
HAL Id: tel-01306788
https://theses.hal.science/tel-01306788

Submitted on 25 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Réponses manquantes : Débogage et Réparation de
requêtes

Aikaterini Tzompanaki

To cite this version:
Aikaterini Tzompanaki. Réponses manquantes : Débogage et Réparation de requêtes. Base de données
[cs.DB]. Université Paris Saclay (COmUE), 2015. Français. �NNT : 2015SACLS223�. �tel-01306788�

https://theses.hal.science/tel-01306788
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD
UNIVERSITÉ PARIS-SACLAY

ÉCOLE DOCTORALE INFORMATIQUE DE PARIS-SUD (ED 427)

Laboratoire de Recherche en Informatique (LRI)

DISCIPLINE INFORMATIQUE

THÈSE DE DOCTORAT

Soutenue le 14/12/2015 à Gif-sur-Yvette

par AIKATERINI TZOMPANAKI

Query Debugging and Fixing
to Recover Missing Query Results

Directrice de thèse : Nicole Bidoit Professeur, Université Paris-Sud, France
Co-encadrante de thèse : Melanie Herschel Professeur, Université Stuttgart, Alle-

magne

Rapporteurs : David Gross-Amblard Professeur, Université Rennes 1 ISTIC,
France

Bertram Ludäscher Professeur, Université Illinois, USA
Yannis Velegrakis Maître de conférences, Université Trento,

Italie

Examinateurs : Christine Froidevaux Professeur, Université Paris-Sud, France
Philippe Rigaux Professeur, Conservatoire National des

Arts et Métiers, France

2015SACLS223

i

Abstract

“Query Debugging and Fixing to Recover Missing Query
Results”

Aikaterini Tzompanaki

With the increasing amount of available data and data transformations, typically
specified by queries, the need to understand them also increases. “Why are there
medicine books in my sales report?” or “Why are there not any database books?”
For the first question we need to find the origins or provenance of the result tuples
in the source data. However, reasoning about missing query results, specified by
Why-Not questions as the latter previously mentioned, has not till recently received
the attention it is worth of.

Why-Not questions can be answered by providing explanations for the missing
tuples. These explanations identify why and how data pertinent to the missing
tuples were not properly combined by the query. Essentially, the causes lie either
in the input data (e.g., erroneous or incomplete data) or at the query level (e.g., a
query operator like join).

Assuming that the source data contain all the necessary relevant information, we
can identify the responsible query operators formingquery-based explanations. This
information can then be used to propose query refinements modifying the responsible
operators of the initial query such that the refined query result contains the expected
data. This thesis proposes a framework targeted towards SQL query debugging and
fixing to recover missing query results based on query-based explanations and query
refinements.

Our contribution to query debugging consist in two different approaches. The
first one is a tree-based approach. First, we provide the formal framework around
Why-Not questions, missing from the state-of-the-art. Then, we review in detail
the state-of-the-art, showing how it probably leads to inaccurate explanations or
fails to provide an explanation. We further propose the NedExplain algorithm that
computes correct explanations for SPJA queries and unions there of, thus considering
more operators (aggregation) than the state of the art. Finally, we experimentally
show that NedExplain is better than the both in terms of time performance and
explanation quality.

However, we show that the previous approach leads to explanations that dif-
fer for equivalent query trees, thus providing incomplete information about what is
wrong with the query. We address this issue by introducing a more general notion of
explanations, using polynomials. The polynomial captures all the combinations in
which the query conditions should be fixed in order for the missing tuples to appear
in the result. This method is targeted towards conjunctive queries with inequalities.
We further propose two algorithms, Ted that naively interprets the definitions for
polynomial explanations and the optimized Ted++. We show that Ted does not
scale well w.r.t. the size of the database. On the other hand, Ted++ is capable

ii

of efficiently computing the polynomial, relying on schema and data partitioning
and advantageous replacement of expensive database evaluations by mathematical
calculations. Finally, we experimentally evaluate the quality of the polynomial ex-
planations and the efficiency of Ted++, including a comparative evaluation.

For query fixing we propose is a new approach for refining a query by leveraging
polynomial explanations. Based on the input data we propose how to change the
query conditions pinpointed by the explanations by adjusting the constant values
of the selection conditions. In case of joins, we introduce a novel type of query
refinements using outer joins. We further devise the techniques to compute query
refinements in the FixTed algorithm, and discuss how our method has the potential
to be more efficient and effective than the related work.

Finally, we have implemented both Ted++ and FixTed in an system prototype.
The query debugging and fixing platform, short EFQ allows users to interactively
debug and fix their queries (conjunctive queries with inequalities) when having Why-
Not questions.

Keywords: Why-Not questions, explanations, query debugging, query fixing, query
refinement, data provenance, query verification

iii

Résumé

“Réponses manquantes : Débogage et Réparation de
requêtes”

Aikaterini Tzompanaki

La quantité croissante des données s’accompagne par l’augmentation du nombre
de programmes de transformation de données, généralement des requêtes, et par la
nécessité d’analyser et comprendre leurs résultats : (a) pourquoi telle réponse figure
dans le résultat ? ou (b) pourquoi telle information n’y figure pas ? La première
question demande de trouver l’origine ou la provenance des résultats dans la base, un
problème très étudié depuis une 20taine d’années. Par contre, expliquer l’absence de
réponses dans le résultat d’une requête est un problème peu exploré jusqu’à présent.

Répondre à une question Pourqoui-Pas consiste à fournir des explications quant à
l’absence de réponses. Ces explications identifient pourquoi et comment les données
pertinentes aux réponses manquantes sont absentes ou éliminées par la requête.

Notre travail suppose que la base de données n’est pas source d’erreur et donc
cherche à fournir des explications fondées sur (les opérateurs de) la requête qui peut
alors être raffinée ultérieurement en modifiant les opérateurs "fautifs". Cette thèse
développe des outils formels et algorithmiques destinés au débogage et à la réparation
de requêtes SQL afin de traiter des questions de type Pourqoui-Pas. Notre première
contribution, inspirée par une étude critique de l’état de l’art, utilise un arbre de
requête pour rechercher les opérateurs "fautifs". Elle permet de considérer une
classe de requêtes incluant SPJA, l’union et l’agrégation. L’algorithme NedExplain
développé dans ce cadre, a été validé formellement et expérimentalement. Il produit
des explications de meilleure qualité tout en étant plus efficace que l’état de l’art.

L’approche précédente s’avère toutefois sensible au choix de l’arbre de requête
utilisé pour rechercher les explications. Notre deuxième contribution réside en la
proposition d’une notion plus générale d’explication sous forme de polynôme qui
capture toutes les combinaisons de conditions devant être modifées pour que les
réponses manquantes apparaissent dans le résultat. Cette méthode s’applique à
la classe des requêtes conjonctives avec inégalités. Sur la base d’un premier algo-
rithme naïf, Ted , ne passant pas à l’échelle, un deuxième algorithme, Ted++, a été
soigneusement conçu pour éliminer entre autre les calculs itérés de sous-requêtes
incluant des produits cartésien. Comme pour la première approche, une évaluation
expérimentale a prouvé la qualité et l’efficacité de Ted++.

Concernant la réparation des requêtes, notre contribution réside dans l’exploitation
des explications polynômes pour guider les modifications de la requête initiale ce qui
permet la génération de raffinements plus pertinents. La réparation des jointures
"fautives" est traitée de manière originale par des jointures externes. L’ensemble des
techniques de réparation est mis en œuvre dans FixTed et permet ainsi une étude
de performance et une étude comparative.

Enfin, Ted++ et FixTed ont été assemblés dans une plate-forme pour le débogage

iv

et la réparation de requêtes relationnelles.

Keywords: Why-Not questions, explanations, query debugging, query fixing, query
refinement, data provenance, query verification

v

Acknowledgments

I want to dedicate the first lines to my advisors, Nicole Bidoit and Melanie
Herschel.

Nicole is the epitome of a responsible and caring advisor. From the very be-
ginning she spent her valuable time to teach me the insights and formalities of
databases, always patient with my questions and eager to explain even the small-
est things. We have spent countless hours discussing ideas, hitting walls, and then
coming up with solutions. Her door was always open for me whenever I needed her,
while her deep knowledge and expert eye showed the right way to follow. However, if
I said that Nicole was just an advisor to me, I would be underestimating the amount
of respect and gratitude I feel towards her. In the good times she was genuinely
happy for me and in the bad times no one could wish for a more supportive and
encouraging mentor. For all that I will always be grateful.

Melanie has also been a valuable doctoral advisor for me. She introduced me to
the exciting topic of data provenance, providing guidance and helpful advice. Her
natural tendency to research and her critical mind in conjunction with her young
age, have been an inspiration. Her attitude taught me that in life you should be
bold, chasing what you want, insisting no matter the difficulties or rejections. I feel
lucky that I collaborated with her and I owe her a big thank you!

I am also grateful to the reviewers of my thesis, David Gross Amblard, Bertram
Ludaescher and Yannis Velegrakis for thoroughly reading my thesis and for their
valuable comments. Further, I would like to thank Christine Froideveaux, and
Philippe Rigaux for being part of my examining committee; I am very honored.

This PhD would not have been such a wonderful experience, without all the
people with whom I had the pleasure to work and consort with in the office. Danai,
Iwanna, Sejla, Damian, Jesus, Juan, Andres, Alessandro, Benjamin, Despoina, Zoi,
Asterios, Paul, Alexandra, Raphael, Tushar, Fransesca, Benoit, Gianlucka, Yifan,
Soudip ... thank you all for being part of my everyday life.

I am also honored to have been a member of the BD team (now LahDAK team) of
LRI and to meet all these great people, Nathalie Pernell, Emmanuel Waller, Chantal
Reynaud, Fatiha Sais, Sarah Cohen-Boulakia, Francois Goasdoue, Dario Colazzo,
and so many others! Then, I would like to especially thank Ioana Manolescu for
giving me the chance to be part of the OAK team of INRIA, and for providing me
with concrete help when I needed it. I am also grateful to the University Paris Sud
for financing my PhD and accepting my teaching services. Finally, I would like to
thank the University of Stuttgart for the invites and the travel financial aid.

Being abroad for the first time was not easy and would have been unbearable,
especially in the beginning, without all the good friends who I am blessed to have
with me in Paris. Mary, Danai, Iwanna, Nelly, Boulouk, Mathiou, Dimitri, Fabien,
Foivo, being with you helped me to not feel homesick, as you have been my family
here in Paris. As such, I do not feel the need to say that I thank you but that I love
you. Especially to my girls: Mary, thank you for being the one who knows what I
want and what I think without the need to say a word. Danai, thank you for giving

vi

us your energy and being a friend on whom we can rely. Nelly, thank you for all the
support and for being an inspiration when it comes to determination and passion for
computer science. Iwanna, even though our friendship does not count many years,
it counts for sure a lot in my heart.

Dimitra, Giohan, Charoula, being your friend so many years has helped me
endure and enjoy every aspect of my life, since we were kids. Chryssa, Maria, Dina,
Lenia thank you for always being there for me and lighting up my life! Even though
we are far away, I always feel your love and your support.

Special thanks goes to my special one, Stamatis Zampetakis. Stamatis through-
out the years has been my biggest supporter, my best friend, my loving companion.
He endures without complaints my ups and downs, lifting me up whenever I fall,
celebrating with me the happy moments. Being a great scientist and programmer
himself, his help and support has not only been emotional but practical too. His
opinion and comments on my work are always greatly valued, and in moments of
coding crisis, he is always there to the rescue! Certainly, my life would be a worse
place without him!

Last but not least, I would like to express my gratitude and love to my family:
my parents Yannis and Athena, and my brother Spyros. They provided me with
a peaceful environment while growing up, full of love, respect and commitment to
each other. Through them I learned to love knowledge, and that it takes hard work
and passion for whatever you do in order to succeed. Their love and support has
always been unconditional and I hope that they realise how much I love them back.

To all of you, thank you, merci, ευχαριστώ!

Contents

Abstract i

Résumé iii

Acknowledgments v

1 Introduction 1
1.1 Contributions . 3
1.2 Structure . 6

2 Preliminaries and Problem Definition 9
2.1 Relational data and query model . 9
2.2 Why-Not question and compatible data 16
2.3 Problem statement . 22
2.4 Summary . 24

3 Related Work 25
3.1 Data Provenance . 26
3.2 Why-Not Provenance . 29

3.2.1 Instance-Based Explanations 30
3.2.2 Query-based explanations . 32
3.2.3 Hybrid explanations . 33
3.2.4 Ontology-Based Explanations 34
3.2.5 Query Refinements . 35

3.3 Summary . 41

4 Query Debugging 43
4.1 NedExplain . 44

4.1.1 NedExplain Algorithm vs Why-Not Algorithm 45
4.1.2 Contribution . 50
4.1.3 Preliminaries . 50
4.1.4 Why-Not Answer . 53
4.1.5 Algorithm . 59
4.1.6 Experiments . 67
4.1.7 Conclusion . 76

vii

viii CONTENTS

4.2 Ted . 77
4.2.1 Contribution . 79
4.2.2 Preliminaries . 80
4.2.3 Polynomial Explanations . 81
4.2.4 Ted Naive Algorithm . 85
4.2.5 Ted Optimized Algorithm . 87
4.2.6 Experiments . 94
4.2.7 Theoretical discussion . 102
4.2.8 Conclusion . 116

4.3 Summary . 117

5 Query Refinement Phase 119
5.1 Motivation . 120
5.2 Contribution . 120
5.3 Problem and Preliminaries . 122
5.4 Query-Refinements . 129

5.4.1 Selections-Only explanations 129
5.4.2 False Positive Elimination . 132
5.4.3 Joins-Only explanations . 139
5.4.4 Mixed explanations . 145

5.5 FixTed Algorithm . 145
5.6 EFQ Platform . 153

5.6.1 Set up . 154
5.6.2 Platform description through a use case 154

5.7 Summary and Future Work . 156

6 Conclusion and Future Work 159
6.1 Thesis Summary . 160
6.2 Perspectives . 164

Bibliography 167

List of Algorithms

1 NedExplain . 62
2 CheckEarlyTermination . 63
3 FindSuccessors . 64
4 DetailedAnswer . 65
5 Secondary Answer . 65
6 Ted algorithm . 85
7 Ted++ . 87
8 CoefficientEstimation . 88

9 FixTed . 146
10 MDR Algorithm . 147
11 FPE Algorithm . 149

ix

x LIST OF ALGORITHMS

List of Figures

2.1 Example query tree . 16
2.2 R and S relation instances . 19

3.1 Relation instances for Example 3.1.1 28

4.1 Scenario for NedExplain running example 44
4.2 (a) Why-Not, and (b) NedExplain algorithms for the case when the

Why-Not algorithm does not compute a Why-Not answer. 46
4.3 (a) Why-Not, and (b) NedExplain algorithms for the case when the

Why-Not algorithm computes an inaccurate explanation. 47
4.4 (a) Why-Not, and (b) NedExplain algorithms for the case of self-join. 49
4.5 Successor t of a tuple tI . 54
4.6 Picky operator (a), picky query (b), and secondary Why-Not answer (c) 56
4.7 Query trees for queries Q2, Q3, Q4, Q5, Q8. The bullet at Q8 marks

the breakpoint view V . 71
4.8 Phase-wise runtime for NedExplain 74
4.9 Why-Not and NedExplain execution time 76
4.10 Example query and data . 78
4.11 Reordered query trees for the query of Figure 4.10 and algorithm

results (Why-Not ◦, NedExplain ?, Conseil •) 78
4.12 Scenario of running example . 81
4.13 Running example with the different steps of Ted++ (up to explana-

tions of size 3) in Algorithm 7 and Algorithm 8. 91
4.14 Runtimes for Ted++, Ted, NedExplain and Why-Not 98
4.15 Ted++ and Ted runtime distribution 99
4.16 Ted++ runtime w.r.t. number of conditions in Q 100
4.17 Ted++ runtime w.r.t. number of conditions in WN 101
4.18 Ted++ (a) runtime, and (b) number of compatible tuples for increas-

ing database size, complex and simple WN 102
4.19 Database instance and isomorphic queries 107
4.20 A query tree T for Q . 109
4.21 Equivalent query trees w.r.t. PEX . 110
4.22 Example query Q and minimized query Q′ 112
4.23 Compatibility tableaux for Q and Q′ 113

xi

xii LIST OF FIGURES

4.24 Compatible tuple sets CT (TvWN , I) and CT (T ′vWN , I) and picky con-
ditions sets E and E ′ . 114

5.1 Tuples from Table 5.1 displayed in the dimension space A,B,C,D,E. 125
5.2 Tuples in the Cartesian space and quarters defined by the query se-

lection conditions. 127
5.3 Graph for derivatives of refined queries of Q′t2 (a) initially, and (b)

after edge pruning. 134
5.4 Representation in the DC space of the result tuples of refined query

(a) Q′t3 , (b) of refined query Q′′ obtained by adding conditions on the
attribute C, and (c) of refined queryQ′′ obtained by adding conditions
on the attribute D. 137

5.5 Graph for derivatives of refined queries of (a) Q′t1 , and (b) Q′t3 138
5.6 Sample database for the case study in joins-only explanations. 140
5.7 Query Q graph, where nodes n denote schema relations and edges θ

denote joins. 141
5.8 EFQ platform overview . 153
5.9 EFQ home and Scenario pages . 154
5.10 EFQ Explanation component . 155
5.11 EFQ Refinement component . 158

List of Tables

2.1 Example query tableau . 15
2.2 Notations table . 24

3.1 Algorithms for answering Why-Not questions 30

4.1 Primary global structure TabQ upon initialization 61
4.2 TabQ after executing NedExplain with the running example. 65
4.3 Queries for experiments . 69
4.4 Scenarios . 70
4.5 Why-Not and NedExplain answers, per scenario 72
4.6 Compatible tuples for scenario in Figure 4.2.2 82
4.7 Queries for the scenarios in Table 4.8 95
4.8 Scenarios . 96
4.9 Ted++, Why-Not, NedExplain answers per scenario 98
4.10 Mapping functions . 105
4.11 Tableau TvWN corresponding to QWN 106
4.12 Tτ1 . 106
4.13 Tableau Tτ1 and T ′τ1 . 115

5.1 Tuples in the database instance I, satisfying the condition R.C=S.C.
Tuples marked with t are compatible tuples, with r are query result
tuples and with u are irrelevant tuples. 123

5.2 Refined queries for selections-only explanations for scenario of Exam-
ple 5.3.1. 139

5.3 Refined queries for scenario of Example 5.3.1 using FixTed. 151
5.4 Refined queries by FixTed, with metrics. Scores are assigned only to

skyline queries, which are returned to the user in the order appearing
in the table. 152

xiii

Chapter 1

Introduction

Asking questions is inherent to human nature. Why is the sky blue? Why did
Homo sapiens survive through the centuries and Neanderthals did not? Why isn’t
the moon falling on the Earth? Why hasn’t Leonardo di Caprio still won the Oscar?
Except for the last one, the other questions are examples of how questions are the
driving force for scientific progress. But as important as asking questions is, so
important is to be able to understand the obtained answers. In this way, we are
able to verify the sanity of both the information at hand and of the question itself.

Today, in many domains (for instance sciences, industry, or marketing), massive
amounts of data are being generated and then processed to answer various types
of questions (analytical, statistical, scientific, etc). After gathering raw data, this
often involves combining and transforming these data through a number of possibly
complex steps before obtaining the desired output data. One possibility to define
such data transformations are declarative query languages. Indeed, these have the
benefit of allowing developers to easily specify what the result of a transformation
should be, without having to worry about the specific implementation that specifies
how to obtain the result. On the downside, a declarative specification renders it
more difficult to understand how result data were obtain, as there is no direct step-
by-step walk-through of a query execution which developers are accustomed to from
debuggers for procedural languages for instance.

Having said that, there is a need for debugging declarative queries, especially
as data transformations become more complex and data volume increases. One
means to provide debugging support on data obtained as a result to a query is to
identify the original (raw) data that led to the result and to pinpoint the individual
transformation steps these data did undergo. The field of data provenance (also
known as data pedigree or data lineage) addresses these issues and thus enables
users to validate result data output by a query. Indeed, provenance information
can be used to verify that expected results were produced in the intended way
and furthermore that they can be reproduced if necessary. Moreover, unexpected
results can be traced back to possibly identify and fix the cause(s) that led to the
unexpected result.

The provenance information mentioned above relates to data present in a query

1

2 CHAPTER 1. INTRODUCTION

result. However, it is equally important to be able to understand why some expected
data are missing from a query result. For instance, users may wonder “Why not
any sales numbers from Asia?” in a sales report or “Why not any result tuples at
all?" after trying to join data from multiple Web sources. These questions, to which
we refer to as Why-Not questions, can be answered by providing explanations for
the missing data. These explanations identify why and how data pertinent to the
missing tuples were not properly combined by the query, answering for instance
our Why-Not questions by “The source does not contain the region Asia" or “No
data in one of the selected Web tables could find a join partner in another table".
Essentially, the causes lie either in the input data or at data transformation steps
(e.g., a query operator like join). Pinpointing these causes helps in initiating proper
measures such as data cleaning or query fixing to recover the missing data.

To produce explanations based on erroneous data, we verify that the input data
are sufficient to produce what we expect. In other words this can be translated as
verifying that the database contains the ‘provenance’ information of what is missing.
If the input data are not sufficient, the most relevant approach consists in computing
candidate database updates that given the query would yield the missing tuples, an
approach know as computing instance-based explanations. On the other side, if
the input data contain all the necessary relevant information, we can identify why
the query did not produce the missing tuples that we expected, i.e, which query
operators are to blame for the missing tuples, an approach known as computing
query-based explanations. This information can then be used to propose query
refinements modifying the responsible operators of the initial query such that the
refined query result contains the expected data.

Determining explanations and refinements as described above is a tedious, error-
prone, and time consuming for a user who typically proceeds manually. More specif-
ically, a user has to engage herself in a continuous trial and testing cycle of query
debugging and fixing until her attempts yield the desired results. Taking into ac-
count the massive amounts of data to be handled and the growing complexity of
transformations, explaining missing tuples manually easily becomes practically in-
feasible. Clearly, in this context, users would highly benefit from automatic support.
Indeed, automatically computing explanations for missing tuples as described above
reminds us of ‘classical’ debuggers and development tools put at programmers dis-
posal for procedural programming languages. Debuggers for existing commercial
database systems like Oracle 1, SQL Server 2 or MySQL/MariaDB 3, provide a de-
bugger, yet with different focus: they either debug queries on the syntactic level,
or they provide a guidance to debug stored procedures (i.e, programs encapsulat-
ing SQL queries) and functions by splitting the program into consecutive parts and
providing intermediate results to the user. However, there is yet no system that
can act as debugger for declarative queries and data transformations that can di-

1. http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/devdays2012/mod2_sqldev
/mod2_sqldev.html

2. https://technet.microsoft.com/en-us/library/cc646008(v=sql.105).aspx
3. http://mydebugger.com/index.php

1.1. CONTRIBUTIONS 3

rectly indicate to the user the problematic part of their queries based on specific
user demands. Indeed such a feature, could e added in existing debugging systems
to enhance their effectiveness.

The overall goal of the Nautilus project [HE12] is to provide semi-automatic
algorithms and tools for data transformation debugging, fixing, and testing. This
thesis is set in the context of Nautilus and proposes a framework specifically targeted
towards SQL query debugging and fixing to recover missing query results based on
query-based explanations.

1.1 Contributions

As mentioned above, this thesis focuses on one particular problem in the more
general context of declarative query debugging and fixing. That is, we concentrate
on declarative queries specified in SQL and the particular debugging question of
missing query results. In this setting, we further focus on computing and leveraging
query-based explanations for debugging and fixing, respectively. That is, we assume
the input data to be correct.

Let us now highlight the contributions of this thesis in the above context. In
summary, this thesis is the first to provide a formal framework around Why-Not
questions and relevant notions, which has been missing from prior work on this sub-
ject. Based on this solid theoretical foundation, we identify and overcome shortcom-
ings of previous work such as result completeness or correctness. We propose two
approaches to answer Why-Not questions with query-based explanations, namely
the tree-based approach, referred to also as NedExplain, and the polynomial-based
approach, referred to also as Ted. As we will see, these take an inherently different
perspective of the query, resulting in different output properties, Ted being for in-
stance the more general one. Exploiting the result of Ted, we further propose a novel
approach towards fixing conjunctive queries with inequalities by building query re-
finements. These either relax selection conditions or transform joins to outer joins.
Not only are we the first to consider query-based explanations when computing re-
finements, we are also the first to study in detail refinements with different join
types. As there may be multiple possible refinements, we propose to rank these
according to several criteria. After this brief contribution overview, we now describe
our contributions in more detail.

Query debugging In supporting query debugging through query-based explana-
tions, this thesis advanced the field of research in the following aspect.

1. Tree-based approach Our first solution for computing query-based explana-
tion, named NedExplain [BHT14c] is inspired by theWhy-Not algorithm [CJ09],
which can be considered as the state-of-the-art algorithm. Like Why-Not, we
follow a query tree-based approach. However, we significantly extend on this
seminal work, as the below list of novel contributions clearly shows.

4 CHAPTER 1. INTRODUCTION

(a) Formalization of query-based Why-Not provenance. We provide a for-
malization of query-based explanations for Why-Not questions that was
missing from prior work. Our model subsumes the concepts informally
introduced previously and allows us to provably cover cases that were not
properly captured by Why-Not. Besides properly setting definitions for
the first time, our model also accommodates aggregate queries (i.e., select-
project-join-aggregate queries, or SPJA queries for short) and unions
thereof, aggregation not being considered by Why-Not.

(b) The NedExplain Algorithm. Based on the problem formalization, the
NedExplain algorithm is designed to correctly compute query-based ex-
planations given an SPJA query (or union thereof), a Why-Not question,
a source database, and its associated schema. Here, a query-based expla-
nation consists of operators of a specific algebraic query tree representa-
tion of the input query that are “responsible" for pruning data relevant
to producing the missing results.

(c) Comparative evaluation. The NedExplain algorithm has been imple-
mented for experimental validation. Our study shows that NedExplain
overall outperforms Why-Not, both in terms of efficiency and in terms of
explanation quality.

(d) Detailed analysis of Why-Not. We review in detail Why-Not in the con-
text of positive relational queries and show that it has several shortcom-
ings leading it to return no, partial, or misleading explanations.

2. Polynomial-based Our second solution, described in Ted [BHT14a, BHT15a,
BHT15d] is a novel idea to compute query-based explanations as polynomi-
als, in a manner detached from query-trees. As we argue in our work, the
query-tree based approach may lead to different and incomplete query-based
explanations, when different trees are considered for the same query. Thus,
unlike both Why-Not and NedExplain, the result of Ted is insensitive to the
specific query tree representation of the input query and leads to complete and
correct query-based explanations. Individual contributions are:
(a) Why-Not answer polynomial. We introduce a novel representation of

query-based explanations as a polynomial of query conditions, named
Why-Not answer polynomial. The advantages of this representation
are many. First, it captures all possible and complete query-based expla-
nations, i.e., all the possible combinations of query conditions that prune
relevant data from the result. Second, it provides an upper bound of
the recovered missing answers by means of its coefficients. Third, Why-
Not answer polynomials provide a unified framework to capture Why-Not
answers under set, bag, and probabilistic data model semantics.
Moreover, we show that isomorphic queries are equivalent w.r.t. the Why-
Not answer polynomial for the same Why-Not question, which leads to
showing that the explanations produced by Ted are more general the the
ones produced by NedExplain. Finally, we show that in general equivalent

1.1. CONTRIBUTIONS 5

queries do not correspond to the same Why-Not answer polynomial, given
a Why-Not question, while we provide an approximate Why-Not answer
polynomial for a query when a minimized version of it is available.

(b) Naive Ted and optimized Ted++. We provide two algorithms to pro-
duce Why-Not answer polynomials: a naive and straightforward algo-
rithm called Ted, which is shown to be inefficient in practice, and the
optimized Ted++ algorithm that renders the solution practically inter-
esting as well. Ted++ relies on schema and data partitioning (allowing
for a distributed computation) and advantageous replacement of expen-
sive database evaluations by mathematical calculations and thus renders
the solution more efficient.

(c) A comparative experimental evaluation shows that indeed, Ted++ can
efficiently compute Why-Not answer polynomials. Furthermore, experi-
ments indicate that this form of explanation is capable to provide a wider
and more accurate view of the potential problem in the query that led
to missing results, compared to the query-based explanations returned
by Why-Not and NedExplain. Finally, the experiments investigate the
behaviour of Ted++ w.r.t. different parameters (like database instance
size, and query and Why-Not question size and conditions types), show-
ing that it is an adequate algorithm for different scenarios.

Query Fixing In addition to contributing to debugging queries when facing miss-
ing results, we also propose a novel technique to make suggestions on how to fix the
query. These suggestions are altered versions of the original query that we call
refinements. In this context, our research is novel in the following aspects:

1. Explanation-based refinements. We propose a new approach towards fixing
conjunctive queries with inequalities by building query refinements. This ap-
proach exploits the query-based explanations modelled as terms in a Why-Not
answer polynomial. Starting the query refinement process using query-based
explanations allows us to directly focus computation efforts on refinements
altering the conditions identified as being too restrictive to make the missing
results appear in the result.

2. Refinements on selections and joins. Our solution is the first to consider
changing both selection and join conditions of the original query. A central
question to answer here is how much to relax selections and to what joins can be
changed. Essentially, the relaxation should ensure that the result of the refined
query includes both the missing results and the original query result but at the
same time avoid (too many) side-effects, i.e., further result tuples not satisfying
a user’s Why-Not question. Our solution relaxes the selection conditions based
on a skyline selection of tuples relevant to producing the missing results (and
not additional ones). This allows to efficiently compute refinements with a
minimum number of changes (as far as the number of changes in the conditions
is concerned), which we consider being “good” refinements as these are closest

6 CHAPTER 1. INTRODUCTION

to the user’s initial intent. As for joins, we consider refining these to outer
joins when possible. To the best of our knowledge we are the first to propose
query refinements using outer joins. It actually turns out that the join graph
in combination with the query-based explanation to a Why-Not question need
to satisfy very specific properties for such a refinement to be possible.

3. FixTed algorithm. We provide the FixTed algorithm that computes query
refinements for each query-based explanation of a Why-Not answer polynomial
as described above. Among these, we are only interested in the best query
refinements based on similarity and number of side-effects. To select these,
we again rely on a skyline approach. The output of FixTed is a list of query
refinements, ranked by similarity and/or number of side-effects.

4. Prototypical implementation. We have implemented FixTed [BHT15c], which
together with Ted++ build the main components of our Explain and Fix Query
(EFQ) Platform. EFQ is provided as a web application and demonstrates
that the proposed framework is feasible and convenient for a user that wants
to know why certain results are missing and how they can be recovered.

1.2 Structure

This thesis is structured as follows:

Chapter 2 illustrates the background theory about relational databases and pro-
vides some contextualized introductory definitions in Section 2.1. Section 2.2 pro-
vides the definition of a Why-Not question and of central notions used in our solu-
tions. Section 2.3 defines the input of our problem, before stating the two phases
of the problem associated with query-based explanations and query refinements.
Finally, Section 2.4 concludes the chapter.

Chapter 3 provides an overview of the most important related works on the field
of Data provenance (Section 3.1) and Why-Not provenance (Section 3.2), answering
Why and Why-Not questions respectively. We further delve into details for the
publications on the Why-Not provenance field, placing the proposed algorithms of
this thesis into the scenery and highlighting the differences with the state of the art.
Section 3.3 concludes the chapter.

Chapter 4 discusses our proposal for the query debugging phase and consequently
the query-based explanations. Section 4.1 provides the details of our first approach
based on query trees and implemented in NedExplain algorithm. Section 4.2 intro-
duces Why-Not answer polynomials and provides two algorithms Ted and Ted++
to produce such kind of explanations. Moreover, here we discuss some conclusions
about Why-Not answer polynomials about different database semantics and query
equivalence. Section 4.3 concludes the chapter.

1.2. STRUCTURE 7

Chapter 5 presents our proposal for the query fixing phase by computing query
refinements. We start by providing the motivation for the problem and the list of
our contributions in Sections 5.1 and 5.2. In Section 5.3 we state the problem we
address and provide some preliminary notions and definitions, used in this chapter.
In Section 5.4 we define what are and how we compute the query refinements. Sec-
tion 5.5 presents the FixTed algorithm that computes query refinements as defined in
Section 5.4. Section 5.6 describes the EFQ platform, in which the implementation
of the EFQ is incorporated. Finally, Section 5.7 concludes the chapter.

Chapter 6 concludes the thesis and outlines possible future directions.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries and Problem Definition

This chapter begins with an introduction to notions and concepts comprising the
background on which this thesis problem is defined (Section 2.1). The contribution
of this chapter is the formalization of the problem of Why-Not questions, provided in
Section 2.2. More precisely, given a query and a database instance we define a Why-
Not question, which we categorize as either simple or complex. Then, we define the
relevant data in the database instance w.r.t. the Why-Not question which are called
compatible data. In contradiction to related work that accounts only for simple
Why-Not questions, our representation of compatible tuples also supports complex
Why-Not questions. We close the chapter, by describing the problem statements
addressed in this thesis in Section 2.3.

2.1 Relational data and query model

One of the most popular data models used worldwide is the relational model
introduced by E.F.Codd in 1970 [Cod70]. The relational model provides a declar-
ative way to specify data and queries over the data. By declarative we mean that
the users do not need to describe in which way the data are structured internally
or how the queries are evaluated. Instead, procedural means that the users provide
the steps (i.e., the procedure) in which the data are created and the queries are
executed.

In the following we describe the relational model for data and queries, adapted
to the context of our problem.

A database schema S is a set of relation schema names. For example S={R, S, T}
is a database schema where R, S, T are relation schema names. A relation schema R
is a set of attributes 1. We assume each attribute of R qualified, i.e., of the form R.A.
For any object O, A(O) denotes the set of attributes occurring in O, also referred to
as the type of O. We assume that each database relation R has a special attribute
R.R_Id. For example, R consists of the attributes A(R)={R.A,R.B,R.R_Id}.
dom(R.A) denotes the domain of R.A, i.e., the acceptable values that R.A can take.

1. For convenience, R refers to the schema and name of the relation.

9

10 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

For example, dom(R.A) = Z. A tuple t is a list of attribute-value pairs of the form
(A1:v1, . . . , An:vn), where ∀i∈[1, n]: vi∈dom(Ai). For example, t = (A:1, B:3) is a
tuple. For conciseness, we may omit attribute names when they are clear from the
context, i.e., write (v1, . . . , vn).

A tuple t over R is such that t and R have the same types, i.e., A(t)=A(R)
and the value of each attribute in t is in the domain of the attribute, i.e., t(R.A) ∈
dom(R.A). For example, t = (A:1, B:3) is not a valid tuple for R because the
attribute R_Id ∈ A(R) is missing from t. An instance IR over a relation R is a
set of tuples over R. An instance I over a database schema S, is a set of relation
instances one for each R ∈ S. The special attribute R_Id serves as the identifier of
tuples in IR. adom(R.A) denotes the active domain of R.A in IR, i.e., the values
used for R.A in the instance IR. For example if IR={(A:1, B:3, R_Id:1)} then
adom(R.A)={1}. The definition of relation instance shows that we are considering
databases under set semantics. Different database semantics include bag semantics,
where relation instances are multi-sets of tuples, or probabilistic semantics, where
each tuple may exist in a relation instance according to some probability. We revisit
these semantics only in the dedicated Section 4.2.7.

Along with the relational data model, a relation query model is used to express
queries against these data. The relational algebra [Cod72] proposed by E.F.Codd
contains operators borrowed from the set theory, like set union, set difference and
cartesian product, with some extra constraints. To apply union and difference over
two relations, these have to be union-compatible, i.e., contain the same set of at-
tributes, whereas the cartesian product demands that the relations contain disjoint
attribute sets. Except for the set operators, the relational algebra includes projec-
tion, selection, rename and join operators. Aggregate functions [ÖÖM87] (min, max,
avg, count, etc) extend the relational algebra. For example, Q = πR.A[σR.B=S.B[R×
S]] is a query expressed in relational algebra using cross-product and projection and
selection operators. The most commonly implemented query language in relational
database systems is the Structured Query Language (SQL [CB74]), initially based on
the relational algebra described before. In this thesis we support SQL query expres-
sions with the following syntax, where [] denotes optional and | denotes alternative
form:

2.1. RELATIONAL DATA AND QUERY MODEL 11

query::= basic-query | basic-query ∪ query
basic-query::= sel-clause [where-clause]

[GROUP BY col-name-list]
sel-clause::= SELECT [DISTINCT] expr-list FROM table-name-list
expr-list::= expr | expr-list, expr
table-name-list::= table-name | table-name-list, table-name
col-name-list::= col-name | col-name-list, col-name
where-clause::= WHERE boolean
boolean::= predicate | predicate AND boolean
predicate::= comparator op comparand
comparator ::= table-name.col-name
comparand ::= table-name.col-name || constant
op ::= > || < || = || ≥ || ≤ || 6=
expr::= table-name.col-name || aggr-fn(table-name.col-name)
aggr-fn ::= COUNT || SUM ||AVG || MIN || MAX

The semantics of an SQL query is that of the associated relational query de-
scribed in the following discussion. For example, the semantics of the SQL query

SELECT DISTINCT R.A
FROM R,S
WHERE R.B=S.B

is given by the relational query Q = πR.A[σR.B=S.B[R× S]].

To define the wider class of queries we are interested in, i.e., unions of aggregate
queries, we start with the class of conjunctive queries with inequalities. A conjunctive
query is a query in which only equality selections and joins are allowed; naturally,
in a conjunctive query with inequalities, there may also exist inequalities and/or
comparisons. To formally define this class of queries, we use the notion of condition.
Assume available a set V ar of variables and w.l.o.g. a unique domain D. A condition
op over V ar is either of the form xθy or xθa, where x, y∈V ar, a is a constant in
a unique domain D and θ∈{=, 6=, <,≤, >,≥}. The notation op used for condition
is motivated by the fact that we may use it to refer to the operator to which a
condition is associated (selection, join, etc). For a condition over a database schema
S we assume that V ar=A(S), i.e., the variables map to relation attributes. A
condition over two relations is complex, otherwise it is simple, as in the following
definition.

Definition 2.1.1. (Simple/Complex condition) Let op be a condition, specified over
the database schema S. If the cardinality | S | is one, then op is a simple condition.
If the cardinality | S | is two, then op is a complex condition.

For example, R.A 6= 3 is a simple condition and R.B = S.B is a complex one.

Definition 2.1.2 (Conjunctive query with inequalities). A conjunctive query with
inequalities Qconj is specified by a triple (S,Γ, C), where S is the input query schema,
Γ ⊆ A(S) is the output query type, and C is a set of conditions over A(S). The
semantics of Q is given by the relational algebra expression π

Γ
[σ ∧

op∈C
op

[×R∈S [R]]].

12 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

For example, Q=({R, S}, {R.A}, {R.B=S.B}) is a conjunctive query with se-
mantics given by Q=πR.A[σR.B=S.B[R× S]].

In what follows, when we refer to conjunctive queries we mean conjunctive queries
with inequalities, unless stated otherwise. Note also, that given a query Q=(S,Γ, C)
we use the notation SQ, ΓQ, CQ to refer to S, Γ, C of Q when needed (for example
when more than one queries are involved in the discussion).

Normally, two relation instances IR1 and IR2 may correspond to the same relation
schema R. However, in our context we need to be able to distinguish among the
attributes corresponding to IR1 or IR2 , even if they (the attributes) have the same
name. This is required to correctly deal with self-joins, as it will be made clear later.
This is why we enforce that each relation has at most one occurrence in a query. In
order to allow self-join we use renamed relation schema (à la SQL). For example,
consider a database schema SD = {R} and a query with a self-join between two
instances of R. Then, the input schema of Q is S={R1, R2}, and not {R}, where
R1 and R2 are renamings of R (in the definition bellow the renaming is formalized
by η).

To establish the link between the input query schema and the database schema
over which the query is specified and properly define a query over a database schema,
we introduce the mapping η as follows.

Definition 2.1.3 (Query over a database). A query over a database schema SD is
a pair (Q, η), where

— Q is a query with input schema S, and
— η is a mapping from S to SD such that ∀R∈S:R.A ∈ A(R) if η(R).A∈η(A(R)).

Let ID be a database instance over the database schema SD and consider the
instance I over the input schema S of Q, defined as I={I|R | R∈S and I|R=ID|η(R)}.
The evaluation of (Q, η) over ID is defined as the evaluation of Q over I.

Then, we define queries with aggregation over conjunctive queries (select-project-
aggregation (SPJA) query) as follows.

Definition 2.1.4 (Aggregate query). An aggregate query αG,F over a conjunctive
query Qconj=(S,Γ, C) is specified by the quadruple (Γaggr, Qconj, G, F), where

— G ⊆ Γ is the set of group by attributes,
— F is a list fi(Wi → Agi) for i=1, . . . , n, where fi ∈ {sum, count, avg,min,max},
Agi are new attributes (not in S), and Wi ⊆ Γ, and
— Γaggr⊆G ∪i=1,...,n A

g
i .

The semantics of αG,F is given by the (extended) relational algebra expression
πΓaggr [GROUPBYGFF ([π

Γ
[σ ∧

op∈C
op

[×R∈S [R]]]])], where F is the aggregation operator.

For example, consider the conjunctive query

Q=({R, S}, {R.A,R.B, S.C}, {R.B=S.B})

2.1. RELATIONAL DATA AND QUERY MODEL 13

The query αG,F=(π{R.A,sumC}, Q,G, F), whereG={R.A} and F=sum(S.C)→sumC,
is an aggregate query. Its semantics is given by the extended relational query
αG,F = πR.A,sumC [GROUPBY{R.A}Fsum(S.C)→sumC([σR.B=S.B[R× S]])].

Finally, we define unions of queries in a straightforward way. As relation schema
attributes are qualified, two relation schemas always have disjoint types. To define
union, we thus introduce renaming.

Definition 2.1.5 (Renaming ν). Let Θ1, Θ2 and Θnew be disjoint sets of attributes.
A renaming ν w.r.t. Θ1 and Θ2 is a set of triples (A1, A2, Anew) s.t.

— A1∈Θ1, A2∈Θ2 and Anew∈Θnew

— ν defines the function Θi → Θnew, i = 1, 2

Our notion of renaming captures both the specification of an association between
attributes in Θ1 and Θ2, and a standard renaming.

Take for example the sets of attributes Θ1={A1, A2}, Θ2={B1, B2}, and Θnew={C1, C2}.
ν={(A1, B1, C1), (A2, B2, C2)} is a renaming w.r.t. Θ1 and Θ2 mapping A1 and B1

to C1, and A2 and B2 to C2.

Definition 2.1.6. (Union of queries) A union query Qu is a quintuple (S, ν,Γ, Q1, Q2)
where

1. S=S1∪S2 is the input schema of Qu

2. ν is a renaming w.r.t. Θ1⊆Γ1 and Θ2⊆Γ2

3. Γ=Θnew ∪ Γ1 \Θ1 is the output schema of Qu

4. Q1 and Q2 are two conjunctive or aggregate queries or
5. Q1 and/or Q2 is a union query

The semantics of Qu is given by the relational query: πΓ[[Q1] ∪ν [Q2]].

For example, assume the conjunctive queries
Q1=({R, S}, {R.A}, {R.B=S.B}) and
Q2=({P, T}, {P.A}, {P.C=T.C}).
Consider also the renaming ν=(R.A, P.A,A).
Then ({R, S}, {A}, Q1, Q2, ν) is a union query. Its semantics is given by
πA[[πR.A[σR.B=S.B[R× S]]] ∪ν [πP.A[σP.C=T.C [P × T]]].

The result of a query Q (conjunctive, aggregate or union) over a database in-
stance I over S is denoted by Q[I].

Note that the query classes defined here are not randomly chosen. In fact,
our proposed methods and algorithms have been designed based on these classes.
However, a more technical discussion is necessary in order to explain the limitation
of the query language to these classes. A discussion on the class of queries chosen for
each algorithm, as well as the possibly trivial extensions to larger classes, is provided
in the respective chapters.

14 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

Alternative query representations For the purpose of the discussion in the
subsequent chapters, we introduce two other ways to present queries: the tableau
(related to [ASU79]) and the query tree representation.

In our setting, we use the query tableau representation for a conjunctive query
Q with inequalities. The query tableau representation of Q (we may refer to this
simply as query tableau Q) is a table having one row for each relation in the query
input schema S, one column for each attribute of each relation and one column with
the query conditions set C.

The formal definition of a tableau query relies on v-tuples, which are tuples of
variables. The variables of a v-tuple are similar in spirit to labelled nulls, used for
instance in the context of data exchange [FKMP05]. In our context, the variables
replace potential values of attributes.

Definition 2.1.7 (v-tuple). Let V ar be an enumerable set of variables and S a
database schema. A v-tuple tv over {A1, . . . , An} ⊆ A(S) is of the form
(A1:x1, . . . , An:xn), where xi ∈ V ar for i ∈ [1, n].

Using the definition above, we can trivially extend v-tuples over relations. Next,
var(·) is used to retrieve the set of variables from a structure, e.g., var(A1:x1, . . . , An:xn)
returns {x1, . . . , xn}. We may also use a v-tuple tv as a function mapping attributes
to variables.

Now, we formally define query tableaux.

Definition 2.1.8 (Query tableau). A query tableau Q over the input schema S is
a triple (B, s, C ′) where

1. the body B is a mapping associating one v-tuple v to each R∈S
s.t. var(B(R1))∩var(B(R2))=∅ for any distinct pair R1, R2∈S,

2. the summary s is a set of distinguished variables s.t. s⊆var(B), and
3. C ′ is a set of conditions over var(B).

Assume the set of variables V ar as the co-domain of the bijection

h : A(S)→ V ar

Then, the mapping of a query Q=(S,Γ, C) to its tableau representation (s,B, C ′) is
straightforward:

— S is bijectively mapped to the body B of the tableau as discussed in the above
definition

— Γ is bijectively mapped to the summary s, s.t. ∀A ∈ Γ∃x ∈ s : h(A) = x
— C is bijectively mapped to C ′ as h(C)=C ′

Γ is mapped to the summary s and finally the It is obvious that the summary
s is mapped to the projection set Γ, B is mapped to the the attributes in S and C
maps to the set of conditions in Q.

For example, the query Q=({R, S}, {R.A,R.B, S.C}, {R.B=S.B}) can be rep-
resented as the tableau query shown in Table 2.1. Each attribute from the database
schema {R.A,R.B, S.B.S.C} is mapped to a distinct variable x as follows:

2.1. RELATIONAL DATA AND QUERY MODEL 15

h(R.A) = x1

h(R.B) = x2

h(S.B) = x3

h(S.C) = x4

Then, in Table 2.1 it is easy to see that h(C) = C ′ and h(Γ) = s.

R.A R.B S.B S.C C ′

R x1 x2 x2 = x3

S x3 x4 x2 = x3

s x1 x2 x3

Table 2.1: Example query tableau

For the purpose of the presentation of the class of SPJUA queries we use tree
representation of queries. A tree representation of a query Q has one leaf for each re-
lation of the schema S and the internal nodes are query operators (project, selection,
join, aggregation, union). Note that selections and joins correspond to conditions in
the set C of Q.

The following definition introduces queries in a classical manner and provides an
immediate tree representation of a query. Note that to deal with natural join and
union we use renamings as defined in Definition 2.1.5.

Definition 2.1.9 (Query tree). Let S={R1, . . . , Rn} be a database schema. Then

1. [Ri] is a query Q with input schema {Ri} and output schema A(Ri), i∈[1, n].
[Ri] has no proper subquery.

2. Let Q1, Q2 be queries with input schemas S1, S2, and output schema Γ1, Γ2

respectively. Assuming S1∩S2=∅:
• [Q1] onν [Q2] is a query Q where ν is a renaming w.r.t. Θ1⊆Γ1 and Θ2⊆Γ2.

The input schema of Q is S1∪S2.
Its output schema Θnew ∪ Γ1∪Γ2 \Θ1 \Θ2.
• πW [Q1] where W ⊆ Γ1, is a query Q with input schema S1 and output

schema W .
• σC [Q1] where C is a condition over Γ1, is a query Q with input schema S1

and output schema Γ1.

3. Let Q1 be a query according to (1) and (2), G ⊆ Γ1 be a set of attributes and let
F be a list fi(Ai → Agi) for i=1, . . . , n where fi ∈ {sum, count, avg,min,max}
and Ai ∈ Γ1. Then, GFF [Q1] is a query Q with input schema S1 and output
schema G ∪i=1,...,n A

g
i .

4. [Q1]∪ν [Q2] is a query Q where ν is a renaming w.r.t. Θ1 ⊆ Γ1 and Θ2 ⊆ Γ2 if
Q1 and Q2 are queries according to (1), (2), (3), and (4). The input schema
of Q is S1 ∪ S2 and its output schema is Θnew ∪ Γ1 \Θ1.

16 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

α{B},{sum(S.C)}

on{(R.B,S.B,B)}

R S

Figure 2.1: Example query tree

Consider for example the conjunctive query Q=({R, S}, {R.A}, {R.B=S.B}).
One possible query tree based on Definition 2.1.9 isQ=πR.A[Q1], whereQ1=[R]onν [S]
and ν=(R.B, S.B,B). Then, consider the aggregate query
αG,F=({B, sumC}, Q1, G, F), whereQ1=({R, S},A({R, S}), {R.B=S.B}), G={B}
and F=sum(S.C)→sumC. The query tree
αG,F=πB,sumC [BFsum(S.C)([Q1])], where Q1=[R]onν [S] and ν=(R.B, S.B,B) is an
aggregate query tree, a representation of which can be seen in Figure 2.1.

Let us now focus on the output type Γaggr={B, sumC} of the aggregate query
αG,F . Two attributes exist in Γaggr: B and sumC. Neither of these attributes
exist in the input database schema, i.e., the input schema of Q1. Indeed, the B
has been introduced through the join renaming ν. sumC is the named attribute
corresponding to the output of the aggregate function sum over the attribute S.C.
It is important to distinguish here these two different kinds of attributes that can
be introduced in the output type of a query Q:
• the first one corresponds to renamed attributes because of a join or a union

and is linked to a renaming function ν, and
• the second one corresponds to naming of attributes involved in aggregation

functions.
The importance of this distinction will be clear in Section 4.1, when the unre-

naming of output type attributes takes place.

2.2 Why-Not question and compatible data

In this section we discuss and define the most central notion, i.e., what a Why-
Not question is and what it entails. As its name implies, a Why-Not question asks
why the result of a query does not contain some tuples satisfying specific conditions
posed by the user. As such, the Why-Not question consists in a set of conditions
that are ‘connected’ to the original query in the sense that the conditions can only
be specified over the query output schema. Apart from that, the Why-Not question
does not depend on the conditions involved in the query. Abusively, we use here
the terms Why-Not question and missing answer as synonyms, as adopted in the
literature.

The fact that the Why-Not question is defined over the query output schema
enables us to provide a unique definition of Why-Not questions regardless of the kind
of query we are considering (conjunctive, aggregate or union). Thus, we can as well

2.2. WHY-NOT QUESTION AND COMPATIBLE DATA 17

define a Why-Not question over the set of attributes ΓQ. Note however, that for the
case of aggregate queries we pose one restriction: one can only specify comparisons
with constant values over attributes resulting from n aggregation functions (the set
of aggregated attributes

⋃
i=1,...,n

Agi in Definition 2.1.4). In other words, one cannot

compare the result of an aggregation function with another attribute. Of course, for
queries not involving aggregation the set of aggregated attributes is the emptyset.

Definition 2.2.1 (Why-Not question w.r.t. Q). Let Q be a query and let ΓQ be its
output schema. Let also

⋃
i=1,...,n

Agi be the set of attributes introduced by the list of n

aggregation functions F .
A Why-Not question w.r.t. Q is the set of conditions WN s.t. if op is an operator
then op ∈ WN if

1. A(op) ⊆ ΓQ and,

2. if A(op) ∩ ⋃
i=1,...,n

Agi 6= ∅ then A(op) is a singleton.

Consider for example the conjunctive queryQ=({R, S}, {R.A,R.B}, {R.B=S.B}).
Then, WN={R.A > 5} is a Why-Not question w.r.t. Q.
Consider also the aggregate query αG,F=({R.B, sumC}, Q, {R.B}, sum(S.C)→S.C),
whereQ is the conjunctive query mentioned before. Then,WN={R.B=6, sumC>4}
is a Why-Not question w.r.t. αG,F . However,WN={R.B=sumC} is not a Why-Not
question because it includes a comparison of an aggregated attribute with another
attribute (not a constant).

In the last example concerning aggregation, it is clear that a Why-Not question
can be specified over attributes introduced by an aggregation function. However,
we need to split the conditions in the Why-Not question into two subsets, based
on whether they are specified over aggregated attributes or not. This distinction is
important because only conditions over non-aggregated attributes will be later used
to identify the compatible tuples. We postpone a more detailed discussion on the
purpose of the distinction, when we focus on compatible tuples. So, we distinguish
between:

1. the set WNα={op | op ∈ WN and A(op) ∩ ⋃
i=1,...,n

Agi 6=∅}, where
⋃

i=1,...,n

Agi is

the set of aggregated attributes resulting from n aggregation functions in an
aggregated query, and

2. the set WNconj=WN \WNα .

For the previous example, it holds thatWNconj={R.B=6} andWNα={sumC>4}.
Obviously, for conjunctive queries it holds that WN=WNconj.

In our setting, a user is able to define one missing answer or a disjunction of miss-
ing answers. For example, given the query Q=({R, S}, {R.A,R.B}, {R.B=S.B}),

18 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

one could ask “Why is there not any tuple with R.A>5 and R.B>8 or some other
tuple with R.B=6 ?". This is translated to two Why-Not questions:

{R.A > 5, R.B > 8}
or

{R.B = 6}
To express the disjunction of missing answers we define the general Why-Not ques-
tion gWN as a set of Why-Not questions w.r.t. a query Q. For our example
gWN={{R.A > 5, , R.B > 8}, {R.B = 6}} is a general Why-Not question.

Definition 2.2.2 (General Why-Not question w.r.t. Q). Let Q be a query. A
general Why-Not question gWN w.r.t. Q is a set of Why-Not questions w.r.t. Q.

As the Why-Not questions referred to in a general Why-Not question are inde-
pendent from one another, we process and answer them independently. The results
for each Why-Not question are then unified to provide the answer of the general
Why-Not question. For this reason, in the following discussion we are considering
one single Why-Not question as defined in Definition 2.2.1.

Following the notion of complex and simple conditions (Definition 2.1.1), complex
and simple Why-Not questions are defined in a straightforward manner.

We further introduce the notion of well defined and well founded Why-Not ques-
tion. Intuitively, a Why-Not question is meaningful if it addresses data not already
returned by the query. To answer a Why-Not question with a query-based approach,
we must identify the query conditions responsible for pruning out the relevant to
the missing answer data from the source instance. Thus, only if we can identify such
relevant data in the source instance, we are able to explain what has been wrong
with the query conditions. If no relevant data exist in the source instance, then we
should search for the problems in the source instance. This means that an instance-
approach should be followed in order to indicate what data are missing from/should
be updated in the source instance.

Definition 2.2.3 (Well defined Why-Not question). Let Q be a query and I a
database instance over the schema S of Q. Then, a Why-Not question WN is said
to be well defined if Q[I] 6|= ∧

op∈WN
op.

For example consider the query Q=({R.A}, {R, S}, {R.B = S.B}) and its result
Q[I]={(R.A:1), (R.A:2)}. The Why-Not question WN={R.A > 1} is a not well-
defined because the result of Q contains the tuple (R.A:2). On the other hand,
WN={R.A > 5} is a well-defined Why-Not question because non of the result
tuples satisfy the condition R.A > 5.

Definition 2.2.4 (Well founded Why-Not question). Let Q be a query and I be a
database instance over the schema S of Q. Let also WN be a Why-Not question
w.r.t. Q and consider its subset WNconj. Then, WN is said to be well founded if it
is well defined and I |= ∧

op∈WNconj
op.

2.2. WHY-NOT QUESTION AND COMPATIBLE DATA 19

R
A B R_Id
1 2 Id1

2 2 Id2

7 3 Id3

S
B C S_Id
2 2 Id4

2 3 Id5

1 1 Id6

Figure 2.2: R and S relation instances

For example, let the active domain of R.A w.r.t. I be adomI(R.A)={1, 2, 7}.
Then the well defined WN={R.A > 5} is well founded as well, because the value 7
in the active domain is greater than 5.

Note here that the conditions in WNα are not taken into consideration in the
definition of well-founded Why-Not question. This is because, as we already said,the
conditions over aggregated attributes do not participate in identifying the relevant
source data. This discussion needs more technical details and we revisit this issue
in Section 4.1, when aggregation queries are considered.

In what follows we consider well-founded Why-Not questions.

To be able to obtain the missing answer in the query result, data from the input
relation instances that satisfy the WN need to be combined by the query. The
candidate data are what we call compatible tuples.

Previous works consider compatible tuples originating from different relations
independently from one another, as discussed in Section 3.2.2. Take for example
the database instance in Figure 2.2 and the query Q=({R, S}, {R.A, S.C}, {R.B =
S.B}) over this instance. Then, consider the Why-Not question WN={R.A >
5, S.C = 3}. The tuple originating from IR and relevant to WN is

(R.A:7, R.B:3, R_Id:Id3)

whereas the relevant tuple from IS is

(S.B:2, S.C:3, S_Id:Id5)

So, the identified compatible tuples in this case are two, one from each relation.
Now, consider the Why-Not questionWN={R.A > S.C}. Following the previous

logic, the compatible tuples from IR are the tuples

(R.A:2, R.B:2, R_Id:Id2), (R.A:7, R.B:3, R_Id:Id3)

whereas from IS all the tuples are compatible. However, consider the tuple from
R identified by R_Id:Id2. This tuple should be considered compatible only in
correlation with the tuple S_Id:Id6, for which it holds that R.A > S.C (2>1).
On the contrary, R_Id:Id2 should not be considered compatible in correlation with
S_Id:Id4 because the condition R.A > S.C is not satisfied for R.A = 2 and S.C = 2.

From the previous example, it is obvious that the definition of compatible tuples
over one relation at a time, does not fit the case when complex Why-Not questions

20 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

are considered. For this reason, we provide a new definition of compatible tuples
as concatenation of tuples originating from the different relations in the database
schema and satisfying the Why-Not question.

Definition 2.2.5 (Compatible tuple). Let Q be a query over the database schema
S, I be an instance over S and WN be a Why-Not question w.r.t. Q.
Assume also the subset WNconj of WN and consider the conjunctive query
QWN=(S,A(S),WNconj).
The set CT=QWN [I] is the set of compatible tuples w.r.t. Q, I, and WN .

Obviously, for a Why-Not question to be well founded, there should be at least
one compatible tuple in I.

Consider again the data and query of the previous example.For ease of reference,
we refer to a tuple by its identifier attribute.
The compatible tuple w.r.t. WN={R.A > 5, S.C = 3} is (R_Id:Id3, S_Id:Id5).
The compatible tuples w.r.t. WN={R.A > S.C} are

(R_Id:Id2, S_Id:Id6)
(R_Id:Id3, S_Id:Id4)
(R_Id:Id3, S_Id:Id5)
(R_Id:Id3, S_Id:Id6)

It is easy to see that by Definition 2.2.1, the Why-Not question specifies a set of
(missing-) tuples that the user expected to find in the query result and that these
missing tuples have some common properties

1. their schema is the output query schema,
2. their values come from tuples in the database instance, and
3. they satisfy the conditions in theWhy-Not question (more precisely inWNconj).
Continuing the previous example, for the Why-Not question WN={R.A>S.C}

the missing tuples are

(R.A:2, S.C:1)
(R.A:7, S.C:2)
(R.A:7, S.C:3)
(R.A:7, S.C:1)

The compatible tuples directly provide the ‘provenance’ of the missing tuples, as
the missing tuples can be obtained from the compatible ones by projection on the
attributes of the output query schema. This can be easily observed in the previous
example.

Intuitively, the reason that makes a tuple missing is that its associated compatible
tuples were pruned out by the query conditions. In the next chapter, we show that
answering a Why-Not question amounts to identifying the pruning query conditions
for the compatible tuples in CT .

2.2. WHY-NOT QUESTION AND COMPATIBLE DATA 21

The schema of a compatible tuple τ consists of all the attributes in the schema
S, as seen by the signature of the query QWN in Definition 2.2.5. For the purpose
of our study, we are now going to partition the schema of compatible tuples to split
these tuples into partial tuples such that

— each partial tuple s is associated with a subset of conditions WNs of the
Why-Not questionWN ; these conditions are those using the attributes of the
partial tuple s in their formula, and moreover

— two partial tuples s1 and s2 of a same compatible tuple do not share any
(associated) conditions (in the sense explained above) meaning that checking
conditions in WN can be decomposed in checking WNsi on si, for i=1, 2
independently.

Partitioning the schema of compatible tuples (partitioning S) is thus closely
related to partitioning the set of conditions in WN and thus also of the query QWN .
The purpose of Definition 2.2.6 is to state what is a valid partitioning of S.

Definition 2.2.6. (Valid Partitioning of S). Consider the set of conditionsWN and
its subset WNconj. The partitioning P = {Part1, . . . , Partk} of the database schema
S is valid if each Parti, i∈{1, . . . , k} is minimal w.r.t. the following property:
if R∈Parti and R′∈S s.t.

∃op∈WNconj s.t.
A(op)∩A(R′)6=∅ and
A(op)∩A(R)6=∅

then R′∈Parti.

For example, if S={R, S} and WN={R.A > 5, S.C = 3}, then the valid parti-
tioning of S w.r.t. WN is P={{R}, {S}}.
If we consider the Why-Not question WN={R.A>S.C}, then the valid partitioning
of S w.r.t. WN is P={{R, S}}.

The set CT|Part of partial compatible tuples w.r.t. Part∈P is obtained by eval-
uating the query (Part,A(Part), WN|Part) over I|Part. WN|Part and I|Part denote
the restriction of WN and I over the relations in Part, respectively.

It is easy to prove that the valid partitioning of S is unique and that the set CT
can be computed from the sets CT|Parti of partial compatible tuples.

Lemma 2.2.1. Let P be the valid partitioning of S. Then,

CT=×
Parti∈P

[CT|Parti]

Proof. Let Q be a query over S = {R1, . . . , Rn}.
Let WN be a Why-Not question w.r.t. Q and assume known the subset WNconj.
Let I be an instance over the database schema S.
Let P={Part1, . . . , Partk} be the valid partitioning of S.

22 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

Let WNconj |Part be the restriction of the Why-Not question over the relations in
Part.

By Definitions 2.1.2, 2.2.5 , the set of compatible tuples CT is the result of the
query

QWN=σ ∧
op∈WNconj

op[R1 × . . .×Rn]

evaluated over I. QWN can be re-written as (equivalent to pushing selections down)

QWN = [σ ∧
op∈WNconj |Part1

op[×R∈Part1R]]× . . .× [σ ∧
op∈WNconj |Partn

op[×R∈PartnR]]

= QWN |Part1
× . . .×QWN |Partn

(1)

Note that we assume that σ ∧
op∈∅

[R]=[R].

By Definition 2.2.6, it holds that each relation belongs exactly to one partition.
Assume CT|Part = QWN |Part [I|Part]. Then, it follows from Equation (1) that

CT = CT|Part1 × . . .× CT|Partn

2.3 Problem statement

The main objective of this thesis is to provide aid to SQL developers in the
context of missing answers from query results. The provided aid is two-fold: firstly,
we automatically debug the query by identifying the culprit query conditions and
secondly, we provide alternative query refinements that fix the problem of missing
answers.

For both the problems we consider given (by the user) a number of input pa-
rameters that we package under a common name.

Explanation Scenario: An explanation scenario ∆ is specified by the quadruple
(S, I, Q,WN), where

1. S is a database schema,
2. I is a database instance over S,
3. Q is a query with input schema S, and
4. WN is a well defined Why-Not question w.r.t. Q and I.

When a user is confronted with query results that do not contain certain ex-
pected tuples, she may want to know if the query that produced these results is
not correct and why it is not correct. This is what we call the query debugging
problem. To explain why the query cannot produce the expected tuples, our solu-
tion identifies which query conditions are contradicting the user’s Why-Not question

2.3. PROBLEM STATEMENT 23

and if properly repaired, the missing answers would appear in the result. From an-
other perspective, our first problem targets query-based explanations to Why-Not
questions, defined as follows.

Definition 2.3.1 (Query-based explanation). Given an explanation scenario ∆, a
query-based explanation is a minimal set of conditions
QBE ⊆ CQ s.t. for the query QQBE=(SQ,ΓQ, CQ \QBE) it holds that
QQBE[I] |= WN .

Problem Statement 2.3.1 (Query debugging). Given an explanation scenario ∆,
how can we effectively and efficiently generate query-based explanations QBE to
solve ∆?

Furthermore, it remains an open question how to present the query operators
that are part of query-based explanations to make them most useful to the developer.
Is it better to return only one candidate and if so, which one ([CJ09] opted for this
approach) or is it better to return a (ranked) list of all potential combinations of
responsible operators? Moreover, should data examples be returned along with
the operators? This thesis defines and analyzes two alternative solutions, devises
algorithms computing these and also evaluates them experimentally. More details
are provided in Chapter 4.

The result of the query debugging supplies the user with useful knowledge for
subsequently fixing the query, as she knows exactly which combinations of conditions
to target. To help the user in this process, the second problem addressed in this
thesis asks for alternative ways of refining the query in order to be able to return
satisfying results w.r.t. the missing answer. The second problem we address is about
computing query refinements, defined as follows.

Definition 2.3.2 (Query-refinement). Given an explanation scenario ∆, a query
refinement is a query
Q′ s.t. Q[I] ⊂ Q′[I] and Q′[I] |= WN .

Note that in the previous definition, the class of queries in the input and in the
output may differ. Even though we are considering that the user provides a con-
junctive query to be refined, it may be the case that the proposed refinement could
contain outer joins instead of inner joins. More details are given in the dedicated
Chapter 5.

Problem Statement 2.3.2 (Query fixing). Given an explanation scenario ∆, how
can we efficiently compute a set of useful query refinements?

What is a useful query refinement is a rather subjective matter, and in general it
would be hard to formally define the notion of usefulness. A priori, and as per the
definition of a query refinement, the refined query should satisfy the user in terms
of obtained results. However, in order for the query to be useful it should reflect
the user’s intentions and style as much as possible. This translates both on the

24 CHAPTER 2. PRELIMINARIES AND PROBLEM DEFINITION

level of the syntax of the refined query and of the obtained query results. In order
to maximize the possibilities that the user finds useful the proposed refinements,
we provide in this thesis alternatives with respect to the changes we make in the
query and to the results that are returned. How (in what order) to display the
obtained refined queries to the user is also subject to research, as the alternatives
may abound. More details are given in Chapter 5, where our solution is described.

2.4 Summary
In this chapter we presented the background on which this thesis is based, that

is the relational data model and queries. Then, we provided the introductory defi-
nitions for establishing the Why-Not questions problem, including novel definitions
for compatible data and Why-Not questions. Finally, we stated the exact prob-
lems addressed in this thesis, about computing query-based explanations and query
refinements, to aid users debug and fix their queries respectively.

The reader can find in Table 2.2 a quick reference to notations frequently used
throughout the thesis.

Notation Meaning
S database schema
A(x) the set of attributes in x
I a database instance
IR a relation instance over the relation R
op condition
Q query
CQ set of conditions of Q
ΓQ set of projected attributes of Q
ν renaming

αG,F aggregation operator, where
G denotes the group-by attributes and
F the set of aggregation functions

WN Why-Not question
gWN general Why-Not question
CT set of compatible tuples
P valid partitioning of a database schema

Part connected component of P
∆ explanation scenario

Table 2.2: Notations table

Chapter 3

Related Work

Recently, we observe the trend that growing volumes of data are processed by
programs developed not only by expert developers but also by less knowledgable
users (creation of mashups, use of web services, etc.). This has led to the necessity
of providing algorithms and tools to better understand and control the behavior
and semantics of developed data transformations, and various solutions have been
proposed so far, including data lineage [CWW00] and more generally data prove-
nance [CCT09], (sub-query) result inspection and explanation [GKRS11, RS14],
query conditions relaxation [MMR+13] or query repairing in data integration sys-
tems [BFS00]. Also tools have been proposed for simplifying the specification of
complex data transformations [KKBS10, NJ11] and recently [BMNT15] has pro-
posed a system for data cleaning in case of erroneous but also missing data using
provenance and Why-Not questions to guide the cleaning task. In the same spirit,
cooperative database systems propose to not only output query results but also
escort these with useful explanations like for the case of empty results[God97].

Further approaches useful for query debugging and relevant to data provenance
include methods for weighting and ranking the possibly large provenance, e.g., based
on causality and responsibility [MGMS11] or methods to automatically generate test
data given a query and a desired output [BKL07, OCS09]. The latter are particularly
valuable for instance when the source data are not accessible or incomplete. Further
support in verifying transformation behavior and semantics can be obtained through
sub-query result visualization [DG11], or tools that simplify the specification of
complex data transformations [KKBS10, NJ11].

Whereas the methods mentioned above focus on relational queries, other ap-
proaches have considered more complex data transformations, where in the worst
case, individual manipulations use black-box functions. Clearly, understanding the
results of data transformation is essential in this context, and first solutions to in-
corporate data provenance in scientific workflows [ADD+11] or Map-Reduce work-
flows [PIW11] have been proposed. The need of capturing and managing the pos-
sibly large provenance of data obtained in scientific workflows is evident in various
systems, like Taverna [OAF+04], Kepler [LAB+06], PBase [CVKL+14], etc. We fur-
ther observe that fundamental ideas underlying data provenance techniques have

25

26 CHAPTER 3. RELATED WORK

also been considered for Datalog [GKT07, KLS12], logic programming [DAA13],
XML [FGT08], and SPARQL [DAA12, GKCF13].

The work presented in this thesis is interested in the observation and under-
standing of relational query results. This in general may concern data existing in
the query results and data missing from the query results. Thus, we review works
in this context, distinguishing them into two categories considering:

1. Data provenance (Section 3.1). Here, the problem lies on understanding the
origins of data existing in a query result.

2. Why-Not provenance (Section 3.2). Here, the problem lies on understanding
the reasons that caused data to be absent from a query result.

This criteria can also be seen as the type of questions each work aims to answer,
i.e., ‘Why’ or ‘Why-Not’ questions.

As introduced in Chapter 2, in this thesis we target our research to explaining
why data are missing from the query result. Thus, we provide here a more thorough
study for works in the ‘Why-Not’ provenance category. We group the existing works
based on the type of explanation they return in order to explain why data are missing
from a query result. The type of the explanation is determined by the primitive
elements used in the explanation, for example, tuples or query conditions. So, the
following five categories are distinguished and are in detail described in the next
sections:

1. instance-based explanations, when they consist of tuples
2. query-based explanations, when they consist of conditions of a given query
3. hybrid explanations, when they consist of both conditions and tuples
4. ontology-based explanations, when they consist of concepts of an ontology
5. query refinements, when they consist of queries
From these five categories, we further specialize our work to query-based expla-

nations and query refinements for missing answers, as we discussed in the problem
definition section (Section 2.3) of Chapter 2. Thus, we are particularly emphasizing
to works described in the respective sections (Section 3.2.2 and 3.2.5).

3.1 Data Provenance
The data provenance field, which started with the introduction of data lineage

in relational databases, counts more than one decade of study [WS97]. As surveyed
in [CCT09], data provenance research focuses on explaining data present in a query
result and may be categorized in three forms based on where [BKT01] the data
were copied from (exactly what attributes of which tuples), why [BKT01, CWW00]
a query answer was produced (i.e., based on what source data), and how [GKT07]
data were manipulated by the query to produce the result data in question.

Note that our work is interested in fine-grained provenance at the level of indi-
vidual tuples. On the other side, coarse-grained provenance is mostly applicable to

3.1. DATA PROVENANCE 27

workflows and records the sequence of steps taken in a workflow system to derive the
dataset and may even record involved software and hardware ([BT07]). Typically,
coarse-grained provenance is documented in metadata.

The list of works in data provenance is long, documented in surveys and tutorials
(like [CCT09, BT07]). Since the work in this thesis is indirectly connected to the
data provenance problem, we restrict the discussion here to the works from the
categories of why and how provenance that we use in our work and to which we
correlate.

Why Provenance

In [CW00, CWW00] the authors defined the lineage (or derivation) - a form
of why provenance - of data in the output of (materialized) relational views in a
warehouse environment. Intuitively, the lineage of a result tuple t captures the
source tuples that were combined in the view and resulted in t. The specification
of the views considered in this context are select-project-join-aggregation-union-
set difference (SPJUAN) queries. The definitions consider views as operator trees
evaluated bottom up. Then, lineage is defined firstly for one operator and then
recursively for the rest of the view. Since tuple lineage is a notion exploited in this
thesis, we reproduce here the definition provided in [CW00, CWW00].

Definition 3.1.1. (Tuple Lineage for one operator) Let op be any relational operator
over the relation instances IR1 , . . . , IRn, and let IR = op(IR1 , . . . , IRn) be the relation
instance that results from applying op to these instances. Given a tuple t ∈ IR we
define t’s lineage in IR1 , . . . , IRn according to Op to be

op−1
<IR1

,...,IRn>
(t)= < I∗R1

, . . . , I∗Rn >
where I∗R1

, . . . , I∗Rn are maximal subsets of IR1 , . . . , IRn such that:
1. op(I∗R1

, . . . , I∗Rn) = {t}
2. ∀I∗Ri : ∀t∗ ∈ I∗Ri : op(I∗R1

, . . . , t∗, . . . , I∗Rn) 6= ∅
Also, we say that op−1

IRi
(t) = I∗Ri is t’s lineage in IRi, and each tuple t∗ in I∗Ri

contributes to t, for i = 1 . . . n.

To make the definition clear, the first point declares that the operator op when
executed over the subsets I∗Ri produces exactly the tuple t. Thus, the lineage of a
tuple t given an operator op cannot result in a different tuple. The second point
of the definition means that only tuples contributing to the generation of the tuple
t, by op, exist in the lineage of t. Thus, there are not ‘irrelevant’ tuples in the
considered subsets. For example, tuples not satisfying a selection condition will not
appear in the lineage of any result tuple. By defining the I∗Ris to be the maximal
subsets that satisfy requirements (1) and (2), it is ensured that the lineage contains
exactly all the tuples that contribute to t.

In this thesis, we use the definition of lineage for tuples resulting from projec-
tion, selection and join relational operators. To further clarify lineage, consider the
following example.

28 CHAPTER 3. RELATED WORK

R
A B R_Id
1 2 Id1

2 2 Id2

7 3 Id3

S
B C S_Id
2 2 Id4

2 3 Id5

1 1 Id6

Figure 3.1: Relation instances for Example 3.1.1

Example 3.1.1. Consider the instances of the relations R and S in Figure 3.1. If
op : σA=1[R], then the result tuple is {t}=op(IR)=(R.A:1, R.B:2, R_Id:Id1). The
lineage of t is op−1

<IR>(t)= < {(R.A:1, R.B:2, R_Id:Id1)} >. Property 1 holds be-
cause the execution of the operator over the instance {(R.A:1, R.B:2, R_Id:Id1)}
yields exactly t. This means that the tuples in the lineage of t generate exactly t.
Property 2 holds, because there is only one tuple in I∗R, from which the selection
generates the tuple t. This means that every tuple in the lineage of t contributes to
generation of t.

Similarly, if op:[R] ./R.A=S.C [S], one of the result tuples is
t=(R.A:1, R.B:2, R_Id:Id1, S.B:1, S.C:1, S_Id:Id6)∈op(IR, IS). The lineage of t is
op−1

<IR>,<IS>(t)= < {(R.A:1, R.B:2, R_Id:Id1)}, {(S.B:1, S.C:1, S_Id:Id6)} >.

How Provenance

In [GKT07] the authors propose a semiring representation of the provenance of
tuples in the result of a query. They show that querying annotated databases, like
probabilistic, incomplete or databases under bag semantics, are all instances of the
same positive algebra computation algorithm over K-relations that lead to a more
representative form of provenance using polynomials, a special class of semirings.
Indeed, they state that by annotating each result tuple with its polynomial-like
provenance, they provide a more comprehensive understanding of how a tuple was
produced, and not only why it was produced as the tuple’s lineage [CWW00] sug-
gests.
For an example, consider a tuple t resulting from a join over two source tuples t1
and t2. Then, t is annotated with the polynomial t1t2 showing that t is derived
by combining t1 and t2. If t is the result of a union over t1 and t2 then it would
be annotated with t1 + t2 showing that t can be derived either from t1 or from t2.
The lineage of t in both cases is < {t1}, {t2} >, which is not as informative as the
polynomial.

Moreover, the authors in [GKT07] study provenance semirings for datalog queries
over incomplete and probabilistic databases, through formal power series.

[ADT11b] extends the framework to queries with aggregation and difference.
Here the framework of semiring annotations built with elements from a K-relation,
is extended to accommodate more operators for aggregation. This results in intro-
ducing a semimodule algebraic structure over the semiring considering a commuta-
tive monoid (M,+M , 0M), where the elements of M are elements of the database

3.2. WHY-NOT PROVENANCE 29

domain (i.e., attribute values). This allows for capturing not only the provenance of
result tuples, but also the provenance of values resulting from the execution of an
aggregation query.

Example 3.1.2. Consider the aggregation query (expressed in relational algebra)

Q=R.BFR.A→sumA[R]

The result over the instance of R in Figure 3.1, is

Q[IR]={(R.B:2, sumA:3), (R.B:3, sumA:7)}

The provenance of the attribute sumA in the tuple (R.B:2, sumA:3) is described by
the expression Id1⊗1 sum Id2⊗2. In the case of bag semantics, if Id1 is mapped to
2 and Id2 is mapped to 3 then, the previous expression is evaluated to 2 sum 6 = 8,
which represents the value of sumA.

3.2 Why-Not Provenance

Now, we focus our attention on works answering Why-Not questions and provid-
ing explanations about the encountered problems that lead to missing-answers. If
we consider a scenario ∆=(S, I, Q,WN),as described in Notation 2.3, each reviewed
algorithm proposes to explain such a scenario by either debugging or proposing mod-
ifications to one or more of the following parameters: (i) the underlying database
(S or I), (ii) the input query (Q), and (iii) the specified Why-Not question (WN).

As already said, we distinguish among five categories for Why-Not provenance,
grouping algorithms computing (i) instance-based, (ii) query-based, (iii) hybrid, (iv)
ontology-based, and (v) refinement-based explanations.

The problem statements we defined for this thesis in Section 2.3, page 22, are
about query debugging and query fixing. Thus, the proposed solutions fall into
the category of query-based explanations and query refinements. We consider all
other categories as orthogonal to these two categories. Indeed, some explanations
are more appropriate than others in different applications or contexts. For example,
in incomplete databases or for data cleaning tasks, when the source database is not
completely trusted, instance-based explanations are important for curating/complet-
ing the data. However, when data is trusted, such kind of data modifications are not
acceptable and one would rather opt for query-based explanations. Then, when data
can also be accessed and queried through concepts of an ontology, ontology-based
explanations seem to be well-fit.

Table 3.1 provides a structured overview of the works in the Why-Not provenance
field. These works are categorized according to the type of explanation they generate
and the table further reports the format of the generated explanation, the class of
query and Why-Not question (simple or complex, see Definition 2.1.1) supported by
each algorithm.

30 CHAPTER 3. RELATED WORK

Table 3.1: Algorithms for answering Why-Not questions
Algorithm Why-Not Explanation Query

question format
Instance-based explanations

NA [HCDN08] simple source table edits SPJ
Artemis [HH10] complex source table edits SPJUA

Meliou et. al. [MGMS11] simple causes (tuples) and responsibility SPJ

Calvanese et. al. [COSS13] simple additions to ABox instance & conj. queries
over DL-Lite ontology

PGames [KLZ13, RKL14] simple source table edits SPJUN
Roy and Suciu [RS14] higher/lower attribute-value pairs and degree SPJA

Query-based explanations
Why-Not [CJ09] simple query operators SPJU

NedExplain [BHT14c] simple query operators SPJUA
Ted [BHT14a] complex polynomial SPJUTed++ [BHT15a]

Hybrid explanations
Conseil [Her13, Her15] simple source table edits + query operators SPJAN

Ontology-based explanations
Cate et. al. [CCST15] simple ontology concepts conj. queries with comparisons

Query refinements
ConQueR [TC10] complex refined query SPJA

TALOS [TCP09, TCP14] SPJ
FlexIQ [ILZ14] simple refined query & Why-Not question SPJ

Islam et. al. [ILZ12] refined query SPJU
FixTed [BHT15c] complex refined query SPJU
He and Lo [HL14] simple refined query & Why-Not question top-k (dominating) query
He and Lo [HL12] refined query top-k query

Zhang et. al. [ZHJ+13] simple refined query top-k query
WQRTQ [GLC+15] simple refined query & Why-Not question reverse top-k query
Islam et. al. [IZL13] simple refined query & Why-Not question reverse skyline query
Chen et. al. [CLJX15] simple refined query spatial keyword top-k query

3.2.1 Instance-Based Explanations

Instance-based explanations consider that the reason for not obtaining the de-
sired results lies with the source data, which are insufficient in their current state
to produce the missing answers. Thus, this category proposes the changes need to
be made in order to sove the problem.

Non-Answers (NA) [HCDN08] is the first paper to introduce instance-based ex-
planations for missing answers, or -as referenced in the paper - ‘provenance tuples’
for non-answers. Given a select-project-join (SPJ) query and a missing answer as a
simple Why-Not question, the NA proposes to build a provenance query, to retrieve
the tuples with which the database should be updated. This is a refined statement
of the user’s query changed based on a number of rules depending on the existing
problem setting constraints i.e., the existing data, schema, query and given trust-
fulness of relations and/or attributes. Moreover the provenance query is executed
over a database instance augmented with null-value tuples (null-value having the
meaning of variables), in order to be able to represent the tuples missing from the
database instance. In this way, the framework proposes how to update the source
database, by adding new tuples or modifying existing ones. In order to prune the
wide space of possible updates, the framework exploits domain and key constraints.
The user can also specify which relations or attributes in the database are trusted
and thus are not subject to updates.

3.2. WHY-NOT PROVENANCE 31

Following Non-Answers, Artemis [HH10] computes instance-based explanations
for queries containing also aggregation and union (SPJUA) and taking into consid-
eration a complex Why-Not question. An explanation in Artemis is a set of existing
tuples and tuples to be inserted in the database, and thus does not consider modifica-
tion of existing tuples. To compute the set of explanations, Artemis uses the notion
of generic witness to capture all the different patterns for the explanations, based
on the conditions of the Why-Not question. Then, based on the patterns Artemis
transforms the tables in the database to conditional tables [IWL84] containing extra
conditional tuples for the missing tuples and executes the query over the new con-
ditional dataset, in an approach resembling the querying over the database enriched
with null proxy tuples in NA. Artemis takes into account trusted relations along
with some extra techniques, like minimizing the generic witness to narrow down the
search space of the explanations. The use of a constraint solver, in combination
with unique and key constraints guarantees the correctness of the results. Finally,
Artemis provides the opportunity to minimize side effects. Side effects are tuples
generated because of the changes in the database, but do not correspond to missing
tuples. To minimize the side effects, extra constraints are sent to the constraint
solver, built using the values of the side effects and enforcing them to evaluate to
false.

Provenance games (PGames) [KLZ13] provide a unified method of answering
Why and Why-Not questions by modelling the answer (or the missing-answer) of
a query as a won or lost game respectively. In this way, the query is modelled
as a game which is instantiated for the (missing) answer, and thus contains the
different moves that lead to a win or a loss. The strategy (path) followed to win
provides us with the provenance of the answer and the strategy that leads to a loss
provides with the instance based explanation (tuples need to exist in the database
in order to produce the missing answer). The provenance computed is equivalent to
the semiring-provenance[GKT07] for positive relational queries and is additionally
able to handle negation in the query. To return a finite set of the explanations,
PGames restricts the values in the explanations to values existing in the active
domain. To overcome this restriction, and in order to maintain the finiteness of the
result [RKL14] extends provenance games to constraint provenance games. In the
latter, the proposed instance-based explanations are grouped such that they follow
the same pattern, satisfying certain common constraints.

Another line of works proposing instance-based explanations, uses the notion of
causality paths in order to find and rank explanations. Meliou et. al. [MGMS11]
theoretically study the unification of instance-based explanations of missing answers
and of data present in a query result (a.k.a. their provenance), leveraging the
concepts of causality and responsibility. More specifically, given a set of tuples D to
be updated in a database (a.k.a. the instance-based explanations) as discussed in
NA [HCDN08], a tuple t in D is a cause for a missing answer with a certain amount
of responsibility depending on its contingency set. The contigency set of t contains
the tuples in D that should be updated along with t so that the missing answer
appears in the result. In this way, the responsibility of a cause gives a measure of

32 CHAPTER 3. RELATED WORK

how important one cause is and is further used to rank the possibly large set of
causes. The results apply to conjunctive queries and simple Why-Not questions.

In the same spirit, Roy and Suciu [RS14] use the notion of causality paths in order
to rank the obtained explanations. Given the results of several aggregation SQL
queries, a user may wonder why there is a specific relationship among the results,
for example “Why is the average books price in 2010 higher than in 2013?" (or “Why
is the average books price in 2010 not lower than in 2013?"). The explanation here
is not directly a set of database tuples like in [MGMS11], but rather a conjunction
of predicates over relation attributes. In essence, tuples that satisfy this conjunction
are responsible for the observed relationship. Since the explanations can be many,
the authors propose to compute top-k explanations based mainly on the intervention
for each explanation computed based on causality paths over the data built with
the aid of foreign keys. The intervention of an explanation measures the degree of
influence of this explanation on the query answer and consists in a set of tuples to
be removed in order to move towards the desired direction the observed relationship
among the query results. To efficiently compute minimal explanations, the method
proposes the use of data cubes in database systems that provide this functionality.

Finally, DL-Lite [COSS13] leverages abductive reasoning and theoretically ex-
amines the problem of computing instance-based explanations for a class of simple
Why-Not questions on data represented by a DL-Lite ontology. Here, the instance-
based explanation consists in additions to the ontology’s ABox (insertions to the
instance data).

3.2.2 Query-based explanations

Why-Not [CJ09] is the first paper that explains missing tuples in a query based
approach. The followed approach is designed for scientific workflows modelled as Di-
rected Acyclic Graphs (DAG), modelling views (or queries) over relational databases.
The nodes of the DAG are workflow manipulations and the leaves are database re-
lations. In the case of relational queries the DAG is a tree with relational operators
as nodes. Why-Not takes as input a simple Why-Not question and an SPJU query.
Firstly, it identifies data pertinent to the Why-Not question in the input sources.
These data, called unpicked, should not appear in the lineage [CWW00] of any result
tuple. Tracing the unpicked data up the DAG gives rise to successor tuples meaning
tuples that have in their lineage unpicked data. When at a node of the DAG no
more successors of unpicked data are found this node is called a picky node and the
process stops when no more successors exist on the DAG. The upmost picky nodes
are the query based explanations returned by Why-Not.

In this thesis we propose query-based explanations for query debugging, as we
consider that the content of the database is trusted and not subject to change, so rea-
sons for the missing-answers can only be placed on the constraints imposed by query
operators. But even if the source data were modifiable, existing work [CJ09, Her13]
indicate that the numerous instance-based explanations alone are overwhelming and
quite costly to compute. Why-Not is the only algorithm producing query-based ex-

3.2. WHY-NOT PROVENANCE 33

planations so we directly compare our proposal, NedExplain withWhy-not, discussed
later in detail in Section 4.1.

Briefly, we argue that Why-Not exhibits a number of shortcomings, when applied
to relational queries. The shortcomings are linked to the notion of the unpicked data
and successors as defined in the paper which leads to the algorithm failing to produce
(correct) explanations in certain cases. Moreover, Why-Not does not behave well in
the presence of self-joins and intermediate empty results. These shortcomings result
in inaccurate or incomplete explanations, as we also demonstrate experimentally. In
addition to dealing with Why-Not shortcomings, with NedExplain we also provide
a clear formalization of the problem, missing from the Why-Not paper.Moreover,
we extend the class of considered queries to unions of aggregate queries, while we
provide an algorithm that is competitive with Why-Not in terms of run time.

For completeness, we also report here the second algorithm -Ted - proposed in
this thesis to compute query-based explanations. The approach followed in Ted is
completely different than what has been discussed so far, reasoning on the SQL
syntax level and not the query tree. Moreover, we propose a novel formalisation
of the query-based explanations as a polynomial of query conditions, inspired by
the provenance-semirings discussed in the How-Provenance section (Section 3.1). In
this ways, we allow for capturing all the ways (query condition combinations) in
which a missing tuple was pruned out of the result. We also discuss this approach
under different semantics (set, bag, and probabilistic) in Section 4.2. Even though
the formal foundation of the Ted algorithm is novel, Ted is a naive and inefficient
implementation of the definitions. For this reason, we propose also the optimized
Ted++ algorithm that renders this approach computationally feasible despite its
worst case complexity.

3.2.3 Hybrid explanations

There are cases when a Why-Not question cannot be answered with query-based
or instance-based explanations alone. For example, when no compatible data can
be computed for the Why-Not question then no query-based explanations can be
computed. Moreover, in the presence of (key) constraints there is the probability
that the needed tuple insertions are impossible, which are indispensable for instance-
based explanations. In such cases, hybrid explanations propose a combined solution
with both the updates to be done over the database and the query conditions that
still need to be repaired.

In Conseil [Her13, Her15] hybrid explanations are introduced for the first time.
The class of queries concerned is relational queries, i.e., select, project, join, union,
negation (more specifically one negation is allowed in the proposed algorithm) and
aggregation (SPJUAN) queries. The class of Why-Not questions is the one of simple
Why-Not questions. Conseil benefits and combines ideas from related works in the
query-based and instance-based categories while extending them to non-monotonic
queries. Inspired by the query-based approaches based on query trees, the algorithm
reasons on a specific query tree representation. First Conseil builds a generic witness,

34 CHAPTER 3. RELATED WORK

that contains one instance-based and one query-based part. The generic witness is
meant to encode the pattern for the hybrid explanations. The instance-part of the
generic witness contains conditional tuples satisfying the missing-answers constraints
and provide the pattern for compatible tuples. The query-based part contains all the
query conditions that can be responsible, that is the selections, joins and negation.
At a second step, the compatible tuples are traced through the query tree in a
bottom-up way and the parts of the generic witness are assigned with annotations
from the set {passing, blocking, ambiguous} depending on whether they enable or
not (or ambiguous) the compatible tuples to pass to the next node. Note that when
compatible tuples are blocked, conditional tuples are generated in their place so as to
be able to continue the tracing. Finally, based on the annotated generic witness and a
number of derivation rules the hybrid explanations are computed and returned based
on a cost function. Since the instance and the query-based explanations co-exist in
the generic witness, it is obvious that the query-based explanations are connected
to the proposed database updates. As the query-based explanations are computed
based on the Why-Not algorithm (in the absence of NedExplain at the time), Conseil
could transitively be improved using NedExplain, as NedExplain improves Why-Not.

3.2.4 Ontology-Based Explanations

Recently, the new category of ontology-based explanations have been proposed
by Cate et. al. [CCST15]. Opposed to the previous categories providing fine-grained
explanations (tuples or query conditions) here the explanations are high-level, con-
sisting of concepts from an ontology. The ontology is either provided externally,
provided that the database schema can be associated to the concepts of the ontol-
ogy, or it is derived based on the database schema or database instance at hand.
So, a missing-tuple can be associated with a number of concepts. The explana-
tions are intended to provide the most general concepts associated with the missing
tuple. This means that these concepts are associated with the missing tuples but
not with tuples in the query result. The most generak means that the concepts
returned as explanations are not subsumed by any other concept being an explana-
tion. The proposed framework considers conjunctive queries with comparisons over
a a database schema, an ontology, and a simple Why-Not question. Checking if a
most general explanation exists is a NP-complete problem and computing the set
of most general explanations is exponential in the size of the database and poly-
nomial time if the database schema is fixed for external ontologies. For ontologies
derived from the database the complexity of finding a most general explanation is
polynomial for selection-free concept languages 1. Note that the algorithms as well
as the explanations here are completely independent of the query conditions even
though the query appears in the framework. Finally, ideas on using hierarchical
relationships among categorical attributes have also been proposed in [MK09] for
providing refinement-based explanations, further discussed in the next section.

1. The concept language is used to derive the ontology from the data workspace.

3.2. WHY-NOT PROVENANCE 35

3.2.5 Query Refinements

Once the reasons for unexpected transformation results have been identified, a
developer wonders how to leverage this knowledge to obtain the needed results.
Often, this requires changing the data transformation (or query in our context),
in which case the developer has to manipulate the culprit operators returned as
query-based explanations. This task becomes time-consuming when we consider the
number of different options of changing a transformation. For instance, given that
a particular join is returned as query-based explanation, should she change the join
condition, replace it with some outer join, or should it actually be a union?

In this section we review related works proposing how to refine the query or
Why-Not question in order to include the specified missing-answers in the result
of the refined query. We categorize the related publications based on the kind of
Why-Not question (too many/too few results or specific missing tuples) or the type
of query ((reverse) top-k, (reverse) skyline, spatial skyline, or traditional relational)
they handle. For traditional relational queries, we further identify the approaches
that rely on a data classification methodology (classification-based algorithms) and
those building query refinements by focusing on and changing the conditions of the
query (constrained-based approach).

In this thesis, the proposed query refinements fall into the category of constrained-
based relational query refinements. As we discuss in the dedicated chapter (Chap-
ter 5), the main characteristic of our approach is that we leverage the precomputed
query-based explanations, obtained for example by the Ted algorithm. The majority
of the publications presented in this area, do not have the query-based explanations
for the Why-Not question as a prerequisite. This is the main difference of our
approach in the query refinement explanations field, resulting into the ability to
efficiently compute more relevant query refinements.

Too many/too few results Close to the problem of refining a query so as to
include specific tuples in the result, is the problem of refining a query so as to
meet certain output cardinality constraints, for example when the output of a query
contains too many, too few or empty results. Mishra and Koudas [MK09] propose
an interactive framework to deal with the too many/too few results problem. The
framework involves SPJ queries with disjunctions and conjunctions of range and
equality conditions over numerical and categorical attributes. Based on cardinal-
ity estimations over samples of the data, the framework decides whether the query
should be relaxed (when there are too few results) or constrained (otherwise). The
changes on the query selection predicates, which consist in removing/adding con-
juncts or disjuncts from/in the query’s where clause, is performed in a controlled
manner based on the user’s interaction with the system. For categorical attributes,
the hierarchies are either provided by the user or are derived from the database
schema. The empty result problem is a subcase of the too few results problem,
addressed by Motting et. al. in [MMR+13]. In this paper, the authors propose an
interactive query relaxation framework based on a probabilistic scheme according
to which the user favours the proposed relaxation at each step of the interaction.

36 CHAPTER 3. RELATED WORK

An extra requirement set in this work is to maximize a certain objective for exam-
ple a company’s profit. The queries considered here are conjunctive queries with
attribute-constant equalities only and the proposed refined queries contain subsets
of the initial query conditions that enable some tuples to appear in the result.

The following algorithms consider specific missing answers (unlike the too many/-
too few category) from the query result. They are categorized based on the type of
query they handle.

Top-k queries He and Lo first addressed the problem of Why-Not questions for
top-k queries in [HL12], which they extended for top-k dominating queries in [HL14].
A top-k query is a query of the form q(k, ~w) that asks for the k best tuples (or
points 2) in a dataset based on a ranking function assigning the weights in ~w to the
associated relation attributes (or otherwise called, point dimensions). The Why-Not
question consists in a set of missing pointsM . The answer of the Why-Not question
consists in a set of refined top-k queries q′(k′, ~w′), which include in the k′ best results
the missing-answersM , however without the restriction that the previous results (or
a subset thereof) will also appear in the new result. The user, along with the Why-
Not question may provide her preference on whether to favour changes on k or ~w
in the refined queries. The authors argue that finding the exact best refinements is
a difficult problem and further propose finding the best approximate answers based
on a sampling of weighting vectors and optimization techniques that stop or avoid
the computation of refined queries that are dominated (i.e., are for sure worse) than
others already computed. In a similar approximation approach [HL14] treats also the
case of top-k dominating queries, which returns the first k data points depending on
the number of data points that they dominate. The Why-Not question again consists
in a set of missing data points however the Why-Not answer is a refined query with
a new k′ and possibly a refined Why-Not question M ′. Finally, [ZHJ+13] adopts the
techniques discussed in [HL12] to answer another form of Why-Not questions over
top-k queries. Here, the Why-Not question consists in two data points, the missing
point m and a point p that exists in the top-k results and is compared to m. So, the
Why-Not question is of the form Why is not m in the result since p is in the result?.
The point p is used to add one extra constraint in the problem, by demanding m to
be ranked higher than p in the refined query result.

To complement the scenery of Why-Not questions and top-k queries, WQRTQ [GLC+15]
addresses Why-Not questions for reverse top-k queries, often used for marketing pur-
poses in the enterprise sector. Given a set of tuples (for example products) and a
set of weightings (representing customers’ preferences on the properties of the prod-
ucts) a reverse top-k query [VDKN10] for a product p returns the customers (i.e.,
weightings) that contain p in their top-k results. So, a Why-Not question in this
context asks why certain customers W are missing from the result of a reverse top-k
query 3. This question can be alternatively stated as why certain customers have

2. In the paragraphs of top-k and skyline queries, we use the terms tuple and point interchange-
ably, as tuples are mapped to points on an Euclidean space.

3. Here, the missing customers are essentially understood as the chosen weightings by the

3.2. WHY-NOT PROVENANCE 37

not the product p in their top-k result. To answer this question, [GLC+15] proposes
a unified framework named WQRTQ that computes and provides changes on the
product p, and/or the missing-tuples weightings W and k in the optimal way, i.e.,
minimizing a penalty measuring the difference of the proposed setting w.r.t. the
original one.

Recently, a supplementary case of Why-Not questions over top-k queries has been
proposed by Chen et. al. [CLJX15], not in the relational databases but more Infor-
mation Retrieval (IR) oriented, focusing on spatial keyword search. The motivation
for this work is driven by modern technologies providing many geo-spatial data and
making querying them an every day commodity. Every object in the dataset is a
pair (location, keyword). A top-k spatial query retrieves the k best objects w.r.t. a
query, by best meaning the the closest to the queried location and keyword taking
into account also a weighting vector on the two dimensions. A top-k spatial why
not query asks why a certain object (or set of objects) are not in the top-k returned
results. Differently from the previous problems, here the database is not stable but
constantly changing and the scoring models are taken from the information retrieval
field. Moreover, the algorithms exploit indexing schemes for an efficient time and
i/o implementation. The final result is a refined top-k spatial query (i.e., with new
k and weighting vector) that includes the missing object(s) in the result.

Skyline queries Except for (reverse) top-k queries, the literature proposes (re-
verse) skyline queries to express preference over specific tuples and Why-Not ques-
tions have been considered in this field as well.

A skyline query [BKS01] typically returns these database tuples that have the
best values according to a direction (i.e., highest or lowest) on certain attributes
(a.k.a. dimensions). Moreover, range constraints can be added along some attributes
so that the constrained skyline query [PTFS03] becomes more flexible in describing
user’s preferences. Chester and Assent [CA15] propose query refinements for Why-
Not questions over constrained skyline queries, i.e., questions asking why a certain
tuple is not in the skyline returned by the query. Essentially, the algorithm proposed
increases the lower limit of the range in the constraint(s) the least possible in order
to make the missing tuple appear in the skyline of the new refined query and is
based on search space pruning techniques for efficiency. The authors also argue that
their method can be trivially extended to return refinements of the missing tuple,
which in this case coincide with changes on the source tuple being the missing tuple
(i.e., instance-based explanations).

In addition to skyline queries, also reverse skyline queries have been considered in
the context of Why-Not questions by Islam et. al. in [IZL13]. Similarly to reverse
top-k queries, reverse skyline queries are also interesting for marketing purposes.
The notion of reverse skyline builds on the notion of dynamic skyline [PTFS03]
w.r.t. a data point q, which contains the data points that are the closest to the
query point q. The reverse skyline [DS07] of a query point q contains the points
that have q in their dynamic skylines. A Why-Not question in this case asks why

customers.

38 CHAPTER 3. RELATED WORK

a certain point c is missing from the reverse skyline of a query point q. To answer
Why-Not questions in this context, [IZL13] proposes refinements of the query point
q and/or the missing point c s.t. the refined point c′ appears in the reverse skyline
of the refined query point q′ with the extra requirement that the previous reverse
skyline points are not lost. Note that this extra requirement, which also is posed
in this thesis proposal for query refinements, is not posed in the rest of the works
about top-k, reverse top-k or skyline queries.

Relational queries Now, we visit works on query refinement for relational queries.
This is the category that is the most related to our proposal for the query-fixing phase
and thus interests us the most. There are two main directions: (i) the classification-
based approach and (ii) the constraint-based approach. The first approach builds
on the concept of decision trees used for rule derivation and data classification in
the machine learning field [Qui87]. The second approach exploits the skyline oper-
ator [BKS01] to construct new query conditions.

Classification-based approach The first work we cite following the decision
trees approach is TALOS [TCP09, TCP14]. The primary challenge addressed by
TALOS is how to generate instance equivalent queries given a result set of tuples
T and optionally an initial query Q. Instance equivalent queries generate the same
output set T if executed over the same input dataset. This problem can be expressed
as a Why-Not query refinement problem, if the output set T consists of the miss-
ing tuples and the original query’s result. The method considers SPJ queries and
complex Why-Not questions, while it is discussed for numerical values only. TALOS
builds the possible joins in a refined query Q′ based on the input database schema
and foreign key constraints. Then, TALOS builds a decision tree beginning with
the data corresponding to the result of the joins over the database instance. The
decision tree classifies the data on each node into pure (i.e., containing all positive
or all negative tuples) and non-pure (i.e., containing both negative and positive tu-
ples) sets of data, using a dynamic labelling scheme. Note that a tuple is labelled as
negative if it is not desirable to appear in the query result and positive otherwise.

Each split (branch) in the decision tree, marked on some internal node, is a con-
dition constructed on one attribute and one value. Data satisfying the condition
move to the one side and data not satisfying the condition to the other side of the
split. The process of splitting t continues until all leaves are pure nodes. The path
from the root node to the all positive leaves contain the attribute conditions for the
selections of the refined queries. Different branches leading to positive leaves are
interpreted as disjunction in the where clause of the query. Moreover, in approxi-
mate solutions and in order not to over-constrain the refined query, the at-least one
semantics are taken into account. Finally, the refined queries are ranked based on
similarity and precision/recall metrics.

The classification approach is also partially followed in [ILZ12], where Islam et.
al. address in a unified manner unexpected and missing answers, i.e., Why and
Why-Not questions. More specifically, given a query containing conjunctions or dis-
junctions of conditions a user indicates to the system which tuples they expected

3.2. WHY-NOT PROVENANCE 39

to be in the result and which they did not. Based on this feedback, the proposed
solution treats unexpected tuples with a decision tree approach that classifies result
tuples to positives and false positives. The nodes that lead to positive leaves provide
the new selections of the refined queries. Note that the classifier used here is a dif-
ferent one than in TALOS [TCP09]. As far as the solution for the missing answers
is concerned, the method followed is a constrain-based one. The method begins
by identifying common query-based explanations for groups of missing answers and
relaxes the conditions in the query-based explanations accordingly. The Why-Not
questions addressed are simple, since the missing answers contain attribute-value
conditions. Furthermore, only simple query conditions (i.e., selections) are consid-
ered for repairing in the refined queries. Finally, the refined queries are ranked based
on similarity and precision/recall metrics as in [TCP09] even though the ranking
functions used are different.

Constraint-based approach Conquer [TC10] is the first constrained-based
approach that we review. Conquer considers in its input a select-project-join-
aggregation (SPJA) query and a complex combination of missing tuples. It returns
a set of queries that include in their results the missing tuples in addition to the
original query result tuples. In the case of SPJ queries, Conquer first searches for
refinements including only changes on the selection predicates of the query, and if
such changes are not feasible, it searches for refined queries that potentially have a
different schema from the original query. In more detail, Conquer begins by com-
puting query refinements that satisfy the requirements, i.e., generate a result that
contains the original one and the missing tuples. To do so, Conquer considers the
attributes on which the original query poses selection conditions and the values of
original result and missing tuples on these attributes. Then, using only the skyline
tuples on the dimensions defined by the aforementioned attributes, it computes a set
of refined queries, by rewriting the original query conditions with values taken from
the skyline tuples. Finally, from the resulting refined queries, only the ones with
low imprecision are going to be considered for further refinement. The imprecision
of a query is measured by the number of irrelevant tuples introduced in the result.
Irrelevant are tuples in the refined query result that do not exist in the original query
result. The set of queries generated in the first step of the Conquer algorithm, are
forwarded to the second step, where they are further refined in order to lower their
imprecision metric. In this step, Conquer introduces conditions on attributes from
the input query schema, not constrained in the original query. As the problem of
minimizing false positive tuples by introducing the minimal number of additional
predicates in NP-hard, Conquer uses heuristics to compute how many predicates to
add.

When, Conquer is not able to find any refinements based only on selection con-
ditions, it proceeds with a heuristic to compute query refinements with a different
FROM clause than the original result. In more detail, Conquer searches in the
database schema for combinations of relations that can produce the same output
type as the original query Q, and moreover can be joined using foreign key con-
straints.

40 CHAPTER 3. RELATED WORK

Conquer ranks the refined queries produced in the two steps, with respect to
the dissimilarity and imprecision metrics. The dissimilarity of a refined query w.r.t.
the original is computed based on how many conditions are changed and the type
(selection or join) of the changed operator. Finally it creates the skyline of the
queries that lower the two metrics, which form the proposed query refinements.

In the same spirit as [ILZ12], FlexIQ [ILZ14] is a user-interactive system targeted
to Why and Why-Not questions simultaneously. As such, the user specifies both the
expected (but missing) and unexpected (but returned) tuples in the result of a query
Q. Here however the queries involved are SPJ queries and the output is not only
refined queries but also refined Why-Not questions. FlexIQ considers missing and
unexpected tuples together in the algorithmic steps. Mapping the database tuples to
points of a space, the algorithm computes the boundary line limiting the query result
and tries to move it in the space in the best way so as to exclude the unexpected
and include the missing tuples (points) in the result (i.e., below the boundary). The
boundary line is a variation of the skyline. As a reminder, a point t dominates a
point t’ if t is better than t’ in at least one dimension and at least as good as t’
in all other dimensions. So, whereas the skyline contains all points not dominated
by others, the boundary contains all points not dominating others. This explains
how boundary sets the limit of the query result and how moving it accordingly
can include/exclude tuples. To compute the boundary tuples the skyline operator is
taken into account. When the exact solution is not possible due to potential conflicts
or redundancies in the user feedback, FlexIQ provides approximate refinements that
take into consideration a refined set of missing tuples. The refined queries are
disjunctions of conjuncts. In order to create refinements that do not overwhelm the
user with their number of conjuncts, FlexIQ combines when possible the conjuncts
in the refined queries into one based on a replacement strategy.

In this thesis we propose the FixTed algorithm (Chapter 5) to produce refined
queries following a constrained-based approach. We argue that this approach is more
appropriate for our setting, on the one hand. On the one hand, the classification-
based approach is proven, both by Conquer and FlexIQ, to be inefficient especially
for big and diverse datasets. On the other hand, starting from the query-based
explanations (i.e., the erroneous query conditions) a constrained-based approach
appears to be more relevant.

FixTed algorithm is inspired by Conquer. However, Conquer does not use any
knowledge of what is wrong with the query, and solely rely on the set of compatible
data to produce the query refinements. On the contrary, the FixTed algorithm has
a different starting point than Conquer, taking advantage of the already computed
query-based explanations in the form of polynomials, provided by our Ted algorithm
(see Section 4.2). In this way, FixTed guarantees to produce the lowest dissimilarity
query refinements, by adopting a more sophisticated cost model too. Briefly, the
dissimilarity is captured by the value difference or edit distance of changed condi-
tions and the number of changed or added conditions. Moreover, EFQ computes
refinements more efficiently by being able to reduce the dimensions of the skyline
tuple computation. Finally, EFQ is aware of the type of conditions that should be

3.3. SUMMARY 41

changed (a.k.a., if joins should be changed as well) from the beginning. Thus, it
produces targeted query refinements depending on the type of the conditions in-
volved in the query-based explanations. As we discuss in Chapter 5, EFQ proposes
a different class of refined queries, i.e., left/right outer-join queries, when joins are
involved in the query-based explanations.

3.3 Summary
In this section, we reviewed some of the most important publications on the

subjects that this thesis addresses. In a first level we distinguish between works
investigating why certain data exist in the output of a data transformation or more
specifically in a query result and works investigating why there are not some other
expected data in the result. The first category is also widely known as the data
provenance problem, linking output data with their origins in the source data. Sem-
inal publications in this category include lineage ([CW01]) and provenance semirings
([GKT07]), concepts also used in this thesis’ proposed framework.

This thesis falls in the second category, that is the Why-Not provenance category.
In this field of research, different algorithms have been proposed to answer Why-
Not questions either by debugging the input query (like [CJ09]) and/or database
(like [HCDN08, HH10, Her15, CCST15]), or by proposing alternative query refine-
ments that include the missing answer in their results (like [TC10]). Furthermore,
we placed this thesis algorithms in the sub-categories of query-based explanations
(NedExplain and Ted) and refinement-based explanations (FixTed) and highlighted
the most important differences and competences of our approaches w.r.t. the state
of the art algorithms. More theory and technical details necessary for the exact
comparison are provided in the dedicated chapters.

42 CHAPTER 3. RELATED WORK

Chapter 4

Query Debugging

In this chapter we describe NedExplain and Ted, the two proposals developed
in this thesis to address the query debugging problem, as introduced in Problem
Statement 2.3.1. The objective of the two algorithms is the same as they both
solve an explanation scenario by providing query-based explanations. Thus, the
general notions and definitions described in Chapter 2 are used for both algorithms.
However, there are subtle differences w.r.t. their application scope and principles.
For example, each algorithm addresses a different class of queries and Why-Not
questions. Moreover, the output Why-Not answer granularity and format differs so
each algorithm complies with its own specific Why-Not answer definition.

The chapter is organised as follows. Section 4.1 is dedicated to NedExplain, and
provides its general contribution, and the description and algorithmic steps to pro-
duce the Why-Not answer. Moreover, we provide the experimental evaluation of
NedExplain, including a comparative evaluation to the state of the art algorithm
Why-Not [CJ09] in terms of run time efficiency and answer quality. Section 4.2 de-
scribes Ted in a similar structure. In the beginning the contributions are provided
followed by the Ted and the efficient Ted++ algorithms producing the Why-Not an-
swer in this context. Then, an experimental evaluation follows comparing Ted and
Ted++ with the state of the art algorithms, again both in terms of run time per-
formance and Why-Not answer quality. Finally, we provide a theoretical discussion
extending the Ted Why-Not answer to different database and query classes.

Publications NedExplain has been published as a full paper [BHT14c] in the pro-
ceeding of the International Conference on Extending Database Technology (EDBT)
2014. It was also presented ([BHT13]) in the french conference on databases Bases
de Données Avancées (BDA) 2013.

A preliminary version of the Why-Not answer polynomials, along with the naive
algorithm Ted were published as a workshop paper [BHT14a] at the International
Workshop on Theory and Practice of Provenance (TaPP) 2014. This version [BHT14b]
was also presented in the French database conference on databases Bases de Don-
nées Avancées (BDA) 2014. An extended version [BHT15d] including the theoretical
discussion on query equivalence, is published as an invited article in the Ingénierie

43

44 CHAPTER 4. QUERY DEBUGGING

des Systèmes d’Information (ISI) journal 2015. The optimized algorithm Ted++ is
published as a full paper ([BHT15a]) in the proceedings of the International Con-
ference on Information and Knowledge Management (CIKM) 2015 and ([BHT15b])
in Bases de Données Avancées (BDA) 2015.

Finally, the first results on query debugging and the perspectives for using Why-
Not answer polynomials for query fixing [Tzo14] were presented at the Very Large
Databases (VLDB) PhD Workshop 2014.

4.1 NedExplain

NedExplain [BHT14c] is an algorithm that computes query-based explanations
given an explanation scenario ∆ (see Section 2.3). More specifically NedExplain
considers Select-Project-Join-Aggregate queries and unions thereof (SPJUA) and
simple Why-Not questions. We motivate the problem and the proposed solution
with the following example that is also used as the running example for this section.

SELECT A.name, AVG(B.price) AS ap
FROM Author A, AuthorBook AB, Book B
WHERE A.dob > 800BC

AND A.aid = AB.aid
AND B.bid = AB.bid

GROUP BY A.name

(a) SQL query Q

{A.name = Homer, ap > 25}

(b) Why-Not question WN

Author
aid name dob A_Id
a1 Homer 800BC Id4
a2 Sophocles 400BC Id5
a3 Euripides 400BC Id6

Book
bid title price B_Id
b1 Odyssey 15 Id1
b2 Illiad 45 Id2
b3 Antigone 49 Id3

AuthorBook
aid bid AB_Id
a1 b2 Id7
a1 b1 Id8
a2 b3 Id9

(d) Database instance I over S={Author,Book,
AuthorBook}

{A.name}F{AV G(B.price)→ap}
(mQ)

A.name ap
Sophocles 49

σA.dob>800BC

(mQ3)

A_Id AB_Id B_Id
Id5 Id9 Id3

onbid

(mQ2)

A_Id AB_Id B_Id
Id4 Id7 Id2

Id4 Id8 Id1

Id5 Id9 Id3

onaid

(mQ1)

A_Id AB_Id
Id4 Id7

Id4 Id8

Id5 Id9

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

Author A
aid name dob A_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

(c) Query tree

Figure 4.1: Scenario for NedExplain running example

4.1. NEDEXPLAIN 45

Example 4.1.1. Consider a database S with the relations Author (A), Book (B)
and AuthorBook (AB). A developer executes a query over this database to find an-
cient authors and the average price of their books. This query is expressed as the
SQL query shown in Figure 4.1(a), while a tree representation can be seen in Fig-
ure 4.1(c) - ignore the operator labels mQi in the query tree for now. Let us further
consider the database instance I over S shown in Figure 4.1(d). Based on the data
and query, the query result Q[I] contains only one tuple: (Sophocles, 49).

Having retrieved only one tuple, the developer wonders why there is no tuple
with author name Homer and average price greater than 25 in the query result,
as he expected. This Why-Not question is expressed by WN in Figure 4.1(b). To
answer this Why-Not question we can see that the selection on the attribute dob is
too strict to let the author named Homer pass. Indeed the compatible source tuple
Id4=(a1, Homer, 800BC), is pruned out from the result, leaving no successor tuples of
Id4 in the output of the selection. Note that here and in what follows, we may refer
to a tuple from a relation R using the R_Id attribute.

Now, let us change the Why-Not question to ask ‘Why are there no result tuples
with a name different from Sophocles?’ One explanation for not obtaining any other
name than Sophocles, is again the selection σA.dob>800, for pruning out of the result
the compatible tuple Id4 with the name Homer. Moreover, the join onaid prunes out
the compatible tuple Id6=(a3, Euripides, 400BC) that could contribute to a result tuple
with the author name Euripides. So, for this Why-Not question two query-based
explanations exist in the form of picky operators (an operator is picky when it
prunes out compatible tuples): the selection σA.dob>800BC and the join onaid.

The state-of-the-art algorithm computing query-based explanations, called Why-
Not algorithm [CJ09], is designed for workflows but also applies to relational queries
when considering relational operators as the individual manipulations of the work-
flow, as discussed in Section 3.2. However, the Why-Not algorithm makes use of
two central definitions that may yield incomplete or even incorrect results. For
this reason, now we stress out the cases when the Why-Not algorithm does not re-
turn correct or complete query-based explanations in contrast with our proposal, by
emphasising how the relevant definitions in the two frameworks differ.

4.1.1 NedExplain Algorithm vs Why-Not Algorithm

Overall, the shortcomings of [CJ09] are linked to processing queries with self-
join or empty intermediate results, or are linked to the formulation of insufficiently
precise Why-Not answers or the incapability of providing a Why-Not answer at all.
These come as a result of the inappropriate definition of compatible source data and
their successors as well as the definition of a query-based explanation in [CJ09]. To
describe each case, we use variations of the example in Figure 4.1, which we run using
both the NedExplain and Why-Not algorithms, highlighting the differences between
the two. Note that for convenience, we refer to tuples generated in intermediate
nodes, using the identifier attributes _Id, however it should be understood that all
intermediate tuples come with all their attributes.

46 CHAPTER 4. QUERY DEBUGGING

Why-Not algorithm does not compute any explanation Consider the sub-
query Q2 of our running example in Figure 4.1(c). This query returns all the authors
and their books in our database and projects out all the involved attributes. Next,
note that we refer to tuples resulting from joins over source tuples, by the concate-
nation of the involved source tuple identifier attributes _Id. Figure 4.2(a) shows
the data-flow on the query tree using the Why-Not algorithm and Figure 4.2(b)
the dataflow following NedExplain. The output of Q2 consists of three tuples:
{Id4Id7Id2, Id4Id8Id1, Id5Id9Id3}. Let us now consider the Why-Not question
{A.name=Homer,B.price=49}: Why does not the output of Q2 contain any tuple
of Homer, with a book price 49?

onbid

(mQ2)

A_Id AB_Id B_Id
Id4 Id7 Id2

Id4 Id8 Id1

Id5 Id9 Id3

onaid

(mQ1)

A_Id AB_Id
Id4 Id7

Id4 Id8

Id5 Id9

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

Author A
aid name dob A_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

onbid

(mQ2)

A_Id AB_Id B_Id
Id4 Id7 Id2

Id4 Id8 Id1

Id5 Id9 Id3

onaid

(mQ1)

A_Id AB_Id
Id4 Id7

Id4 Id8

Id5 Id9

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

Author A
aid name dob A_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

(a) Why-Not (b)NedExplain

Figure 4.2: (a) Why-Not, and (b) NedExplain algorithms for the case when the
Why-Not algorithm does not compute a Why-Not answer.

To answer this Why-Not question both algorithms start by identifying the source
data that are relevant w.r.t. the Why-Not question, i.e., the compatible tuples, and
which are highlighted on the leaves of the two trees. We also highlight successor
tuples, i.e., intermediate result tuples that are associated with some compatible
tuple. We can see that in Figure 4.2(a) there are no highlighted tuples on the
leaves. This means that the Why-Not algorithm does not identify any compatible
tuples.

The reason behind this is the definition of compatible tuples of [CJ09]: a com-
patible tuple is a tuple

— that belongs to a source relation,
— satisfies the conditions in the Why-Not question posed over the attributes of

this relation, and
— is not contained in the lineage (see Definition 3.1.1) of any query result tuple.
In our example the tuple Id4 in Author has the name Homer so satisfies the

condition A.name=Homer. However, the tuple Id4 is in the lineage of the query
result tuples Id4Id7Id2 and Id4Id8Id1, so Id4 is not a compatible tuple according

4.1. NEDEXPLAIN 47

to the definition in [CJ09]. In the same way, the tuple Id3 from the Book relation
is not compatible because it is in the lineage of the result tuple Id5Id9Id3.

As a consequence, the Why-Not algorithm cannot compute any query-based
explanation (i.e., Why-Not answer).

NedExplain on the contrary correctly identifies the two tuples Id4 and Id3 as
compatible tuples, as the constraint about lineage is not part of our definition.
Then, the two compatible tuples are traced up the tree until we lose their trace in
the output of mQ2 . So, mQ2 is correctly identified as a query-based explanation by
NedExplain. Note also that all tuples in AuthorBook are considered also compatible
w.r.t. the Why-Not question by NedExplain. Even though the Why-Not question
does not specify conditions over the attributes of these tuples, still (some of) these
tuples are indispensable for the production of compatible tuples successors. Their
use is shown shortly after, in the case of empty intermediate results.

Why-Not algorithm computes inaccurate explanations To illustrate this,
let us change the subquery Q3 of our running example to σA.dob=1800 and consider
again the Why-Not question {A.name=Homer,B.price=49} on the output of Q3,
which is now empty. Figure 4.3(a) shows the data-flow on the query tree for the
Why-Not algorithm and Figure 4.3(b) the dataflow for NedExplain.

σA.dob=1800

(mQ3)

A_Id AB_Id B_Id

onbid

(mQ2)

A_Id AB_Id B_Id
Id4 Id7 Id2

Id4 Id8 Id1

Id5 Id9 Id3

onaid

(mQ1)

A_Id AB_Id
Id4 Id7

Id4 Id8

Id5 Id9

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

Author A
aid name dob A_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

σA.dob=1800

(mQ3)

A_Id AB_Id B_Id

onbid

(mQ2)

A_Id AB_Id B_Id
Id4 Id7 Id2

Id4 Id8 Id1

Id5 Id9 Id3

onaid

(mQ1)

A_Id AB_Id
Id4 Id7

Id4 Id8

Id5 Id9

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

Author A
aid name dob A_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

(a) Why-Not (b)NedExplain

Figure 4.3: (a) Why-Not, and (b) NedExplain algorithms for the case when the
Why-Not algorithm computes an inaccurate explanation.

To answer this Why-Not question, the Why-Not algorithm identifies as com-
patible the tuple Id4 from the Authors relation and the tuple Id3 from the Books
relation (see Figure 4.3(a) the highlighted tuples in the leaves). Now, this has been
possible because these two tuples are not in the lineage of any result tuple, since
the query result set is empty. NedExplain also identifies the same compatible tuples

48 CHAPTER 4. QUERY DEBUGGING

in relations Author and Book and also all the tuples in AuthorBook, as seen in the
bottom of Figure 4.3(b).

Then, the Why-Not algorithm traces in the tree the compatible tuples by iden-
tifying their successors in each node (a.k.a. query operator). The successors are
highlighted in the output of each node. In [CJ09] a tuple from the output of a
subquery is defined as a successor of a compatible tuple if the compatible tuple is
contained in the lineage of this output tuple. Following this definition we can see
that we still can find successors of the compatible tuples until mQ3 , where the trace
of both compatible tuples is lost. So, the Why-Not answer returned by the Why-Not
algorithm is mQ3 . However, as shown before, Homer is not associated to a book with
price 49 which means that the join in Q2 is also responsible for not outputting the
desired result, a fact not reflected in the answer returned by Why-Not.

NedExplain introduces a less permissive notion of successor tuples, allowing only
compatible tuples to exist in the lineage of the successors. In this way, the tuples
Id4Id7Id2, Id4Id8Id1, and Id5Id9Id3 in the output of mQ2 are not successors w.r.t.
NedExplain. Indeed none of these tuples contain both Id4 and Id3 in the same tuple.
In general, at least one no-compatible tuple id (like Id1, Id2 or Id5) participates in
each output tuple of mQ2 , a condition that suffices for not considering any of them
as valid successors.

So, mQ2 is identified as a query-based explanation and is included in the Why-
Not answer, an explanation missed by NedExplain.

Why-Not algorithm does not treat self-join correctly To illustrate this case,
we build a new query involving a self join which is depicted in Figure 4.4. This query
asks for authors that were born more recently than others and whose books price is
lower than 30. The result of the query is empty. We wonder why Homer is not in
the result set. In this case, the Why-Not question for the two algorithms is different:

— {name=Homer} for Why-Not
— {A1.name=Homer} for NedExplain
Note that Why-Not and NedExplain did not express the Why-Not questions in

the same way, neither in the previous examples. However, since for the previous
examples this did not pose a problem, and to simplify the examples, we considered
that their formatting was the same for the Why-Not question. Here, we show how
not considering qualified attributes in the Why-Not question may yield inaccurate
results.

Again the first step towards answering the Why-Not question, is to identify the
compatible tuples. As defined in [CJ09], a compatible tuple belongs to a relation
that has an attribute in the Why-Not question: in this case the attribute name.
So, the compatible tuples are looked for in both instances of Author as seen in
Figure 4.4(a). This is a poor decision however, because only tuples with the name
Homer from the first instance can produce the missing tuple, because this is the
projected attributed by the query.

So, considering compatible tuples from both Author instances yields two ex-
planations: the join on mQ1 and the join on mQ4 . Indeed, mQ1 does not output

4.1. NEDEXPLAIN 49

πA1.name,B.price

(mQ)

name price

onAB.bid=B.bid

(mQ4)

A1_Id A2_Id AB_Id B_Id

σB.price<30

(mQ3)

B_Id
Id1

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

onA1.aid=AB.aid

(mQ2)

A1_Id A2_Id AB_Id
Id5 Id4 Id9

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

onA1.dob>A2.dob

(mQ1)

A1_Id A2_Id
Id5 Id4

Id6 Id4

Author A1
aid name dob A1_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

Author A2
aid name dob A2_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

πA1.name,B.price

(mQ)

A1.name B.price

onAB.bid=B.bid

(mQ4)

A1_Id A2_Id AB_Id B_Id

σB.price<30

(mQ3)

B_Id
Id1

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

onA1.aid=AB.aid

(mQ2)

A1_Id A2_Id AB_Id
Id5 Id10 Id9

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

onA1.dob>A2.dob

(mQ1)

A1_Id A2_Id
Id5 Id10

Id6 Id10

Author1 A1
aid name dob A1_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

Author2 A2
aid name dob A2_Id
a1 Homer 800BC Id10

a2 Sophocles 400BC Id11

a3 Euripides 400BC Id12

(a) Why-Not (b) NedExplain

Figure 4.4: (a) Why-Not, and (b) NedExplain algorithms for the case of self-join.

any successor for the compatible tuple Id4 coming from the instance A1, so mQ1

is picky for this compatible tuple. The second join does not output any successor
for the false-identified compatible tuple Id4 coming from the instance A2. Thus,
mQ2 is picky for this tuple and is considered as picky ‘by mistake’. It is the author
Sophocles that is excluded from the result of mQ2 and not Homer.

Thus, in the case of self joins, or other cases when the same attribute is used in
different relations, the Why-Not algorithm may compute misleading explanations.

On the other side, in NedExplain we use qualified attributes and so no attribute
can appear in more than one relation. So, when dealing with self-join, the two
participating instances have a different name, and a different schema, although the
same content (except for Ids). So, in this case, NedExplain identifies only on com-
patible tuple, the tuple A1_Id:Id4 from the relation A1, as seen in Figure 4.4(b).
Thus, it correctly computes only the join mQ1 as an explanation.

Note that in Figure 4.4 the attribute name of Author1 is referenced in NedExplain
as Author1.name, and the same holds for all the attributes.

50 CHAPTER 4. QUERY DEBUGGING

4.1.2 Contribution

The previous observations w.r.tWhy-Not [CJ09] have motivated us to investigate
a novel algorithm, named NedExplain 1. Our contribution is:

Formalization of query-basedWhy-Not provenance We provide a formaliza-
tion of query-based explanations for Why-Not questions that was missing in [CJ09].
It relies on new notions of compatible tuples and of their valid successors. This
definition subsumes the concepts informally introduced previously. It covers cases
that were not properly captured in [CJ09]. Moreover it takes into account queries
involving aggregation (i.e., select-project-join-aggregate queries, or SPJA queries for
short) and unions thereof.

The NedExplain Algorithm Based on the problem formalization, the NedEx-
plain algorithm is designed to correctly compute query-based explanations given
an explanation scenario over the class of unions of SPJA queries and a Why-Not
question as in Definition 2.2.2.

Comparative evaluation The NedExplain algorithm has been implemented for
experimental validation. Our study shows that NedExplain overall outperforms
Why-Not , both in terms of efficiency and in terms of explanation quality.

Detailed analysis of Why-Not We review in detail Why-Not [CJ09] in the
context of positive relational queries and show that it has several shortcomings
leading it to return no, partial, or misleading explanations.

4.1.3 Preliminaries

In this section we revisit the notions introduced in Chapter 2 and contextualize
them for the purpose of the NedExplain algorithm.

The main characteristic of NedExplain is that it uses a query tree representation
of the input query to trace the compatible data and to finally produce the Why-Not
answer. More specifically, NedExplain considers an SPJUA query Q as in Defini-
tion 2.1.9, involving attribute renamings happening through joins and unions. So,
it is possible that renamed attributes are projected out in the output schema of the
query Q.

Being specified over the output schema of Q, the Why-Not question can be
specified over such renamed attributes as well. However, in order to compute the
compatible tuples that reside in the input query instance, it is essential that the

1. The name is inspired by the name of one of the Nautilus’ passengers in Jules Verne’s novel
20,000 Leagues under the sea, and also stands for non-existing-data-explain.

4.1. NEDEXPLAIN 51

Why-Not question is specified over attributes of the input schema of the query. This
is clear if we recall that the compatible tuples are the result of the evaluation against
IQ of the query QWN (Definition 2.2.5) corresponding to the Why-Not question.

For example, consider a new scenario, where the considered query is query Q2

rooted at mQ2 (ignore the higher nodes) on the tree of Figure 4.1(c), page 44. The
output schema of Q2 contains the renamed attribute bid introduced by the renaming
(B.bid, AB.bid, bid) linked to the join operator onbid. In this new sceanrio, the user
can specify a Why-Not question over the renamed attribute. However, in order
to be able to compute the compatible tuples in the source relations, bid should be
resolved to the source relation attributes involved in the renaming, that is B.bid and
AB.bid. For this reason, we map the Why-Not question to attributes that appear in
the input schema, using the definition of unrenamed Why-Not question as follows.

Definition 4.1.1 (Unrenamed Why-Not question w.r.t. a query Q). Let WN be a
Why-Not question. Given a renaming ν as in Definition 2.1.5, ν−1

|1 (WN) (respec-
tively ν−1

|2 (WN)) is obtained from WN by replacing Anew in WN by A1 (respectively
A2) for each (A1, A2, Anew) ∈ ν. Now, let Q be a query. The mapping UnRQ

associates to WN a Why-Not question or a general Why-Not question defined by:

1. if Q = [Ri] then UnRQ(WN) = WN ,
2. Let Q1, Q2 be queries

(a) if Q = [Q1] onν [Q2], then
UnRQ(WN) = UnRQ1(ν−1

|1 (WN)) ∪ UnRQ2(ν−1
|2 (WN))

(b) if Q = [Q1] ∪ν [Q2], then
UnRQ(WN) = {UnRQ1(ν−1

|1 (WN))} ∪ {UnRQ2(ν−1
|2 (WN))}

3. if Q = πW [Q1], or Q = αG,F (Q1), or Q = σC [Q1] then UnRQ(WN) =
UnRQ1(WN).

Intuitively the previous definition distinguishes the unrenaming process in the
case of attributes in the Why-Not question introduced by a join-renaming or by
a union-renaming. In the case of join-renamed attribute (Definition 4.1.1-2a), we
replace each condition involving this attribute by two conditions with the associated
source relation attributes. For example, consider the relations R and S with the
join-renaming (R.A, S.A,A′) and the Why-Not question WN={A′= 4}. Then, the
unrenamed Why-Not question is UnRQ(WN)={R.A= 4, S.A= 4}. In the case of
union-renamed attributes (Definition 4.1.1-2b) we create one duplicate of the Why-
Not question for each associated source relation attribute. The resulting Why-Not
question is the union of these Why-Not questions. For the previous example, if
(R.A, S.A,A′) is a union-renaming, the result of the unrenaming of WN={A′= 4}
is {{R.A= 4}, {S.A= 4}}.

Example 4.1.2. Consider again the example query Q and data in Figure 4.1 and as-
sume that Q outputs one more attribute, i.e., ΓQ={A.name, aid, ap}. Consider also
the renaming ν={(AB.aid, A.aid, aid)}. For the Why-Not questionWN={A.name =

52 CHAPTER 4. QUERY DEBUGGING

Homer, aid = a1, ap = x1}, the attribute aid can be unrenamed to A.aid and to
AB.aid, two qualified attributes that cannot be further unrenamed. So, the unre-
named predicate WN is {A.name = Homer,A.aid = a1, AB.aid = a1, ap = x1}.
Note that ap is a new attribute introduced by an aggregation function, so it does not
take part in the unrenaming of WN .

For the rest of the discussion when referring to WN we mean its unrenamed
version. Having this, we can compute the compatible tuples w.r.t. WN from the
source database instance, in the already discussed manner. This is also the first step
towards answering the Why-Not question.

To model this first step on the query tree, we identify the compatible tuples on the
tree leaves. The compatible tuples stored in each leaf are partial compatible tuples,
originating from the relation associated to the leaf. It is then clear, that NedExplain
is tailored only for simple Why-Not questions, as it can accommodate only intra-
relation conditions. For a reminder, if CT is the set of compatible tuples, then the
set of partial compatible tuples CT|R from a relation R is obtained by evaluating
the query (R,A(R), WN|R) over I|R. In the rest of this section on NedExplain,
compatible tuples designate partial compatible tuples unless otherwise stated.

Example 4.1.3. The Why-Not question of our running example is split into
WNconj={A.name=Homer} and WNα={ap>25}. Only WNconj is used for comput-
ing the compatible tuples. The condition A.name=Homer is over the relation A
and leads to the compatible tuple Id4 ∈ I|A (see Figure 4.1(b)). All the tuples in the
relations B and AB are compatible, since no conditions are posed over attributes in
B and AB.

A Why-Not question WN may be specified over attributes originating from a
subset of the input schema SQ. So, only some of the input schema relations are
constrained by the conditions in WN and more specifically by the conditions in
its conjunctive part WNconj. Let SW be the set of relations over which WNconj is
defined. To distinguish between compatible tuples that originate from SW and those
originating from SQ \ SW , we define the direct and indirect compatible tuple sets.
The direct compatible tuple set Dir equals to

Dir =
⋃

R∈SW

CT|R

The indirect compatible tuple set InDir equals to

InDir =
⋃

R∈SQ\SW

CT|R

By definition it holds that one direct tuple cannot be indirect and vice versa,
thus Dir ∩ InDir=∅.

The distinction of compatible tuples to direct and indirect compatible tuples
plays a central role in the computation of the Why-Not answer as shown in the next
section.

Example 4.1.4. Pursuing Example 4.1.3, Dir={Id4} whereas InDir=I|AB ∪ I|B.

4.1. NEDEXPLAIN 53

4.1.4 Why-Not Answer

To answer the Why-Not question we need to find the nodes of the query tree
where we lose compatible tuples. For this reason, we trace the compatible tuples
(direct and indirect) in a bottom up way on the query tree, computing along the
way the nodes where the trace of some compatible tuple is lost. In other words this
means that we identify the subqueries of Q that do not produce successors (formally
defined below) of some compatible tuple.

In order to do this, we associate an operator mQi to each subquery Qi that serves
as its type signature. For instance in Figure 4.1, the operator (mQ1) associated with
the subquery Q1 is A onaid AB. The input instance Ii of an operator mQi includes
solely the outputs of its direct children in the tree (or, in case of leaf nodes, the
instance of the corresponding table). For example, in Figure 4.1 the input instance
for mQ2 consists of the output instance of mQ1 and IB. The output of an operator
m over its input instance Im is denoted by m(Im).

Data lineage, or lineage for short as defined in [CW00] (see also Definition 3.1.1),
is at the basis of tuples tracing. As already said, the lineage of a tuple t that appears
in the ouput of a query Q (represented as a tree of relational operators) consists of
the different sets of input database tuples that participate in the production of the
tuple t provided v.

The purpose of the next example is to give the intuition of how lineage is
defined for operators and also to explain our notation. Consider two relation
schemas R(A,B) and S(A,B) and the database instance I=IR ∪ IS, for which
IR={(a1, b1), (a1, b2), (a2, b1)} and IS={(a1, b1), (a2, b2)}. Consider also the opera-
tor m=[R] ∪ [S], whose evaluation against I produces

m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}

First note that the lineage of t is only defined when t ∈ m(I). So, the lineage of
the tuple t=(a1, b1) w.r.t. m and I, is defined in [CW00] as a tuple of instances
lineage(t)=(JR,JS), where JR={(a1, b1)} is an instance over R and JS={(a1, b1)}
an instance over S. In our setting, it suffices to accept that the lineage of the tuple
t is the union of the subsets JR,JS, i.e., it is the set of tuples (typed tuples)

lineage((a1, b1))={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}

Given an operator m and an input instance I, we define that t∈m(I) is a suc-
cessor of some tI∈I by tI is in the lineage of t w.r.t. m. Figure 4.5(a) illustrates
the successor relationship between t and tI belonging to m(I) and I, respectively.

We now define the notion of tuple successor w.r.t. to a (composed) query. Note
that in the following definition, UOp is a unary operator among σ, π, α, and BOp
is a binary operator among ∪, on. The definition is illustrated in Figure 4.5(b) for
the case of unary operators.

Definition 4.1.2 (tuple successor w.r.t. a query). Let Q be a query over SQ and I
be an instance over SQ. A tuple t∈Q(I) is a successor of some tI∈I w.r.t. Q if

54 CHAPTER 4. QUERY DEBUGGING

(a) w.r.t. an operator (b) w.r.t. a query (c) valid successor

Figure 4.5: Successor t of a tuple tI

— for Q = UOp[Q1]
— there exists some t′∈Q1(I1) s.t. t is a successor of t′ w.r.t. mQ and Q1(I1)

and
— t′=tI or
— t′ is a successor of tI w.r.t. Q1

— for Q=[Q1]BOp[Q2]
— there exists some t′∈Q1(I1) ∪Q2(I2) s.t. t is a successor of t′ w.r.t. mQ

and Q1(I1) ∪Q2(I2) and
— t′=tI or
— t′ is a successor of tI w.r.t. Q1 or Q2

Ii is the instance over SQi
defined by Ii=I|SQi

for i=1, 2.

We now restrict the notion of successors to valid successors w.r.t. some tuple set
D. This restriction demands that the lineage of a tuple successor is fully contained
in D. In practice, D corresponds to all compatible tuples (direct and indirect) and
is used to ensure the correctness of our Why-Not answers. Intuitively, a tuple t in
the output of a query, is a valid successor of a compatible tuple tI if t is a successor
of tI and furthermore is constructed using only compatible tuples. The definition is
illustrated in Figure 4.5(c).

Definition 4.1.3 (Valid successor). Let Q be a query, I be the input database
instance for Q and assume the set of tuples D ⊆ I . A tuple t∈Q(I) is a valid
successor of some tI∈D ⊆ I w.r.t. Q if

— t is a successor of tI w.r.t. Q, and
— lineage(t)⊆D.

Next, V S(Q, I, D, tI) denotes the set of valid successors of tI w.r.t. Q.

Example 4.1.5. In our running example, consider the query Q3 rooted at the op-
erator mQ3 in Figure 4.1(c) and the input instance I in Figure 4.1(d). Assume
the set of compatible tuples (w.r.t. to WN = A.name=Homer, , B.title= Iliad)
D={Id4, Id2} ∪ I|AB and consider the tuple Id4∈D. The output of the subquery Q2

is
Q2(I)={Id4Id7Id2, Id4Id8Id1, Id5Id9Id3}

(each output tuple is represented by the concatenation of the identifiers of the tuples
in its lineage). The output tuple Id4Id7Id2 is a valid successor of Id4 because it is
a successor of Id4 w.r.t. Q2 and I and its lineage is included in D (i.e., the tuples
Id4, Id7, Id2 are all in D). On the contrary, the output tuple Id4Id8Id1 is not a

4.1. NEDEXPLAIN 55

valid successor of Id4 even though it is a successor of Id4, because the tuple Id1 is
not in D.

In what follows the term successor means valid successor, unless mentioned oth-
erwise.

The successor of compatible tuples are used for tracing compatible tuples on the
query tree. Our goal is to find the nodes (i.e., subqueries) of the query tree where
we lose the trace of the compatible tuples. In other words, we are in the quest of
subqueries not producing successors of some compatible tuples. These subqueries
are defined as picky, a term that was introduced in [CJ09] and denotes a subquery
that ‘picks out’ of the result a compatible tuple.

As was the case for the definition of tuple successor, we first define picky operators
and then picky subqueries w.r.t. a tuple set D and a tuple tI∈D. Intuitively, a query
Q is picky w.r.t. a compatible tuple tI if the rooting operator mQ of Q does not
produce successors of tI while we still had some successors of tI in the input of mQ.

The definitions, given below, are illustrated in Figure 4.6.

Definition 4.1.4 (Picky operator). Let m be an operator, I be an input instance
for m and D ⊆ I be a set of tuples. Then m is a picky operator w.r.t. D and tI∈D,
if there is no valid successor t of tI in m(I).

Definition 4.1.5 (Picky query). Let Q be a query over S, I be an input instance
for Q and D ⊆ I be a set of tuples. Let tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of tI ∈ I2 is dual), Q is
picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅
2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tuple t1 and the set⋃

i=1,2

⋃
t∈D

V S(Qi, I, D, t) considering the input instance
⋃
i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky w.r.t. D and tI if

1. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tuple t1 and the set⋃
t∈D

V S(Q1, I, D, t) considering the input instance Q1(I1)

2. V S(Q1, I, D, tI) 6= ∅.

In the definition of a picky binary query, item 1 enforces that the tuple tI can
still be traced in the input of the root operator mQ of Q, while item 2 enforces that
tI cannot be traced in the output of mQ. In other words, these conditions ensure us
that Q is picky for tI when we can find a valid successor of tI in the input but not
in the output of mQ.

Here the reader should understand that we use the notion of picky query in
addition to that of picky operator, to emphasize the fact that an operator is picky
w.r.t. to a specific query tree. Changing the order of the operators in the query,
does not guarantee that an operator remains picky or not picky.

56 CHAPTER 4. QUERY DEBUGGING

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Hersche, Katerina Tzompanaki

Université Paris Sud / Inria Saclay
Orsay, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain non-existing data in a query result.
This algorithm allows to compute the why-not provenance for
monotone relational queries with aggregation. After providing
necessary definitions, this paper contributes a detailed description
of the algorithm. A comparative evaluation shows that it is both
more efficient and effective than the state-of-the-art approach.

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their trans-
formation specification, which is commonly specified declar-
atively. All they see is the result data and, in case it does not
correspond to their intent, developers have no choice but to
manually analyze, fix, and test the data transformation again.
For instance, a developer may wonder why some products are
missing from the result. Possible reasons for such missing-
answers abound, e.g., were product tuples filtered by a particu-
lar selection or are join partners missing? Usually, a developer
tests several manually modified versions of the original data
transformation that are targeted towards identifying the reason
for the missing tuples, for example by removing a selection
predicate and observing if the products then appear in the
result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it is also applicable to other domains, e.g., to
what-if analysis focusing on the behavior of a query or
the generation of queries for benchmarking purposes, where
generated queries ideally do not return an empty result.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed, which we

SELECT B.title, A.dob
FROM Books B, Authors A
WHERE B.price >20

AND A.aid =B.aid
AND A.pub = B.pub

⇡B.name,A.dob

(mQ)

1 B.aid=A.aid ∧ B.pub=A.pub

(mQ2)

�price>20

(mQ1)

Books B

Authors A

Fig. 1. Sample query (SQL/tree representation)

Books
bid title aid price pub
b1 Odyssey a1 15 Harper
b2 Antigone a2 49 Harper
b3 Aeneid a3 10 Penguin

Authors
aid name dob pub
a1 Homer 800BC Penguin
a2 Sophocles 400BC Harper
a3 Virgil 70BC Penguin
a4 Hrotsvit 900 Vintage

Fig. 2. Database instance Bib

review in Sec. II. This paper focuses on algorithms producing
so called query-based explanations, illustrated by the following
example.

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mi

in the query tree for now. The query finds expensive books
and the period around which they were written. Let us further
assume the database instance Bib shown in Fig. 2, where
bid and aid are primary keys of Books and Authors,
respectively.

Now, let us assume that the tuple t = (Odyssey, 800BC)
is not included in the result of the query, although the
developer or an analyst expected it to appear in the result. Two
query-based explanations of missing t are possible: (1) t may
be missing from the result because of the selection on price
being too strict (indeed, the source tuple (b1, Odyssey,
a1, 15), which is a candidate for contributing the value
Odyssey to t, has a price below 20, i.e., the output of the
selection has no compatible successor for the source tuple)
and/or (2) t may be missing from the result because the
main publisher of the author with dob = 800BC is not the
same as the publisher of the book Odyssey (in this case
Penguin6=Harper).

As we will discuss in detail, in using the state-of-the art
algorithm for why-not provenance [3], we will only obtain
the second solution, and we argue that this is one shortcoming
of this approach as it does not provide the complete picture.
Intuitively, when debugging the query, removing the join on

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q ′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

... ...

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q ′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q ′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q ′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

respect to m and I. Essentially, lineage describes for any d ∈
m(I) what is the maximum D ✓ I such that: for any dI ∈ D,
d /∈ m(I \ {dI}). Based on the definition of lineage, we
provide the following notation:

Notation III.1 (Tuple successor w.r.t. manipulation). Let m
be a manipulation and I be a well typed input instance for
m. Then d ∈ m(I) is a successor of some dI ∈ I, if dI is in
the lineage of d with respect to m.

It is interesting to note that the following holds:

dI ∈ lineage(d) ⇐ ⇒ successor(dI) 3 d

Having defined a tuple successor with respect to a manipu-
lation, we define a tuple successor with respect to a query.

Definition III.9 (tuple successor w.r.t. a query). Let Q be a
query over SQ and let I be an instance over SQ.

A tuple dQ ∈ Q(I) is a successor of some dI ∈ I, with respect
to Q if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d ′1 ∈ Q1(I1) such that dQ is a successor of
d ′
1 with respect to mQ and either d ′1=dI or d ′

1 is a successor
of dI with respect to Q1.

• Q=[Q1]Op[Q2], where Op is the binary operator 1 or ∪ ,
with ⌫ be the renamming associated with Q:
there exists some d ′ ∈ Q1(I1) ∪ Q2(I2) such that dQ is a
successor of d ′ with respect to mQ and either d ′ =dI or d ′

is a successor of dI with respect to Q1 or with respect to
Q2.

Ii is the instance over SQi
defined by Ii=I |Si

for i=1, 2.

Example III.5. Consider the query tree of Figure 1. We
reuse the database instance of Figure 2, which includes
the tuple dB=(b2,Antigone,a2,49,Harper). The
output of Q includes a tuple dQ=(Antigone, 400BC)
having lineage(dQ)={(b2,Antigone,a2,49,Harper),
(a2,Sophocles,400BC,Harper)}. Hence, dQ is a
successor of dB , justified as follows. When evaluating
subquery Q1, the tuple dB survives the selection as
its price (equal to 49) is above 20. More specifically,
(b2, Antigone, a2, 49) ∈ Q1(IBooks). This
tuple, denoted d1, is thus a successor of dB with
respect to Q1. The result of Q2 in turn includes a tuple
d2=(b2,Antigone,a2, 49,Harper,Sophocles, 400BC)
that is a successor of d1 and thus dB . Similarly, we determine
that dQ ∈ Q(2IQ2) is a successor of dB as well.

Let us now restrict the former notation, to introduce the
notion of valid successors w.r.t. some set of tuples D. This
restriction demands that the lineage of a tuple successor is all
in the set D.

Notation III.2 (Valid successor). Let Q be a manipula-
tion/query, I be a well typed input instance for m and D ✓
I . A tuple d∈ Q(I) is a valid successor of some dI ∈ D ✓ I,
with respect to Q if d is a successor of dI w.r.t. Q and
lineage(d)✓D.

The aforementioned definition actually means that, only suc-
cessors of tuples in D having their complete lineage in D are
taken into account as “valid” successors. In the remainder of
the paper, we will generally refer to valid successors when
writing successor, unless mentioned otherwise.

The concept of valid successor is used next to define picky
manipulations and picky queries, both with respect to a tuple
set D and a tuple d s.t. d ∈ D.

Definition III.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and dI ∈ D, if there
is no valid successor d of dI in m(I).

Example III.6. Let D =
{(b3,Aeneid,a3,10,Penguin),
(a2,Sophocles,400BC,Harper)} and consider the
tuple d = (a2,Sophocles,400BC,Harper) ∈ D. The
only successor of d wrt mQ2 is

dmQ2
=(b2,Antigone,a2,49,Harper,Sophocles,400BC)

However, the lineage of dmQ2
also contains the tuple

dI=(b2,Antigone,a2,49,Harper) /∈ D. Thus, m is
considered picky wrt d and D.

Definition III.11 (Picky query). Let Q be a query over SQ

and let I be an instance over SQ. Let also D ✓I be a set of
tuples.
Then Q is picky wrt D and dI ∈ D if

• Q=Op[Q1], where Op is the unary operator � or ⇡:
there exists some d∈ D ′ ✓Q1(I1) such that mQ is a picky
manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 and D}

• Q=[Q1]Op[Q2], where Op is the binary operator 1 ⌫ or
∪ ⌫:
there exists some d∈ D ′ ✓Q1(I1) ∪ Q2(I2) such that mQ

is a picky manipulation wrt d and D ′ , where
D ′ ={d|d is a valid successor of dI w.r.t. Q1 or Q2 and D}.

Ii is the instance over SQi defined by Ii=I |Si for i=1, 2.

Property III.1. Let Q be a query over SQ and let I be an
instance over SQ. Let also D ✓I be a set of tuples and dI ∈
D. Then, there exists at most one subquery Q ′ of Q, s.t. Q ′

is picky wrt D and dI .

The proof of this property can be done easily, based on the
given definitions about a query Q and its input instance IQ

(Definitions III.2 and III.3). Based on these, a tuple d may have
its origin in one and only one relation instance in the input
instance IQ. Thus, it can follow only one path through its
associated subqueries in Q. Let also D ✓ I be a set including
d. If Q′ is picky for d w.r.t. D, then no valid successor can be
found after Q ′ . So, it is certain that there will not exist any
valid successor of d in the input of any subquery Q ′ ′ of Q ,
for which Q ′ is a subquery and consequently no other Q ′ ′ can
be picky for d.

Example III.7. Continuing Example III.5,

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Hersche, Katerina Tzompanaki

Université Paris Sud / Inria Saclay
Orsay, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain non-existing data in a query result.
This algorithm allows to compute the why-not provenance for
monotone relational queries with aggregation. After providing
necessary definitions, this paper contributes a detailed description
of the algorithm. A comparative evaluation shows that it is both
more efficient and effective than the state-of-the-art approach.

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their trans-
formation specification, which is commonly specified declar-
atively. All they see is the result data and, in case it does not
correspond to their intent, developers have no choice but to
manually analyze, fix, and test the data transformation again.
For instance, a developer may wonder why some products are
missing from the result. Possible reasons for such missing-
answers abound, e.g., were product tuples filtered by a particu-
lar selection or are join partners missing? Usually, a developer
tests several manually modified versions of the original data
transformation that are targeted towards identifying the reason
for the missing tuples, for example by removing a selection
predicate and observing if the products then appear in the
result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it is also applicable to other domains, e.g., to
what-if analysis focusing on the behavior of a query or
the generation of queries for benchmarking purposes, where
generated queries ideally do not return an empty result.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed, which we

SELECT B.title, A.dob
FROM Books B, Authors A
WHERE B.price >20

AND A.aid =B.aid
AND A.pub = B.pub

⇡B.name,A.dob

(mQ)

1 B.aid=A.aid ∧ B.pub=A.pub

(mQ2)

�price>20

(mQ1)

Books B

Authors A

Fig. 1. Sample query (SQL/tree representation)

Books
bid title aid price pub
b1 Odyssey a1 15 Harper
b2 Antigone a2 49 Harper
b3 Aeneid a3 10 Penguin

Authors
aid name dob pub
a1 Homer 800BC Penguin
a2 Sophocles 400BC Harper
a3 Virgil 70BC Penguin
a4 Hrotsvit 900 Vintage

Fig. 2. Database instance Bib

review in Sec. II. This paper focuses on algorithms producing
so called query-based explanations, illustrated by the following
example.

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mi

in the query tree for now. The query finds expensive books
and the period around which they were written. Let us further
assume the database instance Bib shown in Fig. 2, where
bid and aid are primary keys of Books and Authors,
respectively.

Now, let us assume that the tuple t = (Odyssey, 800BC)
is not included in the result of the query, although the
developer or an analyst expected it to appear in the result. Two
query-based explanations of missing t are possible: (1) t may
be missing from the result because of the selection on price
being too strict (indeed, the source tuple (b1, Odyssey,
a1, 15), which is a candidate for contributing the value
Odyssey to t, has a price below 20, i.e., the output of the
selection has no compatible successor for the source tuple)
and/or (2) t may be missing from the result because the
main publisher of the author with dob = 800BC is not the
same as the publisher of the book Odyssey (in this case
Penguin6=Harper).

As we will discuss in detail, in using the state-of-the art
algorithm for why-not provenance [3], we will only obtain
the second solution, and we argue that this is one shortcoming
of this approach as it does not provide the complete picture.
Intuitively, when debugging the query, removing the join on

no
successor

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I , if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I , if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t ′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t ′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t ′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t ′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t ′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

variables is X and such that type(tc) ✓
⋃

R ∈ S

type(R) ∪ Agg,

where Agg as defined in Definition II.2-3.
The tuple t=(A1:v1, . . . , An:vn) ∈ I|R, where R ∈ S is com-

patible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ⌫ for tc s.t. (a)
∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and (b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), (x1 > 25)) of our Why-Not question of Ex. II.1
is t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct compati-
ble set w.r.t. tc is denoted by Dirtc . Now, let us consider Stc to
be the set of relation schemas typing the tuples of Dirtc . The
indirect compatible set with respect to tc, denoted InDirtc ,
is the restriction of I on the database schema SQ�Stc . Note
that, by definition, Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

D. Pickyness

Intuitively, given a query Q and the set of compatible tuples
(both direct and indirect) in IQ, our goal is to trace compatible
tuples in the data flow of the query tree; that is, identify
subqueries of Q that destroy successors (formally defined
below) of these tuples.

To trace compatible tuples through different subqueries,
we need to process potentially each subquery in Q one
after the other. To formalize this procedure, we associate
to each subquery Qi a manipulation mQi

that serves as a
type signature of Qi. For instance in Fig. 1, subquery Q1 is
associated to mQ1 of the form A 1 AB. The input instance Ii

to a manipulation mQi includes solely the output of its direct
children in the tree (or, in case of leaf nodes, the instance of the
corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2
. We

denote the output of a manipulation m over its input instance
I as m(I).

We trace tuples based on data lineage, or lineage for
short [19], focusing on the lineage of tuples in m(I) w.r.t.
m and I. We denote the lineage of a tuple t as lineage(t).
Essentially, lineage determines for any t ∈ m(I) the maximum
size set L ✓ I such that: for any tI ∈ L, t /∈ m(I \ {tI}).
Based on the definition of lineage, we say that t ∈ m(I) is
a successor of some tI ∈ I, if tI is in the lineage of t w.r.t.
m. Similarly, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t an tI , contained
in m(I) and I, respectively.

[Katerina SAYS:(Melanie, I changed all tuples referred
to with "d" to "t". The successors and picky figure need
to be changed(i dont have the source files)!]

We now define a tuple successor w.r.t. to a query composed
of subqueries, each typed by a manipulation. The definition is

(a) w.r.t. a manipulation (b) w.r.t. a query (c) Valid successor

Fig. 2. Successor t of a tuple tI

illustrated in Fig. 2(b) for the case of unary operators.

Definition II.9 (tuple successor w.r.t. a query). Let Q be
a query over SQ and let I be an instance over SQ. A
tuple t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for
Q = UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists some
t ′ ∈ Q1(I1) (resp. t ′ ∈ Q1(I1) ∪ Q2(I2)) such that tQ is a
successor of t′ w.r.t. mQ and either t′ =tI or t′ is a successor
of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance over
SQi

defined by Ii=I |Si
for i=1, 2, UOp is a set of unary

operators (�, ⇡, ↵), and BOp is a set of binary operators (∪ ,
1).

Let us now restrict the notion of successors to valid succes-
sors w.r.t. some tuple set D. This restriction demands that the
lineage of a tuple successor is all in the set D. In practice, this
set D corresponds to all compatible tuples (direct and indirect)
and is used to ensure the correctness of our Why-Not answers.

Notation II.1 (Valid successor). Let Q be a query, I be a well
typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is a
valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor
of tI w.r.t. Q and lineage(t)✓D.

Fig. 2 illustrates the notion of valid successor. From now
on, we will generally refer to valid successors when writing
successor, unless mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
from the sources throughout the query, our goal is to identify
which subqueries are responsible for “loosing” compatible
tuples. These are declared as picky, a property at the heart
of our definition of Why-Not answers. More specifically, we
define picky manipulations and subqueries w.r.t. a tuple set D
and a tuple tI ∈ D. The definitions, given below, are illustrated
in Fig. 3.

Definition II.10 (Picky manipulation). Let m be a manipu-
lation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation wrt D and tI ∈ D, if there is
no valid successor t of tI in m(I).

Definition II.11 (Picky query). Let Q be a query over
SQ and let I be an instance over SQ. Let also D ✓I
be a set of tuples. Then Q is picky w.r.t. D and tI ∈ D
if for Q=UOp[Q1] (resp. Q=[Q1]BOp[Q2]), there exists
some t ′ ∈ D ′ ✓Q1(I1) (respectively t ′ ∈ D ′ ✓Q1(I1) ∪ Q2(I2))
such that mQ is a picky manipulation w.r.t. t ′ and D ′ ,
where D ′ ={t′ |t′ valid successor of tI w.r.t. Q1 (resp. Q1

or Q2) and D}. Ii, UOp, and BOp are defined as in
Def. II.9.

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t ′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI

two relation schemas R(A, B) and S(A, B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. The lineage of the
tuple t=(a1, b1) in m(I) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR, JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define
t∈ m(I) is a successor of some tI ∈ I by tI is in the lineage of
t w.r.t. m. Dualy, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.

We now define the notion of uple successor w.r.t. to a composed
query. The definition is illustrated in Fig. 2(b) for the case of unary
operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈ Q(I) is a successor of some tI ∈ I w.r.t. Q if, for Q = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t ′ ∈ Q1(I1) (resp.
t′ ∈ Q1(I1) ∪ Q2(I2)) such that t is a successor of t ′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t ′ =tI or t′ is
a successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the
instance over SQi defined by Ii=I |Si for i=1, 2, UOp is a unary
operators among �, ⇡, ↵, and BOp is a binary operators among
∪ , 1 .

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). Let Q be a query, I be
a well typed input instance for Q and D ✓ I . A tuple t∈ Q(I) is
a valid successor of some tI ∈ D ✓ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)✓D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈ D ✓ I w.r.t. Q.

[Katerina SAYS: ⇐ new example] In our running example, con-
sider the subquery Q2 on the input instance I shown in Fig.1(b).
Then let D={t4, t1, I|AB} and consider the tuple t4 ∈ D. The out-
put of Q2 is Q2(I)={t4t7t2, t4t8t1, t5t9t3} (the output tuples are
provided through the identifiers of their combined source tuples).
We say that t4t7t2 is a valid successor of t4 because it is a succes-
sor of t4 w.r.t. Q2 and I and its lineage is included in D (t4, t7, t2
are in D). However, the output tuple t4t8t1 is not a valid succes-
sor of t4 because even though it is a successor, t1 /∈ D and thus its
lineage is not included in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple set D and a tuple tI ∈ D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Let m be a ma-
nipulation, I be a well typed input instance for m and D ✓ I .
Then m is a picky manipulation w.r.t. D and tI ∈ D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ✓ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
i=1,2

⋃
t ∈ D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅

2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-
ple t1 and the set

⋃
t ∈ D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

[Katerina SAYS: ⇐ HAVE TO change the corresponding fig-
ure]

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

captures queries which are responsible for loosing of any trace
of an input tuple wrt to some subset of the input:

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ✓I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q ′ of Q, s.t. Q ′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1 = ((Homer, x1), x1 > 25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,

=

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [1] aims at providing semi-automatic
algorithms and tools for query analysis [2], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. 1(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [3], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

...

B. The Why-Not Question

Intuitively, we specify the why-not question by means of
a predicate characterizing the data which is missing from a
query result. This predicate is a disjunction of conditional
tuples, which are essentially attribute-value pairs on which
conjunctive predicates may be imposed. We will define why-
not questions after defining its building blocks.

Definition II.4 (v-tuple). Let V be an enumerable set of
variables. A v-tuple tv of type {A1, . . . , An} is of the form
(A1:e1, . . . , An:en) where ei ∈ V ∪ dom(Ai) for i ∈ [1, n].

The variables of a v-tuple are similar in spirit to labeled
nulls, used for instance in the context of data exchange [17].
Intuitively, the semantic associated to such variables is that we
do not care about the value of the corresponding attribute.

In general, we want to be able to express that, although the
actual value is unknown, it yet should satisfy some constraints.
For this reason, we resort to conditional tuples (or c-tuples for
short), previously introduced for incomplete databases [18].

Definition II.5 (conditional tuple (c-tuple)). Let tv be a v-
tuple and let X be the set of variables in tv . A c-tuple tc is a

pair (tv, cond) where cond=
n∧

i=1

predi and for 1  i  n

predi :: true | x1 cop x2| x1 cop a

where xi is a variable in X , a ∈ dom(type(x1)), and cop is a
comparison operator (6=, =, <, >,�,).

The type of a c-tuple (tv, cond) is the type of tv . We now are
ready to define what is a Why-Not question.

Definition II.6 (Why-Not question). A Why-Not question w.r.t.
a query Q is a predicate P over Q’s target type TQ, where

P =
n∨

i=1

tic, tic being a c-tuple s.t. type(tic) ✓ TQ .

Example II.1. The Why-Not question expressed in Ex. I.1 cor-
responds to the predicate P=((A.name:Homer, ap:x1), x1 >
25) ∨ ((A.name:x2), x2 6= Homer) .

In the sequel, we will omit the condition when it is true, i.e.
we may rewrite the c-tuple (t, true) as t.

As a reminder, given a query Q whose input schema is
SQ, new attributes may have been introduced through join or
union specifications. These new attributes are well identified
and linked to the input attributes through the renaming ⌫Q

associated with Q. Answering a Why-Not question requires to
trace back tuples belonging to the query input instance, which
is an instance over SQ. This further entails that the c-tuples
of the (predicate specifying the) Why-Not question need to be
rewritten using only attributes in SQ. This translation is done
by reversing the query renaming as follows.

Definition II.7 (Unrenamed predicate w.r.t. a query Q). Let
Q be a query and ⌫Q its associated renaming. Let tc be a c-
tuple. Given any (A1, A2, Anew) ∈ ⌫Q , if Anew ∈ type(tc),
we replace each Anew in tc by A1, denoted as ⌫�1

|1 (tc). We
proceed analogously for A2, yielding ⌫�1

|2 (tc).

Then, the mapping UnR(Q,⌫Q) associates to tc a predicate
defined by:

1) if Q = [Ri] then UnR(Q,⌫Q) = tc,
2) Let Q1, Q2 be queries

• if Q = [Q1] 1 ⌫ [Q2], then
UnRQ = UnRQ1(⌫

�1
|1 (tc)) . / UnRQ2(⌫

�1
|2 (tc))

• if Q = [Q1] ∪ ⌫ [Q2], then
UnRQ = UnRQ1

(⌫�1
|1 (tc)) ∨ UnRQ2

(⌫�1
|2 (tc))

• if Q = ⇡W [Q1], Q = ↵G,F (Q1), or Q = �C [Q1]
then UnRQ = UnRQ1

(tc).

If P is the predicate
n∨

i=1

tic, then the urenamed predicate

associated with P given the query Q is
n∨

i=1

UnR(Q,⌫Q)(t
i
c).

Example II.2. Assume our sample query Q includes one
more output attribute, i.e., TQ={A.name, aid, ap}, and
assume renaming ⌫Q={(AB.aid, A.aid, aid)}. For predi-
cate P=(A.name:Homer, aid:a1, ap:x1), attribute aid can
be unrenamed to A.aid and to AB.aid, two qualified at-
tributes that cannot be further unrenamed. So, the unre-
named predicate P is (A.name:Homer, A.aid:a1, ap: x1) . /
(A.name:Homer, AB.aid:a1, ap:x1)=(A.name:Homer, A.aid:a1,
AB.aid:a1, ap:x1).

C. Compatibility

Given a Why-Not question in form of a predicate P , we
compute a Why-Not answer by tracing source data relevant to
the satisfaction of P through all subqueries of the query. We
identify such relevant data based on theircompatibility.

Definition II.8 (c-tuple compatibility). Let I be an instance
over a schema S . Let also tc be a c-tuple whose set of
variables is X and such that type(tc) ✓

⋃
R ∈ S

type(R) ∪ Agg,

where Agg as defined in Def. II.2-3.
The tuple t=(R.A1:v1, . . . , R.An:vn) ∈ I|R, where R ∈ S ,

is compatible with tc if, for the unrenamed form of tc,
(1) type(t) ∩ type(tc) 6= ∅ and (2) there exists a valuation
⌫ for tc s.t. (a) ∀ A∈ type(tc) ∩ type(t):⌫(tc.A)=t.A, and
(b) ⌫(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is
compatible with at least one c-tuple tc of P .

Example II.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), x1 > 25) of our Why-Not question of Ex. II.1 is
t4 ∈ IA (see Fig. 1(b)). Indeed, both tc1 and t4 have equal
values for their shared attribute A.name, and there exists a
value for x1 satisfying x1 > 25.

The set of tuples compatible with tc, called direct com-
patible set w.r.t. tc is denoted by Dirtc . Let Stc be the set
of relation schemas typing the tuples of Dirtc . The indirect
compatible set w.r.t. tc, denoted InDirtc , is the restriction of
I on schema schema SQ � Stc , thus Dirtc ∩ InDirtc= ∅ .
Example II.4. Pursuing Ex. II.3, Dirtc1={t4} whereas
InDirtc1=IAB ∪ IB .

Query-Based Why-Not Provenance with NedExplain
Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki

Université Paris Sud 11/ Inria Saclay
91405 Orsay Cedex, France

firstname.lastname@lri.fr

Abstract—With the increasing amount of available data and
transformations manipulating the data, it has become essential
to analyze and debug data transformations. A sub-problem of
data transformation analysis is to understand why some data
are not part of the result of a relational query. One possibility to
explain the lack of data in a query result is to identify where in
the query data pertinent to the expected, but missing output is
lost during query processing. A first approach to this so called
why-not provenance has been recently proposed, but we show that
this first approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain,
an algorithm to explain data missing from a query result.
NedExplain computes the why-not provenance for monotone
relational queries with aggregation. After providing necessary
definitions, this paper contributes a detailed description of the
algorithm. A comparative evaluation shows that it is both more
efficient and effective than the state-of-the-art approach.

Q1, Q2, Q3, Q4, Q5, R, S, T , ∅ , T ′ ⇢ T , tI , WQS

I. INTRODUCTION

In designing data transformations, e.g., for data cleaning
tasks, developers often face the problem that they cannot
properly inspect or debug the individual steps of their transfor-
mation, commonly specified declaratively. All they see is the
result data and, in case it does not correspond to their intent,
developers have no choice but to manually analyze, fix, and
test the data transformation again. For instance, a developer
may wonder why some products are missing from the result.
Possible reasons for such missing-answers abound, e.g., were
product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually
modified versions of the original data transformation that are
targeted towards identifying the reason for the missing tuples,
for example by removing a selection predicate and observing
if the products then appear in the result.

To improve on this manual analysis of query behavior and
to ultimately help a developer in fixing the transformation,
the Nautilus project [?] aims at providing semi-automatic
algorithms and tools for query analysis [?], modification,
and testing. This paper focuses on the analysis phase, and
more specifically, proposes a novel algorithm tackling the sub-
problem of explaining missing-answers. Note that explaining
missing-answers is not only pertinent for query analysis and
debugging, it also applies to other domains, e.g., to what-if
analysis focusing on the behavior of a query.

Very recently, approaches to explain missing-answers of
relational and SQL queries have been proposed. This paper
focuses on algorithms producing so called query-based expla-
nations, illustrated below.

SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid =AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5

AB
aid bid
a1 b1 t6
a1 b2 t7

(b) Sample instance

↵{A.name},{AV G(B.price)!ap}
(mQ)

�A.dob>800BC

(mQ3)

1 bid

(mQ2)

1 aid

(mQ1)

A AB

B

(c) Query tree representation

Fig. 1. SQL query (a), instance (b), and query tree (c) of running example

Example I.1. Consider the SQL query shown in Fig. ??, both
in its SQL and query tree form. Ignore the operator labels mQi

in the query tree for now. Let us further assume the database
instance shown in Fig. ??(b). Based on these data and query,
the query result is empty.

Assume that we now wonder why we do not find a tuple
with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more
generally, why we do not find any other tuple with a name
different from Homer. For this why-not question, two query-
based explanations, in the form of picky subqueries, exist:
(1) the selection on attribute dob is too strict to let any
author named Homer pass (indeed, the compatible source
tuple t = (a1, Homer, 800BC), which is a candidate for
contributing value Homer to the result, has dob = 800BC,
so the output of the selection contains no successor of t) and
(2) the join between A and AB prunes any other authors.

As we will discuss in detail, using Why-Not [?], the state-
of-the art algorithm for why-not provenance, possibly leads to
inaccurate results. Therefore, we propose a novel algorithm,
named NedExplain1 and our contributions are:
Formalization of query-based why-not provenance. We
concisely formalize, for the first time, query-based explana-
tions. This definition goes beyond the concepts informally
introduced previously, as it covers the special cases that are
not well treated by Why-Not and takes into account queries in-
volving aggregation (i.e., select-project-join-aggregate queries,
or SPJA queries for short) and unions thereof.

1The name is inspired by the name of one of the Nautilus’ passengers in
Jules Verne’s novel 20,000 Leagues under the see, and also stands for non-
existing-data-explain.

(a) Picky operator (b) Picky query (c) Secondary Why-Not answer

Figure 4.6: Picky operator (a), picky query (b), and secondary Why-Not answer (c)

Example 4.1.6. Consider again Figure 4.1 in page 44 and the set of compatible
tuples D={Id4} ∪ IAB ∪ IB. Q1 generates two valid successors of Id4, i.e., those
that are the result of joining Id4 with Id7 ∈ IAB ⊆ D and Id8 ∈ IAB ⊆ D, respec-
tively. Similarly, Q2 generates two valid successors of Id4, their respective lineage
{Id4, Id7, Id2} and {Id4, Id8, Id1} being in D. Finally, we observe that Id4 has
no (valid) successor w.r.t. Q3 because Id4 does not satisfy the selection condition
A.dob > 800BC. Therefore, Q3 is picky w.r.t. Id4 and D.

It is expected that for every compatible tuple, there will be one picky subquery.
This is a consequence of the fact that we accept as valid only well-defined Why-
Not questions, which can be translated to that there is not a valid successor of a
compatible tuple in the output of the query Q. Thus, there exists for sure one picky
subquery for every compatible tuple. Moreover, it holds that the picky subquery for
a compatible tuple is unique, as the following property states.

Property 4.1.1. Let Q be a query over SQ and let I be an instance over SQ. Let
also D ⊆I be a set of tuples and tI ∈ D. Then, there exists exactly one subquery
Q′ of Q, s.t. Q′ is picky w.r.t. D and tI.

The proof is immediate: If there is no picky subquery for a compatible tuple
tI , then there is a successor of tI in the output of Q. This means that Why −
Notquestion is not valid, which does not hold. Thus there is one picky subquery
for tI . We will show that this is unique.

Let us consider that there are two queries Q1 and Q2 picky for tI . Then, the
last successor of tI has to appear in the input of Q1 and Q2. If Q2 is a subquery of
Q1, then by definition there is no successor of tI in the output of Q2, thus neither
in the input of Q1, which contradicts the assumption. So, Q2 cannot be a subquery
of Q1. Otherwise (if Q2 is not a subquery of Q1), the last successor of tI appears
in two different paths (and consequently two different nodes), meaning that Q is a
DAG and not a tree, which does not hold. So, there is only one picky subquery for
tI .

Based on the notion of picky subqueries, NedExplain proposes three kinds of
answers for a Why-Not question WN w.r.t. a query Q. These answers differ in

4.1. NEDEXPLAIN 57

terms of granularity and point of view. The main purpose behind the Why-Not
answer is to indicate to the user where in the query the conditions in WN are
violated. WN is composed by two parts as we have seen, WNconj and WNα. In the
previous discussion about picky subqueries we treated the case of the conditions in
WNconj.

To find the subqueries of Q where the conditions inWNα are violated we organise
the query tree in a specific way. In order to maximize the number of subqueries
for which we can verify these conditions, we organize joins such that we obtain a
view V of minimal query size where A(V)⊇G ∪ {A1, . . . , An} (see Definition 2.1.9,
page 15 for a reminder of aggregate queries) and no cross product is necessary.
Intuitively, V corresponds to the subquery closest to the leaf level in the query
tree joining the relation where the grouped and aggregated attributes reside. We
refer to V as breakpoint subquery. Obviously, for queries without aggregation, the
condition A(V) ⊇ G ∪ {A1, . . . , An} is trivially satisfied for any leaf node, i.e., for
any V ∈ I (as G∪{A1, . . . , An} = ∅), which results in all leaf nodes being breakpoint
queries. Similarly, all leaf nodes representing relations in I \ IV can be considered
as breakpoint queries. We refer to the set of all breakpoint queries, i.e., V ∪ (I \IV)
as visibility-frontier.

Example 4.1.7. Consider again the tree in Figure 4.1(c) and the Why-Not question
WN={A.name=Homer, ap>25}. Here, WNα={ap>25}. From the query Q in Fig-
ure 4.1(a) we see that the group-by attribute is A.name and the aggregated-attribute
is B.price. The minimum subquery containing both A.name and B.price is the sub-
query Q2. The input instance of V is IV = IA∪IAB ∪IB. So, the visibility-frontier
consists only of V as there are no query input schema relations not referenced in V .

Now, let us start by defining the detailed answer of a Why-Not question record-
ing:

1. the picky query per compatible tuple (if any), and
2. in the case of aggregation, the subqueries violating the conditions on the ag-

gregated values.

Definition 4.1.6 (Detailed Why-Not answer). Let (S, I, Q,WN) be an explanation
scenario. Let Q′ be a subquery of Q, of the form UOp[Q1] if Q′ is a unary query
(respectively of the form [Q1]BOp[Q2] if a binary query). Let V F be the visibility
frontier. The detailed Why-Not answer of WN w.r.t. Q and I, denoted dWQ, is:
⋃

tI∈Dir
{(tI , Q′) | Q

′ subquery of Q and
Q′ picky w.r.t. Dir ∪ InDir and tI}

∪ {(⊥, Q′) | V ∈ V F and V proper subquery of Q′ and
Q1(I)(respectively Q1(I) ∪Q2(I)) |= WNα and
Q′(I) 6|= WNα}

The second part of this definition ensures that the conditions on aggregated
attributes are verified on the input of the subquery Q′, but not on its output.

58 CHAPTER 4. QUERY DEBUGGING

Example 4.1.8. In our running example V=Q2. The detailed Why-Not answer
for the Why-Not question WN={A.name=Homer, ap>25} is {(Id4, Q3)} ∪ {Q3}.
Indeed Q3 is picky w.r.t. Id4 and {Id4} ∪ I|AB ∪ I|B. Moreover, the data in the
input of Q3 satisfy WNα (because they yield an average price of 30 > 25), whereas
the empty output of Q3 does not satisfy WNα.

In general, this detailed answer may be too overwhelming for a user (due to
the potentially large number of picked compatible tuples). Thus, we also define a
condensed Why-Not answer that only provides the set of picky subqueries to the
user, e.g., {Q3} in the previous example.

Definition 4.1.7 (Condensed Why-Not answer). The condensed Why-Not answer
for WN w.r.t. Q and I is defined as cWQ = {Q′|(tI , Q′) ∈ dWQ}.

Finally, we also define a secondary Why-Not answer that takes into account
the indirect compatible set InDir. Recall that InDir includes data necessary to
produce the missing answer, but that are not constrained by WNconj. Consequently,
the pruning of indirect compatible tuples may also be a cause for the missing-tuples,
captured in the secondary Why-Not answer.

As a reminder, SW is the set of relation schemas typing the tuples in Dir and
SQ − SW is the set of relation schemas typing the tuples in InDir.

Definition 4.1.8 (Secondary Why-Not answer). Let Ssec ∈ SQ − SW . We denote
by Qsec the subquery of Q s.t. Qsec is picky w.r.t. I and some t ∈ I|Ssec, and for
any t′ ∈ I|Ssec, there is no successor of t′ w.r.t. Qsec. Then, the secondary Why-Not
answer for WN w.r.t. Q and I is sWQ = {Qsec | Ssec ∈ SQ − SW}.

Figure 4.6(c) illustrates the secondary Why-Not answer.

Example 4.1.9. Let us add one more relation P for the publisher of the books in
the example of Figure 4.1, with IP=∅. Then, let us replace the right child of Q2,
i.e., B, with the subquery Q′1=B onbid′ P . We obtain the following tree.

{A.name}F{AV G(B.price)→ap}
(mQ)

A.name ap

σA.dob>800BC

(mQ3)

A_Id AB_Id B_Id P_Id

onbid

(mQ2)

A_Id AB_Id B_Id P_Id

onaid

(mQ1)

A_Id AB_Id
Id4 Id7

Id4 Id8

Id5 Id9 onbid′

(mQ1′)

B_Id P_Id

Publisher P
pid name bid P_Id

Book B
bid title price B_Id
b1 Odyssey 15 Id1

b2 Illiad 45 Id2

b3 Antigone 49 Id3

Author A
aid name dob A_Id
a1 Homer 800BC Id4

a2 Sophocles 400BC Id5

a3 Euripides 400BC Id6

AuthorBook AB
aid bid AB_Id
a1 b2 Id7

a1 b1 Id8

a2 b3 Id9

4.1. NEDEXPLAIN 59

Now, we find that {Q2} is the condensed Why-Not answer w.r.t. WN and
D={Id4} ∪ IAB ∪ IB ∪ IP . However, the fact that Q2 prunes out the compatible
tuple Id4 is not necessarily linked to the absence of join partners for Id4 in the AB
relation. On the other side, it is clear that the empty result of Q′1 causes the result
of Q2 to be empty as well. This fact is captured by returning {Q′1} as secondary
Why-Not answer.

4.1.5 Algorithm

Based on the framework our definitions provide, we now present NedExplain,
an algorithm that considers an explanation scenario (S, I, Q,WN) and outputs the
detailed, condensed and secondary Why-Not answer. We limit Q to a union of SPJA
queries, deferring the extension with more operators to future work. Note that the
Why-Not question WN in the input of NedExplain algorithm is considered to be
unrenamed. Thus, if needed, we unrename WN as in Definion 4.1.1.

Next, we describe NedExplain in two steps. First, we provide the necessary
preprocessing actions computing the compatible tuples and creating the query tree.
Then, we discuss the internals of the algorithm. For the rest of the discussion,
recall that when we are talking about successors, we imply valid successors, unless
differently stated.

Preprocessing

NedExplain starts with a preprocessing phase consisting in the steps described
below.

a) CompatibleFinder. We compute the direct compatible set of tuples Dir⊆I
w.r.t. WN , by performing appropriate SELECT statements that retrieve the special
attribute R_Id for each involved relation R in WNconj (as illustrated in Exam-
ple 4.1.10). Indeed, to retrieve the compatible tuples from a relation R we execute
the statement

SELECT R_Id FROM R WHERE WNconj|R

over IR, where WNconj|R is the conjunction of the conditions in WNconj, restricted
over the relation R.

In our example, we identify direct compatible tuples only in the Author relation,
by executing the query

SELECT A_Id FROM Author A WHERE A.name = ‘Homer′

Note that we require that all conditions in WNconj that are specified over the
same relation must be satisfied by the compatible tuples from this relation. The set
of indirect tuples InDir consists of all the tuples in the relations of the input query
schema not appearing in WNconj.

b) CanonicalQuery. A relational query Q may result in various equivalent query
plans (trees) and similarly to [CJ09, CWW00], we choose a canonical query tree

60 CHAPTER 4. QUERY DEBUGGING

representation that limits the equivalent query trees to consider. The following two
rationales guide our choice of canonical query tree representation that differs from
the canonical tree representation of [CJ09].

First, we favor finding selections as Why-Not answers over finding joins, as se-
lections are easier to inspect and to change by a developer. Furthermore, this choice
allows us to potentially reduce the runtime of NedExplain, since it allows us to push
down selections (and as we shall see, we traverse and evaluate operators of the query
tree bottom-up).

Second, as described by Definition 4.1.6, we need to determine if a subquery (tree
node) is picky and whether the associated condition(s) from WNα is satisfied by the
subquery’s input and not its output. This leads to the creation of the visibility-
frontier as previously discussed. Given the query tree with the visibility-frontier,
we place the selections above and closest to the visibility-frontier to satisfy our first
rationale. In the sequel, we denote our canonical query tree satisfying the above
rationales as T .

c) Primary global structure TabQ. NedExplain relies on one main global struc-
ture, denoted TabQ and used to store intermediate results. More specifically, TabQ
contains the following labeled entries for each subquery of Q. Next, we refer to the
subqueries of Q by their rooting operator m in the query tree T .
• Input: the input tuple set for m
• Output: the tuple set output by m
• Compatibles: the set of direct compatible tuples that are either in the input of
m or have a valid successor in the input of m
• Level: the depth of m in T (the root having level 0)
• Parent: the parent node (a.k.a. the parent subquery) of m in T
• Op: the root operator of m
To refer to the entry labeled l of a subquery m, we write m.l, e.g., m.level refers to
the level of m.

The initialization of TabQ is trivially done for the following entries:
• m.Op, based on T
• m.Parent, based on T
• m.Level, based on T
• m.Input=I|R , for any m associated with a base relation R
• m.Output=I|R , for any m associated with a base relation R
• m.Compatibles=Dir|R ,for any m associated with a base relation R

The rest of the entries get updated during the execution of the algorithm. In
order to efficiently access the information in TabQ, subqueries are stored in order of
decreasing depth (m.Level) in the query tree. We access subquery m at the position
i of TabQ using the notation m = TabQ[i].

d) Initialize secondary global structures. Apart from TabQ, we make use of

4.1. NEDEXPLAIN 61

m Input Compatibles OutputLevelParent Op
A I|A Id4 I|A 4 mQ1 relation schema
AB I|AB ∅ I|AB 4 mQ1 relation schema
mQ1 - - - 3 mQ2 on
B IB ∅ IB 3 mQ2 relation schema
mQ2 - - - 2 mQ3 on
mQ3 - - - 2 mQ4 σ
mQ - - - 1 α

Table 4.1: Primary global structure TabQ upon initialization

the next global structures:
• EmptyOutputSubQ: contains the subqueries producing an empty result, used to

determine the secondary Why-Not answer.
• Non-PickySubQ: contains the subqueries producing successors of compatible tu-

ples.
• PickySubQ: contains the pairs (Q’, blocked), where Q’ is a subquery associated

with the operator m and
blocked={t|t∈m.Input s.t. m is picky w.r.t. t and Dir∪InDir}. This structure
allows us to determine the detailed and the condensed Why-Not answer.
All these structures are initially empty.

Example 4.1.10. Consider the running example in Figure 4.1 in page 44. As
discussed in Example 4.1.7, the breakpoint view V is the subquery Q2 as this is the
minimum subquery containing both A.name and B.price. The selection operator
σA.dob>800BC is then placed just above V , so as to satisfy our first rationale. Table 4.1
shows the initialization of TabQ given the canonical query tree of Figure 4.1(c).

Computing the Why-Not Answer

Now we describe how we compute the Why-Not answer. Briefly, we visit the
subqueries of Q bottom up on the tree T . At each subquery, we identify the suc-
cessors of the compatible tuples, if any, and keep track of the picky and non-picky
subqueries along the way. In addition, we identify the subqueries producing empty
results and those that cause the Why-Not question condition on the aggregated
attributes to fail. In the end, we return the three types of the Why-Not answer.

Algorithm 1 provides the pseudo-code for NedExplain. Lines 1–5 correspond to
the preprocessing steps discussed above. Moreover, in line 2 we check whether WN
is well founded or not. Remember here that for theWN to be well founded, the con-
ditions over aggregated attributes are not used. The algorithm terminates without
producing a Why-Not answer if the Why-Not question is not well-founded, because
the data are not sufficient to provide an answer. Otherwise, NedExplain iterates
through all the subqueries stored in TabQ until checkEarlyTermination (Algo-
rithm 2) called at line 8 returns true or the last entry in TabQ has been reached.

62 CHAPTER 4. QUERY DEBUGGING

Algorithm 1: NedExplain
Input: Explanation scenario (S, I, Q,WN)
Output: Answer, the Why-Not answer

1 (Dir, InDir)← CompatibleFinder(WN, I);
2 if NotWellFounded(WNconj , (Dir, InDir)) then
3 return null;

4 T ← Canonical(Q);% the canonical tree of Q is created and the visibility frontier is
set %

5 Initialize(TabQ, Non-PickyOp, EmptyOutputOp, PickyOp, Dir, InDir);
6 for (int i=1,. . . , #nodes in T) do
7 m← TabQ[i];
8 if CheckEarlyTermination(m) then
9 Answer.detailed←DetailedAnswer().detailed;
10 Answer.condensed←DetailedAnswer().condensed;
11 Answer.secondary←secondaryAnswer();
12 return Answer ;

13 m.Output← m(m.Input);
14 p←m.Parent;
15 p.Input←p.Input ∪ m.Output ;
16 if m.Ouput=∅ then
17 EmptyOutputSubQ← EmptyOutputSubQ ∪ {m};
18 if m.Compatibles6= ∅ then
19 PickySubQ ← PickySubQ ∪ {(m,m.Compatibles)};

20 if m.Op ∈ {on, σ} then
21 p.Compatibles ← p.Compatibles ∪ FindSuccessors(m);

22 else
23 if m.Compatibles6= ∅ then
24 p.Compatibles ← p.Compatibles ∪ m.Compatibles;
25 NonPickySubQ←NonPickySubQ ∪ {m};

Then, we compute and return the detailed Why-Not answer. Otherwise, we continue
with the evaluation of the current subquery m (line 13) and update the entries of
the parent p of m in TabQ. We also maintain the secondary global structures Empy-
OutputSubQ and PickySubQ (lines 16–19). For all subqueries except for those that
correspond to relation schemas, FindSuccessors (Algorithm 3) finds possible suc-
cessors of compatible tuples in the output of the current subquery and maintains the
secondary global structures PickySubQ and Non-PickySubQ (line 21). Otherwise,
p.Compatibles and the global structures are updated as described in lines 22–25.

We now further discuss the sub-algorithms called by Algorithm 1.

Check for early termination (Algorithm 2). This step decides whether we
have all information in hand to compute our Why-Not answer, even before reaching
the root of the query tree. This can happen when at the first operator of a new level,

4.1. NEDEXPLAIN 63

Algorithm 2: CheckEarlyTermination
Input: m, a subquery
Output: a boolean value

1 i←position of m in TabQ;
2 if i6=1 and m.Level6= TabQ[i-1].Level then
3 int j=i-1;
4 while j ≥ 1 and TabQ[j].Level = TabQ[i-1].Level do
5 if TabQ[j] ∈ NonPickySubQ then
6 return FALSE;

7 j←j-1;

8 while i < #nodes in T do
9 if TabQ[i].Op=‘relation schema’ then
10 return FALSE;

11 i← i+ 1;

12 else
13 return FALSE;

14 return TRUE ;

we know that there are no more compatible tuples to trace, further up the tree. To
identify this case, checkEarlyTermination checks if m is the leftmost operator at
some level in the query tree T , and then

1. we check if in the former level we have any NonPicky subqueries (Algo-
rithm 2 lines 4–7) and if not

2. we also check if among the remaining subqueries (in this level or higher up)
there exists a subquery with type ‘relation schema’ (lines 8–11), and some
compatible tuples in the input of the subquery.

If according to checkEarlyTermination, there are no more compatible tuples to trace
from the subquery m up to the root of the tree, then it returns true and Algorithm 1
terminates.

For example, consider the tree provided in Example 4.1.9, page 58. The direct
compatible tuple is Id4 from Author relation instance. All successors of Id4 are
eliminated at mQ2. Thus, before examining mQ3, the leftmost operator of level
2, the checkEarlyTermination algorithm returns true and NedExplain can continue
with outputting the Why-Not answer.
Finding and managing successors (Algorithm 3). If for a subquery rooted at
m CheckEarlyTermination returns false, we continue to computing the successors of
compatible tuples in the output ofm. From previous iterations, we have available the
entries m.Compatibles, and m.Output. Algorithm 3 computes the valid successors
in m.Output of the tuples in m.Compatibles by checking for each o ∈ m.Output
whether its lineage is in Dir ∪ InDir (Algorithm 3 line 3).

Any compatible tuple having at least one valid successor in the output of m, is
returned by Algorithm 3 to Algorithm 1 to be added in the parent’s compatibles

64 CHAPTER 4. QUERY DEBUGGING

Algorithm 3: FindSuccessors
Input: m, a subquery
Output: successors, the subset of tuples from m.Compatibles having at least one

successor in the output of m
1 successors← ∅;
2 foreach o ∈ m.Output do
3 if lineage(o) ⊆ Dir ∪ InDir then
4 successors ← successors ∪(lineage(o) ∩Dir);

5 Blocked← m.Compatibles \ successors;
6 if successors 6= ∅ then
7 NonPickySubQ ← NonPickySubQ ∪{m};
8 if (Blocked 6= ∅) or
9 (V is subquery of m and αG,F (m.Input) |= WNα and αG,F (m.Output) 6|= WNα)
then

10 PickySubQ ←PickySubQ ∪ {(m,Blocked)};

11 return successors;

entry. In this case, we also add m to the set of NonPickySubQ subqueries, because
after m we still can trace some compatible tuples (Algorithm 3 line 7).

Then, lines 8 through 10 in Algorithm 3 maintain the global structure Picky-
SubQ. There are two cases, when PickySubQ is updated with a pair containing m.
These cases are the conditions described in Definition 4.1.6 of detailed Why-Not
answer. First, if the subquery indicated by m, is picky for a set of compatible
tuples,termed Blocked, then PickySubQ is updated with (m,Blocked). Second, if
the aggregation function is satisfied in the input but not in the output of m, then
PickySubQ is updated with (m,∅). Of course, the second case is applied only when
possible from the schema of the subquery.

Algorithm 1 terminates by computing the three types of Why-Not answer. Algo-
rithm 4 computes the detailed and the condensed type of answer. Algorithm 5 com-
putes the secondary answer, which consists in the subqueries producing an empty
result but are not picky subqueries.

4.1. NEDEXPLAIN 65

Algorithm 4: DetailedAnswer
Output: Detailed, the detailed Why-Not answer

1 Detailed ← ∅;
2 detailed← ∅; condensed← ∅;
3 foreach (m,Blocked) ∈ PickySubQ do
4 if Blocked = ∅ then
5 detailed ← detailed ∪{(null,m)};
6 else
7 detailed ←detailed

⋃
t∈Blocked{(t,m)};

8 condensed ← condensed ∪{m};
9 return Detailed←{detailed,condensed};

Algorithm 5: Secondary Answer
Output: the set of subqueries having an empty result and comprising the

secondary Why-Not answer
1 secondary ← ∅ ;
2 forall the m subqueries ∈ EmptyOutputSubQ do
3 if m /∈ condensedAnswer then
4 secondary ← secondary ∪ {m};

5 return secondary;

m m.Input m.Output m.Compatibles m.Blocked
A I|A I|A Id4 ∅
AB I|AB I|AB ∅ ∅
mQ1 I|A, I|AB Id4 on Id7, Id4 on Id8, Id4 ∅

Id5 on Id9

B I|B IB ∅ ∅
mQ2 Id4 on Id7, Id4 on Id8, Id4 on Id7 on Id2, Id4 ∅

Id5 on Id9, IB Id4 on Id8 on Id1,
Id5 on Id9 on Id3

mQ3 Id4 on Id7 on Id2, ∅ Id4 Id4

Id4 on Id8 on Id1,
Id5 on Id9 on Id3

mQ ∅ ∅

Table 4.2: TabQ after executing NedExplain with the running example.

Example 4.1.11. Continuing the Example 4.1.10, Table 4.2 represents a complete
version of TabQ after the termination of the NedExplain Algorithm. However for
convenience, the fields for Level, Parent and Op that have been already determined
in the pre-processing phase are omitted in Table 4.2. Briefly, in each iteration in
the main for-loop of Algorithm 1, i.e., for each subquery in TabQ, the respective sub-

66 CHAPTER 4. QUERY DEBUGGING

query entry has been updated. For a clarification on the generated results, consider
the following cases:
• row A: This row corresponds to the Author relation.

Since A is the first node in TabQ, Algorithm 2 does not allow for an early termi-
nation. The output entry for A is set to IA in Algorithm 1. The parent subquery
is mQ1, so the entries mQ1.Input and mQ1.Compatibles entries are filled in with
A.Output and A.Compatibles, respectively. Then, A is added in the NonPicky-
SubQ structure, because it contains (direct) compatible tuples.
• row mQ3: This row corresponds to the subquery mQ3 = σA.dob>800BC [mQ2].

Algorithm 1 computed the values for the entries of the previous rows of the table in
previous iterations. In addition, the current row’s mQ3.Input and mQ3.Compatibles
were also filled in with the values of mQ2.Output and mQ2.Compatibles \ mQ2 .Blocked
respectively. In more detail, mQ3.Compatibles consists of the tuple Id4 as there
are two valid successors of this compatible tuple in the output of mQ3 (the tu-
ples Id4 on Id7 on Id2 and Id4 on Id8 on Id1). Algorithm 2 does not allow for
an early termination, since mQ2 (the only former level subquery) is not picky.
Algorithm 1 proceeds with the evaluation of mQ3 on its inputes and fills the en-
tries mQ3.Output, and the parent’s mQ.Input accordingly. Then, we continue
with the computation of the successors. In Algorithm 3 line 8 the first condition
is satisfied: mQ3 has blocked all the compatible tuples in mQ3.Compatibles (i.e.,
mQ3.Blocked=mQ3.Compatibles). The second condition is undecidable, because the
output result set of mQ3 is empty. However, since mQ3 is a picky subquery, the
pair (mQ3 , {Id4}) is added in the PickySubQ structure. At this stage, the state of
NonPickySubQ is {A,AB,mQ1 , B,mQ2} and of PickySubQ is{(mQ3 , {Id4})}.
• row m=mQ: This row corresponds to the root operator of the query tree, thus

to query Q. mQ corresponds to the first tree node having Level=1. Since mQ3,
which is the only subquery in the previous level, is a picky subquery and there
no subqueries higher on the tree that could contain some compatible tuples, Al-
gorithm 2 returns true. In this case, the Algorithm 1 enters the termination
mode and computes the Why-Not answer. In more detail, Algorithm 4 returns
the detailed Why-Not answer: {(Id4,mQ3)} and the condensed Why-Not answer:
{mQ3}. Algorithm 5 returns an empty secondary Why-Not answer.

Extention to union queries and general Why-Not questions. Previously, we
discussed theNedExplain Algorithm assuming one explanation scenario (S, I, Q,WN),
where the query Q is an SPJA query and the Why-Not question is one set of con-
ditions over the output schema ΓQ, captured in WN .

To extend the algortihm for the case of a union of SPJA queries:
1. We split the query Q to two sub-queries Q1 and Q2, one for each part of the

union.
2. The unrenaming of the Why-Not question WN results to two Why-Not ques-

tions WN1 and WN2, each one corresponding to one of the sub-trees Q1 and
Q2.

4.1. NEDEXPLAIN 67

3. We run Algorithm 1 for each explanation scenario (Si, Ii, Qi,WNi) for i = 1, 2.
4. The final Why-Not answer is the union of the Why-Not answers obtained from

the separated cases.
Similarly, we proceed for more than one unions.

Alternatively, we can treat the union as any other operator on the query tree.
However, we know a priori that union operators are not picky, as they do not elim-
inated any tuples.

As far as negation is concerned, the situation is a little more complicated, as
the solution would require to combine why-not provenance (for the left subquery of
the negation (difference) operator) with why provenance (for the right subquery). If
we want to restrict our algorithm to producing query-based explanations, then the
extension is rather simple: we proceed as usual for the left part of the query, while
we consider the right part as a ‘black-box’. To characterize a difference operator
node as picky for some compatible tuple, it suffices to follow Definition 4.1.5, for
binary operators. In this case, compatible tuples are meaningful to identify only on
the source relations of the left subquery.

To extend the algorithm for the case of a general Why-Not question (Defini-
tion 2.2.2) gWN={WN1, . . . ,WNn}, we run Algorithm 1 for each explanation sce-
nario (S, I, Q,WNi) for i=1, . . . , n. The final Why-Not answer is the union of the
Why-Not answers obtained from the separated cases.

Complexity. The time complexity of the initialization steps is constant. The worst
time complexity for Algorithm 2 is O(|Q|), where |Q| represents the number of query
operators (a.k.a. query tree nodes). The worst time complexity for Algorithm 3 is
O(|IR|), where |IR| is the maximum size of a source relation. The worst time
complexity for Algorithm 4 and Algorithm 5 is O(|Q|).

So the total worst time complexity of NedExplain is in O(|Q|(|Q|+ IR) + |Q|) =
O(|Q|2 + |Q| ∗ |IR|). If we consider that the size of a relation instance is typically
much larger than the size of a query then the previous time complexity becomes
O(|Q| ∗ |IR|).

4.1.6 Experiments

In this section we display a comparative evaluation of our algorithm with re-
spect to the Why-Not algorithm [CJ09]. Briefly, the Why-Not algorithm [CJ09]
identifies a set of frontier picky manipulations that are responsible for the exclu-
sion of missing-answers from the result by tracing unpicked data items (tuples)
through the workflow. Two alternatives are proposed for traversing the workflow:
a bottom-up approach and a top-down approach. The main difference between the
two approaches lies in the efficiency of the algorithms (depending on the query and
the Why-Not question). In [CJ09], it is stated that both approaches are equiva-
lent as they produce the same set of answers. We have implemented NedExplain
and Why-Not (actually, its bottom-up version as it most resembles the approach
of NedExplain) using Java, based on source code kindly provided by the authors

68 CHAPTER 4. QUERY DEBUGGING

of Why-Not. The original Why-Not implementation, as well as ours, relies on the
lineage tracing provided by Trio (http://infolab.stanford.edu/trio/). We ran the
experiments on an Oracle Virtual Machine running Windows 7 and using 2GB of
main memory of a Mac Book Air with 1.8 GHz Intel Core i5, running MAC OS X
10.8.3. We used PostegreSQL 9.2 as database.

Scenarios

We evaluate NedExplain and compare it to the Why-Not algorithm based on a
number of explanation scenarios. By definition, each scenario contains a database
(schema and instance), a query and a Why-Not question.

We use three databases:
1. The crime database. It corresponds to the sample crime database of

Trio (http://infolab.stanford.edu/trio/) and was previously used to evaluate
Why-Not. The data describe crimes and involved persons (suspects and wit-
nesses).

2. The imdb database. It is built on real-world movie data extracted from IMDB
(http://www.imdb.com) and MovieLens (http://www.movielens.org), describ-
ing movies, their places and their ratings.

3. The gov database. It is built on real-world data collected at
http://bioguide.congress.gov, http://usaspending.gov, and
http://earmarks.omb.gov. It contains information about US congressmen and
financial activities.

The size of the relations in the databases ranges from 89 to 9341 records, with
crime being the smallest and gov the largest database. For abbreviation, in the
following discussion each relation instance is referred to by its initials, for example
M refers to the Movies instance and L to the Locations instance. Moreover, when
multiple instances of some relation are used, we refer to them using numbers, e.g.,
M1 and M2 for two instances of the relation M .

Based on the databases, we have built a series of queries and Why-Not questions
to complete the scenarios. The queries have been designed to include simple (Q4,
Q6) and more complicated (Q1, Q3, Q5, Q7) queries, queries containing self-joins
(Q3, Q4), queries having empty intermediate results (Q2), SPJA queries (Q8, Q9)
and SPJU queries (Q12). The queries are displayed in relational algebra in Table 4.3.
The scenarios are described in Table 4.4. To pinpoint the differences between the
two algorithms, some scenarios consider the same query with a different Why-Not
question.

Next, we evaluate NedExplain and Why-Not both in terms of answer quality and
efficiency using these predefined scenarios.

Answer Quality

Table 4.5 summarizes the Why-Not answers obtained by processing our scenarios
with NedExplain and Why-Not algorithms. For NedExplain, we distinguish among

4.1. NEDEXPLAIN 69

Query Expression
Q1 πP.name,C.type[C onsector W onwitnessName S onhair,clothes P]
Q2 πP.name,C.type[σC.sector>99[C] onsector W onwitnessName S onhair,clothes P]
Q3 πW.name,C2.type[W onsector2 C2 onsector1 σC1.type=Aiding[C1]]
Q4 πP2.name[P2 on!name,hair σP1.name<B[P1]]
Q5 πname,L.locationid[LonmovieIdσM.year>2009[M]onnameσR.rating≥8[R]]
Q6 πCo.firstname,Co.lastname[σAA.party=Republican[AA] onid σCo.Byear>1970[Co]]
Q7 πSPO.sponsorId,SPO.sponsorln,E.camount[EoneIdσES.sub=Sen. Com.[ES]onidσSPO.party=Rep.[SPO]]

Q8 α{P.name},{count(C.type)→ct}[σsector>80[C onsector W onwitnessName S onhair,clothes P]]
Q9 α{SPO.sponsorln},{sum(E.camount)→am}[

σsubstage=Senate Committee[σparty=Republican[E onearmarkid ES onid SPO]]]
Q10 πCo.lastname[Co onid σAA.state=NY [σAA.party=Democrat[AA]]]
Q11 πSPO.sponsorln[σSPO.state=NY [σSPO.party=DemocratSPO]]
Q12 Q10 ∪v Q11

Table 4.3: Queries for experiments

the detailed, the condensed and the secondary Why-Not answer, as defined by Def-
initions 4.1.6–4.1.8.

At first sight, the answers provided by Why-Not are simpler and clearer; they
generally consist of a small number of subqueries. On the other hand, NedExplain
provides answers more complex in structure, but more informative. Notice that
the condensed answers resemble the answers returned by Why-Not and provide
an “easily-consumable” answer as well. Still, NedExplain condensed answers and
Why-Not algorithm answers are not the same, as we will see later in this section.
The subsequent discussion first highlights the differences among the three types of
NedExplain answers before we compare the results produced by NedExplain with
those produced by the Why-Not algorithm.
Detailed vs. condensed and secondary Why-Not answers. Consider the
Crime6 scenario associated to the query tree for Q3 depicted in Figure 4.7(b).
The condensed answer indicates that m8 is a picky subquery. The detailed answer
consists of pairs of the form (Idi,m8), i = 1, . . . , 11. For this case, the detailed answer
does not provide substantial new insights compared to the condensed answer, as m8

is responsible for pruning all compatible tuples. In this situation, the condensed
answer is the most appropriate to return to the user.

However, in other cases, the simplicity of the condensed answer may hide from
the user more specific, but essential information, e.g., in cases where the answer is
not a single subquery. For instance, in Crime7, the condensed answer identifies m8

and m9 as picky subqueries (see Q3 in Figure 4.7(b)). From the detailed answer, we
moreover obtain the knowledge that there were eleven tuples (originating from the
C2 relation) for whichm8 is picky, but also one tuple (originating fromW) for which
m9 is picky. This information can be useful, as it indicates that no valid successors
of compatible crime tuples reached m9 to join with valid witness tuples. So, the
existence of a more detailed answer can be of major help towards understanding the

70 CHAPTER 4. QUERY DEBUGGING

Scenario Query Why-Not question
Crime1 Q1 (P.Name:Hank,C.Type:Car theft)
Crime2 Q1 (P.Name:Roger,C.Type:Car theft)
Crime3 Q2 (P.Name:Roger,C.Type:Car theft)
Crime4 Q2 (P.Name:Hank,C.Type:Car theft)
Crime5 Q2 (P.Name:Hank)
Crime6 Q3 (C2.Type:kidnapping)
Crime7 Q3 (W.Name:Susan,C2.Type:kidnapping)
Crime8 Q4 (P2.Name:Audrey)
Crime9 Q8 ((P.Name:Betsy,ct:x),x>8)
Crime10 Q8 (P.Name:Roger)
Imdb1 Q5 (name:Avatar)
Imdb2 Q5 (name:Christmas Story,L.locationId:USANew York)
Gov1 Q6 (Co.firstname:Christopher)
Gov2 Q6 (Co.firstname:Christopher,Co.lastname:MURPHY)
Gov3 Q6 (Co.firstname:Christopher,Co.lastname:GIBSON)
Gov4 Q7 (sponsorId:467)
Gov5 Q7 ((SPO.sponsorln:Lugar,E.camount:x),x>=1000)
Gov6 Q9 ((name:Bennett,am:x),x=18700)
Gov7 Q12 (name:JOHN)

Table 4.4: Scenarios

provided explanation.
NedExplain vs. Why-Not. Our first comparison between NedExplain and Why-
Not focuses on the Crime5 scenario with the associated query Q2, whose query tree
is given in Figure 4.7(a). Q2 has an intermediate empty result on m4 (σsector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery, which is technically cor-
rect considering the definitions in Why-Not. Yet, m4 is not pruning itself any direct
compatible tuples, but rather destroys any indirect compatible tuples that could
potentially join with direct compatible tuples. This fact is captured by classifying
m4 in the NedExplain secondary answer.

Let us now focus on the cases where the answers of Why-Not and NedExplain
differ, i.e., Crime6 and Crime7. Both scenarios relate to Q3, which contains
a self join on the Crime relation. The Why-Not algorithm falsely identifies m7

(σC1.type=Aiding(C1)) as a picky subquery, because it locates the compatible tuples in
both C1 and C2. As a result the compatible tuples from C1 with type:Kidnapping
are naturally picked at m7. This problem is solved by our algorithm, by introducing
the notion of qualified attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, i.e., C2, according to the type of the
output of the query Q3.

Another problem having its origin in the identification of compatible tuples can

4.1. NEDEXPLAIN 71

⇡P.name,C.type

(m6)

1 sector

(m5)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

�C.sector>99

(m4)

C

⇡W.name,C2.type

(m10)

1 sector2

(m9)

1 sector1

(m8)

�C1.type=Aiding

(m7)

C1

C2

W

⇡P2.name

(m14)

�P1.name6=P2.name

(m13)

1 hair

(m12)

�P1.name<B

(m11)

P1

P2

⇡name,L.locationid

(m4)

1 movienameid

(m3)

1 name

(m2)

�R.rating�8

(m0)

R

�M.year>2009

(m1)

M

L

(a) Query Q2 (Crime3, Crime4, Crime5) (b) Query Q3 (Crime6, Crime7) (c) Query Q4 (Crime8) (d) Query Q5 (Imdb1, Imdb2)
↵{P.name},{count(C.type)}

(m4)

�C.sector>60

(m3)

• 1 sector

(m2)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

C

(e) Query Q8 (Crime9, Crime10) (f) Query Q9 (Gov6)

Fig. 4. Query trees for queries Q2, Q3, Q4, Q5, Q8, Q9

the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that

⇡P.name,C.type

(m6)

1 sector

(m5)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

�C.sector>99

(m4)

C

⇡W.name,C2.type

(m10)

1 sector2

(m9)

1 sector1

(m8)

�C1.type=Aiding

(m7)

C1

C2

W

⇡P2.name

(m14)

�P1.name6=P2.name

(m13)

1 hair

(m12)

�P1.name<B

(m11)

P1

P2

⇡name,L.locationid

(m4)

1 movienameid

(m3)

1 name

(m2)

�R.rating�8

(m0)

R

�M.year>2009

(m1)

M

L

(a) Query Q2 (Crime3, Crime4, Crime5) (b) Query Q3 (Crime6, Crime7) (c) Query Q4 (Crime8) (d) Query Q5 (Imdb1, Imdb2)
↵{P.name},{count(C.type)}

(m4)

�C.sector>60

(m3)

• 1 sector

(m2)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

C

(e) Query Q8 (Crime9, Crime10) (f) Query Q9 (Gov6)

Fig. 4. Query trees for queries Q2, Q3, Q4, Q5, Q8, Q9

the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that

⇡P.name,C.type

(m6)

1 sector

(m5)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

�C.sector>99

(m4)

C

⇡W.name,C2.type

(m10)

1 sector2

(m9)

1 sector1

(m8)

�C1.type=Aiding

(m7)

C1

C2

W

⇡P2.name

(m14)

�P1.name6=P2.name

(m13)

1 hair

(m12)

�P1.name<B

(m11)

P1

P2

⇡name,L.locationid

(m4)

1 movienameid

(m3)

1 name

(m2)

�R.rating�8

(m0)

R

�M.year>2009

(m1)

M

L

(a) Query Q2 (Crime3, Crime4, Crime5) (b) Query Q3 (Crime6, Crime7) (c) Query Q4 (Crime8) (d) Query Q5 (Imdb1, Imdb2)
↵{P.name},{count(C.type)}

(m4)

�C.sector>60

(m3)

• 1 sector

(m2)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

C

(e) Query Q8 (Crime9, Crime10) (f) Query Q9 (Gov6)

Fig. 4. Query trees for queries Q2, Q3, Q4, Q5, Q8, Q9

the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that

(a) Query Q2 (b) Query Q3 (c) Query Q4
(Crime3, Crime4, Crime5) (Crime6, Crime7) (Crime8)

⇡P.name,C.type

(m6)

1 sector

(m5)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

�C.sector>99

(m4)

C

⇡W.name,C2.type

(m10)

1 sector2

(m9)

1 sector1

(m8)

�C1.type=Aiding

(m7)

C1

C2

W

⇡P2.name

(m14)

�P1.name6=P2.name

(m13)

1 hair

(m12)

�P1.name<B

(m11)

P1

P2

⇡name,L.locationid

(m4)

1 movienameid

(m3)

1 name

(m2)

�R.rating�8

(m0)

R

�M.year>2009

(m1)

M

L

(a) Query Q2 (Crime3, Crime4, Crime5) (b) Query Q3 (Crime6, Crime7) (c) Query Q4 (Crime8) (d) Query Q5 (Imdb1, Imdb2)
↵{P.name},{count(C.type)}

(m4)

�C.sector>60

(m3)

• 1 sector

(m2)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

C

(e) Query Q8 (Crime9, Crime10) (f) Query Q9 (Gov6)

Fig. 4. Query trees for queries Q2, Q3, Q4, Q5, Q8, Q9

the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that

!"

#$"

$!"

%$"

&!!"

'(
)*
+&
"

'(
)*
+#
"

'(
)*
+,
"

'(
)*
+-
"

'(
)*
+$
"

'(
)*
+.
"

'(
)*
+%
"

'(
)*
+/
"

'(
)*
+0
"

'(
)*
+&
!"

)*
12

&"

)*
12

#"

34
5&
"

34
5#
"

34
5,
"

34
5-
"

34
5$
"

34
5.
"

!
"#
$
%"
&'
()
*'+

,#
-.

"

,(%"/0(%"

)6789:7;98<6" '<=>98?:@A76B@C" DEFF@GG<CGA76B@C" 2<H<=IJ>"

Fig. 5: Phase-wise runtime for NedExplain

!"
#!!"

$!!!"
$#!!"
%!!!"
%#!!"

&'
()
*$
"

&'
()
*%
"

&'
()
*+
"

&'
()
*,
"

&'
()
*#
"

&'
()
*-
"

&'
()
*.
"

&'
()
*/
"

&'
()
*0
"

&'
()
*$
!"

()
12
$"

()
12
%"

34
5$
"

34
5%
"

34
5+
"

34
5,
"

34
5#
"

34
5-
"

!"
#$
"
%&
'

(%#')*%#'

6789:;<" =>?*@ABCD:"

Fig. 6: Why-Not and NedExplain execution time

similar distribution for use cases referring to the same query,
e.g., Crime1 and Crime2 or GOV1, GOV2, and GOV3, due
to the fact that these use cases engage the same database
instances and evaluate (almost) the same operators. For use
cases involving different queries, we observe that in general,
for SPJ queries, the overall runtime is dominated by the
initialization phase (between 40 and 77%), essentially caused
by the initialization of all relevant java objects. After initializa-
tion, SuccessorFinder has the second largest impact on overall
runtime for most SPJ use cases (Gov1 – Gov3, all based on
Q6, and Crime8 being the exceptions). This phase essentially
corresponds to Alg. 3, where we compute lineage and do set
comparisons. Focusing on the Crime8 exception use case, the
last valid successor is lost very early (on m12 in Fig. 4(c))
after evaluating simple operators, which explains both the low
fraction of runtime used to find successors but also the low
time for the bottom-up traversal. The picture changes when
considering SPJA queries, where most of the time is dedicated
to the computation of valid successors. This can be explained,
by the extra computations needed in the SPJA case of Alg. 3.
These computations basically require additional SQL query
executions, on the input and output of tree nodes placed after
the breakpoint.

Runtime comparison to Why-Not. Fig. 6 displays, for each
use case, the time (in ms) each algorithm needs to produce
its Why-Not answers. Generally, we observe that NedExplain
is faster compared to Why-Not. One reason is that the im-
plementation of the Why-Not algorithm requires the usage of
Trio for lineage calculation, adding a substantial overhead to
runtime especially when many trio tables are referenced as
in Crime1 and Crime2. NedExplain traces the compatible
tuples by issuing queries directly to the underlying Postgres
database based on their unique identifiers in order to find their
successors, which speeds up the process.

In the future, we plan to more extensively study the impact
of various parameters on runtime. To conclude, this first set of

experiments on runtime indicates that NedExplain can provide
high-quality Why-Not answers in reasonable time.

↵{P.name},{count(C.type)!ct}
(m4)

�C.sector>60

(m3)

• 1 sector

(m2)

1 witnessName

(m1)

1 hair,clothes

(m0)

S P

W

C

V. RELATED WORK

Our discussion of related work first focuses on the general
context this work falls in, i.e., the context of data provenance
and query debugging. Second, we review in detail previous
work on query-based why-not provenance, highlighting short-
comings of the state-of-the-art.

A. Data provenance and Query Debugging

Recently, the problem of relational query and more gen-
erally data transformation verification has been addressed
by several techniques, including data lineage [8] and data
provenance [10], sub-query result inspection [11], or visualiza-
tion [12], or query specification simplification [2], [13], [14].
More generally, methods for debugging declarative program-
ming languages [15] may also apply. NedExplain classifies
as a method computing a special type of data provenance,
referred to as why-not provenance [3], [16], [17]. Algorithms
computing why-not provenance can be categorized w.r.t. the
output they generate. We distinguish between instance-based,
query-based, and modification-based why-not provenance.

Instance-based why-not provenance describes a set of source
data modifications that lead to the appearance of the missing-
answer in the result of a query. In our example, a possible
instance-based result includes the insertion of a tuple (a1,
Homer, 801BC) into A and the deletion of (a1, Homer, 800BC)

(due to key constraints). Algorithms computing instance-
based why-not provenance include Missing-Answers [18] and
Artemis [19].

Opposed to that, query-based why-not provenance focuses
on finding subqueries responsible for pruning the missing-
answer from a query result, as illustrated in Example I.1. We
discuss the state-of-the-art algorithm Why-Not [3] in detail
further below.

Algorithms to compute modification-based why-not prove-
nance [17], [20] rewrite the given SQL query so that the
missing-answer appears in the query result of the rewritten

(d) Query Q5 (e) Query Q8
(Imdb1, Imdb2) (Crime9, Crime10)

Figure 4.7: Query trees for queries Q2, Q3, Q4, Q5, Q8. The bullet at Q8 marks
the breakpoint view V .

72 CHAPTER 4. QUERY DEBUGGING

NedExplainAnswers
Scenario Why-Not Detailed CondensedSecondary
Crime1 ∅ (P.Id:2,m2),(C.Id:2,m2) m2 ∅
Crime2 m0 (P.Id:604,m0),(C.Id:2,m2) m0,m2 ∅
Crime3 m0,m4 (P.Id:604,m0),(C.Id:2,m4) m4,m0 ∅
Crime4 m4 (P.Id:2,m5),(C.Id:2,m4) m4,m5 ∅
Crime5 m4 ∅ ∅ m4

Crime6 m7 (C2.Id:396,m8), (C2.Id:85,m8), m8 ∅
. . . , (C2.Id:112,m8)

Crime7 m7 (C2.Id:396,m8), (C2.Id:85,m8), m8,m9 ∅
. . . , (C2.Id:112,m8), (W.Id:2,m9)

Crime8 ∅ (P2.Id:51,m12) m12 ∅
Crime9 n.a. (null,m3) m3 ∅
Crime10 n.a. (P.Id:604,m0) m0 ∅
Imdb1 m1 (R.Id:124,m2), (M.Id:18,m1) m1,m2 ∅
Imdb2 ∅ (L.Id:1,m3), (M.Id:4,m3), m3 ∅

(R.Id:245,m3)

Gov1 m2 (Co.Id:569,m0), (Co.Id:1495,m0), m0,m2 ∅
(Co.Id:1072,m2), (Co.Id:772,m0)

Gov2 m1 (Co.Id:1072,m2) m2 ∅
Gov3 m0 (Co.Id:569,m0) m0 ∅
Gov4 m4 (SPO.Id:9,m4), (ES.Id:80,m8), m4,m8 ∅

(ES.Id:78,m8), (ES.Id:79,m8)
Gov5 m6 (E.Id:15,m6), (E.Id:324,m6), . . . , m6 ∅

(E.Id:533,m6), (SPO.Id:199,m6)

Gov6 n.a. (null,m7) m7 ∅
Gov7 n.a. {(Co.Id:772,m11)}, {} {m11},{} ∅

Table 4.5: Why-Not and NedExplain answers, per scenario

be spotted by the Crime8 scenario. Even though it is based on a very simple query
- Q4 in Figure 4.7(c) - the Why-Not algorithm computes no explanation at all. Q4
asks for persons that have the same hair as persons, whose names start with a letter
before B (while not being the same person). The Why-Not algorithm locates the
compatible tuples both in P1 and P2. The compatible tuple (with the name Audrey)
from P2 does not find any join partners for m12 from P1 as the only candidate tuples
have names starting with C or D, namely Davemonet, Chiardola, and Debye. So,
m12 is picky for the compatible tuple coming from P2. The compatible tuple from
P1 survives the selection of m11 and joins with the three persons with equal hair
color from P2, namely Davemonet, Chiardola, and Debye. Hence, m12 is not picky
for three successors of the compatible tuple originating from P1, and it is easy to
verify the same for the remaining subqueries. Hence, Why-Not believes that Audrey

4.1. NEDEXPLAIN 73

is actually not missing from the result. NedExplain on the other hand correctly
locates the compatible tuple only in P2, namely the tuple (P2.Id:51). As mentioned
previously, m11 does not produce any valid successor of the compatible tuple from
P2, making m12 a picky subquery.

Next, we review the Imdb2 scenario associated with the queryQ5 in Figure 4.7(d).
The associated Why-Not questionWN={name = ChristmasStory, L.locationId =
USANewY ork} is not in its unrenamed form; it contains the attribute name that
is not in SQ, but instead was introduced through the join renaming
ν= (R.moviename,M.moviename, name) associated with the rooting operator of
m2. Thus, we first unrename WN to WN ′={R.moviename:ChristmasStory,
M.moviename:ChristmasStory, L.locationId:USANewY ork}. Next, NedExplain
proceeds with the computation of valid successors of the compatible tuples w.r.t.
the subqueries of Q5. This leads to the identification ofm3 as a picky subquery; after
m3 there are no more valid successors of the two direct compatible tuples. Why-Not
on the contrary relies on tracing successors (not necessarily valid) of the compatible
tuples, which in this case can be found in the result. So, Why-Not identifies no
picky subqueries and as a result does not returns any explanation.

Let us now focus on Crime9, based on the SPJA query Q8 (see Figure 4.7(e)).
As explained in Section 4.1.5, NedExplain identifies as breakpoint - marked by a
bullet on the tree representation - the subquery m2 and the operators of the query
are executed in a predefined order (putting selections as close as possible to the
breakpoint subquery). In this way, we are able to identify m3 as a Why-Not answer;
the condition of the Why-Not question of this scenario, ct>8 is satisfied by the
input of m3 (am=13) but not by its output (ct=7). Thus, the detailed answer is m3
associated with a null value, since m3 is not picky in a strict sense (valid successors
of P.id:604 still exist in the output of m3). A variation of this scenario is Crime10,
where we obtain the detailed answer (P.id:604,m0); m0 does not produce any valid
successors of the compatible tuple P.id:604. Note that in this case Why-Not results
are not available (marked by n.a. in Table 4.5) as the algorithm does not support
aggregation.

Overall, with respect to answer quality, we observe that NedExplain produces
correct answers as opposed to Why-Not that returns imprecise, or incomplete re-
sults in some cases. Furthermore, the different types of NedExplain answers convey
more information than answers returned by the Why-Not algorithm, potentially
improving the developer’s analysis and debugging experience in the context of rela-
tional queries. To summarize the highlighted shortcomings, we present the following
list:
• Inaccurate selection of unpicked data. The selection of the source (compat-

ible) data items to be traced in the workflow does not properly take into account
self-join, possibly leading to no explanation or wrong explanations. Furthermore,
the definition of compatible data in [CJ09] excludes data that are in the lineage
of some result tuple. Thus, there are cases where explanations are not produced
because not all the compatible data are identified and traced. Crime7 and Crime8
are scenarios illustrating this.

74 CHAPTER 4. QUERY DEBUGGING

• Inaccurate definition of successors. The compatible tuples are traced inde-
pendently from each other based on the definition of successors instead of valid
successors, as introduced in NedExplain. In this way, Why-Not inaccurately iden-
tifies subqueries to be responsible (or fails to identify them as responsible) for the
missing-answers, as scenarios Crime5 and IMDB2 show.

• Insufficient detail. Why-Not returns a set of subqueries as explanation for the
missing answer. This information could be difficult to be reused by a developer in a
query-fixing trial,with no further details, such as the compatible tuples pruned by
the subqueries, or if the query has empty intermediate results. Scenarios Crime3
and GOV4 demonstrate this lack of detail.

Runtime Evaluation

We first study the runtime distribution for the different phases of NedExplain.
We then compare NedExplain’s runtime to the runtime of Why-Not.

!"

#$"

$!"

%$"

&!!"

'(
)*
+&
"

'(
)*
+#
"

'(
)*
+,
"

'(
)*
+-
"

'(
)*
+$
"

'(
)*
+.
"

'(
)*
+%
"

'(
)*
+/
"

'(
)*
+0
"

'(
)*
+&
!"

)*
12

&"

)*
12

#"

34
5&
"

34
5#
"

34
5,
"

34
5-
"

34
5$
"

34
5.
"

34
5%
"

!
"#
$
%"
&'
()
*'+

,#
-.

"

,(%"/0(%"

)6789:7;98<6" '<=>98?:@A76B@C" DEFF@GG<CGA76B@C" 2<H<=IJ>"

Figure 4.8: Phase-wise runtime for NedExplain

Phase-wise runtime. We distinguish among four phases of NedExplain:

1. Initialization: the global structures initialization

2. CompatibleFinder : the computation of the compatible tuples set

3. SuccessorsFinder : the computation of successors of compatible tuples for each
subquery output, corresponding to Algorithm 3 and

4. Bottom-up traversal : the main NedExplain steps (including SQL query execu-
tions) following the bottom-up approach, i.e. Algorithm 1 without initializa-
tion and successors computation (call to Algorithm 3).

Figure 4.8 reports the distribution of the execution time over these phases for
each of our scenarios. We make the following remarks.

4.1. NEDEXPLAIN 75

• We observe a similar distribution for scenarios with the same query, e.g., Crime1
and Crime2 or GOV1, GOV2, and GOV3, due to the fact that these scenarios
engage the same database instances and evaluate (almost) the same operators.
• For scenarios involving different queries, we observe that in general, for SPJ

queries, the overall runtime is dominated by the initialization phase (between
40 and 77%), essentially caused by the initialization of all relevant java objects.
• After initialization, SuccessorFinder has the second largest impact on the overall

runtime for most SPJ scenarios, with Gov1 – Gov3, based on Q6, and Crime8
being the exceptions. This phase essentially corresponds to Algorithm 3, which
computes the lineage of tuples and performs tuple set comparisons. Let us focus
for example on one of the exceptions: Crime8. Here the last valid successor is
lost very early (on m12 in Figure 4.7(c)) after evaluating simple operators, which
explains both the low fraction of runtime used to find successors but also the short
time needed for the bottom-up traversal.
• The picture changes when considering SPJA queries, where most of the time is

dedicated to the computation of valid successors. This can be explained, by the
extra computations needed in the SPJA case of Algorithm 3. These computations
basically require additional SQL query executions, on the input and output of tree
nodes after the breakpoint view node.

Runtime comparison to Why-Not. Figure 4.9 displays, for each scenario, the
time (in ms) each algorithm needs to produce its Why-Not answers. Generally, we
observe that NedExplain is faster compared to Why-Not. One reason is that the
implementation of the Why-Not algorithm uses Trio for lineage calculation, adding
a substantial overhead to runtime especially when many trio tables are referenced as
in Crime1 and Crime2. NedExplain traces the compatible tuples by issuing queries
directly to the underlying Postgres database based on their unique identifiers in
order to find their successors, which speeds up the process. However, even if we
assumed that a smarter implementation of computing lineage was adopted by Why-
Not, the run-time performance is expected to be comparable to that of NedExplain
as the algorithms’ complexity is the same.

76 CHAPTER 4. QUERY DEBUGGING

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"
&'
()

*$
"

&'
()

*%
"

&'
()

*+
"

&'
()

*,
"

&'
()

*#
"

&'
()

*-
"

&'
()

*.
"

&'
()

*/
"

&'
()

*0
"

&'
()

*$
!"

()
12

$"
()

12
%"

34
5$
"

34
5%
"

34
5+
"

34
5,
"

34
5#
"

34
5-
"

34
5.
"

!"
#$
"
%&
'

(%#')*%#'

6789:;<" =>?*@ABCD:"

Figure 4.9: Why-Not and NedExplain execution time

4.1.7 Conclusion

We have addressed the issue of answering Why-Not questions by first formally
defining, for the first time, the concepts of Why-Not question and Why-Not answer
(a.k.a. query based explanations) w.r.t. relational queries including projection,
selection, join, union, and aggregation (SPJUA queries). Based on these defini-
tions, we have described NedExplain, an algorithm to produce correct and com-
plete query based explanations w.r.t. the definitions, based on a specific query
tree representation. As discussed and validated through experiments, NedExplain
is capable of providing a more relevant and correct set of answers compared to the
state-of-the-art Why-Not algorithm, while being competitive or more efficient in
terms of runtime. The set of query based explanations could further be used to
obtain modification-based explanations and/or in combination with instance based
explanations to compute hybrid explanations to Why-Not questions or improve the
query-based explanations part in [Her15].

In the future, an obvious optimization of NedExplain can be achieved by consid-
ering only the compatible tuples while tracing them on the query tree. This could
be achieved by restricting the considered relation instances (on leaves of the query
tree) to only compatible tuples. In this way, all tuples generated by intermediate
operator nodes are guaranteed to be valid successors and less operations and storage
space are required.

Besides the optimization of NedExplain, an open issue is to extend the frame-
work to cover the whole class of relational queries, i.e., adding set difference to the
relational operators. This would require tracing data that are expected to be found
in the query result (compatible tuples) but also data that are not expected to be in
the result (in order not to eliminate the compatible tuples).

A limitation of the query-based explanations provided by NedExplain is that

4.2. TED 77

they are dependent on the chosen query tree. For this reason, different trees can
lead to different query-based explanations, which could moreover be incomplete
as the process terminates at the node where the last compatible tuple is traced.
Thus, the remaining nodes higher in the tree are left unexamined. This is an issue
strongly related to the tree representation of queries at the basis of the NedExplain
algorithm. In the next section, we propose a new approach towards answering Why-
Not questions in a tree-independent way.

4.2 Ted

The previous section was dedicated to the NedExplain algorithm, the first ap-
proach developed in this thesis to answer Why-Not questions. The computed query
based explanations consisted in the set of subqueries in the query Q that are marked
as responsible for pruning out relevant data (a.k.a. compatible tuples). NedExplain,
as well as the state of the art Why-Not algorithm (see Section 3.2) rely on a specific
query tree and thus produce explanations that vary for reordered query trees. This
fact leads to an open question regarding a method that can produce the same expla-
nations regardless the ordering of the operators in the query tree. The desiderata
moreover require that the produced explanations contain all possible query condi-
tions that are to blame for not obtaining the missing answer. In addition to knowing
which conditions are to blame (named picky in NedExplain as we saw in Section 4.1),
it would be useful for the user to know in what combinations the responsible con-
ditions should be considered. This could help in a subsequent query refining phase
as the user should be aware for example that changing only the picky selection will
not make a difference if she does not change also the picky join.

The following example provides an intuition on the shortcomings of the previous
algorithms.

Example 4.2.1. Consider the data of Figure 4.10 describing airlines and countries
they serve and the SQL query asking about the countries served by ‘old’ airlines.
Assume that a developer (or user) wants an explanation for the absence of Emirates
from the query result as she believed that this airline company is an old established
one. This question can be expressed as the Why-Not question {airline=Emirates}.

Figure 4.11 shows two possible query plans for the SQl query. On each tree, we
have marked the operators (tree nodes) computed as picky by Why-Not [CJ09] (◦)
and NedExplain [BHT14c] (?) as well as the tree operators returned as part of
hybrid explanations 2 by Conseil [Her13, Her15] (•). It is clear that each algorithm
returns a different result for each of the two query trees. We can further observe that
in most of the cases the explanation returned is only a partial result. A complete
explanation should include both the selection that is too strict for the compatible
tuple (Emirates, 1985, 3) in the Airline table and the join because the compatible
tuple does not find join partners in the Country table.

78 CHAPTER 4. QUERY DEBUGGING

SELECT airline,
country

FROM Airline A,
Country C

WHERE ccode = code
AND year < 1985

Airline
airline year ccode
KLM 1919 1
Qatar 1993 1
Aegean 1987 2
Emirates 1985 3

Country
code country

1 Australia
2 France

Figure 4.10: Example query and data

Πairline,country

σyear<1985•

oncode ◦ ? •

Airline Country

Πairline,country

oncode

σyear<1985 ◦ ? •

Airline

Country

Figure 4.11: Reordered query trees for the query of Figure 4.10 and algorithm results
(Why-Not ◦, NedExplain ?, Conseil •)

The above example clearly shows the shortcomings of existing algorithms. In-
deed, the developer first has to understand and reason at the level of query trees
instead of reasoning at the level of the declarative SQL query she is familiar with.
Second, she always has to wonder whether some explanation is complete, and if
there are other explanations that she could consider instead.

To overcome these problems we propose a new formalization of query based ex-
planations as a polynomial of query conditions. Intuitively, a term of the polynomial
captures one possible combination of picky conditions that should be considered to-
gether. For the previous example, oncode σyear<1985 is a term capturing the fact that
the join and the selection operators are together picky for the compatible tuple.
Then, the different terms of the polynomial provide the user with all the possible
explanations and thus enables her to choose among the different debugging possibili-
ties. For example, consider the query in Figure 4.10, whose condition year < 1985 is
replaced by year < 1987 and consider the Why-Not question (airline ≤′ Emirates′).
Now, we have two alternative possible explanations are two: (1) the selection on year
is too strict for the compatible tuple with the value Aegean, (2) the compatible tu-
ple with the value Emirates did not find any join partners. These explanations
result into two different terms in the polynomial, i.e., oncode + σyear<1985 indicating
that they can be considered independently from one another. Except for the terms
of the polynomial, the (integer) coefficient of a term provides useful insight on the
estimated number of missing tuples that will be potentially returned if the term
is changed. For example, the addend 1 ∗ σyear<1985 means that changing the term

2. More specifically, the query based part of the hybrid explanations is shown on the tree.

4.2. TED 79

σyear<1985 will yield up to one missing tuple in the result.

4.2.1 Contribution

The polynomial-based explanations approach has the following contributions:

Why-Not answer polynomial. Our formal framework is defined for conjunctive
queries with inequalities and unions thereof for the relational data model under
set semantics. It supports a larger class of Why-Not questions w.r.t. previous
works, i.e., both simple and complex Why-Not questions. The form of the Why-
Not answer is unprecedented, as this work is the first to formalize Why-Not answer
polynomials providing fine-grained query based explanations. Intuitively, each term
of a polynomial represents one combination of the query conditions that together
explain the absence of some of the missing tuples and the set of all terms covers all
possible such combinations. The coefficients can be used to obtain an upper bound
on the number of recoverable missing tuples when properly changing the conditions
of a term.

Extended formalization of the Why-Not answer polynomial. An extended
formalization of Why-Not answer polynomials is provided to cover the relational
data model under bag and probabilistic semantics. This confirms the robustness of
the chosen polynomial representation, making it a good fit for a unified framework
for representing query based explanations for different semantics.

Equivalent queries w.r.t. the Why-Not answer polynomial We define
the class of equivalent queries w.r.t. the Why-Not answer polynomial. We show
that isomorphic queries have isomorphic Why-Not answer polynomials given a fixed
Why-Not question. This leads us to state that for a given explanation scenario
the Why-Not answer polynomial is invariant of the topology of the query tree and
that moreover the Why-Not answer polynomial subsumes the NedExplain condensed
Why-Not answer. Additionally, we show that equivalent queries in general are not
equivalent w.r.t. the Why-Not answer polynomial and as such, no homomorphisms
exist mapping the Why-Not answer polynomials of two equivalent queries to one
another. Finally, we provide an approximate Why-Not answer polynomial for a
query Q, when there is available one equivalent query Q′ resulting from tableau
minimization of Q.

Naive Ted and optimized Ted++ algorithms. We first provide a naive al-
gorithm for computing Why-Not answer polynomials, named Ted. This algorithm
is a straightforward implementation of the formal definitions. We show that Ted

80 CHAPTER 4. QUERY DEBUGGING

is impractical. We thus propose an optimized algorithm, Ted++, capable of ef-
ficiently computing the Why-Not answer polynomial, relying on schema and data
partitioning (allowing for a distributed computation) and advantageous replacement
of expensive database evaluations by mathematical calculations.

Experimental validation. We experimentally evaluate the quality of the pro-
posed Why-Not answer polynomial and the efficiency of the Ted++ algorithm.
The experiments include a comparative evaluation to existing algorithms comput-
ing query-based explanations for SQL queries in terms of explanation quality and
run-time, as well as a thorough study of the Ted++ performance w.r.t. different
parameters.

4.2.2 Preliminaries

In this section (Section 4.2) we consider conjunctive queries with inequalities and
unions thereof (Definition 2.1.2) and a set of simple or complex Why-Not questions
gWN (Definition 2.2.1). Initially we restrict our discussion to the relational data
model under set semantics. An extension to other data model semantics (bag and
probabilistic) is provided in Section 4.2.7.

In the following we focus our discussion on a single query Q and a single Why-
Not question WN . Extending the method for covering unions of conjunctive queries
and general Why-Not questions is trivial and is discussed in the end of this chapter.

As usual, to consider a Why-Not question and proceed to answer it, the Why-
Not question should be well founded (Definition 2.2.4). Under this assumption, a
compatible tuple τ is defined as in Definition 2.2.5 and the set of compatible tuples
is denoted by CT .

The following example serves as the running example summarizing the prelimi-
nary notions for the problem and setting the basis of the subsequent discussion.

Example 4.2.2. Figure 4.12 describes the explanation scenario of the running ex-
ample for this section. Figure 4.12(a) displays an instance I over the schema
S={R, S, T}. Figure 4.12(b) displays a query Q over S, whose conditions have
been named op1, . . . , op5 for convenience. R.B=T.B and T.D=S.D are complex
conditions, whereas the others are simple. Moreover, the query result is

Q[I]={(R.B:5, S.D:4, T.C:9)}

Then, we may wonder why in Q[I] there is no tuple for which R.B<S.D and
T.C ≤ 9. According to Definition 2.2.1, this Why-Not question can be seen as the
set of the conditions {R.B<S.D, T.C ≤ 9} (Figure 4.12(c)). Since R.B<S.D is a
complex condition, WN is a complex Why-Not question. The compatible tuples set
CT is the result of the query QWN=σR.B<S.D∧T.C≤9[R × S × T], and contains 12
tuples. For example, one compatible tuple is

τ1=(R_Id:Id1, R.A:1, R.B:3, S_Id:Id5, S.D:4, S.E:8, T_Id:Id8, T.B:3, T.C:4, T.D:5)

4.2. TED 81

R
A B R_Id
1 3 Id1

2 4 Id2

4 5 Id3

8 9 Id4

S
D E S_Id
4 8 Id5

5 3 Id6

3 9 Id7

T
B C D T_Id
3 4 5 Id8

3 8 1 Id9

5 3 3 Id10

5 9 4 Id11

(a) Sample Instance I

Q
S = {R, S, T}

Γ = {R.B, S.D, T.C}

C = {op1, op2, op3, op4, op5}

C
op1 R.A > 3
op2 R.B = T.B
op3 T.C ≥ 8
op4 T.D = S.D
op5 S.E ≥ 3

(b) query Q = (S,Γ, C) and naming of conditions in C

WN
{R.B<S.D, T.C <= 9}

(c) Why-Not question WN

Figure 4.12: Scenario of running example

In what follows we synthesize compatible tuple by providing R_Id attributes only.
In this way we write that τ1=(R_Id:Id1, S_Id:Id5, T_Id:Id8). Table 4.2.2 summa-
rizes the set of compatible tuples for the running example.

4.2.3 Polynomial Explanations

To build the query-based explanation of WN , we start by specifying what ex-
plains that a compatible tuple τ did not lead to an answer. Intuitively, the expla-
nation consists of the query conditions pruning out τ .

Definition 4.2.1 (Explanation for τ). Let (S, I, Q,WN) be an explanation scenario,
where Q=(S,Γ, C) and WN is a well founded Why-Not question. Let CT be the set
of compatible tuples w.r.t. WN and I. Let τ∈CT be a compatible tuple. Then, the
explanation for τ is the set of conditions Eτ={op|op∈C and τ 6|= op}.

Note that the conditions in Eτ may be called picky conditions, in connection to
the picky subqueries in NedExplain and picky manipulations in Why-Not [CJ09].

82 CHAPTER 4. QUERY DEBUGGING

Table 4.6: Compatible tuples for scenario in Figure 4.2.2
CT
R_Id S_Id T_Id
Id1 Id5 Id8

Id1 Id5 Id9

Id1 Id5 Id10

Id1 Id5 Id11

Id1 Id6 Id8

Id1 Id6 Id9

Id1 Id6 Id10

Id1 Id6 Id11

Id2 Id5 Id8

Id2 Id5 Id9

Id2 Id5 Id10

Id2 Id5 Id11

Example 4.2.3. Consider the compatible tuple τ1 in Example 4.2.2. The condi-
tions of Q (see Example 4.2.2), not satisfied by τ1 are op1, op3, and op4. So,
Eτ1={op1, op3, op4} is the explanation for the exclusion of τ1 out of Q[I]. More
accurately, Eτ1 is the explanation for the exclusion of the missing tuple that could
have existed in the result, if τ1 was not pruned out. For convenience however, we
simply say that Eτ1 is the explanation for τ1.

Having defined the explanation w.r.t. one compatible tuple, the explanation for
WN is obtained by simply summing up the explanations for all the compatible tuples
in CT , leading to the expression

∑
τ∈CT

∏
op∈Eτ

op. We justify modelling the explanation

of τ with a product (conjunction) of conditions by the fact that in order for τ to
‘survive’ the query conditions and give rise to a missing tuple, every single condition
in the explanation must be ‘repaired’. The sum (disjunction) of the products for
each τ∈CT means that if any explanation is ‘correctly repaired’, the associated τ
will produce a missing tuple.

Of course, several compatible tuples may share the same explanation. Thus, the
final Why-Not answer is a polynomial having as variables the query conditions and
as integer coefficients the number of compatible tuples sharing an explanation.

Definition 4.2.2 (Why-Not answer polynomial). Let ∆=(S, I, Q,WN) be an expla-
nation scenario, where Q=(S,Γ, C) and WN is a well founded Why-Not question.
Let CT be the set of compatible tuples w.r.t. WN and I. The Why-Not answer
polynomial w.r.t. ∆ is defined as the polynomial

PEX =
∑

E∈E

coefE
∏

op∈E

op

where E = 2C and coefE =| {τ∈CT |E is the explanation for τ} |.

4.2. TED 83

Intuitively, E contains all potential explanations, and each of these explanations
prunes from zero to at most |CT | compatible tuples. Moreover, the coefficient of
an explanation is equal to the number of compatible tuples with the same explana-
tion. As a result, no coefficient could have a value greater than the number of the
compatible tuples in CT as expressed in the following property.

Property 4.2.1. Assuming the previous assumptions, and that the Why-Not answer
polynomial is

∑
E∈E

coefE
∏
op∈E

op w.r.t. ∆, then for each explanation ε it holds that

coefE∈{0, . . . , |CT |}

Each term of the polynomial provides an alternative explanation to be explored
by the user who wishes to recover some missing tuples. Additionally, the polyno-
mial as in Definition 4.2.2 offers, through its coefficients, some useful hints to users
interested in the number of recoverable missing tuples. More precisely, by choosing
to repair the conditions in a given explanation E , we obtain an upper bound for
the number of compatible tuples that can be recovered. A change of the conditions
in E may entail the repair of some other explanation as well, those that are strict
subsets of E . In this way, the upper bound is the sum of the coefficients of all the
explanations that are sub-sets of (the set of conditions of) E .
Definition 4.2.3 (Upper Bound). Assuming the previous assumptions, the upper
bound λE of recoverable compatible tuples by the explanation E is

λE=
∑

E ′⊆E

coeffE ′

Example 4.2.4. In Example 4.2.3 we found the explanation {op1, op3, op4}, which
is translated to the polynomial term op1op3op4. Taking into consideration all 12
compatible tuples of our example, we obtain the Why-Not answer polynomial:

2op1op4 + 2op1op3op4 + 4op1op2op4 + 2op1op2op3 + 2op1op2op3op4

In the polynomial, each addend, composed by a coefficient and an explanation, cap-
tures a way to obtain missing tuples. For instance, the explanation op1op2op4 indi-
cates that we may recover some missing tuples if op1 and op2 and op4 are changed.
The upper bound λop1op2op3 = 4 + 2 = 6 indicates the maximum number of missing
tuples that a developer may recover in the query result if she changes the conditions
in the explanation op1op2op3. Note, that in the above equation 4 is the coefficient of
op1op2op3 and 2 is the coefficient of its sub-explanation op1op4.

As the visualization of the polynomial per se may be cumbersome and thus
not easy for a user to manipulate, some post-processing steps could be applied.
Depending on the application or needs, only a subset of the explanations could be
returned, like for instance minimum explanations (i.e., for which no sub-explanations
exist), or explanations giving the opportunity to recover a specific number of tuples,
or have specific condition types etc.

84 CHAPTER 4. QUERY DEBUGGING

Example 4.2.5. Consider again the Why-Not answer polynomial
PEX=2op1op4 + 2op1op3op4 + 4op1op2op4 + 2op1op2op3 + 2op1op2op3op4 from the
previous example. In a setting where a developer is interested in making only the least
changes on the query conditions, the minimized polynomial that we could provide her
with is

2op1op4 + 2op1op2op3

It is clear that these explanations are not included in any other explanation of PEX
and thus correspond to the minimum alternative changes that can be made to the
query in order to be able to obtain some missing tuples.

In a different situation, consider a developer interested in picking a term that if
changed may lead to recovering 4 missing tuples. The coefficients inform us that she
may succeed by changing the conditions in the explanation op1op3op4 or op1op2op4

or op1op2op3op4.
Finally, assume that the developer is willing to change only selection conditions

in the query. The polynomial informs her that this is not possible because none of
the terms is solely composed by selection conditions.

Extension to queries with unions, general Why-Not questions and k-
Why-Not questions

Extending the framework to unions of conjunctive queries is simple. Let ∆ =
{S, I, Qu,WNu} be an explanation scenario where Qu is a union of conjunctive
queries and WNu is expressed over the output schema of Qu. Assume that Qu

stands also for the set of queries involved in the union. To solve this scenario,
first we may need to unrename the Why-Not question so as it is expressed only
over source relation attributes, in a similar way as in Section 4.1 for NedExplain.
Thus, for each Q ∈ Qu we obtain one explanation scenario ∆Q=SQ, IQ, Q,WNQ and
consequently one PEXQ w.r.t. the scenario ∆Q. The Why-Not answer polynomial
w.r.t. the scenario ∆ is PEX =

∑
Q∈Qu

PEXQ.

In the same spirit for a general Why-Not question gWN , we consider each Why-
Not question WN independently and obtain one PEXWN for each WN . Thus, the
Why-Not answer polynomial is PEX =

∑
WN∈gWN

PEXWN .

Finally, the discussion on the interpretation of the polynomial coefficients and
the upper bound in Definition 4.2.3 lead us to introduce an extended form of a Why-
Not question being able to express questions about the number of missing tuples
expected in the result. The framework can be easily extended to answer such kind
of k-Why-Not question asking “Why are there not k tuples in the result with specific
characteristics (described in WN)? ”.

Definition 4.2.4. (k-Why-Not question) Given a Why-Not question WN as in Def-
inition 2.2.1 and a positive integer k, the tuple k−WN=(k,WN) denotes a k-Why-
Not question.

4.2. TED 85

Algorithm 6: Ted algorithm
Input: Q, I, WN
Output: PEX, the Why-Not answer polynomial

1 Polynomial PEX← 0 ;
2 Set Part←partitioning(S);
3 Set CT ← CompatibleFinder(Part, I);
4 for (τ : compatible tuple in CT) do
5 Eτ ← 1; initialization of the explanation for τ
6 for (op:condition in C) do
7 if τ 6|= op then
8 Eτ → Eτ ∗ op;

9 PEX← PEX + Eτ ;
10 return PEX;

Example 4.2.6. Consider the Why-Not question WN={R.B<S.D, T.C≤9} of our
running example. If the developer expected to find 6 tuples in the result satisfying
the conditions in WN then she could express the k-Why-Not question (6,WN).

If PEX is the Why-Not answer polynomial for the Why-Not question WN , then
the Why-Not answer polynomial k−PEX w.r.t. k−WN contains only these expla-
nations in PEX whose upper bound is lower than k. Moreover, the coefficient of an
explanation E in k − PEX is the upper bound of E , given PEX. Thus,

k − PEX=
∑

E∈PEX and λE≥k

λEE

In this way, explanations that for sure cannot lead to recovering k missing tuples,
are excluded from the Why-Not answer.

Example 4.2.7. Let us continue the previous example to find the Why-Not answer
polynomial w.r.t. the k-Why-Not question k −WN . For this reason, consider given
the PEX w.r.t. WN by Example 4.2.4. Then, the Why-Not answer polynomial
w.r.t. k −WN is 6op1op2op4 + 12op1op2Op3op4. Here, the explanations op1op4 and
op1op3op4 have been excluded. Indeed, the upper bounds of these explanations (2 and
4 respectively) indicate that even if we change the conditions in the explanations it
is impossible to yield 6 missing tuples in the result.

4.2.4 Ted Naive Algorithm

In this section we provide an algorithm called Ted that for computes Why-Not
answer polynomials by a naive implementation of the previous definitions.

Algorithm 6 presents the pseudo-code for Ted. The first step partitions the
input query schema based on the conditions of the Why-Not question. Then, Ted
computes the set of compatible tuples CT , which is used for the computation of the
Why-Not answer.

86 CHAPTER 4. QUERY DEBUGGING

In more detail, to compute the set of compatible tuples (line 3) , we could di-
rectly perform the query QWN as indicated in Definition 2.2.5. This is however a
time-consuming query as it requires cross products over the input relation instances.
To improve the efficiency of the compatible tuples computation, we divide the prob-
lem into independent subproblems based on a partitioning of the relations in S as
shown in Definition 2.2.6. As a reminder, the partitioning groups together relations
that are connected through conditions of WN . For a simple WN each resulting par-
tition contains exactly one relation, as each condition in WN spans over exactly one
relation (this was also the case of the Why-Not questions considered in NedExplain
in Section 4.1).

So, using Lemma 2.2.1, Ted first determines the set of partial compatible tuples
for each partition and then combines the partitions using cross product to produce
the set CT .

Example 4.2.8. For the running example, the relations R, S are grouped together in
one partition as they are connected through the Why-Not question condition R.B <
S.D, whereas T forms a partition on its own. Then, the set of partial compatible
tuples over the first partition are

{(R_Id:Id1, S_Id:Id5), (R_Id:Id1, S_Id:Id6), (R_Id:Id2, S_Id:Id6)}

The set of partial compatible tuples over the second partition contains all the tuples
of T . Indeed, the cross product of the partial compatible tuple sets results into the
set of compatible tuples CT containing the 12 tuples shown in Table 4.2.2.

The computation of the Why-Not answer polynomial directly follows from the
definitions of Section 4.2.3. Thus, lines 4 – 9 describe the iteration over the set CT ,
the computation of the explanation for each τ ∈ CT (see Example 4.2.3) and the
final overall Why-Not answer polynomial (see Example 4.2.4).

Complexity analysis. The three main phases of Ted are the partitioning phase,
the computation of concatenated compatible tuples, and the computation of the
Why-Not answer polynomial.

1. As the partitioning is performed on the query input schema, its worst case
complexity is the arithmetic progression an = 1 + (n − 1) ∗ 1 = n, where
n = |S|. So, we have O(|S|) for this step.

2. The compatible tuples data complexity is bound by the cost of perform-
ing a cross product over the relation instances and thus is O(

∏
R∈S |I|R|) =

O(|I|R||S|), where |I|R| is the largest relation instance in the input of Q.
3. Finally, for the computation of the Why-Not answer polynomial the most com-

plex operation needs to check all the query conditions C for all the compatible
tuples, and thus the complexity is |I|R||S| ∗ |C|).

So, the respective worst case complexities add up to O(|I|R||S| + |I|R||S| ∗ |C|),
which simplifies to |I|R||S|.

4.2. TED 87

Algorithm 7: Ted++
Input: Q=(S,Γ, C), I, WN
Output: PEX

1 E ← powerset(C);
2 P ←validPartitioning(S,WN); * Definition 2.2.6 *
3 for Part in P do
4 CT|Part ← (Part,A(Part),WN|Part)[I|Part] ;
5 coefficientEstimation(E,P);
6 PEX←post-processing(); * Equation (F) *
7 return PEX;

As a conclusion, the naive implementation of the provided definitions for Why-
Not answer polynomial is theoretically shown to be inefficient. As the complexity
discussion shows, not only is the computation of the set of compatible tuples time
and space consuming as it often requires cross product executions, but also the
iteration over this (potentially very large) set is time consuming. As the experiments
in Section 4.2.6 confirm, this complexity renders Ted inapplicable for many cases.

4.2.5 Ted Optimized Algorithm

To overcome Ted ’s poor performance, we provide here an optimized algorithm,
called Ted++. The main feature of Ted++ is to completely avoid enumerating and
iterating over the set CT , thus it significantly reduces both space and time consump-
tion. Instead, Ted++ opts for (i) iterating over the space of potential explanations,
which is expected to be much smaller, (ii) computing sets of passing partial compat-
ible tuples, and (iii) computing the number of eliminated compatible tuples for each
explanation. Intuitively, passing tuples w.r.t. an explanation are tuples satisfying
the conditions of the explanation. Finally, we compute the polynomial based on
mathematical calculations.

Theorem 4.2.1 states that Ted++ is sound and complete w.r.t. Definition 4.2.2.

Theorem 4.2.1. Given a query q, a Why-Not question WN and an input instance
I, Ted++ computes exactly PEX.

Algorithm 7 provides an outline of Ted++. The input consists in an explana-
tion scenario S, I, Q,WN , where Q=(S,Γ, C). Firstly in Algorithm 7, line 1, all
potential explanations (combinations of the conditions in C) are enumerated, i.e.,
the set E is the powerset 2C of the set of query conditions C. The remaining steps,
discussed in the next subsections, aim at computing the coefficient of each explana-
tion. To illustrate the concepts introduced in the flow of the discussion, we rely on
the scenario introduced in Example 4.2.2 (see Figure 4.12). Figure 4.13 illustrates
several intermediate steps of Ted++ that we will subsequently describe, proceeding
in a bottom-up fashion. Note that the detailed presentation and discussion of the
algorithm Ted++ serves also for a proof sketch for Theorem 4.2.1.

So, let us discuss Ted++ per step.

88 CHAPTER 4. QUERY DEBUGGING

Algorithm 8: CoefficientEstimation
Input: E explanations space, P valid partitioning of S

1 for E∈E *access in ascending size order* do
2 Compute partE ;
3 if | E |= 1 then
4 materialize VE ;
5 βE ← Equation (B);
6 else
7 if αsubcombination of E 6= 0 then
8 {E1,E2} ← subCombinationsOf(E);
9 Γ12 ← Γ1 ∩ Γ2; *Γi is the output schema of VEi*
10 if Γ12 6= ∅ then
11 VE ← VE1 onΓ12 VE2;
12 materialize VE ;
13 else
14 | VE |←| VE1 | ∗ | VE2 |;
15 else
16 | VE |←| VE1 | ∗ | VE2 |;

17 βE ←
∏

Part∈partE
|CT|Part|− | (

n⋃
i=1

Vopi)
ext |; * Equation (E) *

18 αE ← Equation (A);

Partial Compatible Tuples Computation

Using the conditions inWN , Ted++ partitions the schema S (Algorithm 7 line 2)
into components of relations connected by the conditions in WN . This step is the
same as the partitioning step in the Ted algorithm, relying on Lemma 2.2.1. It
results into creating sets of partial compatible tuples, associated with the generated
partitions. However, it should be clear that the partial compatible tuples are never
combined through cross-product in Ted++, like it was the case in Ted.

Example 4.2.9. The valid partitioning of S was found in Example 4.2.8 to be
PartRS={R, S} and PartT={T}. The sets of partial compatible tuples CT|PartRS
and CT|PartT are given in the bottom line of Figure 4.13.

Next, we compute the number of compatible tuples pruned out by each potential
explanation, using the sets of partial compatible tuples. These numbers are used to
calculate the coefficients of the explanations in the polynomial. From this point on
we are only using compatible tuples, so we omit the word ‘compatible’ to lighten
the discussion.

Polynomial Coefficient Estimation

Each set E in the powerset E is in fact a potential explanation that is further
processed. This process is meant to associate with E (i) the set of partitions partE

4.2. TED 89

over which E is defined, (ii) the view VE of the passing partial tuples w.r.t. E , and
(iii) the number αE of tuples eliminated by E . Note that we choose to compute
passing rather than eliminated tuples as they are potentially less numerous. In an
optimized version this decision could be made dynamically based on view cardinality
estimation.

Algorithm 8 describes how we process E in ascending order of explanation size,
i.e., from explanations containing one condition to the explanation containing them
all. This enables us to reuse results obtained for sub-explanations and avoid cross
product computations by mathematical calculations. Note that an explanation E ′
is a sub-explanation of E if E ′ ⊆ E .

We first determine the set of partitions associated with an explanation E as
partE={Partop | op ∈ E}, where Partop contains at least one relation over which op
is specified.

Example 4.2.10. Consider E1={op1} and E2={op2}. From Figure 4.12(b) and the
partitions in Figure 4.13, we can see that op1 is specified over attributes of the re-
lation R and S, so it is associated only with PartRS. On the other side, op2 is associ-
ated with PartRS and PartT . Hence, partE1={PartRS} and partE2={PartRS, PartT}.
Then, the explanation E={op1, op2} is associated with the union of partE1 and partE2,
resulting in partE={PartRS, PartT}.

We use Equation (A) to calculate the number αE of eliminated tuples, using the
number βE of eliminated partial tuples and the cardinality of the partitions not in
partE . Intuitively, this formula ‘fictionally’ extends the partial tuples to “full” tuples
over CT ’s schema.

αE = βE ∗
∏

Part∈partE

|CT|Part|, (A)

where partE=P \ partE . Note that when partE is empty, we abusively consider that∏
∅=1.

The presentation now focuses on calculating βE , the only unknown value in
Equation (A). Two cases arise depending on the size (a.k.a. number of conditions)
of E .

Atomic explanations. We start with atomic explanations E with only one
condition op (Algorithm 8 lines 3-5). We firstly compute the set of passing partial
tuples w.r.t. op, i.e., the tuples that satisfy op, and store them in the view Vop. Note
that in this case (of atomic explanation) partE is a set of at most 2 partitions.So,

Vop =





π{R_id|R∈Part}(σop[CT|Part]) if partE={Part}
π{R_id|R∈Part1∪Part2}([CT|Part1] onop [CT|Part2])

if partE={Part1, Part2}
The number of partial tuples eliminated by E is the number of all partial tuples

in partE (see Lemma 2.2.1) minus the passing ones.

90 CHAPTER 4. QUERY DEBUGGING

βE =
∏

Part∈partE

|CT|Part| − |Vop| (B)

Example 4.2.11. For op2, we have partop2={PartRS, PartT}, so

Vop2=πR_Id,S_Id,T_Id([CT|PartRS]onR.B=T.B[CT|PartT])

This results in |Vop2 |=4, and by Equation (B) we obtain

βop2=|CT|Part1| ∗ |CT|Part2|−|Vop2|=3 ∗ 4−4=8

Since all partitions of P are in partop2, applying Equation (A) results in

αop2=βop2=8

For op3

βop3=|CT|PartT |−Vop3=4−2=2

so
αop3=3 ∗ 2 = 6

Figure 4.13 (second level) displays the results for all atomic explanations.

Non atomic explanations. Now, assume that E={op1, . . . , opn}, n > 1 (Al-
gorithm 8, lines 6-16). For the moment, we assume that the conditions in E share
the same schema, so the intersection and union of Vopi for i = 1, . . . , n are well-
defined. Firstly, we compute the view VE of passing partial tuples w.r.t. E as
VE=Vop1∩ . . .∩Vopn.

To compute the number of partial tuples pruned out by E , we need to find the
number of partial tuples pruned out by op1 and . . . and opn, i.e., βE= | Vop1 ∩ · · · ∩
Vopn |. By the well-known DeMorgan law [Vau01], we have βE=|Vop1 ∪ · · · ∪ Vopn|,
which spares us from computing the complements of Vopi.

To compute the cardinality of the union of the Vopi, we rely on the Principle of
Inclusion and Exclusion for counting [Hal98]:

|
n⋃

i=1

Vopi | =
∑

∅6=J⊆[n]

(−1)|J |+1 |
⋂

j∈J

Vopj |

We further rewrite the previous formula to reuse results obtained for sub-combinations
of E , leading to Equation (C).

|
n⋃

i=1

Vopi | = |
n−1⋃

i=1

Vopi | + | Vopn |

+
∑

∅6=J⊆[n−1]

(−1)|J | |
⋂

j∈J

Vopj ∩ Vopn |
(C)

4.2. TED 91

c1! c2! c3! c4! c5!

CTPart_RS! Passing partial!
 compatible tuples"
 (Example 4.2.9)!

V#!

Explanation " !

#" (Eq. (A))!
!

 e#" (Eq. (B)) !

4 * 3 = 12!
!

3 - 0 = 3!

1 * 8 = 8!
!

3 * 4 - 4 = 8!

3 * 2 = 6!
!

4 - 2 = 2!

1 * 9 = 9!
!

3 * 4 - 3 = 9!

4 * 0 = 0!
!

3 - 3 = 0!

Explanation "!c1c3! c2c3! c2c4! c3c5!

!
#" (Eq. (A))!

!
e#" (through Eq. (E))!

"
!

1 * 6 = 6!
!

3 * 4 - (0 + 6 - |V13|) = 6!

1 * 4 = 4!
!

3 * 4 - (4 + 6 - |V23|) = 4!

1 * 6 = 6!
!

3 * 4 - (4 + 3 - |V24|) = 6!

Explanation "!c1c2c3! c2c3c4!

0!
(because #5=0)!

!
!

#" (Equ. (A))!
!

 e#" (through Eq. (E))!

1 * 4 = 8!
!

3 * 4 - (8 + 0 - 0 - 0 + |V123 |)!
 = 4!

1 * 3 = 3!
!

3 * 4 - (6 + 6 - 2 - 1 + |V234 |)!
= 3!

...! ...!

...
!

|"|=1!

|"|=2!

|"|=3!

...! ...! ...!

R_Id! S_Id! R_A! R_B! S_D! S_E!

Id1! Id5! 1! 3! 4! 8!

Id1! Id6! 1! 3! 5! 3!

Id2! Id6! 2! 4! 5! 3!

T_Id! T_B! T_C! T_D!

Id8! 3! 4! 5!

Id9! 3! 8! 1!

Id10! 5! 3! 3!

Id11! 5! 9! 4!

R_Id! S_Id! T_Id!

Id1! Id5! Id8!

Id1! Id5! Id9!

Id1! Id6! Id8!

Id1! Id6! Id9!

V2! T_Id!

Id9!

Id11!

V3! R_Id! S_Id! T_Id!

Id1! Id5! Id11!

Id1! Id6! Id8!

Id2! Id6! Id8!

V4! R_Id! S_Id!

Id1! Id5!

Id1! Id6!

Id2! Id6!

V5!

R_Id! S_Id! T_Id!

Id1! Id5! Id9!

Id1! Id6! Id9!

V23! R_Id! S_Id! T_Id!

Id1! Id6! Id8!

V24!

...
!

V#!

CTPart_T!

 0!
(because #5=0)!

!
!

V#!

V1!

V123!

V13!

V234!

(V35 not materialized)!

1

(V235 not materialized)!

c2c3c5!

Figure 4.13: Running example with the different steps of Ted++ (up to explanations
of size 3) in Algorithm 7 and Algorithm 8.

At this point, we can compute βE as all the variables of the problems have been
rewritten in function of Vop views. However, so far we assumed that the conditions
in E use the same schema. In the general case, this does not hold and we have to
“extend” the schema of a view Vop to the one of VE , in order to ensure set operations
to be well-defined. The cardinality of an extended V ext

op is given by Equation (D).

| V ext
op |= (

∏

Part∈partE\partop

| CT|Part |)∗ | Vop | (D)

Based on Equation (D) we obtain Equation (E) that generalizes Equation (C).

| (
n⋃

i=1

Vopi)
ext | = | (

n−1⋃

i=1

Vopi)
ext | + | V ext

opn |

+
∑

∅�=J⊆[n−1]

(−1)|J | | (V(opj)j∈Jopn)
ext |

(E)

The cardinalities of the views VE ′ = V(opj)j∈Jopn associated with E ′ for | J |< n−1,
are sub-explanations of the explanation E and thus have already been computed

92 CHAPTER 4. QUERY DEBUGGING

by previous iterations. They only have to be extended to the schema of VE , if
needed. When |J |=n−1, then VE ′=VE . The view VE is computed by the query
(partE , {R_Id|R ∈ partE}, {op | op ∈ E}). However, there are cases when the
computation of this query can be avoided as we stress out shortly below.

Now, we trivially compute the number βE of eliminated partial tuples as the

complement of | (
n⋃
i=1

Vopi)
ext | (see Algorithm 8, line 17). The number of ‘full’

eliminated tuples is then calculated by Equation (A).

Example 4.2.12. To illustrate the concepts introduced above, please follow the sub-
sequent discussion in parallel with advising Figure 4.13. For brevity, we use subscript
i instead of opi, i.e., Vi means Vopi.

For the explanation op2op3, Equation (E) gives:

|(V2 ∪ V3)ext|=|V ext
2 |+ |V ext

3 | − |(V23)ext|

The schema of part23={Part1, Part2} is {R_Id, S_Id, T_Id}. The view V2 has
the same schema as the query Q, thus

|V ext
2 |=|V2|=4

For V3, the schema is {T_Id}, so we in order to extend it to SQ we apply Equa-
tion (D)

|V ext
3 |=|VPart1|∗ |V3|=3 ∗ 2=6

Now, we have to compute the cardinality |V ext
23 |. The conditions RB=T.B

and T.C≥8 have one relation in common.So, the query statement
{R, S, T}, {R_Id, S_Id, T_Id} for V23 does not require cross product and is
executed in order to compute that the size is |V23 |= 2 (as shown in Figure 4.13).

Finally, from Equation (E) we obtain

|(V2 ∪ V3)ext|=4+6−2=8

Since
|PartRS| ∗ |PartT | = 12

then
β23=12− 8=4

and by Equation (A)
α23=4

We now focus on the explanation op3op5. The schemas of V3 and V5 are disjoint
and intuitively V35=V3"V5. As cross product is involved V35 is not computed; instead,
we simply calculate

|V35|=|V3|∗|V5|=6

Then,
|β35|=12−(12+6−6)=0

4.2. TED 93

As we will see later, these steps are never performed in our algorithm. The fact that
op5 does not eliminate any tuple (see

α5=0

in Figure 4.13) implies that neither do any of its super-combinations. Thus, we
know a priori that

α35=α235= . . .=0

Finally, we illustrate the case of a bigger size combination, for example op2op3op4

of size 3. Equation (E) yields

|(V2 ∪ V3 ∪ V4)ext|=|(V2 ∪ V4)ext|+ |V ext
3 |−|(V23)ext|−|(V43)ext|+|(V243)ext|

All terms of the right side of the equation are available from previous iterations,
except for |(V234)ext|. After executing the query for V234 we obtain So,

|(V234)ext|=9

and
β234=α234=12− 9 = 3

In the same way, we compute all the possible explanations until we reach the expla-
nation op1op2op3op4op5.

View Materialization: when and how. To decide when and how to materi-
alize the views for the explanations, we partition the set of the views associated with
the conditions in E . Consider the relation ∼ defined over these views by Vi ∼ Vj if
the target schemas of Vi and Vj have at least one common attribute. Consider the
transitive closure ∼∗ of ∼ and the induced partitioning of VE through ∼∗.

When this partitioning is a singleton, VE needs to be materialized (Algorithm 8,
line 9). As previously mentioned, we materialize the view the query VE using the
query statement (partE , {R_Id|R ∈ partE}, {op | op ∈ E}). Nevertheless, we avoid
the materialization of VE if the partitioning is a singleton (Algorithm 8, line 9 & 16),
when for some sub-combination E ′ of E it was computed that αE ′=0. In that case,
we know a priori that αE=0 (see Example 4.2.12).

If the partitioning is not a singleton, VE is not materialized (Algorithm 8,
line 14). For example, the partitioning for op3op5 is not a singleton and so we
have |V35|=|V3|×|V5|=6.

Post-processing. In Algorithm 8 we associated with each possible explanation E
the number of eliminated tuples αE . However, αE includes any tuple eliminated by
E , even though the same tuples may be eliminated by some super-combinations of E
(see Example 4.2.13). This means that for some tuples, more than one explanations
have been assigned. To correct this, the last step of Ted++ (Algorithm 7, line 6)
calculates the coefficient for each explanation E by subtracting the coefficients of its
super-explanations from αE . This step is performed top-down. The coefficient of an
explanation is thus

94 CHAPTER 4. QUERY DEBUGGING

coefE= αE−
(∑

E⊆E ′
coefE ′

)
(F)

Example 4.2.13. Consider known coef1234=2 and coef123=2. We have found in
Example 4.2.12 that α23=4. With Equation (F), coef23=4−2−2=0. In the same way
coef2=4−0−2−2=0. The algorithm leads to the expected Why-Not answer polyno-
mial already provided in Example 4.2.4.

Complexity Analysis In the pseudo-code provided by Algorithm 7, we can see
that Ted++ divides into the phases of (i) partitioning S, (ii) materializing a view for
each partition, (iii) computing the explanations, and (iv) computing the exact coeffi-
cients. When computing the explanations, according to Algorithm 8, Ted++ iterates
through 2|C| condition combinations and for each, it decides upon view materializa-
tion (again through partitioning) before materializing it, or simply calculates |VE |
before applying equations to compute αE . Overall, we consider that all mathemati-
cal computations are negligible so, the worst case complexities of steps (i) through
(iv) are O(|S|+|WN |)+O(|S|) + O(2|C|(|S| + |C|))+O(2|C|). For sufficiently large
queries, we can assume that |S|+|C|<<2|C|, in which case the complexity simplifies
to O(2|C|).

Obviously, the complexity analysis above does not take into account the cost
of actually materializing views; in its simplified form, it only considers how many
views need to be materialized in the worst case. Assume that |IR| is the biggest
size relation instance in I. The materialization of any view is bound by the cost
of materializing a cross product over the relations involved in the view - in the
worst case O(|IR||S|). This yields a combined complexity of O(2|C||IR||S|). However,
Ted++ in the general case (more than one induced partitions), has a tighter upper
bound: O(|IR|kE1 + |IR|kE2 + . . .+ |IR|kEN), where kE denotes the number of relations
in the partitions in partE , for all combinations E and N = 2|C|. It is easy to see that
|IR|kE1+|IR|kE2+ . . .+|IR|kEN < 2|C||IR||S|, when there is more than one partition.

4.2.6 Experiments

This section presents an experimental evaluation of Ted++ on real and synthetic
datasets. In Section 4.2.6, we compare Ted++ with the related algorithms returning
query-based explanations (Ted [BHT14a], NedExplain and Why-Not [CJ09]). Sec-
tion 4.2.6 studies the runtime of Ted++ with respect to various parameters. We
have implemented all algorithms in Java. We ran the experiments on a Mac Book
Air, running MAC OS X 10.9.5 with 1.8 GHz Intel Core i5, 4GB memory, and
120GB SSD and use PostgreSQL 9.3 as database system.

Comparative Evaluation

The comparative evaluation of Ted++ to Why-Not and NedExplain considers
both efficiency (runtime) and effectiveness (explanation quality). When considering

4.2. TED 95

Table 4.7: Queries for the scenarios in Table 4.8
QueryExpression
Q1 πP.name,C.type[C onsector W onwitnessName S onhair,clothes P]
Q2 πP.name,C.type[σC.sector>99[C] onsector W onwitnessName S onhair,clothes P]
Q3 πW.name,C2.type[W onsector2 C2 onsector1 σC.type=Aiding[C]]
Q4 πP2.name[P2 on!name,hair σP1.name<B[P1]]
Q5 πname,L.locationid[LonmovieIdσM.year>2009[M]onnameσR.rating≥8[R]]
Q6 πCo.firstname,Co.lastname[σAA.party=Republican[AA] onid σCo.Byear>1970[Co]]
Q7 πSPO.sponsorId,SPO.sponsorln,E.camount[EoneIdσES.sub=Sen. Com.[ES]onidσSPO.party=Rep.[SPO]]

Qs3 σtype=Aiding[Q2]
Qs4 σwitnessname>S[Qs3]
Qj C onsector σname>S[W]
Qj2 Qj onwitnessname S
Qj3 Qj2 onclothes P
Qj4 Qj3 onhair P
Qc L1onlidL2 onM2.mid=L2.mid M2 onyear,!mid σyear=1980[M1]

Qtpch Conckeyσodate<1998−07−21[O]onokeyσsdate>1998−07−21[L]

efficiency, we also include Ted in the discussion (Ted producing the same Why-Not
answer as Ted++).

For the experiments we have used data from three databases named crime, imdb,
and gov (the same as in Section 4.1.6). For each dataset, we have created a series of
scenarios (crime1 to gov5 in Table 4.8 - ignore remaining scenarios for the moment).
Each scenario consists of a query further defined in Table 4.7 (Q1 to Q7) and a
simple Why-Not question, as Why-Not and NedExplain support only this type of
Why-Not question. We have designed queries with a small set of conditions (Q6)
and others with more conditions (Q1, Q3, Q5, Q7), containing self-joins (Q3, Q4),
having empty intermediate results (Q2), as well as containing inequalities (Q2, Q4,
Q5, Q6).

96 CHAPTER 4. QUERY DEBUGGING

Table 4.8: Scenarios
Scenario Query Why-Not question
crime1 Q1 {P.Name=Hank,C.Type=Car theft}
crime2 Q1 {P.Name=Roger,C.Type=Car theft}
crime3 Q2 {P.Name=Roger,C.Type=Car theft}
crime4 Q2 {P.Name=Hank,C.Type=Car theft}
crime5 Q2 {P.Name=Hank}
crime6 Q3 {C2.Type=kidnapping}
crime7 Q3 {W.Name=Susan,C2.Type=kidnapping}
crime8 Q4 {P2.Name=Audrey}
imdb1 Q5 {name=Avatar}
imdb2 Q5 {name=Christmas Story,L.locationId=USANew York}
gov1 Q6 {Co.firstname=Christopher}
gov2 Q6 {Co.firstname=Christopher,Co.lastname=MURPHY}
gov3 Q6 {Co.firstname=Christopher,Co.lastname=GIBSON}
gov4 Q7 {sponsorId=467}
gov5 Q7 {SPO.sponsorln=Lugar,E.camount>=1000}

crimes− Q1,Q2, {P.Name=Hank,C.Type=Car theft}crimes4 Qs3,Qs4

crimej−crimej4 Qj−Qj4, {W.name=Jane, C.type=Car theft}

imdbc Qc4
{L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year,M1.name=Duck Soup}

imdbc2 Qc4
{L2.locationid=L1.locationid, M1.mid=L2.mid,
L1.year>L2.year}

crime5c2 Q2 {P.Name=Hank, C.type=Car theft}
crime5c3 Q2 {P.Name=Hank, C.type=Car theft, S.witness=Aphrodite}

crime5c4 Q2 {P.Name=Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34}

crime5c5 Q2 {P.Name=Hank ,C.type=Car theft, S.witness=Aphrodite,
W.sector =34,S.hair=green}

imdbcc Qc {M.year>M2.year}
tpchs Qtpch {L.extprice>50000,O.odate<1996-01-01}
tpchc Qtpch {L.extprice>100000, O.odate=L.cdate, C.nkey=4}

Why-Not Answer Evaluation
In Table 3.1 we report that the explanations returned by Why-Not and NedEx-

plain consist of sets of query conditions, whereas Ted++ returns a polynomial of
query conditions. For comparison purposes, we trivially map Ted++’s Why-Not an-
swer to sets of conditions, e.g., 3op3∗op4+2op3∗op6 maps to {{op3, op4}, {op3, op6}}.
For conciseness, we abbreviate condition sets, e.g., the previous set of explanations
is written {op34, op36}.

Table 4.9 summarizes the Why-Not answers of the three algorithms. These sce-

4.2. TED 97

narios show that the explanations provided by NedExplain or Why-Not are incom-
plete, in two ways. First, they produce only a subset of the possible explanations,
failing to provide alternatives that could be useful to the user when she tries to fix
the query. Second, even the explanation provided may lack some conditions, which
can drive the user to fruitless fixing attempts. On the contrary, Ted++ produces all
the possible, complete explanations.

For the first claim, consider the scenario gov2. Why-Not returns the explana-
tion op1, while NedExplain returns op3. Indeed, both the explanations op1 and op3

are picky. However, if a developer was relying on the results of one of the two al-
gorithms, she would miss the alternative existing explanations. On the contrary,
Ted++ computes both these alternatives. Then, consider crime8. NedExplain re-
turns the join op2 (SonhairP) - Why-Not does not produce any explanations. Ted++
indicates that except for this join, the selection op3 (σname<‘B′ [P]) for instance is
also an explanation. From a developer’s perspective, selections are typically easier
or more reasonable to change. So, having the complete set of explanations poten-
tially provides the developer with useful alternatives.

For the second claim consider crime5. NedExplain returns op1 (ConsectorW). The
Why-Not answer polynomial of Ted++ does not contain the atomic explanation op1,
but some combinations include op1, like op15. Because the explanation by NedEx-
plain is incomplete, a repairing attempt of op1 alone will never yield the desired
results. Similarly, crime7 illustrates a case, where the Why-Not algorithm produces
an explanation (op3) that misses some conditions. Then, in gov3 NedExplain and
Why-Not both return op2. However, let us now assume the developer prefers to not
change this condition. Keeping in mind that the answers of these algorithms may
change when changing the query tree, she may start trying different trees to possi-
bly obtain a Why-Not answer without op2. The explanation of Ted++ prevents her
from spending any effort on this ‘quest’, as it shows that all explanations contain
op2.

Having mapped the Why-Not answer polynomial of Ted++ to a set of explana-
tions, the usefulness of the coefficients of the polynomial has been neglected. For
example, the Why-Not answer polynomial of crime8 is 2384∗op23+20∗op3+4∗op1+
8 ∗ op2. Assume that the developer would like to recover at least 5 missing tuples,
by changing as few conditions as possible. The polynomial implies to change either
op3 or op2: they both require one condition change and provide the possibility of
obtaining up to 20 and 8 missing tuples, respectively. op1 can recover up to 4 tuples,
whereas op2op3 require two condition changes. Clearly, the results of NedExplain or
Why-Not are not informative enough to allow for such a decision.

98 CHAPTER 4. QUERY DEBUGGING

Table 4.9: Ted++, Why-Not, NedExplain answers per scenario
Scenario Ted++ Why-Not NedExplain
crime1 op1234, . . . , op12, op3, op2, op1 op1
crime2 op1234, op34, op13, . . . , op3 op34 op34, op1

crime3 op12345, . . . , op145, op345, op35 op34,op5 op5, op34
crime4 op12345, . . . , op25, op15 op5 op1, op5
crime5 op12345, . . . , op15, op5 op5 op1

crime6 op123, op31, op23, op12, op3, op2, op1 op3 op2
crime7 op123, op13, op12, op1 op3 op2, op1

crime8 op23, op3, op2, op1 op2

imdb1 op123, op13, op23, op3 op3 op3,op2
imdb2 op13 op1, op3

gov1 op123, op13, op23, op12, op3, op2, op1 op3 op2, op3
gov2 op13, op3, op1 op1 op3
gov3 op123, op23, op2 op2 op2

gov4 op123, op23, op2 op3 op3, op2
gov5 op124, op14, op24, op12, op4, op2, op1 op1 op1

!"

!#"

!##"

!###"

!####"

!#####"

$%&'
(!"

$%&'
()"

$%&'
(*"

$%&'
(+"

$%&'
(,"

$%&'
(-"

$%&'
(."

$%&'
(/" 012

!"
012

)"
012

*"
012

+"
012

,"
&'3

4!"
&'3

4)"

!"
#$
%&

'$
()*

+&
,-
$

,.'#/!0*,1023,0&4)'$53678*2$9"',%*#,$

5(366" 5(3" 7(389:;<&=" >?@A71B"

Figure 4.14: Runtimes for Ted++, Ted, NedExplain and Why-Not

Runtime Evaluation Ted++ vs. NedExplain and Why-Not. Figure 4.14
summarizes the runtimes in logarithmic scale for each algorithm and scenario. We
observe that the runtime of Ted++ is always comparable to the runtime of NedEx-
plain and that in some cases, it is significantly faster than Why-Not.

Why-Not traces compatible tuples based on lineage tables stored in Trio. As
such, for each intermediate result a table is maintained with the lineage of the tuples,
which is afterwards queried to find if successors of the compatible tuples exist in the
intermediate results. As already stated in [CJ09], this design choice slows down

4.2. TED 99

Why-Not. On the contrary, both NedExplain and Ted++ compute compatible data
more efficiently. We claim that a better implementation choice for tuple tracing in
Why-Not would yield a comparable runtime to NedExplain, a claim backed up by
their comparable runtime complexities. Another problem of NedExplain and Why-
Not lies in the choice to trace compatible data w.r.t. tuples from the input relations
but not restricting to compatible ones.

Let us see what happens when Ted++ is slower than - but still comparable to
- NedExplain, for example in gov1-gov3. In NedExplain all compatible tuples are
pruned out by conditions very close to the leaf level of the query tree, so the bottom-
up traversal of the tree can stop very early. Ted++ always “checks” all conditions so
cannot benefit from such an early termination. However, this runtime improvement
of NedExplain often comes at the price of incomplete explanations (e.g., gov1).

Ted++ vs. Ted. Fig. 4.14 reports runtimes for Ted on 6 out of 15 scenarios as
for the others, Ted runs out of time. To examine this behaviour, we compare the
time distribution in Ted and Ted++, as in Fig. 4.15. The algorithms are divided in
four common phases. Note that, for scenarios crime7, gov1 − gov3 the execution
time for Ted is much higher compared to the other scenarios and to the runtime of
Ted++; in this cases the diagram for Ted is not displayed in total (the runtime of
the coefficientEstimation phase is seen as label on the respective column).

As said in Section 4.2.5, Ted ’s main issue w.r.t. efficiency is its strong dependence
on the number of compatible tuples. This is experimentally observed in Figure 4.15:
with the growth of the set of compatible tuples in the scenarios, the time dedicated
to coefficientEstimation also increases (the scenarios are reported in an ascending
order of number of compatible tuples). Ted++ depends on the number of compatible
tuples as well, but in a less prominent manner than Ted. This can be seen in crime8,
crime7, gov3, and gov1; while the number of tuples grows, Ted++’s runtime remains
roughly steady.

!"#"$!!%#%$ "&#!$!%"$!"$ &"'&#($ "%)#%$*%**#"$ "%"#%$*%')#($ "))#"$&++'"$

'$

!''$

"''$

%''$

(''$

,-./!$($ 01,-2($!#"3$ 01,-2)$+#)3$ 456!$*)#*3$ 456*$*)#*3$ 456&$&+'3$

!"
#$
%"

&'
$

&(#)*+,-&$.$/(-"0*!12#$3402#&$$

5#677.5#6$
75897150288,:4$ 052;<=8>-?>5:$ 7?1>?@A5-7?>/@28$ 7127150288,:4$

Figure 4.15: Ted++ and Ted runtime distribution

100 CHAPTER 4. QUERY DEBUGGING

!"

#!!"

$!!"

%&!!"

%'!!"

()*+
,-."

()*+
,-.&

"
()*+

,-./
"
()*+

,-.#
"

!"
#$
%"

&'
$

&(#)*+,-$

*0(),1.*02".*+34,"(506*750."

!"

#!!"

$!!"

%!!"

&'!!"

()*+
,-."

()*+
,-'

."

()*+
,-#

."

()*+
,-/

."

!"
#$
%"

&'
$

&(#)*+,-$

*0(),12*03"(4+56,7"(408*9402"

(a) simple conditions (b) complex conditions

Figure 4.16: Ted++ runtime w.r.t. number of conditions in Q

Ted++ Analysis

We now study Ted++’s runtime w.r.t. the following parameters: (i) the type
(simple or complex) of the input query Q and the size of its condition set CQ, (ii) the
type of the Why-Not question (simple or complex) and the number and selectivity
of the conditions in Why-Not question, and (iii) the size of the database instance I.
Note that (ii) and (iii) are tightly connected with the number of compatible tuples,
which is one of the main parameters influencing the performance. In addition to
the number of compatible tuples, another important factor is the selectivity of the
query conditions over the compatible data.

For the parameter variations (i) and (ii), we use again the crime, imdb, and gov
databases. To adjust the database instance size for case (iii), we use data produced
by the TPC-H benchmark data generator (http://www.tpc.org/tpch/). We have
generated instances of 1GB and 10GB and further produced smaller data sets of
10MB and 100MB to obtain a series of datasets whose size differs by a factor of
10. In this paper, we report results for the original query Q3 of the TPC-H set
of queries. It includes two complex and three simple conditions, two of which are
inequality conditions. Since the original TPC-H query Q3 is an aggregation query,
we have changed the projection condition. The queries used in this section are Qs

to Qtpch (Table 4.7) and the scenarios are crimes-tpchc (Table 4.8).

Adjusting the query. Given a fixed database instance and Why-Not question,
we start from query Q1 and gradually add simple conditions, yielding the series
of queries Q1, Q2, Qs3, Qs4. The evolution of Ted++ runtime for these queries
is shown in Figure 4.16 (a). Similarly, starting from query Qj, we introduce step
by step complex conditions, yielding Qj-Qj4. Corresponding runtime results are
reported in Figure 4.16 (b).

As expected, in both cases, increasing the number of query conditions (either
simple or complex) results in increasing runtime. The incline of the curve depends
on the selectivity of the introduced condition; the less selective the condition the
steeper the line becomes. This is easy to explain, as the view for the explanations
involving a low selective condition contains more tuples (=passing partial tuples).
This, leaves space for further optimization by dynamically deciding on passing vs

4.2. TED 101

!"
#!!"
$!!"
%!!"
&!!"

'!!!"

()*+
,-"

()*+
,-.

(#"

()*+
,-.

(/"

()*+
,-.

($"

()*+
,-.

(-"

!"
#$
%"

&'
$

&(#)*+,-$

*0(),12*03"2*+45,"(607*8602"

!"""#

!!""#

!$""#

!%""#

&'()*++%# &'()*++$# &'()*++#

!"
#$
%"

&'
$

&(#)*+,-$$

&,+-./0&,1#23/-445,06(.+-./0&,1#+5'37.8#

(a) simple conditions (b) complex conditions

Figure 4.17: Ted++ runtime w.r.t. number of conditions in WN

eliminated tuples materialization.

Adjusting the Why-Not question.
The scenarios considered for Figure 4.17 (a) have as starting point the simple

Why-Not question of crime5 (see Table 4.8). Then, keeping the same input instance
and query, we add attribute-constant comparisons (i.e., simple conditions) to the
Why-Not question, a procedure resulting in fewer compatible tuples in each step.
As expected, the more conditions (the less tuples) the faster the Why-Not answer is
returned, until we reach a certain point (here from crime5c3 on). From this point,
the runtime is dominated by the time to communicate with the database that is
constant for all scenarios.

In Figure 4.17 (b) we examine complex Why-Not questions. As we add complex
conditions in a Why-Not question, the number of generated partitions (potentially)
drops as more relations are included in a same partition. To study the impact of
the induced number of partitions in isolation, we keep the number of the compatible
tuples constant in our series of complex scenarios (imdbcc-imdbcc3). The number of
partitions entailed by imdbcc, imdbcc2, and imdbcc3 are 3, 2, and 1, respectively. The
results of Figure 4.17 (b) confirm our theoretical complexity discussion, i.e., as the
number of partitions decreases, the time needed to produce the Why-Not answer
increases.

Increasing size of input instance. For the last set of experiments we increase
the database size, for scenarios with one simple or one complex Why-Not question
WN , for the same query Qtpch. The simple WN includes two inequality conditions,
in order to be able to compute a reasonable number of compatible tuples. The
complex WN contains one complex condition, one inequality simple condition and
one equality simple condition. It thus represents an average complex Why-Not
question, creating two partitions over three relations.

Figure 4.18 (a) shows the runtime for both scenarios. The increasing runtime is
tightly coupled to the fact that the number of computed tuples is rising proportion-
ally to the database size, as shown in Figure 4.18 (b). We observe that for small
datasets (<500MB) in the complex scenario Ted++’s performance decreases with
a low rate, whereas the rate is higher for larger datasets. For the simple scenario,

102 CHAPTER 4. QUERY DEBUGGING

!""#

!"""#

!""""#

!"""""#

!""""""#

$"# $""# $"""# $""""#

!"
#$
%&'

("
)*
$

+,-./$0121)#2$)34#$%56*$

%&'()*+# ,-'()*#

!"""""#

!$%"&#

!$%!'#

!$%!(#

!$%)!#

!"# !""# !"""# !""""#

!"
#
$%
&'(

$)
*+
&,)
"-
.&

/0123&45'5+*'&+67*&,89.&

*+,-./0# 12,-./#

(a) runtime (b) # compatible tuples

Figure 4.18: Ted++ (a) runtime, and (b) number of compatible tuples for increasing
database size, complex and simple WN

runtime deteriorates in a steady pace. This behavior is aligned with the theoretical
study; when the number of partitions is decreasing the complexity rises.

In summary, our experiments have shown that Ted++ generates a more useful
and complete Why-Not answer than the state of the art. Moreover, Ted++ is com-
petitive in terms of runtime performance. The dedicated experimental evaluation
on Ted++ validates that it can be used in a large variety of scenarios with different
parameters. Finally, the fact that the experiments were conducted on an ordinary
laptop demonstrates Ted++’s feasibility.

4.2.7 Theoretical discussion

In this section we delve into a more theoretical discussion about interesting prop-
erties of the Why-Not answer polynomials. First, we show how Why-Not answer
polynomials fit in different relational data models with bag and probabilistic seman-
tics and that as in provenance semirings [GKT07] our Why-Not answer polynomials
can be used as a unified framework to capture query based explanations in these
settings. Second, we focus on equivalent queries and the relationship that is es-
tablished among the Why-Not answer polynomials associated with each, given a
Why-Not question. By showing that isomorphic queries yield equivalent Why-Not
answer polynomials, we are able to prove that our method is invariant to query
tree variations resulting from operator reordering and that the explanations pro-
duced by NedExplain are subsumed by the Why-Not answer polynomial. In this
way, we show that Why-Not answer polynomials are complete and correct query
based explanations in comparison with the other approaches computing Why-Not
answers. Third, we show that equivalent queries in general are not equivalent w.r.t.
Why-Not answer polynomials, by minimized tableaux queries. We further define an
approximation for the Why-Not answer polynomial PEX for a query Q, obtained
by considering a minimized (through tableau minimization) version of Q. We argue
that in settings where a much smaller query (in number of joins) can result from
tableau minimization, this minimized query can be more efficiently used to obtain
an approximation of the Why-Not answer polynomial of the original query.

4.2. TED 103

Why-Not answer polynomial for databases under bag and probabilistic
semantics

So far, we have considered databases under set semantics only. In this section,
we discuss how the definition of the Why-Not answer polynomial (Definition 4.2.2)
extends to settings with conjunctive queries over bag and probabilistic semantics
databases.

K-relations, as described in [GKT07], capture in a unified manner relations under
set, bag, and probabilistic semantics. Briefly, tuples in a K-relation are annotated
with elements from a set K. In our case, we consider that K is a set of unique tuple
identifiers, similar to our special attribute R_Id (see Section 2.1).

We use the notion of how -provenance of tuples in the result of a query Q. The
how-provenance of t∈Q(I) is the polynomial obtained by the positive algebra RA+

on K-relations, proposed in [GKT07]. Briefly, each t is annotated with a polynomial
where variables are tuple identifiers and coefficients are natural numbers. Roughly, if
t results from a selection operator on t1 annotated with Id1, then t is also annotated
with Id1. If t is the result of the join of t1 and t2, then t is annotated with Id1Id2.
If t results from t1 annotated with Id1 or t2 annotated with Id2 passing through a
union operator, then t is annotated with Id1 + Id2. In general, the how-provenance
of an RA+ query result is the semiring of polynomials with integer coefficients and
variables from the commutative semiring (K,+, •, 0, 1)). More details on semirings
and how-provenance are provided in Section 3.1.

We compute the generalized Why-Not answer polynomial PEXgen as follows.
Firstly, we compute the how-provenance for compatible tuples in CT by evaluation
of the query QWN (Definition 2.2.5) w.r.t. the algebra in [GKT07]. Recall that QWN

contains only selection and join operators. Thus, each compatible tuple τ in CT is
annotated with its how-provenance polynomial consisting only of one term (since
there is no union), denoted by ητ .

Example 4.2.14. Consider again Example 4.2.2. The relations R, S, T can be con-
sidered as K-relations, whose annotation attribute (e.g., R_Id) values are elements
of the set K = {Id1, . . . , Id11}. Consider now the compatible tuple

τ1=(R_Id:Id1, R.A:1, R.B:3, S_Id:Id5, S.D:4, S.E:8, T_Id:Id8, T.B:3, T.C:4, T.D:5)

This tuple results from the query

QWN=σR.B<S.D,T.C≤9[R× S × T]

and is annotated with the polynomial

ητ1=Id1Id5Id8

from the commutative semiring (K,+, •, 0, 1). So, ητ1 corresponds to the how-
provenance of τ1.

104 CHAPTER 4. QUERY DEBUGGING

Then, we combine the expressions of how and why-not provenance. In order
to do this, for each compatible tuple τ in CT , we combine its how-provenance
polynomial ητ with its explanation Eτ (Definition 4.2.1). So, each τ is associated
with the expression ητEτ . Note that even though Eτ is defined as a set of conditions,
here we use it also for the term resulting from the conditions in Eτ .
Example 4.2.15. In Example 4.2.3 the explanation for τ1 was found to be
Eτ1={op1op3op4}. Now, combining Eτ1 and ητ we obtain the expression

ητEτ1=Id1Id5Id8op1op3op4

Finally, we sum the combined expressions for all compatible tuples, which leads
to the expression

∑
τ∈CT

ητEτ .
We now comment on how PEXgen is instantiated to deal either with the set,

bag, or probabilistic semantics. Indeed, the ‘specialization’ of PEXgen relies on the
interpretation of the elements in K, that is on a function Eval from K (the set
of annotations or tuple identifiers) to some set L containing values for the tuple
identifiers. Intuitively, the values in L relate to the semantics of the given database
model, i.e., how many duplicates of one tuple exist in a relation or what is the
probability of one tuple to occur in a relation.

For the set semantics each tuple in a relation occurs only once, which means that
L is the singleton {1}. Thus every tuple identifier is mapped to 1. It is then quite
obvious to note that PEXgen = PEX (Definition 4.2.2) for set semantics because for
every τ , ητ = 1.

In the same spirit, for bag semantics, L is chosen as the set of natural numbers
N and each tuple identifier is mapped to its number of occurences. Finally, for
probabilistic databases, L is chosen as the interval [0, 1] and each tuple identifier is
mapped to its occurrence probability.

Thus, the generalized definition of Why-Not answer is parametrized by the
mapping Eval of the annotations (elements in K) in the set L. Note that Eval
is naturally extended to cover the compositional expressions η as Eval(η) =
Eval(Id1 . . . Idn) = Eval(Id1) . . . Eval(Idn), where n is the number of the involved
annotations in η.

Definition 4.2.5. (Generalized Why-Not explanation polynomial) Given a query Q
over a database schema S of K-relations, the generalized Why-Not answer polyno-
mial for WN is

PEXgen =
∑

E∈E

(∑

τ∈CTs.t. Eτ=E

Eval(ητ)

)
E

where E=2C, ητ is the how-provenance of τ ∈ CT , and Eval:K → L maps the
elements of K to values in L.

Example 4.2.16. Let us continue Example 4.2.15 and firstly consider bag seman-
tics. Assume that Eval(Id1) = 2, Eval(Id5) = 1, Eval(Id8) = 3. Then, for τ1 we

4.2. TED 105

Table 4.10: Mapping functions
Function Purpose Example

hAtt:Att(SQ)→ var(TQ) Maps attribute names
to variables in TQ.

hAtt(R.A)=x1

h−1
Att(x1) = R.A

full : ID → I Maps an identifier to
its ‘full’ tuple.

full(Id1)=
(R.A:1, R.B:4)

obtain the expression 2 ∗ 1 ∗ 3op1op3op4 = 6op1op3op4. This means (for convenience
we consider that τ1 is the only compatible tuple here) that up to 6 missing tuples can
be retrieved if op1op3op4 is changed.

If we consider the probabilistic semantics let us assume that Eval(Id1) = 0.1,
Eval(Id5) = 0.5, and Eval(Id8) = 0.5. Then, for τ1 we obtain the expression
0.025op1op3op4. Here the coefficient provides the upper bound of the probability with
which a missing tuple will be retrieved if op1op3op4 is fixed.

Why-Not answer polynomial and equivalent queries

In this section, we discuss some properties of the Ted Why-Not answer (PEX)
w.r.t. equivalent queries. First, we show that PEX is robust for isomorphic queries.
This provides the basis for showing that PEX subsumes the Why-Not answer by
NedExplain (Section 4.1). Second, we show that the robustness of PEX does not
hold for equivalent conjunctive queries in general. Moreover, we investigate the
behaviour of PEX for equivalent queries Q and Q′ s.t. Q′ is obtained by tableau
minimization of Q. This leads us to consider an approximate Ted Why-Not answer
for Q when the Ted Why-Not answer for Q′ is available.

The discussion requires expressing a conjunctive query (under set semantics) as
a query tableau Q (Definition 2.1.8). For this reason, first we show how a Why-Not
question and a Why-Not answer polynomial are defined for tableaux queries. More-
over, a couple of complementary functions are defined and illustrated in Table 4.10.
The function hAtt is used to map schema attributes to variables of the tableau TQ.
The function full is used to map a tuple identifier to its full database schema, and
thus obtain all the involved attributes.

Function hAtt is extended to tableaux and to sets of conditions, whereas the
function full naturally extends to compatible tuples, e.g.,
full(Id1Id5)=(R.A:1, R.B:3, S.C:1, S.D:4, S.E:8).

A Why-Not question vWN w.r.t. Q is expressed as a set of conditions over the
variables in the summary of the query tableau Q. Thus, given the Why-Not question
WN expressed over attributes it holds that vWN=hAtt(WN).

Example 4.2.17. Given the scenario of Example 4.2.2, the Why-Not question is
expressed by vWN={x2<x4, x7≤9}.

We further introduce the query tableau TvWN=(var(TQ), TQ,WN) to model the
query QWN (Definition 2.2.5, page 20). Table 4.11 displays the tableau TvWN for our
running example.

106 CHAPTER 4. QUERY DEBUGGING

Table 4.11: Tableau TvWN corresponding to QWN

R.A R.B S.C S.D S.E T.B T.C T.D vWN
R x1 x2 x2 < x4

S x3 x4 x5

T x6 x7 x8 x7 ≤ 9

Table 4.12: Tτ1
R.A R.B S.C S.D S.E T.B T.C T.D condτ C

R x1 x2 x1=1, x2=3 x1>3, x2=x6

S x3 x4 x5 x3=1, x4=4, x5=8 x4=x8, x5 ≥ 3
T x6 x7 x8 x6=3, x7=4, x8=5 x7 ≥ 8

Example 4.2.18. Table 4.11 shows the tableau representation of WN for our run-
ning example. The valuation of this tableau over the instance in Figure 4.12(a)
provides the set of compatible tuples CT .

The next step is to find the Why-Not answer polynomial. We start with the
explanation for one compatible tuple τ .

To find the query conditions that prune τ from the query result, we use the
tableau Tτ for τ . More precisely, Tτ has the same body as the query tableau Q, but
except for the query conditions C it incorporates the conditions condτ imposed over
the attributes of the database schema by the tuple τ . Moreover, it has no summary
row because the purpose of this tableau is not to model a query. Intuitively, we
need to find which conditions in the column C contradict conditions in the column
condτ .

Definition 4.2.6 (Table Tτ). Given a compatible tuple τ w.r.t. a Why-Not question
vWN and a query Q, the tableau Tτ associated with τ is defined by (_, TQ, condτ∪C),
where condτ is the set of conditions over var(TQ) induced by full(τ).

Tτ is used to compute the explanation Eτ by identifying the picky conditions in
the query Q (elements of C). Note that the explanation Eτ is formulated using vari-
ables rather than attributes. However, we can translate these explanations back to
an attributes expression using the function hatt. Finally, having all the explanations
for the compatible tuples, the Why-Not answer polynomial PEX is defined as in
Definition 4.2.2, page 82.

Example 4.2.19. Consider the compatible tuple τ1 and the tableau depicted in Ta-
ble 4.12. The condition x1=1 in condτ contradicts the condition x1>3 of C. This
leads us to conclude that x1>3 is a picky condition. The conditions involving x2 in
condτ and C are simultaneously satisfied, as x2=3 ∧ x6=3 ∧ x2=x6 is true.

Similarly, we identify the rest of the picky conditions in the column C and even-
tually obtain the explanation w.r.t. τ1 that is {x1>3, x7≥8, x4=x8}.

Let us now continue the discussion for the equivalent queries.

4.2. TED 107

R A B C
a3 b1 c1

a1 b2 c2

a1 b1 c3

a2 b1 c2

R1.AR1.BR1.CS.AS.BR2.AR2.BR2.C CQ
R1 x1 x2 x3 x1 = a1 ∧ x2 = x5

S x4 x5 x2 = x5 ∧ x7 = x5

R2 x6 x7 x8 x6 = a1 ∧ x7 = x5

sQ x3 x4

(b) Query Q

S A B
a1 b2

a1 b3

a2 b1

R1.AR1.BR1.CS.AS.BR2.AR2.BR2.C CQ′

R1 x′1 x′2 x′3 x′1 = a1 ∧ x′2 = x′5
S x′4 x′5 x′2 = x′5 ∧ x′7 = x′5
R2 x′6 x′7 x′8 x′6 = a1 ∧ x′7 = x′5
sQ′ x′3 x′4

(a) Database instance (c) Isomorphic query Q’
name op1 op2 op3 op4

condition x1=a1 x6=a1 x2=x5 x5=x7

(d) Naming conditions of Q

Figure 4.19: Database instance and isomorphic queries

Isomorphic queries

We start by considering the class of equivalent isomorphic queries. Intuitively,
two queries are isomorphic if they are the same up to variable renaming.

Definition 4.2.7. (Isomorphic queries) Let Q=(sQ, TQ, CQ) and Q′=(sQ′ , TQ′ , CQ′)
be two queries. Assume the isomorphism %:var(Q)→ var(Q′). Then, Q and Q′ are
isomorphic through % iff

1. every row R of Q is mapped to a row R′ of Q′, s.t. TQ′(R′)=%(TQ(R)),
2. sQ′=%(sQ),
3. CQ′={op′ | op′=%(op) and op ∈ CQ}, and
4. Q and Q′ have the same number of rows.

Example 4.2.20. Figure 4.19 (a) and (b) display a sample database instance and a
query Q over two relations R and S. The result of the query is Q(I) = {c3a2, c2a1}.
Obviously, the query Q′ displayed in Figure 4.19 (c) is isomorphic to Q, since the
variable xi in Q is mapped to x′i in Q′ for i = 1, . . . , 8 and the constant a1 is mapped
to itself.

Obviously, two isomorphic queries Q and Q′ are equivalent w.r.t. PEX. This
means that for any Why-Not question and any instance I, the PEX for Q and the
PEX for Q′ are the same (up to variable renaming).

Lemma 4.2.1. (Equivalent queries w.r.t. PEX)
Let Q=(sQ, TQ, CQ) and Q′=(sQ′ , TQ′ , CQ′) be two isomorphic queries and % be

the isomorphism s.t. Q′ = %(Q). Then for any Why-Not question vWN w.r.t. Q
and I over SQ, it holds that

PEX(Q′, vWN ′, I) = %(PEX(Q, vWN, I)), where vWN ′ = %(vWN)

108 CHAPTER 4. QUERY DEBUGGING

Example 4.2.21. Continuing Example 4.2.20 consider now the Why-Not question
vWN=(x3=c2, x4=a2). For convenience, the conditions in C are named as in Fig-
ure 4.19 (d). The Why-Not answer polynomial for Q is

PEX=PEX(Q, vWN, I)=op3 + 2op2op3 + op3op4 + op1 + 2op1op2 + op1op4

For Q′, using the isomorphism relation that maps x to x′, it holds that the Why-Not
question is

vWN ′=%(vWN)=(x′3=c2, x
′
4=a2)

If we assign to each condition op′=%(op) the same name as for op (where
op∈CQ, op′∈CQ′) we obtain the same Why-Not answer polynomial, that is

PEX′=%(PEX)=op3 + 2op2op3 + op3op4 + op1 + 2op1op2 + op1op4

Now, we examine the relationship between the Why-Not answer polynomial re-
turned by Ted (PEX) and the condensed Why-Not answer returned by NedExplain
(NEX). For the sake of the discussion, we partially reproduce here the Why-Not
answer definition for NedExplain. Recall that NedExplain considers queries as query
trees. To simplify the discussion, we assume that query trees are built using (i) re-
lation schemas as leaf nodes, and (ii) cross product × and selection σc, where op
is a condition, as internal nodes. Without loss of generality, we do not consider
projection here.

Definition 4.2.8. (NedExplain Why-Not answer)
Let T be a query tree and WN be a Why-Not question, and let CT be the set

of compatible tuples. Then, the NedExplain Why-Not answer for WN w.r.t. T
and I, denoted NEX(T ,WN, I), is defined as the set of picky subtrees of T (a.k.a.
subqueries) w.r.t. some compatible tuple of CT .

In order to compare PEX with NEX, we reformulate PEX for query trees as
well. To this end, we associate tableau queries with query trees and vice versa.

We start by associating a query tree T to a query tableau Q. Note that this tree
is not unique, however, for a given query Q, all such trees are isomorphic. Moreover,
isomorphic queries have isomorphic trees.

Definition 4.2.9 (Query tree for Q). Let Q=(_, TQ, C) be a query tableau and
assume that |SQ|=n. The set opSet of operators associated with Q is the set of
selections {σh−1

Att(op)
|op∈C}.

A query tree T is a tree for Q iff
1. it has exactly n− 1 cross product nodes,
2. it has exactly one node for each operator in opSet,
3. it has exactly one leaf node for each relation R in SQ, and
4. T is syntactically well-formed (i.e., the input schema of a condition complies

with the target schema of the node).

4.2. TED 109

ΠR1.C,S.A

σR2.B=S.B

×

σR1.B=S.B

×

σR1.A=a1

R1

S

σR2.A=a1

R2

Figure 4.20: A query tree T for Q

Example 4.2.22. Query Q (Figure 4.19 (b)) can be transformed to the query tree
T in Figure 4.20.

In the other direction, we associate a query Q to a tree T . Note that a query
tree is associated with exactly one query tableau and that trees resulting from nodes
reordering, are associated with the same tableau. Moreover, isomorphic trees (trees
obtained by variable renaming and node reordering) are associated with isomorphic
tableaux.

To clarify, nodes reordering corresponds to moving query operators up or down
on the query tree, preserving the semantics of the query (thus using the well known
rewriting rules for relational algebra).

Definition 4.2.10 (Query tableau for T). Let T be a query tree with n leaf nodes,
n−1 cross product nodes and let OpSet be the set of conditions associated with the
non-cross product nodes (selection nodes) in T . The query tableau Q=(_, TQ, C) is
the tableau for T iff

1. it has exactly one row for each leaf node of T ,
2. for each row R, TQ(R) = hAtt(A(R)), and
3. C=hAtt(OpSet).

The Ted Why-Not answer for the query tree T is defined as the Ted Why-Not an-
swer forQ. Thus, of course, two query trees sharing the same (or isomorphic) tableau
representation have the same PEX. Based on this statement and Lemma 4.2.1, we
formally define a class of query trees equivalent w.r.t. PEX, also illustrated in
Figure 4.21.

110 CHAPTER 4. QUERY DEBUGGING

T1 T2

Q Q′%

Figure 4.21: Equivalent query trees w.r.t. PEX

Lemma 4.2.2. (Equivalent query trees w.r.t. PEX)
Let T be a query tree for Q and T ′ be a query tree for Q′. If Q and Q′ are

isomorphic tableau queries, then T and T ′ are equivalent query trees w.r.t. PEX.

The above lemma states that reordered query trees have the same PEX. This is
a stepping stone to the next theorem, stating that PEX subsumes NEX.

Theorem 4.2.2. (PEX−NEX subsumption)
Let Q be a query tableau over the schema SQ and I be an instance over SQ. Let

vWN be a simple Why-Not question for the query tableau Q. Assume that T is a
query tree for Q.

Let NEX=NEX(T ,WN, I) and PEX=PEX(Q, vWN, I) be the Why-Not an-
swer by NedExplain and Ted respectively. Then, if op is the condition of the root
operator of a subquery T ′ and x denotes a term of PEX, it holds that

∀T ′∈NEX ∃ x ∈PEX s.t. op∈x

Intuitively, the previous theorem states that if an operator is picky according to
NedExplain, then it (or more precisely its condition) can be found in some term in
the polynomial answer of Ted. However given the set of picky operators in NEX,
it is not guaranteed that

1. there exists one term in PEX that contains all operators in NEX, or

2. each operator in NEX is a term (by iteself) in PEX.

This is entailed by the fact that in NedExplain, as soon as the trace of a compat-
ible tuple is lost at a certain node, the remaining nodes remain unchecked for this
specific compatible tuple. Even worse, when at some node the trace of all compatible
tuples disappears the procedure stops and the rest of the nodes remain unchecked.

So, to conclude we cannot ensure that NedExplain, given one query tree T ,
computes all the picky subqueries corresponding to the conditions involved in the
terms in PEX.

Example 4.2.23. Consider again the query tree in Figure 4.20. According to Ned-
Explain algorithm, we obtain NEX={op1, op3}. From Example 4.2.21 we have
PEX=op3 +2op2op3 +op3op4 +op1 +2op1op2 +op1op4. We can see that the first picky
operator op1 of NEX exists in three terms of PEX: op1 and op1op2 and op1op4. The
second picky operator is found in the rest of the terms. Thus, all the information
that we obtain from NedExplain, we also obtain by Ted.

4.2. TED 111

Query minimization

Lemma 4.2.1 stated that isomorphic queries are equivalent w.r.t. PEX. Now, we
show that this cannot be extended to equivalent queries in general by focusing on
tableau minimization. Then, we investigate the relationship between the PEX of a
query Q and the PEX of a minimized query Q′ w.r.t. Q. For this discussion, and
to be able to perform tableau minimization, we restrict our attention to the class of
conjunctive queries without inequalities under set semantics.

The equivalence of two queries Q and Q′ relies on the homomorphism theorem
[CM77] in order to prove the containment in both directions. Recall that, for tableau
queries Q and Q′, Q′ ⊆ Q iff there exists a homomophism h : Q → Q′. A query
tableau Q can be minimized to an equivalent Q′, by deleting redundant rows.

Definition 4.2.11. (Minimized tableau) Let Q and Q′ be equivalent query tableaux.
Then, Q′ is a minimized tableau w.r.t. Q if the set of rows of Q contains the set of
rows of Q′.

When Q′ is a minimized query w.r.t. Q, the homomorphism h maps the variables
of the tableau Q to variables of the tableau Q′. Intuitively, since rows are eliminated
during minimization, and each row of Q has unique variables by Definition 2.1.2, the
variables in the eliminated rows are also eliminated. Thus, the variables of Q can
be split into two sets: (i) X containing the variables that are mapped to themselves
through h and, (ii) Xelim containing the variables that are mapped to other variables
than themselves and thus do not appear in the minimized tableau Q′.

If for a query we cannot find an equivalent one with less rows, then it is minimal.
Our discussion focuses on any minimized query and not only on the minimal one.

Example 4.2.24. Consider again the instance and query Q in Figure 4.19 (a)
and (b). For convenience, we repeat the query Q along with its equivalent query Q′
in Figure 4.22.

The tableau Q′ is a minimized tableau w.r.t. Q because the two queries are
equivalent and Q′ has one less row than Q. To prove the containment Q′ ⊆ Q we
can exhibit a homomorphism h : Q→ Q′, s.t.

h(a1) = a1

h(x1) = x1

h(x2) = x2

h(x3) = x3

h(x4) = x4

h(x5) = x5

h(x6) = x1

h(x7) = x2

h(x8) = x3

h(sQ) = sQ′

Thus,
X={x1, x2, x3, x4, x5}

112 CHAPTER 4. QUERY DEBUGGING

R1.AR1.BR1.CS.AS.BR2.AR2.BR2.C CQ
R1 x1 x2 x3 x1 = a1 ∧ x2 = x5

S x4 x5 x2 = x5 ∧ x7 = x5

R2 x6 x7 x8 x6 = a1 ∧ x7 = x5

sQ x3 x4

(a) Query Q

R1.AR1.BR1.CS.AS.B CQ′

R1 x1 x2 x3 x1 = a1 ∧ x2 = x5

S x4 x5 x2 = x5

sQ′ x3 x4

(b) Minimized query Q′

Figure 4.22: Example query Q and minimized query Q′

and
Xelim={x6, x7, x8}

For the containment Q ⊆ q′, the homomorphism is the identity function for all
variables and constants in Q′. Moreover, the conditions of the two tableaux (as
named in Figure 4.19 (d)) are mapped as follows: h(opQ1) = opQ

′
1 , h(opQ2) = opQ

′
1 ,

h(opQ3) = opQ
′

3 and h(opQ4) = opQ
′

3 .
In this case Q′ cannot be further minimized, thus Q′ is minimal.

Theorem 4.2.3 states that Q subsumes Q′ w.r.t. PEX.

Theorem 4.2.3. Let SQ be a database schema and IQ be an instance over SQ. Let
Q be a query over SQ and Q′ a minimized query w.r.t. Q. Let vWN be a Why-
Not question and assume PEXQ=PEX(Q, vWN, I) and PEXQ′=PEX(Q′, vWN, I).
Then,

1. ∀y ∈ PEXQ′ , ∃x ∈ PEXQ s.t. y ∈ x
2. ∀x ∈ PEXQ, ∃y ∈ PEXQ′ s.t. y ∈ x

The first point in Theorem 4.2.3 states that every term in the Why-Not answer
polynomial of Q′ is contained in a term of the Why-Not answer polynomial of Q.
This result is expected since all conditions in Q′ are also conditions of Q. The second
point states the inverse: every term in the Why-Not answer polynomial of Q can
be mapped to a term in the Why-Not answer polynomial of Q′. Intuitively, this
means that the conditions of Q eliminated by minimization resulting in Q′ cannot
exist alone (i.e., without a non-eliminated condition) in one picky condition set. For
example, since the join op4=x5 = x7 in Q (see Figure 4.22) is eliminated through
tableau minimization, then =op4 is not a term of the Why-Not answer polynomial
for Q.

In the following discussion, we sketch a proof of the previous theorem going
through each constitutive part of PEX:

1. Why-Not question and compatible tuples, and

2. explanations.

4.2. TED 113

R1.AR1.BR1.CS.AS.BR2.AR2.BR2.C vWN
R1 x1 x2 x3 x3 = c2

S x4 x5 x4 = a2

R2 x6 x7 x8

s x1 x2 x3 x4 x5 x6 x7 x8

R1.AR1.BR1.CS.AS.B vWN
R1 x1 x2 x3 x3 = c2

S x4 x5 x4 = a2

s′ x1 x2 x3 x4 x5

TvWN T ′vWN

Figure 4.23: Compatibility tableaux for Q and Q′

We consider that Q′ is a minimized query w.r.t. Q and that Q′=h(Q), where h
is a homomorphism. Moreover, it is indirectly shown that equivalent queries are not
equivalent w.r.t. PEX, as the running example shows.

Why-Not question and compatible tuples Queries Q and Q′ are equivalent,
thus have the same summary rows depicting their output schemas. Let vWN be a
Why-Not question for query Q. Since vWN is defined over the output schema of Q,
which is the same as the output schema of Q′, it follows that vWN is a well defined
Why-Not question for the query Q′ as well.

The tableau TvWN is defined based on the Why-Not question vWN and the
body of the query Q, and thus it is expected to be different for different queries.
Nevertheless, T ′vWN for Q′ can be built using TvWN as stated by the following Lemma.

Lemma 4.2.3. (From TvWN to T ′vWN)
If TvWN=(var(TQ), TQ, vWN) is the compatibility tableau for Q and vWN then

T ′vWN=(h(var(TQ)), h(TQ), vWN) is the compatibility tableau for Q′ and vWN .

For our example, TvWN and T ′vWN are shown in Figure 4.23. By definition, the
summary of the tableau TvWN contains all variables of Q. Recall that the variables
of Q are split into two sets X and Xelim, thus s=var(TQ)=XXelim.

To compute the compatible tuples w.r.t. vWN for Q and Q′, we need to evaluate
TvWN and T ′vWN respectively over I. Let f be a valuation of TvWN over the instance
I. For the summary s′ of the tableau T ′vWN it holds that:

f(s′) = f(h(X)) = f(X)

Also,
f(s) = f(XXelim) = f(X)f(Xelim) = f(s′)f(Xelim)

Taking into consideration this last equation and that the Why-Not question is
not defined over Xelim variables, it can be deduced that the set of compatible tuples
CT corresponding to the query Q can be mapped to the set of compatible tuples in
CT ′ using the onto relation

ζ : CT → CT ′ s.t. ∀τ ∈ CT : ζ(τ) = τ ′ s.t. τ ′=τ|X

where τ|X is the restriction of τ to attributes in X.

114 CHAPTER 4. QUERY DEBUGGING

CT Eτ
τ1 = a1b2op2a2b1 a3b1op1 {op2, op3}
τ2 = a1b2op2a2b1 a1b2op2 {op3, op4}
τ3 = a1b2op2a2b1 a1b1op3 {op3}
τ4 = a1b2op2a2b1 a2b1op2 {op2, op3}
τ5 = a2b1op2a2b1 a3b1op1 {op1, op2}
τ6 = a2b1op2a2b1 a1b2op2 {op1, op4}
τ7 = a2b1op2a2b1 a1b1op3 {op1}
τ8 = a2b1op2a2b1 a2b1op2 {op1, op2}

CT ′ Eτ ′
τ ′1 = a1b2op2a2b1 {op3}
τ ′2 = a2b1op2a2b1 {op1}

Figure 4.24: Compatible tuple sets CT (TvWN , I) and CT (T ′vWN , I) and picky con-
ditions sets E and E ′

Moreover, it holds that CT = CT ′ × Ielim, where Ielim is obtained by cross
product over the relations that correspond to rows in Q that are not in Q′ (and thus
contain the variables Xelim).

This means that there are |Ielim| more compatible tuples for Q than for Q′,
each one of which will have |Xelim| times more attributes. Consequently, it is more
efficient to deal with the minimized query, as not only has it less operators to check
but also it generates less and more concise compatible tuples.

Figure 4.24 shows the sets of compatible tuples CT and CT ′ for our example
(ignore the Eτ column for the moment). It is obvious that CT ′ = CT × I|R2 .

Explanations and Why-Not answer Next, we identify the explanations Eτ
for each compatible tuple and further compose the Why-Not answer. Finally, we
establish the relationship between the Why-Not answer of Q and Q′ as stated in
Theorem 4.2.3.

For the first item of Theorem 4.2.3, it is ease to see that any ‘minimized’ compat-
ible tuple τ ′ is part of some compatible tuple τ . As a consequence, the explanations
responsible for pruning τ ′ are also responsible for pruning τ (along with possibly
more conditions not satisfied by other parts of the tuple τ).

For the second item, we extend the onto mapping ζ : CT → CT ′ to map the
explanation Eτ for τ ∈ CT to an explanation Eτ ′ for τ ′ ∈ CT ′ as follows:
if ζ(τ) = τ ′ then ζ(Eτ) = Eτ ′ if Eτ ′ contains only these conditions in Eτ that are
expressed over non-eliminated attributes.

Example 4.2.25. Consider the compatible tuple τ1=(a1, b2, c2, a2, b1, a3, b1, c1) ∈ CT
and the compatible tuple τ ′1=ζ(τ)=(a1, b2, c2, a2, b1) ∈ CT ′, with the tableaux Tτ1 and
Tτ ′1 (Table 4.13) respectively. The explanations for τ and τ ′ are Eτ1 = {op3, op2}
and Eτ ′1 = {op3}. Note that since τ ′1 is part of τ1 indeed Eτ ′1 ⊆ Eτ (point 1 of
Theorem 4.2.3). Moreover, ζ(Eτ1) = Eτ ′ (point 2 of Theorem 4.2.3).

Figure 4.24 links every compatible tuple with its picky conditions. Summing the
explanations for the compatible tuples in CT and CT ′, we obtain the following Why-

4.2. TED 115

Not answers w.r.t. Q and Q′ respectively:
PEXQ = op3 + 2op2op3 + op3op4 + op1 + 2op1op2 + op1op4 and
PEXQ′ = op3 + op1.

Note that we can map each term in PEXQ to one term in PEXQ′ , and each term
in PEXQ′ to a term in PEXQ.

Table 4.13: Tableau Tτ1 and T ′τ1
R1.AR1.BR1.CS.AS.BR2.AR2.BR2.C condτ CQ

R1 x1 x2 x3 x1 = a1, x2 = b2, x3 = c2 x1 = a1, x2 = x5

S x4 x5 x4 = a2, x5 = b1 x2 = x5, x5 = x7

R2 x6 x7 x8 x6 = a3, x7 = b1, x8 = c1 x6 = a1, x5 = x7

R1.A R1.B R1.C S.A S.B condτ ′ CQ′

R1 x1 x2 x3 x1 = a1, x2 = b2, x3 = c2 x1 = a1, x2 = x5

S x4 x5 x4 = a2, x5 = b1 x2 = x5

PEX approximation As said before, computing the Why-Not answer for a min-
imized query Q′ is more efficient than computing the one for Q. One could argue
that finding a minimized query for Q is a complex procedure, however the literature
[CR97] shows that it can be considered practically, despite its theoretical complex-
ity. Moreover, the discussion until now did not consider the minimal query but a
minimized query for Q, which renders the problem practically more reasonable.

For this reason, we investigate now how we can obtain an approximate PEX for
the query Q when PEX is available for a minimized Q′ w.r.t. Q.

Definition 4.2.12 (Approximate PEX). Let Q be a query and Q′ be a minimized
query w.r.t. Q. Let us consider the tableau homomorphism h from Q to Q′. Assume
that PEXQ′=PEX(Q′, vWN, I) is known. Then, the approximate PEX of Q is

PEXAppr=
∑

E ′ in PEXQ′


 ∏

op∈h−1(E ′)

op




where
h−1(E ′)={op | op ∈ h−1(op′) ∧ op′ ∈ E ′}

and
h−1(op′)={op | h(op) = op′ ∧ op ∈ CQ}

In the next theorem, it will be clear that the approximate PEX concerns only
the terms of the polynomial answer and that no estimation can be provided for the
coefficients.

116 CHAPTER 4. QUERY DEBUGGING

Theorem 4.2.4. Let PEXQ and PEXAppr be the Why-Not answer and the approx-
imate Why-Not answer w.r.t. Q respectively. Then,

∀E ∈ PEXQ ∃EAppr ∈ PEXAppr s.t. EAppr ⊆ E

Example 4.2.26. Let us assume now that the queries introduced in Figure 4.22 are
changed so as the selection conditions be x1 = a5 and x6 = a5, while we assume the
same Why-Not question vWN . Considering the minimized query Q′, its Why-Not
answer is PEXQ′ = op1op3+op1. As h−1(op1) = {op1, op2} and h−1(op3) = {op3, op4}
the approximate Why-Not answer for Q is PEXAppr = op1op2op3op4+op1op2. Indeed,
PEXQ = 3op1op2op3 + op1op2op3op4 + 3op1op2 + op1op2op4. It is evident that all the
terms in PEXQ are supersets of some term of PEXAppr. However, no estimation of
the coefficients is provided.

4.2.8 Conclusion

This section provided the Ted framework for answering Why-Not questions with
query based explanations formalized as polynomials with query conditions as vari-
ables and integer coefficients. Opposed to previous works on query-based explana-
tions, the Why-Not answer polynomial captures all possible and complete explana-
tions for the missing answers from the result of a query Q by disengaging from the
query-tree approach. The Why-Not answer polynomial is an informative expression,
representing not only which query conditions are responsible for the missing tuples
but also how they are responsible, i.e., in which combinations (represented by the
polynomial terms). Furthermore, the coefficients of the Why-Not answer polyno-
mial suggest an upper bound for the number of recovered missing tuples following
a fixing of some condition combination.

The Ted framework including the definition of Why-Not answer polynomial en-
ables to consider Why-Not questions for relational databases under set, bag and
probabilistic semantics in a unified way. Moreover, we have studied the Why-Not
answer polynomial in the context of different equivalent query classes. More specifi-
cally we argue that isomorphic conjunctive queries with inequalities have isomorphic
Why-Not answer polynomial w.r.t. isomorphic Why-Not questions. Then, we show
that this is not the case for queries resulting from tableau minimization, for which
case an approximation of the Why-Not answer is proposed.

Furthermore, we have introduced two algorithms to compute Why-Not answer
polynomials: Ted and the more efficient Ted++ algorithms. The latter algorithm’s
main feature is to completely avoid enumerating and iterating over the set of com-
patible tuples, thus it significantly reduces both space and time consumption. Our
experimental evaluation showed that Ted++ is at least as efficient as existing algo-
rithms while providing useful insights in its Why-Not answer for a developer. Also,
we showed that Ted++ scales well with various parameters, making it a practical
solution.

The class of queries considered in the study is conjunctive queries with inequali-
ties while both simple and complex Why-Not questions are considered. We showed

4.3. SUMMARY 117

that extending the framework to unions of conjunctive queries and general Why-Not
questions is trivial. However, an extension for adding aggregation to the query op-
erators set requires more investigation, as extending the current framework would
require to consider all the possible subsets of the input database tuples rendering the
method impractical. On the other side, extending the queries to include negation,
is feasible if we consider the right part of the negation as a relation, i.e., a set of tu-
ples. In this case, the negation condition could be applied as a condition. However,
this trivial extention can be applied only to the naive Ted Algorithm. The Ted++
algorithm needs more consideration an possibly redesigning to include negation.

The polynomial has the benefit of being an elegant formalism that can subse-
quently be used for further processing. Example applications would be ranking the
importance of “misbehaving” query operators in the query, computing query refine-
ments to recover missing tuples, or estimating the minimum number of side-effects
of a refinement, etc. In the next chapter we show how we use the Why-Not answer
polynomials to address the query refinement problem.

4.3 Summary

In this chapter we presented two frameworks computing query based explanations
to Why-Not questions given a query and thus aiding the query debugging experience
of the end user. The main characteristic of the first algorithm, NedExplain, is that
it is based on a query tree representation, while Ted reasons on the the query
statement. NedExplain can handle a wider class of queries and is more efficient than
Ted. On the other side, Ted ’s main strengths are that it can handle a wider class of
Why-Not questions and that it provides a complete set of query based explanations
w.r.t. different query tree re-orderings as opposed to NedExplain. Here complete
is twofold, meaning that all explanations are identified and that each explanation
is in itself complete. The efficiency problem entailed by Ted has been addressed
in the optimized Ted++ algorithm, which allows for computing a Why-Not answer
polynomial in time comparable with the time needed for NedExplain to compute
the respective query-based explanation.

Finally, we discussed that the Why-Not answer polynomial resulting from Ted
(or Ted++) provides a unified setting for Why-Not provenance for set, bag and
probabilistic data model semantics. We also provided a way for computing an ap-
proximate Why-Not answer polynomial w.r.t. a query, when a minimized version of
the query is available.

Overall, we argue that the Why-Not answer polynomial approach for modelling
query-based explanations and the Ted++ algorithm for producing Why-Not answer
polynomial provide a more complete and ’secure’ framework for query debugging,
as the user can be sure that she gets all the ways in which he loses expected tuples.
This is important when she needs to choose the conditions to repair in a subsequent
query fixing task, as we will see in the next chapter. However, even if NedExplain
provides an incomplete set of query-based explanations, it still could be useful in

118 CHAPTER 4. QUERY DEBUGGING

an interactive setting. In such a setting, the user progressively repairs a query, by
fixing one operator at a time, driven by the outcome of previous operator fixes.

Chapter 5

Query Refinement Phase

In this chapter we describe our approach for refining a query in order to recover
missing tuples in the query result. More specifically, in the previous chapter we have
seen how to debug a query when we miss some tuples from its result. We have pro-
posed two methods to produce query-based explanations, the one of which provided
the explanations in the form of a polynomial. Now, we discuss how the Why-Not
answer polynomial can be used in order to refine the query in such a way that it
recovers missing tuples. To this end, we propose the FixTed algorithm that leverages
the different explanations in the Why-Not answer polynomial in order to efficiently
and effectively alter the query conditions that are indicated in each explanation. In
this way, we compute various refinements, changing different combinations of erro-
neous query conditions. Usually users are most interested in refinements that do not
differ a lot from their initial queries. Driven by this desideratum, we guarantee that
among the computed refinements we return the one that has the highest similarity
to the original query. Besides similarity on the query statement level, users care
about how precise are the results of their queries, and prefer refinements that do not
add many undesirable tuples in the original result set. As the refinements may be
numerous, only the ‘best’ refinements are returned ranked based on a cost function
that considers both similarity and precision, further described in the next sections.

The chapter is organised as follows. Section 5.1 gives the motivation for the
problem we are addressing and describes in a high level the proposed solution. Sec-
tion 5.2 outlines the main features of our approach and our contribution. Section 5.3
introduces the specialized problem for this chapter and relevant background notions.
Section 5.4 continues with describing query refinements produced taking into account
the explanations. Section 5.5 describes the steps of the FixTed algorithm towards
producing refinement-based explanations. Section 5.6 shows that the framework
provided by Ted and FixTed can be practically implemented in a platform to debug
and fix queries in order to recover missing results. Finally, Section 5.7 summarizes
and concludes the chapter.

Publications The query debugging and fixing platform [BHT15c] built on the al-
gorithms Ted++ (for debugging) and FixTed (for fixing) was published as a demon-

119

120 CHAPTER 5. QUERY REFINEMENT PHASE

stration paper in the proceedings of the Very Large Data Bases (VLDB) 2015 con-
ference.

5.1 Motivation

After debugging a query, a developer has become aware of what conditions of
the query are responsible for the missing tuples. So, if she wants to fix the query
manually, she can focus her efforts on her preferred explanation. Take for example
the airlines scenario in Example 4.2.1 on page 77. The Ted algorithm has provided
the developer with the information that both the selection and the join of the query
shown in Figure 4.10 form a query based explanation. Thus, she knows that if she
tries to fix the query, she has to change both query conditions.

Knowing which query conditions to target helps developers to focus on relevant
parts of the query during the fixing process. Still, the tedious task of actually
rewriting the query remains. Intuitively, when a selection is too restrictive to let the
expected tuples survive, the solution would be to relax this condition. Choosing to
what extend to relax a condition is crucial: the desired tuples could still not survive
the new condition if the relaxation was not sufficient, or on the other side too many
‘irrelevant’ tuples could be added into the result along with the desired ones, if we
over-relax the condition. Then, when a join is the problem, was it because the
developer actually should have used a left or right outer join instead of an inner
join? And is such a change capable to produce the expected results?

Depending on the experience of the developer, her knowledge of the underlying
dataset and of course her time availability, finding the optimal solution to the fix-
ing problem may be a more or less demanding task. However, if we consider the
number of possible changes that one can make to a single selection condition, it
is evident that the problem becomes harder and harder to solve, as the number of
conditions in a query-based explanation increases. Furthermore, computing a fix for
each explanation adds more difficulty to the problem.

Clearly, fixing a query with respect to a Why-Not question is a tedious and time-
consuming task. Therefore, we propose to semi-automatically support developers
during query fixing by providing suggestions for possible query changes based on
the Why−Notanswerpolynomial. More specifically, our techniques empower the
developer to effortless obtain a query that generates the results that she wants,
choosing among a variety of refinements the one(s) that best fits her preference,
w.r.t. the syntax of the repaired query and its result. In the next sections, we
describe how we can achieve this using our algorithm FixTed and the theoretical
framework on which it is based.

5.2 Contribution

In this chapter, we make the following contributions.

5.2. CONTRIBUTION 121

Query refinements based on query-based explantions. We provide the
framework to compute query refinements for conjunctive queries with inequalities.
We are the first to leverage query-based explanations in the form of Why-Not answer
polynomials to compute the query refinements. In this way we succeed to compute
the most similar query refinements possible. Moreover, the polynomial provides us
with the information which conditions to focus on, which allows us to reduce the
search space for query refinements, ultimately leading to a more efficient solution
(as opposed to an approach not considering query-based explanations).

Query refinements and explanation type A query-refinement obtained by our
method is linked to an explanation (term) of the Why-Not answer polynomial. We
distinguish between three main categories of query-refinements, depending on the
type of the explanation. The first one considers explanations containing only selec-
tion conditions and in principal consists in conjunctive queries having the explana-
tion selection conditions fixed. To obtain these, we proceed in two steps, exploiting
the technique of skyline tuples, briefly outlined in Section 3.2.5 on page 37. More
specifically, we propose a variation of skyline that potentially leads to tackling the
selections refinement problem more efficiently. The first step is designed so as to
perform the least changes to the selections in the explanations, leading to the most
similar refinements to the query (per explanation). By changing the conditions pro-
posed by each explanation we have as a consequence that not only missing tuples
but also irrelevant tuples are added to the refined query result. To tackle this prob-
lem, we proceed to the second step that eliminates irrelevant (a.k.a. false positive)
tuples from the refined result.

The second category of query refinements considers explanations with only join
conditions. In this case, we introduce left or right outer joins in the query refinement
and thus move to a wider class than conjunctive queries. We are not aware of
other proposals generating such kind of refinements. The third category considers
explanations with both join and selection conditions, and is a trivial extension of
the previous categories.

FixTed Algorithm and EFQ Platform We provide an algorithm, FixTed to
compute query refinements w.r.t a query and a Why-Not answer polynomial, as
defined by our framework. FixTed also defines a ranking function to order the
best refinements, which are in the skyline of queries w.r.t. similarity and preci-
sion. Then, we demonstrate the practicality of our proposal by incorporating the
Ted++ algorithm along with the FixTed algorithm into a novel platform named
EFQ. EFQ provides the means for semi-automatically debugging and refining SQL
queries, through an interactive interface.

122 CHAPTER 5. QUERY REFINEMENT PHASE

5.3 Problem and Preliminaries
The problem we wish to tackle in this chapter is described in Problem State-

ment 2.3.1. As a reminder, given an explanation scenario ∆=(S, I, Q,WN), our
goal is to find queries Q′ recovering in their result Q′[I] missing tuples, while pre-
serving all tuples from Q[I]. Note, that we consider only conjunctive queries with
inequalities in the input of the problem.

As already said, in our approach we assume available the query conditions that
are responsible for the missing tuples. This knowledge is captured in the query-
based explanation computed in the previous section. In order to be able to use the
query-based explanations to fix the query, it is important to know not only which
conditions are to blame, but also in which combinations they should be fixed so as to
be able to recover missing tuples. In Section 4.2 we showed that the Why-Not answer
polynomial (see Definition 4.2.2) captures all the possible condition combinations
that prune out data relevant to the missing tuples. Thus, we use the Why-Not
answer polynomial PEX as a starting point for our refinement process.

Taking into account this requirement, we restate Problem Statement 2.3.1 as
follows.

Problem Statement 5.3.1. Given a scenario ∆=(S, I, Q,WN), and the Why-Not
answer polynomial PEX w.r.t. ∆, how can we efficiently compute a set of useful
query refinements?

Intuitively, we have already described what is a useful refinement for a user. On
the one hand the original query statement and the refined one should not differ a
lot. On the other hand, the refined query should not output many irrelevant tuples,
that could be undesirable and not expected by the user.

We further specialize Definition 2.3.2 of query refinement to reflect the fact that
they are linked to some query-based explanation of the polynomial PEX. As a result,
each computed refinement outputs at least one missing tuple built from compatible
tuples pruned out by the conditions of a specific explanation. As a reminder, the
explanations are modelled as terms in a Why-Not answer polynomial. For example,
in the Why-Not answer polynomial 2op1op2 + op3, there exist two explanations, the
op1op2 and the op3.

Definition 5.3.1 (Query refinement w.r.t. query-based explanation). Let
Q=(S,Γ, C) be a conjunctive query, CT be the set of compatible tuples. Let E be an
explanation from the Why-Not answer polynomial PEX. Then, a query refinement
is a query Q′ s.t. ∃t ∈ CT : t |= E ∧ πΓ[t] ∈ Q′[I].

As mentioned in the contributions section, we develop different strategies for
producing refinements depending on the type of the used explanation. In case of
explanations that are selections-only, the refinements are conjunctive queries.

For refinements computed using joins-only explanations, we introduce left and
right outer [RRS11], to replace the inner joins of the explanations (when possible as

5.3. PROBLEM AND PRELIMINARIES 123

Table 5.1: Tuples in the database instance I, satisfying the condition R.C=S.C.
Tuples marked with t are compatible tuples, with r are query result tuples and with
u are irrelevant tuples.

σR.C=S.C [I]
A B C D E

t1 1.6 5.6 2.8 1 5
t2 7.5 2.4 8.4 7 5
t3 6.4 4.9 3.6 7.2 5
t4 1 9 1.8 3 5
t5 2 6.8 6.7 3.7 5
t6 2 5.6 5.2 8.3 5
t7 5.8 8.5 8.5 5.2 5
t8 9.2 1.8 1.6 8 5
t9 11.5 3.5 5.8 1.4 5
t10 9.5 4.2 7.6 6 5
t11 10.1 6.4 7.6 1 5
r1 1 2.4 7.5 5.2 1
r2 2.1 2 2.8 6.1 2
r3 1.6 1.1 6 6.8 3
u1 1 6.2 3.8 2.9 6
u2 3 4.2 0.8 9.2 8
u3 5.7 7.5 8.2 3.1 8
u4 7.1 4.9 1.2 5.8 7
u5 6.4 2.8 3.4 4.4 7
u6 9 3.2 9.2 1.4 4

discussed in Section 5.4.3). A left or right outer join is associated with a condition
specified by A ζθ A

′, where ζ∈{ ./, ./ }, θ ∈ {=, <,≤, >,≥, 6=} and A and A′ are
attributes. Note that the operators ./θ′ (left outer join) and ./ θ′ (right outer join)
are not commutative, thus

A ζθ A
′ 6= A′ ζθ A

Note here that we use only left or right outer joins. Using a full outer join, where
a right or left would suffice to output a missing tuple, would only yield less precise
results. More details are given in Section 5.4.3

Finally, the mixed type of explanation yields refinements in the class of conjunc-
tive queries enriched with the left and outer join operators.

Example 5.3.1 introduces the scenario for the running example of this chapter.
This scenario will be refined step by step in the dedicated sections. At this point, it
helps for describing the next background notion, i.e., the skyline, used in our refining
method(s).

Example 5.3.1. Consider the scenario ∆=(S, I, Q,WN), where

124 CHAPTER 5. QUERY REFINEMENT PHASE

1. S={R(A,B,C), S(C,D,E)} (for simplicity we omit here the attributes Id)

2. Q=(S,Γ, {A<5.5, B<4, R.C=S.C}), where Γ=A(S)

3. WN={S.E = 5}

For simplicity, in this example, we do not explicit the instance I. Moreover, we
name the conditions:

op1 : A<5.5, op2 : B<4, op3 : R.C=S.C

So, the query condition set is CQ = {op1, op2, op3}.
The Why-Not question defines two partitions for the schema SQ, Part1={R}

and Part2={S}. Since WN is defined only over S, S is a direct relation while R is
an indirect relation.

Then, assume that the query result consists of three tuples, prefixed with r

Q[I]={r1, r2, r3}

and that the set of compatible tuples w.r.t. WN has thirteen tuples, prefixed with t

CT = {t1, . . . , t12}

Finally, consider that the Why-Not answer polynomial has already been computed
and is

PEX = 3op1 + 4op2 + 4op1op2 + 1op3

We group the different explanations into two groups, based on the type of involved
conditions:

W1={op1, op2, op1op2} (selections-only)
W2={op3} (joins-only)

As we see from the polynomial, there are eleven compatible tuples t1, . . . , t11

pruned out by selections-only explanations (i.e., W1) and one tuple t12 pruned out
by joins-only (i.e., W2).

In our approach, as will be made clear in the next section, we are only interested
in the compatible tuples pruned out by explanations involving selection conditions.
In our example, these are the eleven tuples t1, . . . , t11. We observe that these tuples
must satisfy the join condition R.C = S.C (i.e., op3) of the query, because they were
not pruned out by op3. Consequently, they are part of the result set of the query
consisting only of the condition op3 and whose result is presented in Table 5.1.

Table 5.1 displays tuples as follows: firstly it displays the compatible tuples
t1, . . . , t11, then the result tuples r1, . . . r3 and finally the irrelevant tuples
u1, . . . , u6, meaning neither result tuples nor compatible tuples. Figure 5.1 displays
graphically the tuples of Table 5.1 as points in the space defined by the attributes
A,B,C,D,E.

5.3. PROBLEM AND PRELIMINARIES 125

Assume also that the compatible tuple pruned out by op3 is t12=(R.A : 2, R.B :
2, R.C : 3, S.C : 4, S.D : 6, S.E : 5).

The questions now is how can we fix the query Q in order to obtain some tuples
with E : 5 in the result set. The answer is provided gradually in the flow of the
discussion in this chapter.

!

"#

$%#

&'#

$(#

$'#

&%#

&(#

&)#

&*#

&+#

&,#

&-#

&.#

&%/#

&%%#0%#

0(#

0'#

0)#

0*#
0+#

1$232456#$7806&#&0967# :;<95=>67#&0967# ?$$767@54&#&0967#

!

"#

$%#

&'#

&(#

&%#

$'#
$)#

$*#

$+#

$,# $(#

$-#

$.#

$'/#$''#

0'#

0(#

0%#

0)#

0*#

0+#

1&232456#&7806$#$0967# ":;95<=67#$0967# >&&767?54$#$0967#

Figure 5.1: Tuples from Table 5.1 displayed in the dimension space A,B,C,D,E.

126 CHAPTER 5. QUERY REFINEMENT PHASE

Before continuing with the description of the different kinds of query refinements
and how we produce them, we conclude this introductory section by discussing the
central notion of skyline [BKS01, ZDTT10, ST12, PTFS03, GM15] (also known as
the maximum vector problem [KLP75]) in our context.

Skyline compatible tuples

When a selection condition is too restrictive to let a compatible tuple pass (and
generate a missing tuple), then intuitively what we need to do is to relax this con-
dition. When an explanation consists of more than one selection condition, then all
these conditions need to be relaxed in the refined query.

To ensure that the refined query will yield the desired result, we have to choose
the appropriate values for the new conditions. For this reason, all the new condi-
tions should be permissive for at least one compatible tuple. The question now is
which compatible tuple(s) we prefer to enact. We address this problem taking into
consideration that the refined query should be as similar as possible to the original
one. To accordingly prune the search space of compatible tuples to be considered,
we resort to the technique of skyline.

Intuitively, given a group of elements and a set of element properties (called
dimensions), the skyline outlines the most interesting elements in this set, i.e., the
elements that are for sure not worse than others w.r.t. the selected dimensions
and a given preference. Traditionally, the elements are considered as points on the
Cartesian space, with coordinates specified by the dimensions. To compare points
we use the notion of dominance among the points.

Definition 5.3.2. (k Dimensional Point Dominance) Let t1 and t2 be two points
defined in k dimensions in set D. Then, we say that t1 dominates t2 (denoted
t1 �D t2) if

1. t1 is better than or equal to t2 (denoted t1 <D t2) in all dimensions, and

2. t1 is better than t2 (denoted t1 �d t2) in at least one dimension d.

In our case, we represent the compatible tuples as points whose dimensions are
their attributes. Then, based on the values of their attributes we can decide which
tuples are dominated or not by other tuples, provided some predefined preference.

Example 5.3.2. Consider the tuples t1 and t6 from Table 5.1 and consider the
dimensions specified by the attributes A and B. Assume a preference over lower
values. Then, we say that t1 dominates t6 and write t1 �A,B t2, because t1 is better
than t6 in the dimension A (1.6 < 2) and it is equal to t6 in the dimension B
(5.6 = 5.6).

5.3. PROBLEM AND PRELIMINARIES 127

!

"#

$%$#

&#

'()*)+,-#(./0-1#102-.# 3452,67-.#102-.# 89:-)+.#102-.#;((.-.<,+1#102-.#

1=#1>#

1?#

1&#

1$#

1@#

1A#

1B#

1C#

1>D#

1>>#

(a) Skyline tuples for dimensions A,B

!

"#

$%$#

&#

'()*)+,-#(./0-1#102-.# 3452,67-.#102-.#
849,-#
:;<-)+.#102-.#=((.-.>,+1#102-.#

1?#1@#

1A#

1&#

1$#

1B#

1C#

1D#

1E#

1@F#

1@@#
1@#@#@#@# 1B#B#B#B#

1A#A#1A#A#

?#?#

(b) Local Skyline tuples for A (fourth quarter), B (second quarter),
and {A,B} (first quarter)

Figure 5.2: Tuples in the Cartesian space and quarters defined by the query selection
conditions.

The definition of skyline points in the specified dimensions is straightforward.

Definition 5.3.3. (Skyline Point) Let T be a set of k dimensional points, with the
dimensions specified by the set D. Then, t ∈ T is a skyline point if ∀t′ ∈ T it holds
that t′ ��D t. The set of skyline points is called the Skyline of the set T .

Figure 5.2(a) is used to describe the skyline tuples (points), however for the
moment we refer to it to describe point dominance and skyline. In this figure we

128 CHAPTER 5. QUERY REFINEMENT PHASE

project the tuples from Table 5.1 in the 2-dimensional space A,B. With green we
mark the space restricted by the query selection conditions, and where the result
tuples (marked with green) reside. Compatible tuples are marked with black and
irrelevant tuples are marked with red. Please, ignore Figure 5.2(b) for the moment.

Example 5.3.3. Consider the set of compatible tuples (points) {t1, . . . , t11} from
Table 5.1 and consider the dimensions specified by the attributes A and B. If we
consider that better means lower value, the skyline tuples (points) of this set are the
points representing the tuples t1, t2, t3, t4, t8. It can be easily verified that none of the
tuples in {t1, . . . , t11} dominates any tuple in the Skyline, in these two dimensions.
The skyline compatible tuples are marked as indicated in the caption in Figure 5.2(a).

In our case, the preference is specified by the fact that we want values that are as
close as possible to the ones in the original conditions of the explanation. So, given
a certain explanation, we say that we prefer to use the compatible tuples that for
any attribute involved in the conditions, result into a lower value of the following
expression:

Difft= | vt − vE |
where vt is the value of the attribute specified by t and vE the constant value to
which the attribute is compared in the condition of the explanation.

Example 5.3.4. Consider now the tuples t2 and t3 and the explanation E={A<5.5}.
Then, vE=5.5 whereas for the tuples we have

vt2 = 7.5 thus Difft2= | 7.5− 5.5 |= 2

vt3 = 6.4 thus Difft3= | 6.4− 5.5 |= 0.9

So, t3 � t2, because Difft3 < Difft2.

We further define the signature of the function that computes the set of skyline
tuples.

Notation 5.3.1. (Skyline function) Let T be a set of tuples and Att a set of
attributes s.t. Att ⊆ A(T). Then, SL(Att, T) denotes the function that returns the
set of skyline tuples in the set T under the dimensions defined by Att.

Up to now we have been discussing how to use the set of compatible tuples in
order to find the skyline tuples to be used in the query refinement process. However,
it is not correct or beneficial to consider the whole set of compatible tuples, when
considering one explanation. Indeed, using one explanation at a time enables us to
restrict the quest of skyline tuples, locally in the space of compatible tuples pruned
by the explanation only, as the following example demonstrates.

5.4. QUERY-REFINEMENTS 129

Example 5.3.5. Let us consider again the set of compatible tuples T ={t1, . . . , t11}.
Consider also the attributes Att={A,B}. Then, the skyline tuples for these dimen-
sions is

SL(Att, T) = {t1, t2, t3, t4, t8}
Figure 5.2(a) marks these tuples in the space defined by (A,B).

The skyline technique presented here is used mainly for computing query refine-
ments for selection-only explanations, as we will see in the next section. Additionally,
we refer to this technique for ‘screening’ in a final step all the computed query re-
finements and reject those that are worse than others in a number of properties,
defined later.

5.4 Query-Refinements
As we briefly mentioned before, for each explanation in the Why-Not answer

polynomial we propose a number of refined queries and for each kind of explanation
the class of the query refinement is different. When the explanation contains only
selections, then the natural choice is to change (relax) the problematic conditions in
a way that also missing tuples are permitted in the result. However, for joins such
a solution would yield the introduction of a cross-product in the query, which is a
naive solution that we consider too trivial. Moreover, cross-products rarely exist in
applications, so such a refinement would not be interesting and useful. Therefore,
for joins we propose the introduction of outer joins, when possible, in the place of the
problematic joins. In this section we discuss in detail both cases and finally provide
the algorithm to compute query refinements given one Why-Not answer polynomial.

5.4.1 Selections-Only explanations

For this type of explanations, associated with the set of explanations denoted
by W1, we split the process of computing query refinements in two phases. In the
first phase, called Minimum Distance Refinement (MDR) we compute a set of query
refinements per explanation. These refinements correspond to the minimum changes
that we can make to the query based on one explanation. In the second phase, called
False Positive Elimination (FPE) we further refine the set of queries obtained in
MDR in order to eliminate tuples that are irrelevant to what the user defined as
missing. We generally refer to such tuples as false positive tuples. Let us see now,
the details for each query refinement set.

Minimum Distance Refinements

Let us consider that E is a selections-only explanation and that we wish to
compute query refinements using E . To relax the condition in E we rely on the
values of the compatible tuples pruned by E . However, since the compatible tuples
may be numerous, the number of query refinements may be big. Moreover, one of

130 CHAPTER 5. QUERY REFINEMENT PHASE

the desiderata is that we change the constants involved in the conditions as little as
possible, so that the changed condition mostly resembles the original one. In this
sense, we can know a priori that some tuples will yield better refinements than others,
because their values are ‘closer’ to the ones originally chosen by the user. This leads
us to considering skyline tuples (Definition 5.3.1) in the set of compatible tuples
pruned out by the considered explanation. The attributes to take into account also
depend on the explanation; it is sufficient to consider only the attributes constrained
by the conditions in the explanation, as we are only interested in the values of these
attributes.

For this reason, we introduce at this point local skyline tuples w.r.t. an expla-
nation E . Besides considering attributes occurring in the explanations as explained
before, we can further prune the space of considered tuples for the local skyline and
thus the space of query refinements. The intuition is that given two query refine-
ments QE w.r.t. E and QE ′ w.r.t. E ′ s.t. E ′ and E ′ ∈ W1 is a sub-explanation of E
then if the changes on the common conditions are better in QE ′ , then we prefer QE ′ .
So, we may discard the query refinement for E . So, the local skyline tuples w.r.t.
an explanation are defined as follows.

Definition 5.4.1. Local skyline tuples w.r.t. an explanation
Let E be an explanation, CTE be the set of pruned compatible tuples by E, and

W1 be the set of selections-only explanations. Consider the set of explanations

Wsub = {E ′ | E ′ ∈ W1 ∧ E ′ ⊆ E}

Then, the set of local skyline tuples w.r.t E is the set

lSLE = SL(A(E), CTE \DominatedE)

where

DominatedE = {t | t ∈ CTE and ∃E ′ ∈ Wsub s.t. t
′ ∈ lSLE ′ and t′ �A(E ′) t}

Example 5.4.1. Let us revisit Example 5.3.5. Consider the selections-only expla-
nation E1={op1} and the compatible tuples CT1={t2, t8, t9} pruned out by op1. The
local skyline tuples w.r.t. E1 is

lSLE1 = SL({A}, CT1) = {t2}

Figure 5.2(b) displays these tuples in the fourth (bottom-right) quarter of the
diagram. Note that the quarters in this figure are defined by the conditions op1 and
op2 of the query. The first (upper-right) quarter displays the tuples not satisfying
neither op1 nor op2. The second (upper-left) quarter displays the tuples not satisfying
op2. The third quarter displays the query result, thus the tuples satisfying both op1

and op2. Finally, the fourth quarter displays the tuples not satisfying op1 .
For E2={op2} and CT2 = {t1, t4, t5, t6} we have that the local skyline tuples w.r.t.

E2 is
lSLE2 = SL({B}, CT2) = {t1, t6}

5.4. QUERY-REFINEMENTS 131

Figure 5.2(b) displays these tuples in the second quarter of the diagram.
Now, consider E3={op1, op2} and CT3 = {t3, t7, t10, t11}. The set of sub-

explanations of E3 is Wsub={E1, E2}={{op1}, {op2}}. We can see that the tuples
t1, t6 from the local skyline of op2 are dominating the tuple t7 ∈ CT3. Similarly, the
tuple t2 from the local skyline of op1 dominates the tuples t10 and t11. Thus, the only
tuple left to be considered for the local skyline of E3 is t3, and

lSLE3 = SL({A,B}, CT3 \ {t7, t10, t11}) = {t3}

Figure 5.2(b) displays these tuples in the first quarter of the diagram.

Each tuple in the set lSLE of an explanation E , yields one query refinement,
obtained by using the values of the local skyline tuples to replace the values of the
conditions in E . If the comparison in the original condition is < (>), then it is
changed to ≤ (≥). If it is = it is changed to ≤ or ≥. Note that if the condition is 6=,
then it is completely removed in the refined query. The query refinements obtained
in this phase are defined as follows.

Definition 5.4.2. (Minimum Distance Refined (MDR) Query) Let W1 be the set
of selections-only explanations and consider the sets of local skyline tuples lSLE for
each E ∈ W1. Then, the set of minimum distance refined queries Q′mdr is

Q′mdr={Q′ | Q′ refined query resulting from t ∈ lSLE , E ∈ W1}

Example 5.4.2. The refined queries are
with tuple t2

Q′t2=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C}

with tuple t3

Q′t3=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C}
The tuples t1 and t6, the local skyline tuples for explanation B < 4, have the

same value for the attribute B. So, they lead to the same refined query

Q′t1=Q′t6=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C}
Thus, the set of minimum refined queries is Q′mdr={Q′t2 , Q′t3 , Q′t1 , Q′t6}.

We guarantee that Q′mdr contains the refined query with the maximum similarity
to the original query, when inequalities (<,>, 6=) are involved. The proof is trivial,
since we know from the polynomial what are the minimal possible condition changes
and from the local skyline the most similar values to the original ones.

132 CHAPTER 5. QUERY REFINEMENT PHASE

5.4.2 False Positive Elimination

The refinements in Q′mdr are the result of a query relaxation process. Relaxing a
query yields the addition of tuples that were not in the result of the original query.
These extra tuples include (by design) some (projections of) compatible tuples, but
also some irrelevant tuples.

To reduce the number of irrelevant tuples and so to obtain more precise refined
queries, we move to the second refining phase concerning the queries in Q′mdr. In
contrast with the query relaxation process, the new refined queries result from con-
straining the queries in Q′mdr, either by changing already existing conditions or by
adding new conditions. The local skyline tuples again play a central role for the
refining process, as the new conditions are generated based on their values.

Let Q′|E ⊆ Q′mdr be the set of refined queries associated with an explanation
E . Each query Q′ ∈ Q′|E is associated with possibly more than one local skyline
tuples in lSLE . We argue now that we can discard some of the local skyline tuples
resulting in the same refined query Q′, for the phase that eliminates false positive
tuples. The following example illustrates this case.

Example 5.4.3. In the previous example, we concluded to the same refined query
for the tuples t1 and t6, because the tuples have the same value for the attribute
B, defining the dimension of the skyline. Obviously, in the one-dimensional space
defined by B, these tuples fall into the single point B = 5.6. However, if we consider
the same tuples in the one-dimensional space defined by A, t1 and t6 are different
points because t1.A < t6.A. Here, the objective is to produce as few false positive
tuples as possible; thus the preference is determined by the fact that we want a smaller
range of values to be permitted. Thus, (if we assume positive integers) t1 is more
‘dominant’ than t6 if we consider also the dimension A and as such, a refinement
based on t1 should be better than based on t6.

So, in order to avoid computing refinements that for sure contain more false
positive tuples, we prune the space of local skyline tuples w.r.t. E keeping only
dominant skyline tuples.

Definition 5.4.3. Dominant local skyline tuple
Let E be an explanation, and lSLE its associated set of local skyline tuples. Let

J={J1, . . . , Jn}, where n= | πA(E)[lSLE] | be a partitioning of lSLE s.t. a tuple t
belongs in the partition J iff πA(E)[t]=πA(E)(J).

Then, the set of dominant local skyline tuples w.r.t. E is defined as

dSLE=
⋃

i=1,...,n

{t | t ∈ Ji and t ∈ SL(A(SQ) \ A(E), Ji)}

Each dominant skyline tuple contributes in a different way to refining the queries
in Q′mdr. Note, that the same query Q′ may be changed in multiple ways, depending
on how many dominant skyline tuples are associated with it.

5.4. QUERY-REFINEMENTS 133

Example 5.4.4. In Example 5.4.1 we computed the sets of local skyline tuples for
each explanation in W1. For the explanations E1 and E3 the set of local skyline tuples
contain one tuple so:

dSLE1=lSLE1

dSLE3=lSLE3

For the explanation E2 though, the local skyline set contains t1 and t6, which have
the same value for B. So, J={J1}, where J1={t1, t6}. The set of attributes in SQ,
not referred to in E is Att={A,C,D,E}. From Table 5.1 and Definitions 5.3.2 and
Notation 5.3.1 we can see that t1 �Att t6. Thus, the set of dominant skyline tuples
for explanation E2 is

dSLE2={t1}

As one can easily guess, we may obtain a large number of different refined queries
by using one dominant skyline tuple, depending on the number of involved at-
tributes. The more conditions we add to the query, the more (or equal) irrelevant
tuples we eliminate from the new query result but also the more we deteriorate
the similarity w.r.t. the original query. For this reason, given a refined query Q′
associated with an explanation E and a dominant skyline tuple t, we proceed to
adding conditions to Q′ progressively. In this way, we can control deteriorating the
similarity of the query, when new conditions do not yield less irrelevant tuples.

The connection among the resulting (called derivative) query refinements of a
query Q′ ∈ Qmdr using a dominant skyline tuple t and the explanation E is modelled
as a rooted directed acyclic graph GQ′ described as follows:

1. Each node N corresponds to a query refinement Q′′ of Q′ using t.

2. The root node r corresponds to the query Q′.

3. Each node has a unique label AttN and a value FP s.t.
— AttN belongs to the powerset of A(SQ) \ A(E).
— FP is the number of false positive tuples of the associated Q′′.

4. There exists a directed edge (N1, N2) from a node N1 to a node N2 if
AttN2⊂AttN1 and |AttN2 | = |AttN1| − 1.

Example 5.4.5. Consider the refined query Q′t2 = {A < 7.5, B < 4, R.C = S.C}
associated with the dominant skyline tuple t2 and the explanation op1 : A < 5.5.
Then, the graph representing the derivatives of Q′t2 is shown in Figure 5.3(a).

When we have built the graph GQ′ associated with t and E , we ought to compute
the query refinement Q′′ associated with each node of the graph. Moreover, we need

134 CHAPTER 5. QUERY REFINEMENT PHASE

!"#$%&'#

!("#$%&# !)"#$%&# !*"#$%&#

!(+)"#$%&# !(+*"#$%&# !)+*"#$%&#

!(+)+*+,"#$%&#

!)"#

!(+)"# !(+*"#!(+)"#!(+)"#

!(+)+*+,"#!(+)+*+,"#

!,"#$%&#!*"#

!(+)+*"#$%&# !(+)+,"#$%&# !)+*+,"#$%&#

!(+,"#$%&# !)+,"#$%&# !*+,"#$%&#!(+*"#!(+)"#!(+)"# !)+*"#!)+*"#!)+*"# !(+,"#$%&# !(+,"#!(+,"# !)+,"#!)+,"#!)+,"#

!(+*+,"#$%&#!(+)+*"#!(+)+*"# !(+)+,"#!(+)+,"# !(+*+,"#$%&#!)+*+,"# !(+*+,"#!(+*+,"#

(a)

!"#$%&'#

!("#$%&)# !*"#$%&'# !+"#$%&)#

!(,*"#$%&# !(,+"#$%&# !*,+"#$%&#

!(,*,+,-"#$%&#

!*"#

!(,*,+,-"#!(,*,+,-"#

!-"#$%&)#!+"#

!(,*,+"#$%&# !(,*,-"#$%&# !*,+,-"#$%&#

!(,-"#$%&# !*,-"#$%&# !+,-"#$%&#

!(,+,-"#$%&#!(,*,+"#!(,*,+"# !(,*,-"#!(,*,-"# !(,+,-"#$%&#!*,+,-"# !(,+,-"#!(,+,-"#

(b)

Figure 5.3: Graph for derivatives of refined queries of Q′
t2
(a) initially, and (b) after

edge pruning.

5.4. QUERY-REFINEMENTS 135

to find the number of false positive tuples that eachQ′′ outputs so as to later compute
its precision. This number is called as the FP value of a node.

Assume we are at a node N . To proceed with the computations for N , we use the
attributes AttN of the label of N . Intuitively, we are going to create a new condition
for each attribute in AttN . We need to ensure that this condition is satisfied by all
the query result tuples Q[I] and also the tuple t. The conjunction of the conditions
will be used to form the refined query Q′′ for node N . Then, we compute the number
of false positive tuples output by the refined query Q′′, by applying CQ′′ over the set
of false positive tuples of the refined query Q′ on the root node r

FPN =| σ ∧
c∈CQ′′

c[FPr] |

where FP denotes the set of false positive tuples.
We distinguish among two categories of attributes in AttN :
— Attributes also appearing in A(W1).
— Other attributes (not appearing in A(W1)).
Depending on the category of the attribute, we proceed in a different way to

create the condition on the attribute.

Attribute A ∈ A(W1)

If A is an attribute constrained by some selection condition opA in the refined
query Q, then we change the condition opA : A < a to

op′A : A ≤ max(πA[Q[I]], t.A)

In this way, we restrain the query in an attempt to eliminate false positive tuples
by ensuring at the same time that we do not exclude any result tuples from Q[I].

Attribute A /∈ A(W1)
If A is an attribute not originally appearing in the selection conditions of the query Q,

we introduce the following condition on A

op′A : min(πA[Q[I]], t.A) ≤ A ≤ max(πA[Q[I]], t.A)

By restricting the value of A between the minimum and maximum values, we wish to keep
the briefest possible interval including all the interesting points and subsequently excluding
as many false positive tuples as possible.

Example 5.4.6. Consider the explanation Q′t2 obtained in Example 5.4.2, which is asso-
ciated with E = A < 5.5 and the associated graph in Figure 5.3(a). There is one false
positive tuple (u5) in the result of Q′t2, thus the value of the root node is FP = 1.

Then, let us investigate the node N with AttN={B,C}. Here, B falls in the first case
and C falls in the second case.

For B, we create the condition

op′B : B ≤ max(πB[Q[I]], t2.B)

136 CHAPTER 5. QUERY REFINEMENT PHASE

which results in
op′B : B ≤ 2.4

For C, we create the condition

op′C : min(πC [Q[I]], t2.C) ≤ C ≤ max(πC [Q[I]], t2.C)

which results in
op′C : 2.8 ≤ C ≤ 8.4

Thus, we obtain the query

Q′′=(SQ,ΓQ, {A ≤ 7.5, B ≤ 2.4, R.C = S.C, 2.8 ≤ C ≤ 8.4})

to be associated with node N . The number of false positive tuples output by Q′′ is zero; the
tuple u5 does not satisfy the condition op′B.

In the same way we can compute the refined queries Q′′ for each node in the graph of
Figure 5.4(a).

To illustrate the exclusion of the false positive tuples from the refined query results in
the cartesian space, consider for example the case of the refined query Q′t3 associated with
the explanation op1op2. The result of this query is marked by a line in Figure 5.4(a).
There are two false positive tuples in this result, u2 and u5. First consider the node of
GQ′t3

associated with {C}. Figure 5.4(b) illustrates the limits op′C : 2.8 ≤ C ≤ 7.5 for the
condition on C and shows that the false positive tuple u2 is excluded from the result of the
refined query Q′′ associated with this node. Then, consider also the node associated with
{D}. Figure 5.4(c) illustrates the limits op′D : 5.2 ≤ D ≤ 7.2 for the condition on D and
shows that both false positive tuples u2 and u5 are excluded from the result of the refined
query Q′′ associated with this node.

Remarks Even though every node in a graph GQ′ represents a refined query Q′′ of Q′

that can be computed as previously described, it is possible to optimize the procedure in
a two ways.

First of all, one may notice, that the nodes of the graph share attributes. Since the
computed condition on an attribute is based on the query result tuples and the tuple t,
this condition is always the same, regardless the node. So, we need to compute only once
the condition for an attribute. Then, the same condition is used in every node it appears,
to form the refined queries of Q′. For example, in the graph of Figure 5.4(a), the condition
op′B : B ≤ 2.4 is used in the refined queries of all nodes with labels s.t. B ⊆ AttN .

The second and most important remark concerns the edges of the graph, the use of
which has not been made clear up to now. Indeed, we are going to prune edges outgoing
from nodes whose FP value is null and we are going to only compute query refinements
for those nodes connected though a path with the root. In this way, we avoid computing
refinements adding conditions to other refinements already yielding zero false positive
tuples.

For this reason, given a graph GQ′ we visit the nodes in a breadth first search (BFS)
manner. When for a node N the computed FPN value is zero, then we disconnect

5.4. QUERY-REFINEMENTS 137

(a)

!

"#

$%#

&'#

&(#

&%#

$'#
$)#

$*#

$+#

$,# $(#

$-#

$.#

$'/#$''#

0'#

0(#

0%#

0)#

0*#

0+#

##

$+#

$-#-#

$'/#'/#

0)#

$%#%#

&'#'#

&(#(#

&%#%#

0(#(#

0*#

(b)

!

"#

$%#

&'#

&(#

&%#

$'#
$)#

$*#

$+#

$,# $(#

$-#

$.#

$'/#$''#

0'#

0(#

0%#

0)#

0*#

0+#

$-#-#0)# 0(#(#

$'#'#$

$

$.#

$''#''#''#

0'#'#

##

$+#

$'/#'/#

$%#%#

&'#'#

&(#(#

&%#%#

0*#

$ $&

$'#'# (#(#

(c)

!

"#

$%#

&'#

&(#

&%#

$'#
$)#

$*#

$+#

$,# $(#

$-#

$.#

$'/#$''#

0'#

0(#

0%#

0)#

0*#

0+#

$+#

-#-#

##

&'#'#

0(#(#

0*#

'#

$
0

$(#

$'/#'/#

0)#

$%#%#
&(#(#

&%#%#

0
$$

Figure 5.4: Representation in the DC space of the result tuples of refined query (a)
Q′

t3
, (b) of refined query Q′′ obtained by adding conditions on the attribute C, and

(c) of refined query Q′′ obtained by adding conditions on the attribute D.

138 CHAPTER 5. QUERY REFINEMENT PHASE

(a)

!"#$%&'#

!("#$%&)# !*"#$%&)# !+"#$%&)#

!(,*"#$%&# !(,+"#$%&# !*,+"#$%&#

!(,*,+,-"#$%&#

!*"#

!(,*,+,-"#!(,*,+,-"#

!-"#$%&)#!+"#

!(,*,+"#$%&# !(,*,-"#$%&# !*,+,-"#$%&#

!(,-"#$%&# !*,-"#$%&# !+,-"#$%&#

!(,+,-"#$%&#!(,*,+"#!(,*,+"# !(,*,-"#!(,*,-"# !(,+,-"#$%&#!*,+,-"# !(,+,-"#!(,+,-"#

(b)

!"#$%&'#

!()*"#$%&#

!()*)+"#$%&#

!()+"#$%&# !*)+"#$%&#

!()*)+"#

!("#$%&,# !*"#$%&-# !+"#$%&-#!("# !*"#

Figure 5.5: Graph for derivatives of refined queries of (a) Q′
t1
, and (b) Q′

t3
.

1. the edges of type (N, x), and
2. the edges of type (M,x) where x is a target node of some edge (N, x).

Example 5.4.7. Consider again the graph in Figure 5.3(a). As we proceed in BFS order,
we start with the node B. In the previous example, we saw that the false positive tuple
u5 does not satisfy the condition op′B : B ≤ 2.4 on attribute B. Thus, FPB = 0, and we
disconnect node B from its child nodes. We also disconnect these child nodes from all their
parent nodes.

We proceed with node C. The condition on C is op′C : 2.8 ≤ C ≤ 8.4 which yields
FPC=1.

Then we visit node D, for which the condition is op′D : 5.2 ≤ C ≤ 7. Thus, FPD = 0,
and we disconnect node D from its child nodes. We also disconnect these child nodes from
all their parent nodes.

At this point, all nodes of the next level are disconnected. This means that there is no
need to compute refinements for all the remaining nodes as the refining goal (to minimize
false positive tuples) has already been achieved.

The resulting graph is shown in Figure 5.3(b).
In this same way we proceed with the graphs for Q′

t1 and Q′
t3 , and we obtain the graphs

shown in Figure 5.5(a) and (b).

The resulting queries obtained in this phase are described as follows:

Definition 5.4.4. (False Positive Elimination (FPE) Query Refinements) Let Q′
mdr be the

set of MDR query refinements. Then, the set of false positive elimination query refinements
Q′

fpe is

Q′
fpe=

⋃

Q′∈Q′
mdr


 ⋃

N∈CCQ′

Q′′
N




where CCQ′ is the connected component containing the root node of the graph GQ′ and Q′′
N

is the refined query associated with the node N .

5.4. QUERY-REFINEMENTS 139

Table 5.2: Refined queries for selections-only explanations for scenario of Exam-
ple 5.3.1.

MDR
Q′t1=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C}
Q′t2=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C}
Q′t3=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C}

FPE

Q′′t1,{A}=(SQ,ΓQ, {R.A ≤ 2.1, S.B ≤ 5.6, S.C = T.C}
Q′′t1,{C}=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C, 2.8 ≤ C ≤ 7.5}
Q′′t1,{D}=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C, 1 ≤ D ≤ 6.8}
Q′′t1,{E}=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C, 1 ≤ E ≤ 5}
Q′′t2,{B}=(SQ,ΓQ, {R.A ≤ 7.5, S.B ≤ 2.4, S.C = T.C}
Q′′t2,{C}=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C, 2.8 ≤ C ≤ 8.4}
Q′′t2,{D}=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C, 5.2 ≤ D ≤ 7}
Q′′t2,{E}=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C, 1 ≤ E ≤ 5}
Q′′t3,{C}=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C, 2.8 ≤ C ≤ 7.5}
Q′′t3,{D}=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C, 5.2 ≤ D ≤ 7.2}
Q′′t3,{E}=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C, 1 ≤ E ≤ 5}

The reader should note here, that the MDR refinements are also present in the set of
refinements FPE. Indeed, the root node of every graph GQ′ corresponds to the MDR query
Q′. Thus, the set Q′mdr is the final set of query refinements as

Q′mdr ⊆ Q′fpe

Example 5.4.8. From the graphs GQt1 , GQt2 , GQt3 we obtain the set of refined queries
Q′fpe displayed in Table 5.4.2.

5.4.3 Joins-Only explanations
The second type of explanations encountered in a Why-Not answer polynomial is about

explanations with join conditions only. Here, the previous approach of condition relaxation
is not applicable. When a join exists in an explanation, this means that for some compatible
tuples no join partners were found. One obvious solution to this problem would be to
change the join to cross product. However, this trivial solution may generate numerous
false positive tuples would be overwhelming. Thus, the refinement may not be useful for
the user nor meet her initial intent. As a different option, we resort to left and right outer
joins as already mentioned in the introduction.As we discuss in this section, it is not always
feasible to refine the query using this approach. So, it is not guaranteed that we will obtain
a query refinement for every explanation including joins. Note that to fill this gap, in the
future we will consider different techniques for refinements, like for example using foreign
keys, as discussed later on in the Perspectives section (Chapter 6).

Our approach for processing joins-only explanations is totally different from the case of
selections-only., as it does not rely on compatible tuples. Moreover, here we do not proceed
to a false positive elimination phase, for which the compatible tuples were previously

140 CHAPTER 5. QUERY REFINEMENT PHASE

used. Nevertheless, for joins-only we leave the false positive elimination phase as an open
question.

Let us now describe why and when a solution involving left and right outer joins is
feasible. Intuitively, this depends on the direct and indirect compatible tuples (recall that
these notions have been introduced for NedExplain, Section 4.1.3), and how the relations
(or partitions) storing direct and indirect tuples, connect with each other through the joins
of the query. To ease the discussion, we blaze the trail using examples/use cases, based on
the database in Figure 5.6.

In the first two examples, the queries involve only join conditions. In the third ex-
ample we introduce selections in the query, however the reader should remember that the
explanation is still composed only by join conditions.

Book
Title BAuthor Price Pub B_Id

Odyssey Homer 15 Cambridge Id1

Iliad Homer 45 Prestwick Id2

Antigone Sophocles 49 Psichogios Id3

Lysistrata Aristophanes 30 Hackett Id4

Author
Name Dob A_Id
Homer 800BC Id5

Sophocles 400BC Id6

Euripides 400BC Id7

Aristophanes 400BC Id8

Publisher
Appellation Country P_Id
Cambridge England Id9

Prestwick USA Id10

Psichogios Greece Id11

Figure 5.6: Sample database for the case study in joins-only explanations.

Example 5.4.9. Explanation condition over one direct and one indirect relation
Consider the following scenario over the tables Author and Book of Figure 5.6, where

for convenience the attributes are displayed only by their name.

Query Q: ({Author,Book}, {Name, T itle},
{Name = BAuthor})

Query result Q[I]: {(Homer,Odyssey), (Homer, Iliad),
(Sophocles, Antigone), (Aristophanes, Lysistrata)}

Why-Not question WN : {Name = Euripides}
Explanation E: Name = BAuthor

Since the Why-Not question is specified over the Author relation, the Author is a direct
relation, whereas the Book is an indirect relation. This means that we absolutely want the
values from the (partial) compatible tuples from Author to appear in the result tuples. The
joins-only explanation Name = BAuthor informs us that there were no join partner tuples
in the Book relation for the author Euripides. So, in order to be able to obtain Euripides

5.4. QUERY-REFINEMENTS 141

nk

n1

θk

n2
θ1

θl
nl

Figure 5.7: Query Q graph, where nodes n denote schema relations and edges θ
denote joins.

in the result, we can change the join to a left outer join, with the direct relation in the left
side of the operator to ensure that Euripides will appear in the result. The refined query
Q′ then, has the condition Name ./= BAuthor instead of Name = BAuthor and can be
expressed in SQL as:

SELECT Author.Name,Book.Title
FROM Author
LEFT OUTER JOIN
Book ON Author.Name = Book.BAuthor

Indeed, the result of Q′ contains the tuple (Euripides, null) along with the original
result tuples.

In the previous example, we demonstrate the simplest case that can be treated in this
category: the explanation contains only one join that is over one direct (RDir) and one
indirect (RInDir) relation, whereas there are no other conditions in the query. In this case,
the refined query Q′ can be obtained from Q by the following transformation:

RDir.A θ RInDir.A
′ ⇒ RDir.A ./θ RInDir.A

′

More generally, consider a query with several joins, represented as the graph in Fig-
ure 5.4.3, where a node n stands for a schema relation and an edge θ stands for a join
among two relations. Consider that n1 corresponds to RDir and n2 to RInDir. If the
join θ1 forms a joins-only explanation and if there is no direct relation reachable from n1

through n2, then the refinement using (left or right) outer joins can be applied. For
example if θl models a ‘transitive’ join, then nl should not be a direct relation.

Example 5.4.10. Explanation condition over two direct relations
Consider a variation of the previous example, with the Why-Not question being specified

over both relations, making them both direct.

Query Q: ({Author,Book}, {Name, T itle},
{Name = BAuthor})

Query result Q[I]: {(Homer,Odyssey), (Homer, Iliad),
(Sophocles, Antigone), (Aristophanes, Lysistrata)}

Why-Not question WN : {Name = Euripides, T itle = Odyssey}
Explanation E: Name = BAuthor

In this case, the user expects to find a result tuple with both the values Euripides and
Odyssey. However, this is impossible to achieve by turning the join to an outer join (left,
right or full); what we can achieve is obtaining some tuples with Name = ‘Euripides′ and
some other with Title = ‘Odyssey′, which is not what is expected.

142 CHAPTER 5. QUERY REFINEMENT PHASE

The previous example demonstrates a simple case where the solution with outer joins
is not applicable, i.e., when the explanation contains one join that is specified over two
direct relations.

More generally, consider again the graph in Figure 5.4.3. If θ1 forms a joins-only
explanation and both n1 and n2 are direct relations, then the refinement using (left or
right) cannot be applied.

Example 5.4.11. Explanation conditions on indirect relations
Consider the following scenario

Query Q: ({Author,Book, Publisher}, {Name,Country},
{Name = BAuthor, Pub = Appellation})

Query result Q[I]: {(Homer,England), (Homer, USA),
(Sophocles,Greece)}

Why-Not question WN : {Name = Aristophanes}
Explanation E: Pub = Appellation

Now, the query involves two joins, the first one joining the direct relation Author with
the indirect relation Book and the second one joining the indirect Book with the indirect
relation Publisher. The second join (Pub = Appellation) is the one identified by the
explanation as causing the problem, and thus should be fixed. Since no direct relations
follow the indirect ones in the join chain, we can fix this join by turning it into a left outer
join.

So, we obtain the query Q′ (in SQL):

SELECT Author.Name,Publisher.Country
FROM Author
INNER JOIN
Book ON Author.Name = Book.BAuthor
LEFT OUTER JOIN
Publisher ON Book.Pub = Publisher.Appellation

So, indeed in the result of Q′ we obtain (Aristophanes, null) along with the original
result tuples.

The previous example demonstrates the case where the explanation condition is speci-
fied over indirect relations and which we can indeed treat with the left outer join solution.

More generally, consider again the graph in Figure 5.4.3. If θ1 forms a joins-only expla-
nation, both n1 and n2 are indirect relations and there does not exist a path connecting two
direct relations and going through the join θ1, then the refinement using (left or right) outer
join can be applied. This means that the nodes nk and nl cannot be direct relations.

Then, fixing the join in Q to a left outer join in Q′ consists in

RInDir.A θ R′InDir.A ⇒ RInDir.A ./θ R
′
InDir.A

Note that in all the examples, the direction of the outer join, left or right, is determined
by the side on which the direct relation reside.

5.4. QUERY-REFINEMENTS 143

The three previous examples lead to one common definition for query refinements using
right or left outer join after stating when such a refinement is valid.

Definition 5.4.5. (Joins-only Refinement)
Let Q=(S,Γ, C) be a query. Let E={op1} be a joins-only explanation, where op1 :

{R1.A θ R2.A} ∈ C. Let GQ denote the graph modelling the relations (nodes R) and joins
(edges op) of the query Q.
Given E, a joins-only refinement for Q is feasible, iff

for each path Π in GQ from relation Rk to Rl, where Rk, Rl are direct, it holds that
op1 is not an edge in Π

A joins-only refinement Q′ for Q is defined by

Q′=(SQ,ΓQ, C ′)

where
C ′=(C \ {op1}) ∪ {R1 ./θ R2}

if
— R1 is a direct relation, or
— there exists a path Π from relation R1 to Rk, where Rk is direct, and R2 is not
a node in Π.

or
C ′=(C \ {op1}) ∪ {R1 ./ θ R2}

if
— R2 is a direct relation, or
— there exists a path Π from relation R2 to Rk, where Rk is direct, and R1 is not
a node in Π.

The previous definition can be easily extended for the case of multiple joins in the
explanation E .

Up to now, we considered a query Q consisting of only join conditions. This facilitated
our discussion to determine the shape of the query graph in correlation with the join
conditions in the explanation, in order to be able to propose joins-only query refinements.
We also showed how we choose the direction of the outer-join to be used, depending on
the location of the direct relations.

Now, we continue with the example with a query containing selection conditions, be-
sides the joins assuming that a joins-only refinement is applicable for the query Q, given
the explanation E . As a reminder, the selections do not appear in the explanation as we
are only considering here joins-only explanations.

Example 5.4.12. Query with selections
Assume that the tuple

Antigone Sophocles 49 Psichogios Id3

in the Books instance changes to:

144 CHAPTER 5. QUERY REFINEMENT PHASE

Antigone Sophocles null Psichogios Id3

Now, consider the following scenario:

Query Q: ({Author,Book}, {Name, T itle},
{Name = BAuthor, Price > 30})

Query result Q[I]: {(Homer, Iliad)}
Why-Not question WN : {Name = Euripides}
Explanation E: Name = BAuthor

This is the same scenario as in our first example, with an extra selection condition for
the price of the retrieved books. In this case, we create a sub-query to retrieve the books
with price greater than 30, and perform the left outer join on the result of the subquery and
the Author relation. So, the refined query Q′ is (in SQL):

SELECT Author.Name, sub.Title
FROM Author
LEFT OUTER JOIN
(SELECT Book.Title,Book.BAuthor FROM Book WHERE Book.Price>30) sub
ON Author.Name = sub.BAuthor

So, indeed in the result we obtain the tuple (Euripides, null) along with the original
result tuple.

In this example, the query and explanation are formed in such a way that we can apply
the outer-join solution. However, the query conditions contain also selections. In this case
we add one more step to the solution adding the selections in the refined query.

This extra step creates subqueries replacing relations over which selections are specified.
Then, the joins of the query are specified over the respective subqueries in the refined query.

This approach is justified as follows: keeping the selection conditions in the WHERE
clause of the refined query Q′, would prune out of the result any tuple with a Null value in
the respective attributes. Thus, the WHERE clause would also prune out the Null -padded
tuples generated by the OUTER JOIN that we need to create the missing tuples.

Note that introducing subqueries in the query, yields an output schema ΓQ′ for the
refined query Q′ that is different from the output schema ΓQ of Q. This causes an in-
consistency w.r.t. our general definition of query refinement (Definition 5.3.1, page 122).
There, to verify that a query refinement recovers some missing tuples, we assumed that
the output schema of Q′ complies with the schema of the compatible tuples, i.e., SQ.

However, this inconsistency can be easily overpassed. Each introduced subquery sub
refers to a set of relations Rsub. Consider the case when the attributes of the relations
of Rsub are projected out by the query Q, i.e., A(Rsub) ⊆ ΓQ. Then, since each relation
appears only in one subquery, there is an injective non-surjective mapping µ from attributes
in ΓQ′ to attributes in SQ (each attribute in ΓQ′ maps to exactly one attribute in SQ,
and no other attribute from ΓQ′ maps to the same attribute from SQ). Consequently,
Definition 5.3.1 can be stated as:

‘A query refinement is a query Q′ s.t. ∃t ∈ CT : t |= E and πΓ[t] ∈ µ(Q′[I]). ’

5.5. FIXTED ALGORITHM 145

One other possible approach to integrate the selections in the query Q′, would be to use
the predicate is Null, instead of introducing subqueries. Following this approach, we could
disjunctively add in the WHERE clause the predicate A is Null, where A is an attribute
over which a selection is specified and also is in the schema of a relation in the right relation
if a LEFT OUTER JOIN is used (or the left relation if a RIGHT OUTER JOIN is used).

However, adding the predicate A is Null may also introduce false positive tuples, com-
puted from source tuples having an A Null value. This would increase the number of false
positive tuples in the refined query result. Thus, we have opted for the first solution us-
ing subqueries. Nevertheless, an optimized version of our algorithm would exploit schema
constraints to find attributes without Null values and in this case choose the refinement
without subqueries.

For example, in the example of this case the refined query would be

SELECT Author.Name, Book.Title
FROM Author
LEFT OUTER JOIN
Book

ON Author.Name = Book.BAuthor
WHERE Book.Price>30 OR Book.Price is Null

This query would return the result {(Homer, Iliad), (Euripides, null), (Sophocles, null)}.
Indeed, the is Null condition has allowed the false positive tuple (Sophocles, null) appear
in the result. However, this tuple was pruned out with the subqueries approach, providing
a better result.

5.4.4 Mixed explanations
The third case that we may have to deal with, is when both selection and join conditions

occur in an explanation of the Why-Not answer polynomial. Since the solution is directly
combining the two previous cases, we do not elaborate further details on this.

5.5 FixTed Algorithm
In this section, we provide the FixTed algorithm that leverages Why-Not answer poly-

nomials in order to generate query refinements as defined in Definition 5.3.1, page 122.
Briefly, FixTed computes query refinements as per explanation type and returns only the
most interesting (regarding similarity and precision) ones using a cost function that ranks
the refinements based on a number of metrics. Next, we describe in detail the algorithm,
outlining the associated pseudo-code.

Algorithm 9 describes the main steps of FixTed. FixTed accepts as input a conjunctive
query with inequalities Q and a precomputed Why-Not answer polynomial PEX w.r.t.
some Why-Not question. Also, it requires as input the set V of compatible tuples organised
in partition views Vi as already discussed in Section 2.2. V and PEX are output by Ted++
(see Algorithm 7). The input also includes the weightsW for the metrics used in the query
refinement ranking function. The metrics and the ranking function are described later on.

First, in lines 1-2 we group the explanations (i.e., the terms) from the polynomial w.r.t.

146 CHAPTER 5. QUERY REFINEMENT PHASE

Algorithm 9: FixTed
Input: Q: query, V: set of partial compatible tuples views w.r.t. a Why-Not

question and the valid partitioning P, PEX: Why-Not answer polynomial,
W: weights for scoring function

Output: Q′: set of query refinements for Q
1 W1 ← {E | E ∈ PEX and ∀op ∈ E : op is a selection condition};
2 W2 ← {E | E ∈ PEX and ∀op ∈ E : op is a join condition};
3 W3 ← PEX \ (W1 ∪W2);
4 Q′mdr ← MDR(Q,W1, CT,P); % minimum distance refinement, for selections-only
explanations%

5 Q′fpe ← FPE(Q,Q′mdr); % false positive tuples elimination, for selections-only
explanations%

6 Q′jo ← JoinsOnly(Q,W2); % joins-only explanations%
7 Q′mixed ← Mixed(Q,W3, CT); % mixed explanations%
8 Q′ ← Q′mdr ∪Q′fpe ∪Q′jo ∪Q′mixed;
9 for refined query Q′ ∈ Q′ do
10 Q′.nfp← computeNumberOfFalsePositiveTuples(Q′);
11 Q′.vd← computeV alueDistance(Q′);
12 Q′.ncc← computeNumberOfChangedConditions(Q′);
13 Q′.nac← computeNumberOfAddedConditions(Q′);

14 Q′ ← SL({fp, vd, nac, ncc},Q′);
15 for refined query Q′ ∈ Q′ do
16 Q′.score← assignScore(Q′, ~W); % assign score based on scoring function

weights%
17 return rank(Q′);

their type. Then, to compute the query refinements of Q based on the explanations, we
follow a different procedure for each group.

Selections-only explanation set W1 (Algorithm 9 lines 4 & 5) For the
selections-only explanations we perform two consecutive steps, as described in Section 5.4.1.
We start with the Minimum Distance Refinements(MDR) phase, sketched in Algorithm 10,
and continue with the False Positive tuples Elimination (FPE) phase, sketched in Algo-
rithm 11.

Algorithm 10 iterates through the explanations in W1 starting from the explanations
containing the least number of conditions and moving on in ascending order. For each
explanation E we firstly compute the partial compatible tuples eliminated by the explana-
tion (line 4). If PartE is the set of partitions over which the conditions in E is specified,
then the view storing the partial compatible eliminated tuples by E is specified by the
statement:

VE=σPred["
R∈Part∈PartE

R]

where Pred =
∧
op∈E
¬op ∧

op∈(CQ\E) s.t. A(op)⊆A(PartE)

op.

5.5. FIXTED ALGORITHM 147

Algorithm 10: MDR Algorithm
Input: Q: query, W1: set of explanations with selection conditions only, V: set of

partial compatible tuples views, P : valid partitioning of SQ
Output: Q′mdr: set of minimum distance query refinements

1 Q′mdr ← ∅;
2 for explanation E ∈W1 % accessed in ascending explanation size order% do
3 PartE ← {Part | Part ∈ P and ∃R ∈ Part s.t. E is specified over R};
4 VE ← partial compatible tuples eliminated by E ;
5 V SL

sub ← {V SL
E ′ | E ′ ∈W1 and E ′ ⊂ E};

6 V SL
E ← localSkylineTuples(VE ,A(E), V SL

sub); % Definition 5.4.1%
7 V dSL

E ← dominantSkylineTuples(V SL
E ,A(PartE) \ A(E));

8 for t ∈ V dSL
E do

9 Q′ ←refineQueryMDR(Q, E , t);
10 Q′mdr ← Q′mdr ∪ {Q′};

11 return Q′mdr

Intuitively, VE computes the tuples in the partitions of E that do not satisfy the condi-
tions of the explanation but satisfy all other query conditions specified over the attributes
of these partitions. In this way we know that a repair of the conditions in E is sufficient
to allow some compatible tuples (from VE) to make it to the result.

Example 5.5.1. Let us revisit Example 5.3.1, on page 123 and focus on the set of
selections-only explanations set W1. All explanations in W1 contain selections over the
relation R, which as we said forms the partition Part1. So, all the views VE have the same
schema as R, i.e., {A,B,C}, and are subsets of Table 5.1. As, each compatible tuple t
in Table 5.1 has a distinct result πA,B,C [{t}], we abusively refer to the partial tuple t|R as
t. Note that this would not be the case if more than one compatible tuples led to the same
partial tuple.

It is clear that the views VE correspond to compatible tuples marked with t in each quar-
ter of Figure 5.2(b). For instance, V{A<5.5}={t2, t8, t9} corresponds to the fourth quarter.

Then, we compute the set of local skyline tuples, using also the set of local skyline
tuples of sub-explanations of E (lines 5 & 6). Note here, that we can compute local skyline
partial compatible tuples instead of full compatible tuples, because the attributes of the
explanation (dimensions for the skyline) are available in the involved partitions.

Computing skyline tuples is equivalent to the problem of computing the skyline over a
set of n points given d dimensions. If we consider a naive algorithm (nested-loop algorithm)
to compute the skyline tuples, where each point p ∈ P is compared with each other point
p′ ∈ P in all n dimensions, the worst time complexity is O(n2). If we consider a more clever
algorithm like the Divide and Conquer (D&C), the complexity is O(nlogn) for d=2,3 and
O(n[d/2]+1) for d > 3 [BKS01], where d is the dimensionality and n the cardinality of the
input set. No matter the algorithm we choose, the skyline computation heavily depends
on the cardinality of the set of compatible tuples set and the number of dimensions. Note,
that if we did not have the explanations available, we would have considered | CT | tuples
and | A(W1) | dimensions in the worst case. The fact that we are considering local skyline
tuples provides an opportunity for more efficient process because we consider

148 CHAPTER 5. QUERY REFINEMENT PHASE

— | πA(PartE)σC′ [CT] | number of compatible tuples, instead of | CT |, where PartE is
the set of partitions over which E is defined, C ′ is a predicate obtained considering
the explanation E and σC′ [CT] are the compatible tuples eliminated only by E , and

— | A(E) | number of considered attributes, instead of | A(C) |, as dimensions.

Example 5.5.2. In Example 5.4.1, on page 5.4.1 we already gave the skyline tuples for
each explanation, marked in Figure 5.2(b).

Lets us now discuss how considering local skyline tuples could be more efficient than
computing skyline tuples over all the attributes constrained in the query Q. If we were to
find the skyline tuples in the set of full compatible tuples t1, . . . , t11, we would have to
make at most two comparisons (one for each attribute A, B) for each pair of compatible
tuples. If we take into account the formula

(
n

k

)
=

n!

k!(n− k)!

computing the combinations of size k of a set of n elements [Hal98]. This yields a
worst-case number of comparisons equal to

χsk=2 ∗ 11!

2!9!
= 110

On the other hand, let us see how many comparisons we do with the local skyline tuples.
For the explanation {A < 5.5} there are 3 tuples to be compared on one attribute (A),

for the explanation {B < 4} we have 4 tuples to be compared on 1 attribute (B) and for
{A < 5.5, B < 4} we have 4 tuples to be compared on 2 attributes (A,B).

Thus the number of comparisons is

χ′lsk = 1 ∗ 3!

2!1!
+ 1 ∗ 4!

2!1!
+ 2 ∗ 4!

2!2!
= 3 + 12 + 12 = 27

To this number we add the extra comparisons for the sub-combinations needed for {A <
5.5, B < 4}, which sum up to 3*4 comparisons on 1 attribute (1 skyline tuple of {A < 5.5}
plus 2 skyline tuples of {B < 4} compared with every compatible tuple associated with
{A < 5.5, B < 4}). Thus, in the worst case the number of needed comparisons is

χlsk = 27 + 12=39

As a result, χlsk < χsk. Moreover, in our example we have achieved to reduce the
number of comparisons per 71, performing a little more than one third of the comparisons
needed for the standard skyline computation. Note that the number of comparisons may
decrease even more substantially, in the case when the number of partial tuples is less than
the number of full tuples, i.e., in the case when more than one tuples are projected to the
same tuple, considering the schema of one partition.

Line 7 prunes the space of local skyline tuples to keep only dominant skyline tuples.
As here we handle partial compatible tuples, the dominant skyline tuples are computed
based on the attributes of the involved partitions. So, in a set of local skyline tuples, if
there are tuples that are equal in the dimensions specified by the attributes of E , we only
consider those that are not dominated by the others based on the remaining attributes of
the involved partitions. Note here, that we do not consider all the remaining attributes

5.5. FIXTED ALGORITHM 149

Algorithm 11: FPE Algorithm
Input: Q′mdr: set of refined queries, each one associated with one explanation and

one tuple, Res the query result before the final projection
Output: Q′fpe: set of query refinements

1 for query Q′ ∈ Q′mdr do
2 E ← explanation associated with Q′;
3 t← tuple associated with Q′;
4 PartE ← set of partitions over which the explanation E is specified;
5 C ← ∅; %new conditions%
6 for attribute A ∈ (A(PartE) \ A(E)) do
7 if A ∈ A(W1) then
8 minA ← min(t.A,min(πA(Res))); C ← C ∪minA ≤ A;
9 else
10 minA ← min(t.A,min(πA(Res)));
11 maxA ← min(t.A,max(πA(Res)));
12 C ← C ∪minA ≤ A ≤ maxA;

13 ZeroFP ← ∅; %set of condition sets that lead to a query with zero false
positive tuples%

14 for condition set condComb in 2C \ ∅ do
15 if 6 ∃condComb′ ∈ ZeroFP s.t. condComb′ ⊆ condComb then
16 Cfpe ← CQ′ ∪ condComb;
17 Q′ ← (SQ,ΓQ, Cfpe);
18 Q′fpe ← Q′fpe ∪Q′;
19 if Q′[I] \ (Q[I] ∪ πΓQ [CT]) == ∅ then
20 ZeroFP ← ZeroFP ∪ {condComb};

21 return Q′fpe

of the schema SQ, as in Definition 5.4.3 because they are not available in the schema of
VE . However, this does not cause a problem during the FPE refining phase, as will be
explained shortly after.

Finally, we use every dominant local skyline tuple to change the respective (to the
explanation) query conditions and create a refined query per tuple, added in Q′mdr.

Algorithm 11 gradually eliminates false positive tuples from the refined queries in
Q′mdr. Each refined query Q′ ∈ Q′mdr, is associated with

1. an explanation E ,
2. a dominant local skyline (partial) tuple t, and

3. with the set of partitions of E
We are interested in the attributes from the partitions that are not constrained by

E and based on which we introduce a new condition. To construct the new conditions
per attribute (Algorithm 11,lines 6-12) we follow the process explained in Section 5.4.2,
page 132.

150 CHAPTER 5. QUERY REFINEMENT PHASE

Note however a slight difference, compared to what is described in Section 5.4.2. Instead
of considering all the attributes of the query input schema not constrained by E , we only
consider the ones that are in the partitions of E . This follows the remark we made for the
computation of the dominant skyline tuples, in Algorithm 10, line 7. In this way we prefer
to avoid the complexity of computing full compatible tuples, at the price of missing some
more query refinements that would possibly eliminate false positive tuples.

Example 5.5.3. For the dominant skyline tuples we have seen in Example 5.4.4, on
page 133 that we took into consideration the attributes from partition Part2 as well. Here,
we are considering only the attributes A, B, C from the partition Part1. In our example
the resulting dominant tuple sets are the same as with in Example 5.4.4.

To clarify a different case, consider for the explanation E2 = {B < 4} that the set
of local skyline tuples contains also t′1=(R.A : 1.6, R.B : 5.6, 3, 0), i.e, lSLE2={t1, t′1, t6}.
Then, by Definition 5.4.3 (taking into account the attributes A,C,D,E) the set of dominant
skyline tuples for E2 is dSL′E2={t1, t′1}. If we consider however only the attributes from
Part1 we have dSLE2={t1}.

Thus, we would miss the dominant skyline tuple t′1 based on which we could add some
more refinements in the FPE phase, and possibly improve the precision. Nevertheless, we
gain on execution time both in this phase and in the FPE phase, where the search space
becomes smaller.

As a reminder, all the possible query refinements are modelled as a graph like in
Figure 5.3. Lines 14 - 18 correspond to building a query for each node in the graph, i.e.,
each element from the powerset of the new conditions set.

As already said, when a node in the graph yields zero false positive tuples, then the
children nodes are not considered. Line 19 checks if a refined query (i.e., the addition of
a specific condition combination) does not produces false positive tuples. In this case, we
memorize it in order for the next loops to skip all supersets of this condition combination.
Finally, all refined queries obtained in this phase are returned in the set Q′fpe.
Example 5.5.4. In Example 5.4.7 page 138, we created the graphs associated with each
dominant skyline tuple. Based on these graphs we obtained the refinements in Table 5.4.2.

As in the algorithm we are considering only the attributes in the partitions associated
with each explanation, the graphs that we build for each dominant skyline tuple are sub-
graphs of the ones in Example 5.4.7. More specifically, the nodes whose label contains the
attributes D or E are not included (neither the edges coming in or out of these nodes). As
a consequence, the query refinements obtained by FixTed based on the explanation in set
W1 are displayed in Table 5.3, rows Q′mdr and Q′fpe, and are a subset of Table 5.4.2.

Joins-only explanation set W2 and mixed explanations set W3 (Algo-
rithm 9 lines 6 & 7) For the joins-only explanations, FixTed implements the case
study discussed in Section 5.4.3. Thus, if the scenario meets the requirements of Defini-
tion 5.4.5, one query refinement is generated per explanation in W2.

For the mixed explanations, the solution is a combination of the previous as discussed
in Section 5.4.4. Thus, if the scenario meets the requirements, a set of query refinements
is generated per explanation in W3.

If the scenario associated with an explanation E does not meet the requirements then
no refinement is returned for E .

5.5. FIXTED ALGORITHM 151

Table 5.3: Refined queries for scenario of Example 5.3.1 using FixTed.

Q′mdr
Q′t1=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C})
Q′t2=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C})
Q′t3=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C})

Q′fpe

Q′′t1,{A}=(SQ,ΓQ, {R.A ≤ 2.1, S.B ≤ 5.6, S.C = T.C})
Q′′t1,{C}=(SQ,ΓQ, {R.A < 5.5, S.B ≤ 5.6, S.C = T.C, 2.8 ≤ C ≤ 7.5})
Q′′t2,{B}=(SQ,ΓQ, {R.A ≤ 7.5, S.B ≤ 2.4, S.C = T.C})
Q′′t2,{C}=(SQ,ΓQ, {R.A ≤ 7.5, S.B < 4, S.C = T.C, 2.8 ≤ C ≤ 8.4})
Q′′t3,{C}=(SQ,ΓQ, {R.A ≤ 6.4, S.B ≤ 4.9, S.C = T.C, 2.8 ≤ C ≤ 7.5})

Q′jo
Q′=(S ′,A(S ′), {subR ./ subR.C=S.C S})
where S ′ = (S \ {R}) ∪ subR, and
subR=({R},A(R), {R.A < 5.5, R.B < 4})

Example 5.5.5. The joins-only explanation of the running example is composed by
op3={R.C = S.C}. As we said in the description of the scenario, the relation R is indirect
and S is direct. So, the ‘picky’ join is joining one direct relation with one indirect, whereas
there are no other direct relations. Thus, based on Definition5.4.5, a joins-only refinement
is feasible for Q and {op3}.

The condition set CQ contains two selections over the relation R. So, we create the
following subquery which will be used in the place of R in the refinement

subR=({R},A(R), {R.A < 5.5, R.B < 4})

The joins-only query refinement is then:

Q′=(S ′,A(S ′), {subR ./ subR.C=S.C S})
where S ′ = (S \ {R}) ∪ subR.
It is obvious now that the compatible tuple t12=(R.A : 2, R.B : 2, R.C : 3, S.C : 4, S.D :

6, S.E : 5) satisfies the conditions of the refinement and so is included in the result.
All query refinements are now listed in Table 5.3.

Back to Algorithm 9, in lines 10 - 13 we compute a number of values for each refined
query. These values correspond to the metrics used for comparing, pruning and ranking
the refined queries. In more detail, the metrics are:

1. ncc: number of changed conditions

2. nac: number of added conditions

3. vd : total difference in the changed values when numerical values, or edit distance if
strings

4. nfp: number of false positive tuples

Note that for refinements obtained by joins-only explanation we assume that vd = 0,
since in that case the operator (join) has been changed, but not constants were involved.

152 CHAPTER 5. QUERY REFINEMENT PHASE

Table 5.4: Refined queries by FixTed, with metrics. Scores are assigned only to
skyline queries, which are returned to the user in the order appearing in the table.

Query ncc nac vd nfp score

Q’
Q′t1 1 0 5.6− 4 = 1.6 1 2.56
Q′jo 1 0 0 2 2.5

Q′′t1,{C} 1 2 1.6 0 2.06
Q′′t2,{B} 2 0 2 + 4− 2.4 = 3.6 0 1
Q′t2 1 0 7.5− 5.5 = 2 1
Q′t3 2 0 6.4− 5.5 + 4.9− 4 = 1.8 2

Q′′t1,{A} 2 0 1.6 + 5.5− 2.1 = 5 0
Q′′t2,{C} 1 2 2 0
Q′′t3,{C} 2 2 1.8 0

FixTed returns only the skyline refined queries computed using the metrics as dimen-
sions (line 14). Note that this is a new skyline that we define over the set of refined queries
using four dimensions (corresponding to the four metrics previously mentioned). Here, the
least values are preferable, in order to minimize the difference and the false positive tuples
of the refined queries.

Moreover, in line 16, for each refined query we calculate its score using the cost function

score = βnccncco + βnacnaco + βvdvdo + βnfpnfpo

where βx ∈ [0, 1] for x ∈ {nwc, nac, vd, nfp} is the corresponding metric weight from ~(W).
Also, xo stands for the normalised value of the metric x. If xmax is the maximum value

for the metric x over all the refinements, then xo is defined as follows

xo = 1− x

xmax

This score is used in order to rank the refined queries and provide an ordering over
them.

In the future we plan to investigate more sophisticated metrics and ranking functions.

Example 5.5.6. Table 5.4 displays for each refined query from Table 5.3, the values for
the metrics used for pruning and ranking.

Based on the metrics we also compute the skyline of the refined queries. Table 5.4
displays above the double line the skyline queries which also form the set of refined queries
Q′ finally returned to the user. Moreover, for each of the skyline queries, a score is assigned.
The queries are displayed in order based on their score (from the best to the worst). We
have assumed that each metric has the same weight.

For example, query Q′t2 is dominated by Q′t1 because Q′t1 is better than Q′t2 on the vd
metric, and equal on all other metrics. Thus, Q′t2 is not a skyline query and is not assigned
with a score.

Let us calculate the score for one query, e.g., Q′t1. To compute the normalized metrics
for Q′t1, we firstly find the maximum values among the skyline queries which are:

maxncc = 2, maxnac = 2, maxvd = 3.6, maxnfp = 2

5.6. EFQ PLATFORM 153

Thus, we have

scoreQ′
t1

= (1− 0.5) + (1− 0) + (1− 0, 44) + (1− 0.5) = 2.56

Finally, the precision of a query refinement is computed by the formula:

Presicion(Q) =
| Q′[I] | −FP ′

Q

| Q′[I] |

where FP ′
Q is the number of false positive tuples output by Q′.

5.6 EFQ Platform

!"#$%

$&'()*%+&,-.%%
!)/012.%+&,-.%23/4,-%

$&'()*%56.789*%+&,/:93%

$,,;%,<01232:93/%
!)/012.%,<01232:93/%!)/012.%,<01232:93/%

$,,;%-,=3,(,3*/%
!)/012.%-,=3,(,3*/%!)/012.%-,=3,(,3*/%

$,3>%$?@%+&,-.%%

$,3>%$?@%+&,-.%%

?&,-.%23/4,-%

?&,-.%23/4,-%

$A,32-)9%

B<01232:93%

C,=3,(,3*%

!"#$%&'()*+$

C,+&,/*%
C,/093/,%
D3E9-(2:93%F94%

!"#$%

$,3>%$?@%+&,-.%%$,3>%$?@%+&,-.%%

$,3>%$?@%+&,-.%%$,3>%$?@%+&,-.%%$,3>%$?@%+&,-.%%

?&,-.%23/4,-%?&,-.%23/4,-%?&,-.%23/4,-%

?&,-.%23/4,-%?&,-.%23/4,-%?&,-.%23/4,-%

$A,32-)9%

B<01232:93%

C,=3,(,3*%

G/,-%%

$&'()*%56.789*%+&,/:93%$&'()*%56.789*%+&,/:93%
G
/
,
-
%
D
3
*
,
-
E
2
A
,

Figure 5.8: EFQ platform overview

In order to prove the feasibility of the proposed query debugging and fixing frame-
work, we have developed a platform called Explain and Fix Query (EFQ) Platform. EFQ
considers as input an explanation scenario which is addressed in two main components.
The first one provides query debugging capabilities, incorporating the Ted++ algorithm.
The second one builds on the Why-Not answer polynomial provided by Ted++ in order to
suggest refined queries based on the FixTed algorithm.

154 CHAPTER 5. QUERY REFINEMENT PHASE

5.6.1 Set up
All the involved algorithms in EFQ are implemented in Java. The underlying database

system is PostgresSQL 9.3 (www.postgresql.org/). The system runs as a local apache
(http://www.apache.org/) web application built using JavaServer Pages (JSP) Technology
(http://www.oracle.com/technetwork/java/javaee/jsp/index.html).

(a) Home page

(b) Scenario component

Figure 5.9: EFQ home and Scenario pages

5.6.2 Platform description through a use case
The EFQ platform [BHT15c] facilitates the query debugging and fixing experience of

a user through a series of interactions. The architecture of the system as well as the main
actions and information flow between the user and the platform components is shown in
Figure 5.8. There are three basic components in EFQ : (1) the Scenario component, (2) the
Explanation component and, (3) the Refinement component. In the following, we discuss
the three main components in more detail, guided through a use case.

Use case: Kennedy is missing!
Let us consider a user that is interested in young congressmen of the United States, who

have participated in recent congresses. To make this query, the user can visit the home
page of EFQ (Figure 5.9(a)), select the related database Congress and also the related

5.6. EFQ PLATFORM 155

database view YoungCongressmen. Otherwise, she can type the query in the dedicated
box. By submitting the query, the user is directed in the Scenario component interface
(Figure 5.9), where the query result is displayed. In this case, only Obama is returned
as an answer. The user, knowing the family tradition of the Kennedies in political life,
wonders why there is no Kennedy in the result. To express this Why-Not question, she
fills in the table with the value Kennedy.

Then, since there are compatible tuples for the Why-Not question, the platform allows
for two options: ask for (i) explanations, and/or (ii) query refinements.

(a) Join-only explanation

(b) Selection-only explanation

Figure 5.10: EFQ Explanation component

Explanations

Figure 5.10 displays the interface for the Explanation component. Here, the platform
displays the resulting Why-Not answer polynomial computed by Ted++, the terms of which
correspond to the different explanations. The user can navigate in this page through the
explanations, ordered by (1) the number of conditions in the explanation, or (2) the upper
bound of the number of recoverable missing tuples. For each explanation, the involved con-
ditions are highlighted on the query statement, while also the upper bound of the number
of recoverable tuples is displayed. This number is computed based on the coefficients of
the explanations, as discussed in Definition 4.2.3 in Section 4.2.3. For example, EFQ has
computed six different explanations. Figure 5.10(a) displays one of the explanations with
the least size (=1), highlighting the join, which is responsible for pruning out of the result
11340 compatible tuples. This is also the upper bound of the number of recoverable miss-
ing tuples, if this join is fixed. Another possible explanation including only one condition,
is the selection σcongress<100[activityalive] (Figure 5.10(b)).

156 CHAPTER 5. QUERY REFINEMENT PHASE

Refinements

Figure 5.11 demonstrates the interface of the Refinement component. The query refine-
ments are computed based on the Why-Not answer polynomial by the FixTed algorithm.
As such, the user can opt either for the full set of refined queries or filtered by explanation.
As there may be numerous proposed refinements, the user can select the order in which
they are presented, based on (1) their similarity with the original query, depending on the
number of changed conditions, distance of the changed constant value from the original
one, number of added conditions on attributes not constrained in the original query and
type of involved conditions (joins or selections) or on (2) precision, measuring how many
false positive tuples appear in the result of the new query.

Furthermore, the user can customise the underlying cost function by adjusting the
weights of each parameter.

For the user’s convenience, the interface highlights in each refinement the changes made
in the conditions, so that the user quickly understands the alterations w.r.t. the original
query.

For example, consider that the user wants a refinement based on the explanation
in Figure 5.10(b), which is a selections-only explanation. Figure 5.11(a) shows the
refinement in which the selection activityalive.congress < 100 has been changed to
activityalive.congress < 100 ≤ 104. The user observes that the precision is low, so
she would like to see more precise refinements. EFQ proposes two more refined queries
(see Figure 5.11(b)-(c)). As the metric values show, the false positive tuples are indeed
fewer, which however takes its toll on the similarity of the queries.

Now, let us consider that the user wants to find out how she could fix the (explanation
including the) join (Figure 5.10(a)). Figure 5.11(d) shows the solution using a left outer
join. It has been possible to provide such a solution, because the query and the explanation
conform with the requirements described in Section 5.4.3. Note that the refined query
involves also two sub-queries, one for each relation over which selection conditions are
specified in the original query. On the same page, the user is also informed about the
values of the metrics for the current refinement, as well as its precision. The precision for
this query is low, because of the number of result tuples generated because of the left outer
join. The similarity of the refined query appears to be low, but in fact only one condition
is changed (the join). The value distance is zero, because no constants were altered in the
refined query. Note here that for the joins-only refinements, the change is not highlighted
on the interface, and that the visualization is to be improved.

Even though EFQ proposes a number of refined queries, in the end it is up to the user
to pick the one that best meets her needs and expectations. Furthermore, the refinements,
along with the explanations, can be used as a guidance for the fixing task of the user, if
she wants to further or differently refine the query.

5.7 Summary and Future Work
In this chapter, we have proposed refinement-based explanations to solve the query

fixing problem. Our approach takes into account previously generated query-based expla-
nations, and thus is capable of providing targeted query refinements to specific query-based
explanations and explanation types. Specifically for explanations involving joins, we pro-
posed a novel way of repairing the query using left or right outer joins. For selections,

5.7. SUMMARY AND FUTURE WORK 157

we showed how the knowledge of the query-based explanation can lead to most similar
query refinements. Moreover, we provided FixTed, an algorithm that computes such query
refinements and we showed that FixTed has the potential to reduce the computational
complexity w.r.t. the approach not considering query-based explanations. Finally, we
demonstrated the EFQ platform integrating both query-based explanations and query re-
finements to provide a common tool for query debugging and query fixing in the context
of SQL queries.

In the future several improvements can be made to FixTed. First of all, when expla-
nations involving joins are considered we are envisaging to propose also (when possible
by the database schema) alterations not only on the query condition set, but also on the
from clause of the query. To do this, we can use integrity constraints, such as foreign
keys. Moreover, even though a first validation of the FixTed algorithm has been performed
through the EFQ application, we plan to do a more thorough experimental validation.
This experimental validation could be coupled with a user study that would help evaluate
the usefulness of the provided refined queries, by real users. Finally, another line of work
would expand the class of considered queries in the input of the algorithms, so that outer
joins are included. In this way, the user could continue the query analysis in the case when
an outer-join refinement is proposed.

158 CHAPTER 5. QUERY REFINEMENT PHASE

(a) Selections-only refinement (highest similarity)

(b) Selection-only refinement (improved precision)

(c) Selections-only refinement (improved precision)

(d) Joins-only refinement

Figure 5.11: EFQ Refinement component

Chapter 6

Conclusion and Future Work

The technological advance in computer science has played an important role on the
rapid evolution of other scientific fields like economics, biology, astronomy e.t.c., as well as
in business and trades markets. In any of these domains, scientists or businessmen are now
in the position of producing, exchanging and combining more and more data not restricted
to their fields. These data may be a result of ‘manual’ production, or may be automatically
generated using for example programs, mash-up applications or workflows.

As a result, the origins of the contents of a database vary. There may be raw data,
derived or extracted from various sources, or even resulting from some data transformation
procedure over data that already may have been transformed. Consequently, end database
users are in the need of mechanisms allowing them to verify the sanity of the database
contents and to understand why and how these data were produced. After all, being able
to trust the quality of the involved information is an important property that databases
should provide users with.

To enhance databases with this property, researchers in the database domain have
been working towards inventing the means and tools to trace back data to their origins
and document the relevant information (which may vary from transformation steps to more
general metadata). In one common term, information about the origins of data is defined
as data provenance. Using data provenance the users can find out the reasons behind the
existence of certain data in the database. Thus, in the case of expected data the users can
reproduce them, or in the case of unexpected data they are able to correct the data or the
data generation procedures. As a consequence, taking advantage of data provenance, tasks
like data reproducibility, integration or curation and cleaning are rendered easier and more
effective.

However, data missing from a database instance are as important as existing data.
Thus, as was the case for existing data, our goal is to explain why expected data are
not output by data transformations and consequently be able to fix this problem. This
thesis focuses on devising methods and mechanisms to address this particular problem of
relational queries (specifying for example data transformations) not returning expected
results.

We typically specify missing results using Why-Not questions. The answer to a Why-
Not question can be identified as the tuples that should be updated in the database in order
to make it possible to recover missing tuples, which compose the so-called instance-based
explanations. Alternatively, the answer to a Why-Not question may identify the problems

159

160 CHAPTER 6. CONCLUSION AND FUTURE WORK

in the query that lead to discarding data relevant to the missing tuples, which compose
the so-called query-based explanations. While instance-based explanations debug the input
database instance, query-based explanations are used to debug the query producing the
result. This is important in the case when the input database is trusted and not subject
to changes, and/or the involved queries are used for complex data analysis tasks.

In this thesis, we considered a user ‘trapped’ in such a scenario of having a query
that does not output some tuples that she expects. We firstly proposed two methods to
semi-automatically debug the query by computing query-based explanations. Guided by
the query-based explanations, the user may subsequently opt to manually repair the query.
However, a query refinement process, i.e., finding how to repair a query, can be a as or
even more task than a query debugging process. For this reason, secondly we proposed a
method to semi-automatically repair the query in order to recover missing tuples, based
on query-based explanations. Based on query pruning techniques, we only return the most
useful query refinements, based on criteria like syntax similarity and result precision. The
user is then able to choose from the returned query refinements the one that best fits her
expectations.

Next, we summarize this thesis content describing our contribution to the query de-
bugging and fixing problem to recover missing results. Subsequently, we discuss interesting
perspectives and open questions for future investigation.

6.1 Thesis Summary
In this thesis, we have presented our contribution in two phases, concerning the specific

problem we addressed.

Query Debugging Our first contribution consists in providing the formal framework
around Why-Not questions and relevant notions, missing from the related work. Then,
we propose two approaches to answer Why-Not questions with query-based explanations,
generally referred to as NedExplain and Ted. More specifically, each proposal makes the
following contributions:

1. Tree-based approach We proposed an approach for computing query-based expla-
nations that is inspired by [CJ09]. As such, it is based on a specific tree represen-
tation of the query. Firstly, we reviewed in detail the proposed solution in [CJ09].
We showed in theory and in practice that [CJ09] demonstrates a number of short-
comings related to how the source data relevant to the Why-Not question are com-
puted and traced on the query tree. More specifically, we showed how the definition
proposed by [CJ09] in certain cases leads to inaccurate or incomplete query-based
explanations, or even worse in some cases are inadequate to identify any query-based
explanation. Then, we proposed a new formal framework to capture all the cases
missed by [CJ09] and moreover to accommodate for aggregate queries in addition
to the class of select-project-join-union queries handled by [CJ09]. Furthermore, we
devised and implemented the NedExplain algorithm to compute query-based expla-
nations based on our formal framework. Finally, we demonstrated by a comparative
evaluation that the query-based explanations returned by NedExplain are superior
to those returned by [CJ09] both in terms of quality and run time.

6.1. THESIS SUMMARY 161

(a) Formalization of query-based why-not provenance. We provided a formalization
of query-based explanations for Why-Not questions that was missing in [CJ09].
It relies on new notions of compatible tuples and of their valid successors.
This definition subsumes the concepts informally introduced previously. It
covers cases that were not properly captured in [CJ09]. Moreover it takes
into account queries involving aggregation (i.e., select-project-join-aggregate
queries, or SPJA queries for short) and unions thereof.

(b) The NedExplain Algorithm. Based on the problem formalization, the Ned-
Explain algorithm is designed to correctly compute query-based explanations
given an explanation scenario over the class of unions of SPJA queries and a
Why-Not question as in Definition 2.2.2.

(c) Comparative evaluation. The NedExplain algorithm has been implemented for
experimental validation. Our study shows that NedExplain overall outperforms
Why-Not, both in terms of efficiency and in terms of explanation quality.

(d) Detailed analysis of Why-Not. We reviewed in detail Why-Not [CJ09] in the
context of positive relational queries and showed that it has several shortcom-
ings leading it to return no, partial, or misleading explanations.

2. Polynomial-based approach We introduced a new approach to computing query-
based explanations as polynomials, relying on queries rather than query trees. As we
show, the tree-based approach leads to incomplete results as far as the explanations
are concerned. First, an explanation should indicate the complete set of conditions in
it, and not sub-parts. Second, the complete set of explanations should be returned,
and not only one explanation. These shortcomings of NedExplain (and in general of
the query-tree approach) are dealt with in Ted. Furthermore, we discussed the for-
malization of the Why-Not answer polynomials in different aspects. Two algorithms
were proposed, the naive and straightforward Ted, which is shown to be inefficient
in practice, and the optimized Ted++ that renders the solution practically inter-
esting too. Our experiments show that Ted++ outperforms the related algorithms
both in answer quality and in run times. In more detail, our contributions with the
polynomial-based approach are:

(a) Why-Not answer polynomial. Our formal framework is defined for conjunc-
tive queries with inequalities and unions thereof for the relational data model
under set semantics. It supports a larger class of Why-Not questions w.r.t.
previous works, i.e., both simple and complex Why-Not questions. The form
of the Why-Not answer is unprecedented, as this work is the first to formalize
Why-Not answer polynomials providing fine-grained query based explanations.
Intuitively, each term of a polynomial represents one combination of the query
conditions that together explain the absence of some of the missing tuples and
the set of all terms covers all possible such combinations. The coefficients can
be used to obtain an upper bound on the number of recoverable missing tuples
when properly changing the conditions of a term.

(b) Extended formalization of the Why-Not answer polynomial. An extended for-
malization of Why-Not answer polynomials is provided to cover the relational

162 CHAPTER 6. CONCLUSION AND FUTURE WORK

data model under bag and probabilistic semantics. This confirms the robust-
ness of the chosen polynomial representation, making it a good fit for a unified
framework for representing query based explanations for different semantics.

(c) Equivalent queries w.r.t. the Why-Not answer polynomial We define the class
of equivalent queries w.r.t. the Why-Not answer polynomial. We show that
isomorphic queries have isomorphic Why-Not answer polynomials given a fixed
Why-Not question. This leads us to state that the Why-Not answer poly-
nomial is invariant of the topology of the query tree and moreover that the
Why-Not answer polynomial subsumes the query-based explanations computed
by NedExplain. Additionally, we show that equivalent queries in general are
not equivalent w.r.t. the Why-Not answer polynomial and as such, no homo-
morphisms exist mapping the Why-Not answer polynomials of two equivalent
queries to one another. Finally, we provide an approximate Why-Not answer
polynomial for a query Q, when one equivalent query Q′ resulting from tableau
minimization of Q is available.

(d) Naive Ted and optimized Ted++ algorithms. We first provide a naive algo-
rithm for computing Why-Not answer polynomials, named Ted. This algorithm
is a straightforward implementation of the formal definitions. We show that Ted
is impractical. We thus propose an optimized algorithm, Ted++, capable of
efficiently computing the Why-Not answer polynomial, relying on schema and
data partitioning (allowing for a distributed computation) and advantageous
replacement of expensive database evaluations by mathematical calculations.

(e) Experimental validation. We experimentally evaluate the quality of the pro-
posed Why-Not answer polynomial and the efficiency of the Ted++ algorithm.
The experiments include a comparative evaluation to existing algorithms com-
puting query-based explanations for SQL queries in terms of explanation qual-
ity and run-time, as well as a thorough study of the Ted++ performance w.r.t.
different parameters.

Query Fixing We proposed a new approach towards fixing conjunctive queries with
inequalities by building query refinements. This approach exploits the query-based ex-
planations modelled as terms in a Why-Not answer polynomial. We proposed two main
types of query refinements, the one associated with explanations containing selections and
the other associated with explanations containing joins. For explanations with joins, we
proposed a novel type of query refinements using outer joins. We further proposed the tech-
niques to compute query refinements, embodied in the FixTed Algorithm and we discussed
how our techniques of computing query refinements has the potential to be more efficient
than the related work. Finally, we integrated the implementation of FixTed in our EFQ
Platform and showed that the Why-Not answer polynomial can be used for query debug-
ging and fixing in practice in an interactive environment. In more detail, our contributions
in the part of Query Fixing are the following:

1. Query refinements based on query-based explantions. We provide the framework to
compute query refinements for conjunctive queries with inequalities. We are the first
to leverage query-based explanations in the form of Why-Not answer polynomials

6.1. THESIS SUMMARY 163

to compute the query refinements. In this way we succeed to compute the most
similar query refinements possible. Moreover, the polynomial provides us with the
information which conditions to focus on, which allows us to reduce the search space
for query refinements, ultimately leading to a more efficient solution (as opposed to
an approach not considering query-based explanations).

2. Query refinements and explanation type A query-refinement obtained by our method
is linked to an explanation (term) of the Why-Not answer polynomial. We distinguish
between two main categories of query refinements, depending on the type of the
explanation.

(a) Explanations with selection conditions The first one considers explanations con-
taining selection conditions and in principal consists in conjunctive queries
having the explanation selection conditions fixed. To obtain these, we proceed
in two steps, exploiting the technique of skyline tuples. More specifically, we
propose a variation of skyline that potentially leads to tackling the selections
refinement problem more efficiently. The first step is designed so as to perform
the least changes to the selections in the explanations needed to allow missing
tuples appear in the result. This step lead to obtaining the most similar re-
finements to the query (per explanation). However, by relaxing the conditions
of the query, we have as a consequence that not only missing tuples but also
irrelevant tuples are added to the refined query result. As a remedy, we proceed
to the second step that eliminates irrelevant (a.k.a. false positive) tuples from
the refined result. This step consists in further refining the query by adding
progressively conditions to the refinements produced in the first step.

(b) Explanations with join conditions The second category of query refinements
considers explanations with join conditions. In this case, we introduce left
or right outer joins in the query refinement and thus move to a wider class
than conjunctive queries. To the best of our knowledge we are the first to
propose such kind of refinements. We show however that we cannot refine all
conjunctive queries using this approach. Indeed, in the graph modelling the
joins in the query, two direct relations (a.k.a., relations over which the Why-Not
question is defined) should not be connected via a ‘picky’ join. For this reason,
we investigate when such refinements are feasible for a query and propose a
way to refine queries with outer joins, given the query and the explanation.

3. FixTed Algorithm and EFQ Platform We provide an algorithm, FixTed to compute
query refinements w.r.t a query and a Why-Not answer polynomial, as defined by
our framework. We discuss how FixTed also defines a ranking function to order
the best refinements, which are in the skyline of queries w.r.t. similarity and pre-
cision. Then, we demonstrate the practicality of our proposal by incorporating the
Ted++ algorithm along with the FixTed algorithm into a novel platform named
EFQ. EFQ provides the means for semi-automatically debugging and refining SQL
queries, through an interactive interface.

164 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Perspectives
We outline here some perspectives to this thesis work regarding the different thematics

addressed.

Why-Not questions In this thesis, we have assumed that the user knows the domain
of the database and that she has an idea of what results her queries should return. In this
way, we consider that the user can judge which results are considered correct or not. More
specifically in our context the user is able to define which results are missing and thus to
state Why-Not questions about these. Even though this assumption might be acceptable
in cases when the users are experts or the involved data few enough to be managed by a
human, asking Why-Not questions might itself constitute a problem of research. Thus, one
possible line of work would investigate how to indicate to the users the results that might
be missing. This could be done in an interactive environment where the system guides the
user to locate the data properties that could be interesting to her. Such suggestions include
schema attributes, sample values or conditions over the attributes, built progressively by
combining the user’s response with the database information. Moreover, the system could
function like a recommendation system [RRS11], taking into account also her previous
Why-Not questions or other users’ Why-Not questions as well.

Query debugging In Chapter 4 we proposed two alternative ways of computing query-
based explanations and we outlined the features of each one. To elaborate even more
the difference of the proposals w.r.t. the answer quality and algorithms’ efficiency, an
extension to the experimental part could be added. An interesting experiment would be to
run NedExplain with all different trees with reordered operators and compare the obtained
answers with the one returned by Ted. The expected result of the experiment is that still
NedExplain fails to compute all the explanations indicated by Ted.

As far as the tree-based approach is concerned, we could extend NedExplain to generate
‘ghost’ tuples for the tuples lost in the nodes identified as picky, a technique already used
in [Her15]. As eventually all the nodes will be checked, this addition could cope with an
aspect of the answer completeness problem.

Further interesting extensions include adding set difference to the query or adapting
the method for complex Why-Not questions. Set difference would require tracing data that
needs to make it to the result (compatible tuples) but also data that should not make it (in
order not to eliminate the compatible tuples). So, Why-Not questions over queries with set
difference divide the problem to both Why (or How) and Why-Not question provenance
problems. However, Why (or How) provenance is an instance-based method and so a
hybrid method seems more appropriate for queries with negation.

To adapt NedExplain for complex Why-Not questions we could re-design the tree such
that it assigns partitions instead of relations to the leaves. Then, joins among relations
of the same partition could be modelled as selection operators with complex conditions.
Given this tree, NedExplain algorithm could be applied as usual.

As far as the Why-Not answer polynomial approach is concerned, the most interesting
extension concerns the class of queries which is now limited to SPJ queries. In many appli-
cations, aggregate, nested or negative queries are most frequent and also more difficult to
debug. For aggregate queries instead of considering individually the compatible tuples, an

6.2. PERSPECTIVES 165

approach based on appropriate sets of compatible tuples satisfying the Why-Not question
could be considered.

For nested queries a simple approach would be to un-nest the query and then apply the
algorithm Ted++. However, it is not always possible to un-nest a query, so such a solution
would not be general. Moreover an explanation on the un-nested query would have only
little connection with the input query and thus it may be too difficult to understand by a
user. Thus, it would be interesting to investigate a more general and useful approach.

In general, it is well known that negation makes queries difficult to process and to
reason about [CH80, Bid91, BTCO12]. More particularly, the same holds for negation
in queries and data provenance. The negative results on expressing provenance semirings
with negative queries, provided by Amsterdamer et.all [ADT11a], show that even though
provenance semirings are a nice common framework for different semantics in the case of
positive queries, this solution cannot be generalized for negative queries. Based on this
result, one expects that the extended Why-Not answer polynomial that we introduced for
set, bag and probabilistic semantics would not be feasible for negative queries. Thus, it
would be interesting to investigate if this intuition holds, and despite the possibly negative
result, if Why-Not answer polynomials can be considered with negative queries under only
set semantics.

It is worth noticing however, that there is a case when we can trivially extend Why-Not
answer polynomial (and NedExplain) for queries with negation and set semantics. As an
example, consider the following SQL query

SELECT Book.Title
FROM Book
WHERE Book.Author NOT IN {‘Homer’,‘Sophocles’}

In this case the negation Book.Author NOT IN {‘Homer’,‘Sophocles’} is equiva-
lent to Book.Author !=‘Homer’ AND Book.Author !=‘Sophocles’. The latter, is a case
treated by our algorithms.

Query fixing In Chapter 5 we proposed an approach to refining SPJ queries using
explanations, and we provided the FixTed algorithm. Even though we demonstrated the
feasibility of FixTed in our EFQ platform, still an experimental evaluation, comparative
to related work algorithms like [TC10] is pending. This experimental evaluation should
investigate the run time efficiency of FixTed and as expected show that our local skylines
technique boosts the efficiency. For the usability and relevance of the proposed refinements,
a user study would be the most appropriate evaluation method.

Moreover, we plan to improve/enhance our refining methods. As we described, refining
an explanation with joins using outer joins may not always be applicable. Even more, such
a solution is acceptable only when the user is interested in translating her query in the way
that outer joins do. Thus, we plan to enrich the proposed refinements with more ways of
repairing joins. A possible way to go is by using foreign key dependencies that will yield
query refinements with possibly a different set of input relations (FROM clause). Another
possibility is to check in for matching values in the active domain, in a way of discovering
inclusion dependencies that could be used in the absence of foreign keys. Alternatively,
following the approach of refining selections with = using ≤ or ≥, we could transform
equality joins to theta joins. It would be interesting to experiment with various refining

166 CHAPTER 6. CONCLUSION AND FUTURE WORK

alternatives and see which ones are most efficient and which are most preferred by the end
users, depending on different application domains.

Finally, the ranking function used to order the query refinements could be enriched with
more parameters, like the type of the explanation, or the preference over the constrained
attributes etc. Moreover, the similarity metric could be reconsidered after a user study
evaluation, especially concerning the value distance metric.

Optimization techniques A main concern related to the algorithms proposed in this
thesis is their scalability in the worst case. To deal with this problem we could investigate
how moving to a column-store database would be more suitable for the algorithms, since
the algorithms focus on certain attributes. Additionally, our algorithms allow for paral-
lelizing the execution of specific tasks (like computing the eliminated compatile tuples per
explanation for Ted++ or the query refinements for each explanation in FixTed) a feature
that has not been taken into consideration yet. A first attempt to using threads was done
on a laptop with restricted processing capabilities, however using a cluster with several
machines is expected to provide better results concerning the execution times.

Otherwise, when missing some query-based explanations is not an issue, we could devise
heuristics taking into consideration only a sample of compatible data for the computation
of the Why-Not answer polynomial. For FixTed we could prune the space of considered
explanations by eliminating those that contain other explanations from the Why-Not an-
swer polynomial, or considering only the explanations with the smallest size. Moreover,
the user could specify a set of attributes which she would afford constraining in the refined
queries, so as to reduce the complexity of FixTed and the number of returned refinements
that would not be interesting for the user.

Why-Not questions in a different context In this work we have considered
Why-Not questions in relational databases. For different data models like RDF [PFFC09,
DAA12, GKCF13], data provenance has already been considered. Moreover, data prove-
nance has been studied extensively for workflows [OAF+04, LAB+06, ICF+12, CVKL+14]
Thus, it would also be relevant and interesting to study Why-Not provenance in a different
context than relational databases and see if and how our algorithms can be adapted.

Bibliography

[ADD+11] Yael Amsterdamer, Susan B. Davidson, Daniel Deutch, Tova Milo, Julia Stoy-
anovich, and Val Tannen. Putting lipstick on pig: Enabling database-style
workflow provenance. PVLDB, 5(4):346–357, 2011.

[ADT11a] Yael Amsterdamer, Daniel Deutch, and Val Tannen. On the limitations of
provenance for queries with difference. In TaPP, 2011.

[ADT11b] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate
queries. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 153–164. ACM, 2011.

[ASU79] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalences among
relational expressions. SIAM Journal on Computing, 8(2):218–246, 1979.

[BFS00] Alain Bidault, Christine Froidevaux, and Brigitte Safar. Repairing queries in
a mediator approach. In ECAI, pages 406–410, 2000.

[BHT13] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Answering Why-
Not questions. In Base de données avancées (BDA), 2013.

[BHT14a] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Immutably an-
swering why-not questions for equivalent conjunctive queries. In Workshop on
Theory and Practice of Provenance (TAPP), 2014.

[BHT14b] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Immutably an-
swering why-not questions for equivalent conjunctive queries. In Base de
données avancées (BDA), 2014.

[BHT14c] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Query-based why-
not provenance with Nedexplain. In International Conference on Extending
Database Technology (EDBT), 2014.

[BHT15a] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Efficient com-
putation of polynomial explanations of why-not questions. In International
Conference on Information and Knowledge Management (CIKM), 2015.

[BHT15b] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Efficient compu-
tation of polynomial explanations of why-not questions. In Base de données
avancées (BDA), 2015.

[BHT15c] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Efq: Why-not an-
swer polynomials in action. Proceedings of the VLDB Endowment, 8(12):1980–
1983, 2015.

[BHT15d] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Immutably an-
swering why-not questions for equivalent conjunctive queries. Ingénierie des
Systèmes d’Information (ISI), 2015.

167

168 BIBLIOGRAPHY

[Bid91] Nicole Bidoit. Negation in rule-based database languages: a survey. Theoret-
ical computer science, 78(1):3–83, 1991.

[BKL07] Carsten Binnig, Donald Kossmann, and Eric Lo. Reverse query processing.
In ICDE, pages 506–515, 2007.

[BKS01] S Borzsony, Donald Kossmann, and Konrad Stocker. The skyline operator.
In Data Engineering, 2001. Proceedings. 17th International Conference on,
pages 421–430. IEEE, 2001.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A
characterization of data provenance. In ICDT, pages 316–330, 2001.

[BMNT15] Moria Bergman, Tova Milo, Slava Novgorodov, and Wang-Chiew Tan. Query-
oriented data cleaning with oracles. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 1199–1214. ACM,
2015.

[BT07] Peter Buneman and Wang-Chiew Tan. Provenance in databases. In Proceed-
ings of the 2007 ACM SIGMOD international conference on Management of
data, pages 1171–1173. ACM, 2007.

[BTCO12] Vince Bárány, Balder Ten Cate, and Martin Otto. Queries with guarded
negation. Proceedings of the VLDB Endowment, 5(11):1328–1339, 2012.

[CA15] Sean Chester and Ira Assent. Explanations for skyline query results. In
Extending Database Technology (EDBT), 2015.

[CB74] Donald D Chamberlin and Raymond F Boyce. Sequel: A structured english
query language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control, pages 249–264. ACM, 1974.

[CCST15] Balder ten Cate, Cristina Civili, Evgeny Sherkhonov, and Wang-Chiew Tan.
High-level why-not explanations using ontologies. In Principles of Database
Systems (PODS), pages 31–43, 2015.

[CCT09] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in Databases,
1(4), 2009.

[CH80] Ashok K Chandra and David Harel. Structure and complexity of relational
queries. In Foundations of Computer Science, 1980., 21st Annual Symposium
on, pages 333–347. IEEE, 1980.

[CJ09] Adriane Chapman and H. V. Jagadish. Why not? In International Conference
on the Management of Data (SIGMOD), 2009.

[CLJX15] Lei Chen, Xin Lin, Christian S. Jensen, and Jianliang Xu. Answering why-not
questions on spatial keyword top-k queries. In International Conference on
Data Engineering (ICDE), pages 279–290, 2015.

[CM77] Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 77–90. ACM, 1977.

[Cod70] Edgar F Codd. A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[Cod72] Edgar F Codd. Relational completeness of data base sublanguages. IBM
Corporation, 1972.

BIBLIOGRAPHY 169

[COSS13] Diego Calvanese, Magdalena Ortiz, Mantas Simkus, and Giorgio Stefanoni.
Reasoning about explanations for negative query answers in dl-lite. Journal
on Artificial Intelligence Research (JAIR), 48:635–669, 2013.

[CR97] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment
revisited. In Database Theory—ICDT’97, pages 56–70. Springer, 1997.

[CVKL+14] Víctor Cuevas-Vicenttín, Parisa Kianmajd, Bertram Ludäscher, Paolo
Missier, Fernando Chirigati, Yaxing Wei, David Koop, and Saumen Dey. The
pbase scientific workflow provenance repository. International Journal of Dig-
ital Curation, 9(2):28–38, 2014.

[CW00] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data ware-
houses. In International Conference on Data Engineering (ICDE), 2000.

[CW01] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse
transformations. In VLDB Conference, 2001.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Transactions on Database
Systems (TODS), 25(2):179–227, 2000.

[DAA12] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. Prove-
nance for sparql queries. In The Semantic Web–ISWC 2012, pages 625–640.
Springer, 2012.

[DAA13] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. Justi-
fications for logic programming. In Logic Programming and Nonmonotonic
Reasoning, pages 530–542. Springer, 2013.

[DG11] Jonathan Danaparamita and Wolfgang Gatterbauer. QueryViz: helping users
understand SQL queries and their patterns. In International Conference on
Extending Database Technology (EDBT), 2011.

[DS07] Evangelos Dellis and Bernhard Seeger. Efficient computation of reverse skyline
queries. In Proceedings of the 33rd international conference on Very large data
bases, pages 291–302. VLDB Endowment, 2007.

[FGT08] J Nathan Foster, Todd J Green, and Val Tannen. Annotated xml: queries and
provenance. In Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 271–280, 2008.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theoretical Computer Science,
336(1), 2005.

[GKCF13] Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fun-
dulaki. Algebraic structures for capturing the provenance of sparql queries. In
Proceedings of the 16th International Conference on Database Theory, pages
153–164. ACM, 2013.

[GKRS11] Torsten Grust, Fabian Kliebhan, Jan Rittinger, and Tom Schreiber. True
language-level sql debugging. In EDBT, pages 562–565, 2011.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semir-
ings. In Principles of Database Systems (PODS), 2007.

[GLC+15] Yunjun Gao, Qing Liu, Gang Chen, Baihua Zheng, and Linlin Zhou. An-
swering why-not questions on reverse top-k queries. Proceedings of the VLDB
Endowment, 8(7):738–749, 2015.

170 BIBLIOGRAPHY

[GM15] Benoit Groz and Tova Milo. Skyline queries with noisy comparisons. In
Proceedings of the 34th ACM Symposium on Principles of Database Systems,
pages 185–198. ACM, 2015.

[God97] Parke Godfrey. Minimization in cooperative response to failing database
queries. International Journal of Cooperative Information Systems, 6(02):95–
149, 1997.

[Hal98] Marshall Hall. Combinatorial theory, volume 71. John Wiley & Sons, 1998.
[HCDN08] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On the

provenance of non-answers to queries over extracted data. Proceedings of the
VLDB Endowment (PVLDB), 1(1), 2008.

[HE12] Melanie Herschel and Hanno Eichelberger. The Nautilus Analyzer: under-
standing and debugging data transformations. In International Conference
on Information and Knowledge Management (CIKM), 2012.

[Her13] Melanie Herschel. Wondering why data are missing from query results? ask
conseil why-not. In International Conference on Information and Knowledge
Management (CIKM), 2013.

[Her15] Melanie Herschel. A hybrid approach to answering why-not questions on
relational query results. ACM-JDIQ, 5(3):10:1–10:29, 2015.

[HH10] Melanie Herschel and Mauricio A. Hernández. Explaining missing answers to
SPJUA queries. Proceedings of the VLDB Endowment (PVLDB), 3(1), 2010.

[HL12] Zhian He and Eric Lo. Answering why-not questions on top-k queries. In
Proceedings of the 2012 IEEE 28th International Conference on Data Engi-
neering, pages 750–761. IEEE Computer Society, 2012.

[HL14] Zhian He and Eric Lo. Answering why-not questions on top-k queries. Knowl-
edge and Data Engineering, IEEE Transactions on, 26(6):1300–1315, 2014.

[ICF+12] Robert Ikeda, Junsang Cho, Charlie Fang, Semih Salihoglu, Satoshi Torikai,
and Jennifer Widom. Provenance-based debugging and drill-down in data-
oriented workflows. In 2012 IEEE 28th International Conference on Data
Engineering, pages 1249–1252. IEEE, 2012.

[ILZ12] Md Saiful Islam, Chengfei Liu, and Rui Zhou. On modeling query refinement
by capturing user intent through feedback. In Proceedings of the Twenty-
Third Australasian Database Conference-Volume 124, pages 11–20. Australian
Computer Society, Inc., 2012.

[ILZ14] Md Saiful Islam, Chengfei Liu, and Rui Zhou. Flexiq: A flexible interactive
querying framework by exploiting the skyline operator. Journal of Systems
and Software, 97:97–117, 2014.

[IWL84] Tomasz Imieliński and Jr. Witold Lipski. Incomplete information in relational
databases. Journal of the ACM, 31(4), 1984.

[IZL13] Md. Saiful Islam, Rui Zhou, and Chengfei Liu. On answering why-not ques-
tions in reverse skyline queries. In International Conference on Data Engi-
neering (ICDE), 2013.

[KKBS10] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Su-
ciu. SnipSuggest: Context-aware autocompletion for SQL. Proceedings of the
VLDB Endowment (PVLDB), 4(1), 2010.

BIBLIOGRAPHY 171

[KLP75] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding
the maxima of a set of vectors. Journal of the ACM (JACM), 22(4):469–476,
1975.

[KLS12] Sven Köhler, Bertram Ludäscher, and Yannis Smaragdakis. Declarative dat-
alog debugging for mere mortals. Springer, 2012.

[KLZ13] Sven Köhler, Bertram Ludäscher, and Daniel Zinn. First-order provenance
games. In In Search of Elegance in the Theory and Practice of Computation,
pages 382–399. Springer, 2013.

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew B Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific work-
flow management and the kepler system. Concurrency and Computation:
Practice and Experience, 18(10):1039–1065, 2006.

[MGMS11] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Su-
ciu. The complexity of causality and responsibility for query answers and
non-answers. PVLDB, 2011.

[MK09] Chaitanya Mishra and Nick Koudas. Interactive query refinement. In Proceed-
ings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology, pages 862–873. ACM, 2009.

[MMR+13] Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Pal-
panas, and Yannis Velegrakis. A probabilistic optimization framework for the
empty-answer problem. Proceedings of the VLDB Endowment, 6(14), 2013.

[NJ11] Arnab Nandi and H. V. Jagadish. Guided interaction: Rethinking the query-
result paradigm. Proceedings of the VLDB (PVLDB), 4(12), 2011.

[OAF+04] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R Pocock, Anil Wipat,
et al. Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17):3045–3054, 2004.

[OCS09] Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. Generating
example data for dataflow programs. In SIGMOD Conference, pages 245–256,
2009.

[ÖÖM87] G Özsoyoğlu, ZM Özsoyoğlu, and Victor Matos. Extending relational algebra
and relational calculus with set-valued attributes and aggregate functions.
ACM Transactions on Database Systems (TODS), 12(4):566–592, 1987.

[PFFC09] Panagiotis Pediaditis, Giorgos Flouris, Irini Fundulaki, and Vassilis
Christophides. On explicit provenance management in rdf/s graphs. In Work-
shop on the Theory and Practice of Provenance, 2009.

[PIW11] Hyunjung Park, Robert Ikeda, and Jennifer Widom. Ramp: A system for
capturing and tracing provenance in mapreduce workflows. PVLDB, 4(12),
2011.

[PTFS03] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and
progressive algorithm for skyline queries. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, pages 467–478.
ACM, 2003.

172 BIBLIOGRAPHY

[Qui87] J. Ross Quinlan. Simplifying decision trees. International journal of man-
machine studies, 27(3):221–234, 1987.

[RKL14] Sean Riddle, Sven Köhler, and Bertram Ludäscher. Towards constraint prove-
nance games. In Workshop on Theory and Practice of Provenance (TAPP),
2014.

[RRS11] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recom-
mender systems handbook. Springer, 2011.

[RS14] Sudeepa Roy and Dan Suciu. A formal approach to finding explanations for
database queries. In SIGMOD Conference, 2014.

[ST12] Cheng Sheng and Yufei Tao. Worst-case i/o-efficient skyline algorithms. ACM
Transactions on Database Systems (TODS), 37(4):26, 2012.

[TC10] Quoc Trung Tran and Chee-Yong Chan. How to ConQueR why-not questions.
In International Conference on the Management of Data (SIGMOD), 2010.

[TCP09] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query by
output. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data, pages 535–548. ACM, 2009.

[TCP14] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query
reverse engineering. The VLDB Journal, 23(5):721–746, 2014.

[Tzo14] Katerina Tzompanaki. Semi-automatic sql debugging and fixing to solve the
missing-answers problem. In Very Large Databases (VLDB’14) PhD Work-
shop, 2014.

[Vau01] Robert Vaught. Set Theory An Introduction. Birkhaeuser, 2001.

[VDKN10] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørvåg. Re-
verse top-k queries. In Data Engineering (ICDE), 2010 IEEE 26th Interna-
tional Conference on, pages 365–376. IEEE, 2010.

[WS97] Allison Woodruff and Michael Stonebraker. Supporting fine-grained data lin-
eage in a database visualization environment. In ICDE, pages 91–102, 1997.

[ZDTT10] Feng Zhao, Gautam Das, Kian-Lee Tan, and Anthony KH Tung. Call to order:
a hierarchical browsing approach to eliciting users’ preference. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
pages 27–38. ACM, 2010.

[ZHJ+13] Jianfeng Zhang, Weihong Han, Yan Jia, Peng Zou, and Hua Fan. A novel ap-
proach to query modification based on user’s why-not question. International
Journal of Computer Science Issues (IJCSI), 10(1), 2013.

	Introduction
	Contributions
	Structure

	Preliminaries and Problem Definition
	Relational data and query model
	Why-Not question and compatible data
	Problem statement
	Summary

	Related Work
	Data Provenance
	Why-Not Provenance
	Instance-Based Explanations
	Query-based explanations
	Hybrid explanations
	Ontology-Based Explanations
	Query Refinements

	Summary

	Query Debugging
	NedExplain
	NedExplain Algorithm vs Why-Not Algorithm
	Contribution
	Preliminaries
	Why-Not Answer
	Algorithm
	Experiments

	Ted
	Contribution
	Preliminaries
	Polynomial Explanations
	Ted Naive Algorithm
	Ted Optimized Algorithm
	Experiments
	Conclusion

	Summary

	Query Refinement Phase
	Motivation
	Contribution
	Problem and Preliminaries
	Query-Refinements
	Selections-Only explanations
	False Positive Elimination
	Joins-Only explanations
	Mixed explanations

	FixTed Algorithm
	EFQ Platform
	Set up
	Platform description through a use case

	Summary and Future Work

	Conclusion and Future Work
	Thesis Summary
	Perspectives

	Bibliography

