Études expérimentales et numériques du refroidissement de produits horticoles après récolte

Hala Yassine

To cite this version:

HAL Id: tel-01306689
https://tel.archives-ouvertes.fr/tel-01306689
Submitted on 25 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Études expérimentales et numériques du refroidissement de produits horticoles après récolte

Hala Yassine 2015
Sommaire

Liste des figures .. 6
Liste des tableaux .. 10
Nomenclature ... 11
Introduction Générale .. 13

CHAPITRE 1: Etat de l’art, Bibliographie .. 15
1- Introduction ... 15
2- Généralités ... 15
2-1- Problématique .. 15
2-2- Plage de température et d’humidité relative .. 16
2-3- Conditionnement des produits ... 16
3- Techniques de refroidissement ... 18
3-1- Réfrigération en chambre froide .. 19
3-2- Refroidissement en tunnel ... 20
3-3- L’hydro-refroidissement ... 21
3-4- Le glaçage de surface et refroidissement par coulis de glace 21
3-5- Refroidissement sous vide ... 22
3-6- Production de froid dans le cas d’une chambre froide de pré-refroidissement 22
3-6-1- Centrale de production d’eau glaciée ... 23
3-6-2- Chambre froide à air forcé .. 25
4- Refroidissement aéraulique de produits .. 26
4-1- Mécanismes de transferts ... 26
4-1-1- Transfert de chaleur et de masse au sein d’un produit ... 26
4-1-2- Conditions aux limites ... 27
4-1-3- Les équations de transport dans le fluide ... 28
4-2- Études de la littérature ... 28
5- Conclusion ... 31

CHAPITRE 2: Étude expérimentale du refroidissement d’un chou-fleur 32
1- Introduction ... 32
2- Caractérisation du produit ... 33
2-1- Teneur en eau .. 33
2-2- Propriétés thermo physiques ... 35
2-2-1- Masse volumique ... 35
2-2-2- Chaleur massique ... 36
2-2-3- Conductivité thermique ... 37
3- Banc de mesure des cinétiques de refroidissement ... 38
3-1- Descriptif du banc ... 38
3-2- Instrumentation .. 38
4- Séquences de mesures .. 41
4-1- Études aérauliques .. 41
4-1-1- Essai à vide .. 41
4-1-2- Essai avec un produit ... 43
ETUDES EXPERIMENTALES ET NUMERIQUES DU REFROIDISSEMENT DE PRODUITS HORTICOLES APRES RECOLTE

HALA YASSINE 2015

4-2- Cinétiques de refroidissement des produits .. 43
4-2-1- Protocole ... 43
4-2-2- Descriptif d’un essai type .. 45
4-2-3- Comparaison des cinétiques ... 47
5- Conclusion .. 49

CHAPITRE 3: SIMULATION DU REFROIDISSEMENT D’UN PRODUIT DANS LA VEINE D’AIR 50
1- Introduction ... 50
2- Développement des modèles numériques ... 50
2-1- Modèle thermo-aéraulique ... 52
2-2- Modèle thermique du produit .. 53
3- Études préliminaires .. 54
3-1- Étude sans produit ... 54
3-2- Études avec une sphère ... 56
3-2-1- Validation des profils de vitesse d’air .. 57
3-2-2- Validation des cinétiques de refroidissement ... 58
3-2-3- Détermination du coefficient de transfert de chaleur 60
4- Simulation du refroidissement d’un chou-fleur .. 61
4-1- Hypothèse de modélisation du chou-fleur ... 61
4-2- Confrontation simulation-expérience ... 63
4-2-1- Profils de vitesse .. 63
4-2-2- Cinétiques de refroidissement ... 63
4-3- Études de sensibilité .. 66
4-3-1- Vitesse de l’air à l’entrée ... 66
4-3-2- Propriétés thermo physiques du produit .. 67
4-3-3- Volume des domaines internes ... 67
4-3-4- Mécanismes des transferts en surface ... 68
5- Conclusion .. 69

CHAPITRE 4: SIMULATION DU REFROIDISSEMENT DE PRODUITS ... 70
1- Introduction ... 70
2- Développement d’un modèle simplifié du refroidissement d’un produit 70
2-1- Equations de transfert de chaleur et de masse dans le produit 70
2-2- Résolution numérique des équations ... 72
2-3- Études numériques préliminaires .. 73
2-3-1- Confrontation modèle complet / modèle simplifié .. 73
2-3-2- Influence de pas de temps et de maillage .. 76
2-4- Simulation et comparaison avec l’expérience ... 77
2-5- Études de sensibilité ... 79
3- Simulation du refroidissement d’une succession de produits placés dans une veine d’air .. 83
3-1- Couplage des équations ... 84
3-2- Résolution numérique des équations ... 85
3-3- Essai théorique de simulation de plusieurs produits 85
4- Conclusion .. 88

CHAPITRE 5:Etudes sur un cas industriel ... 89
1- Introduction .. 89
2- Descriptif de l’expérimentation .. 89
3- Analyse des mesures .. 92
 3-1- Fonctionnement de l’installation .. 92
 3-2- Refroidissement des choux-fleurs ... 94
4- Essais de simulation et comparaison avec les mesures ... 95
 4-1- Confrontation simulation-expérience à l’échelle d’un produit.............................. 95
 4-2- Confrontation simulation-expérience à l’échelle de plusieurs produits 97
5- Commande optimale hors ligne de la ventilation ... 99
 5-1- Méthodologie ... 99
 5-2- Tests numériques .. 101
6- Conclusion ... 105
Conclusion et Perspectives ... 107
Références Bibliographiques .. 109
Liste des figures

Figure I.1 : Exemples de conditionnements en couches ou en vrac selon Zou [21].. 17
Figure I.2 : Courbe de refroidissement (temps de refroidissement 1/2 et 7/8) [10][22]... 18
Figure I.3 : Schéma d’écoulement de l’air dans une chambre froide (a) avec unité d’évaporateur, (b) avec un conduit de plafond [8]... 20
Figure I.4 : Un système commercial typique de tunnel de refroidissement par air forcé [22].................................. 21
Figure I.5 : Schématisation d’une station de pré-refroidissement industrielle... 23
Figure I.6 : Phénomènes mis en jeu lors du refroidissement du produit frais .. 26
Figure I.7 : Configuration étudiée par Alvarez [20]... 29
Figure I.8 : Stratégie d’amélioration du pilotage d’une installation, Alvarez [20]... 29
Figure I.9 : (a) Empilement aléatoire de sphères, Delete [58], (b) emballage de fraises, Ferrua [13], (c) palette de
pommes, Hoang [61]... 31

Figure II.1 : Coupe d’un chou-fleur ... 33
Figure II.2 : Évolutions de la perte de masse à 70°C pour des échantillons du chou-fleur récolte au mois octobre. ... 34
Figure II.3 : Photo d’échantillons lors des mesures de l’évolution de la teneur en eau..................................... 35
Figure II.4 : Évolutions de la teneur en eau des échantillons (a) HR=95%, T=5°C (b) HR=95%, T=15°C. 35
Figure II.5 : Valeurs des chaleurs massiques mesurées en fonction de la température et la comparaison avec la loi de mélange. ... 37
Figure II.6 : Schéma de la veine d’air et implantation des capteurs, (a) vue de côté, (b) vue de dessus.............. 40
Figure II.7 : Positions de thermocouples dans et à la surface du produit. .. 40
Figure II.8 : Évolutions des températures de l’air, (a) en entrée et sortie, (b) à différentes positions en x=0.6 m. 41
Figure II.9 : Relevés ponctuels de la vitesse d’air en 2 points ... 42
Figure II.10 : Profils de la vitesse de l’air à différentes abscisses x avec la hauteur z (sans produit). 42
Figure II.11 : Profils de la vitesse de l’air à différentes abscisses x avec la hauteur z (avec chou-fleur) 43
Figure II.12 : Évolution de la vitesse, la température et l’humidité relative de l’air (essai N°2)....................... 45
Figure II.13 : Évolution de la température à différentes positions dans le chou-fleur et à la surface (essai N°2). 46
Figure II.14 : Coupe d’un chou-fleur et position des thermocouples au centre, R/3 et 2R/3 du centre (diamètre des thermocouples=1mm)... 46
Figure II.15 : Variation de la masse et du flux masse évaporé pendant le refroidissement (essai N°2)............... 47
Figure II.16 : Comparaison des températures adimensionnées expérimentales.. 48
Figure II.17 : Comparaison des masses adimensionnées expérimentales.. 48

Figure III.1 : Présentation simplifié du tunnel de l’air et les phénomènes de transferts mis en jeu au niveau du système air-produit... 52
Figure III.2 : (a) Domaine de calcul et conditions aux limites pour le modèle tunnel avec produit (1/4 sphère, à
gauche: vue du côté, à droit: vue de face, et (b) le maillage utilisé en 3D... 54
Figure III.3 : Comparaison de la vitesse de l’air avant et après où le produit sera positionné (a) avant la position
du produit, (b) après la position du produit. (S) simulation, (E) expérience (sans produit). 55
Figure III.4 : Comparaison de la température de l’air à la sortie de la veine. (S) simulation, (E) expérience (sans
produit)... 56
Figure III.5 : Comparaison de la température de l’air à différentes positions dans la section yz de la veine. (S) simulation, (E) expérience (sans produit)... 56
Figure III.6 : Evolution de la vitesse à différentes positions dans la veine d’air en fonction de la hauteur z (avec sphère en mousse). .. 57
Figure III.7 : Vitesse de l’air avant et après la sphère en mousse. .. 57
Figure III.8: Comparaison de la vitesse de l’air dans la position avant et après la sphère en mousse, (a) avant la sphère, (b) au niveau de la sphère, (c) après la sphère. (S) simulation, (E) expérience. ... 58
Figure III.9: Comparaison de l’évolution de température de l’air avant le produit et à la sortie de la veine dans le cas de sphère en mousse... 59
Figure III.10 : Comparaison de l’évolution de la température à la surface de sphère. (S)simulation, (E) expérience. ... 59
Figure III.11 : Comparaison de l’évolution de la température dans la sphère. (S) simulation, (E) expérience.... 59
Figure III.12 : L’isotherme sur la surface à distance 1/3 et 2/3 du centre dans le cas de sphère en mousse 60
Figure III.13 : Influence de l’incertitude de position de thermocouples dans la sphère en mousse sur la température (a) à distance 1/3 du centre, (b) à distance 2/3 du centre... 60
Figure III.14 : Définition des domaines de modélisation. .. 62
Figure III.15 : Comparaison des vitesses mesurées et simulées en amont et en aval du chou-fleur, (a) amont, (b) (c) aval. (S) simulation, (E) expérience.. 63
Figure III.16 : Comparaison de la température de l’air avant le chou-fleur et à la sortie de la veine. (S) simulation, (E) expérience. ... 64
Figure III.17 : Evolutions des températures mesurées et simulées à la surface et dans le chou-fleur (essai N°2). (S) simulation, (E) expérience. ... 65
Figure III.18 : L’isotherme sur la surface à distance 1/3 et 2/3 du centre dans le cas de chou-fleur............. 65
Figure III.19 : Influence de l’incertitude de position de thermocouples dans le chou-fleur sur la température (a) à distance 1/3 du centre, (b) à distance 2/3 du centre. ... 65
Figure III.20 : Evolutions des températures mesurées et simulées à la surface et dans le chou-fleur. (essai N°4) (S) simulation, (E) expérience. ... 66
Figure III.21 : Influence de la vitesse de l’air en entrée sur (a) la température de surface en position avant et (b) au centre du chou-fleur... 67
Figure III.22 : Influence des propriétés thermo physiques du chou-fleur sur (a) la température de la surface en position avant et (b) du centre du chou-fleur. ... 67
Figure III.23 : Influence du volume des domaines internes sur (a) la température de la surface en position avant et (b) la température au centre... 68
Figure III.24 : Influence du taux de transfert de masse et des échanges par rayonnement sur (a) la température de la surface en position avant et (b) au centre du chou-fleur.. 69

Figure IV.1 : Schéma des transferts thermiques et hydriques mis en jeu dans le modèle simplifié 71
Figure IV.2 : Volume de contrôle en 1D... 72
Figure IV.3 : Evolution de la température de chou-fleur avec le temps de refroidissement sans et avec transfert de masse et comparaison avec le modèle complet ... 74
Figure IV.4 : Comparaison entre hypothèse corps mince (0D) et modèle simplifié (1D et 1D monodomaine). .. 75
Figure IV.5 : Evolution de la teneur en eau dans le chou-fleur en fonction temps de refroidissement (cas théorique). ... 75
Figure IV.6 : Evolution de flux masse évaporé du chou-fleur en fonction de temps de refroidissement (cas théorique). ... 76
Figure IV.7 : Influence du pas de temps sur la température (a) de la surface, et (b) du centre. 76

Études expérimentales et numériques du refroidissement de produits horticoles après récolte Hala Yassine 2015
Figure IV.8 : Influence du maillage sur la température (a) de la surface, et (b) du centre. .. 77
Figure IV.9 : Comparaison, pour l’essai N°2, de l’évolution des températures à la surface et à différentes positions dans le chou-fleur. (1D) modèle simplifié, (E) expérience. ... 77
Figure IV.10 : Comparaison, pour l’essai N°2, de l’évolution de la masse du chou-fleur. (1D) modèle simplifié, (E) expérience. ... 78
Figure IV.11 : Comparaison, pour l’essai N°4, de l’évolution des températures à la surface et à différentes positions dans le chou-fleur. (1D) modèle simplifié, (E) expérience. ... 79
Figure IV.12 : Comparaison, pour l’essai N°4, de l’évolution de la masse du chou-fleur. (1D) modèle simplifié, (E) expérience. ... 79
Figure IV.13 : Influence de variation en coefficient de transfert de chaleur par convection sur la température de la surface et sur la masse du chou-fleur. .. 80
Figure IV.14 : Influence de variation en coefficient de diffusion sur la température de la surface et sur la masse du chou-fleur. ... 80
Figure IV.15 : Influence de variation en humidité de l’air sur la température de la surface et sur la masse du chou-fleur. ... 81
Figure IV.16 : Influence de l’incertitude de position de thermocouples dans le chou-fleur sur la température (a) à distance 1/3 du centre, et (b) à distance 2/3 du centre. ... 81
Figure IV.17 : Influence de change du volume poreux équivalent sur la température du centre et sur la masse du chou-fleur. ... 82
Figure IV.18 : Influence de variation en diamètre du chou-fleur sur la température du centre et sur la masse du chou-fleur. ... 82
Figure IV.19 : Schéma d’un tunnel de l’air avec plusieurs produits, vue de côté, (dimensions veine d’air : L=14 m, h=0.2 m, largeur=0.2 m). .. 83
Figure IV.20 : Descriptif d’une zone de refroidissement. ... 84
Figure IV.21 : Evolutions de la température d’air, de la température de surface des produits, de l’humidité relative et de la teneur en eau de l’air avec le temps de refroidissement le long du tunnel. ... 86
Figure IV.22 : Evolution de la température de la surface et du centre des choux-fleurs avec le temps de refroidissement. ... 86
Figure IV.23 : Evolution de la teneur en eau dans les choux-fleurs et le flux masse évaporé de la surface des choux-fleurs avec le temps de refroidissement. ... 87
Figure IV.24 : Influence de variation de débit de l’air sur la cinétique de refroidissement de 1ère et 80ème chou-fleur : (a) température de l’air, (b) température du centre, (c) température de la surface, (d) masse. ... 88

Figure V.1 : Vue du hall de conditionnement en cours de chargement, de la travée instrumentée et de l’instrumentation d’un chou-fleur. ... 90
Figure V.2 : Positions des capteurs, (a) vue de côté, (b) vue de dessus. ... 91
Figure V.3 : Evolution de la température d’eau mesurée à la sortie d’échangeur, de la température de soufflage d’air, et de la vitesse d’air. .. 92
Figure V.4 : Evolution de l’humidité relative d’air mesurée. .. 93
Figure V.5 : Evolutions des températures de l’air selon la hauteur dans le secteur central. ... 93
Figure V.6 : Evolutions des températures de l’air dans les différents secteurs à mi-hauteur de la travée (a) temporelle, (b) à différents instants. ... 94
Figure V.7 : Evolution des températures du chou-fleur, de la température et de l’humidité de l’air mesurées dans le secteur 2. .. 94
Figure V.8 : Température des choux-fleurs à une profondeur de 8 cm dans les 3 secteurs. ... 95
Figure V.9 : Température des choux-fleurs à une profondeur de 3 cm dans les 3 secteurs. ... 95
Figure V.10 : Comparaison des températures (S) simulées et (E) expérimentales des choux-fleurs des secteurs 2 et 3. .. 96

Figure V.11 : Schématisation de la configuration et des conditions retenues pour la modélisation. 97

Figure V.12 : Evolution de la température de l’air à l’entrée de la veine et du cycle de ventilation lors de la simulation. .. 98

Figure V.13 : Comparaison entre la simulation et la mesure pour la température de l’air et les températures dans les produits des secteurs 2 et 3. ... 98

Figure V.14 : Paramètres des cycles de refroidissement. .. 99

Figure V.15 : Evolution (a) du cycle de la ventilation, (b) de la température de l’air à l’entrée, et (c) de la température au centre de dernier chou-fleur dans différents configurations (mode hiver). 102

Figure V.16 : Cycles de la ventilation après optimisation (mode hiver). ... 103

Figure V.17 : Evolution (a) du cycle de la ventilation, (b) de la température de l’air à l’entrée, et (c) de la température au centre de dernier chou-fleur dans différents configurations (mode été). ... 104

Figure V.18 : Cycles de la ventilation après optimisation (mode été). ... 105

Figure V.19 : Evolutions des températures du 1er chou-fleur pour $wT = 1$ et $wE = 0$ (mode été). 105
Liste des tableaux

Tableau I.1 : Condition de conservation des produits réfrigérés [3] ... 16
Tableau I.2 : Propriétés thermo physiques de différents fruits et légumes.. 17
Tableau I.3 : Durée de refroidissement «1/2» pour des pommes (en heure) [10]. .. 18

Tableau II.1 : Valeurs de la teneur en eau initiale .. 34
Tableau II.2 : Masse volumique intrinsèque du chou-fleur... 36
Tableau II.3 : Masse des échantillons .. 36
Tableau II.4 : Conductivité thermique du chou-fleur mesurée à trois températures ... 38
Tableau II.5 : Récapitulatif des incertitudes .. 44
Tableau II.6 : Récapitulatif des conditions d’essais de refroidissement et des caractéristiques des choux-fleurs. 44
Tableau II.7 : Dimensions mesurées sur les quatre produits ... 44
Tableau II.8 : Masses volumiques apparentes et fractions de vide.. 44

Tableau III.1 : Récapitulatif des conditions et des propriétés de la sphère en mousse 56
Tableau III.2 : Les valeurs estimées de rayon, volume, masse, surface et fraction d’air 62
Tableau III.3 : Propriétés thermo physiques utilisées dans le modèle des essais 2 et 4 64
Tableau III.4 : Récapitulatif des conditions pour l’étude de sensibilité .. 66

Tableau IV.1 : Propriétés thermo-physiques utilisées dans le modèle théorique de chou-fleur 73
Tableau IV.2 : Propriétés et conditions utilisés dans le modèle théorique de chou-fleur 73

Tableau V.1 : Instrumentation mise en place pour les mesures sur le site industriel .. 91
Tableau V.2 : Propriétés thermo-physiques utilisées dans le modèle de site industriel 96
Tableau V.3 : Valeur de paramètre \(\alpha \) avant et après d’optimisation à 10°C .. 102
Tableau V.4 : Résultats d’optimisation pour différents configurations à 10°C ... 103
Tableau V.5 : Valeur de paramètre \(\alpha \) avant et après d’optimisation à 20 °C .. 104
Tableau V.6 : Résultats d’optimisation pour différents configurations à 20°C ... 105
Nomenclature

\(a_w \) \hspace{1cm}
activité de l’eau

\(C_p \) \hspace{1cm}
capacité calorifique à pression constante
\(J \text{ kg}^{-1} \text{K}^{-1} \)

\(C_v \) \hspace{1cm}
capacité calorifique à volume constant
\(J \text{ kg}^{-1} \text{K}^{-1} \)

\(D \) \hspace{1cm}
coefficient de la diffusion massique
\(\text{m}^2 \text{s}^{-1} \)

\(e \) \hspace{1cm}
épaisseur
\(\text{m} \)

\(F_m \) \hspace{1cm}
densité de flux masse
\(\text{kgs}^{-1} \text{m}^{-2} \)

\(h_c \) \hspace{1cm}
coefficient d’échange par convection
\(\text{Wm}^{-2} \text{K}^{-1} \)

\(h_r \) \hspace{1cm}
coefficient d’échange par rayonnement
\(\text{Wm}^{-2} \text{K}^{-1} \)

\(\text{HR} \) \hspace{1cm}
humidité relative
\(\% \)

\(k \) \hspace{1cm}
conductivité thermique
\(\text{Wm}^{-1} \text{K}^{-1} \)

\(k_m \) \hspace{1cm}
coefficient de transfert de masse
\(\text{ms}^{-1} \)

\(L_v \) \hspace{1cm}
chaleur latente d’évaporation
\(\text{Jkg}^{-1} \)

\(\text{le} \) \hspace{1cm}
nombre de Lewis
-

\(m \) \hspace{1cm}
masse
\(\text{kg} \)

\(M_v \) \hspace{1cm}
masse molaire de la vapeur d’eau
\(\text{kg mol}^{-1} \)

\(P \) \hspace{1cm}
pression
\(\text{Pa} \)

\(\text{Pr} \) \hspace{1cm}
nombre de Prandtl
-

\(Q_r \) \hspace{1cm}
chaleur de respiration
\(\text{Wm}^{-3} \)

\(R_{gaz} \) \hspace{1cm}
constant des gaz parfait
\(\text{JK}^{-1} \text{mol}^{-1} \)

\(R \) \hspace{1cm}
rayon
\(\text{m} \)

\(\text{Re} \) \hspace{1cm}
nombre de Reynolds
-

\(S \) \hspace{1cm}
surface
\(\text{m} \)

\(Sc \) \hspace{1cm}
nombre de Schmidt
-

\(T \) \hspace{1cm}
température
K ou °C

\(t \) \hspace{1cm}
temps
\(\text{s} \)

\(T_{film} \) \hspace{1cm}
température de film
K ou °C

\(u \) \hspace{1cm}
vitesse
\(\text{ms}^{-1} \)

\(V \) \hspace{1cm}
volume
\(\text{m}^{-3} \)

\(W \) \hspace{1cm}
teneur en eau base sèche
\(\text{kg kg}^{-1} \)

Lettre grecques

\(\rho \) \hspace{1cm}
masse volumique
\(\text{kg m}^{-3} \)

\(\mu \) \hspace{1cm}
viscosité dynamique
\(\text{kgs}^{-1} \text{m}^{-1} \)

\(\epsilon \) \hspace{1cm}
émisivité/fraction de vide
-

\(\sigma \) \hspace{1cm}
constante STEFAN-BOLTZMAN
\(\text{Wm}^{-2} \text{K}^{-4} \)

Indices

\(a \) \hspace{1cm}
air
-

\(\text{ap} \) \hspace{1cm}
aparente
-

\(c \) \hspace{1cm}
cycle
-

\(\text{CF} \) \hspace{1cm}
chou-fleur
-

\(\text{eff} \) \hspace{1cm}
effectif
-

\(\text{ext} \) \hspace{1cm}
extérieur
-

Études expérimentales et numériques du refroidissement de produits horticoles après récolte Hala Yassine 2015
échange entre produit et l’air

frais

intérieur

initiale

intrinsèque sèche

intrinsèque humide

passage de l’air

produit

saturation

solide

totale

vapeur

Exposants

T turbulence

* adimensionné

Abréviations

DPC Durée Pratique de Conservation

CFD Computational Fluid Dynamics
Introduction Générale

Dans l’industrie alimentaire, la réfrigération des produits représente un secteur d’activités très important pour la conservation des produits frais. Les basses températures permettent de limiter la croissance des micro-organismes et par conséquent de prolonger la durée de conservation des produits frais.

Selon la filière de commercialisation des produits cultivés, ceux-ci peuvent être congelés (froid négatif) pour permettre un stockage de longue durée ou refroidis (froid positif) afin de prolonger leur durée de conservation avant commercialisation. Cette deuxième alternative fait l’objet des travaux présentés dans cette étude.

Ainsi, afin d’allonger la conservation de produits alimentaires tels que les légumes ou les fruits, une des méthodes consiste à les maintenir à des températures de l’ordre de 5°C. Les phases de descente et ensuite de maintien en température doivent être réalisés en limitant la perte en eau du produit afin de ne pas en altérer la qualité. Ces opérations sont donc effectuées dans des ambiances contrôlées en température et en humidité. La vitesse de descente en température est fortement dépendante des échanges thermiques en surface et des propriétés thermo physiques des produits. La convection forcée est largement utilisée pour cette opération.

Une bonne maîtrise de ce type de procédé nécessite des études au niveau des produits, des conditions thermo-aérauliques et des machines thermodynamiques associées. A titre d’exemple, la réfrigération des fruits et des légumes peut entraîner des pertes en eau non négligeables. Par ailleurs, cette opération induit des consommations énergétiques conséquentes.

Les études menées durant cette thèse sont focalisées sur le refroidissement par air de chou-fleur. Il s’agit d’un produit dont la masse peut atteindre 2 kg, ce qui implique une durée de refroidissement relativement longue. D’autre part, sa structure hétérogène, du fait de la présence d’alvéoles contenant de l’air, induit des gradients de température non négligeables au sein du produit.

La finalité de ces travaux est de disposer d’un modèle numérique, validé par des expérimentations, destiné à la prédiction des cinétiques de refroidissement de plusieurs produits placés dans un flux d’air. Ce modèle est ensuite exploité pour définir les cycles de fonctionnement optimaux du flux d’air afin d’atteindre la température de consigne dans un temps imparti.

Le premier chapitre de ce mémoire introduit le cahier des charges pour les produits (plages de température et d’humidité de l’air) et présente les technologies mises en œuvre dans les installations industrielles. Dans une seconde partie, les principaux mécanismes physiques intervenant en surface et au sein d’un produit lors d’une phase de refroidissement sont décrits. La dernière partie est consacrée à une revue des études présentées dans la littérature pour simuler le refroidissement de produits conditionnés.

Le deuxième chapitre présente les expérimentations réalisées au laboratoire. Dans une première partie, la caractérisation de choux fleurs, qui sont des milieux très hétérogènes, est...
décrite. La détermination des propriétés thermo-physiques et du taux de vide, qui s’avéreront prépondérants par la suite y sont notamment détaillé.

La seconde partie est dédiée à des essais de refroidissement dans des conditions différentes (volume et masse de produit, température initiale) d’un produit unitaire placé dans une veine d’air. Un pilote de laboratoire instrumenté (capteurs de température, balance, anémomètre, capteurs d’humidité…) a été mis spécifiquement en place pour ces études. Différentes expérimentations sont présentées et analysées. L’objectif de ces essais est d’établir une base de données suffisante afin de valider les hypothèses retenues pour la modélisation numérique. Le troisième chapitre est dédié au développement d’un modèle numérique 3D destiné à simuler les transferts de chaleur au sein d’un produit et les phénomènes thermo-aéraulique en périphérie. Le chou-fleur est assimilé à un milieu hétérogène de géométrie sphérique. Afin de prendre en compte les hétérogénéités dues à la présence de porosité macroscopique, le produit est décomposé en trois domaines distincts ayant des propriétés thermo-physiques effectives différentes. L’air est considéré comme un fluide incompressible et une approche turbulente du problème de conservation de la quantité de mouvement est adoptée. Les résultats de simulations sont confrontés à des mesures. Enfin, une étude de sensibilité est effectuée pour souligner l’influence de certains paramètres, et des conditions aux limites thermiques sur la cinétique de refroidissement.

Dans le quatrième chapitre, un modèle simplifié mono dimensionnel représentatif des transferts de chaleur et de masse dans le produit est développé. Ce modèle montre l’importance du transfert de masse dans le produit sur la cinétique de refroidissement. Les résultats de simulation pour un produit sont comparés aux séquences expérimentales, et une analyse de sensibilité est effectuée pour montrer l’influence des différents paramètres sur la cinétique de refroidissement. En fin de ce chapitre, le modèle numérique est généralisé pour simuler le refroidissement d’une succession de produits placés dans une veine d’air.

Dans le dernier chapitre, un suivi des conditions thermo-aérauliques et des cinétiques de refroidissement de trois choux fleurs sur un site de conditionnement industriel est réalisé et présenté afin de valider les modèles développés dans le chapitre précédent : le modèle à l’échelle d’un produit et le modèle d’une succession de produits. La dernière partie de ce chapitre est consacrée à l’optimisation du procédé ; une commande optimale est mise en œuvre dans le but d’établir les intermittences de fonctionnement de la ventilation permettant d’atteindre la température finale de produit désirée dans le respect des contraintes techniques du site tout en minimisant la consommation d’énergie.
CHAPITRE 1: Etat de l’art, Bibliographie

1- Introduction

Les procédés de réfrigération sont fréquemment utilisés dans l’industrie pour refroidir les produits frais (fruits, légumes, viande, …). En France, environ 40% d’une production totale de 7 millions de tonnes de fruits et légumes sont réfrigérés. On trouve des chiffres similaires dans d’autres régions du monde [1]. La consommation énergétique liée à la production de froid est très conséquente, elle représente de 50% à 70% de la consommation électrique d’une exploitation. Le secteur agroalimentaire consomme à lui seul 57% de l’électricité consacrée au froid au niveau national.

Le froid industriel peut être classé en deux grandes catégories : le froid positif où la température de réfrigération dans la chambre froide est supérieure à 0°C (entre 1°C et 12°C), et le froid négatif où la température de réfrigération dans la chambre froide est maintenue en dessous de 0°C (entre 0 et -40°C) [2][3].

Les produits sont classiquement refroidis par convection naturelle ou forcée ce qui engendre des transferts de chaleur et d’eau. Par ailleurs, à l’échelle industrielle il est nécessaire d’assurer le refroidissement simultané d’un ensemble de produits qui sont en vrac ou disposés dans des contenants de forme très variable. La conception d’une installation performante nécessite un savoir-faire s’appuyant sur des études expérimentales et numériques.

La première partie de ce chapitre introduit les informations nécessaires pour cerner les contraintes et les modes de conditionnement des produits dans le cas d’un refroidissement positif.

La seconde partie est dédiée aux techniques de refroidissement avec une description de différents types d’enceintes et la gestion des flux d’air. Les technologies des unités de production de froid et des échangeurs sont ensuite présentées.

La dernière partie concerne la modélisation des cinétiques de refroidissement d’un produit unitaire ou d’un ensemble de produits. Après une présentation des phénomènes de transfert au sein d’un produit et des échanges avec le fluide une revue bibliographique présente différents travaux menés depuis une vingtaine d’année sur le sujet.

2- Généralités

2-1- Problématique

Les légumes et les fruits frais ont un besoin continu d’oxygène pour leur respiration qui se traduit par une transformation des sucs, une libération d’énergie, et une dégradation des qualités nutritives. Une diminution de la température retarder les dégradations du produit induites par les réactions chimiques ou biologiques mais aussi permet de limiter [4] :

- le développement des micro-organismes dont les légumes sont généralement recouverts.
- les changements de coloration et d’aspect que subissent les végétaux à température ambiante
- les pertes en eau dues au phénomène de transpiration
Par exemple, l’asperge perd plus de 50% de sa vitamine C en 24 h à 20°C alors que 4 jours à 10°C ou 12 jours à 0°C sont nécessaires pour obtenir un même résultat [4]. Une température contrôlée est donc essentielle pour maintenir la qualité des produits qui vont être commercialisés après la récolte [5]. L’enjeu est alors de refroidir le plus rapidement possible les produits qui peuvent être récoltés à des températures très variables [6][7]. Ainsi, la production devrait être récoltée le matin afin qu’elle soit à la température plus froide possible [8].

2-2- Plage de température et d'humidité relative

Pour les fruits et légumes, un compromis doit être observé entre une température basse de conservation (mais supérieure à la température de congélation) et une température assurant l’équilibre des réactions biochimiques qui sont ralenties. Une température basse augmente la durée de conservation mais engendre un déséquilibre des réactions biochimiques (différence de ralentissement des activations métaboliques) qui peut entraîner une dégradation accélérée des produits [3]. L’humidité relative joue également un rôle important pour la conservation. Une différence de pression de vapeur d'eau entre l'air amiant et la surface du produit entraîne un processus de transpiration qui induit une perte de poids. Il est donc important de maintenir l’humidité relative de l’air à des valeurs élevées [9].

A titre d’exemple, le Tableau I.1 donne les conditions de conservation de quelques fruits et légumes ainsi que la durée pratique de conservation « DPC » exprimée en jour (j) ou en semaine (sem). On constate qu’il est nécessaire de maintenir l’humidité relative dans une plage relativement restreinte ; une valeur excessive de HR amplifie la détérioration microbienne.

Tableau I.1 : Condition de conservation des produits réfrigérés [3]

<table>
<thead>
<tr>
<th>Légumes et fruits peu sensibles au froid</th>
<th>Légumes et fruits sensibles au froid</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>HR%</td>
</tr>
<tr>
<td>Carotte</td>
<td>0</td>
</tr>
<tr>
<td>Chou fleur</td>
<td>0</td>
</tr>
<tr>
<td>Pomme de terre</td>
<td>2 à 3</td>
</tr>
<tr>
<td>Pomme</td>
<td>0 à 4</td>
</tr>
<tr>
<td>Fraise</td>
<td>0</td>
</tr>
<tr>
<td>Poire</td>
<td>0</td>
</tr>
</tbody>
</table>

2-3- Conditionnement des produits

La vitesse de refroidissement des produits dépend de plusieurs facteurs, notamment de la différence de température entre le produit et la chambre de refroidissement, des propriétés thermo-physiques, de la géométrie du produit, de la nature du fluide de refroidissement et du type d'emballage,…. [10]. Les fruits et les légumes frais sont des produits ayant une forte capacité thermique et une conductivité thermique relativement faible du fait de leur forte teneur en eau (Tableau II.2). Ainsi, leur refroidissement peut nécessiter des longues durées et/ou des échanges thermiques...
conséquents en surface en particulier pour les produits dont la géométrie correspond à une grande longueur caractéristique (Volume/Surface).

Tableau I.2 : Propriétés thermo physiques de différents fruits et légumes

<table>
<thead>
<tr>
<th>Produit/propriétés</th>
<th>Densité (kg.m$^{-3}$)</th>
<th>Conductivité thermique (Wm$^{-1}$K$^{-1}$)</th>
<th>Capacité calorifique (J kg$^{-1}$K$^{-1}$)</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomme</td>
<td>864</td>
<td>0.56</td>
<td>3750</td>
<td>[11]</td>
</tr>
<tr>
<td>Orange</td>
<td>948</td>
<td>0.5</td>
<td>3770</td>
<td>[1]</td>
</tr>
<tr>
<td>Tomate</td>
<td>1028</td>
<td>0.7</td>
<td>3980</td>
<td>[1]</td>
</tr>
<tr>
<td>Poire</td>
<td>1000</td>
<td>0.52</td>
<td>3800</td>
<td>[12]</td>
</tr>
<tr>
<td>Fraise</td>
<td>800</td>
<td>0.75</td>
<td>3950</td>
<td>[13]</td>
</tr>
<tr>
<td>Figue</td>
<td>1076</td>
<td>0.53</td>
<td>3664</td>
<td>[14]</td>
</tr>
<tr>
<td>Raisin</td>
<td>1123</td>
<td>0.55</td>
<td>3789</td>
<td>[15]</td>
</tr>
<tr>
<td>Légumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomme de terre</td>
<td>1100</td>
<td>0.5</td>
<td>3600</td>
<td>[16]</td>
</tr>
<tr>
<td>Brocoli</td>
<td>860</td>
<td>0.46</td>
<td>3900</td>
<td>[17]</td>
</tr>
<tr>
<td>Betterave</td>
<td>1000</td>
<td>0.57</td>
<td>3770</td>
<td>[18]</td>
</tr>
<tr>
<td>Concombre</td>
<td>968.6</td>
<td>0.55</td>
<td>4060</td>
<td>[19]</td>
</tr>
</tbody>
</table>

Pendant la phase de refroidissement les produits peuvent être disposés en vrac ou placées à l’intérieur de conteneurs empilés sur des palettes. Ces conteneurs sont généralement perforés afin de permettre un contact direct entre le fluide de refroidissement et le produit (Figure I.1). L’efficacité du refroidissement dépend de la résistance à l’écoulement qui est induite par le conteneur et le produit. Par ailleurs, l’hétérogénéité du refroidissement n’est pas seulement générée par l’augmentation de la température de l’air lorsqu’il s’écoule à travers les produits. L’évaporation de l’eau à la surface peut également avoir une influence. En effet, la perte d’eau peut varier de 50% entre les zones les plus froides et les plus chaudes dans une palette [20]ce qui peut induire une dégradation de la qualité des produits par la perte d’humidité.

![Embollage en couches](image1.png) ![Embollage en vrac](image2.png)

Figure I.1 : Exemples de conditionnements en couches ou en vrac selon Zou [21].

Dans le milieu professionnel du froid, une méthode graphique pour estimer une durée nécessaire au refroidissement est utilisée (Figure I.2). Les durées de refroidissement correspondant à 1/2 et 7/8 sont mesurées à partir de l’instant où le produit est placé dans la chambre de refroidissement [22]. Dans la littérature on peut également trouver différentes
approches pour estimer à partir de modèles numériques simplifiés ces durées de refroidissement [10][23][24].
Par exemple, le Tableau I.3 montre l’influence du type d’installation sur la durée de refroidissement de pommes.

![Figure I.2 : Courbe de refroidissement (temps de refroidissement 1/2 et 7/8) [10][22].](image)

Tableau I.3 : Durée de refroidissement «1/2» pour des pommes (en heure) [10].

<table>
<thead>
<tr>
<th>Méthode de refroidissement</th>
<th>Une seule pomme</th>
<th>Pommes dans une caisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventionnelle chambre froide</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>vitesse de l'air 200-400 m min(^{-1})</td>
<td>0.33</td>
<td>4</td>
</tr>
<tr>
<td>Hydro-refroidissement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitesse de l'air 40 m min(^{-1})</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Vitesse de l'air 400 m min(^{-1})</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

3- Techniques de refroidissement

Il existe différentes techniques pour la pré-réfrigération des produits issus de l’agriculture. La pré-réfrigération étant le refroidissement rapide des produits cultivés à l’issue de la récolte. Parmi les facteurs importants qui amène à retenir une solution plutôt qu’une autre, citons la nature du produit qui impose la température, l’humidité requise ainsi que la durée du processus. La nature du conditionnement en est un autre, en effet, suivant que les produits se présentent en vrac, en cagette, bac plastique ou carton avec éventuellement un emballage individuel, certains procédés ne seront pas adaptés. La quantité de produit à traiter, leur variété ainsi que la périodicité et l’étalement des récoltes ont aussi un impact sur le choix effectué. Les coûts respectifs des différentes techniques sont aussi bien évidemment à prendre en compte ; la solution retenue pour un produit de forte valeur ne sera pas nécessairement économiquement viable pour un produit de moindre valeur [10].
Afin de satisfaire à ces différentes contraintes, les industriels disposent d’un choix de technologies telles que le traitement en chambre froide, en tunnel, par hydro-réfrigération ou surfaçage de glace ainsi que sous vide, avec leurs différentes variantes. Les avantages et inconvénients respectifs de ces différentes techniques sont maintenant présentés.

3-1- Réfrigération en chambre froide

C’est une pratique très répandue et bien maîtrisée qui consiste à introduire les produits dans une chambre froide dans laquelle une circulation d’air est imposée. En circulant parmi les cartons, cagettes, bacs ou autres conteneurs l’air refroidi les produits [25]. En général, un arrangement simple et efficace consiste à souffler l’air froid dans la chambre froide horizontalement en partie haute du local. L’air revient à l’échangeur assurant son refroidissement après circulation à travers le produit en partie basse [26], comme le montre la Figure I.3-a. Dans les chambres où l’air doit parcourir plus de 15 m, la distribution s’effectue grâce à des conduits en plafond et est repris par un plénum pour être traité (Figure I.3-b) [8].

Le débit d’air soufflé doit permettre de maintenir une vitesse d’air comprise entre 1 et 2 ms⁻¹ autour et entre les conteneurs. Lorsque le refroidissement est terminé, la vitesse d’air est réduite au niveau le plus bas garantissant le maintien en température, habituellement entre 0.05 et 0.1 ms⁻¹ [26]. Un apport en eau à l’air de soufflage par brumisation permettant d’arriver à une humidité relative de l’air soufflé proche de la saturation (90-98%) est fréquemment mis en œuvre pour les produits qui le tolèrent.

Dans les chambres froides, il est important de laisser assez d’espace entre les piles pour obtenir un effet optimal de refroidissement. Les produits dans des boîtes ventilées vont refroidir beaucoup plus rapidement que les produits emballés dans des conteneurs non ventilés. L’air circulant à travers la pièce passe sur les surfaces par les espaces ouverts, de sorte que le refroidissement de l’extérieur vers le centre des piles se fait surtout par conduction [27].

Les vitesses de descente en température limitées par cette technique (0.5 °Ch⁻¹ classiquement) sont qu’elle est réservée aux produits faiblement périssables tels que les pommes de terre, les oignons, les pommes, les patates douces et les agrumes [26].

La bonne maîtrise de cette technique conjuguée à sa simplicité ainsi qu’à la puissance frigorifique modérée à mettre en œuvre en font une solution économiquement intéressante tant en investissement qu’en fonctionnement. Cette technique permet le traitement par lot de quantité importante de produit, elle est pénalisée par un temps de refroidissement qui peut atteindre une journée, qui n’est pas compatible avec les produits fortement périssables [10].
3-2- **Refroidissement en tunnel**

Par rapport aux chambres froides, où les fruits et légumes sont placés dans un milieu réfrigéré dont les vitesses sont faibles, induisant un refroidissement lent privilégiant le transfert thermique par conduction, en tunnels le flux d’air de refroidissement est forcé ce qui permet d’atteindre des vitesses plus élevées. Les échanges sont majoritairement convectifs et permettent de diviser le temps de refroidissement par un facteur pouvant atteindre 10 [7].

Trois types de refroidissement par air forcé sont utilisés en milieu industriel. Ils sont caractérisés par le sens de parcours de l’air au travers des cagettes ou cartons de conditionnement. Les dispositifs les plus courants forcent l’air à traverser horizontalement les produits palettisés. D’autres systèmes privilégient un écoulement vertical descendant de l’air au travers des colonnes alors que le dernier type est une combinaison des deux précédents systèmes alliant flux horizontal et vertical de l’air (Figure I.4).

Dans ces trois dispositifs, il est nécessaire de canaliser l’air en obstruant à l’aide de bâches certaines des surfaces latérales de palettes. Le mode de reprise de l’air diffère suivant la technique retenue. L’efficacité du refroidissement est intimement liée à la qualité de la palettisation et de la canalisation du flux d’air ainsi qu’au choix des conteneurs dont les aérations doivent s’aligner pour favoriser le passage de l’air [22].

Le refroidissement par air forcé peut provoquer une perte d'eau des produits frais [26]. Ainsi des apports d'eau en surface peuvent être réalisés par brumisation pendant le refroidissement [28].

Les tunnels de réfrigération sont des procédés efficaces de refroidissement des produits issus de l’agriculture. Ils permettent un refroidissement rapide, en accord avec les préconisations de conservation optimale. Une humidification de l’air de refroidissement est souvent nécessaire compte tenu des vitesses d’air élevées au niveau du produit. La puissance frigorifique installée ainsi que le système de ventilation doivent être plus conséquents que pour les chambres de refroidissement pour pouvoir traiter des produits périssables. L’efficacité du dispositif dépend fortement de l’agencement des palettes, de l’adaptation des conteneurs et de la qualité de l’étanchéité aux flux d’air parasites [22].
3-3- L’hydro-refroidissement

Le principe consiste à utiliser l’eau froide pour refroidir des produits en vrac ou en contenant avant conditionnement. Différents modes de refroidissement par eau sont pratiqués, tel le douchage, la pulvérisation ou l’immersion. L’hydro-refroidissement est l’une des méthodes de pré-refroidissement les plus rapides.

L’efficacité de ces procédés est liée à l’uniformité du contact entre l’eau et les produits à refroidir qui influe sur les coefficients des échanges convectifs. L’immersion est la technique la plus performante, les autres techniques présentant l’intérêt de pouvoir être utilisées en ligne et non pas seulement par lot [26].

Ce procédé est intéressant pour les produits qui nécessitent un lavage avant leur commercialisation. Un avantage principal de l’hydro-refroidissement est qu’il n’enlève pas l’eau du produit et peut même revigorer des produits légèrement flétris.

Les produits doivent supporter d’être humidifiés par de l’eau et les désinfectants qu’elle peut contenir. Un autre risque lié à la recirculation de l’eau est le développement et l’accumulation d’organismes favorisant le pourrissement susceptibles de contaminer les légumes ou fruits à traiter.

Ces procédés sont peu adaptés au produits à feuilles, celles-ci favorisant la rétention d’eau ce qui les rend peu pratiques à manipuler et sujets au développement de moisissure ainsi qu’à la décoloration [10].

3-4- Le glaçage de surface et refroidissement par coulis de glace

Le glaçage de surface consiste à disposer de la glace en paillette, en écaille ou pilée directement sur la partie supérieure des contenus. Cette technique a été très utilisée pour la pré-réfrigération et le maintien en température lors du transport.
Le défaut principal de cette technique est le manque d’homogénéité du refroidissement ; les produits au contact avec la glace sont rapidement refroidis alors que ceux positionnés en partie inférieure ne seront refroidis qu’avec la fonte de la glace.

Une autre possibilité est d’injecter directement dans les contenants un coulis de glace par des orifices prévus à cet effet. C’est une solution intermédiaire entre l’hydro-réfrigération et le glaçage de surface. Le refroidissement est alors bien plus homogène et rapide et peut être réalisé en ligne.

Par contre, le contact direct avec la glace n’est pas envisageable pour bon nombre de fruits et légumes. L’usage de ces procédés implique aussi l’utilisation de contenants résistant à l’eau.

Le peu d’ouvertures de contenants nécessaire par ces techniques, par opposition à l’aéro-réfrigération notamment, les rendent moins déprédatifs et donc moins sujets aux différences de températures.

La durée de ces modes de refroidissement permet d’envisager un transport en véhicule non réfrigéré pour des livraisons de proximité. Par contre il augmente de façon importante les masses et les volumes à transporter, ce qui est à considérer dans le calcul des coûts d’exploitation et qui tend à délaisser ces solutions [10].

3-5- **Refroidissement sous vide**

Cette méthode repose sur l'évaporation de l'eau à basse pression, la chaleur latente nécessaire à l'évaporation étant prélevée au produit, celui-ci se refroidit. La réfrigération sous vide convient particulièrement aux légumes et herbes qui présentent une grande surface par rapport à leur volume, comme la laitue et les légumes-feuilles. Étant donné que cette méthode fait perdre au produit environ 1% de son poids avec chaque baisse de température de 6°C, soit les produits sont pré-humidifiés, soit les refroidisseurs sont munis d'un système qui pulvérise de l'eau à la surface du produit pendant le refroidissement [29].

Les coûts d'investissement du matériel pour le refroidissement sous vide étant élevés, ce procédé convient mieux aux exploitations de grande taille. Le coût d’exploitation est par contre favorable à cette technique [30].

L’homogénéité du refroidissement, sa rapidité et la facilité de contrôle de la température finale directement lié à la pression de l’enceinte, en font un système performant mais dont l’usage est limité en agroalimentaire, il concerne principalement les salades et les champignons [29][31].

3-6- **Production de froid dans le cas d'une chambre froide de pré-refroidissement**

Nous nous intéressons dans cette partie aux éléments constitutifs d'une installation industrielle de pré-réfrigération en chambre froide avec air pulsé telle que représenté sur la Figure I.5. Les différentes possibilités de modélisation des éléments constitutifs d’une telle installation y sont par ailleurs discutées.

Le principe souvent retenu pour la production d’air de refroidissement dans le cadre de chambres froides à températures positives consiste à produire de l’eau glycolée à une
température légèrement négative qui servira à alimenter une centrale de traitement d’air à air forcé.
Le fonctionnement de la centrale de production d’eau glacée repose sur un cycle à compression de vapeur traditionnel constitué d’un ou plusieurs compresseurs, des échangeurs de chaleur à haute et basse pression ainsi que d’un organe de détente.
Au niveau de la chambre froide, un échangeur alimenté en eau glycolée, dont la température est régulée à l’aide d’une vanne trois voies, refroidit l’air aspiré dans le local grâce à un système de ventilation qui assure ensuite son soufflage. Un dispositif de production d’un brouillard de vapeur d’eau est disposé au niveau du soufflage afin d’humidifier l’air pulsé et ainsi limiter les pertes en eau au niveau des produits.

3-6-1- Centrale de production d’eau glacée

Le compresseur est l’organe qui aspire le fluide frigorigène gazeux (à bas niveau de température et de pression) issu de l’évaporateur, le comprime à la haute pression en élevant sa température puis le refoule vers le condenseur. La puissance mécanique nécessaire à cette phase de compression représente la majeure partie de l’énergie consommée par le système. Elle est fonction des niveaux de pression, du débit de fluide frigorigène et du rendement global de la machine. Les compresseurs sont généralement entraînés par un moteur électrique ; il existe deux types de compresseur de vapeur [32][33]
-les compresseurs volumétriques pour lesquels la compression des vapeurs est obtenue par la réduction du volume intérieur d’une chambre de compression, c’est le type de compresseur le plus répandu sur les installations frigorifiques.
-les compresseurs centrifuges aussi appelés turbocompresseurs dans lesquels la compression résulte de la force centrifuge obtenue par entraînement dynamique au moyen d’une roue à aubes, c’est un type de compresseurs, généralement multi-étage, destiné à des applications spécifiques et utilisés pour de grandes puissances.
Dans la littérature, plusieurs modèles sont proposés pour simuler les compresseurs [34][35][36][37]. Ces modèles varient en complexité selon l’objectif des études.

Le condenseur est un échangeur de chaleur, à travers lequel le cycle frigorifique rejette de la chaleur au milieu extérieur et transforme la vapeur surchauffée en liquide sous refroidi. Cette opération (condensation) est obtenue par le refroidissement du fluide frigorigène gazeux à pression constante par un médium qui peut être de l’eau ou de l’air [32].

Les condenseurs à air existent en deux types : les condenseurs à convection naturelle (sans ventilateur) qui sont utilisés pour des très faibles puissances à échanger (froid ménager), et les condenseurs à convection forcée (utilisation d’un ventilateur pour la circulation forcée de l’air) qui sont utilisés pour les petites et moyennes puissances.

La famille des condenseurs à eau comprend les condenseurs à eau perdue où l’eau utilisée pour le refroidissement est rejetée après usage, et les condenseurs à eau recyclée où cette même eau est refroidie avant d’être à nouveau utilisée. Les condenseurs à eau sont généralement utilisés pour les très grandes puissances [3][38].

Le détendeur est l’organe de la machine frigorifique qui fait passer le fluide frigorigène à l’état liquide sous refroidi, issu du condenseur, de la haute à la basse pression avant son introduction dans l’évaporateur. Il a pour but d’adapter le débit de fluide frigorigène à la puissance thermique disponible pour l’évaporation afin de s’assurer que le fluide en entrée de compresseur soit à l’état de vapeur surchauffée pour ne pas générer de coups de liquide au niveau du compresseur. La surchauffe, écart positif de température du fluide entre l’entrée compresseur et la température de vapeur saturante à la pression d’évaporation, est de 5 à 8K pour ce type d’installation [38][39].

Les détendeurs utilisés dans les systèmes de réfrigération peuvent être divisés en 2 familles, celle des détendeurs à ouverture fixe (capillaire, détendeur manuel, diaphragme) et celle des détendeurs à ouverture automatique qui nous concernent dans le cas de cette application.

Le détendeur pressostatique qui maintien une pression d’évaporation constante est surtout adapté aux dispositifs à charge constante, les détendeurs thermostatiques lui sont souvent préférés. Ceux-ci régulent le débit de fluide frigorigène en fonction de la valeur de surchauffe requise. Dans le cas d’un évaporateur siège de fortes pertes de charge, un détendeur thermostatique à égalisation externe de pression sera plus performant. Il permet, grâce à un piquage reliant la sortie évaporateur au détendeur, de prendre en compte ces pertes de charge et ainsi de mieux respecter la consigne de surchauffe [39].

L’évaporateur est un échangeur de chaleur dont la fonction fondamentale consiste à assurer une extraction de la chaleur aussi performante que possible du milieu à refroidir. En ce sens l’évaporateur constitue le centre de l’absorption de chaleur, but final de tout système frigorifique.

L’objectif de l’installation étudiée étant de produire de l’eau glacée, seuls les évaporateurs refroidisseurs de liquide sont ici évoqués. Pour des puissances importantes, les échangeurs multitubulaires à calandre sont généralement retenus. Ceux-ci peuvent être classés en deux catégories : les évaporateurs noyés ou à détente sèche.

- le principe de fonctionnement des évaporateurs noyés est que les surfaces d’échange doivent toujours être en contact avec du fluide frigorigène liquide. Le fluide à refroidir circule dans
les tubes et le fluide frigorigène dans la calandre. Dans ces évaporateurs il est nécessaire de prévoir des dispositifs anti-coups de liquide pour la protection des compresseurs. Cette technologie permet d’atteindre de très bons coefficients d’échange, mais elle nécessite en contrepartie une charge importante en fluide frigorigène et un traitement spécifique de la récupération des huiles de lubrification qui induisent un coût élevé d’installation.

-les évaporateurs à détente sèche (ou à surchauffe) dans lesquels les vapeurs de fluide frigorigène sont surchauffées. Dans cette configuration, le fluide frigorigène circule dans les tubes et le liquide à refroidir dans la calandre. Ils sont alimentés par des détendeurs thermostatiques qui permettent de contrôler la surchauffe. Même s’ils présentent des coefficients d’échange un peu moins bons que pour les échangeurs noyés, leur simplicité fait qu’ils leurs sont souvent préférés.

L’évaporateur et le condenseur sont tous deux des échangeurs de chaleur, de sorte que leurs modèles sont résumés en même temps. Les auteurs en [40][41][42] ont développé différents modèles en régime permanent pour simuler les échangeurs de chaleur ; ces modèles sont principalement utilisés pour décrire les caractéristiques à l’état d’équilibre des échangeurs de chaleur. Des modèles en régime transitoire de prédiction du comportement dynamique d’un refroidisseur à compression de vapeur ont été développés [43], mais le pas de temps de calcul nécessairement très petit implique des temps de calcul très long incompatibles avec le pilotage de procédé (des études de conduites optimales de procédé). Le modèle dynamique multizone [36] est un compromis permettant de décrire correctement le comportement dynamique des échangeurs de chaleur des systèmes de réfrigération sans être pénalisé par le temps de calcul.

3-6-2- Chambre froide à air forcé

Le refroidissement de la chambre froide est assuré par un échangeur eau glycolée/air. De puissants ventilateurs aspirent l’air après son passage au cœur des palettes de produits pour le refroidir au contact d’un échangeur tubulaire à ailette avant de le réinjecter dans la chambre froide. L’air froid est soufflé en partie haute de la pièce avec une vitesse lui permettant de balayer toute la surface couverte par les produits à refroidir.

La régulation de la température de l’eau glycolée en entrée est réalisée grâce à une vanne trois voies fonctionnant en mélange ou en répartition suivant le paramètre prioritaire, température ou débit.

En fonction de l’avancement du process et donc des besoins en puissance frigorifique, les ventilateurs pourront être arrêtés ou modulés en vitesse.

Pour réduire la perte de poids des produits réfrigérés, une majorité des systèmes frigorifiques sont équipés d’un brumisateur. La brumisation est l’humidification d’air en entrée par l’ajout de fines gouttelettes d’eau. Elle consiste à fabriquer de la brume, suspension dans l’air d’une multitude de microgouttelettes d’eau dont la taille est inférieure de 10 𝜇m [28]. L’humidification n’a aucun effet significatif sur la température des produits [44].

Plusieurs types d’humidificateurs sont utilisés dans le froid industriel pour produire la brume, parmi eux [45] :
• humidificateur à pulvérisation : les buses d’humidificateur produisent des pulvérisations de 7.5 µm.
• humidificateurs à évaporation : ces humidificateurs comportent une paroi humide et poreuse qui est dans l’axe d’un ventilateur. L’air résultant est donc chargé en humidité.
• humidificateurs à ultrasons : un diaphragme métallique vibrant à une fréquence ultrasonore crée des microgouttelettes d’eau (de 1 à 3 µm). Elles quittent l’humidificateur sous forme d’un brouillard frais. Ces appareils sont particulièrement silencieux.
• Humidificateur à haute pression : une pompe à haute pression (environ 70 bars) pousse l’eau vers des buses. Ils permettent de diffuser largement de grandes quantités d’eau pour humidifier l’air.

4- Refroidissement aéraulique de produits

Ce paragraphe présente un état de l’art sur des travaux expérimentaux et numériques dédiés à l’étude des transferts de chaleur et de masse lors du refroidissement d’un produit ou d’un ensemble de produits placés dans un flux d’air.

4-1- Mécanismes de transferts

Lors du refroidissement, un produit est soumis à des échanges thermiques par conduction, convection, rayonnement auxquels peuvent se superposer des phénomènes d’évaporation-condensation et des apports internes induit par la respiration du produit.

4-1-1- Transfert de chaleur et de masse au sein d’un produit

La Figure I.6 montre les différents mécanismes induits lors du refroidissement d’un produit frais.

Ainsi, la prédiction des champs de température et de teneurs en eau au sein du produit peut être obtenue par la résolution de deux systèmes d’équations [11][46]:
\[
\rho_p C_{p,p} \frac{\partial T_p}{\partial t} = \nabla (k_p \nabla T_p) + Q_r \tag{1.1}
\]

\[
\frac{\partial W}{\partial t} = \nabla (D_{eff} \nabla W) \tag{1.2}
\]

Avec \(T_p \) la température [K] et \(W \) la teneur en eau [kg kg\(^{-3}\)].
\(\rho_p, C_{p,p}, k_p \) désignent respectivement la masse volumique [kg m\(^{-3}\)], la capacité calorifique à pression constante [J (kg\(^{-1}\)K\(^{-1}\)] et la conductivité thermique du produit [W m\(^{-1}\)K\(^{-1}\)].
\(D_{eff} \) un coefficient de diffusion massique effectif [m\(^2\) s\(^{-1}\)].

Dans de nombreuses situations pratiques \(k_p \) et \(D_{eff} \) sont supposés constants.

\(Q_r \) correspond à la chaleur de respiration [W m\(^{-3}\)] ; cet apport de chaleur est fonction de la température. Ce dégagement interne de chaleur est à prendre en compte dans le cas d’un refroidissement très lent ou d’un stockage à température constante. Par contre ce paramètre peut être négligé lors d’un refroidissement rapide ; la chaleur sensible est prépondérante [47].

4-1-2- Conditions aux limites

Pour l’étude d’un produit de géométrie sphérique les conditions aux limites à prendre en compte sont les suivantes :

Au centre de la sphère, en raison de la symétrie les flux de diffusion thermique et massique sont nuls:

\[
k_p \frac{\partial T_p}{\partial r} \bigg|_{r=0} = 0 \text{ et } D_{eff} \frac{\partial W}{\partial r} \bigg|_{r=0} = 0 \tag{1.3}
\]

A l’interface produit-air il existe des échanges par convection, rayonnement de grande longueur d’onde et évaporation ou condensation :

\[
-k_p \frac{\partial T_p}{\partial r} \bigg|_{r=R} = h_c (T_p - T_a) + \varepsilon \sigma (T_p^4 - T_{paroi}^4) + K_{eff} \left(a_w P_{v,sat}(T_p) - HRP_{v,sat}(T_a) \right) L_v \tag{1.4}
\]

\[
-D_{eff} \frac{\partial W}{\partial r} \bigg|_{r=R} = K_{eff} \left(a_w P_{v,sat}(T_p) - HRP_{v,sat}(T_a) \right) \tag{1.5}
\]

Avec \(h_c \) : le coefficient de transfert de chaleur par convection [W m\(^{-2}\)K\(^{-1}\)]

\(K_{eff} \) : le coefficient de transfert massique effectif [m \(^3\) s\(^{-1}\)] (\(K_{eff} = \frac{k_m M_v}{R T_{film}} \)),

\(L_v \) : la chaleur d’évaporation [J kg\(^{-1}\)],

\(a_w \) : l’activité de l’eau en surface.

La pression de vapeur à saturation est calculée par la relation (I.6).

\[
P_{v,sat}(T) = 100 \times \exp \left(2.3026 \times \left(0.7858 + \left(7.5 \times \frac{(T - 273.15)}{(T - 273.15) + 237.3} \right) \right) \right) \tag{1.6}
\]

\[
k_m = \frac{h_c}{\rho_a C_{pa} \le 2^{7/3}} \tag{1.7}
\]

Le coefficient \(k_m \) peut être approximé par la relation (I.7) lorsque le nombre de Lewis est proche de 1 :

\[
le = \frac{Sc}{Pr} \text{ avec } Sc = \frac{\mu_a}{\rho_a D_a} \text{ et } Pr = \frac{\mu_a C_{pa}}{k_a}
\]

Études expérimentales et numériques du refroidissement de produits horticole aprés récolte Hala Yassine 2015
4-1-3- Les équations de transport dans le fluide

L’écoulement et le transfert de chaleur au sein d’un fluide sont décrits par les lois de conservation de la masse (continuité), de la quantité de mouvement et de l’énergie [48].

L’équation de continuité :

\[
\frac{\partial \rho_a}{\partial t} + \frac{\partial}{\partial x_i} (\rho_a u_{a,i}) = 0
\]

(I.8)

L’équation de mouvement :

\[
\frac{\partial}{\partial t} (\rho_a u_{a,i}) + \frac{\partial}{\partial x_j} (\rho_a u_{a,j} u_{a,i}) = \frac{\partial}{\partial x_j} \left[-P_i + \mu_a \left(\frac{\partial u_{a,j}}{\partial x_j} + \frac{\partial u_{a,i}}{\partial x_i} \right) \right] + \rho_a g_i
\]

(I.9)

L’équation de l’énergie :

\[
\frac{\partial}{\partial t} (\rho_a C_{p,a} T_a) + \frac{\partial}{\partial x_j} (\rho_a u_{a,j} C_{p,a} T_a) - \frac{\partial}{\partial x_j} \left(k_a \frac{T_a}{\partial x_j} \right) = s_T
\]

(I.10)

Avec \(\rho_a \), \(C_{p,a} \), \(k_a \), \(\mu_a \) : la masse volumique, la capacité calorifique à pression constante, la conductivité thermique et la viscosité dynamique [kg.s\(^{-1}\).m\(^{-1}\)].

\(u_{a,i}, u_{a,j} \) : les composantes du vecteur vitesse du fluide [m.s\(^{-1}\)], \(p \) la pression [Pa], \(T_a \) la température.

\(s_T \) : une source thermique [W.m\(^{-3}\)] et \(I \) le tenseur unité.

4-2- Études de la littérature

De nombreux travaux concernent des études à l’échelle des produits et/ou du flux d’air. Les objectifs sont par le biais d’expérimentations et/ou de modélisations numériques de prédire les cinétiques de refroidissement dans différentes configurations. Généralement, les produits sont supposés homogènes.

Modélisation simplifiée

On trouve également différents travaux de Alvarez [20][6][49] qui s’est intéressé au refroidissement d’un ensemble de sphères de diamètre 75 mm en gel-PVC polychlorure de vinyle disposées dans des bacs (Figure I.7). Il a ainsi réalisé des études expérimentales et numériques sur la thermique et l’aérulique en exploitant des modèles aux différences finies et des corrélations de la littérature. Ces études ont montré l’hétérogénéité du refroidissement des produits. A partir de ce modèle, il a également évalué une méthode de contrôle-commande d’une installation afin de minimiser la consommation d’énergie. L’idée était d’ajuster la consigne de la température de l’air de refroidissement afin de réduire le temps de traitement. Une modélisation plus détaillée a ensuite été mise en œuvre afin de prédire l’écoulement turbulent bidimensionnel, et le coefficient de transfert de chaleur local [50]. Ce modèle traite les produits comme un milieu macro poreux.

![Figure I.7 : Configuration étudiée par Alvarez [20].](image)

Amos [47] et Tanner [51][52] ont développé des modèles simplifiés en considérant différentes zones au sein d’un container et en fixant le sens des écoulements d’air. Amos a travaillé sur le refroidissement de pommes à l’échelle d’un carton et d’une chambre froide. Le modèle a été validé expérimentalement. Tanner a développé un modèle plus généraliste pouvant
s’appliquer à une large gamme de produits et d'emballage. Le modèle prédit la vitesse de refroidissement, la perte de masse et l'humidité relative locale dans l’emballage. Les valeurs simulées de température ont été comparés à des données expérimentales (emballages de pommes et de tomates) [53].

Modélisation avancée

Avec le développement des logiciels de simulation on trouve des études plus récentes qui exploitent les méthodes de type « CFD ».

Martins et al [54] ont étudié l’évolution de la température dans deux pommes disposées l’une après l’autre dans un tunnel en utilisant un modèle adimensionnel 2D. L'air est considéré incompressible. Des simulations sont comparées à des données disponibles dans la littérature pour des sphères. Les simulations montrent que la chaleur perdue par la première pomme conduit à retarder le refroidissement de la pomme suivante.

Dehghannya et al [55][56] ont réalisé des analyses aérodynamiques et thermiques du refroidissement par convection forcée de sphères en polymère empilées selon trois configurations. Ils ont montré l’intérêt d’augmenter les sections de passage afin d’obtenir une distribution plus uniforme du flux d’air. Le modèle a été validé en effectuant des mesures de température au centre de 4 produits positionnés à l’intérieur de trois bacs différents ventilés.

Tutar et al [57] ont utilisé un empilement régulier de sphères pour étudier l'effet de la position du produit et de la ventilation du conteneur sur le flux d'air et la distribution de la température à l'intérieur de ce conteneur. L'étude a montré que l'influence de l'augmentation de la zone d'ouverture devient insignifiante au dessus d’un certain seuil.

Delete et al [58] ont élaboré un modèle CFD. Dans ces travaux une technique numérique spécifique est utilisée pour générer un empilement aléatoire de sphères (Figure I.9-b), et le modèle CFD est appliqué pour étudier l'écoulement d'air à travers un conteneur chargé ventilé. Les résultats présentés portent sur l’incidence de différents paramètres : le taux de confinement, la direction des écoulements, le modèle d'empilement, la taille du produit, la porosité, et le caractère aléatoire du remplissage. Les résultats montrent que la distribution des écoulements est non homogène et que la résistance à l'écoulement est peu affectée par le remplissage aléatoire.

Xu et Burfoot [46] ont présenté un modèle transitoire en 3D pour les transferts de chaleur et de masse en assimilant des pommes de terre en vrac à un milieu poreux. Ce modèle a été évalué en exploitant des résultats expérimentaux.

Ferrua et Singh [13] ont développé un modèle 3D pour étudier le refroidissement de fraises par air forcé. Il s’agissait de prédire le comportement du flux d'air local et le transport d'énergie dans un emballage individuel de fraises (Figure I.9-b). Les résultats de ce modèle ont montré que l’hétérogénéité du processus de refroidissement est largement influencée par la structure et la conception de l'emballage. La distribution du flux d'air a été validée en utilisant la technique PIV (Particule Image Velocimetry) [59].

Zou et autres [21][60] ont développé un modèle CFD pour prévoir le flux d'air et le transfert de chaleur pour un conditionnement en vrac ainsi que pour un conditionnement en couches de pommes au cours d’un refroidissement par air forcé. Les résultats de simulation pour ces deux

30
conditionnements ont été validés en comparaison avec des données expérimentales issues de la littérature.

Nachor et al [12] ont établi un modèle simplifié basé sur les équations RANS (Reynolds averaged Navier Stokes) pour prévoir le flux d'air turbulent et pour prédire la température ainsi que la perte de poids de poires dans une chambre froide. Le modèle k-ε a été utilisé pour modéliser le flux turbulent.

Hoang et al [61] ont développés deux approches par CFD, l’une considérant un milieu poreux et l’autre des blocs solides pour la simulation du refroidissement de quatre palettes de pommes dans une chambre froide (Figure I.9-c). Les résultats des deux approches montrent un bon accord par rapport à des résultats expérimentaux issus de la littérature [62].

![Figure I.9](image)

Figure I.9 : (a) Empilement aléatoire de sphères, Delete [58], (b) emballage de fraises, Ferrua [13], (c) palette de pommes, Hoang [61]

5- Conclusion

Ce premier chapitre a permis de faire un état de l’art sur le refroidissement positif de produits frais (légumes et fruits). Le refroidissement par air est très largement répandu, les plages conseillées pour la température et l’humidité relative se situent respectivement entre 0 et 12°C et 85-95%, selon la sensibilité du produit au refroidissement.

Ainsi, du fait de la complexité des installations, on constate au fil des années le recours à des expériences et l’exploitation croissante de la simulation numérique afin d’appréhender de plus en plus finement les phénomènes thermiques et aérauliques mis en jeu.
CHAPITRE 2: Étude expérimentale du refroidissement d'un chou-fleur

1- Introduction

Le chou-fleur est une plante herbacée bisannuelle qui se reproduit par graines et qui produit une boule blanche tendre et compacte. Ce produit est un légume de la famille des Brassicacées cultivé dans de nombreux pays. Une superficie d’environ 1.2 million d'hectares est dédiée à cette production dans le monde (21 millions de tonnes par an) [63]. Actuellement, plus de 100 variétés avec différentes caractéristiques agronomiques sont cultivées. Les vitesses de développement dépendent de la variété (entre 80 et 240 jours) ainsi que les tailles de l'inflorescence. Ce légume est majoritairement cultivé dans des climats tempérés. Une grande partie de la production étant exportée, ce produit doit être refroidi avant son transport. Dans la référence [64], les conditions de stockage du chou-fleur à des températures comprises entre 2°C et 12°C ont été étudiées durant trois semaines. Aucun changement significatif pour la teneur en eau et la teneur en matières sèches solubles n’ont été observés. Par contre, la teneur en acide ascorbique a été réduite de manière significative à 12°C. De plus, une infection fongique a été observée à la surface des produits pendant la 3ème semaine de stockage à 12°C. D’autres études traitent de l’influence de la température et de la nature de l'atmosphère (3% O2, 5% CO2) sur la couleur, la texture, la perte de poids et sur la qualité nutritionnelle du chou-fleur [65][66][67]. Selon la durée de conservation, les conditions de stockage optimales pour la commercialisation de ce produit frais sont comprises entre 0°C à 7°C, et entre 85 à 95% [5].

Bien que très largement cultivé, aucune étude sur les cinétiques de refroidissement du chou-fleur n’est recensée dans la littérature. On peut trouver des travaux portant sur le brocoli, qui appartiennent à la même famille herbacée (Brassica oleracea) [17][68][69]. Ils donnent quelques informations sur les propriétés thermo physiques (conductivité, capacité thermique) et hydrique (coefficient de diffusion) de ce type de végétaux. En revanche, on trouve certaines études qui traitent de la phase de séchage du chou-fleur avec des valeurs du coefficient de diffusion massique à 60°C [70] et des isothermes de désorption à 25, 35 et 45°C [71][72][73]. La première partie de ce chapitre est dédiée à la détermination de propriétés macroscopiques nécessaires à la simulation numérique des transferts de chaleur. Dans une seconde partie, le banc expérimental mis en place durant la thèse pour mesurer la cinétique de refroidissement d’un produit placé dans une veine d’air est décrit. La métrologie associée (capteurs de température, d'humidité, de vitesse et dispositif de pesée) permet un suivi continu de la cinétique. Dans une dernière partie, différents essais sont présentés et comparés afin de vérifier la reproductibilité des mesures et d’identifier les paramètres impactant les cinétiques de refroidissement.
2- Caractérisation du produit

Le chou-fleur se compose d’une masse compacte au centre et de structures partiellement développées constituées de fleurs et de tiges [74][75]. Lors de la récolte la masse d’un chou-fleur peut varier de 600 g à plus de 2000 g. Dans le cadre de ces travaux ce produit est assimilé à une sphère constituée de fleurs en périphérie extérieure, de tiges liant les fleurs à la partie centrale appelée base et des vides contenant de l’air (Figure II.1).

Figure II.1 : Coupe d’un chou-fleur.

2-1- Teneur en eau

La mesure de teneur en eau initiale du chou-fleur a été effectuée en utilisant une méthode de l’AOAC (Association of Official Analytical Chemists) [76][70]. Cette méthode consiste à sécher dans une étuve sous vide à 70°C des échantillons de produits et à mesurer la perte de masse. L’équilibre hydrique est considéré atteint lorsque la masse n’évolue plus entre trois mesures successives. Une balance de précision 1 mg a été utilisée.

La Figure II.2 présente les pertes de masse observées. Trois échantillons ont été prélevés au niveau des fleurs, des tiges et de la base sur deux choux-fleurs récoltés à une période différente (octobre et novembre). L’équilibre massique est obtenue au bout d’environ 25 heures. Le Tableau II.1 donne un récapitulatif des mesures réalisées ainsi que les valeurs de la teneur en eau initiale en base sèche calculée par la relation :

\[W_{init} = \frac{m_t - m_x}{m_x} \]

(II.1)

On observe que la teneur en eau initiale est de l’ordre de 92% avec des écarts faibles entre les différents prélèvements. Des mesures similaires ont abouti à des valeurs de teneur eau un peu plus faibles pour les feuilles : 7.83 \(g_{eau\ g_{produitsec}^{-1}} \) soit 88% d’eau.
Figure II.2 : Évolutions de la perte de masse à 70°C pour des échantillons du chou-fleur récolte au mois d’octobre.

Tableau II.1 : Valeurs de la teneur en eau initiale

<table>
<thead>
<tr>
<th>Echantillons</th>
<th>Mesure Octobre</th>
<th>Mesure Novembre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
<td>Tige</td>
</tr>
<tr>
<td>m_{totale} (g)</td>
<td>3.17</td>
<td>5.61</td>
</tr>
<tr>
<td>m_{sec} (g)</td>
<td>0.24</td>
<td>0.39</td>
</tr>
<tr>
<td>W_{init} ($\frac{g_{eau} \cdot g_{produit/sec}}{-1}$)</td>
<td>12.38</td>
<td>13.29</td>
</tr>
<tr>
<td>W_{init} moyennes</td>
<td>base</td>
<td>Tige</td>
</tr>
</tbody>
</table>

Des mesures complémentaires ont été réalisées afin de connaître l’évolution de la teneur en eau durant une phase de refroidissement de petits échantillons. Les évolutions des teneurs en eau obtenues à deux températures d’air différentes 15°C et 5°C et une même humidité relative fixée à 95% sont reportées sur la Figure II.4. Ces mesures ont été réalisées durant deux jours consécutifs avec des relevés de masse bi-journaliers à l’aide d’une balance de précision de 0.1 mg. On constate que l’équilibre hydrique n’est pas atteint pour l’ensemble des échantillons et que la teneur en eau reste élevée, supérieure à 10 kg kg$^{-1}$ au bout de 10 heures. Par ailleurs, il est à noter qu’au-delà de deux jours, une dégradation du produit liée à la perte en eau, à l’activité microbienne et enzymatique a été observée en particulier à 15°C. Le produit alors altéré n’est plus représentatif du produit initial.
Figure II.3 : Photo d’échantillons lors des mesures de l’évolution de la teneur en eau

Figure II.4 : Evolutions de la teneur en eau des échantillons (a) HR=95%, T=5°C (b) HR=95%, T=15°C.

2-2- Propriétés thermo physiques

2-2-1- Masse volumique

La masse volumique apparente est déterminée à partir de la masse \(m_t \) et du volume apparent. Le volume apparent a été mesuré en plaçant le produit recouvert d’un film plastique dans un récipient de volume connu et en complétant le volume restant avec de l’eau :

\[
\rho_{ap} = \frac{m_t}{V_t} \tag{II.2}
\]
La masse volumique intrinsèque a été mesurée par une méthode pycnométrique en utilisant de l’éthanol. Après avoir réduit en poudre des échantillons de produit sec, une certaine quantité de produit est introduite dans le pycnomètre qui est alors rempli avec de l’éthanol puis pesée. La masse volumique de la matière solide est alors obtenue par la relation :

$$\rho_{ls} = \frac{m_1}{m_1 + m_2 - m_3}$$

(II.3)

avec m_1 : masse sèche
m_2 : masse du pycnomètre + éthanol
m_3 : masse du pycnomètre + éthanol + échantillon produit sec
Trois mesures ont été effectuées pour plusieurs échantillons (base, tiges et fleurs) prélevés sur deux choux-fleurs. Les moyennes des valeurs obtenues sont reportées dans le Tableau II.2. On constate de faibles écarts, la valeur moyenne est de 1296 kg m$^{-3}$.

Tableau II.2 : Masse volumique intrinsèque du chou-fleur

<table>
<thead>
<tr>
<th>Échantillons</th>
<th>Fleur 1</th>
<th>Fleur 2</th>
<th>Tige 1</th>
<th>Tige 2</th>
<th>Tige 3</th>
<th>Base 1</th>
<th>Base 2</th>
<th>Base 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{ls} (kg m$^{-3}$)</td>
<td>1332</td>
<td>1281</td>
<td>1409</td>
<td>1288</td>
<td>1330</td>
<td>1254</td>
<td>1273</td>
<td>1201</td>
</tr>
<tr>
<td>ρ_{ls} moyenne</td>
<td>1306</td>
<td>1342</td>
<td>1243</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A partir de ces mesures de masse volumique intrinsèque sèche ρ_{ls} et de la teneur en eau initiale W_{init}, les masses volumiques intrinsèques humides ρ_{ih} des échantillons sont calculées en utilisant l'expression suivante [77]

$$\rho_{ih} = \frac{\rho_{ls}(1 + W_{init})}{1 + \frac{\rho_{ls}}{\rho_{eau}} W_{init}}$$

(II.4)

A partir des valeurs de la masse volumique apparente et intrinsèque humide le volume d’air total équivalent (Figure II.1) peut être évalué par la relation suivante :

$$\epsilon = 1 - \frac{\rho_{ap}}{\rho_{ih}}$$

(II.5)

Pour les deux choux-fleurs étudiés les résultats suivants ont été obtenus : masse volumique apparente de 745 kg m$^{-3}$, masse volumique intrinsèque humide de 1018 kg m$^{-3}$, et fraction d’air d’environ 0.27.

2-2-2- Chaleur massique

La mesure de la chaleur massique à pression constante a été réalisée par un microcalorimètre (micro DSCIII Setaram). Les échantillons sont soumis à une montée et une descente en température de 0.2 Km$^{-1}$ sur la plage [2°C, 32°C] après un palier de 5 min. Les mesures ont été réalisées sur des échantillons de produit frais et sec (passage dans l’enceinte à vide à 70°C).

Un récapitulatif des masses des échantillons est donné dans le Tableau II.3. Les valeurs des teneurs en eau initiales sont $W_{init} = 13.71 \text{ g g}^{-1}$ pour les tiges, $W_{init} = 11.9 \text{ g g}^{-1}$ pour les fleurs. Un blanc (sans l’échantillon) a également été réalisé selon le même protocole. Deux cycles « montée et descente » ont été réalisées pour chaque échantillon.

Tableau II.3 : Masse des échantillons

<table>
<thead>
<tr>
<th></th>
<th>Tige humide</th>
<th>Fleur humide</th>
<th>Tige sèche</th>
<th>Fleur sèche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse moyenne (mg)</td>
<td>610</td>
<td>408</td>
<td>280</td>
<td>235</td>
</tr>
</tbody>
</table>
Afin de s’assurer de la cohérence des mesures un calcul de la chaleur massique des échantillons frais $C_{p,f}$ est effectué par la relation (II.6) en utilisant les valeurs mesurées de la capacité calorifique du produit sec $C_{p,s}$ et de la teneur en eau initiale W_{init} :

$$C_{p,f} = \frac{C_{p,s} + W_{init} C_{p,eau}}{1 + W_{init}}$$

(II.6)

La Figure II.5 montre les évolutions des chaleurs massiques mesurées pour les échantillons frais et secs en fonction de la température. Sur ce graphe sont également reportées les valeurs calculées selon l’équation (II-6). On remarque que les chaleurs massiques des échantillons secs présentent une légère dépendance avec la température. Leurs valeurs varient de façon similaire de 1200 J kg$^{-1}$K$^{-1}$ à 2°C à 1600 J kg$^{-1}$K$^{-1}$ à 32°C. Pour les échantillons frais on aboutit, comme on pouvait s’y attendre, à des chaleurs massiques beaucoup plus élevées proches de celle de l’eau, environ 4100 J kg$^{-1}$K$^{-1}$. Les chaleurs massiques des échantillons frais calculées avec l’équation (II-6) sont en accord avec les résultats expérimentaux. L’erreur relative est inférieure à 3%.

Figure II.5 : Valeurs des chaleurs massiques mesurées en fonction de la température et la comparaison avec la loi de mélange.

2-2-3- Conductivité thermique

Des mesures de la conductivité thermique ont été effectuées par la méthode du fil chaud qui est souvent utilisée pour des produits alimentaires [78][79]. Le dispositif utilisé est similaire à la description donnée dans la référence [80]. La sonde de diamètre 1.1 mm et de longueur 45 mm est piquée dans le chou-fleur. La sonde initialement à la température du produit est soumise à un échelon de puissance ce qui induit une augmentation de sa température fonction des propriétés thermo-physiques du milieu.

La conductivité thermique est alors déterminée à partir de la vitesse de montée en température du fil chauffant et de la puissance volumique dissipée [81][82] :

$$k_p = \frac{U I}{4\pi m_1 L_{chaud}}$$

(II.7)

Où U est la tension aux bornes du fil chaud, I : l’intensité, L_{chaud} : la longueur du fil et m_1 la pente de la courbe de l’évolution de la température en fonction du logarithme de temps.
Une attention particulière a été portée à la position de la sonde afin d’assurer un bon contact avec la matière. Plusieurs tests ont été effectués pour une plage de température comprise entre 19°C et 7.5°C. Pour chaque température, quatre mesures ont été réalisées dans différentes parties des produits (base, tige). L’incertitude de mesure est définie selon loi de Student. Les résultats sont présentés dans Tableau II.4.

Tableau II.4 : Conductivité thermique du chou-fleur mesurée à trois températures

<table>
<thead>
<tr>
<th>Température (°C)</th>
<th>Conductivité thermique (Wm⁻¹K⁻¹)</th>
<th>Incertitude (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0.91</td>
<td>10.5</td>
</tr>
<tr>
<td>10.5</td>
<td>0.83</td>
<td>14</td>
</tr>
<tr>
<td>7.5</td>
<td>0.8</td>
<td>7.6</td>
</tr>
</tbody>
</table>

3- Banc de mesure des cinétiques de refroidissement

Un banc de mesure a été développé au sein du laboratoire afin de suivre les évolutions des températures et de la perte de masse d’un chou-fleur placé dans un flux d’air contrôlé en termes de vitesse, de température et d’humidité.

3-1- Descriptif du banc

Il s’agit d’une veine d’air instrumentée associée à une centrale de traitement de l’air (Figure II.6). Les dimensions intérieures de la veine sont une longueur de 2 m et une section de passage de 0.385 m par 0.31 m. La liaison entre la centrale et la veine d’air est assurée par le biais d’une conduite cylindrique de diamètre intérieur : 0.14 m. La centrale permet de générer de l’air à une température proche de 0°C et à une humidité relative contrôlée. Le thermo-hygromètre pour la régulation est placé à l’entrée de la veine d’air.

Afin de limiter les échanges thermiques entre l’intérieur de la veine d’air et son environnement extérieur, où la température n’est pas contrôlée, les parois sont constituées d’un isolant en polystyrène extrudé de 50 mm ; soit une conductance thermique globale des parois de 1 W K⁻¹. Pour la mise en place du produit instrumenté dans la veine d’air, une partie de la face supérieure est constituée d’une plaque plane amovible.

On a défini un système de coordonnées cartésiennes dont l’origine en x se situe à proximité de l’entrée (Figure II.6). Le produit à refroidir est placé à une distance de 1.1 m de cette origine.

3-2- Instrumentation

Instrumentation de la veine d’air

L’objectif est d’établir le profil des vitesses et des températures à différentes positions dans la veine pour fournir des bases de données nécessaires à la validation du modèle qui sera développé. Pour cela, une mesure continue des conditions aérothermiques à l’entrée et à la sortie de la veine est réalisée : la vitesse de l’air est mesurée à l’aide d’un anémomètre à fil chaud omnidirectionnel tandis que les températures humide et sèche de l’air sont mesurées par des thermocouples type-K insérés dans un petit cylindre de cuivre. Pour la température
humide, la sonde est recouverte d’une mèche en coton, imprégnée en continu d’eau distillée.
Ces dernières mesures permettent de déterminer l’humidité relative.
Lors d’essais préliminaires, plusieurs thermocouples de type K ont été positionnés devant le produit afin de mesurer la température de l’air dans la veine à différentes abscisses et ordonnées d’une section transversale (x=0.6 m). De plus, des mesures indépendantes de la vitesse de l’air ont été effectuées à différents points spécifiés sur la Figure II.6-b dans la veine d’air avec ou sans produit.
En parallèle, des thermocouples ont également été implantés en différents points sur la surface intérieure des parois de la veine d’air.

Instrumentation du produit

Les températures au sein du produit sont mesurées en trois positions par l’intermédiaire de thermocouples de type K gainé inox de diamètre 1mm. Ils sont placés respectivement, au centre du produit et à R/3 et 2R/3 depuis le centre du produit après un perçage préalable (Figure II.7). Les températures de surface ont été mesurées en trois positions (avant-arrière-latérale) avec des micros thermocouples fabriqués dans le laboratoire.
L’ensemble des thermocouples utilisés sont au préalable calibrés pendant un test spécifique effectué entre zéro et trente degrés Celsius grâce à une sonde de platine précision. Cet étalementage a été réalisé avec la centrale d’acquisition de données dédiée à l’expérience. Dans cette gamme de température, l’erreur observé sur la température mesurée ne dépasse pas 0.2°C.
Les humidités relatives sont déterminées par une méthode psychométrique, par conséquent l’incertitude de ces valeurs est directement liée à la précision de la mesure de température. Compté tenu de la précision de la mesure de température (ΔT=0.2K), la précision de l’humidité relative est d’environ ±5% pour la gamme 85% et 95%.
La masse du produit est suivie en continu par une balance Sartorius de précision 0.1 g disposée sous la veine de refroidissement. En complément, une mesure de la masse du produit sans capteurs est réalisée avant et à la fin de chaque essai à l’aide d’une balance indépendante de précision 0.01 g.

Centrale d’acquisition

Les capteurs de température et de vitesse d’air sont reliés à une centrale d’acquisition Agilent 34970A dotée d’une carte de 20 voies, reliée à un PC, qui effectue la conversion analogique-numérique des signaux. La balance est, elle, liée à l’ordinateur via une liaison série RS232. Un programme NI-Labview© pilote l’ensemble et réalise la sauvegarde des données.
Figure II.6: Schéma de la veine d’air et implantation des capteurs, (a) vue de côté, (b) vue de dessus.

Figure II.7 : Positions de thermocouples dans et à la surface du produit.
4- Séquences de mesures

4-1- Études aérauliques

4-1-1- Essai à vide

Des études préliminaires ont été réalisées sans produit afin de connaître les profils de vitesse et de température d’air. Les températures d’air mesurées sont présentées sur la Figure II.8. Lors de cette séquence de mesure les consignes pour la température et l’humidité de l’air en entrée étaient fixées respectivement à 2°C et 90%. Après la phase transitoire de mise en régime on observe que la température de l’air en entrée se stabilise entre 1.5 et 2°C et l’humidité relative à une valeur moyenne 85.8%. Lors de cet essai, la température de l’air en sortie est très proche de celle de l’entrée (Figure II.8-a) ce qui montre le peu de pertes thermiques dans ces conditions expérimentales.

Pour les températures d’air mesurées sur une section droite en amont de la position prévue du produit à l’abscisse x=0.6 m (Ta-b, Ta-h, Ta-c, et Ta-g, Figure II.6) on note que les valeurs relevées sont très similaires et les différences ne dépassent pas 0.2°C comme le montre la Figure II.8-b. Dans ces conditions, l’hypothèse d’homogénéité des températures est validée.

La différence d’amplitude relevée entre les températures à l’entrée et à la sortie d’une part, et les températures dans la section droite d’autre part est liée à l’inertie apportée par le cylindre de cuivre dans lequel les sondes de températures en entrée (Ta-e) et sortie (Ta-s) sont insérées.

Pour connaître les profils de vitesse de l’air, des mesures ponctuelles ont été effectuées en différents points de la veine (voir Figure II.6-b). Pour chaque position dix mesures sont réalisées avec une période d’échantillonnage de 30 secondes. A titre d’exemple, sur la Figure II.9 sont données les mesures obtenues en 2 points (x=122, y=0, z=0.065 m et 0.085 m) ainsi que les valeurs moyennes correspondantes. On observe des variations maximales de ±0.3 ms⁻¹ par rapport à la valeur moyenne.
Afin de quantifier le débit d’air, des mesures ont été réalisées selon le même protocole au niveau de la section d’entrée. Le débit volumique lors de ces essais à vide est de $0.118 \, \text{m}^3 \, \text{s}^{-1}$, ce qui donne une vitesse moyenne dans la section rectangulaire du tunnel égale à $0.99 \, \text{m} \, \text{s}^{-1}$. Cette valeur est comparée avec la valeur moyenne des vitesses mesurées à différentes positions dans la section rectangulaire ($1.05 \, \text{m} \, \text{s}^{-1}$).

Sur la Figure II.10 sont reportés les profils de vitesse ainsi obtenus pour différentes positions (x, y et z, Figure II.6). On remarque que les vitesses de l’air à proximité de l’entrée (x=0.55 m) ne sont pas homogènes sur toute la hauteur. Par contre en x=1.35 m, on peut considérer une homogénéité ($u_a=1.1\pm0.1 \, \text{m} \, \text{s}^{-1}$). Aussi, on peut constater que la valeur moyenne de la vitesse d’air sur toute la longueur x est quasi-homogène ($u_a=1.1\pm0.1 \, \text{m} \, \text{s}^{-1}$).
4-1-2- Essai avec un produit

Des mesures de vitesse d'air ont été réalisées avec un chou-fleur de dimensions (L1=13 cm, L2=17 cm, et L3=16 cm hauteur, Tableau II.7) disposé en x=1.1 m. Les consignes en entrée pour l’air sont une température de 2°C et une humidité relative de 90%.

Sur la Figure II.11 sont reportés les relevés de vitesse aux différentes positions x dans la veine en fonction de la hauteur z. Dans la section droite du chou-fleur (à x=1.1 m) la diminution de la section de passage de l’air se traduit par une augmentation de la vitesse moyenne de l’air d’environ 0.5 m·s⁻¹. Le profil reste assez semblable à celui observé en amont avec une augmentation de vitesse plus marquée au niveau du plan horizontal passant par le centre du chou-fleur ou le rétrécissement de section est maximal.

Dans le sillage du chou-fleur, la vitesse de l’air est plus faible dans la hauteur occupée par le chou-fleur qui est le principal obstacle à l'écoulement d'air. Elle tend à s’homogénéiser par la suite comme le montre la dernière figure.

![Image de profils de vitesse]

Figure II.11 : Profils de la vitesse de l’air à différentes abscisses x avec la hauteur z (avec chou-fleur).

4-2- Cinétiques de refroidissement des produits

4-2-1- Protocole

Au début des expériences, les conditions thermiques et aérauliques sont imposées à l’intérieur de la veine de l’air et la centrale d’acquisition est mise en fonctionnement. Lorsque l’état stationnaire est atteint, le chou-fleur instrumenté est positionné sur le système de pesée à l’intérieur de la veine. L’expérience est poursuivie jusqu’à ce que la température au centre du produit atteigne la température de l’air. À la fin de chaque expérience, le chou-fleur est pesé et est ensuite coupé afin de visualiser la position des thermocouples au sein du produit.
Plusieurs expériences ont été effectuées pour vérifier la répétitivité de la procédure et appréhender l'influence de la température initiale et des caractéristiques géométriques du produit (masse, surface d'échange).

Avant d'être instrumenté et placé dans la veine d'air, le produit est pesé et une estimation de son volume apparent est réalisée selon la procédure décrite dans le paragraphe 2-2-1. La surface extérieure est également estimée en mesurant la surface de film nécessaire pour le recouvrir. Ces deux méthodes de mesure restent approximatives comme l'indique le Tableau II.5 compte tenu des irrégularités de la surface extérieure.

Tableau II.5 : Récapitulatif des incertitudes

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Masse</th>
<th>Surface</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incertitude de mesure</td>
<td>0.5%</td>
<td>±20%</td>
<td>±5%</td>
</tr>
</tbody>
</table>

Dans le Tableau II.6 sont regroupées les conditions expérimentales ainsi que les mesures du volume apparent et de la surface pour quatre choux-fleurs dont les cinétiques de refroidissement sont présentées et exploitées dans le mémoire.

En parallèle, un relevé des dimensions L1, L2, L3 est donné dans le Tableau II.7. La moyenne de ces trois relevés est exploitée pour approximer le volume de chaque produit en retenant l'hypothèse d'une géométrie sphérique.

La comparaison des valeurs du volume moyen estimé dans le Tableau II.7 avec les valeurs du volume mesuré directement dans le Tableau II.6 montre qu’on aboutit à des écarts acceptables.

Tableau II.6 : Récapitulatif des conditions d’essais de refroidissement et des caractéristiques des choux-fleurs

<table>
<thead>
<tr>
<th>Numéro d’essai</th>
<th>T_a (°C)</th>
<th>HR (%)</th>
<th>$T_{p, init}$ (°C)</th>
<th>m_{init} (g)</th>
<th>Surface mesurée (m²)</th>
<th>Volume mesuré (dm³)</th>
<th>ρ_{ap} (kg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>90</td>
<td>12</td>
<td>1265</td>
<td>0.11</td>
<td>1.7</td>
<td>753</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>90</td>
<td>13.5</td>
<td>1338</td>
<td>0.13</td>
<td>2.2</td>
<td>597</td>
</tr>
<tr>
<td>3</td>
<td>2.1</td>
<td>90</td>
<td>22.5</td>
<td>1631</td>
<td>0.17</td>
<td>2.6</td>
<td>630</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>90</td>
<td>24</td>
<td>1862</td>
<td>0.17</td>
<td>2.6</td>
<td>722</td>
</tr>
</tbody>
</table>

Tableau II.7 : Dimensions mesurées sur les quatre produits

<table>
<thead>
<tr>
<th>N°d’essai</th>
<th>L1 (cm)</th>
<th>L2 (cm)</th>
<th>L3 (cm)</th>
<th>Rayon moyen (cm)</th>
<th>Volume moyen (dm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>17</td>
<td>16</td>
<td>7.6</td>
<td>1.9</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>8.2</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>18</td>
<td>20</td>
<td>8.7</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>19</td>
<td>21</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Dans le Tableau II.8 sont reportées les masses volumiques apparentes de ces produits qui varient entre 600 kg m⁻³ et 750 kg m⁻³ soi des fractions d'air comprises entre 0.26 et 0.41 comme le montre le Tableau II.8.

Tableau II.8 : Masses volumiques apparentes et fractions de vide

<table>
<thead>
<tr>
<th>Chou-fleur</th>
<th>Masse (g)</th>
<th>Volume (dm³)</th>
<th>ρ_{ap} (kg m⁻³)</th>
<th>Fraction d’air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs moyennes</td>
<td>1500</td>
<td>2</td>
<td>600÷750</td>
<td>0.26÷0.41</td>
</tr>
</tbody>
</table>
4-2-2- Descriptif d'un essai type

Il s'agit de l'essai N° 2 qui correspond à un chou-fleur de masse 1338.5 g pour une surface apparente d'environ 0.13 m² et un volume de 2.2 dm³ (Tableau II.6). La température initiale du produit est homogène et égale à 13.5°C.

La Figure II.12 donne les conditions aérauliques enregistrées au cours de la période de refroidissement. Dans cet essai, l'air est soufflé à l'entrée de la veine d'air à 1.8°C et 90% HR avec un débit moyen de 0.089 m³.s⁻¹. La température de l'air en sortie est très proche de la valeur en entrée ce qui signifie que les flux de chaleur sensible et latent échangés entre le produit et l'air de refroidissement sont faibles et que le transfert de chaleur à travers les parois est négligeable.

En amont du chou-fleur (Figure II.12 à x=0.55 cm), la vitesse moyenne de l'air reste quasi constante et égale à 0.53 m.s⁻¹. La vitesse diminue jusqu'à 0.35 m.s⁻¹ juste derrière le produit. Cette valeur est globalement constante pendant la durée de l'essai.

En ce qui concerne l'humidité relative de l'air les valeurs mesurées à l'entrée et à la sortie sont comprises entre 85 et 95%, alors que la différence entre eux reste inférieure à 1%. Par conséquent, compte tenu de la précision de ces mesures, aucune variation sensible de l'humidité relative peut être prise en compte, même si une perte de masse presque constante (≈5*10⁻⁶ kg s⁻¹ m⁻²), causées par l'évaporation de l'eau à la surface du produit est observée pendant toute la durée de l'expérience (Figure II.15). Ce taux de transfert de masse n'a pas d'influence sur l'humidité relative de l'air.

L'évolution de la température à la surface et au sein du produit est tracée sur la Figure II.13. Dans cet essai, environ 6.5 heures sont nécessaires pour refroidir le chou-fleur tandis que la surface du produit atteint le point de consigne après 3.5 heures. Les températures de surface en position avant et latérale suivent la même tendance, alors que celle du côté arrière se
refroidit légèrement plus lentement. Cela est dû à la diminution de la vitesse de l'air dans la trainée du produit.

Les évolutions des températures au centre et à une distance R/3 du centre sont très proches et diminuent lentement contrairement à la température à la distance 2R/3 du centre. Pour les deux premiers points de mesure (centre et R/3 du centre), les thermocouples sont insérés au cœur de la tige, où le chou-fleur est dense et dépourvu d’espaces emmagasinant de l’air, où les propriétés thermiques sont proches de celles de l’eau. Le dernier point de mesure situé à 2R/3 du centre est positionné dans la partie hétérogène qui inclut une proportion importante d’air (Figure II.14). La conductivité thermique étant inférieure dans ce domaine, cela induit une augmentation des gradients thermiques.

La Figure II.15 montre l’évolution de la perte de masse relevée par la balance positionnée sous la veine. La diminution de la masse du chou-fleur est liée à l’évaporation de l’eau à la surface du produit. Dans ces conditions expérimentales, le produit a perdu 16 g. Cette valeur est confirmée par les pesées effectuées sur le produit sans les capteurs de température.

Figure II.13 : Evolution de la température à différentes positions dans le chou-fleur et à la surface (essai N° 2).

Figure II.14 : Coupe d’un chou-fleur et position des thermocouples au centre, R/3 et 2R/3 du centre (diamètre des thermocouples=1mm).
4-2-3- Comparaison des cinétiques

Quatre essais dont les conditions expérimentales sont données dans le Tableau II.6 sont étudiés. Les deux premiers concernent des choux-fleurs d’une masse approximative de 1.3 kg et dont la température initiale est de 12 à 13°C. Les deux derniers portent sur des produits plus massifs (1.6 à 1.9 kg) dont les températures pré-expérimentales dépassent les 20°C. Les consignes en température et hygrométrie de l’air en entrée sont respectivement de 2°C et 90%. Une comparaison entre les cinétiques de refroidissement de ces essais est réalisée par l’intermédiaire de courbes adimensionnées de la température $(\frac{T(t) - T_f}{T_{max} - T_f})$.

En ce qui concerne les deux premiers choux-fleurs, issus de récoltes effectuées à la même saison, les évolutions sont très proches (Figure II.16) malgré une masse volumique apparente sensiblement différente, de 750 kg/m3 pour le premier et de 600 kg/m3 pour le second (Tableau II.6). Au bout d’environ 6 h 30 une température homogène du produit à la consigne imposée est atteinte. Seules les températures latérales diffèrent légèrement, ce qui peut être imputé aux imprécisions de positionnement des capteurs.

Les évolutions de masse adimensionnées de ces deux choux-fleurs (Figure II.17) sont elles aussi comparables. Les pertes relatives de masse sont respectivement de 0.8% pour le premier essai et de 0.7% pour le second. Ces pertes contenues ne s’accompagnent pas d’une altération visible de l’aspect des choux-fleurs. Ces deux essais montrent la bonne reproductibilité des expériences.

Les expériences N°3 et N°4 ont été menées afin de montrer l’influence de la température de récolte (température initiale) et de la masse du produit. Les durées de refroidissement sont comprises entre 12 h et 14 h selon la température initiale des produits. La perte relative de masse est de 2.5% pour le chou-fleur N°3 et de 2.7% pour le chou-fleur N°4. Cette perte d’eau plus importante est liée à une température initiale de produit plus élevée et à une durée de refroidissement nettement plus longue. Toutefois on n’a pas observé de modifications visibles de l’apparence des choux-fleurs.

Cette comparaison montre clairement que la période de refroidissement du produit dépend de la masse du produit et de sa température initiale. Par conséquent les conditions de
fonctionnement (température de l’air et vitesse) doivent être adaptées selon les saisons de récolte, d’autant que la durée de conditionnement des produits est un facteur important dans le processus de distribution.

Figure II.16 : Comparaison des températures adimensionnées expérimentales.

Figure II.17 : Comparaison des masses adimensionnées expérimentales.
5- Conclusion

La phase de caractérisation a montré l’hétérogénéité du produit et la nécessité de prendre en compte un volume d’air équivalent au sein du milieu.
L’ensemble de cette base de données est exploité dans le chapitre suivant pour développer un modèle numérique représentatif des phénomènes multi-physiques au sein de la veine d’air et du produit.
CHAPITRE 3: Simulation du refroidissement d’un produit dans la veine d’air

1- Introduction

Dans ce chapitre, les équations régissant la dynamique du fluide dans l’air et le transfert de chaleur dans l’air et dans le produit sont présentées. Un modèle 3D est développé sur le logiciel par élément finis (Comsol Multiphysics).

Dans une première étape on s’intéresse à la détermination en stationnaire des champs de vitesse dans la veine d’air à vide. Les profils de vitesse simulés sont comparés aux données de l’expérience. Les champs de température dans l’air sont ensuite résolus en régime transitoire. Les températures prédites sont alors confrontées en différents points aux mesures expérimentales.

Dans une seconde étape, on s’intéresse à une configuration où un produit est placé dans la veine d’air. Le couplage flux d’air - produit est réalisé. Les processus de transport de masse et de quantité de mouvement présents dans l’air sont résolus en état stationnaire. En parallèle un calcul en transitoire des champs de température dans l’air et dans le produit, représenté par une sphère, est mené. Les prédictions numériques sont confrontées aux mesures afin d’affiner les paramètres du modèle.

2- Développement des modèles numériques

Un chou-fleur placé dans une veine d’air est principalement refroidi par trois mécanismes : convection forcée entre le produit et le flux d’air, rayonnement grandes longueurs d’ondes entre le produit et les parois de la veine, évaporation (perte en eau du produit) (Figure III.1) [13].

De part la nature de ces mécanismes, il apparaît évident que la cinétique de refroidissement du produit est fortement conditionnée par les conditions opératoires imposées sur le flux d’air (température, humidité, vitesse et nature de l’écoulement).

Dès lors, afin de correctement représenter le refroidissement, il est nécessaire d’appréhender son interaction avec le medium environnant. Dans cette optique, la modélisation du refroidissement d’un chou-fleur placé dans une veine d’air repose sur la mise en place de modèles numériques représentant les phénomènes mis en jeu dans le produit et l’air.

Le flux d’air soufflé dans la veine entraîne des échanges de chaleur non uniformes à la surface du produit. En conséquence, une modélisation tridimensionnelle du problème est nécessaire pour appréhender la nature réelle de ces échanges. Ce modèle sera validé expérimentalement pour deux produits : une sphère synthétique aux caractéristiques homogènes et le produit d’étude, le chou-fleur. Le modèle ainsi validé servira par la suite de référence pour l’élaboration d’un modèle simplifié monodimensionnel qui s’affranchira de la prise en compte de la conservation de la quantité de mouvement.

Afin de simplifier le problème et réduire les temps de calcul, plusieurs hypothèses sont retenues. La première de ces hypothèses repose sur la forme du produit d’étude ; celui-ci est assimilé à un domaine de forme sphérique ayant une surface lisse et placé à équidistance des...
parois de la veine d’air. Dans cette configuration, deux symétries apparaissent, ce qui permet de réduire le domaine de calcul par un facteur 4 (Figure III.2). La seconde hypothèse concerne la prise en compte des échanges sous forme latente. Ceux-ci sont supposés ne pas influencer l’équilibre hydrique de l’air et ses propriétés thermo-physiques. Les résultats expérimentaux ont d’ailleurs montré que l’humidité relative de l’air ne variait pas au cours de son passage dans la veine d’air compte tenu du débit d’air important (paragraphe 4-2-2 du chapitre 2). Cette hypothèse permet de s’affranchir de la résolution de l’équation de conservation de la matière dans l’air liée aux échanges hydriques. Cependant, l’évaporation de l’eau en surface doit être prise en compte pour résoudre le problème thermique au niveau du produit, car ce phénomène participe activement à son refroidissement. La troisième hypothèse retenue repose sur la non prise en compte des forces de flottabilité qui sont négligeables au vu du débit d’air important utilisé [21]. L’air est alors considéré comme un milieu incompressible ayant des caractéristiques physiques constantes. La dernière hypothèse concerne les mises en régime du système (aéraulique et thermique). Les premières mesures ont montré que les champs de vitesses s’établissent rapidement (en quelques secondes) alors que les régimes thermiques dans le produit et l’air sont obtenus après plusieurs heures.

Les processus de transport de masse et de quantité de mouvement présents dans l’air sont considérés comme étant en état stationnaire et ces équations sont découpées des équations de transfert de chaleur qui sont traitées en régime transitoire. Les plages de vitesses d’air à l’entrée de la veine variant entre 0.5 m s\(^{-1}\) et 1 m s\(^{-1}\) conduisent à des nombres de Reynolds compris entre 12500 et 25000. Ces valeurs justifient une approche turbulente du problème de conservation de la quantité de mouvement.
2-1- Modèle thermo-aéraulique

Comme précédemment indiquée, une approche turbulente est retenue pour prédire les champs de vitesses présents dans l’air. Dans la littérature, trois axes de la simulation de la turbulence sont recensés : la simulation numérique directe (ou DNS pour Direct Numerical Simulation), la simulation des grandes échelles (ou LES pour Large Eddy Simulation) et l’approche statistique (ou RANS pour Reynolds Average Navier-stokes). Chacune de ces trois méthodes présente des avantages et des inconvénients bien différents qui ont été largement discutées dans des études que nous ne détaillons pas ici [83][84][85].

Pour cette étude, le problème a été traité en suivant une approche statistique (RANS). Il s’agit d’une méthode éprouvée permettant de limiter les besoins en ressources informatiques car elle ne nécessite pas l’usage d’un maillage très raffiné contrairement aux deux autres approches. La méthode RANS propose de résoudre les équations de conservation de la quantité de mouvement moyennées en temps. Ainsi, elle permet de rendre compte des champs moyens mais ne peut pas représenter les fluctuations aléatoires causées par la turbulence. Dans cette formulation, un terme non-linéaire lié à la turbulence apparaît, le tenseur de Reynolds. Ce terme inconnu n’est pas directement résolu mais modélisé par l’intermédiaire d’un modèle de turbulence (problème de fermeture). Dans notre approche, un modèle de turbulence dit « k-\omega standard» proposé par Wilcox [86] a été retenu. Ce modèle ajoute deux équations de transport supplémentaires qui sont l’équation de transport de l’énergie cinétique de turbulence, notée k et l’équation de transport du taux spécifique de la dissipation \omega. À proximité des parois où les effets visqueux sont prépondérants par rapport aux effets de la turbulence, le modèle de turbulence n’est pas résolu et les variables u_a, k et \omega sont alors obtenus par l’intermédiaire de lois de parois [86].

Notre démarche ainsi définie, les équations mises en jeu sont données.

Le fluide étant considéré incompressible, l’équation de continuité se résume à :

\[\nabla \cdot u_a = 0 \]

(III.1)
Dans sa forme générale, l’équation de conservation de la quantité de mouvement moyennée en temps peut s’exprimer par :

\[\rho_a (u_a, \nabla) u_a = \nabla \left[-P + (\mu_a + \mu_T) (\nabla u_a + (\nabla u_a)^T) - \frac{2}{3} \rho_a kI \right] \]

(III.2)

On notera que les termes \(\mu_T (\nabla u_a + (\nabla u_a)^T) - \frac{2}{3} \rho_a kI \) équivalent au tenseur de Reynolds selon le concept de la viscosité turbulente proposé par Boussinesq [87].

Pour l’équation de conservation de l’énergie résolue en régime instationnaire, on pose :

\[\rho_a C_{p,a} \frac{\partial T_a}{\partial t} + \rho_a C_{p,a} u_a \cdot \nabla T_a = \nabla \cdot (k_{eff} \nabla T_a) \]

(III.3)

Concernant les conditions limites de notre problème, celles-ci sont de différentes natures. À l’entrée de la veine d’air, la vitesse et la température de l’air sont imposées et considérées uniformes : en \(x = 0, \forall y, \forall z : u_a(x,y,z) = u_{a,imp}, T_a = T_{a,imp} \)

En sortie de la veine, le fluide est supposé libre, ce qui entraîne : en \(x = L, \forall y, \forall z : P(x,y,z) = P_0, -k_{eff} \nabla T_a = 0 \)

Les parois de la veine sont supposées adiabatiques, solides et non rugueuses. Les paramètres de turbulence fixés à l’entrée sont l’intensité de turbulence prise égale 0.1%, ce qui est une valeur faible mais généralement retenue pour la plupart de veines d’air à faible turbulence. L’échelle de longueur de turbulence qui est fixée à 2R/10 [88].

2-2- Modèle thermique du produit

Pour le produit, seul l’équation de conservation de l’énergie est résolue. Assimilé à une sphère, l’équation de la chaleur dans le produit s’écrit :

\[\rho_p C_{p,p} \frac{\partial T_p}{\partial t} = k_p \left(\frac{\partial^2 T_p}{\partial r^2} + \frac{2 \partial T_p}{r \partial r} + \frac{1}{r^2} \frac{\partial^2 T_p}{\partial \theta^2} + \frac{1}{r^2 \tan \theta} \frac{\partial T_p}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T_p}{\partial \phi^2} \right) \]

(III.4)

Au centre du produit, la symétrie impose une condition adiabatique :

\[\forall \theta, \forall \phi : -k_p \nabla T_p |_{r=0} = 0 \]

A l’interface air-produit, la continuité de flux thermiques et de température est supposée, ce qui se traduit par :

\[-k_p \nabla T_p |_{r=R} - F_m L_v - q_R = -k_{eff} \nabla T_a + u_a T_a \]

\[T_p |_{r=R} = T_a \]

Où \(F_m \) représente le flux masse d’eau évaporée obtenu à partir des mesures expérimentales de perte de masse. \(q_R \) est l’échange de chaleur par rayonnement infrarouge grandes longueurs d’ondes entre la surface du produit et les parois de la veine d’air :

\[q_R = \varepsilon \sigma \left(T_{paroi}^4 - T_p^4 \right) \]

Le produit est assimilé à un corps gris et les parois en regard à une surface « noire ». Le problème ainsi posé est résolu par l’intermédiaire d’une méthode numérique basée sur la méthode des éléments finis. La nature des équations traitées oblige à définir un maillage fin composé en moyenne de 3 millions d’éléments tétraédriques. Une attention particulière a été portée à proximité des parois où le maillage a été densifié.
3- Etudes préliminaires

Dans un premier temps, une étude expérimentale et numérique a été entreprise dans une configuration sans produit. On s’intéresse ici à valider uniquement le modèle thermo-aéraulique à travers l’observation des champs de vitesses et de températures d’air. Une seconde étude est menée dans une configuration où le produit placé est une balle réellement sphérique en mousse polyuréthane. Cette approche permet de valider le couplage entre le modèle thermo-aéraulique et le modèle thermique au niveau du produit en se plaçant dans une configuration géométrique réelle de symétrie.

3-1- Etude sans produit

Pour cet essai de simulation, les conditions aux limites expérimentales mesurées en entrée du tunnel sont appliquées en entrée du modèle. L’air est ainsi insufflé à une vitesse constante et homogène de 1 ms⁻¹ et à une température moyenne de 1.75°C (la température réelle imposée est présentée Figure III.4).

La Figure III.3 compare les valeurs de la vitesse mesurée expérimentalement en amont et en aval de la position prévue du produit, avec celles de simulation. On note que, pour une position en x donnée, les valeurs simulées sont constantes selon la hauteur z (sauf à proximité des parois où les effets visqueux sont prédominants dans la couche limite). En absence
d’obstacle (pas de produit), les vitesses simulées ont des valeurs homogènes selon l’axe 0x. En x=0.55 m, le profil de vitesse mesuré fait apparaître de fortes hétérogénéités de vitesses d’air selon la hauteur z qui n’est pas reproduit par la simulation. Cette différence s’explique par la condition de vitesse imposée en entrée du tunnel qui est supposée uniforme et donc non représentative de la condition réelle. Cependant, au niveau de la position prévue du produit (x=1.1 m) et en aval (x=1.35 m), on constate que les profils de vitesses mesurés sont uniformes selon la hauteur et les profils simulés sont en accord avec ceux-ci. A partir de ce constat, on vérifie que l’hypothèse formulée sur la vitesse d’entrée, au vu de la longueur du tunnel en amont du produit, n’influence pas la représentativité du modèle à proximité du produit et en aval de celui-ci. De plus, au vu des incertitudes liées aux perturbations générées par la présence de l’anémomètre omnidirectionnelle et à sa précision intrinsèque ±2%, on admet que le modèle représente de manière satisfaisante les profils de vitesse d’air dans la configuration sans produit.

![Figure III.3 : Comparaison de la vitesse de l’air avant et après où le produit sera positionné (a) avant la position du produit, (b) après la position du produit. (S) simulation, (E) expérience (sans produit).](image)

Concernant le problème thermique, les mesures de la température d’air en entrée et en sortie du tunnel montrent que celle-ci reste constante et ne subit aucune variation au cours du passage de l’air dans le tunnel (Figure III.4). Ce résultat est également confirmé par la simulation ce qui justifie les conditions adiabatiques imposées aux parois.

Concernant l’homogénéité des températures dans une section yz pour une position x donnée, la Figure III.5 montre les évolutions mesurées et simulées de la température de l’air pour deux points de section positionnée à 0.6 m de l’entrée du tunnel. Les résultats de simulations sont conformes aux données expérimentales aux erreurs de mesures près, validant ainsi le modèle thermo-aéraulique développé.
3-2- Études avec une sphère

La seconde étude préliminaire a consisté à installer une sphère en mousse polyuréthane de diamètre 16 cm dans la veine et à réaliser des essais de refroidissement dans les mêmes conditions opératoires que lors du conditionnement en température de produits horticoles frais. Bien que cette sphère possède une masse et des propriétés thermo-physiques très différentes du chou-fleur, cette étude a pour intérêt de valider le couplage des modèles thermo-aérauliques et thermiques dans le cas d’une réelle symétrie. Les conditions opératoires et les propriétés thermiques du produit sont référencées dans le Tableau III.1.

Tableau III.1 : Récapitulatif des conditions et des propriétés de la sphère en mousse

<table>
<thead>
<tr>
<th>Tint (°C)</th>
<th>T_a (°C)</th>
<th>HR (%)</th>
<th>D (cm)</th>
<th>m_{inti} (g)</th>
<th>ρ_{ap} (kgm$^{-3}$)</th>
<th>C_p (Jkg$^{-1}$K$^{-1}$)</th>
<th>k_p (Wm$^{-1}$K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.6</td>
<td>90</td>
<td>16</td>
<td>127</td>
<td>59</td>
<td>1200</td>
<td>0.07</td>
</tr>
</tbody>
</table>
3-2-1- Validation des profils de vitesse d’air

Un essai spécifique a été effectué afin de cartographier les profils de vitesse d’air selon la hauteur z pour différentes positions x avant et après la sphère et pour différentes positions selon la profondeur y. Ces mesures ponctuelles sont présentées sur la Figure III.6. Les valeurs indiquées sont issues de moyennes réalisées sur 10 mesures enregistrées avec une période d’échantillonnage de 30 secondes. Les moyennes calculées à partir des mesures locales et la hauteur de la section sont également tracées.

![Figure III.6 : Evolution de la vitesse à différentes positions dans la veine d’air en fonction de la hauteur z (avec sphère en mousse).](image)

Des mesures de vitesses en continu ont également été réalisées en amont et en aval de la sphère sur l’axe 0x passant par le centre de la sphère durant toute la durée d’un essai de refroidissement. Ces mesures sont présentées sur la Figure III.7. En amont, la vitesse moyenne de l’air est égale à 0,55 m s\(^{-1}\). Les variations autour de cette moyenne sont de l’ordre de 20\%. En aval, dans le sillage de la sphère, la vitesse diminue et vaut 0,35 m s\(^{-1}\) en moyenne avec des variations du même ordre de grandeur.

![Figure III.7 : Vitesse de l’air avant et après la sphère en mousse.](image)

Une comparaison entre la simulation et l’expérience pour la vitesse de l’air ponctuelle dans la position avant et après la sphère est présentée dans la Figure III.8. On constate que la vitesse simulée au niveau du produit est plus faible que celle mesurée et la présence du produit affecte le profil de la vitesse. On remarque que les courbes représentant
les vitesses simulées à \(x=1.22\ m\) et \(x=1.35\ m\) ne sont pas en accord total avec les données expérimentales mais les allures sont bien représentées.

Ces différences ont plusieurs causes qui peuvent concerner à la fois l'approche de la modélisation et l'expérimentation. Le domaine de calcul retenu pour développer le modèle a été réduit d'un facteur 4 grâce à des hypothèses de symétrie. Cette simplification, qui rend plus facile la résolution, induit des erreurs dans les profils simulés alors qu'il n'y a pas de symétrie parfaite dans la configuration expérimentale. Du point de vue de l'expérience, les mesures effectuées avec un anémomètre omnidirectionnel est une mesure intrusive, ce qui perturbe les lignes de courant de flux d'air. L'erreur induite est difficile à quantifier.

![Figure III.8: Comparaison de la vitesse de l'air dans la position avant et après la sphère en mousse, (a) avant la sphère, (b) au niveau de la sphère, (c) après la sphère. (S) simulation, (E) expérience.](image)

3-2-2- Validation des cinétiques de refroidissement

Afin de valider les cinétiques de refroidissement simulées, un essai a été mené avec la sphère instrumentée en thermocouples ; leur position est définie sur la Figure II.7.

La Figure III.9 montre la comparaison entre les températures de l'air simulées et mesurées en continu en amont du produit et en sortie du tunnel. Au vu des incertitudes de mesures, on constate un bon accord entre la simulation et l’expérience. Le déphasage observé entre la température simulée et mesurée avant le produit \(T_{a-c}\) est lié à la différence de précision des capteurs utilisés pour mesurer les températures : de thermocouple type-K noyés dans un petit cylindre de cuivre pour mesurer la température de l’air à l’entrée et à la sortie, et de thermocouple type-K pour mesurer la température avant le produit.
Les évolutions mesurées des températures aux différentes positions dans la sphère en mousse et en surface sont comparées avec les résultats de la simulation (Figure III.10 et Figure III.11). On observe une bonne adéquation entre les simulations et les mesures. La cinétique de refroidissement de la sphère est globalement bien représentée. Des différences d’évolutions apparaissent néanmoins, comme par exemple sur la température en 2R/3 mais ces écarts s’expliquent par la non-uniformité des températures à une profondeur donnée et les incertitudes de positionnement des capteurs selon la profondeur.

En effet, comme le montre la Figure III.12, pour une même profondeur, la température n’est pas uniforme selon les angles θ et φ. Ainsi, une erreur de 10% sur le positionnement du thermocouple inséré en 2R/3 engendre une incertitude maximale sur la température égale à ±0.5°C (t=10 min).

De même, une incertitude de 0.5 cm dans la position de thermocouples par rapport à la profondeur demandé entraîne une incertitude sur la température de ±0.6°C (t=10 min) comme visualisé sur la Figure III.13.

Figure III.9: Comparaison de l’évolution de température de l’air avant le produit et à la sortie de la veine dans le cas de sphère en mousse.

Figure III.10 : Comparaison de l’évolution de la température à la surface de sphère. (S) simulation, (E) expérience.

Figure III.11 : Comparaison de l’évolution de la température dans la sphère. (S) simulation, (E) expérience.
Pendant cette expérience la masse de la sphère reste constante au cours de temps de refroidissement.

3-2-3-Détermination du coefficient de transfert de chaleur

A partir de la simulation, il est possible d’estimer un coefficient de transfert de chaleur moyen en surface du produit. Ce coefficient est calculé en divisant la densité de flux moyenne à la surface du produit par la différence entre la température moyenne de surface du produit et la température de l’air au loin :

$$h_c = \frac{1}{S} \int \varphi_{surf} \, dS$$

$$= \frac{1}{S} \int \tau_{surf} \, dS \, \frac{\tau - T_{\infty}}{\tau}$$

(III.5)

Ce calcul appliqué aux résultats de la simulation conduit à un coefficient d’échange de chaleur quasi-constant égal à 9.8 Wm$^{-2}$K$^{-1}$ pour un rayon de sphère de 8cm.

Un calcul similaire effectué à partir de simulations réalisées avec des sphères de 7 cm et 8 cm de rayon a montré qu’une incertitude de 1cm sur le rayon de la sphère entraîne une erreur sur le calcul du coefficient d’échange de chaleur de ± 0.7 Wm$^{-2}$K$^{-1}$.
Dans la littérature, plusieurs relations sont recensées pour calculer le nombre de Nusselt autour d'une sphère dans le cas d'écoulement laminaire et turbulent [89][49][54].
La relation le plus utilisée pour calculer le nombre de Nusselt autour une sphère est la corrélation de Whitaker [54][90][89]:

\[Nu = 2 + (0.4Re^{1/2} + 0.06Re^{1/3})Pr^{0.4} \left(\frac{\mu}{\mu_w} \right)^{1/4} \]

(III.6)

Cette relation est valable pour des larges gammes de nombres de Prandtl et Reynolds :

\[0.71 \leq Pr \leq 380 \]
\[3.5 \leq Re \leq 7.6 \times 10^4 \]
\[1 \leq \frac{\mu_a}{\mu_w} \leq 3.3 \]

Avec \(Re = \frac{\rho_a u_a D}{\mu_a} \), \(Pr = \frac{\mu_a c_p a}{k_a} \)

Cette relation appliquée à notre cas d’étude conduit à un coefficient d’échange convectif de 11.5 W m\(^{-2}\)K\(^{-1}\), cette valeur est à comparer à la valeur moyenne calculée à partir de simulation (9.8 W m\(^{-2}\)K\(^{-1}\)). Dans le cas de la sphère en mousse qui possède une surface lisse, les valeurs de \(h_c \) obtenues par les deux approches (simulation et corrélation) sont relativement proches (erreur < 15%).

4- Simulation du refroidissement d'un chou-fleur

4-1- Hypothèse de modélisation du chou-fleur

En raison de la complexité de sa forme et de la présence d'un volume d'air important, la modélisation du chou-fleur est complexe. Dans notre approche, on considère un milieu de géométrie sphérique décomposé en trois domaines distincts. Le rayon externe \(R \) est choisi de façon à respecter le volume du produit. Les domaines sont définis en fonction de la morphologie interne (fleurs, tiges, volumes d'air) ce qui induit des différences significatives entre les domaines pour la conductivité et la diffusivité thermique.

Les domaines A et C, définie sur la Figure III.14 sont supposés être constitués exclusivement des matières denses (fleurs ou base), tandis que le domaine B est assimilé à un milieu poreux composée de volumes d'air et de tiges. L’équation de conservation de l’énergie (équation III.4) est ainsi écrite dans les 3 domaines où interviennent des propriétés physiques différentes selon le domaine considéré.

Des études préliminaires dans lesquelles un seul domaine équivalent était considéré ont montré que cette approche était trop rudimentaire pour prédire précisément le comportement thermique du chou-fleur. Ce point sera discuté dans le chapitre 4.
Figure III.14 : Définition des domaines de modélisation.

- Méthodologie pour définir les propriétés thermo physiques équivalentes
 Pour les domaines A et C, les propriétés thermiques (conductivité thermique, masse volumique intrinsèque humide, et capacité thermique) sont considérés les mêmes que ceux présentés en paragraphe 2-2 dans le chapitre 2. L'ensemble du volume d'air, qui est calculé à partir de la densité apparente humide et la densité intrinsèque humide, est supposé être inclus seulement dans le domaine B. En conséquence, les propriétés thermiques effectives sont définies pour ce domaine à partir d'une fraction d'air équivalente ε. La fraction d'air équivalente est calculée sur la base du volume d'air, le volume total et le volume de la zone B:

$$
\varepsilon = \left(1 - \frac{\rho_{ap}}{\rho_{ih}} \frac{V_i}{V_B}\right)
$$

La morphologie interne du chou-fleur dans cette zone B montre que la partie supérieure des tiges et des volumes d'air peut être considérés comme des couches parallèles orientées dans la direction radiale. Par conséquent, une conductivité thermique effective est évaluée en utilisant une moyenne arithmétique pondérée. Afin de respecter la conservation de l'énergie, la capacité thermique effective de la chaleur est estimée en utilisant une expression similaire:

$$
k_{CF+a} = \varepsilon k_a + (1 - \varepsilon)k_{CF}
$$

$$
\rho C_{p,CF+a} = \varepsilon \rho C_{p,a} + (1 - \varepsilon)\rho C_{p,CF}
$$

Selon cette méthodologie, la valeur retenue pour le diamètre de chaque produit ainsi que les autres grandeurs sont présentées dans le Tableau III.2.

Tableau III.2 : Les valeurs estimées de rayon, volume, masse, surface et fraction d’air

<table>
<thead>
<tr>
<th>N° essai</th>
<th>Rayon (cm)</th>
<th>Volume (dm3)</th>
<th>Surface (m2)</th>
<th>Masse (g)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mesurée</td>
<td>Calculée</td>
<td>Totale</td>
</tr>
<tr>
<td>1</td>
<td>7.4</td>
<td>1.7</td>
<td>0.11</td>
<td>0.07</td>
<td>1265</td>
</tr>
<tr>
<td>2</td>
<td>8.1</td>
<td>2.2</td>
<td>0.13</td>
<td>0.08</td>
<td>1338</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>2.6</td>
<td>0.17</td>
<td>0.09</td>
<td>1631</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
<td>2.6</td>
<td>0.17</td>
<td>0.09</td>
<td>1862</td>
</tr>
</tbody>
</table>

Etudes expérimentales et numériques du refroidissement de produits horticoles après récolte Hala Yassine 2015
4-2- Confrontation simulation-expérience

4-2-1- Profils de vitesse

Un premier test numérique est effectué afin de valider les profils de vitesse simulés. Cette validation repose sur une comparaison de valeurs simulées avec des mesures réalisées dans la veine d’air. Ces mesures ont été effectuées à différentes hauteur \(z\) pour différentes positions en amont (\(x=0.55\ m\)) ou en aval du chou-fleur (\(x=1.22\ m\) et \(x=1.35\ m\)). Le diamètre moyen de chou-fleur est 16 cm. Une vitesse uniforme de 0.6 \(\text{ms}^{-1}\) est imposée à l’entrée. Sur la Figure III.15, les profils de vitesse expérimentaux et numériques sont comparés pour certaines hauteurs \(z\) comprise entre 1.5 cm à 13.5 cm.

Les profils simulés à différentes positions \(x\) ne sont pas en accord total avec les données expérimentales. Même si les profils de vitesses sont assez bien respectés, les vitesses locales simulées sont souvent sous-estimés pour \(x=1.22\ m\) (\(\bar{u}_{a\sim} = 0.57 \text{ms}^{-1}\) et \(\bar{u}_{a\mathbf{m}es} = 0.63 \text{ms}^{-1}\)), pour \(x=0.55\ m\) (\(\bar{u}_{a\sim} = 0.63 \text{ms}^{-1}\) et \(\bar{u}_{a\mathbf{m}es} = 0.66 \text{ms}^{-1}\)) et sur-estimés pour \(x=1.35\ m\) (\(\bar{u}_{a\sim} = 0.6 \text{ms}^{-1}\) et \(\bar{u}_{a\mathbf{m}es} = 0.56 \text{ms}^{-1}\)).

Ces différences ont plusieurs causes liées à la fois à l’approche numérique et à l’expérimentation. Ces causes ont été déjà discutées lors de la validation du modèle sur une sphère synthétique.

4-2-2- Cinétiques de refroidissement

Un essai de simulation est mené selon les conditions de l’essai N°2 (Tableau II.6). Une vitesse uniforme de 0.6 \(\text{ms}^{-1}\) est imposée à l’entrée et la température de l’air est fixée aux valeurs

Figure III.15 : Comparaison des vitesses mesurées et simulées en amont et en aval du chou-fleur, (a) amont, (b) (c) aval. (S) simulation, (E) expérience.

Études expérimentales et numériques du refroidissement de produits horticoles après récolte Hala Yassine 2015
mesurées. La température initiale de chou-fleur est prise égale à 13.5°C. Les propriétés thermo physiques équivalentes dans les trois domaines du chou-fleur sont présentées dans le Tableau III.3

Tableau III.3 : Propriétés thermo physiques utilisées dans le modèle des essais 2 et 4

<table>
<thead>
<tr>
<th>N° essai</th>
<th>Domaine</th>
<th>Pourcentage de domaine</th>
<th>(\rho c_p) (kJm(^{-3})K(^{-1}))</th>
<th>(k_p) (Wm(^{-1})K(^{-1}))</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>34.5 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>51.8 %</td>
<td>1297</td>
<td>0.23</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>13.3 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>23.5 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>64.6 %</td>
<td>2362</td>
<td>0.41</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>11.9 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

L’évolution de la température de l’air au cours du temps avant le produit ainsi qu’à la sortie du tunnel a été comparée et présentée sur la Figure III.16. On remarque que la température simulée avant le produit est similaire à celle expérimentale. La température simulée à la sortie est un peu plus élevée que la température expérimentale au début de refroidissement, par contre après 200 minutes de refroidissement les deux valeurs sont identiques, cette faible différence est négligeable au vu des incertitudes de mesure.

La Figure III.17 compare les évolutions des températures simulées et mesurées au sein et à la surface du produit. Pour les températures de surface, les résultats de simulation présentent un bon accord avec l’expérience pour les températures en position avant et latérale. Par contre, la température simulée en position arrière est différente de celle mesurée. Dans l’expérience, la vitesse de refroidissement dans cette position est proche de celles mesurées en position avant et latérale tandis que le modèle prédit une cinétique de refroidissement beaucoup plus lente. Ce résultat semble être causé par la difficulté de modèle turbulence « RANS » à prédire avec précision la distribution d’air dans la zone arrière du produit [91]. Mais cette imprécision a cependant un effet limité sur le transfert de chaleur dans le produit. En effet, la comparaison simulation-expérience des températures à différentes positions dans le chou-fleur montre que les valeurs simulées et mesurées ont les mêmes allures, même si les températures simulées présentent une vitesse de refroidissement légèrement plus lente que l’expérimentation.
différences sont liées aux hypothèses du modèle, et aux incertitudes sur la position des thermocouples dans le chou-fleur. Ces incertitudes sont estimées à 1 cm par rapport à l’axe central et à ±0.5 cm par rapport à la profondeur. L’influence de ces incertitudes sur les températures dans le chou-fleur est visualisée sur la Figure III.18 et la Figure III.19.

Figure III.17 : Evolutions des températures mesurées et simulées à la surface et dans le chou-fleur (essai N°2). (S) simulation, (E) expérience.

Figure III.18 : L’isotherme sur la surface à distance 1/3 et 2/3 du centre dans le cas de chou-fleur.

Figure III.19 : Influence de l’incertitude de position de thermocouples dans le chou-fleur sur la température (a) à distance 1/3 du centre, (b) à distance 2/3 du centre.
Un deuxième essai de simulation est effectué avec les conditions de l'essai N°4 (Tableau II.6), c’est-à-dire, pour un essai où la température initiale est plus chaude et pour un chou-fleur plus lourd. Les températures de surface et dans le chou-fleur simulées et mesurées sont reportées sur la Figure III.20. On constate que le refroidissement de surface du produit prédit par le modèle numérique est sous-estimé durant les 200 premières minutes de l’essai. Cependant, les températures simulées au sein du produit sont en accord avec les températures expérimentales pour les trois positions.

Figure III.20 : Evolutions des températures mesurées et simulées à la surface et dans le chou-fleur. (essai N°4) (S) simulation, (E) expérience.

4-3- Etudes de sensibilité

Tableau III.4 : Récapitulatif des conditions pour l’étude de sensibilité

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Valeur référence</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_a (ms$^{-1}$)</td>
<td>0.6</td>
<td>±25%</td>
</tr>
<tr>
<td>$C_{p,CF}$ (Jkg$^{-1}$K$^{-1}$)</td>
<td>4100</td>
<td>±10%</td>
</tr>
<tr>
<td>k_{CF} (Wm$^{-1}$K$^{-1}$)</td>
<td>0.7</td>
<td>±25%</td>
</tr>
<tr>
<td>ρ_{CF} (kgm$^{-3}$)</td>
<td>1090</td>
<td>±25%</td>
</tr>
</tbody>
</table>

Les effets de variation dans ces paramètres sur la température de centre du produit et sur la température de la surface du produit en position avant seront présentés.

4-3-1- Vitesse de l’air à l’entrée

La Figure III.21 montre l’influence d’une variation de la vitesse de l’air à l’entrée de la veine d’air. On remarque qu’une variation de cette vitesse a peu d’influence sur les températures calculées au centre et en surface du produit.
4-3-2- Propriétés thermo physiques du produit

La Figure III.22 montre l’influence de variations des propriétés thermo physiques du produit sur la température au centre du produit et la température de la surface en position avant. Comme attendu, plus la masse volumique intrinsèque du produit est petite, plus le refroidissement est rapide. La diminution de la capacité calorifique conduit aussi à un refroidissement plus rapide au centre et à la surface. L’influence de variations de la conductivité thermique sur le refroidissement à cœur est clairement visible. Une augmentation de cette propriété conduit à refroidissement plus rapide à cœur.

4-3-3- Volume des domaines internes

Comme déjà indiqué, le chou-fleur est assimilé à une sphère constituée de trois domaines: deux domaines A et C considérés denses et humides et un troisième domaine B constitué d’un mélange d’air et de chou-fleur humide. Dans la méthodologie, le domaine est défini sur la base de l’analyse d’une section de chou-fleur. Certaines simulations supplémentaires sont effectuées avec quelques modifications des frontières entre le domaine B et les domaines adjacents. En raison de la forme sphérique, certains faibles changements (un demi millimètre) appliqués aux frontières induisent de grandes variations de volume pour le domaine B (±30%).
La Figure III.23 présente l’influence du changement de volume de domaine B sur les résultats. On constate que le changement de volume de ce domaine a peu d’influence sur la température de surface du produit, par contre la température au centre est fortement impactée par la définition du volume de domaine B. La diminution du volume B mène à un refroidissement plus lent au centre. Ces résultats sont dus au fait que les propriétés thermiques sont fonction de fraction de l'air. Dans l'approche, la fraction d'air équivalente est définie (équation III.7) afin de respecter la fraction d'air mesurée et le volume d'air estimé. Par conséquent, une réduction du volume du domaine B entraîne une augmentation de la valeur de la fraction d'air équivalente et provoque ainsi une diminution de la conductivité thermique équivalente et de la capacité thermique équivalente. Ces changements dans les propriétés impliquent un accroissement des gradients thermiques et allongent fortement la durée de refroidissement. A l'inverse, une augmentation du volume de domaine B améliore la diffusion de la chaleur dans le produit et réduit par conséquent la période de refroidissement.

Figure III.23 : Influence du volume des domaines internes sur (a) la température de la surface en position avant et (b) la température au centre.

4-3-4- Mécanismes des transferts en surface

Afin de quantifier la contribution de chaque échange thermique en surface, des simulations supplémentaires sont effectuées. Dans le premier cas, la contribution du transfert de masse est retirée, tandis que la seconde simulation est effectuée en retirant à la fois les phénomènes liés au transfert de masse et au rayonnement. La Figure III.24 montre que la cinétique de refroidissement et notamment les taux de refroidissement du centre sont clairement différents selon les termes pris en compte ou, à l'inverse, négligés. En effet, la température au centre atteint 4°C après environ quatre heures dans le cas de la simulation de référence tandis que, respectivement, 5 heures et 5.5 heures sont nécessaires pour atteindre la même température sans la contribution du transfert de masse et sans les contributions du transfert de masse et du rayonnement. A la fin du refroidissement, les différences de température entre la simulation de référence et la simulation sans ces contributions sont supérieures à 1°C. On déduit de ces simulations que les échanges par rayonnement et évaporation ont une influence non négligeable en particulier lorsque les vitesses d'air sont faibles.
Figure III.24 : Influence du taux de transfert de masse et des échanges par rayonnement sur (a) la température de la surface en position avant et (b) au centre du chou-fleur.

5- Conclusion

Dans ce chapitre nous avons présenté les modèles numériques thermiques et thermo-aérauliques développés pour représenter le transfert de chaleur dans le produit et dans l’air. Dans un premier temps, l’exploitation des mesures a permis de valider ces modèles dans le cas d’une veine d’air vide et dans le cas d’une sphère en mousse de face lisse lorsqu’il n’y a pas transfert de masse dans le produit. Dans un second, le modèle a été appliqué au cas du produit étudié (chou-fleur) qui a nécessité une division du volume du produit en trois domaines distincts pour correctement appréhender la morphologie du chou-fleur et son impact sur ses propriétés thermo physiques. La démarche mise en place a ainsi été validée expérimentalement. Une étude de sensibilité portant sur les propriétés, la définition du domaine équivalent et l’influence du flux masse évaporé et des échanges radiatifs a montré l’importance de ces caractéristiques sur les résultats du modèle. Une attention particulière sur ces points doit, en conséquence, être apportée pour disposer d’un modèle représentatif de la cinétique de refroidissement du produit.
CHAPITRE 4: Simulation du refroidissement de produits

1- Introduction

L’objectif des études de ce chapitre est de disposer d’un module de calcul permettant de prédire les évolutions de la température et de la teneur en eau d’un ensemble de produits.

La première partie est consacrée à la description et à la validation d’un modèle 1D, développé sur Matlab, pour simuler les champs de température et de teneur en eau dans un produit. Les échanges convectifs sont pris en compte par le biais de corrélations.

Dans une seconde partie, ce modèle unitaire est dupliqué afin de simuler les champs de température et de teneur en eau d’un alignement de produits placés dans une veine d’air. La veine d’air est alors décomposée en zones contenant un produit pour laquelle est posé un bilan thermique et massique sur l’air.

Les résultats de différents tests numériques sont présentés afin d’apprécier la sensibilité de quelques paramètres d’entrée pour la simulation.

2- Développement d’un modèle simplifié du refroidissement d’un produit

Dans le chapitre précédent, un modèle numérique représentatif des phénomènes de transport d’énergie, de masse et de quantité de mouvement a été présenté et validé dans une configuration où un unique produit serait placé dans un flux d’air frais. Ce premier modèle a ainsi permis de bien appréhender les contributions des différents processus physiques intervenant lors du refroidissement. Il a aussi mis en évidence la pertinence de considérer le chou-fleur comme un milieu équivalent décomposé en trois domaines distincts aux propriétés physiques différentes afin de représenter au mieux la morphologie du produit.

Cependant, ce type de modèle nécessitant notamment la résolution des équations de conservation de la quantité de mouvement devient très coûteux en temps de calcul s’il est appliqué à une configuration plus réaliste industriellement, c’est-à-dire une configuration où plusieurs choux-fleurs sont placés (6 à 9) dans des caisses, elles-mêmes disposées sur des palettes et entreposées dans la chambre de refroidissement. Cette approche de modélisation devient même inenvisageable dans le cadre d’une volonté d’optimisation du process par recherche d’une commande optimale : définition des températures de soufflage, des cycles de ventilation, des débits de soufflage.

Dès lors, il apparaît nécessaire de disposer d’un modèle simplifié s’affranchissant de la résolution du transport du fluide et supposant des transferts monodimensionnels de masse et de chaleur au sein du produit. La représentativité de ce modèle simplifié sera validée en s’appuyant sur les prédictions du modèle complet et les données expérimentales.

2-1- Equations de transfert de chaleur et de masse dans le produit

Dans ce modèle simplifié, seules les équations de conservation de l’énergie et de la masse sont résolues au niveau du produit qui est assimilé à une sphère.

Les hypothèses retenues pour ce modèle sont les suivantes:
Les transferts de chaleur et d’eau au sein du produit sont supposés monodimensionnels selon le rayon.

Le domaine est divisé en 3 sous-domaines aux propriétés thermo physiques distinctes pour représenter au mieux la morphologie interne du chou-fleur.

L’évaporation de l’eau a lieu uniquement en surface. Aucun changement de phase liquide-vapeur n’est considéré dans le milieu.

La chaleur de respiration de produit est négligée (généralement faible par rapport aux effets de chaleur sensible) [47].

L’activité de l’eau reste égale à 1 durant toute la phase de refroidissement. Cette valeur se justifie par les teneurs en eau du produit qui restent élevées durant toute la durée du refroidissement (W > 10 kg kg⁻¹).

Figure IV.1 : Schéma des transferts thermiques et hydriques mis en jeu dans le modèle simplifié

Les équations de conservation sont écrites pour chacun des domaines j du chou-fleur (j=A, B ou C) [11][20]:

\[\rho_j c_{p,j} \frac{\partial T_j}{\partial t} = \nabla (k_j \nabla T_j) \]

(IV.1)

De part la géométrie du produit, cette équation écrite dans un repère sphérique avec deux symétries de révolution [11] :

\[\rho_j c_{p,j} \frac{\partial T_j}{\partial t} = k_j \left(\frac{2}{r^2} \frac{\partial T_j}{\partial r} + \frac{\partial^2 T_j}{\partial r^2} \right) \]

(IV.2)

L’équation de conservation de la masse en considérant le coefficient de la diffusion constant s’écrit comme suit en choisissant la teneur en eau exprimée en base sèche comme variable d’état [46]:

\[\frac{\partial (\rho_{so}W)}{\partial t} = \nabla (\rho_{so} D_{eff} \nabla W) \]

(IV.3)

Qui pour une géométrie sphérique prend la forme suivante [11]:

\[\frac{\partial (\rho_{so}W)}{\partial t} = D_{eff} \left(\frac{2 W}{r} \frac{\partial W}{\partial r} + \frac{\partial^2 W}{\partial r^2} \right) \]

(IV.4)

Ces équations sont résolues en utilisant les conditions suivantes:

- Conditions aux limites :
Pour les conditions aux limites à l’interface avec l’air, le produit est soumis à des échanges thermiques par convection forcée, par rayonnement, et des transferts d’eau par condensation ou évaporation.

A la surface du produit, et donc du domaine C, (en r=R), les conditions aux limites s’écrivent:

\[
 k_C \frac{\partial T_C}{\partial r} \bigg|_{r=R} = h_c(T_a - T_C(r = R)) + h_r(T_{paroi} - T_C(r = R)) - F_m L_v
\]

Avec

\[
 h_r = 4 \varepsilon \sigma \left(\frac{T_{paroi} + T_C(r=R)}{2} \right)^3
\]

Le flux massique détermine la quantité d’eau sortant du matériau sous forme vapeur, il dépend de la pression partielle de vapeur en surface et de la pression partielle de vapeur de l’atmosphère ambiante [92] :

\[
 F_m = \frac{k_m M_v}{R T_{film}} (a_w P_{sat,c}(r=R) - H R P_{sat,a})
\]

Au centre du produit (en r=0), la symétrie liée à la géométrie impose :

\[
 k_A \frac{\partial T_A}{\partial r} \bigg|_{r=0} = 0 \text{ et } \rho_{so} D_{eff} \frac{\partial W}{\partial r} \bigg|_{r=0} = 0
\]

- Conditions initiales :

\[
 T_p(r) = \text{const} , \forall r, t = 0 \\
 W(r) = \text{const} , \forall r, t = 0
\]

2-2- Résolution numérique des équations

L’ensemble des équations présentées précédemment conduit à un système d’équations différentielles non linéaires couplées.

Les équations liées au bilan massique et au bilan thermique dans le produit sont résolues simultanément. Le système est écrit puis résolu sous une forme matricielle :

\[
 [C] [\dot{Y}] = [A] [Y] + [B]
\]

Où A est une matrice tri-diagonale regroupant les termes liés à la diffusion de chaleur et de masse, B un vecteur regroupant les termes sources, C une matrice diagonale comportant les termes d’accumulation et Y est le vecteur lié à la température et à la teneur en eau.

La discrétisation spatiale s’appuie sur la méthode des différences finies. Nous construisons un maillage régulier constitué d’un réseau de points autour desquels sont définis des volumes de contrôle comme montre la Figure IV.2.
2-3- **Etudes numériques préliminaires**

Dans ce paragraphe, quelques études numériques ont été réalisées en considérant comme au chapitre 3 un chou-fleur constitué de trois domaines dont les propriétés thermo physiques sont données dans le Tableau IV.1. Les conditions de simulation utilisées sont présentées dans Tableau IV.2.

La simulation a été réalisée en utilisant un maillage régulier constitué de 80 points dans le produit et avec un pas de temps de 1 min.

Tableau IV.1 : Propriétés thermo-physiques utilisées dans le modèle théorique de chou-fleur

<table>
<thead>
<tr>
<th>Domaine</th>
<th>Pourcentage de domaines (%)</th>
<th>ρc_p (kJm$^{-3}$K$^{-1}$)</th>
<th>k_p(Wm$^{-1}$K$^{-1}$)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>32 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>48 %</td>
<td>511</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td>C</td>
<td>20 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

Tableau IV.2 : Propriétés et conditions utilisés dans le modèle théorique de chou-fleur

<table>
<thead>
<tr>
<th>Condition/Propriété</th>
<th>Valeur</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température initiale de chou-fleur</td>
<td>20</td>
<td>°C</td>
</tr>
<tr>
<td>Teneur en eau initiale de chou-fleur</td>
<td>12.15</td>
<td>kg.kg$^{-1}$</td>
</tr>
<tr>
<td>Diamètre de chou-fleur</td>
<td>16</td>
<td>cm</td>
</tr>
<tr>
<td>Masse totale du chou-fleur</td>
<td>1.3</td>
<td>kg</td>
</tr>
<tr>
<td>Température de l'air à l'entrée</td>
<td>1</td>
<td>°C</td>
</tr>
<tr>
<td>Humidité relative de l'air à l'entrée</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>Coefficient de transfert de chaleur</td>
<td>12</td>
<td>Wm$^{-2}$K$^{-1}$</td>
</tr>
<tr>
<td>Coefficient de la diffusion</td>
<td>1×10^{-9}</td>
<td>m2s$^{-1}$</td>
</tr>
</tbody>
</table>

2-3-1- Confrontation modèle complet / modèle simplifié

Deux configurations ont été simulées pour mettre en évidence l’impact des transferts de masse sur la cinétique de refroidissement. Dans la première configuration, les phénomènes de transfert de masse ont été négligés dans le produit, puis intégrés dans la seconde configuration.

La Figure IV.3 compare les températures au centre, à une distance 2R/3 du centre et à la surface du chou-fleur obtenues par le modèle complet (3D) et simplifié. On remarque que les différences entre le modèle simplifié ne prenant pas en compte le transfert de masse et le modèle complet restent acceptables au vu de l’hypothèse monodimensionnelle posée sur les transferts de masse et de chaleur.

La prise en compte du transfert de masse dans le modèle simplifié, conduit à un refroidissement plus rapide et à une température finale légèrement inférieure. En fait, cette température finale atteint la température humide de l’air. Ceci est lié au phénomène d’évaporation de l’eau à la surface du produit qui s’ajoute aux échanges convectifs et radiatifs. Ce phénomène participe activement au refroidissement du produit.

A travers ce cas théorique, il est démontré que le modèle simplifié reste en accord avec les résultats issus du modèle complet et est donc à même de simuler correctement les cinétiques de pré-refroidissement d’un produit.
Figure IV.3 : Evolution de la température de chou-fleur avec le temps de refroidissement sans et avec transfert de masse et comparaison avec le modèle complet

Un modèle plus simple dit 0D négligeant les gradients de températures a également été testé et comparé au modèle monodimensionnel sans prise en compte des transferts de masse (Figure IV.4). L’évolution de la température du milieu alors simulée est similaire à l’allure de la température de surface obtenue par le modèle 1D mais n’est pas représentative de la température à cœur ou moyenne de la sphère. Un modèle 0D est ainsi inadapté pour refléter le refroidissement à cœur du produit qui est pourtant le paramètre important à maîtriser lors du conditionnement en température de produits frais.

De même, un modèle simplifié monodimensionnel où le chou-fleur est décomposé en un unique domaine homogène n’apporte pas une représentativité suffisante des champs de température du produit car celui-ci est trop hétérogène dans son volume pour pouvoir admettre des propriétés thermo physiques équivalentes constantes dans l’ensemble du milieu (Figure IV.4).
Figure IV.4 : Comparaison entre hypothèse corps mince (0D) et modèle simplifié (1D et 1D monodomaine).

Concernant le comportement hydrique du milieu, la Figure IV.5 montre les évolutions des teneurs en eau en différentes positions dans le produit et à sa surface prédites par le modèle simplifié multi-zones. La teneur en eau moyenne dans le produit, du fait de l’évaporation en surface, diminue continuellement avec le temps. A la surface, la teneur en eau initiale chute brutalément dans les premiers instants de l’essai sous l’effet des fortes différences de pressions de vapeur entre le produit et l’air environnant. La chute de la température de surface entraîne une diminution significative de la pression de vapeur de surface provoquant la réduction de la quantité d’eau evaporée (Figure IV.6). Dans le même temps, la diffusion de l’eau du centre vers la surface du produit bien que faible reste suffisamment élevée ($D = 1 \times 10^{-9} \text{m}^2 \text{s}^{-1}$) pour assurer l’alimentation en eau de la surface. La teneur en eau en surface augmente alors jusqu’à une teneur en eau de pseudo équilibre qui est maintenue tant que la valeur de la teneur en eau à cœur du chou-fleur reste égale à la teneur en eau initiale. Dès que le transfert de masse influe sur l’équilibre hydrique à cœur du milieu, la teneur en eau à la surface repart à la baisse mais de manière plus progressive.

Figure IV.5 : Evolution de la teneur en eau dans le chou-fleur en fonction temps de refroidissement (cas théorique).
2-3-2- Influence de pas de temps et de maillage

Pour étudier la répercussion de la discrétisation temporelle sur la procédure de résolution, une série de simulations est réalisée pour un maillage spatial fixé (80 nœuds) et un pas de temps variable compris entre 5 min et 20 min. Les résultats obtenus en surface et à cœur sont comparés à la simulation de référence (80 nœuds et Δt=1 min) et représentés sur la Figure IV.7. Pour des pas de temps compris entre 5 min et 10 min, la valeur du pas de temps influe peu les évolutions de températures qui restent très similaires à l’évolution de référence. Des différences remarquables apparaissent à partir de la simulation menée avec un pas de temps de 20 min.

En ce qui concerne la discrétisation spatiale, la simulation de référence est comparée avec des simulations réalisées avec un nombre de nœuds compris entre 20 et 160 (Figure IV.8). Le fait de doubler le nombre de nœuds (160) n’apporte pas une amélioration significative des résultats mais pénalise la vitesse de résolution. Un choix de 40 nœuds dégrade légèrement les évolutions mais celles-ci restent toutefois acceptables en terme de précision. Par contre, un maillage constitué de 20 nœuds semble insuffisant pour restituer correctement les champs de températures. A partir de cette analyse, nous pouvons considérer que l’utilisation d’un maillage composé de 80 nœuds associé à un pas de temps de 1 min offre une précision de résolution acceptable tout en ne pénalisant pas les temps de résolution du problème.

Figure IV.7 : Influence du pas de temps sur la température (a) de la surface, et (b) du centre.
2-4- Simulation et comparaison avec l’expérience

Afin de valider la représentativité du modèle simplifié (avec prise en compte des transferts de masse), les réponses thermiques et de pertes de masses simulées sont confrontées à celles mesurées expérimentalement. Deux opérations de refroidissement sont présentées. La première correspond aux conditions opératoires définies pour l’essai N°2 et la seconde est menée sous les conditions de l’essai N°4.

Pour rappel, l’essai N°2 a été mené sous un flux d’air soufflé à une température moyenne de 1.8°C et pour une humidité relative proche de 90%. Initialement, le chou-fleur était à une température uniforme de 13.5°C. Pour la simulation, le chou-fleur est divisé en 3 domaines distincts dont les propriétés sont rappelées dans le Tableau III.3. Le coefficient de transfert de chaleur par convection retenu vaut 10 Wm$^{-2}$K$^{-1}$ équation (III.6).

Les évolutions des températures simulées en surface et dans le chou-fleur pour cet essai sont confrontées aux mesures expérimentales sur la Figure IV.9. La température expérimentale de surface tracée sur cette figure est issue de la moyenne des trois températures relevées en faces avant, arrière et latérale. Le modèle simplifié offre une très bonne représentation de cette température et est également à même de représenter avec précision les réponses en températures dans le milieu. Les écarts restent inférieurs à 0.5°C ce qui est tout à fait satisfaisant au vu des incertitudes de mesures.

Figure IV.9 : Comparaison, pour l’essai N°2, de l’évolution des températures à la surface et à différentes positions dans le chou-fleur. (1D) modèle simplifié, (E) expérience.
Concernant la représentation de la perte de masse, les évolutions simulées et mesurées présentes des allures différentes (Figure IV.10). Expérimentalement, la perte de masse présente une évolution linéaire jusqu’à 300 min avant de s’infléchir faiblement. Ce comportement n’est pas correctement prédit par la modélisation. La perte de masse simulée est nettement plus rapide durant les premières 100 min et présente une pente plus douce au-delà. La perte de masse finale est faible (1.2%) et proche dans les deux cas. La différence d’allure s’explique par les incertitudes existantes sur les conditions opératoires (conditions aux limites) telles que l’humidité relative de l’air et le coefficient d’échange convectif. Une étude de sensibilité sera présentée par la suite pour discuter de ces points.

Figure IV.10 : Comparaison, pour l’essai N°2, de l’évolution de la masse du chou-fleur. (1D) modèle simplifié, (E) expérience.

L’essai N°4 a été mené sur un chou-fleur de masse plus conséquente sous un flux d’air soufflé à une température moyenne de 2.2°C et pour une humidité relative proche de 90%. Initialement, le chou-fleur était à une température non-uniforme qui variait de 24.5°C au centre à 15°C à la surface. La Figure IV.11 et la Figure IV.12 présentent les valeurs expérimentales et simulées des températures et de la masse du chou-fleur. Les allures des températures sont très comparables même si les températures simulées dans le produit tendent à chuter un peu plus rapidement. Cependant, les écarts de températures n’excèdent pas 1°C. Pour la masse, on note que la simulation sous-estime la perte en eau du chou-fleur.

L’incertitude sur le calcul de l’humidité relative à partir de la température sèche et humide est estimée à ±5%, et l’incertitude sur la position des thermocouples dans le chou-fleur est estimée à ±0.5 cm par rapport à la position réelle attendue.
2-5- Études de sensibilité

Les différences dans les résultats entre la simulation et l’expérience nécessitent une étude de sensibilité sur la simulation pour connaître l’influence des différents paramètres sur les résultats de simulation.

Cette étude de sensibilité va porter sur l’essai N°2 et concerne, le coefficient d’échange convectif, le coefficient de diffusion de l’eau dans le milieu, l’humidité relative de l’air, la position des thermocouples ainsi que le volume alloué à la zone B et le diamètre du chou-fleur.

- Coefficient de transfert de chaleur h_c :

Le coefficient de transfert de chaleur employé dans les simulations est déterminé a priori par la relation de Whitaker équation (III.6). La validité de cette relation dans notre configuration géométrique a été confortée dans le chapitre 3 par confrontation avec le coefficient d’échange convectif calculé à partir du modèle complet. Les écarts restaient inférieurs à 11%. Cependant, les fluctuations de la vitesse d’air liées au caractère turbulent du problème peuvent engendrer des modifications sur l’échange convectif non négligeable. C’est pourquoi,
pour étudier la sensibilité de ce paramètre, des variations de ±25% sont appliquées sur celui-ci. Les résultats de ces variations sur la température de surface et la perte de masse sont reportés sur la Figure IV.13. On note ainsi que la valeur du coefficient d’échange de chaleur convectif va bien sûr impacter les cinétiques de refroidissement en augmentant les pertes sensibles mais également de manière non négligeable la perte de masse du produit. Une augmentation de 25% de sa valeur conduit à un accroissement de la perte de masse de 15% au terme du refroidissement et donc favorise les pertes de chaleur sous forme latente. À l’inverse, une diminution de 25% de sa valeur va limiter la masse d’eau perdue mais provoque un accroissement du temps de refroidissement.

Figure IV.13 : Influence de variation en coefficient de transfert de chaleur par convection sur la température de la surface et sur la masse du chou-fleur.

- **Coefficient de diffusion massique de l’eau dans le produit D :**

Le coefficient de diffusion massique de l’eau dans le milieu est une propriété difficile à mesurer et qui, de ce fait, présente une forte incertitude sur sa valeur. Une variation de plusieurs décades a donc été reportée sur sa valeur pour mener cette étude de sensibilité. La Figure IV.14 montre l’influence de la variation du coefficient de diffusion massique (de 1×10^{-12} à 1×10^{-9} m2 s$^{-1}$) sur l’évolution de la température du produit et sur la masse est négligeable. Ce résultat s’explique par le fait que la surface du produit reste saturée en eau (activité égale à 1) durant toute la cinétique de refroidissement. La perte de masse est alors uniquement pilotée par les conditions de surface.

Figure IV.14 : Influence de variation en coefficient de diffusion sur la température de la surface et sur la masse du chou-fleur.

- **Humidité relative de l’air HR :**
Expérimentalement, l’incertitude sur le calcul de l’humidité relative de l’air à partir de la température sèche et humide est estimée à ±5%. Cette incertitude est donc utilisée comme variation de référence pour l’étude de sensibilité.

La Figure IV.15 montre que l’humidité relative de l’air impacte très peu la température au cours du refroidissement mais que son influence sur la masse du produit est nettement plus prononcée. Ainsi, une variation de 5% de la valeur de l’humidité relative entraîne une variation de la perte de masse finale de ±3 g soit ±25% de perte de masse.

Cette incertitude associée à l’incertitude sur la valeur de coefficient d’échange convectif peut expliquer la différence entre les masses simulées et mesurées des essais N°2 et N°4.

Figure IV.15 : Influence de variation en humidité de l’air sur la température de la surface et sur la masse du chou-fleur.

- Position des thermocouples dans le chou-fleur

La Figure IV.16 présente l’influence de l’incertitude sur la position des thermocouples par rapport à la profondeur effective sur les températures aux distances R/3 et 2R/3 du centre.

Cette incertitude a une incidence plus forte sur la température prise à 2R/3 du centre que sur celle à R/3 du centre. Les écarts de températures peuvent atteindre 1°C.

Figure IV.16 : Influence de l’incertitude de position de thermocouples dans le chou-fleur sur la température (a) à distance 1/3 du centre, et (b) à distance 2/3 du centre.

- Volume de domaine B

Comme cela a été présenté dans le paragraphe 4 de chapitre 3, le chou-fleur est modélisé par une sphère constituée de 3 domaines : A, B et C. Les dimensions de ces trois domaines sont définies sur la base de l’analyse d’une section du chou-fleur. Cependant, cette analyse peut...
 entraîner de fortes imprécisions sur la définition des domaines et principalement sur leur volume. La Figure IV.17 présente l’influence d’une modification de volume du domaine B sur la température au centre et sur la masse. Une diminution du volume B de 30% impacte considérablement la cinétique de refroidissement du chou-fleur. En effet, les valeurs des propriétés thermo physiques associées à ce domaine sont alors fortement diminuées. La conductivité thermique équivalente est ainsi réduite de 83% limitant la diffusion de la chaleur dans le milieu. A contrario, une augmentation de 30% du volume a un effet limité sur la réponse en température car la diffusivité thermique équivalent du milieu reste peu impactée. L’impact de la variation de ce paramètre sur la masse est très faible.

Figure IV.17 : Influence du changement du volume poreux équivalent sur la température du centre et sur la masse du chou-fleur.

- **Diamètre du produit**

Dans notre approche, le chou-fleur est assimilé à une sphère avec un diamètre défini de telle sorte que le volume et la masse du produit soient respectés. Comme les mesures de volumes des choux-fleurs sont relativement peu précises, une étude de sensibilité sur la valeur du diamètre est entreprise en admettant une variation de ±1 cm sur le diamètre de référence. Pour toutes les simulations, la masse totale ainsi que les proportions volumiques des domaines A, B et C sont conservées. Dans ces conditions, la masse volumique apparente et la fraction d’air du milieu rechangent d’un test à l’autre.

La Figure IV.18 montre que l’augmentation du diamètre du produit conduit à un refroidissement nettement plus lent au centre, et à une perte d’eau sensiblement plus importante. En effet, afin d’assurer la conservation de la masse, la fraction d’air augmente également entraînant une diminution des propriétés thermo-physiques équivalentes, notamment la conductivité thermique équivalente, et limite alors la diffusion de la chaleur dans le milieu. A l’inverse, la diminution du diamètre du produit conduit à refroidissement plus rapide au centre lié à une diminution de la fraction d’air.
3- Simulation du refroidissement d’une succession de produits placés dans une veine d’air

Le modèle simplifié monodimensionnel ayant été validé et étudié pour une configuration constituée d’un produit refroidi par convection, celui-ci est incorporé dans un modèle multi-produits permettant de prédire le comportement hydrique et thermique de plusieurs choux-fleurs disposés successivement dans une veine d’air. Ce modèle prédit également les réponses en température et en humidité de l’air soufflé sur les produits.

Ainsi, dans cette étude on considère n choux-fleurs de même diamètre et de mêmes propriétés thermo-physiques et hydriques disposés longitudinalement dans une veine d’air (Figure IV.19). Cette veine d’air est décomposée en n zones dont les conditions aérauliques (température et humidité) varient en fonction des échanges thermiques et hydriques existants avec les produits présents.

Initialement, tous les choux-fleurs sont à une température et une teneur en eau identique. Les conditions en entrée de la veine d’air (u_a, T_a, HR_a) sont fixées et peuvent évoluer au cours du temps.

\[u_a, T_a, HR_a \]

Figure IV.19 : Schéma d’un tunnel de l’air avec plusieurs produits, vue de côté, (dimensions veine d’air : $L=14 \, m$, $h=0.2 \, m$, largeur=0.2 m).
3-1- **Couplage des équations**

Dans ce modèle les équations liées au bilan massique et au bilan thermique dans le produit sont couplées avec les équations de transfert de chaleur et de masse dans l’air. La Figure IV.20 présente les échanges pris en compte entre un produit et le flux d’air environnant dans une zone. Les hypothèses sont les suivantes :

- L’air et le vapeur d’eau sont considérés comme des gaz parfaits,
- La densité de l’air est constante,
- La vitesse de l’air est constante,
- Le transfert de chaleur par conduction dans l’air est négligeable [50].

![Figure IV.20: Descriptif d’une zone de refroidissement.](image)

Un bilan effectué sur le transfert de masse dans l’air donne :

\[
\rho_a S_{pa} \Delta x \left(\frac{\partial W_a}{\partial t} + u_a \frac{\partial W_a}{\partial x} \right) = F_m S_{ech} \tag{IV.7}
\]

Dans le bilan énergétique sur l’air, en l’absence de changement de phase, seule la chaleur sensible est prise en compte

\[
\rho_a (C_{p,a} + W_a C_{p,v}) S_{pa} \Delta x \left(\frac{\partial T_a}{\partial t} + u_a \frac{\partial T_a}{\partial x} \right) = F_m C_{p,v} S_{ech} (T_p - T_a) + h_c S_{ech} (T_p - T_a) \tag{IV.8}
\]

Le terme de droite de cette équation prend en compte la chaleur sensible liée à l’évaporation à la surface du produit, ainsi que le transfert de chaleur par convection entre la surface du produit et l’air.

Les conditions initiales sont donnés par :

\[
T_a(x,0) = T_{a,init}, \ HR(x,0) = HR_{init} \Rightarrow W_a(x,0) = W_{a,init}
\]

\[
T_p(x,0) = T_{p,init}, W(x,0) = W_{init}
\]

Les conditions à l’entrée du tunnel sont données par :

\[
T_a(0,t) = \text{const}, \ HR(0,t) = \text{const} \Rightarrow W_a(0,t) = \text{const}
\]
3-2- Résolution numérique des équations

Les équations liées au bilan massique et au bilan thermique dans l’air ainsi que les équations liées aux transferts de chaleur et de masse dans le produit sont résolues dans chaque zone simultanément sous la forme matricielle déjà présentée dans l’équation (IV.6)

3-3- Essai théorique de simulation de plusieurs produits

Cet essai de simulation a été effectué dans les mêmes conditions et avec les mêmes propriétés utilisées dans l’essai théorique avec un seul produit (Tableau IV.2). Chaque chou-fleur est considéré comme une sphère décomposée en trois domaines.

Le nombre de produits successifs considérés dans la veine d’air est de 80 choux-fleurs répartis sur une longueur totale de 14 m. La surface de passage de l’air dans chaque zone est fixée à 0.2 x 0.2 m².

Initialement, l’air contenu dans la veine d’air est à une température de 20°C (qui correspond également à la température initiale des produits) pour une humidité relative fixée à 90%. A t = 0 s, un flux d’air frais est souflé à l’entrée de la veine à une température de 1°C et à une humidité relative de 90%. Les produits étant initialement à une température de 20°C, le flux d’air s’échauffe progressivement lors de son passage sur ceux-ci entraînant dans le même temps le refroidissement du produit (Figure IV.21), dès lors la mise en température de l’air dans les différentes zones est d’autant plus lente que la zone est située loin de l’entrée. Après 5 h, les premiers choux-fleurs, positionnés dans les 3 premiers mètres voient leur température de surface atteindre la température humide de l’air (qui est inférieure à la température sèche) sous l’effet des échanges latents provoqués par l’évaporation de l’eau. Dans ces conditions, le flux d’air se refroidit à leur contact dans les premiers mètres du tunnel avant de se réchauffer au contact des produits suivants. Au terme de l’essai, tous les choux-fleurs ont une température de surface proche de la température humide de l’air. Le flux d’air est donc refroidi au cours de son passage dans le tunnel.

Concernant l’humidité de l’air, l’air soufflé dans la veine atteint rapidement la saturation dans les premiers instants. En effet, les importants écarts de températures entre la surface des produits et l’air entraînent des fortes différences de pressions de vapeur favorisant des échanges hydriques conséquents. Les quantités d’eau évaporées en surface sont alors captées par l’air qui se sature. La teneur en eau du flux d’air augmente toutefois au cours de son passage sur les produits car sa température augmente dans le même temps. Au fur et à mesure du refroidissement des produits, les écarts de températures entre ceux-ci et le flux d’air s’amenuisent réduisant ainsi les quantités d’eau échangées. L’air se sature alors moins rapidement. Au terme du refroidissement, le flux d’air n’atteint plus la saturation en sortie du tunnel.
Les évolutions de la température au centre des choux-fleurs et à leur surface ainsi que les évolutions de la teneur en eau sont présentées sur la Figure IV.22 et la Figure IV.23.

Le réchauffement progressif de l’air au cours de son avancement dans le tunnel implique un refroidissement plus lent des choux fleurs suivant les abscisses croissantes. Ainsi, le centre du premier chou-fleur atteint la température de l’air de soufflage au bout de 500 min. alors qu’il faut 800 min pour le dernier.

Figure IV.22 : Evolution de la température de la surface et du centre des choux-fleurs avec le temps de refroidissement.
Dans une première phase, la Figure IV.23 montre une baisse rapide de la teneur en eau en surface du produit. La vapeur d’eau prélevée aux choux-fleurs provoque une augmentation de la teneur en humidité de l’air de refroidissement et ainsi limite le flux masse évaporé des produits suivants. Dans un second temps, la diffusion au sein du produit alimente en eau les parties partiellement déshydratées, ce qui se traduit par une augmentation de la teneur en eau à la surface du produit.

A partir de 500 min, le premier chou-fleur voit sa teneur de surface se stabiliser alors que les suivants, qui bénéficient d’un air quasi saturé, continuent à s’hydrater en surface.

Tout au long du process, la teneur au centre du produit évolue très peu. Au bout de 500 minutes, le flux masse du premier chou-fleur est stabilisé à environ $0.04 \text{ kg/m}^2\text{s}$ alors qu’il est quasi nul pour les autres positions étudiées.

Une étude de sensibilité sur l’influence de variation de débit de l’air sur la cinétique de refroidissement de plusieurs produits est présentée dans la Figure IV.24. On remarque que l’influence d’une variation de débit est plus grande sur le dernier chou-fleur que sur le premier. Comme prévu, plus le débit est petit, plus le refroidissement des produits est lent.

Figure IV.23 : Evolution de la teneur en eau dans les choux-fleurs et le flux masse évaporé de la surface des choux-fleurs avec le temps de refroidissement.

(a) (b)
4- Conclusion

Dans ce chapitre nous avons développé un module de calcul qui permet de prédire les cinétiques de refroidissement d’une rangée de plusieurs produits placés dans un flux d’air. Chaque produit est représenté par un modèle 1D constitué de 3 sous domaines ; les conditions aux limites sont prises en compte par un coefficient d’échange convectif et radiatif. En parallèle, afin de connaître l’évolution de la température et de l’humidité du flux d’air un bilan thermique et massique est posé dans les différentes zones. La comparaison de ce modèle avec un modèle 0D et un modèle 1D monodomaine a montré la nécessité de prendre en compte le gradient de température dans le produit et de le décomposer en domaines distincts.

Ensuite ce modèle simplifié a été validé pour le cas d’un chou-fleur placé dans la veine d’air du banc expérimental. De plus, une étude de sensibilité a été menée afin d’évaluer l’influence des paramètres principaux sur les résultats de simulation. A la fin de ce chapitre, ce modèle simplifié est utilisé de manière itérative pour simuler le refroidissement de plusieurs produits disposés longitudinalment dans une veine d’air.
CHAPITRE 5: Etudes sur un cas industriel

1- Introduction

L’objet de ce chapitre est de mettre en application et valider les développements numériques réalisés au chapitre 5 pour la prédiction du refroidissement de plusieurs produits. Ces travaux s’appuient sur un suivi in-situ réalisé dans une unité de conditionnement industrielle de légumes frais. Il s’agit d’un site géré par l’union des coopératives de Paimpol et Tréguier (UCPT) implanté à Lédénez en côtes d’Armor. Ce site d’une surface de 15320 m² est une des plus grandes stations de conditionnement au niveau national.

Après une présentation du site, l’instrumentation mise en place est alors décrite. Les conditions thermo-aérauliques ainsi que les cinétiques de refroidissement de plusieurs choux-fleurs sont mesurées.

Ces données expérimentales sont analysées et exploitées afin d’étudier la prédiction numérique du refroidissement d’un ensemble de produits placés dans un flux d’air. Le calcul de la température d’air est aussi réalisé.

La dernière partie du chapitre est consacrée à la mise en œuvre et à l’évaluation d’une méthode de commande hors ligne de la ventilation dans ce type d’installation.

2- Descriptif de l’expérimentation

Le suivi a été réalisé dans un hall de refroidissement de 300 m² pour un volume d’environ 1200 m³ dans lequel sont entreposées les palettes de choux fleurs à l’issue de la récolte. Les choux-fleurs sont disposés dans des cagettes en bois empilées sur des palettes (Figure V.1). Le remplissage du hall est fonction de la production du jour. Au moins 1/4 de la surface ne peut être utilisé pour des raisons de manutention, celle-ci étant réalisée à l’aide de chariots élévateurs.

Les produits sont refroidis à environ 4°C par une centrale de traitement d’air à 2 débits de soufflage délivrant un air humide dont la température est comprise entre -2°C et 4°C. Le soufflage est assuré par 2 fois trois bouches en partie haute et la reprise est effectuée par la face arrière de la centrale (Figure V.2).

La centrale de traitement d’air est alimentée en eau glycolée, depuis une salle des machines située à une vingtaine de mètres. La production de froid est assurée par une installation fonctionnant au R404 dont la configuration est similaire à celle présentée au paragraphe 3.6.2 du chapitre 1.

Un brouillard artificiel est généré par de petites buses montées sur des rampes hautes pression de brumisation en sortie des bouches de soufflage. Lorsque les ventilateurs sont en fonctionnement le flux d’air suit le circuit donné sur la Figure V.2-a. Il s’agit d’un mode de fonctionnement intermédiaire entre un refroidissement traditionnel en chambre froide et en tunnel (chapitre 1, paragraphe 3).

Pour cette séquence de mesures nous avons suivi les évolutions des conditions ambiantes (température, humidité relative et vitesse de l’air) en différents points et les températures de 3 choux-fleurs disposés à mi-hauteur sur une travée de palettes. La travée d’une longueur...
approximative de 15 m était constituée de plusieurs palettes comportant un empilement de 11 à 12 cagettes (Figure V.2-a et b).

Figure V.1 : Vue du hall de conditionnement en cours de chargement, de la travée instrumentée et de l’instrumentation d’un chou-fleur.

Le long de l’alignement des palettes trois secteurs de mesures ont été définis (Figure V.2-b) ; le secteur 1 en bout de travée correspondant à l’entrée du flux d’air, le secteur intermédiaire 2 et le secteur 3 à proximité de l’échangeur air/eau.

Les températures d’air ont été mesurées dans chaque secteur à 3 hauteurs (Figure V.2) : bas (b), milieu (m) et haut (h). En parallèle, un suivi de la température de trois choux-fleurs disposés à mi-hauteur de chaque secteur a été réalisé. Des thermocouples gainés inox ont été implantés respectivement à 3 et 8 cm de profondeur au sein des produits. En complément pour le produit de la zone centrale (2), un troisième thermocouple a été introduit à 5 cm. En parallèle, des capteurs ont été implantés pour mesurer l’humidité relative et la température de l’air au-dessus de la travée en 3 points (1s, 2s et 3s) et à mi-hauteur de la travée (1m, 2m et 3m). La vitesse de l’air a été mesurée à mi-hauteur en entrée et en sortie de la travée (ua1, ua3).

Au niveau de l’échangeur air/eau, le suivi de la température en sortie de la bouche de soufflage (Souf) et de l’air de reprise à deux niveaux (asp1 et asp2) a été réalisé. Un suivi de l’ensemble des capteurs dont la liste est donnée dans le Tableau V.1 a été réalisé. Des mesures de vitesses d’air complémentaires ont été réalisées ponctuellement en sortie de la bouche de soufflage. Elles sont présentées sur la Figure V.2-b.
Figure V.2: Positions des capteurs, (a) vue de côté, (b) vue de dessus. NB : Le nombre de palettes n’est pas respecté.

Tableau V.1 : Instrumentation mise en place pour les mesures sur le site industriel

<table>
<thead>
<tr>
<th>Type de capteur</th>
<th>Grandeur mesurée</th>
<th>Implantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple type K</td>
<td>Température de produit (7)</td>
<td>3, 5 ou 8 cm de profondeur</td>
</tr>
<tr>
<td>Thermocouple type K</td>
<td>Température d’air (12)</td>
<td>Flux d’air autour du produit</td>
</tr>
<tr>
<td>Hygro-thermomètre (KIMO)</td>
<td>HR et T’air (3)</td>
<td>Cagettes supérieures de la travée</td>
</tr>
<tr>
<td>Hygro-thermomètre (RTR)</td>
<td>HR d’air (3)</td>
<td>Mi-hauteur de la travée</td>
</tr>
<tr>
<td>Anémomètre</td>
<td>Vitesse d’air (2)</td>
<td>Mi-hauteur, entrée/sortie travée</td>
</tr>
</tbody>
</table>
3- Analyse des mesures

3-1- Fonctionnement de l'installation

La Figure V.3 montre les évolutions de la température de l’eau glycolée mesurée à la sortie de l’échangeur, des vitesses d’air et de la température de soufflage. On remarque que la température de l’eau à la sortie de l’échangeur varie entre -4 et -2°C, vers le pas de temps 380 min cette température subit une augmentation probablement due à la régulation du groupe froid ou à la nécessité de dégivrage des échangeurs. On observe également que la vitesse d’air en entrée de la zone 1 (ua1) est plus faible que la vitesse mesurée en sortie de la zone 3 (ua3). Ces relevés permettent de visualiser les périodes de soufflage ainsi que les deux allures de fonctionnement de la ventilation. Durant cette séquence de mesure, la ventilation a fonctionné 50% du temps (20% au débit élevé). Le débit élevé est requis au démarrage de l’installation ainsi que vers le pas de temps 380 min où la température de l’eau glycolée subit une augmentation.

La Figure V.4 montre l’évolution de l’humidité relative de l’air dans les trois secteurs au-dessus et à mi-hauteur de la travée. L’humidité relative au-dessus de la travée est homogène (différence de 2% entre les trois secteurs) et elle varie entre 90 et 95% tout au long du process. Par ailleurs, l’humidité relative mesurée au niveau des choux fleurs dans les trois secteurs atteint quasi-immédiatement 99%.

La Figure V.5 montre les évolutions des températures de l’air selon la hauteur de la travée dans le secteur central. Ces températures sont très proches en période de ventilation. A l’arrêt de la ventilation, on observe un gradient de température selon la hauteur mais qui reste faible (< 1.5°C).

La Figure V.6 présente les températures de l’air dans les différents secteurs à mi-hauteur de la travée ; l’écart entre secteurs reste inférieur à 1°C. L’air du secteur 1 est un peu plus froid que celui des autres zones en période de ventilation, suivi par le secteur 2 puis la 3. Dans la période d’arrêt de la ventilation, les températures dans les trois secteurs sont homogènes.

Figure V.3 : Evolution de la température d’eau mesurée à la sortie d’échangeur, de la température de soufflage d’air, et de la vitesse d’air.

Études expérimentales et numériques du refroidissement de produits horticoles après récolte Hala Yassine 2015
Figure V.4 : Evolution de l’humidité relative d’air mesurée.

Figure V.5 : Evolutions des températures de l’air selon la hauteur dans le secteur central.
3-2- **Refroidissement des choux-fleurs**

Les températures mesurées à différentes profondeurs dans le chou-fleur en secteur 2 ainsi que la température et l’humidité relative de l’air relevées à proximité sont présentées sur la Figure V.7. Les températures initiales sont d’environ 9°C. Au bout de 10 heures, tous les produits sont à une température inférieure à 4°C avec un écart d’environ 1.6°C entre les températures mesurées à 3 et 8 cm de profondeur.

Sur la Figure V.8 et Figure V.9 sont tracées les températures mesurées à 3 cm et 8 cm au sein des choux-fleurs dans chaque secteur à différents instants. On observe logiquement une augmentation de ces températures. Le chou-fleur en sortie du flux d’air (secteur 3) est à une température plus élevée que le chou-fleur dans le secteur 1, ce qui est cohérent avec les températures d’air relevées présentées dans la Figure V.6.

Figure V.6 : Évolutions des températures de l’air dans les différents secteurs à mi-hauteur de la travée (a) temporelle, (b) à différents instants.

Figure V.7 : Évolution des températures du chou-fleur, de la température et de l’humidité de l’air mesurées dans le secteur 2.
4- Essais de simulation et comparaison avec les mesures

Le but de ces simulations est de valider le modèle développé dans le chapitre 4 pour la prédiction du refroidissement de plusieurs produits placés dans une veine d’air.

4-1- Confrontation simulation-expérience à l’échelle d’un produit

Dans cette partie on s’intéresse au refroidissement d’un produit. Les données mesurées dans les secteurs 2 et 3 (températures et humidité relative) sont exploitées pour caler les propriétés des produits (diamètre, volume des domaines A, B, C) avant de simuler un ensemble de produits. Les paramètres retenus sont définis dans le Tableau V.2. Le diamètre des produits est fixé à 18 cm, la masse à 2 kg avec une teneur en eau de 12.15 kg kg$^{-1}$

En ce qui concerne le coefficient d’échange par convection, la vitesse de l’air mesurée au niveau des choux-fleurs dans les cagettes est très faible. Ainsi, le coefficient de transfert par convection est fixé à 1 Wm$^{-2}$K$^{-1}$ lorsque la ventilation est arrêtée et à 2.5 Wm$^{-2}$K$^{-1}$ en période de ventilation.
Le coefficient de diffusion de l’eau a été pris égale à 1×10^{-9} comme précédemment, cette valeur est proche de celle retenue dans la littérature [70].

Tableau V.2 : Propriétés thermo-physiques utilisées dans le modèle de site industriel

<table>
<thead>
<tr>
<th>Domaine</th>
<th>Pourcentage de domaines (%)</th>
<th>ρc_p (kJm$^{-3}$K$^{-1}$)</th>
<th>k_p(Wm$^{-1}$K$^{-1}$)</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>50 %</td>
<td>1607</td>
<td>0.28</td>
<td>0.62</td>
</tr>
<tr>
<td>C</td>
<td>20 %</td>
<td>4177</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

La confrontation des températures mesurées et calculées dans les 2 choux-fleurs est présentée sur la Figure V.10. On remarque un bon accord entre les valeurs mesurées et simulées pour le chou-fleur du secteur 2. Dans le secteur 3, la température simulée à une profondeur de 3 cm diminue plus rapidement que la température mesurée en particulier au début du refroidissement. Cette différence reste acceptable compte tenu des incertitudes et on rappelle que ces deux produits sont supposés identiques.

![Figure V.10 : Comparaison des températures (S) simulées et (E) expérimentales des choux-fleurs des secteurs 2 et 3.](image)
4-2- Confrontation simulation-expérience à l’échelle de plusieurs produits

Dans cette partie, l’objectif est de simuler les évolutions de la température de l’air et des produits le long d’une section représentative d’une travée de longueur 15 m. Cela revient à considérer un alignement de 80 choux-fleurs de diamètre 18 cm espacés de 2 cm. On suppose les produits dans une veine d’air de section 0.2*0.2 m² (Figure V.11) avec des propriétés identiques à celles données dans le Tableau V.2.

Les conditions de l’air à l’entrée (température et humidité relative) sont fixées à partir des mesures réalisées en entrée de la travée (secteur 1 : Ta-1s et HR-1s).

Lorsque la ventilation est en fonctionnement, les évolutions de la température, de l’humidité du flux d’air et les températures des 80 produits sont calculées selon le modèle présenté au chapitre 4. Les produits sont soumis uniquement à des échanges convectifs; les produits en regard étant à des températures très proches les transferts par rayonnement sont nuls.

En périodes d’arrêt de la ventilation, l’expérimentation a montré que les températures d’air suivent une augmentation de type exponentiel. Afin de simuler cette évolution, une relation de la forme suivante est utilisée (Figure V.12) :

\[T_a = T_{a,\text{init}}^{\text{off}} + \Delta T_a e^{-\frac{t}{\tau}} \]

(V.1)

Avec \(\tau \) : constante de temps déterminée à partir des mesures.

\(T_{a,\text{init}}^{\text{off}} \) : température au début de la période d’arrêt de ventilation.

\(\Delta T_a \) : variation de température maximale pendant la période d’arrêt de la ventilation.

Pour le débit, deux valeurs correspondantes aux deux régimes de fonctionnement observés lors des mesures sont imposées (0.2 et 0.1 kg s\(^{-1}\)) comme montre la Figure V.12. Ces valeurs de débit ainsi que les valeurs des coefficients de transfert par convection présentées précédemment sont obtenues par comparaison des résultats de simulation aux valeurs expérimentales.

Figure V.11 : Schématisation de la configuration et des conditions retenues pour la modélisation.
Figure V.12 : *Evolution de la température de l’air à l’entrée de la veine et du cycle de ventilation lors de la simulation.*

La Figure V.13 donne les températures calculées pour le 40ème et le 80ème produit ainsi que les températures mesurées sur le site approximativement aux mêmes positions (secteur 2 et 3, Figure V.6). En parallèle sont tracées les températures correspondantes de l’air. On aboutit à une confrontation très satisfaisante pour les différents modes de fonctionnement de la ventilation.

Les évolutions calculées sont très proches des mesures. Pour le 80ème produit on observe uniquement une diminution plus rapide de la température de surface. Ces différences restent acceptables par rapport aux hypothèses retenues : choux-fleurs identiques, transfert par conduction entre les produits négligeable...

Figure V.13 : Comparaison entre la simulation et la mesure pour la température de l’air et les températures dans les produits des secteurs 2 et 3.
5- Commande optimale hors ligne de la ventilation

Le mode de fonctionnement d’une unité de refroidissement de produits frais est fonction de la température des produits après la récolte et des conditions climatiques extérieures. Les mesures sur le site industriel ont montré que le pilotage de la cinétique de refroidissement est réalisé en agissant sur le débit de ventilation à travers les produits afin d’avoir une température d’air qui chute rapidement et varie ensuite entre 0°C et 3°C. Ainsi, la ventilation fonctionne de façon intermittente avec 2 niveaux de débit d’air. L’objectif de cette étude est de rechercher hors ligne par une méthode d’optimisation les périodes de mise en fonctionnement et d’arrêt de la ventilation afin d’aboutir au bout du temps imparti au refroidissement souhaité. Plusieurs études de la littérature montrent les avantages de cette approche dans une perspective d’économie d’énergie [93][94] mais aussi la difficulté de généraliser la démarche compte tenu des spécificités de chaque problématique [95].

5-1- Méthodologie

Dans le cadre de ce travail, le temps imparti au refroidissement est décomposé en plusieurs cycles de même durée. Comme le montre la Figure V.14, le temps total est fixé \(t_t \) ainsi que le nombre de cycles \(N_c \). La durée de chaque cycle est alors constante et égale à:

\[
t_c = \frac{t_t}{N_c}
\]

La méthodologie développée consiste à déterminer le taux de mise en route de la ventilation \(\alpha \) durant chaque cycle :

\[
\alpha = \frac{t_{on}}{t_c} = \frac{t_{on}}{t_{on} + t_{off}}
\]

![Figure V.14 : Paramètres des cycles de refroidissement.](image)

La détermination de la valeur de \(\alpha \) pour chaque cycle est réalisée numériquement en couplant le modèle de simulation développé précédemment à un algorithme d’optimisation. Il s’agit alors de minimiser une fonctionnelle qui prend en compte deux aspects :
- la température souhaitée à la fin du refroidissement pour la température au centre du produit situé en sortie du flux d’air,
-la consommation d’énergie par la minimisation des pertes par l’enveloppe de l’enceinte.

Pour obtenir en fin de refroidissement une température proche de la cible souhaitée un critère quadratique est introduit:

\[J_T = (T_{p0} - T_{p0}^{cible})^2 \]

(V.4)

Avec \(T_{p0} \): la température calculée au centre du dernier produit à la fin de refroidissement.

\(T_{p0}^{cible} \): la température souhaitée.

Les transferts thermiques par l’enveloppe de l’enceinte induisent une consommation d’énergie (Figure V.11). Il peut donc être intéressant d’introduire un second critère afin de prendre en compte l’énergie perdue par unité de surface de l’enveloppe sur la durée totale de l’opération:

\[Q_{paroi} = \sum_{i=0}^{N} K[T_{ext}^i - T_{int}^i] \Delta t \]

(V.5)

Où \(Q_{paroi} \) : l’énergie perdue par unité de surface de l’enveloppe sur la durée totale de l’opération (14 heure) [Whm\(^{-2}\)].

\(K \) : la conductance thermique surfacique de la paroi de l’enveloppe [Wm\(^{-2}\)K\(^{-1}\)].

\(T_{int} \) : la température de l’air à l’intérieur de la chambre froide [K], elle est prise égale à la moyenne des températures d’air calculées au dessus des 80 choux-fleurs.

\(T_{ext} \) : la température de l’ambiance extérieure à la chambre froide [K].

\(\Delta t \) : le pas de temps en heure.

\(N \) : le nombre de pas de temps pris en compte pour atteindre le temps final de l’opération.

Comme le coefficient de transmission thermique et le pas de temps sont constants, alors \(Q_{paroi} \) est proportionnelle au terme suivant:

\[J_E = \frac{\sum_{i=0}^{N} [T_{ext}^i - T_{int}^i]}{N} \]

(V.6)

Ainsi, la recherche de la température souhaitée et de la minimisation de consommation d’énergie est effectuée par la minimisation de la fonctionnelle:

\[J_{(T,E)} = w_T(T_{p0} - T_{p0}^{cible})^2 + w_E \frac{\sum_{i=0}^{N} [T_{ext}^i - T_{int}^i]}{N} \]

(V.7)

Avec \(w_T \) et \(w_E \) des coefficients de pondération, selon le jeu de valeurs retenu, on va privilégier le respect de la température « cible » ou la minimisation de consommation d’énergie.

Afin de simuler le fonctionnement de la chambre froide nous exploisons les constats qui ont pu être faits lors de l’analyse des mesures réalisées sur le site en introduisant des contraintes. Lorsque la ventilation est en fonctionnement on observe une vitesse de diminution de la température d’air fonction du débit. Ainsi, les règles suivantes sont introduites dans le calcul:

\[
\frac{dT_a}{dt} = \begin{cases}
8 ^\circ C h^{-1} & \text{pour le débit d’air élevé} \\
4 ^\circ C h^{-1} & \text{pour le débit d’air moyen}
\end{cases}
\]

Les pentes retenues correspondent aux mesures sur le site.

Lorsque le débit d’air est nul, on considère comme dans le paragraphe 4-2 de ce chapitre une élévation de la température de type exponentiel:

\[T_a = T_{a,init}^{off} + \Delta T_a e^{-\frac{t}{\tau}} \]
D’autre part, la mise en fonctionnement de la ventilation sur une courte durée est à éviter ; la contrainte complémentaire suivante est donc introduite.

\[0.2 < \alpha < 1 \]

Cette phase d’optimisation est effectuée sous Matlab par le biais de la fonction « Fmincon » qui est adaptée pour des problèmes d’optimisation sous contraintes.

5-2- Tests numériques

Dans ces tests, le temps total de refroidissement est fixé à \(t_c = 14 \) heures (840 min) et le nombre de cycles \(N_c \) est fixé à 6. La durée de chaque cycle est alors \(t_c = 140 \) min.

Un pas de temps 5 min est retenu pour simuler l’évolution des températures d’air et des produits. L’humidité relative dans ces tests est supposée constante durant toute la phase de refroidissement et égale à 95%. On considère comme précédemment un alignement de 80 choux-fleurs.

Deux modes de fonctionnement sont étudiés : un mode « hiver » avec une basse température initiale des produits et de l’air extérieur et ensuite un mode « été » avec une température initiale élevée. La durée totale de phase de refroidissement est la même pour ces tests

- Fonctionnement « hiver »

La température cible recherchée est \(T_p^cible = 3^\circ C \) et on suppose la température extérieure \(T_{ext} \) à 10°C. La température initiale des produits étant basse, dans ce cas on étudie différents scénarios en considérant uniquement un débit moyen pour la ventilation. Cette approche permet de minimiser la consommation d’énergie des ventilateurs et de la chambre froide.

Pour lancer la phase d’optimisation, les valeurs initiales pour le taux de fonctionnement de la ventilation \(\alpha \) sont données sur la Figure V.15-a et dans le Tableau V.3. Pour ce jeu de valeurs, à la fin du refroidissement la température au centre du dernier produit est au dessus de la cible et l’énergie perdue par unité de surface de l’enveloppe est de 27.5 Whm\(^{-2}\) (Tableau V.4).

La Figure V.15 présente les résultats obtenus en tenant compte uniquement du critère sur la température cible (\(w_T = 1 \) et \(w_E = 0 \)) et en adoptant un compromis pour minimiser la consommation d’énergie (\(w_T = 1 \) et \(w_E = 1.1 \)).

Dans le premier cas, la température au centre de dernier chou-fleur atteint la température cible 3°C. Dans le deuxième cas, l’introduction du critère lié à la consommation d’énergie conduit à une température au centre du dernier chou-fleur légèrement supérieure mais les transferts thermiques par l’enveloppe de l’enceinte sont réduits comme montre le Tableau V.4.

Les valeurs des paramètres \(\alpha \) après l’optimisation dans les deux cas sont présentées dans le Tableau V.3 et sur la Figure V.16.
Figure V.15: Evolution (a) du cycle de la ventilation, (b) de la température de l’air à l’entrée, et (c) de la température au centre de dernier chou-fleur dans différents configurations (mode hiver).

Tableau V.3 : Valeur de paramètre α avant et après d’optimisation à 10°C

<table>
<thead>
<tr>
<th>α</th>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur initiale</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Valeur finale : Configuration 1</td>
<td>1</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Valeur finale : Configuration 2</td>
<td>1</td>
<td>0.7</td>
<td>0.75</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>
Figurë V.16 : Cycles de la ventilation après optimisation (mode hiver).

Tableau V.4 : Résultats d’optimisation pour différents configurations à 10°C

<table>
<thead>
<tr>
<th>Configuration 10°C</th>
<th>w_T</th>
<th>w_E</th>
<th>$T_{p0, obtenu} - T_{p0}^{cible}$ (°C)</th>
<th>$\sum_{i=0}^{N} [T_{ext}^i - T_{int}^i]$</th>
<th>Q_{paroi} (Whm$^{-2}$)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiële</td>
<td>-</td>
<td>-</td>
<td>0.319</td>
<td>7.5</td>
<td>27.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.003</td>
<td>8</td>
<td>29.3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.1</td>
<td>0.25</td>
<td>7.25</td>
<td>26.5</td>
</tr>
</tbody>
</table>

*le coefficient de transmission thermique en chambre de refroidissement positive est pris égal à 0.26 Wm$^{-2}$k$^{-1}$ [96][3].

- Fonctionnement « été »

Dans ce cas on suppose la température initiale du produit et la température extérieure T_{ext} à 20°C. Dans ces conditions des tests préliminaires ont montré la nécessité d’avoir un débit maximal durant quelques cycles pour atteindre la température cible sur le temps imparti qui est toujours de 14 heures.

Les résultats présentés sont obtenus en considérant que la ventilation peut fonctionner avec un débit maximal durant les deux premiers cycles et ensuite un débit moyen pour les quatre derniers cycles.

La Figure V.17 présente les taux de fonctionnement de la ventilation fixés initialement ainsi que les évolutions de la température de l’air à l’entrée et de la température au centre du dernier chou-fleur avant et après l’optimisation pour différents valeurs de w_T et w_E. On constate que dans ces conditions « été » le débit maximal est bien nécessaire au début du refroidissement pour atteindre la température cible. En effet, dans la configuration $w_T = 1$ et $w_E = 0$ la ventilation fonctionne pendant 93% du temps comme le montre le Tableau V.5 et la Figure V.18. Dans la configuration $w_T = 1$ et $w_E = 1.5$, la température est 1.5°C au dessus de la valeur cible au bout de 14 heures mais les transferts thermiques par l’enveloppe sont effectivement réduits (Tableau V.6).
Figure V.17 : Evolution (a) du cycle de la ventilation, (b) de la température de l’air à l’entrée, et (c) de la température au centre de dernier chou-fleur dans différents configurations (mode été).

Tableau V.5 : Valeur de paramètre α avant et après d’optimisation à 20 °C

<table>
<thead>
<tr>
<th>α</th>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur initiale</td>
<td></td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Valeur finale : C1</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.65</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Valeur finale : C2</td>
<td></td>
<td>0.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Figure V.18 : Cycles de la ventilation après optimisation (mode été).

<table>
<thead>
<tr>
<th>Configuration 20 °C</th>
<th>w_T</th>
<th>w_E</th>
<th>$T_{p0, obtenu} - T_{p0}^{\text{cible}}$ (°C)</th>
<th>$\sum_{i=0}^{N} \left[T_{\text{ext}}^i - T_{\text{int}}^i\right]$</th>
<th>Q_{paroi} (Whm^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale</td>
<td>-</td>
<td>-</td>
<td>4.61</td>
<td>16.8</td>
<td>61.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2×10^{-4}</td>
<td>17.8</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>14.5</td>
<td>53</td>
</tr>
</tbody>
</table>

Afin de s’assurer que dans ces conditions la température de surface du 1er chou-fleur n’atteint pas une valeur trop basse son évolution est tracée sur la Figure V.19. On constate que dans la configuration $w_T = 1$ et $w_E = 0$ la température de la surface du chou-fleur reste supérieure à 0°C (environ 1°C).

Figure V.19 : Evolutions des températures du 1er chou-fleur pour $w_T = 1$ et $w_E = 0$ (mode été).

6- Conclusion

Dans ce chapitre l’exploitation d’un suivi in-situ a permis d’appréhender le fonctionnement d’une installation industrielle destinée au refroidissement de produits après récolte et d’identifier différentes voies pour minimiser la consommation d’énergie.

L’analyse des mesures thermo-aérauliques et des cinétiques de refroidissement de plusieurs choux-fleurs ont conduit à exploiter les modèles simplifiés développés au chapitre 4 pour disposer d’un module de calcul permettant la prédiction des températures du flux d’air et des produits dans ce type d’installation.
Le couplage de ce module de calcul à un outil d’optimisation a ensuite permis de tester hors ligne différents scénarios de fonctionnement.
La minimisation d’une fonctionnelle prenant en compte les critères de température de fin de process du produit et de consommation énergétique de l’opération a permis d’établir les intermittences optimales de mise en route de la ventilation.
Conclusion et Perspectives

Le refroidissement post récolte des produits horticoles est une opération incontournable destinée à garantir des conditions de conservation optimales et donc de commercialisation des produits. Cette opération, souvent réalisée par convection forcée d’air refroidi par des machines frigorifiques est très énergivore, il importe donc de disposer d’outils permettant d’optimiser le dimensionnement et le pilotage de telles installations.
Dans le cadre de cette thèse on s’est intéressé au pré-refroidissement (ou froid positif) par air de choux fleurs. Ce produit, de masse conséquente essentiellement commercialisé frais, nécessite une phase de refroidissement de quelques heures.
Dans cette optique, les travaux présentés dans cette thèse concernent le développement et la validation d’un outil numérique destiné à définir hors ligne un scénario de refroidissement optimisé en fonction des conditions climatiques extérieures.
L’étude bibliographique a montré la nécessité de refroidir le plus rapidement possible et de façon uniforme les produits après la récolte en particulier s’ils doivent être transportés et/ou stockés sur une longue durée. Ainsi, la plage de la température et d’humidité relative conseillée dépend de la nature du produit horticole et de son conditionnement.
L’ensemble des expériences menées au chapitre 2 a permis de bien appréhender les propriétés et les cinétiques de refroidissement d’un chou-fleur. L’analyse des propriétés et des essais réalisés sur la veine d’air instrumentée a montré la nécessité de considérer l’hétérogénéité du produit et a mis en évidence l’impact de la masse et de la température initiale des produits sur la cinétique de refroidissement.
En s’appuyant sur ces données expérimentales, un modèle numérique 3D des transferts de chaleur au sein d’un seul produit placé dans une veine d’air de section rectangulaire a été développé. Les phénomènes thermo-aérauliques sont modélisés en régime turbulent.
Le chou-fleur est assimilé à un milieu sphérique décomposé en trois domaines distincts afin de prendre en compte les hétérogénéités. A chaque domaine est affecté de propriétés thermo-physiques effectives différentes.
Au chapitre 4, un modèle numérique simplifié 1D donnant accès aux champs de température et de teneur en eau au sein d’un produit a été développé. La comparaison de simulations aux mesures a permis de valider l’hypothèse 1D. Un module de calcul a alors été développé pour déterminer les évolutions de la température de plusieurs produits placés dans une veine d’air.
A chaque chou-fleur est associée une zone dans laquelle un bilan thermique et massique sur l’air est réalisé.
Ce module de calcul a été évalué au chapitre 5 par l’exploitation d’une séquence de mesure réalisée « in-situ » dans une unité industrielle de refroidissement de choux fleurs. Les simulations des températures de produit et de l’air étant représentatives des mesures une démarche de recherche de paramètres opératoires optimisés a été initiée. On s’est focalisé sur
le pilotage de la ventilation par une recherche optimale hors ligne du cycle de fonctionnement. Les deux critères pris en compte concernent la température du produit et une minimisation de la consommation d’énergie induite par les pertes thermiques au niveau de l’enveloppe des bâtiments. Les différents scénarios étudiés montrent l’intérêt de la démarche. Des prolongements à la fois numériques et expérimentaux sont à mener afin de conforter la démarche mise en œuvre dans le cadre de cette thèse :

- Réaliser des expériences complémentaires dans la veine d’air du laboratoire pour un alignement de deux à trois produits,
- Réaliser des suivis « in-situ » avec une instrumentation plus conséquente et dans des conditions de fonctionnement différentes (période estivale,….) pour affiner la prédiction de l’évolution des températures de l’air et des produits.

En ce qui concerne l’optimisation des paramètres opératoires la prise en compte de la consommation d’énergie des ventilateurs semble nécessaire ; il serait donc intéressant de rechercher simultanément une modulation du taux de fonctionnement et du débit lors de chaque cycle.
Références Bibliographiques

