented in Chapter 8. In the former, from
an iteration to the following, nodes fail to update their variables which lead
to a new graph. In the latter, the network is divided from the beginning
into multiple areas that are randomly chosen to perform the update of their
variables. In practice, this will lead into an efficient use of energy and less
communication between the processors. Additionally, processor has more
idle time and the number of computations they have to perform is reduced
and more energy can be saved for other applications/tasks.

As mentioned before, the convergence result is limited to the case where
these areas overlap. This is equivalent to having some agents falling under
the authority of multiple areas. In power grid networks, this may result
in conflicts in decision making as a coordination is required between these
authorities. In the following section, we extend our algorithms to the case
of non-overlapping areas by introducing dummy nodes between the areas.
Subsequently, the areas become more independent as every agent refers to
only one area.
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Area 1
Area 2

Area 1
Area 2

Border nodeInner node Dummy node

Figure 6.2: Network of 2 non-overlapping areas converted to overlapping
network.

6.5 Extension to the non-overlapping areas

case

Because imposing overlapping areas in a power network structure may lead
to practical management problems, and inspired by the method of passing
adjacent variables [93] that allows to convert networks of non-overlapping
and independent areas into a network of overlapping areas, we extend the
asynchronous distributed ADMM to cover this context of non-overlapping
areas.

In this section, we extend our previous results to the case where non-
overlapping areas are activated at each iteration. We focus here on the
aforementioned DPS algorithm but the reasoning below can be easily adapted
to a large class of distributed ADMM-based algorithms.

As opposed to Assumption 3, we divide here the graph G (linked to
Laplacian L as described in the previous section) into L strictly separated
areas Aℓ, ℓ ∈ {1, . . . , L}. Every node belongs to exactly one area. A node
will be called a border node if and only if it is connected to a node in a
different area, and an inner node otherwise.
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6.5. Extension to the non-overlapping areas case

Starting from the initial Production-Sharing problem (4.1), we aim at
decomposing it into L sub-problems, each associated to an area Aℓ. Obvi-
ously, some constraints couple multiple areas together and thus cannot be
assigned to one area. These coupling constraints are related to the connec-
tions between border nodes. Inspired by the method of passing adjacent
variables [93], we propose an approach that transforms our problem so that
only the agents of a given area are active at each iteration. For this, we add a
dummy node between each pair of connected border nodes of different areas
as shown in Fig. 6.2. These dummy nodes are not associated with any cost
function but only serve to rewrite the constraints coupling adjacent areas
using a shared variable, that will have to be exchanged as we will see later.

Thus, the changes to be applied to the initial optimization problem are:

• Add chosen dummy nodes;

• Rewrite the coupling constraints accordingly.

Practically, the problem becomes

Non-overlapping DPS Problem

min
◦

x,
◦

y,
◦

z∈R
◦

N

∑

j∈
◦

V

◦

f j(
◦
xj)

subject to ∀j ∈
◦

V ,
◦
xj ≤

◦
xj ≤

◦
xj







◦
y =

◦
x−

◦

d
◦
y =

◦

L
◦
z

◦
p ≤

◦

M
◦
z ≤

◦
p

(6.35)

where,

–
◦

V = V
⋃ •

V is the new set of
◦

N agents composed of the set of the N

original agents V plus the set of the
•

N dummy agents
•

V ;

– for all j ∈ V ,
◦

f j,
◦
xj,

◦
xj, and

◦

dj are respectively equal to their original
values fj, xj, xj, and dj;

– for all d ∈
•

V ,
◦

fd ≡ 0,
◦
xd =

◦
xd = 0, and

◦

dd = 0;

– for all original links i ∼ j ∈ E, the values of
◦
p and

◦
p are not modified;

63



6.5. Extension to the non-overlapping areas case

– for all new links i ∼ d, the values of
◦
p and

◦
p are equal to those of the

corresponding tie-line in the non-overlapping network.

The design of
◦

L from L and
◦

M from M is given in the following Lemma
and explained next.

Lemma 7. The mapping between the non-overlapping problem complicating
constraints and the modified overlapping problem is given by:

• If i ∼ j is a tie-line,

◦

Ljj = Ljj +
1

2

∑

d∼j

◦

Ljd,
◦

Ljd = −2Lij,
◦

Ldd = 4Lij,

◦

M jd = −2Mij.

• If i and j belong to the same area,

◦

Lij = Lij,

◦

M ij = Mij.

where d is the dummy node that was inserted on the tie-line linking nodes i

and j. These two nodes belonged to different areas in the non-overlapping
areas division. Lij and Ljj are the entries related to the original network

Laplacian L.
◦

Lij and
◦

Ljj are the entries related to the modified network

Laplacian
◦

L.

Proof: In the original problem, the constraint related to L writes for
all j ∈ V , yj =

∑

i∈V Ljizi. Furthermore, if j belongs to area ℓ, this can be
rewritten yj =

∑

i∈Aℓ
Ljizi+

∑

k∈V \Aℓ
Ljkzk where the second term represents

the coupling relations we want to eliminate thanks to the addition of dummy
nodes.

In the new problem, the constraint related to
◦

L is written for all nodes

j ∈ Aℓ as
◦
yj =

∑

i∈Aℓ\j

◦

Lji

◦
zi+

∑

d∼j

◦

Ljd

◦
zd+

◦

Ljj

◦
zj. For all i, j ∈ V belonging

to the same area, we have
◦

Lji = Lji.

Noticing that
◦
yd = 0 for all d ∈

•

V , we get that 0 =
◦

Ldd

◦
zd+

◦

Ldi

◦
zi+

◦

Ldj

◦
zj =

◦

Ldd

◦
zd+

◦

Lid

◦
zi+

◦

Ljd

◦
zj, where i and j are the two original nodes between which

the dummy node was inserted (and the second equality is due to the fact that
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L needs to remain symmetric). Node d serves as a dummy node which does
not generate or consume resources. The following equality should hold for

each dummy node inserted,
◦

Ldj(
◦
zj −

◦
zd) +

◦

Ldi(
◦
zi −

◦
zd) = 0. We assume the

symmetry on the edges linking d to i and j, thus
◦

Lid =
◦

Ljd =
◦

Ldi =
◦

Ldj.

We obtain
◦

Ldd = −2
◦

Ldj. We can rewrite
◦
yj as

◦
yj =

∑

k∈Aℓ\j

◦

Ljk

◦
zk + (

◦

Ljj −

1
2

∑

d∼j

◦

Ljd)
◦
zj −

1
2

∑

i∼j,d∼j

◦

Ldj

◦
zi.

Comparing this expression of
◦
yj with the previous one, we obtain,

◦

Ljj = Ljj +
1

2

∑

d∼j

◦

Ljd,
◦

Ljd = −2Lij ,
◦

Ldd = 4Lij .

Matrix M is obtained from L. The same follows for the modified matrix
◦

M. Thus, we have:

◦

M jd = −2Mij, if i ∼ j is a tie-line,

◦

M ij = Mij, if i and j belong to the same area.

With this formulation, Problems (4.1) and (6.35) are equivalent. Fol-
lowing the reasoning of the previous sections on the modified problem, one
can derive a new algorithm corresponding to the previous one but with the
modified functions and matrices. A solution of the original problem is then
extracted from a solution of the modified problem by omitting the entries
related to the dummy nodes. One can remark that in the new algorithm,
when an area is updated, it only needs local information plus the value of
the variables corresponding to the dummy nodes. An iteration is thus now
composed of two parts: i) local computations and exchanges in the selected
area; ii) communication of border-related values to the adjacent areas.

6.6 Conclusion

We provided in this chapter the detailed results of applying ADMM to the
DPS problem. First, we considered the case where the network is divided into
multiple overlapping areas and we presented the distributed ADMM appli-
cation. We solved the synchronous problem of this method by presenting an
asynchronous application of the ADMM and we proved its convergence. All
of these applications required having some nodes shared between the areas.
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6.6. Conclusion

We concluded this chapter by extending the application of the synchronous
and asynchronous ADMM to the case of a network with non-overlapping ar-
eas. The areas are now independent, all he nodes belong to only one area.
Their values are updated when the corresponding area is activated.
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Chapter 7

Integration of Renewable
sources and Storage devices

7.1 Introduction

The objective of this chapter is to formulate a distributed control algorithm
for cooperation of storage operation in a power network under the frame-
work of distributed generation (DG) units. As the number of DG units in a
power network scales up, the implementation of centralized control policies
start to become non feasible owing to the tremendous amount of information
that must be exchanged in the power network. Therefore, under a realistic
setting, the DGs will have to operate autonomously with limited informa-
tion exchange between them. Moreover, they cannot see the impact of their
actions on the entire power grid. Therefore, decentralized control strategies
must be designed that ensure the stability of the grid.

This is a joint work with Dr. Subhash Lakshminarayana where we intend
to formulate decentralized control policies for storage operation in a power
network by combining techniques from Lyapunov optimization [94, 95] and
the ADMM framework.

7.2 System Model

We consider the same power network consisting of a set V of N buses (nodes)
and m branches connecting the buses denoted by the set E. We add the
following modifications to the problem described in Chapter 4.

• The variables are now per time slot:

67



7.2. System Model

– The conventional power generation at node j during time t is
denoted pGj [t],it is bounded by pGj [t] and pGj [t].

– The voltage phase angle at bus j is given by θj[t].

– The demand at node j during time slot t, pDj [t], is assumed to be
inelastic.

– The power flow on branch (j, i) is denoted pji[t].

– The cost of conventional generation denoted by the function fj(p
G
j [t])

is assumed to be a quadratic function given as [1]

fj(p
G
j [t]) = cjp

G
j [t] + c′jp

G2

j [t], (7.1)

where cj and c′j are constants that depend on the generation tech-
nology at bus j.

• Every bus j can harvestXj[t] units of energy from renewable generation
during time t.

– Xj[t] is assumed to evolve according to a Markovian process.

– The cost of generation of the renewable energy is assumed to be
zero.

• Each bus can be equipped with a battery of storage capacity Ej,max

units.

– The battery charging and discharging operations at bus j are rep-
resented by Yi,ch[t] and Yi,dis[t] respectively.

– Yi,ch[t] and Yi,dis[t] are bounded by Y max
ch and Y max

dis .

0 ≤ Yj,ch[t] ≤ Y max
ch , ∀t, j ∈ V (7.2)

0 ≤ Yj,dis[t] ≤ Y max
dis , ∀t, j ∈ V. (7.3)

– The charging and discharging efficiencies are modeled using ηch ≤
1 and ηdis ≥ 1.

– The energy level in the battery Ej at node j is constrained as
follows:

0 ≤ Ei[t] ≤ Emax (7.4)

– The energy level in the battery evolves as

Ej[t+ 1] = Ej[t] + ηchYj,ch[t]− ηdisYj,dis[t] j ∈ V. (7.5)

– The battery discharge decision is constrained by the energy avail-
able at bus j:

ηdisYj,dis[t] ≤ Ej[t], ∀t, j ∈ V. (7.6)
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7.3 Problem Formulation

The energy availability (7.3) and the battery discharge constraint (7.6) can
be combined as follows:

Yj,dis[t] ≤ min
(Ej[t]

ηdis
, Y max

dis

)

j ∈ V. (7.7)

Similarly, combining (7.2) and (7.4) leads to:

Yj,ch[t] ≤ min
(Emax − Ej[t]

ηch
, Y max

ch

)

j ∈ V. (7.8)

We make the following practical assumption on the battery capacity:

ηdisY
max
dis < Emax.

We also consider that each battery has the same charging and discharging
efficiency

ηdis = ηch

and we use the following variable to denote the battery decision at time slot
t,

Yj[t] = Yj,ch[t]− Yj,dis[t].

The objective of the controller is to design the system parameters in order
to minimize the time average cost of energy generation subject to the DC
power flow equations and battery operational constraints, stated as:

min
pGj ,Yj ,Hj ,θj

j∈V

limT→∞
1
T

∑T−1
t=0 E

[
∑N

j=1 fj(p
G
j [t])

]

subject to







Ej[t+ 1] = Ej[t] + Yj[t]

pDj [t]−Hj[t]− pGj [t] + Yj[t] +
∑

i∼j pji[t] = 0,

Hj[t] ≤ Xj[t],

pij ≤ pij[t] ≤ pij,

−min
(

Ej [t]

ηdis
, Y max

dis

)

≤ Yj[t] ≤ min
(

Emax−Ej [t]

ηch
, Y max

ch

)

.

(7.9)
pji[t] = Bji(θj[t] − θi[t]) represents the power transmitted from node j to
node i or the inverse.

We denote the minimum time average cost of (7.9) over all feasible control
policies by fmin. The optimization problem (7.9) is in the form of a stochastic
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dynamic programming problem. Solving this problem using conventional
dynamic programming based techniques can be computationally complex,
especially when the state space of the system is large. In what follows, we
use the technique of Lyapunov optimization to develop a low complexity
online solution to this problem [94,95].

7.4 Algorithm Design by Lyapunov Optimiza-

tion

In order to solve (7.9) using the technique of Lyapunov optimization, we first
introduce an approximate version of this problem in which we relax all the
constraints associated with the battery, stated as follows [96]:

min
pGj ,Yj ,Hj ,θj

j∈V

limT→∞
1
T

∑T−1
t=0 E

[
∑N

j=1 fj(p
G
j [t])

]

subject to







Y j,ch ≤ Y j,dis

Ej[t+ 1] = Ej[t] + Yj[t]

pDj [t]−Hj[t]− pGj [t] + Yj,[t] +
∑

i∼j pji[t] = 0,

Hj[t] ≤ Xj[t],

pij ≤ pij[t] ≤ pij,

−min
(

Ej [t]

ηdis
, Y max

dis

)

≤ Yj[t] ≤ min
(

Emax−Ej [t]

ηch
, Y max

ch

)

(7.10)
where,

Y j,ch = lim
T→∞

1

T

T−1∑

t=0

E[Yj,ch[t]]

and Y j,dis is defined similarly.

We subsequently address (7.10) as the relaxed problem. Note that in the
relaxed problem, the constraint Y j,ch ≤ Y j,dis corresponds to the stability of
the virtual energy queue in (7.5) associated with the battery, and represents
the case with infinite energy storage capacity.

In what follows, we solve the relaxed problem using the Lyapunov op-
timization technique. However, while designing the control algorithm, we
introduce a perturbation parameter α as well as a control parameter Q. By
carefully tuning these two parameters, we ensure that the algorithm devel-
oped for the relaxed problem is feasible for the original problem as well. We
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subsequently omit the details of the algorithm design. In the proposed al-
gorithm, the storage operations during each time slot can be computed as a
solution to the following optimization problem.

It is worth noting that solving (7.11) requires the knowledge of only the
current state of the system. Moreover, it does not suffer from the curse of
scalability as in the case of dynamic programming based solutions.

Algorithm 4 [95]: Lyapunov Optimization for DC-OPF with storage
devices and renewable energy sources

1. Initialize t = 0 and Ej[0] = 0 ∀j.

2. For each j ∈ V , compute Yj[t], p
G
j [t], θj[t] and Hj[t] as the solution to

the following linear programming problem:1

min
pGj ,Yj ,Hj ,θj

j∈V

∑N

j=1(Ej[t]− Emax)Yj[t] +Q
∑N

j=1 fi(p
G
j [t])

subject to







−min
(

Ej [t]

ηdis
, Y max

dis

)

≤ Yj[t] ≤ min
(

Emax−Ej [t]

ηch
, Y max

ch

)

pDj [t]−Hj[t]− pGj [t] + Yj[t] +
∑

i∼j pji[t] = 0,

Hj[t] ≤ Xj[t],

pij ≤ pij[t] ≤ pij,

(7.11)

3. Update t = t + 1. If t = Tmax then terminate. Otherwise, update the
battery level using

Ej[t+ 1] = Ej[t] + Yj[t], ∀ j ∈ V.

and return to step 2.

We now state the result on the algorithm performance analysis.

1 In this thesis, pij is chosen equal to −pij
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Theorem 5. [95] By choosing the value of the parameters α and Q as

α = (ηchY
max
ch

)2;Q =
ηchEmax − ηdisY

max
dis

cmax + c′max min(dmax, Y
max
dis

)
, (7.12)

Algorithm 4 can be made feasible for (7.9). Furthermore, the time average
cost function achieved by this algorithm satisfies:

lim
T→∞

1

T

T−1∑

t=0

E
[∑N

ji=1
fj(p

G
j [t])

]

≤ fmin +
B̃

Q
, (7.13)

where, B̃ < ∞ is a constant, cmax = max
j∈V

cj and c′max = max
j∈V

c′j.

Theorem 5 implies that the performance of the algorithm is at a bounded
distance from the optimal value, where the bound is determined by the value
of parameter Q. However as evident from (7.12), the value of the parameter Q
depends on the battery capacity Emax. Therefore, for large Emax, performance
of the algorithm can be made arbitrarily close to fmin.

7.5 Distributed formulation of the problem

Let xj denotes the power generated at node j and zj its voltage phase angle.
We drop the time parameter t and we start by rewriting problem (7.11) using
global vectorial presentation. We regroup the variables as follows:

x =






x1

...

xN




 , z =






z1
...

zN




 ,Y =






Y1

...

YN




 , and H =






, H1

...

HN




 .

We also convert the inequalities related to power line flow into equality
constraints using two set of slack variables:

s1 =






s1,1
...

s1,m




 and s2 =






s2,1
...

s2,m




 ,

where m is the number of branches.
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Let u be the vector incorporating the network’s global variables:

u =













G

θ

Y

H

S1

S2













. (7.14)

We regroup the power flow equations using the following matrix:

A =






I L −I I 0 0

0 M 0 0 I 0

0 −M 0 0 o I




 , (7.15)

and the vector:

d̃ =














pD1
...

pDN

pij
...

pij














. (7.16)

A is an (N + 2m)× (4N + 2m) matrix, and d̃ ∈ R(N+2m). As explained
in Chapter 4, equations Bj,i(θj − θi) for each branch (i, j) are used to create
the weighted branch-bus incidence matrix M .

Following the reasoning in Chapter 4, let F be the new cost function
corresponding to the function to minimize in (7.11) applied to u and encom-
passing the box constraints on the generated power. Define the matrix Ã of
size N ′ × (4N + 2m), where N ′ = (N + 2m)(4N + 2m)

Ã =






diag([A]1)
...

diag([A]N+2m)




 (7.17)

and the indicator function

G : RN ′

−→ (−∞,+∞]

v 7−→







0 if ∀i = 1
4Ni+2mi∑

j=4(i−1)N+2(i−1)m+1

vj = d̃j

+∞ otherwise

(7.18)
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7.5. Distributed formulation of the problem

The problem can be reformulated as the DPS Problem

min
u∈R3N

F (u) +G(Ãu) (7.19)

To this reformulated problem we can apply the distributed ADMM al-
gorithm. As previously explained in Chapters 4 and 5, an iteration of the
ADMM algorithm leads to the following equations:

uk+1 = argmin
u

{

F (u) +
ρ

2

∥
∥
∥
∥
Ãu− vk +

λk

ρ

∥
∥
∥
∥

}2

(7.20)

vk+1 = argmin
v

{

G(v) +
ρ

2

∥
∥
∥
∥
Ãuk+1 − v +

λk

ρ

∥
∥
∥
∥

}2

(7.21)

λk+1 = λk + ρ
(

Ãuk+1 − vk+1
)

(7.22)

where ρ > 0 is a free hyper-parameter.

Let rk+1
i be the residual of the ith constraint,

rk+1
i =

N∑

j=1

Aijx
k+1
j + Aij+N

zk+1
j + Aij+2N

Y k+1
j + Aij+3N

Hk+1
j

+
m∑

j=1

Aij+4N
sk+1
1,j + Aij+4N+m

sk+1
2,j − d̃j, (7.23)

πi be the Lagrangian multipliers assigned to this constraint

πk+1
i = πk

i +
ρ

d(i)
rk+1
i (7.24)

and di be its degree.

After several simplifications, we obtain the following set of equations for
problem (7.11). The distributed Optimization result obtained by combining
Lyapunov optimization and fully distributed ADMM is given in Algorithm
6.
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7.5. Distributed formulation of the problem

For sake of simplicity, we divided these vectors as follows:

π1,i = πi, ∀i = 1, . . . , N

π2,i = πi+N , ∀i = 1, . . . ,m

π3,i = πi+N+m, ∀i = 1, . . . ,m

r1,i = ri, ∀i = 1, . . . , N

r2,i = ri+N , ∀i = 1, . . . ,m

r3,i = ri+N+m, ∀i = 1, . . . ,m

d1(i) = d̃(i), ∀i = 1, . . . , N

d2(i) = d̃(i+N), ∀i = 1, . . . ,m

d3(i) = d̃(i+N +m), ∀i = 1, . . . ,m.

The Lagrangian multipliers πk+1
1,i , πk+1

2,i and πk+1
3,i are updated using the

following equations:

πk+1
1,i =̂πk+1

i =
ρ

d1(i)
rk+1
1,i + πk

1,i (7.25a)

πk+1
2,i =̂πk+1

i+N
=

ρ

d2(i)
rk+1
2,i + πk

2,i (7.25b)

πk+1
3,i =̂πk+1

i+N+m
=

ρ

d3(i)
rk+1
3,i + πk

3,i (7.25c)

where, d1(i), d2(i) and d3(i) represent the degree of constraint i, i + N and
i+N +m respectively; r1,i,r2,i and r3,i are their residuals.
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7.5. Distributed formulation of the problem

Algorithm 6: Lyapunov optimization and fully distributed ADMM
Production-Sharing optimization w/ renewable and storage devices

1. Initialize u and π to the initial values u0 and π0.

2. At iteration k:

(a) For every agent j = 1, . . . , N update its variables using:

xk+1
j =

ρ

ρ+ 2Qc′j
xk
j −

1

ρ+ 2Qc′j

(

Qcj + πk
1,j +

ρ

d1(j)
rk1,j

)

(7.26a)

zk+1
j =zkj −

1
∑N

i=1 L
2
ij + 2

∑m

i=1 M
2
ij

(
N∑

i=1

Lij

(πk
1,i

ρ
+

rk1,i

d1(i)

)

+
m∑

i=1

Mij

(πk
2,i

ρ
+

rk2,i

d2(i)

)

−
m∑

i=1

Mij

(πk
3,i

ρ
+

rk3,i

d3(i)

))

(7.26b)

Y k+1
j =Y k

j +
πk
1,j − αjηj

ρ
+

rk1,j

d1(j)
(7.26c)

Hk+1
j =Hk

j −
πk
1,j

ρ
−

rk1,j

d1(j)
(7.26d)

For each connection j = 1, . . . ,m, the corresponding nodes update
s1,j and s2,j using:

sk+1
1,j =max

{

0, sk1,j −
πk
2,j

ρ
−

rk2,j

d2(j)

}

(7.27a)

sk+1
2,j =max

{

0, sk2,j −
πk
3,j

ρ
−

rk3,j

d3(j)

}

(7.27b)

(b) Exchange of zj and π1,i

(c) For each constraint i ∈ Ij = {i; ∃Aip 6= 0, p = {j, j +N}}, update
the corresponding Lagrangian multipliers.

3. If the stopping criterion is not satisfied, increase k and go to 2). Oth-
erwise, retain the computed values.
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7.6. Conclusion

7.6 Conclusion

We have incorporated battery devices under a DC power flow framework. We
devised an online algorithm for the problem based on the theory of Lyapunov
optimization. Then, we solved this online problem in a decentralized fashion
with only local computations and communication between neighboring nodes
using task-based ADMM iterations.

Our solution can be useful for power grid designer to lay out optimal
infrastructure in terms of storage and transmission lines to meet specific cost
criteria.
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Chapter 8

Implementations

8.1 Introduction

In this chapter, we implement the algorithms derived in this thesis on the
DC-OPF problem, a special linear DC approximation of the OPF problem
[79]. Simulations are first carried out on the conventional power grid. We
considered the IEEE−30 bus test system [97] and the IEEE−118 bus test
system for this problem. Then, we used the IEEE−6 bus test system for the
implementation of ADMM on the DC-OPF with storage devices and renew-
able energy sources. We tried to show the objective and residual convergence
properties of the algorithms. We also provided different scenarios and asyn-
chronous applications in which the distributed ADMM algorithm was proven
to be effective and scalable.

8.2 DC-OPF

We start by considering an electrical power grid of N nodes and m branches,
and we focus on the DC-OPF problem. The set of nodes is denoted V , and E

represents the set of edges/branches. The DC-OPF defined in 4.3 considered
in this chapter can be written as the following:

min
pG,pE ,θ∈RN

∑

j∈V fj(p
G
j )

subject to







pE = pG − pD

pE = LBθ

pG ≤ pG ≤ pG

|Mθ| ≤ p

(8.1)
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8.2. DC-OPF

fj(p
G
j ) is a closed proper convex cost function on the power generated pGj

at node j ∈ V . Each node has lower and upper limits on the generated power:
pG ≤ pG ≤ pG. These limits are reduced to zeroes if no generator is placed

at node j. At each node j we need to meet a power demand pDj , either
by generating power or by importing it from neighboring nodes using the
transmission lines. Thermal limits are to be considered at each of these lines:
|Mθ| ≤ p where θ is the vector of all the voltage angles andM is the weighted
branch-nodes incidence matrix. As for LB1, it corresponds to the Laplacian
of the graph representing the network, we obtain it through the susceptance
matrix B. After replacing the power injection pE with its equivalent LBθ.
And using slack variables to transform the last set of inequality constraints
into equality, the DC-OPF problem reduces to:

min
u

F (u)

subject to








I L 0 0

0 M I 0

0 −M 0 I








︸ ︷︷ ︸

A








x

z

s1

s2








︸ ︷︷ ︸

u

=






d

p

−p






︸ ︷︷ ︸

d̃

(8.2)

Note that the cost only depends on the generated power. We consider
here quadratic cost functions, more precisely for each generator agent j, we
suppose fj(xj) = c′jx

2
j + cjxj for p

G
j,min ≤ xj ≤ pGj,max and +∞ otherwise.

Let π = (π1, . . . , πN+2m)
T be the vector of Lagrangian multiplies assigned

to the set of constraints in hand.

The update steps obtained for each component in u using the ADMM
algorithm are given next.

With the chosen quadratic cost functions, Eq. (6.31a) that is used to
update the power generation simplifies to the following:

xk+1
j = Π

[xjxj ]

[
ρxk

j − cj − πk
1,j −

ρ

d1(j)
rk1,j

2c′j + ρ

]

where, j ∈ {1, . . . , N} and Π[xjxj ] is the projection onto the interval [xjxj] of
the variable xj. The residual of constraint j is

rkj = [A]ju
k − dj.

1Later we will refer to this matrix as L only for simplicity purpose
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8.2. DC-OPF

Let r1,j=̂rj be the residual of the jth constraint for j = 1, . . . , N . Then,

rk1,j = xk
j +

N∑

i=1

Ljiz
k
i − dj.

Let Nj be the set of neighbors of node j and d1(j)=̂d(j) for j = 1, . . . , N be
the degree of the jth constraint. Then, if node j is equipped with a generator,
we have

d1(j) = 2 + |Nj|.

If no generator exists at node j then the degree of the corresponding con-
straint is

d1(j) = 1 + |Nj|.

We also suppose π1,j=̂πj for j = 1, . . . , N , this Lagrangian multipliers is
updated using:

πk+1
1,j =

ρ

d1(j)
rk+1
1,j + πk

1,j.

The voltage angle at each node can be updated using:

zk+1
j =zkj −

1
∑N

i=1 L
2
ij + 2

∑m

i=1 M
2
ij

(
N∑

i=1

Lij

(πk
1,i

ρ
+

rk1,i

d1(i)

)

+
m∑

i=1

Mij

(πk
2,i

ρ
+

rk2,i

d2(i)

)

−
m∑

i=1

Mij

(πk
3,i

ρ
+

rk3,i

d3(i)

))

where L is an N×N matrix, Lij = bij is the susceptance of line (i, j) ∈ E,
and Lii =

∑

i∼j − bij. M is the weighted incidence matrix of size m × N

where each row corresponds to an edge in E. For the kth row linking nodes
i and j, Mkj is chosen to be equal to bij, Mki = −bij, and Mkj′ = 0 if i′ 6= i

and i′ 6= j.
For i = 1, . . . ,m we suppose π2,i=̂πi+N , then π2 represents the second

subset of π. It is updated using

πk+1
2,i =

ρ

d2(i)
rk+1
2,i + πk

2,i

where d2(i)=̂d(i+N) for i = 1, . . . ,m is the degree of the constraints in the
second part of matrix A:

d2(i) = 3.
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8.3. IEEE−30 bus test system

r2 is used to represent the second subset of the residual vector r. I.e., for
i = 1 . . . ,m we have r2,i=̂ri+N and

rk2,i =
N∑

j=1

Mijθ
k
j + sk1,i − di+N .

In the same manner, to the third block of rows in matrix A we assign the
Lagrangian multipliers π3,i=̂πi+N+m, for i = 1, . . . ,m. These multipliers are
updated as follows:

πk+1
3,i =

ρ

d3(i)
rk+1
3,i + πk

3,i

The degree of these constraints is depicted using d3(i)=̂d(i+N +m) where

d3(i) = 3.

The corresponding residual is given by r2,i=̂ri+N+m where

rk3,i =
N∑

j=1

−Mijθ
k
j + sk2,i − di+N+m.

As for the slack variables that were used to convert the thermal limits on
the transmission lines into equality constraints. Their corresponding update
steps are the following.

sk+1
1,j =max

{

0, zk1,j −
πk
2,j

ρ
−

rk2,j

d2(i)

}

sk+1
2,j =max

{

0, zk2,j −
πk
3,j

ρ
−

rk3,j

d3(i)

}

.

In the following, we apply in different scenarios our asynchronous dis-
tributed algorithm to the DC-OPF problem using the network of the IEEE−30
and IEEE-118 bus test systems.

8.3 IEEE−30 bus test system

The IEEE−30 bus system given by Fig.8.1 contains N = 30 nodes and
m = 41 transmission lines. It represents a portion of the American Electric
Power System (in the Midwestern US) as of December, 1961. The nodes with
symbol G are equipped with a fuel generator. The power demand, if it exists
at a certain node, is designated by a bold arrow.
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Figure 8.1: IEEE 30 bus system.
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8.3. IEEE−30 bus test system

Table 8.1: Generators data, IEEE−30 Bus Test System

Node pGj pGj c′j cj

1 0 50 0.037 20

2 0 30 0.01 20

6 0 80 0.0175 10

10 0 35 0.0083 10

13 0 20 0.01 15

15 0 10 0.0625 10

19 0 20 0.01 15

24 0 10 0.0250 20

27 0 40 0.0250 20

In this simulation, we have 9 generators that are located at buses 1, 2, 6, 10,
12, 15, 19, 24, and 27. The data related to these generators are given in Ta-
ble 8.1. The lower bound is set to zero in this case, higher values can also
be used. The demand at each node is given in Table 8.2. The branches and
their characteristics are provided in Table A.1.

8.3.1 Overlapping areas

Firstly, we divide the network representing the IEEE−30 bus test system
into L = 3 overlapping areas A1, A2 and A3 as per Table 8.3 and Fig. 8.2.
We compare the different versions of the DPS algorithm with ADMM under
different settings.
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8.3. IEEE−30 bus test system

Table 8.2: Power demand data, IEEE−30 Bus Test System

Node pDj Node pDj

1 0 16 3

2 22 17 9

3 5 18 3

4 8 19 9

5 15 20 2

6 0 21 17

7 12 22 0

8 20 23 3

9 0 24 8

10 5 25 0

11 0 26 3

12 10 27 0

13 0 28 0

14 14 29 2

15 0 30 10
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8.3. IEEE−30 bus test system

Table 8.3: IEEE−30 bus test system division into 3 overlapping areas

Area Nodes Number of nodes

A1 1-11,17,20,28 14

A2 3,4,12-20,23 12

A3 10,21-30 11

One area out

In this scenario, we compare the application of the synchronous ADMM DPS
algorithm to the asynchronous version of the algorithm.

For the synchronous case, all the variables are updated in every iteration.
This is the same basic of the centralized and fully distributed versions of
the algorithm. This division between areas that synchronize their updat-
ing process is necessary in case of system with multiple authorities. When
we compare based on the iteration number, the plots corresponding to the
synchronous application coincides with those of the centralized and fully dis-
tributed implementations. This is mainly because we are not considering the
time used for communication between nodes or areas. Thus, even if an iter-
ation in synchronous DPS using ADMM requires a different amount of time
than the other applications; this cannot be shown by comparing the results
on iteration basis.

For the asynchronous case, areas A1 and A3 are on or activated together
while area A2 is activated randomly only for a fraction of the total time.
First we activate A2 for 75% of the time, then 50% and finally 25%. These
are equivalent respectively to turning A2 off for 25%, 50% and 75% of the
total time. For each case we plot the evolution of the global cost function in
Fig. 8.3. We start by checking the synchronous DPS problem. Areas A1 and
A3 are always activated and their variables are updated at each iteration k.
Area A2 is only updated for a fraction of time. The variables of the inner
nodes in A2 are only updated when this area is on.

The plots in Fig. 8.3 represent the objective convergence of the corre-
sponding algorithm. Firstly, from an implementation point of view, the syn-
chronous DPS can be also seen as a fully distributed and even a centralized
version because all the variables are being updated in every iteration. In the
asynchronous scenario, only the variables related to the awakened areas are
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Figure 8.2: IEEE−30 bus test system divided into 3 overlapping areas.

87



8.3. IEEE−30 bus test system

0 100 200 300 400 500 600 700 800 900 1000
1800

1900

2000

2100

2200

2300

2400

2500

2600

Iteration k

M
e

a
n

 g
lo

b
a

l 
c
o

s
t

 

 

Optimal DPS cost
Synchronous DPS
Asynchronous DPS, one area out 25%
Asynchronous DPS, one area out 50%
Asynchronous DPS, one area out 75%

Figure 8.3: Mean global cost, overlapping areas.

going to be updated by the corresponding processor. We remark from these
plots that a all the versions of the algorithm converge to the optimal cost.
From the synchronous DPS plot to the asynchronous one where A2 was off
for 75% of the time, we can observe an increasing delay in attaining this
cost. Additional iterations are required when the off percentage increases.
Nevertheless, the increase in number of iterations is not overwhelming. Thus,
when deactivating or disconnecting a part of the network for a period of time
will not have a tremendous effect on the rest of the network.

After approximately 1000 iterations, the relative error percentage with
respect to the optimal cost for each case are the following:

1. Synchronous DPS: 0.01%

2. Asynchronous DPS, A2 is 25% off : 0.02%

3. Asynchronous DPS, A2 is 50% off : 0.07%
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Figure 8.4: Mean global power deficiency, overlapping areas.

4. Asynchronous DPS, A2 is 75% off : 0.1%.

We also check in Fig. 8.4 the sufficiency of the power demand in this
network by plotting the power flow deficiency. This is equivalent to the
residual of the power flow constraints. These plots show the mean global
power deficiency in the network obtained by dividing the sum of all the
residuals to the number of constraints in hand.

After 1000 iterations the mean global power deficiency in the network
(p.u.) for each case are given below:

1. Synchronous DPS: 0.001

2. Asynchronous DPS, A2 is 25% off : 0.002

3. Asynchronous DPS, A2 is 50% off : 0.0024

4. Asynchronous DPS, A2 is 75% off : 0.0029.
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Figure 8.5: NMSD, overlapping areas.

Around 2000 iterations the residuals in all the cases are as follows:

1. Synchronous DPS: 0.0003

2. Asynchronous DPS, A2 is 25% off : 0.0005

3. Asynchronous DPS, A2 is 50% off : 0.0007

4. Asynchronous DPS, A2 is 75% off : 0.0009.

These values along with the small relative error on the global cost prove
the convergence of both the synchronous and asynchronous distributed ADMM
algorithms. In order to track the error on the obtained solution, we plot the
normalized mean squared deviation (NMSD) to the optimal solution versus
the number of iterations. NMSD is given at the division of the squared error
between the solution and the optimal values to the squared optimal value.

NMSD = E{
‖x− xoptimal‖

2

‖xoptimal‖
2 }.
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Figure 8.6: Mean global cost, overlapping areas.

The plots corresponding to the NMSD in each case are depicted in Fig. 8.5.
The NMSD for each case are as follows:

1. Synchronous DPS: 0.0001

2. Asynchronous DPS, A2 is 25% off : 0.0009

3. Asynchronous DPS, A2 is 50% off : 0.002

4. Asynchronous DPS, A2 is 75% off : 0.009.

If we run the simulations for an additional 1000 iterations the NMSD
decreases further in all the cases as given below:

1. Synchronous DPS: 0.00006

2. Asynchronous DPS, A2 is 25% off : 0.0001
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Figure 8.7: Mean global power deficiency, overlapping areas.

3. Asynchronous DPS, A2 is 50% off : 0.0003

4. Asynchronous DPS, A2 is 75% off : 0.0009.

Remark here that the delay from the synchronous to the asynchronous ap-
plications is well justified by the fact that while all the variables are updated
in each iteration of the centralized and synchronous schemes, only a subset
of the agents may be active in the asynchronous version leading to a lower
computations per iteration ratio.

When observing these relatively small errors of the asynchronous ADMM
application, we can see the objective and residual convergences of the ADMM
method. One can conclude that even when the areas are being activated (or
deactivated) randomly we can always obtain a solution that satisfies all the
constraints and at a minimal cost. This would also lead to less computation
and communication between the different processors and an efficient usage
of the resources.
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Figure 8.8: NMSD, overlapping areas.

Two areas out

In this setting, we are either activating area A1 at certain iteration, either
all the areas are being activated together. Thus, for a certain percentage of
time, areas A2 and A3 are being turned off or not participating in the update
process. Thus, A1 is always activated while A2 and A3 are turned on only
for a certain amount of time.

We start with the case where A2 and A3 are being activated for 75%
of the time, which is equivalent to having them deactivated for 25% of the
time. Then we change this percentage of time to the case where they are
turned on and updating their variables only 50% of the time and then only
for 25% (the latter is equivalent to turning them off for 75%). We plot in
Fig. 8.6 the evolution of the global cost in these cases and we compare it to
the synchronous implementation of the algorithm. The relative error with
respect to the optimal cost for each case after approximately 1000 iterations
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are as follows:

1. Synchronous DPS: 0.01%

2. Asynchronous DPS, A2 and A3 are 25% off : 0.03%

3. Asynchronous DPS, A2 and A3 are 50% off : 0.08%

4. Asynchronous DPS, A2 and A3 are 75% off : 0.1%.

The primal residuals for each iteration and scenario are plotted in Fig. 8.7.
This primal residual can also be interpreted as the deficiency regarding the
power demand in the network and the amount of existing shedding. After
1000 iterations the mean global power deficiency in the network (p.u.) for
each case are given below:

1. Synchronous DPS: 0.001

2. Asynchronous DPS, A2 and A3 are 25% off : 0.0022

3. Asynchronous DPS, A2 and A3 are 50% off : 0.003

4. Asynchronous DPS, A2 and A3 are 75% off : 0.005.

Again, we track the error on the primal variables values by checking the
NMSD to the optimal solution with respect to the iteration number. The
respective plots for each case are depicted in Fig. 8.8.

The NMSD for each case are as follows:

1. Synchronous DPS: 0.0001

2. Asynchronous DPS, A2 and A3 are 25% off : 0.00095

3. Asynchronous DPS, A2 and A3 are 50% off : 0.004

4. Asynchronous DPS, A2 and A3 are 75% off : 0.01.

Nodes failure

We return our attention to the whole undivided network. We test the appli-
cation of the algorithms in the case of nodes failure. We assume that cascades
in the grid are triggered by random node failure events and that nodes fail
independently of each other. That is, the whole network except for random
nodes is being updated every iteration. In this scenario, nodes 1− 4, 27 are
randomly switched off for 50% of the time and nodes 10− 14, 19, 22, 28− 30
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Figure 8.9: Mean global cost, overlapping areas.

are also randomly switched off for 50% of the time. As an example, in a
certain iteration when nodes 1 − 4 are deactivated, the rest of the network
is considered as one area that is currently activated. In another iteration,
when nodes 28− 30 are deactivated, the rest of the network, represented by
another area, is then activated.

We compare in Fig. 8.9 the convergence of the cost in this case with the
cost when one or two areas are randomly activated in each iteration for 50%
of the time.

The relative error with respect to the optimal cost for each case after
approximately 2000 iterations are as follows:

1. Synchronous DPS: 0.003%

2. Asynchronous DPS, nodes failure: 0.01%

3. Asynchronous DPS, A2 is 50% off : 0.012%
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Figure 8.10: Mean global power deficiency, overlapping areas.

4. Asynchronous DPS, A2 and A3 are 50% off : 0.05%.

The power deficiency for each case are provided in Fig. 8.10.After 2000
iterations the mean global power deficiency in the network (p.u.) for each
case are given below:

1. Synchronous DPS: 0.00004

2. Asynchronous DPS, nodes failure: 0.00014

3. Asynchronous DPS, A2 is 50% off : 0.001

4. Asynchronous DPS, A2 and A3 are 50% off : 0.003.

Remark here that while every agent is active in the centralized scheme,
only a subset of the agents may be active in the asynchronous version leading
to a lower computations per iteration ratio.
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Figure 8.11: IEEE−30 bus test system divided into 3 non-overlapping areas.
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Figure 8.12: IEEE−30 bus test system divided into 3 non-overlapping areas.
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Table 8.4: IEEE−30 bus test system division into 3 non-overlapping areas

Area Nodes Number of nodes

A1 1,2,5-11,17,20,28 12

A2 3,4,12-19 9

A3 21-27,29,30 9

8.3.2 Non-overlapping areas

We consider the same IEEE−30 bus system and we divide it into L = 3
non-overlapping areas as given by Fig. 8.11 and Table 8.4.

As explained in Section 6.5, the synchronous and asynchronous distributed
ADMM algorithms can be applied to this type of architecture by use of
dummy nodes. Thus, we modify this network by introducing 9 dummy nodes
on the tie-lines linking two different areas as given by Fig. 8.12. We obtain a
new network of 39 nodes and 50 branches. The dummy nodes do not interfere
in the optimization problem. The nodes do not have ability to produce or
consume power. They only act as a relay to share power between the different
areas. They do not generate power and no cost exist on their variables.

Next, after modifying the values of the Laplacian matrix according to the
results given in Section 6.5, we apply the synchronous and asynchronous area-
based distributed ADMM to the modified network using scenarios similar to
those implemented in the previous section.

One area out

When dividing the areas in a non-overlapping architecture, these areas are
linked only via the tie-lines connecting border nodes of the different areas.
Thus, these lines are the only way to share production between the areas.

In this setting and within a certain iteration k, areas A1 and A3 are
activated together while A2 is switched off and vice versa. We can see this
as a situation where A1 and A3 are joined into a bigger area A4 and A2 acts
solely. In the other case, the implementation is the inverse. That is, areas
A1 and A3 (or just A4) are switched off together while A2 is activated. The
variables belonging to the nodes within the chosen area are the only ones to
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Figure 8.13: Mean global cost, non-overlapping areas.

be updated in a given iteration. Next, a communication step through the
shared nodes or between the processors is performed so that these processors
can update the Lagrangian multipliers.

As noted, the areas do not overlap, and from an iteration to the following,
the sub-network obtained also do not overlap with the preceding sub-network.
Each area is activated for a given percentage of the total time. The plots
corresponding to the mean global cost are provided in Fig. 8.13. These results
demonstrate the objective convergence of the corresponding algorithm.

The relative error with respect to the optimal cost for each case after
approximately 1000 iterations are as follows:

1. Synchronous DPS: 0.011%

2. Asynchronous DPS, A2 and A3 are 25% off : 0.03%

3. Asynchronous DPS,A2 and A3 are 50% off : 0.085%
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Figure 8.14: Mean global power deficiency, non-overlapping areas.

4. Asynchronous DPS, A2 and A3 are 75% off : 0.2%.

Additionally, after approximately 1400 iterations they decreases further
beyond these values:

1. Synchronous DPS: 0.003%

2. Asynchronous DPS, A2 and A3 are 25% off : 0.01%

3. Asynchronous DPS,A2 and A3 are 50% off : 0.015%

4. Asynchronous DPS, A2 and A3 are 75% off : 0.02%.

We track in Fig. 8.14 the sufficiency of the power demand in this network
by plotting the of the power flow constraints. These plots show the mean
global power deficiency in the network obtained by dividing the sum of all the
residuals to the number of constraints in hand. In 1400 iterations the mean
global power deficiency in the network (p.u.) for each case are as follows:
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Figure 8.15: NMSD, non-overlapping areas.

1. Synchronous DPS: 0.0012

2. Asynchronous DPS, nodes failure: 0.0022

3. Asynchronous DPS, A2 is 50% off : 0.0028

4. Asynchronous DPS, A2 and A3 are 50% off : 0.0042.

After increasing the number of iterations to 3000 iterations, the mean global
power deficiency decreases beyond 10−5 p.u. for all the cases. The plots
of the synchronous and asynchronous ADMM will approximately overlap at
this point.

The error on the primal values depicted as NMSD can be observed using
the plots of Fig. 8.15. The values corresponding to the primal variables
converge to the optimal values, after 1400 iterations the NMSD for each case
are given below:
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Figure 8.16: Mean global cost, non-overlapping and overlapping areas.

1. Synchronous DPS: 0.000012

2. Asynchronous DPS, nodes failure: 0.0006

3. Asynchronous DPS, A2 is 50% off : 0.0009

4. Asynchronous DPS, A2 and A3 are 50% off : 0.003.

It is certain that if the number of nodes failing increases, then the con-
vergence will be delayed by a certain number of iterations. As we can see
when comparing the case of one area and two areas off.

Two areas out

We consider a different scenario where each area is only activated for 33%
percent of the time. At a certain iteration k, it is either A1 or A2 or A3 that
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Figure 8.17: Mean global power deficiency, non-overlapping and overlapping
areas.

is switched on. We compare the asynchronous DPS with ADMM for the
non-overlapping and overlapping areas. The results are depicted in Fig. 8.16
that shows the evolution of the mean global cost, Fig. 8.17 for the mean
global power deficiency in the network and Fig. 8.18 that depicts the NMSD
of the primal variables to the optimal value.

As observed from the plots, the convergence is slightly slower when the
areas do not overlap. This is mainly because the variables of the shared
nodes are being updated more frequently in the overlapping case.

Thus, even in the case of a network with multiple authorities, an agree-
ment on the minimum of the global cost can be met using the distributed pro-
duction sharing w/ ADMM algorithm. The convergence of the synchronous
or asynchronous distributed ADMM is always guaranteed.
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Figure 8.18: NMSD, non-overlapping and overlapping areas.

Table 8.5: IEEE−118 bus test system division into 3 overlapping areas

Area Nodes Number of nodes

A1 1-34,38,113-115,117 39

A2 24,33-75,116 45

A3 68,69,75-112,118 41
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Figure 8.19: Mean global cost, IEEE−118 Bus system.

8.4 IEEE−118 bus test system

We test our algorithms with larger areas using the IEEE−118 bus test sys-
tem [97] as our network. This network consists of N = 118 buses, 54 gen-
erators and 186 branches. The data related to the demand and generation
for each node are given in Table A.2. We divide the graph representing the
network into 3 overlapping areas as in Table 8.5. The transmission lines char-
acteristics used in this implementation are provided in [97]. First we start by
checking the optimal cost for the synchronous area-based distributed ADMM
algorithm. Then, we continue with implementing different scenarios for the
asynchronous distributed ADMM algorithm as follows.

106



8.4. IEEE−118 bus test system

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

Iteration k

P
o

w
e

r 
d

e
fi
c
ie

n
c
y

 

 

Synchronous DPS
Asynchronous DPS, one area out 25%

Asynchronous DPS, one area out 50%
Asynchronous DPS, one area out 75%

Figure 8.20: Mean global power deficiency, IEEE−118 Bus system.

One area out

As in the previous sections, we start with the case where two areas, A1 and
A3, update their variables every iteration while area A2 is only activated 75%
of the time. Thus, A2 is switched off for 25% of the time, which gives us
the plot of one area 25% out. In another time, we reduce this on time of
A2 to 50%. Thus, A2 is now updating its variables only half the time and
it is switched off for the second half randomly. In the last part, we decrease
the on time of A2 further. It is considered to be awaken only for 25% of the
time on random basis, this leads to the plot where one area is out 75% of the
time.

The objective convergence can be seen from the plots provided in Fig. 8.19.

After approximately 1600 iterations, the relative error percentage with
respect to the optimal cost for each case are the following:
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Figure 8.21: NMSD, IEEE−118 Bus system.

1. Synchronous DPS: 0.01%

2. Asynchronous DPS, A2 is 25% off : 0.2%

3. Asynchronous DPS, A2 is 50% off : 0.3%

4. Asynchronous DPS, A2 is 75% off : 0.45%.

The primal residual convergence can be observed in Fig. 8.20. The plots
track the evolution of the mean global power deficiency in the network.

Around 1600 iterations the residuals in all the cases are as follows:

1. Synchronous DPS: 3× 10−6

2. Asynchronous DPS, A2 is 25% off : 3.2× 10−6

3. Asynchronous DPS, A2 is 50% off : 6× 10−6
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Figure 8.22: Mean global cost, IEEE−118 Bus system.

4. Asynchronous DPS, A2 is 75% off : 2× 10−5.

When switching between the synchronous ADMM and the asynchronous
ADMM case where A2 is off for 75% of the time, the NMSD in Fig. 8.21,
goes from 3× 10−4 to 4.7× 10−4.

These small values demonstrate the convergence of the algorithms and
its scalability property. Even when the network tends to be larger, the con-
vergence is always guaranteed and achievable within a feasible number of
iterations.

Two areas out

We implement the first two scenarios described in Section 8.3.1. A1 is always
activated and A2 and A3 are being activated on random basis for a total
percentage of 25 then 50 and 70 respectively. Fig. 8.22 depicts the objective

109



8.4. IEEE−118 bus test system

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

Iteration k

P
o

w
e

r 
d

e
fi
c
ie

n
c
y

 

 

 Synchronous DPS
Asynchronous DPS, two areas out 25%

Asynchronous DPS, two areas out 50%
Asynchronous DPS, two areas out 75%

Figure 8.23: Mean global power deficiency, IEEE−118 Bus system.

convergence in each of these case compared to the synchronous distributed
ADMM.

The relative error with respect to the optimal cost for each case after
approximately 1000 iterations are as follows:

1. Synchronous DPS: 0.01%

2. Asynchronous DPS, A2 and A3 are 25% off : 0.06%

3. Asynchronous DPS,A2 and A3 are 50% off : 0.092%

4. Asynchronous DPS, A2 and A3 are 75% off : 0.2%.

The plots showing the residual convergence or mean global power defi-
ciency and the normalized mean squared deviation NSMD are depicted by
Fig. 8.23 and Fig. 8.24 respectively. The values of the NMSD and the mean
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Figure 8.24: NMSD, IEEE−118 Bus system.

global power deficiency are well seen from each plot. From the synchronous
ADMM to the asynchronous ADMM case where A2 and A3 are off for 75% of
the time, the mean global power deficiency increase from 3×10−6 to 3×10−5

respectively. As for the NMSD, it scales from 3× 10−4 to 7× 10−4.

These plots illustrate the capability of our algorithms to solve the DC-
OPF problem even when the network gets larger. This feature makes them
adequate for large power grid problems.

8.5 DC-OPF with renewable sources and stor-

age devices

We now turn attention to the network with renewable sources and storage
devices that was discussed in Chapter 7. We combine Lyapunov optimization
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Figure 8.25: IEEE−6 bus test system with two storage devices.

and ADMM algorithm to fully distribute the production sharing problem
while some of the node generate renewable energy and are equipped wit
storage devices. We consider IEEE−6 Bus Test System given by Fig. 8.25.
Then, we apply Algorithm 6 to this network. The IEEE−6 Bus Test System
is composed of N = 6 buses and m = 11 branches [1].

We set time T to be equal to 10 time slots. The data related to the cost
and limits on the conventional generated power are given in Table 8.6. We
suppose that the network comprises 3 conventional generators, located at
nodes 1, 2 and 3.

Each node has a demand that varies over t, Table 8.7 gives the demand
at each node for each time slot. The data related to the transmission lines
are provided in [1].

We suppose that buses 4 and 5 are equipped with renewable energy
sources and storage devices. The maximum generated power by the renew-
able sources placed at these nodes are given by Table 8.8.

We set the maximum storage capacity Emax to 100 p.u. for each storage
device. We suppose that these devices have the same maximum charging
rate Ymax,ch and maximum discharging rate Ymax,dis. We check the effect of
changing these rates.

The plots corresponding to the cost for each time slot t are depicted
in Fig 8.26. The mean global cost over all the time slots with respect to
the number of iterations is given in Fig 8.27. From these plots we can ob-
serve the convergence of the algorithm combining Lyapunov optimization
with ADMM. Approximately 140 iterations were enough for the ADMM to
converge. We can also observe the influence of increasing the maximum
charging/discharging rates on the global cost. Indeed, when the renewable
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Table 8.6: Conventional Generators data, IEEE−6 Bus Test System

Node j pGj pGj cj c′j

1 0 200 11,669 0,00533

2 0 150 10,333 0,00889

3 0 180 10,833 0,00741

Table 8.7: IEEE−6 Bus Test System Demand

Node t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

1 50 110 100 80 120 90 104 86 80 80

2 80 100 100 90 70 80 0 100 90 0

3 90 100 0 90 120 0 100 0 80 0

4 50 130 160 80 136 80 104 86 80 0

5 50 130 100 80 106 80 64 86 80 0

6 70 0 50 80 0 90 0 80 80 100

Table 8.8: IEEE−6 Bus Test System Renewable Generation

Node t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

4 90 110 130 180 180 90 70 60 50 80

5 86 86 65 120 117 127 80 80 90 90
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Figure 8.26: IEEE−6 bus test system with two storage devices, global cost.
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Figure 8.27: IEEE−6 bus test system with two storage devices objective
convergence.

generation is greater than what is required and when Ymax,ch and Ymax,dis

increase, the storage devices appear to have a bigger influence on decreasing
the global cost over time.
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8.6 Conclusion

We concluded the work accomplished in this part of the thesis with an im-
plementation of the synchronous and asynchronous ADMM to the DC-OPF
problem with and without storage devices and renewable energy sources.
We tried to simulate multiple scenarios on different networks. We were able
to track the convergence of the synchronous and asynchronous ADMM al-
gorithms. Whether the network is small or large, whether the areas are
distinct or overlapping, the algorithms converged to the optimal solution.
The obtained solution meets all the constraints while providing the minimal
global cost. Simulations were first carried out on the conventional power grid
while considering the IEEE−30 bus test system [97] and the IEEE−118 bus
test system. Then, for the implementation of ADMM on the DC-OPF with
storage devices and renewable energy sources we used the IEEE−6 bus test
system.
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Chapter 9

Distributed Caching while
Sharing in 5G Networks: An
ADMM approach

9.1 Introduction

In this work we consider the problem of distributed caching in next genera-
tion mobile cellular networks (a.k.a., 5G) where densely-deployed small base
stations (SBSs) are able to store and deliver users’ content accordingly. In
particular, we formulate the optimal cache allocation policy as a convex opti-
mization problem where a subset of SBSs have their own i) local cost function
which captures backhaul consumption aspects in terms of bandwidth and ii)
a set of local network parameters and storage constraints iii) local cost on
sharing contents with other SBSs. In this context, an SBS may privilege the
option of sharing contents among its neighbors when the cost of sharing these
contents is less than the cost of fetching the file from the Central Scheduler
(CS). Given the fact that a coordination is involved between SBSs and due to
the ability of ADMM to solve such a complicated optimization problem in a
simplified manner, we provide a distributed solution for the caching problem
using ADMM. The ADMM application in such context converges and the
optimal solution for the caching problem is achieved.

9.2 Related work

Ever growing demand of mobile users [19] is reshaping discussions both in
industry and academia, pushing the current mobile infrastructure to evolve
towards next generation (a.k.a. 5G) mobile cellular networks [20]. One of
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the candidate solutions to satisfy this demand and offload the backhaul is to
proactively store users’ contents at the edge of the mobile network, either in
base stations or user terminals [98].

Indeed, although the idea of putting users’ contents in cache-enabled
nodes of the cellular networks is somewhat recent, many works have ad-
dressed the caching problem from different aspects resulting in an extensive
literature. For instance, predicting users’ behavior and proactively storing
their contents at SBS is studied in [99], whereas the benefit of proactive
caching in a mobility setup is exploited in [100]. A coded caching scheme
using information theoretic arguments is given in [101], whereas a similar
scheme but with multi-level architecture is studied in [102]. Performance
evaluation of coded caching gains setups can be found in [103–105]. From
a game theoretic standpoint, a many-to-many matching game formulation
which takes into consideration the content dissemination in social networks
is shown in [106]. Under a given estimation of backhaul usage via CF, a
one-to-many matching game between SBSs and UT is formulated in [107].
Additionally, a learning based online caching scheme is presented in [108].
These studies point out the importance of caching in 5G wireless networks,
and provide their investigations both from performance and algorithmic per-
spectives. However, the practical efforts for these dense networks are still in
its infancy mainly due to lack of easy-to-implement distributed solutions.

Given the motivations above, our main contribution in this work is to for-
mulate the cache allocation policy as a convex optimization problem and pro-
vide a distributed algorithm implemented at each cache-enabled SBS. More
specifically, we define a global convex cost function as the sum of local convex
functions of users’ demand and network topology (i.e., physical connection
between SBSs and UTs ) and the linear constrains are given on sharing a file
and its availability; and storage size due to the resource-limited SBSs. To
solve this problem, we adopt a similar approach to 5 where we used ADMM
in the context of optimal power flow in smart grids. This allows each SBS
to solve its given sub-problem via this low-complexity iterative algorithm by
taking into account users’ demand, network topology and storage constraint.

Briefly, the motivation of using such a distributed approach is to 1) avoid
the communication overhead between SBSs and the CS that is in charge of
the decision mechanism, and 2) distribute the computational burden of the
CS among SBSs. Indeed, the origin of distributed optimization techniques
dates back to the seminal work of Tsitsiklis and Bertsekas [109]. Among
extensive studies on these techniques which are not covered in this work
due to the lack of space, ADMM is shown to promise faster convergence
at some negligible cost of synchronization and coordination compared to its
alternatives [70].
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9.3 Network Model

Let us consider a network consisting of a set of M SBSs and N users denoted
by M = {1, ...,M} and N = {1, ..., N} respectively. In this setup, the SBSs
are connected to a CS via limited backhaul links with the purpose of providing
broadband Internet connection to their users. The wireless downlink rates
from the SBSs to users are given by the matrix R of dimension M ×N ,
where each entry Rm,n denotes the achievable rate from SBS m to user n.
For simplicity, we assume that communication in the downlink is done in a
TDD manner with multiple frequency blocks (i.e., OFDMA ), thus intra-cell
and inter-cell interference are avoided. Then, the wireless connectivity matrix
O ∈ {0, 1}M×N , representing the connections between the SBSs and users is
structured as

O =






o1

...

oM




 =






o1,1 . . . o1,N
...

. . .
...

oM,1 . . . oM,N




 , (9.1)

where om,n = 1{Rm,n ≥ R′}. The purpose of the target bit-rate R′ constraint
for connectivity is to guarantee a certain Quality of Service (QoS) in the
downlink. Each user n with a wireless link rate Rm,n below this threshold is
assumed to be not connected to the SBS m.

In our model, we assume that the SBSs have storage units with capaci-
ties b = [b1, ..., bM ] ∈ {Z+}1×M

. These storage capacities in the decreasing
ordered case follow a Zipf-like distribution Pb(s, α) defined as [110]

Pb(b, α) =
Ω

bα
(9.2)

with

Ω =
( M∑

i=1

1

iα

)−1

,

where the parameter α characterizes the steepness of the distribution. In fact,
the evidence of such a law is shown for the content distribution in web proxies
[110], whereas in our case we also treat for modeling the storage capacity
distribution. By having storage capabilities at the SBSs, contents can be
cached in order to serve users’ predicted requests locally, and thus reduce
backhaul usage and access delays. The sketch of the considered network
model is given in Fig. 9.1.

In the following, we suppose that the users’ content demand arrival, over
T time slots, is modeled by a Poisson process with rate/intensity parameter λ.
Additionally, we suppose that users’ demands are made from a catalog of F
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SBS m

CS

s
m

limited backhaul link

user n

wireless downlink

storage

R
m,n

broadband lin
k

Figure 9.1: An illustration of the scenario which consists of M cache-enabled
SBSs and N users.

distinct contents. The length of a file f is denoted by sf < bm,m = 1, ...,M .
We assume that the content popularity distribution of users’ drawn from
the catalog is characterized by another Zipf law with parameter β. Given
the arrival process and content popularity distribution, the users’ content
demand counts are represented by the user demand matrix Du ∈ {N}N×F .
Then, the whole content demands observed at the SBSs level is given by

D = ODu ∈ {0, 1}M×F . (9.3)

For ease of exposition, we assume that the matrix D is perfectly known.
Note that, in practice, the demand of users (and its observation at SBSs) are
correlated and can be predicted up to a certain level, i.e., using statistical
inference tools from machine learning [98]. We use djf to point at the demand
of a file f at the SBS j.

The cache indicator vector at node j ∈ 1, . . . ,M is given as follows

xj = (xj01,xj02, . . . ,xj0F , xj11,xj12, . . . ,

xj1F ,xj12, . . . ,xjM1, xjM2, . . . , xjMF )
1 (9.4)

where, xj0f is the variable related to fetching the content from the CS for
every user’s request, the value of xjjf indicates whether the f th content is
going to be cached at SBS j or not, and xjif points to the fact that node j

will obtain the f th content from node i.
For this sharing problem to be consistent, we need to ensure the following:

1. The content sharing from i to j may exist only if node i is going to
cache the content

xjin ≤ xiin, ∀j, i > 0& i 6= j (9.5)
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2. The storage capacity can never be exceeded for each node

F∑

f=1

sf xjjn ≤ bj, ∀j (9.6)

3. A user request has to be met, either by fetching, caching or sharing the
file

xjjf +
M∑

i=0,i 6=j

xjif ≤ 1, ∀j (9.7)

The equality is reached when the algorithm converges and users are
satisfied.

9.4 Problem formulation

We consider that all the nodes have the ability to share files. The value
assigned to the cost of file sharing between two nodes plays an important role
on leveraging certain connections on others. Additionally, when considering
a very high cost on a certain link, it is equivalent to canceling that link
due to its high cost. In this way we can tune our model to special network
structures.

The costs of sharing, fetching or caching a file are given as follows:

1. The cost of caching a content f ,

sf cj0 xjjf (9.8)

2. The cost of fetching a file f every time i.e., not caching the file,

cj0 djf sf xj0f (9.9)

3. The cost of sharing a file f from another node i ,

cji sf djf xjif (9.10)

Thus, the total cost for each node j is given by:

F∑

f=1

{

cj0 djf sf xj0f + cj0 sf xjjf +
M∑

i=1,i 6=j

(cji sf djf xijf )

}

(9.11)
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Let hj(xj) represent the local cost at node j, we can write it down as:

hj(xj) =
F∑

f=1

{

ci0 sf xiif +
M∑

i=0,j 6=j

(cji sf djf xjif )

}

(9.12)

The caching while sharing problem in 5G network can be written formally
as:

min
xj∈RF (M+1)

j=1,...,M

M∑

j=1

hj(xj)

subject to







xjif ≤ xiif , ∀j > 0, i > 0, i 6= j
∑F

f=1 sfxjjf ≤ bj, ∀j > 0

xjjf +
∑M

i=0,i 6=j xjif ≤ 1, ∀j > 0, ∀f = 1, . . . , F

(9.13)

We relax the values of xijf and we use three sets of slack variables sl1 ∈

RFM(M−1)
+ ; sl2 ∈ RM

+ ; sl3 ∈ RFM
+ in order to transform the inequalities into

equality constraints as follows:

min
xj∈RF (M+1)

j=1,...,M

M∑

j=1

hj(xj)

subject to






A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12




u = b̃

(9.14)

where

u = [x1;x2; . . . ;xM ; sl1; sl2; sl3]

and

b̃ = [0; 0; . . . ; 0; b1; . . . ; bM ; 1; . . . ; 1].

A1 is an MF (M − 1) × MF (M + 1) matrix, A2 is an MF (M − 1) ×
MF (M − 1) matrix, A3 is an MF (M − 1)×M matrix, A4 is an MF (M −
1)×MF matrix.

A5 is an M × MF (M + 1) matrix, A6 is an M × MF (M − 1) matrix,
A7 is an M ×M matrix, A8 is an M ×MF matrix.

A9 is an MF ×MF (M+1) matrix, A10 is an MF ×MF (M−1) matrix,
A11 is an MF ×M matrix, A12 is an MF ×MF matrix.

A simple example: For illustration purposes we consider the case of
M = 3 nodes and F = 3 files. The results can be easily generalized to any

122



9.4. Problem formulation

other number of nodes and contents.

A1 =













0F 0F IF 0F 0F 0F −IF 0F 0F 0F 0F 0F

0F 0F 0F IF 0F 0F 0F 0F 0F 0F 0F −IF

0F −IF 0F 0F 0F IF 0F 0F 0F 0F 0F 0F

0F 0F 0F 0F 0F 0F 0F IF 0F 0F 0F −IF

0F −IF 0F 0F 0F 0F 0F 0F 0F IF 0F 0F

0F 0F 0F 0F 0F 0F −IF 0F 0F 0F IF 0F













A2 =













IF 0F 0F 0F 0F 0F

0F IF 0F 0F 0F 0F

0F 0F IF 0F 0F 0F

0F 0F 0F IF 0F 0F

0F 0F 0F 0F IF 0F

0F 0F 0F 0F 0F IF













A3 =
[

0MF (M−1)×M

]

A4 =
[

0MF (M−1)×MF

]

A5 =






01×F 11×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F

01×F 01×F 01×F 01×F 01×F 01×F 11×F 01×F 01×F 01×F 01×F 01×F

01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 01×F 11×F




 o sF

A6 =
[

0M×MF (M−1)

]

A7 =
[

IM

]

A8 =
[

0M×MF

]

A9 =






IF IF IF IF 0F 0F 0F 0F 0F 0F 0F 0F

0F 0F 0F 0F IF IF IF IF 0F 0F 0F 0F

0F 0F 0F 0F 0F 0F 0F 0F IF IF IF IF






A10 =
[

0MF×MF (M−1)

]

A11 =
[

0MF×M

]
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A12 =
[

IMF

]

.

The nonzero elements in matrix A5 are equal to the size sf of the corre-
sponding content. sF is the vector containing the size of all the files. It can
be observe from these matrices that the problem scales with the number of
nodes M ans the catalog size F .

The final global formulation for this problem:

min
u

F (u) =
M∑

j=1

hj(xj) + I+(sl1) + I+(sl2) + I+(sl3)

subject to Au = b̃

(9.15)

A is an M(MF+1)×M(2FM+F+1) matrix and u is the M(2FM+F+1)
vector comprising the primal and slack variables.

Conventionally, this problem can be solved at the CS in a centralized way
by

i) collecting users’ demands from the SBSs as well as the storage capaci-
ties of SBSs;

ii) solving the problem accordingly;

iii) transferring the adequate cache indicator vector to each SBS.

This centralized optimization scheme however induces latency in the com-
putation and communication burden. Alternatively, the solution of such a
problem can be obtained efficiently by using distributed convex optimiza-
tion solvers. In the next section, we detail the steps of the ADMM-based
approach, which in turn will allow us to handle the problem at each SBSs
distributively.

9.5 Optimal Cache w/ ADMM

Problem (9.15) is similar to the Production-Sharing problem described in
Chapter 4. In the same manner we reformulate the problem as a distributed
problem to which we can apply ADMM. We follow the steps used to obtain
Algorithm 1.

Let v be the vector of auxiliary variables introduced by the algorithm.
v have the same size M ′=̂M2(MF + 1)(2FM + F + 1) as the Lagrangian
multipliers vector λ .
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Let C be the indicator function C on v defined as:

C : RM ′) −→ (−∞,+∞]

v 7−→







0 if ∀i = 1 . . .M(MF + 1),

iM(2MF+F+1)
∑

(i−1)M(2MF+F+1)+1

vj = b̃i

+∞ elsewhere

(9.16)
where

Ã =






diag([A]1)
...

diag([A]M(MF+1))




 (9.17)

Finally, we obtain a problem similar to the DPS problem (4.16) that we
rewrote as:

min
u

F (u) + C(Ãu) (9.18)

To this problem we apply the ADMM in order to obtain a distributed
algorithm solved at node level. The iterations resulting from the application
of ADMM to problem (9.15) are as follows:

uk+1 = argmin
y

Lρ(u,v
k;λk), (9.19a)

vk+1 = argmin
v

Lρ(u
k+1,v;λk), (9.19b)

λk+1 = λk + ρ(Auk+1 − vk+1). (9.19c)

In the following, we reference the elements of u either as uj or using the
original variable that they represent.

The primal variables iteration (9.19a) can be expanded using the corre-
sponding entries of v and λ indexed by where β=̂β(i, j) = M(i− 1)(2MF +
F + 1) + j as follows:
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uk+1 =argmin
u

F (u)+ (9.20)

M(MF+1)
∑

i=1

ρ

2

MF (M+1)
∑

j=1

∥
∥
∥
∥
∥
Aijuj +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+

MF (M−1)
∑

i=1

ρ

2

MF (M−1)
∑

j=1

∥
∥
∥
∥
∥
Aij+MF (M+1)

sl1,i +
λk
β+MF (M+1)

ρ
− vkβ+MF (M+1)

∥
∥
∥
∥
∥

2

+

MF (M−1)+M
∑

i=MF (M−1)+1

ρ

2

M∑

j=1

∥
∥
∥
∥
∥
Aij+MF (2M)

sl2,j +
λk
β+MF (2M)

ρ
− vkβ+MF (2M)

∥
∥
∥
∥
∥

2

+

M(MF+1)
∑

i=MF (M−1)+M+1

ρ

2

MF∑

j=1

∥
∥
∥
∥
∥
Aij+MF (2M)+M

sl3,j +
λk
β+MF (2M)+M

ρ
− vkβ+MF (2M)+M

∥
∥
∥
∥
∥

2

.

As for the auxiliary variable iteration (9.19b), we can reformulate it as
follows:

vk+1 =argmin
v

C(v)+ (9.21)

M(MF+1)
∑

i=1

ρ

2

MF (M+1)
∑

j=1

∥
∥
∥
∥
∥
Aiju

k+1
j +

λk
β

ρ
− vβ

∥
∥
∥
∥
∥

2

+

MF (M−1)
∑

i=1

ρ

2

MF (M−1)
∑

j=1

∥
∥
∥
∥
∥
Aij+MF (M+1)

slk+1
1,i +

λk
β+MF (M+1)

ρ
− vβ+MF (M+1)

∥
∥
∥
∥
∥

2

+

MF (M−1)+M
∑

i=MF (M−1)+1

ρ

2

M∑

j=1

∥
∥
∥
∥
∥
Aij+MF (2M)

slk+1
2,j +

λk
β+MF (2M)

ρ
− vβ+MF (2M)

∥
∥
∥
∥
∥

2

+

M(MF+1)
∑

i=MF (M−1)+M+1

ρ

2

MF∑

j=1

∥
∥
∥
∥
∥
Aij+MF (2M)+M

slk+1
3,j +

λk
β+MF (2M)+M

ρ
− vβ+MF (2M)+M

∥
∥
∥
∥
∥

2

subject to

iM(2MF+F+1)
∑

j=(i−1)M(2MF+F+1)+1

vj = b̃i, ∀i = 1, . . . ,M(MF + 1).

We start by decomposing this vector (9.21) into a series of 4 components
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corresponding to xi, sl1, sl2, and sl3 respectively.

vk+1
β =argmin

vβ

∥
∥
∥
∥
∥
Aiju

k+1
j +

λk
β

ρ
− vβ

∥
∥
∥
∥
∥

2

(9.22a)

vk+1
β+MF (M+1)

= argmin
vk+1
β+MF (M+1)

∥
∥
∥
∥
∥
Aij+MF (M+1)

slk+1
1,i +

λk
β+MF (M+1)

ρ
− vβ+MF (M+1)

∥
∥
∥
∥
∥

2

(9.22b)

vk+1
β+MF (2M)

= argmin
vk+1
β+MF (2M)

∥
∥
∥
∥
∥
Aij+MF (2M)

slk+1
2,j +

λk
β+MF (2M)

ρ
− vβ+MF (2M)

∥
∥
∥
∥
∥

2

(9.22c)

vk+1
β+M(2MF+1)

= argmin
vk+1
β+M(2MF+1)

∥
∥
∥
∥
∥
Aij+MF (2M)+M

slk+1
3,j +

λk
β+MF (2M)+M

ρ
− vβ+MF (2M)+M

∥
∥
∥
∥
∥

2

(9.22d)

subject to

iM(2MF+F+1)
∑

j=(i−1)M(2MF+F+1)+1

vj = b̃i, ∀i = 1, . . . ,M(MF + 1).

We introduce the M(MF + 1) Lagrangian multipliers vector π on the
condition linking the entries of v, this helps in further simplifying its com-
ponents as follows for each i = 1, . . . ,M(MF + 1):

vk+1
β =Aiju

k+1
j +

λk
β − πk+1

i

ρ
(9.23a)

vk+1
β+MF (M+1)

=Aij+MF (M+1)
slk+1

1,i +
λk

β+MF (M+1)−πk+1
i

ρ
(9.23b)

vk+1
β+MF (2M)

=Aij+MF (2M)
slk+1

2,j +
λk
β+MF (2M) − πk+1

i

ρ
(9.23c)

vk+1
β+M(2MF+1)

=Aij+M(2MF+1)
slk+1

3,j +
λk
β+M(2MF+1)

− πk+1
i

ρ
. (9.23d)

We can decompose λ into 4 sets of components corresponding to those
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indexed for v. Using (9.23a) we can write:

λk+1
β =λk

β + ρ(Aiju
k+1
j − vk+1

β )

=λk
β + ρ(Aiju

k+1
j − Aiju

k+1
j −

λk
β − πk+1

i

ρ

= πk+1
i . (9.24)

The same reasoning can be used for the other components of λ. Thus,
for each i = 1, . . . ,M(MF + 1) we have:

λk+1
β = λk+1

β+MF (M+1)
= λk+1

β+MF (2M)
= λk+1

β+M(2MF+1)
= πk+1

i . (9.25)

This result can be helpful in obtaining the update step of πi, we start
with the constraint on the auxiliary variables:

iM(2MF+F+1)
∑

j=(i−1)M(2MF+F+1)+1

vk+1
j = b̃i

iM(2MF+F+1)
∑

j=(i−1)M(2MF+F+1)+1

{Aiju
k+1
j +

πk
i − πk+1

i

ρ
} = b̃i. (9.26)

We obtain the Lagrangian variable update step:

πk+1
i = πk

i +
ρ

d(i)
ri(u

k+1) (9.27)

where,

ri(u
k+1) =

iM(2MF+F+1)
∑

j=(i−1)M(2MF+F+1)+1

{Aiju
k+1
j } − b̃i (9.28)

is the residual of the ith constraint.
Given these results, we can rewrite the auxiliary variables updates steps

as:

vk+1
β =Aiju

k+1
j −

ri(u
k+1)

d(i)
(9.29a)

vk+1
β+MF (M+1)

=Aij+MF (M+1)
slk+1

1,i −
ri(u

k+1)

d(i)
(9.29b)

vk+1
β+MF (2M)

=Aij+MF (2M)
slk+1

2,j −
ri(u

k+1)

d(i)
(9.29c)

vk+1
β+M(2MF+1)

=Aij+M(2MF+1)
slk+1

3,j −
ri(u

k+1)

d(i)
. (9.29d)
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At this point, we have managed to reduce vectors λ and v. We return
our attention to u, this iteration (9.20) can be divided to 5 sets of updates.

For each node j = 1, . . . ,M

xk+1
j0f =argmin

xj0f

ρ

2

∥
∥
∥
∥
∥
xj0f +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+ cj0sfdjfxj0f (9.30a)

xk+1
jjf =argmin

xjjf

ρ

2

∥
∥
∥
∥
∥
sfxjjf +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+
ρ

2

∥
∥
∥
∥
∥
xjjf +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+ cj0sfxjjf

(9.30b)

xk+1
jj′f =argmin

xjj′f

ρ

2

∥
∥
∥
∥
∥
xjj′f +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+
ρ

2

∥
∥
∥
∥
∥
xjj′f +

λk
β

ρ
− vkβ

∥
∥
∥
∥
∥

2

+ cjj′sfdjfxjj′f

(9.30c)

slk+1
2,j =argmin

sl2,j

I+(sl2,j) +
ρ

2

∥
∥
∥
∥
∥
sl2,j +

λk
β2+MF (2M)

ρ
− vkβ2+MF (2M)

∥
∥
∥
∥
∥

2

. (9.30d)

For each constraint i = 1, . . . ,MF (M − 1)

slk+1
1,i =argmin

sl1,i

I+(sl1,i) +
ρ

2

∥
∥
∥
∥
∥
sl1,i +

λk
β1+MF (M+1)

ρ
− vkβ1+MF (M+1)

∥
∥
∥
∥
∥

2

. (9.31a)

For each constraint i = 1, . . . ,MF 2

slk+1
3,i =argmin

sl3,i

I+(sl3,i) +
ρ

2

∥
∥
∥
∥
∥
sl3,i +

λk
β3+M(2MF+1)

ρ
− vkβ3+M(2MF+1)

∥
∥
∥
∥
∥

2

,

(9.32a)

where, β1 = β(j, j), β2 = β(i+MF (M − 1), i) and β3 = β(i+MF (M − 1)+
M, i).

Using the previous simplifications obtained on the auxiliary variables and
the Lagrangian multipliers, we can solve the primal variables update steps.

2i does not really point to the right constraint in matrixA because we made a transition
in order to follow the entries of the corresponding slack vector.
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9.5. Optimal Cache w/ ADMM

The final equations for each SBS j are as follows:

xk+1
j0f =

[

xk
j0f −

(

πj+MF (M−1)+M+f)

ρ
+

rj+MF (M−1)+M+f
(uk)

d(j +MF (M − 1) +M + f)
+

cj0sfdjf

ρ

)]

+

(9.33a)

xk+1
jjf =

[

xk
jjf −

1

1 + s2f

(

sfπj+MF (M−1)

ρ
+

sfrj+MF (M−1)
(uk)

d(j +MF (M − 1))
+

πj+MF (M−1)+M+f

ρ
+

rj+MF (M−1)+M+f
(uk)

d(j +MF (M − 1) +M + f)
+

cj0sf

ρ

)]

+

(9.33b)

xk+1
jj′f =

[

xk
jj′f −

1

ρ

(

πk
(M−1)F (j−1)+F (j′−1−1j′>j)+f+

ρr(M−1)F (j−1)+F (j′−1−1j′>j)+f (u
k)

d((M − 1)F (j − 1) + F (j′ − 1− 1j′>j) + f)
+ πF (j−1)+MF (M−1)+M+f+

ρrF (j−1)+MF (M−1)+M+f (u
k)

d(F (j − 1) +MF (M − 1) +M + f)
+ cjj′sfdjf

)]

+

(9.33c)

slk+1
1,i =

[

slk1,i −
πk
i

ρ
−

ri(u
k)

d(i)

]

+

(9.33d)

slk+1
2,i =

[

slk2,i −
πk
i+MF (M−1)

ρ
−

ri+MF (M−1)
(uk)

d(i+MF (M − 1))

]

+

(9.33e)

slk+1
3,i =

[

slk3,i −
πk
i+MF (M−1)+M

ρ
−

ri+MF (M−1)+M
(uk)

d(i+MF (M − 1) +M)

]

+

(9.33f)

(9.33g)

We regroup all the final update steps. These updates can be applied
synchronously or asynchronously. When applied in a synchronous manner,
we obtain algorithm 8 that summarizes the distributed caching with sharing
obtained using ADMM.When implemented asynchronously, the update steps
have to be applied by the node or set of nodes that were switched on.
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9.6. Conclusion

Algorithm 8: Distributed Caching while sharing w/ADMM

1. Initialize the primal & slack variables, and the Lagrangian multipliers
to a desired value.

2. At iteration k + 1:

(a) Every SBS j = 1, ...,M decides whether to cache a content or
not and if it wants to share it by updating its variables using
Eq. (9.33a) to (9.33f)

(b) Exchange the values corresponding to the cached files between the
connected SBSs. I.e., SBS j communicate xk+1

jjf , ∀f = 1, . . . , F. to
its neighbors.

(c) Every SBS j = 1, ...,M updates the Lagrangian multipliers corre-
sponding to its constraints using

πk+1
i = πk

i +
ρ

d(i)
ri(u

k+1)

3. Each SBS checks if its constraints are violated then increase k and
return to step 2. Otherwise, SBS j stores and shares the files as given
by its primal variables vector.

9.6 Conclusion

In this chapter we provided a distributed ADMM approach to solve the
caching problem in 5G networks. We introduced the file sharing concept
between the nodes and considered different sizes for each file. Thus, the
nodes have an additional choice that they can privilege. They can chose to
share files among each other, and not only by fetching it from the CS. We
provided the detailed steps to obtain the distributed updates to be applied
by each node. These update steps can be performed by all the nodes within
an iteration in a synchronous fashion. Additionally, the nodes can choose
not to update their variables, a situation in which the ADMM algorithm is
applied asynchronously. In both cases the algorithm inherent the convergence
property detailed in the previous chapters. The ADMM application in such
context does always converge, an optimal solution minimizing the global cost
is thus obtained.
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Chapter 10

Conclusions

10.1 Summary

The work carried out in this dissertation focused on distributed synchronous
and asynchronous Alternating Direction method of Multipliers (ADMM) ap-
plications in large systems of interconnected nodes. Depending on the ana-
lyzed system, different algorithms were provided and explained.

In the first part of this thesis we were concerned about the smart energy
management of the power grid.

In Chapter 3 we gave a detailed study on the power grid progress to-
wards becoming smarter and the required interventions at different levels.
We placed ourselves in the management part, specifically on the problem
related to optimal power flow (OPF) and its variant the Direct-Current opti-
mal power flow (DC-OPF). We introduced some of the methods that can be
used and their applications. Additionally, we highlighted the related works
achievements and drawbacks.

In Chapter 4, we focused on the DC-OPF problem formulation as a
Production-Sharing problem. This formulation was used in order to show
how the work provided in this thesis can cope with various systems and
problems. At this point of the thesis, we sought to solve distributively
the Production-Sharing problem. Drawn by the performance limitations of
the existing methods, we turned our attention to the Alternation Direction
Method of Multipliers (ADMM) in Chapter 5. ADMM has been proved to
perform very well for distributed optimization over interconnected networks.
Using some of the basic monotone operator theory notions on the dual of
the Distributed Production-Sharing (DPS) problem, we formulated an area-
based version of the ADMM. We also explained the process of obtaining the
classical ADMM version using the same procedure. The area-based ADMM
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10.1. Summary

algorithm was obtained by combining the Douglas-Rachford (DR) splitting
method and the Proximal Point algorithm (PPA). DR splitting method was
used to split the dual of the problem that can be seen as the sum of two
maximal monotone operators. From these operators we obtained the DR op-
erator. Then, PPA was applied on the DR operator, leading to the area-based
distributed ADMM.

We implemented this method on the DPS problem in Chapter 6. The
direct application tends to inherit the same synchronous limitation of the
existing methods. Using random Gauss-Seidel iterations on PPA we provided
an asynchronous version of the ADMM method. The convergence of both
versions was limited to the case of overlapping areas. In power grid networks
this situation may not be feasible. For this reason, we introduced dummy
nodes on the tie-lines connecting the nodes belonging to different areas. This
helped us in extending the application of the synchronous and asynchronous
ADMM algorithms to the case where the areas do not overlap.

In Chapter 7 we introduced renewable energy sources and storage devices
to the conventional power grid. Such equipment provided the network with
the ability of sharing energy across time while producing green cheap power.
After describing the model in hand we formulated the problem and we solved
it by combining Lyapunov techniques and ADMM. Lyapunov techniques were
used to design a low complexity online solution of the problem after relaxing
the storage devices constraints. Perturbation parameters were introduced.
These parameters were tuned so that the relaxed problem solution is also
feasible for the original problem. Finally, a distributed implementation of
the online algorithm was provided using ADMM.

In Chapter 8 we implemented the ADMM algorithms on different net-
works. We used the IEEE−30 and 118 Bus test systems for the implemen-
tation of the DC-OPF problem in the case of conventional power grid. We
compared the objective convergence and residual convergence of the algo-
rithms under multiple scenarios. The algorithms tend to converge under all
circumstances. An additional number of iterations was required to obtain
the same result when going from the overlapping to the non-overlapping ar-
chitectures. We also confirmed through these simulations the convergence of
the asynchronous area-based ADMM and its scalability when the network
tends to become larger. Even when a big portion of the network is failing
or not updating its variables, we were able to attain the optimal solution.
Finally, for the case of a network with distributed generation units and stor-
age devices, we used the IEEE−6 Bus test system. Due to the presence of
storage devices, we were able to observe the effect of of sharing across time.
The storage devices helped in reducing the global cost across time when we
increased their charging/discharging abilities.
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In the second part of this dissertation, we gave our initial results obtained
by using ADMM for distributed Caching in 5G Networks

In Chapter 9 after introducing the problem, we cited some of the re-
lated work in this field. We explained the network model and formulated
the caching problem as a convex optimization problem. Conventionally the
central scheduler had to solve this problem in a centralized fashion. Thus,
it is should be endowed large computational capacities. Communications
had to be done between all the nodes and this scheduler. For these reasons,
we reformulated the problem and solved it distributively at node level using
ADMM. In Chapter 9 we supposed that the nodes were allowed to share
contents. We provided an example of a network of 3 nodes to illustrate the
problem. We detailed how to obtain an ADMM algorithm for a more general
network with arbitrary number of nodes and contents. From this formula-
tion, we are more convinced that the distributed optimization using ADMM
is really appealing for such an area of application. This is mainly due to the
fact that the problem size scales with the number of nodes, connections and
contents.

10.2 Directions for Future Works

One of the main challenges is implementing the distributed ADMM algo-
rithms, which we have derived in this thesis, on a real network with real data
measurements. This allows investigating the behavior of the network under
node failure or area failure in comparison with the synchronous implementa-
tion of the distributed ADMM algorithm when no failures occur. This also
helps in examining the scalability of the algorithms when the network tends
to become of large scale.

Another challenge is to accelerate the convergence speeds. We usually
need several hundreds of iterations to achieve the convergence. A better
step-adaptation procedure may help in decreasing the required number of it-
erations. In fact, we do not have yet a direct relation between the parameter
ρ (which imposes a penalty to violating the constraints) and the convergence
speed of the distributed ADMM applied to the DC-OPF problem. We tried
to find such relation by studying the convergence of the algorithm and its de-
pendency with the penalty parameter ρ. First, we progressed by finding the
matrix relating the zeros of the Douglas-Rachford splitting operator ζk+1 and
ζk. Then, we needed to proceed with an eigenvalue decomposition and a for-
mal study of this matrix eigenvalues. However, this decomposition required
lots of effort to be obtained even for a small simple network. Proceeding in
this study may lead to a significant enhancement in the convergence speed.
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10.2. Directions for Future Works

Node, link or area failure poses a crucial problem in many actual domains.
The asynchronous distributed ADMM algorithm considers this case, where
the area update process is chosen to be i.i.d. Besides, we can study the case
where the random area selection has a Markovian structure. If an area, a
link, or a node is off, most likely it will still be off on the next round and hence
the random area selection has a Markovian structure. We need to investigate
in details such case that tends towards a more realistic implementation of
the network with failures case.

One may also focus on using the asynchronous distributed optimization
using ADMM when the distributed generation (DG) sources are integrated
into the network and the nodes are equipped with storage devices. After
completing the work of Chapter 7, the authors of [111] published similar re-
sults where they combined Lyapunov optimization with ADMM. This limited
our ability to publish our work related to this application. In addition, we
started a joint work on the robustness of the distributed ADMM algorithm
when the network faces failures or attacks. We need to study the behavior
of the algorithm when load redistribution attacks exist and the effect that
distributed storage devices can induce in such cases. When a load attack
occurs and may lead to shedding, we need then to study the usage of storage
devices to cover such an unfulfilled demand.

Regarding the distributed caching in 5G networks, the next step is to take
into account the users when formulating the network model in the caching
problem. This will add another level in the caching vector of each node. We
then need to consider clustering the users and how these users should be
grouped while being constrained with the nodes available power.

Lastly, combining the two parts studied in this dissertation, i.e. energy
efficient caching using DG units power excess, can also be of a great interest
for future studies. We need to investigate the usage of the extra generation
from these sources to power the SBS and make them cache the files efficiently.
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Appendix A

Data tables for IEEE Test bus
systems

Table A.1: Transmission Lines data, IEEE−30 Bus Test
System

Line from node i to node j rij xij bij pij pij

1 1 2 0,0192 0,0575 0,0528 -200 200

2 1 3 0,0452 0,1652 0,0408 -200 200

3 2 4 0,057 0,1737 0,0368 -200 200

4 3 4 0,0132 0,0379 0,0084 -200 200

5 2 5 0,0472 0,1983 0,0418 -200 200

6 2 6 0,0581 0,1763 0,0374 -200 200

7 4 6 0,0119 0,0414 0,009 -200 200

8 5 7 0,046 0,116 0,0204 -200 200

9 6 7 0,0267 0,082 0,017 -200 200

10 6 8 0,012 0,042 0,009 -200 200

11 6 9 0 0,208 0 -200 200

12 6 10 0 0,556 0 -200 200

13 9 11 0 0,208 0 -200 200

14 9 10 0 0,11 0 -200 200

15 4 12 0 0,256 0 -200 200

16 12 13 0 0,14 0 -200 200
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17 12 14 0,1231 0,2559 0 -200 200

18 12 15 0,0662 0,1304 0 -200 200

19 12 16 0,0945 0,1987 0 -200 200

20 14 15 0,221 0,1997 0 -200 200

21 16 17 0,0524 0,1923 0 -200 200

22 15 18 0,1073 0,2185 0 -200 200

23 18 19 0,0639 0,1292 0 -200 200

24 19 20 0,034 0,068 0 -200 200

25 10 20 0,0936 0,209 0 -200 200

26 10 17 0,0324 0,0845 0 -200 200

27 10 21 0,0348 0,0749 0 -200 200

28 10 22 0,0727 0,1499 0 -200 200

29 21 22 0,0116 0,0236 0 -200 200

30 15 23 0,1 0,202 0 -200 200

31 22 24 0,115 0,179 0 -200 200

32 23 24 0,132 0,27 0 -200 200

33 24 25 0,1885 0,3292 0 -200 200

34 25 26 0,2544 0,38 0 -200 200

35 25 27 0,1093 0,2087 0 -200 200

36 28 27 0 0,396 0 -200 200

37 27 29 0,2198 0,4153 0 -200 200

38 27 30 0,3202 0,6027 0 -200 200

39 29 30 0,2399 0,4533 0 -200 200

40 8 28 0,0636 0,2 0,0428 -200 200

41 6 28 0,0169 0,0599 0,013 -200 200
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Table A.2: Nodes data, IEEE−118 Bus Test System

Node j cj pGj pGj pDj c′j Node j cj pGj pGj pDj c′j

1 40 5 30 51 0 60 0 0 0 78 0

2 0 0 0 20 0 61 20 50 200 0 0,07

3 0 0 0 39 0 62 40 25 100 77 0,09

4 40 5 30 39 0,1 63 0 0 0 0 0

5 0 0 0 0 0 64 0 0 0 0 0

6 40 5 30 52 0,07 65 20 100 420 0 0,07

7 0 0 0 19 0 66 20 100 420 39 0,14

8 40 150 300 28 0,08 67 0 0 0 28 0

9 0 0 0 0 0 68 0 0 0 0 0

10 20 100 300 0 0,04 69 20 80 300 0 0,1

11 0 0 0 70 0 70 40 30 80 66 0,09

12 20 10 30 47 0,01 71 0 0 0 0 0

13 0 0 0 34 0 72 40 10 30 12 0,04

14 0 0 0 14 0 73 40 5 30 6 0,08

15 40 25 100 90 0,05 74 40 5 20 68 0,13

16 0 0 0 25 0 75 0 0 0 47 0

17 0 0 0 11 0 76 40 25 100 68 0,1

18 40 5 30 60 0.1 77 40 25 100 61 0,06

19 40 5 30 45 0.04 78 0 0 0 71 0

20 0 0 0 18 0 79 0 0 0 39 0

21 0 0 0 14 0 80 20 150 300 130 0,06

22 0 0 0 10 0 81 0 0 0 0 0

23 0 0 0 7 0 82 0 0 0 54 0,02

24 40 100 300 13 0.05 83 0 0 0 20 0

25 20 100 350 0 0.11 84 0 0 0 11 0

26 20 8 30 0 0,04 85 40 25 100 24 0,06

27 40 8 30 71 0,1 86 0 0 0 21 0

28 0 0 0 17 0 87 20 10 30 0 0,1

29 0 0 0 24 0 88 0 0 0 48 0

30 0 0 0 0 0 89 20 100 300 0 0,08
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31 20 25 100 43 0,05 90 40 50 200 163 0,07

32 40 8 30 59 0,13 91 40 8 20 10 0,06

33 0 0 0 23 0 92 40 20 50 65 0,09

34 40 25 100 59 0,07 93 0 0 0 12 0

35 0 0 0 33 0 94 0 0 0 30 0

36 40 8 30 31 0,04 95 0 0 0 42 0

37 0 0 0 0 0 96 0 0 0 38 0

38 0 0 0 0 0 97 0 0 0 15 0

39 0 0 0 27 0 98 0 0 0 34 0

40 40 8 30 66 0,05 99 40 100 300 42 0,03

41 0 0 0 37 0 100 20 100 300 37 0,04

42 40 25 100 96 0,1 101 0 0 0 22 0

43 0 0 0 18 0 102 0 0 0 5 0

44 0 0 0 16 0 103 20 100 300 23 0,05

45 0 0 0 53 0 104 40 8 20 38 0,06

46 20 50 250 28 0,07 105 40 25 100 31 0,07

47 0 0 0 34 0 106 0 0 0 43 0

48 0 0 0 20 0 107 40 25 100 50 0,03

49 20 50 250 87 0,08 108 0 0 0 2 0

50 0 0 0 17 0 109 0 0 0 8 0

51 0 0 0 17 0 110 40 8 20 39 0,04

52 0 0 0 18 0 111 20 25 50 0 0,04

53 0 0 0 23 0 112 40 25 100 68 0,08

54 20 25 100 113 0,08 113 40 25 100 6 0,09

55 40 25 100 63 0,05 114 0 0 0 8 0

56 40 50 200 84 0,01 115 0 0 0 22 0

57 0 0 0 12 0 116 40 25 100 184 0,07

58 0 0 0 12 0 117 0 0 0 20 0

59 10 0 100 277 0,01 118 0 0 0 33 0
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