D. Présentation-des, 50 2.2.1 Expérimentation ForeWheel

.. Application-aux-données-forewheel, 66 Interaction entre les variables mesurées

.. Modèle-statistique, 72 Last absolute shrinkage and selection operator, p.73

B. Sakoe, &. Chiba, and .. , 92 3.3.1 Choix d'une méthodologie de comparaison des signaux adaptée 93 Distance euclidienne 93 Recalage des signaux, Global Alignment, p.99

.. Méthodes-de-classification, 99 k-Nearest Neighbors, p.101

.. Gestion-de-la-santé-des-batteries-d-'une-flotte, 145 4.5.1 Méthodologie de prise en compte de check-up

.. Stratégies-d-'optimisation, 148 Choix de l'instant d'un check-up, p.151

D. Block, Electric vehicle sales and future projections, Tech. rep., Electric Vehicle Transportation Center, 2014.

B. Tuttle, Falling electric car prices are saving ? or destroying ? the ev market, Business Time, 2013.

S. Carley, R. M. Krause, B. W. Lane, and J. D. Graham, Intent to purchase a plug-in electric vehicle: A survey of early impressions in large US cites, Transportation Research Part D: Transport and Environment, vol.18, issue.0, pp.39-45, 2013.
DOI : 10.1016/j.trd.2012.09.007

A. Hayfield, European ev charging infrastructure ? current and future projections, 2013.

Y. Ye, L. H. Saw, Y. Shi, K. Somasundaram, and A. A. Tay, Effect of thermal contact resistances on fast charging of large format lithium ion batteries, Electrochimica Acta, vol.134, issue.0, pp.327-337, 2014.
DOI : 10.1016/j.electacta.2014.04.134

. Deloitte, Electric vehicle realities versus consumer expectations, 2011.

T. Nagaura and K. Tozawa, Lithium ion rechargeable battery, Progress in Batteries and Solar Cells, 1990.

R. Brodd, Comments on the history of lithium-ion batteries, 2002.

T. Kodama and H. Sakaebe, Present status and future prospect for national project on lithium batteries, Journal of Power Sources, vol.81, issue.82, pp.144-149, 1999.
DOI : 10.1016/S0378-7753(98)00207-9

T. B. Group, Batteries for electric cars challenges, opportunities, and the outlook to, p.2020, 2010.

A. Zenati, P. Desprez, and H. Razik, Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference, IECON 2010, 36th Annual Conference on IEEE Industrial Electronics Society, pp.1773-1778, 2010.
DOI : 10.1109/IECON.2010.5675408

URL : https://hal.archives-ouvertes.fr/hal-00564335

M. Augustine, Modeling li-ion battery capacity depletion in a particle filtering framework computational sustainability, 2010.

J. Vetter, P. Novák, M. Wagner, C. Veit, K. Möller et al., Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, vol.147, issue.1-2, pp.269-281, 2005.
DOI : 10.1016/j.jpowsour.2005.01.006

R. Spotnitz, Advanced ev and hev batteries, Vehicle Power and Propulsion, IEEE Conference, vol.4, 2005.

V. Pop, H. J. Bergveld, P. H. Notten, and P. P. Regtien, State-of-the-art of battery state-of-charge determination, Measurement Science and Technology, vol.16, issue.12, pp.93-110, 2005.
DOI : 10.1088/0957-0233/16/12/R01

F. Joho, P. Novak, and M. E. Spahr, Safety Aspects of Graphite Negative Electrode Materials for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.149, issue.8, pp.1020-1024, 2002.
DOI : 10.1149/1.1488915

H. Jannesari, M. Emami, and C. Ziegler, Effect of electrolyte transport properties and variations in the morphological parameters on the variation of side reaction rate across the anode electrode and the aging of lithium ion batteries, Journal of Power Sources, vol.196, issue.22, pp.9654-9664, 2011.
DOI : 10.1016/j.jpowsour.2011.07.026

H. Buqa, A. Würsig, J. Vetter, M. Spahr, F. Krumeich et al., SEI film formation on highly crystalline graphitic materials in lithium-ion batteries, Journal of Power Sources, vol.153, issue.2, pp.385-390, 2006.
DOI : 10.1016/j.jpowsour.2005.05.036

P. Balakrishnan, R. Ramesh, and T. P. Kumar, Safety mechanisms in lithium-ion batteries, Journal of Power Sources, vol.155, issue.2, pp.401-414, 2006.
DOI : 10.1016/j.jpowsour.2005.12.002

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun et al., Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, vol.208, issue.0, pp.210-224, 2012.
DOI : 10.1016/j.jpowsour.2012.02.038

D. Goers, M. E. Spahr, A. Leone, W. Märkle, and P. Novák, The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes, Electrochimica Acta, vol.56, issue.11, pp.3799-3808, 2011.
DOI : 10.1016/j.electacta.2011.02.046

M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev et al., Aging mechanism in li ion cells and calendar life predictions, Journal of Power Sources, vol.97, issue.0, pp.98-111, 2001.

T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte, Journal of The Electrochemical Society, vol.151, issue.8, pp.1120-1123, 2004.
DOI : 10.1149/1.1763141

G. Chung, H. Kim, S. Yu, S. Jun, J. Wook-choi et al., Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation, Journal of The Electrochemical Society, vol.147, issue.12, pp.4391-4398, 2000.
DOI : 10.1149/1.1394076

S. S. Zhang, A review on electrolyte additives for lithium-ion batteries, Special issue including selected papers from the International Power Sources Symposium 2005 together with regular papers, pp.1379-1394, 2006.
DOI : 10.1016/j.jpowsour.2006.07.074

S. Bourlot, P. Blanchard, and S. Robert, Investigation of aging mechanisms of high power Li-ion cells used for hybrid electric vehicles, Journal of Power Sources, vol.196, issue.16, pp.6841-6846, 2011.
DOI : 10.1016/j.jpowsour.2010.09.103

A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications, Journal of Power Sources, vol.241, issue.0, pp.680-689, 2013.
DOI : 10.1016/j.jpowsour.2013.05.040

R. N. Methekar, P. W. Northrop, K. Chen, R. D. Braatz, and V. R. Subramaniana, Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation, Journal of The Electrochemical Society, vol.158, issue.4, pp.363-370, 2011.
DOI : 10.1149/1.3548526

M. Koltypin, D. Aurbach, L. Nazar, and B. Ellis, More on the performance of LiFePO4 electrodes???The effect of synthesis route, solution composition, aging, and temperature, Journal of Power Sources, vol.174, issue.2, pp.1241-1250, 2007.
DOI : 10.1016/j.jpowsour.2007.06.045

S. Zhang, K. Xu, and T. Jow, Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte, Journal of Solid State Electrochemistry, vol.7, issue.3, pp.147-151, 2002.
DOI : 10.1007/s10008-002-0300-9

S. Zhang, K. Xu, and T. Jow, The low temperature performance of Li-ion batteries, Journal of Power Sources, vol.115, issue.1, pp.137-140, 2003.
DOI : 10.1016/S0378-7753(02)00618-3

M. Dubarry, C. Truchot, and B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, vol.219, issue.0, pp.204-216, 2012.
DOI : 10.1016/j.jpowsour.2012.07.016

P. Liu, J. Wang, J. Hicks-garner, E. Sherman, S. Soukiazian et al., Aging Mechanisms of LiFePO[sub 4] Batteries Deduced by Electrochemical and Structural Analyses, Journal of The Electrochemical Society, vol.157, issue.4, pp.499-507, 2010.
DOI : 10.1149/1.3294790

M. Kassem, J. Bernard, R. Revel, S. Pélissier, F. Duclaud et al., Calendar aging of a graphite/LiFePO4 cell, Journal of Power Sources, vol.208, issue.0, pp.296-305, 2012.
DOI : 10.1016/j.jpowsour.2012.02.068

URL : https://hal.archives-ouvertes.fr/hal-00876555

K. Xu and A. Von-cresce, Interfacing electrolytes with electrodes in Li ion batteries, Journal of Materials Chemistry, vol.21, issue.121, pp.9849-9864, 2011.
DOI : 10.1039/c0jm04309e

K. Edstrom, T. Gustafsson, and J. O. Thomas, The cathode???electrolyte interface in the Li-ion battery, Electrochimica Acta, vol.50, issue.2-3, pp.397-403, 2004.
DOI : 10.1016/j.electacta.2004.03.049

M. Kerlau, M. Marcinek, V. Srinivasan, and R. M. Kostecki, Studies of local degradation phenomena in composite cathodes for lithium-ion batteries, Electrochimica Acta, vol.52, issue.17, pp.5422-5429, 2007.
DOI : 10.1016/j.electacta.2007.02.085

K. Amine, J. Liu, and I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells, Electrochemistry Communications, vol.7, issue.7, pp.669-673, 2005.
DOI : 10.1016/j.elecom.2005.04.018

J. Zhu, K. Zeng, and L. Lu, Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries, Electrochimica Acta, vol.68, issue.0, pp.52-59, 2012.
DOI : 10.1016/j.electacta.2012.02.032

M. Wohlfahrt-mehrens, C. Vogler, and J. Garche, Aging mechanisms of lithium cathode materials, Journal of Power Sources, vol.127, issue.1-2, pp.58-64, 2004.
DOI : 10.1016/j.jpowsour.2003.09.034

E. Meissner and G. Richter, The challenge to the automotive battery industry: the battery has to become an increasingly integrated component within the vehicle electric power system, Journal of Power Sources, vol.144, issue.2, pp.438-460, 2005.
DOI : 10.1016/j.jpowsour.2004.10.031

R. Wright, C. Motloch, J. Belt, J. Christophersen, C. Ho et al., Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries, Journal of Power Sources, vol.110, issue.2, pp.445-470, 2002.
DOI : 10.1016/S0378-7753(02)00210-0

R. P. Ramasamy, R. E. White, and B. N. Popov, Calendar life performance of pouch lithium-ion cells, Journal of Power Sources, vol.141, issue.2, pp.298-306, 2005.
DOI : 10.1016/j.jpowsour.2004.09.024

W. Bögel, J. P. Büchel, and H. Katz, Real-life EV battery cycling on the test bench, Journal of Power Sources, vol.72, issue.1, pp.37-42, 1998.
DOI : 10.1016/S0378-7753(97)02775-4

I. Bloom, B. Cole, J. Sohn, S. Jones, E. Polzin et al., An accelerated calendar and cycle life study of Li-ion cells, Journal of Power Sources, vol.101, issue.2, pp.238-247, 2001.
DOI : 10.1016/S0378-7753(01)00783-2

K. Amine, C. Chen, J. Liu, M. Hammond, A. Jansen et al., Factors responsible for impedance rise in high power lithium ion batteries, proceedings of the 10th International Meeting on Lithium Batteries, pp.98-684, 2001.

S. Zhang, K. Xu, and T. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries, Electrochimica Acta, vol.49, issue.7, pp.1057-1061, 2004.
DOI : 10.1016/j.electacta.2003.10.016

M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre et al., Main aging mechanisms in Li ion batteries, Journal of Power Sources, vol.146, issue.1-2, pp.90-96, 2005.
DOI : 10.1016/j.jpowsour.2005.03.172

K. Nunotani, F. Yoshida, Y. Kamiya, Y. Daisho, K. Abe et al., Development and performance evaluation of lithium iron phosphate battery with superior rapid charging performance, Vehicle Power and Propulsion Conference (VPPC), pp.1-4, 2011.

J. Gnanaraj, E. Zinigrad, L. Asraf, H. Gottlieb, M. Sprecher et al., The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions, Journal of Power Sources, vol.119, issue.121, pp.794-798, 2003.
DOI : 10.1016/S0378-7753(03)00255-6

R. Kötz, P. Ruch, and D. Cericola, Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests, Journal of Power Sources, vol.195, issue.3, pp.923-928, 2010.
DOI : 10.1016/j.jpowsour.2009.08.045

H. Gong, Y. Yu, T. Li, T. Mei, Z. Xing et al., Solvothermal synthesis of LiFePO4/C nanopolyhedrons and microellipsoids and their performance in lithium-ion batteries, Materials Letters, vol.66, issue.1, pp.374-376, 2012.
DOI : 10.1016/j.matlet.2011.08.093

K. Asakura, M. Shimomura, and T. Shodai, Study of life evaluation methods for Li-ion batteries for backup applications, Journal of Power Sources, vol.119, issue.121, pp.121-902, 2003.
DOI : 10.1016/S0378-7753(03)00208-8

D. Doerffel and S. A. Sharkh, A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries, Journal of Power Sources, vol.155, issue.2, pp.395-400, 2006.
DOI : 10.1016/j.jpowsour.2005.04.030

M. Conte, F. V. Conte, I. Bloom, K. Morita, T. Ikeya et al., Ageing testing procedures on lithium batteries in an international collaboration context, 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition, 2010.

E. Meissner and G. Richter, Battery Monitoring and Electrical Energy Management, Journal of Power Sources, vol.116, issue.1-2, pp.79-98, 2003.
DOI : 10.1016/S0378-7753(02)00713-9

M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust et al., Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data, Journal of Power Sources, vol.215, issue.0, 2012.
DOI : 10.1016/j.jpowsour.2012.05.012

M. Doyle and J. Newman, Modeling the performance of rechargeable lithium-based cells: design correlations for limiting cases, Journal of Power Sources, vol.54, issue.1, pp.46-51, 1995.
DOI : 10.1016/0378-7753(94)02038-5

M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, and J. Tarascon, Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells, Journal of The Electrochemical Society, vol.143, issue.6, pp.1890-1903, 1996.
DOI : 10.1149/1.1836921

J. Newman and W. Tiedemann, Porous-electrode theory with battery applications, AIChE Journal, vol.21, issue.1, pp.25-41, 1975.
DOI : 10.1002/aic.690210103

R. Darling and J. Newman, Modeling Side Reactions in Composite Li[sub y]Mn[sub 2]O[sub 4] Electrodes, Journal of The Electrochemical Society, vol.145, issue.3, pp.990-998, 1998.
DOI : 10.1149/1.1838376

J. Christensen and J. Newman, Effect of Anode Film Resistance on the Charge/Discharge Capacity of a Lithium-Ion Battery, Journal of The Electrochemical Society, vol.150, issue.11, pp.1416-1420, 2003.
DOI : 10.1149/1.1612501

J. Christensen and J. Newman, A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase, Journal of The Electrochemical Society, vol.151, issue.11, pp.1977-1988, 2004.
DOI : 10.1149/1.1804812

J. Christensen and J. Newman, A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide, Journal of The Electrochemical Society, vol.153, issue.6, pp.1019-1030, 2006.
DOI : 10.1149/1.2185287

H. J. Ploehn, P. Ramadass, and R. E. White, Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells, Journal of The Electrochemical Society, vol.151, issue.3, pp.456-462, 2004.
DOI : 10.1149/1.1644601

V. Ramadesigan, V. Boovaragavan, J. C. Pirkle, and V. R. Subramanian, Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models, Journal of The Electrochemical Society, vol.157, issue.7, pp.854-860, 2010.
DOI : 10.1149/1.3425622

V. Ramadesigan, K. Chen, N. A. Burns, V. Boovaragavan, R. D. Braatz et al., Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models, Journal of The Electrochemical Society, vol.158, issue.9, pp.1048-1054, 2011.
DOI : 10.1149/1.3609926

M. Safari and C. Delacourt, Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence, Journal of The Electrochemical Society, vol.158, issue.2, pp.62-73, 2011.
DOI : 10.1149/1.3515902

M. Safari and C. Delacourt, Simulation-Based Analysis of Aging Phenomena in a Commercial Graphite, Cell, vol.158, 2011.

M. Safari and C. Delacourt, Aging of a Commercial Graphite/LiFePO4 Cell, Journal of The Electrochemical Society, vol.158, issue.10, pp.1123-1135, 2011.
DOI : 10.1149/1.3614529

S. Johnson, Hierarchical clustering schemes, Psychometrika, vol.58, issue.4, pp.241-254, 1967.
DOI : 10.1007/BF02289588

A. L. Dalverny, J. S. Filhol, and M. L. Doublet, Interface electrochemistry in conversion materials for Li-ion batteries, Journal of Materials Chemistry, vol.113, issue.27, pp.10134-10142, 2011.
DOI : 10.1039/c0jm04202a

K. Tasaki, A. Goldberg, J. Lian, M. Walker, A. Timmons et al., Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents, Journal of The Electrochemical Society, vol.156, issue.12, pp.1019-1027, 2009.
DOI : 10.1149/1.3239850

K. Tasaki and S. J. Harris, Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents, The Journal of Physical Chemistry C, vol.114, issue.17, pp.8076-8083, 2010.
DOI : 10.1021/jp100013h

K. Leung and J. L. Budzien, Ab initio molecular dynamics simulations of the initial stages of solid???electrolyte interphase formation on lithium ion battery graphitic anodes, Physical Chemistry Chemical Physics, vol.149, issue.98, pp.6583-6586, 2010.
DOI : 10.1039/b925853a

S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector et al., Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase, Journal of the American Chemical Society, vol.134, issue.37, pp.15476-15487, 2012.
DOI : 10.1021/ja305366r

D. Haifeng, W. Xuezhe, and S. Zechang, A new SOH prediction concept for the power lithium-ion battery used on HEVs, 2009 IEEE Vehicle Power and Propulsion Conference, pp.1649-1653, 2009.
DOI : 10.1109/VPPC.2009.5289654

M. Einhorn, V. Conte, C. Kral, J. Fleig, and R. Permann, Parameterization of an electrical battery model for dynamic system simulation in electric vehicles, pp.1-7, 2010.

C. Blanco, L. Sanchez, M. Gonzalez, J. Anton, V. Garcia et al., An equivalent circuit model with variable effective capacity for lifepo4 batteries, 2014.

A. Eddahech, O. Briat, H. Henry, J. Delétage, E. Woirgard et al., Ageing monitoring of lithium-ion cell during power cycling tests, proceedings of the 22th European Symposium on the Reliability Of Electron Devices, Failure Physics And Analy- sis, 1968.
DOI : 10.1016/j.microrel.2011.07.013

URL : https://hal.archives-ouvertes.fr/hal-00641829

D. Andre, C. Appel, T. Soczka-guth, and D. U. Sauer, Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries, Journal of Power Sources, vol.224, issue.0, pp.20-27, 2013.
DOI : 10.1016/j.jpowsour.2012.10.001

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

M. E. Tipping, Sparse bayesian learning and the relevance vector machine, J. Mach. Learn. Res, vol.1, pp.211-244, 2001.

C. M. Bishop, Pattern recognition and machine learning, 2006.

B. Saha, K. Goebel, S. Poll, and J. Christophersen, An integrated approach to battery health monitoring using bayesian regression and state estimation, Autotestcon, IEEE, pp.646-653, 2007.

B. Saha, K. Goebel, S. Poll, and J. Christophersen, Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework, IEEE Transactions on Instrumentation and Measurement, vol.58, issue.2, pp.291-297, 2009.
DOI : 10.1109/TIM.2008.2005965

O. Erdinc, B. Vural, and M. Uzunoglu, A dynamic lithium-ion battery model considering the effects of temperature and capacity fading, 2009 International Conference on Clean Electrical Power, 2009.
DOI : 10.1109/ICCEP.2009.5212025

B. Y. Liaw, E. Roth, R. G. Jungst, G. Nagasubramanian, H. L. Case et al., Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells, Journal of Power Sources, vol.119, issue.121, pp.874-886, 2003.
DOI : 10.1016/S0378-7753(03)00196-4

J. Belt, V. Utgikar, and I. Bloom, Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes, Journal of Power Sources, vol.196, issue.23, pp.10213-10221, 2011.
DOI : 10.1016/j.jpowsour.2011.08.067

K. Smith, G. Kim, and A. Pesaran, Modeling of nonuniform degradation in largeformat li-ion batteries, presented at the 215th, pp.25-29, 2009.

E. Thomas, I. Bloom, J. Christophersen, and V. Battaglia, Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing, Journal of Power Sources, vol.184, issue.1, pp.312-317, 2008.
DOI : 10.1016/j.jpowsour.2008.06.017

H. Wenzl, I. Baring-gould, R. Kaiser, B. Y. Liaw, P. Lundsager et al., Life prediction of batteries for selecting the technically most suitable and cost effective battery, Journal of Power Sources, vol.144, issue.2, pp.373-384, 2005.
DOI : 10.1016/j.jpowsour.2004.11.045

P. Ramadass, B. Haran, R. White, and B. N. Popov, Mathematical modeling of the capacity fade of Li-ion cells, Journal of Power Sources, vol.123, issue.2, pp.230-240, 2003.
DOI : 10.1016/S0378-7753(03)00531-7

J. Wang, P. Liu, J. Hicks-garner, E. Sherman, S. Soukiazian et al., Cycle-life model for graphite-LiFePO4 cells, Journal of Power Sources, vol.196, issue.8, pp.3942-3948, 2011.
DOI : 10.1016/j.jpowsour.2010.11.134

S. Sankarasubramanian and B. Krishnamurthy, A capacity fade model for lithium-ion batteries including diffusion and kinetics, Electrochimica Acta, vol.70, issue.0, pp.248-254, 2012.
DOI : 10.1016/j.electacta.2012.03.063

W. Gu, Z. Sun, X. Wei, and H. Dai, A Capacity Fading Model of Lithium-Ion Battery Cycle Life Based on the Kinetics of Side Reactions for Electric Vehicle Applications, Electrochimica Acta, vol.133, issue.0, pp.107-116, 2014.
DOI : 10.1016/j.electacta.2014.03.186

S. Mishra, M. Pecht, T. Smith, R. Mcnee, and . Harris, Remaining life prediction of electronic products using life consumption monitoring approach, European Microelectronics Packaging and Interconnection Symposium

V. Marano, S. Onori, Y. Guezennec, G. Rizzoni, and N. Madella, Lithium-ion batteries life estimation for plug-in hybrid electric vehicles, Vehicle Power and Propulsion Conference, IEEE, pp.536-543, 2009.

M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt, Life-Prediction Methods for Lithium-Ion Batteries Derived from a Fatigue Approach, Journal of The Electrochemical Society, vol.157, issue.6, pp.713-720, 2010.
DOI : 10.1149/1.3374634

K. Takei, K. Kumai, Y. Kobayashi, H. Miyashiro, N. Terada et al., Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test, proceedings of the 10th International Meeting on Lithium Batteries, pp.98-697, 2001.

C. Chen and M. Pecht, Prognostics of lithium-ion batteries using model-based and data-driven methods, Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), 2012.
DOI : 10.1109/PHM.2012.6228850

K. S. Ng, C. Moo, Y. Chen, and Y. Hsieh, Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries, Applied Energy, vol.86, issue.9, pp.1506-1511, 2009.
DOI : 10.1016/j.apenergy.2008.11.021

T. Hansen and C. Wang, Support vector based battery state of charge estimator, Journal of Power Sources, vol.141, issue.2, pp.351-358, 2005.
DOI : 10.1016/j.jpowsour.2004.09.020

L. A. Zadeh, Is there a need for fuzzy logic?, Information Sciences, vol.178, issue.13, pp.2751-2779, 2008.
DOI : 10.1016/j.ins.2008.02.012

K. Tsang and W. Chan, State of health detection for lithium ion batteries in photovoltaic system, Energy Conversion and Management, pp.7-12, 2013.

A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology, Journal of Power Sources, vol.80, issue.1-2, pp.293-300, 1999.
DOI : 10.1016/S0378-7753(99)00079-8

P. Singh, R. Vinjamuri, X. Wang, and D. Reisner, Fuzzy logic modeling of EIS measurements on lithium-ion batteries, selection of papers from the 6th International Symposium, pp.1673-1679, 2004.
DOI : 10.1016/j.electacta.2005.02.143

I. Kim, Nonlinear state of charge estimator for hybrid electric vehicle battery, Power Electronics, IEEE Transactions on, vol.23, issue.4, pp.2027-2034, 2008.

C. Hu, B. D. Youn, and J. Chung, A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation, Applied Energy, vol.92, issue.0, 2011.
DOI : 10.1016/j.apenergy.2011.08.002

G. L. Plett, Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs, Journal of Power Sources, vol.134, issue.2, pp.277-292, 2004.
DOI : 10.1016/j.jpowsour.2004.02.033

M. Urbain, Modelisation electrique et energetique des accumulateurs lithium ion estimation en ligne du soc et du soh, 2009.

D. V. Do, Diagnostic de batteries lithium ion dans des applications embarquées, 2010.

J. Lampinen and A. Vehtari, Bayesian approach for neural networks???review and case studies, Neural Networks, vol.14, issue.3, pp.257-274, 2001.
DOI : 10.1016/S0893-6080(00)00098-8

G. M. Jenkins and G. E. Box, Time-Series Analysis., Journal of the Royal Statistical Society. Series A (General), vol.124, issue.2, 1994.
DOI : 10.2307/2984138

J. Kozlowski, Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), pp.3257-3270, 2003.
DOI : 10.1109/AERO.2003.1234169

S. Eom, M. Kim, I. Kim, S. Moon, Y. Sun et al., Life prediction and reliability assessment of lithium secondary batteries, Journal of Power Sources, vol.174, issue.2, pp.954-958, 2007.
DOI : 10.1016/j.jpowsour.2007.06.208

M. André, Real-world driving cycles for measuring cars pollutant emissions ? part a : The artemis european driving cycles, 2004.

Z. Younes, L. Boudet, F. Suard, M. Gérard, and R. Rioux, Analysis of the main factors influencing the energy consumption of electric vehicles, 2013 International Electric Machines & Drives Conference, pp.247-253, 2013.
DOI : 10.1109/IEMDC.2013.6556260

J. L. Rodgers and A. W. Nicewander, Thirteen Ways to Look at the Correlation Coefficient, The American Statistician, vol.42, issue.1, pp.59-66, 1988.
DOI : 10.2307/2685263

S. Ihara, Information theory for continuous systems, 1993.
DOI : 10.1142/1676

L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F. S. et al., Mutual Information Analysis: a??Comprehensive Study, Journal of Cryptology, vol.4, issue.3, pp.269-291, 2010.
DOI : 10.1007/s00145-010-9084-8

W. Li, Mutual information functions versus correlation functions, Journal of Statistical Physics, vol.10, issue.5, pp.823-837, 1990.
DOI : 10.1007/BF01025996

I. Jolliffe, Principal Component Analysis, Encyclopedia of Statistics in Behavioral Science, 2005.

A. B. Costello, Getting the most from your analysis, Pan, vol.12, issue.2, pp.131-146, 2009.

R. H. Myers, Classical and modern regression with applications

A. E. Hoerla and R. W. Kennarda, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royak Statistical Society, Series BMethodological), vol.58, pp.267-288, 1996.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998

J. Bigot, Recalage de signaux et analyse de variance fonctionnelle par ondelettes -applications au domaine biomédical, 2003.

T. Gasser and A. Kneip, Searching for structure in curve samples, Journal of the American Statistical Association, vol.90, issue.432, pp.1179-1188, 1995.

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.26, issue.1, pp.43-49, 1978.

M. Cuturi, J. Vert, Ø. Birkenes, and T. Matsui, A Kernel for Time Series Based on Global Alignments, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, p.413, 2007.
DOI : 10.1109/ICASSP.2007.366260

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection

R. Tibshirani, G. Walther, and T. Hastie, Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.2, pp.411-423, 2001.
DOI : 10.1111/1467-9868.00293

F. Suard and D. Mercier, Using Kernel Basis with Relevance Vector Machine for Feature Selection, Artificial Neural Networks ? ICANN 2009, pp.255-264, 2009.
DOI : 10.1023/A:1013955821559

C. Bahlmann, B. Haasdonk, and H. Burkhardt, Online handwriting recognition with support vector machines - a kernel approach, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition, pp.49-54, 2002.
DOI : 10.1109/IWFHR.2002.1030883

B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

V. Networkfleet-http, en/solutions/technology/fleet-management.html [153] Telogis Fleet http

E. Nowak, F. Jurie, and B. Triggs, Sampling Strategies for Bag-of-Features Image Classification, Computer Vision ECCV, 2006.
DOI : 10.1007/11744085_38

URL : https://hal.archives-ouvertes.fr/hal-00203752

B. W. Silverman, Density estimation for statistics and data analysis, 1986.
DOI : 10.1007/978-1-4899-3324-9

S. J. Sheather, Density Estimation, Statistical Science, vol.19, issue.4, pp.588-597, 2004.
DOI : 10.1214/088342304000000297

D. Gusfield, Algorithms on Strings, Trees and Sequences : Computer Science and Computation Biology, 1997.
DOI : 10.1017/CBO9780511574931

T. W. Liao, Clustering of time series data???a survey, Pattern Recognition, vol.38, issue.11, pp.1857-1874, 2005.
DOI : 10.1016/j.patcog.2005.01.025

C. A. Ratanamahatana and E. Keogh, Making Time-series Classification More Accurate Using Learned Constraints, proc. of SDM International Conf, pp.11-22, 2004.
DOI : 10.1137/1.9781611972740.2

J. J. Rodríguez, C. J. Alonso, and J. A. Maestro, Support vector machines of intervalbased features for time series classification, Knowledge-Based Systems, pp.171-178, 2005.

A. P. Shanker and A. Rajagopalan, Off-line signature verification using DTW, Pattern Recognition Letters, vol.28, issue.12, pp.1407-1414, 2007.
DOI : 10.1016/j.patrec.2007.02.016

J. Aach and G. M. Church, Aligning gene expression time series with time warping algorithms, Bioinformatics, vol.17, issue.6, pp.495-508, 2001.
DOI : 10.1093/bioinformatics/17.6.495

Z. Bar-joseph, G. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon, A new approach to analyzing gene expression time series data, Proceedings of the sixth annual international conference on Computational biology , RECOMB '02, pp.39-48, 2002.
DOI : 10.1145/565196.565202

F. Petitjean, C. Kurtz, N. Passat, and P. Gançarski, Spatio-temporal reasoning for the classification of satellite image time series, Pattern Recognition Letters, vol.33, issue.13, pp.1805-1815, 2012.
DOI : 10.1016/j.patrec.2012.06.009

URL : https://hal.archives-ouvertes.fr/hal-00636814

F. Petitjean, A. Ketterlin, and P. Gançarski, A global averaging method for dynamic time warping, with applications to clustering, Pattern Recognition, vol.44, issue.3, pp.678-693, 2011.
DOI : 10.1016/j.patcog.2010.09.013

D. Gavrila and L. , Davis, 3-d model-based tracking of humans in action : a multiview approach, in : Computer Vision and Pattern Recognition, Proceedings CVPR '96, pp.73-80, 1996.

T. Rath and R. Manmatha, Word image matching using dynamic time warping, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., pp.521-527, 2003.
DOI : 10.1109/CVPR.2003.1211511

H. Sakoe and S. Chiba, A dynamic programming approach to continuous speech recognition, Proceedings of the Seventh International Congress on Acoustics, 1971.

E. V. Ruiz, An algorithm for finding nearest neighbours in (approximately) constant average time, Pattern Recognition Letters, vol.4, issue.3, pp.145-157, 1986.
DOI : 10.1016/0167-8655(86)90013-9

P. H. Wong, O. C. Au, J. W. Wong, and W. H. Lau, Reducing computational complexity of dynamic time warping-based isolated word recognition with time scale modification, ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344), pp.722-725, 1998.
DOI : 10.1109/ICOSP.1998.770313

Q. Zhu, G. E. Batista, T. Rakthanmanon, and E. J. Keogh, A Novel Approximation to Dynamic Time Warping allows Anytime Clustering of Massive Time Series Datasets, SDM'12, pp.999-1010, 2012.
DOI : 10.1137/1.9781611972825.86

C. Gouy-pailler, H. Najmeddine, A. Mouraud, F. Suard, A. Jay et al., Exploring incas : Multivariate data mining techniques for sensor selection in low-energy consumption buildings, Joint Conference CIB W078 -W102 ?, 2011.

V. Niennattrakul and C. Ratanamahatana, Shape averaging under Time Warping, 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp.626-629, 2009.
DOI : 10.1109/ECTICON.2009.5137128

L. Gupta, D. Molfese, R. Tammana, and P. Simos, Nonlinear alignment and averaging for estimating the evoked potential, IEEE Transactions on Biomedical Engineering, vol.43, issue.4, pp.348-356, 1996.
DOI : 10.1109/10.486255

V. Niennattrakul and C. A. Ratanamahatana, On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping, 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07), pp.733-738, 2007.
DOI : 10.1109/MUE.2007.165

V. Niennattrakul, D. Srisai, and C. A. Ratanamahatana, Shape-based template matching for time series data, Knowledge-Based Systems, pp.1-8, 2012.

S. Ongwattanakul and D. Srisai, Contrast enhanced dynamic time warping distance for time series shape averaging classification, Proceedings of the 2nd International Conference on Interaction Sciences Information Technology, Culture and Human, ICIS '09, pp.976-981, 2009.
DOI : 10.1145/1655925.1656102

F. Petitjean and P. Gançarski, Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment, Theoretical Computer Science, vol.414, issue.1, pp.76-91, 2012.
DOI : 10.1016/j.tcs.2011.09.029

E. Keogh, Q. Zhu, B. Hu, Y. H. Li, L. Wei et al., Ucr time series classification/clustering page

A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications, Journal of Power Sources, vol.241, issue.0, pp.241680-689, 2013.
DOI : 10.1016/j.jpowsour.2013.05.040

A. Barré, F. Suard, M. Gérard, M. Montaru, and D. Riu, Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use, Journal of Power Sources, vol.245, issue.0, pp.245846-856, 2014.
DOI : 10.1016/j.jpowsour.2013.07.052

A. Barré, F. Suard, M. Gérard, and D. Riu, Electric vehicles performance estimation through a patterns extraction and classification methodology, Journal of Power Sources, vol.273, issue.0, pp.670-679, 2015.
DOI : 10.1016/j.jpowsour.2014.09.098

A. Barré, M. Gérard, F. Suard, M. Montaru, and D. Riu, Statistical analysis of li-ion battery degradation based on recording data of real vehicle utilization. Poster session, 5th International Conference on Advanced Lithium Batteries for Automobile Applications (ABAA5), 2012.

A. Barré, F. Suard, M. Gérard, M. Montaru, and D. Riu, Statistical Method Tools to Analyze Ageing Effects on Li-Ion Battery Performances, SAE Technical Paper Series, 2013.
DOI : 10.4271/2013-01-1429

A. Barré, F. Suard, M. Gérard, and D. Riu, A real-time data-driven method for battery health prognostics in electric vehicle use, 2nd European Conference of the Prognostics and Health Management Society (PHME), 2014.

A. Barré, F. Suard, M. Gérard, and D. Riu, Battery Capacity Estimation and Health Management of an Electric Vehicle Fleet, 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), 2014.
DOI : 10.1109/VPPC.2014.7007025

A. Barré, F. Suard, and M. Gérard, Procédé, dispositif, et système d'estimation de l'état de santé d'une batterie d'un véhicule électrique ou hybride en condition d'utilisation, et procédé de construction d'un modèle pour une telle estimation, 1450025.