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General Introduction 

 

General challenges in Microelectronics 

As its name suggests, the field of microelectronics focuses on the study and fabrication 

of electronic components at the micro and nano scale, connected together on the same 

substrate to form Integrated Circuits (IC). The role of IC is to implement one or many 

electronic functions of different complexity levels on the same chip. IC find extensive use in 

electronic systems such as smart phones, numerical televisions, credit cards, computers, 

videogame consoles, devices for automotive, military and even aerospace applications. Any 

perspective progress towards enhancing such systems starts from improvements in the field of 

microelectronics. The driving parameters in research aimed at achieving enhanced IC 

performance are speed, integration density, and reduced power consumption and production 

costs. 

The basic components of integrated circuits are transistors, diodes, resistors, capacitors, 

and inductors. In 1965 Gordon Moore in [Moore 65] predicted that the number of transistors 

that can be hosted in circuits of a given size will roughly double with every year of 

development, enabling exponential improvement in system-level performance. Moore revised 

his prediction at a later date [Moore 75] and modified it by stating that the number of 

transistors in microprocessors would double every two years. This prediction is known as 

“scaling trend”, and reflects the research efforts that pursue the continuous miniaturization of 

the dimensions of MOS transistors. MOS with reduced size achieve high saturation current, 

which translates into an increase in the operating speed of the products. The challenge with 

such devices is however to maintain the leakage current low enough in order to limit the 

power consumption of products, especially if powered by batteries. 

Another challenge faced by researchers chasing the “scaling trend” is the transistor local 

variability. This phenomenon is a consequence of process variations (random microscopic 

fluctuations of the device architecture) and causes identically designed transistors to exhibit 

different electrical behavior. It became mandatory, therefore, for the microelectronics industry 

to understand the physical causes of such variability, to quantify them, and to propose 
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solutions that enable reduced variability, with the aim of guaranteeing reliable performance in 

integrated circuits. 

  

Motivation of this work 

For correct operation, certain analog (current mirrors, amplifiers, etc.) and digital (Static 

Random Access Memory, SRAM) circuits require pairs of transistors, which are identically 

designed and laid out in an identical environment, in order to ensure identical electrical 

performances. Real devices, however, suffer from random local variations in the electrical 

parameters, a problem referred to as mismatch. Pelgrom et al. demonstrated a mismatch law 

that establishes a direct dependency between the local fluctuations of an electrical parameter P 

and the channel area (denoted as S) through a coefficient A [Pelgrom89]. This, in 

combination with the miniaturisation of MOSFET devices, has set the ground for an 

increasing interest in achieving a deeper understanding of the causes of the mismatch 

phenomena and characterising their effects, with the objective of guaranteeing reliable 

integrated circuits performance. 

In light of the presented scenario, the purpose of the work reported in this thesis is to: 

 

o Optimize the measurement methodology of mismatch phenomena; 

 

o Characterize different configurations of MOS transistors in order to propose optimized 

design architectures for specific applications; 

 

o Analyze and model the mismatch phenomena observed in advanced Bulk and Silicon 

On Insulator (SOI) MOSFET transistors; 

 

o Analyze and model the mismatch phenomena with the transistor aging in advanced 

MOSFET transistors. 

 

Thesis layout  

The first chapter presents the concept of MOS transistor, reviews extraction techniques 

and the principles of variability. The following chapters are centered on four major subjects, 

as outlined below. 
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o Chapter II focuses on the methodologies for the extraction and modeling of the 

electrical parameters of MOS transistors. A new methodology of mismatch extraction 

parameters is proposed, with a thorough discussion of its advantages and applications. 

A new drain current mismatch model is also proposed which expands from the 

strategy published by Croon [Croon07] by adding an Rsd contribution and neglecting 

the mutual correlation between parameters. 

 

o Chapter III focuses on the characterization of MOS transistors of different design 

architectures in various configurations for high drain current design applications. A 

comparison of three different MOS transistor types and configurations for high drain 

current applications is reported. Conclusions and perspectives are discussed in detail, 

with the aim of proposing the most convenient MOS configuration or type for specific 

applications. 

 

o After these methodology and design considerations, the studies are oriented on 

mismatch phenomena in advanced technologies: 

 

o Chapter IV treats the effect of Germanium (Ge) on mismatch phenomena in 

the case of the PMOS 28 nm Bulk technology node. The conducted work 

comprises a detailed study on threshold voltage, current gain factor and drain 

current for transistors with and without pocket implants. 

 

o In chapter V, the contribution of the metal gate granularity to electrical 

parameters mismatch is studied and potential solutions to eliminate the 

associated effects are discussed. This study is conducted on 20nm Gate–last 

BULK technology, and a performance comparison is presented with respect to 

the 28nm Bulk technology. A general review of the mismatch contributions in 

Bulk technology is further discussed by analyzing the observed trends over the 

technology nodes from 90nm BULK ST down to 20 nm. 

 

o Chapter VI discusses two aspects of advanced FDSOI technologies. The 

mismatch trends of 14nm Fully Depleted Silicon On Insulator (FD SOI) 

technology are first presented, followed by a comparison with the 28nm FD 
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SOI technology. The second aspect is instead centered on the mismatch trends 

observed with MOS transistor aging. To this end, NBTI stress tests have been 

conducted on PMOS 28nm FDSOI transistors, and a general study of the 

mismatch of electrical parameters as a function of the quantity of produced 

traps or defects is presented. 

 

A final section concludes this manuscript by summing up the reported findings and 

offering perspectives for future work. 
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Chapter I 

Transistor MOSFET: Theory, 

characterization and mismatch concept 

 

After a brief description of MOS transistor concept, types, operation regimes and 

electrical parameters, this chapter mainly discusses the different types of electrical variability, 

focusing particularly on the concept of stochastic mismatch.  

 

This chapter is divided in eight sections: 

- Section I presents the concepts of Bulk MOS transistor and operation regimes. 

- Section II is focused on the electrical parameters extraction methods used in this 

thesis. 

- Section III introduces the different types of electrical variability. 

- Section IV explains the local variability phenomenon called mismatch and further 

presents the differentiation between stochastic and systematic mismatch. This section 

also explains in detail the mismatch causes, extraction techniques, and effects. 

- Section V describes the measurement system and the test structures used in this thesis 

to characterize the stochastic mismatch. 

- Section VI presents the present state of the art for BULK technology in terms of 

mismatch. 

- Section VII explains the improvement in MOS transistors performance achieved by 

adopting the SOI technology. This section also provides a detailed description of the 

state of the art for this technology in terms of mismatch. 

- Finally, section VIII draws global conclusions from all the concepts illustrated in the 

chapter. 
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I.1 MOSFET transistor 

One of the basic elements of integrated circuits is the Metal Oxide Semiconductor 

Field-Effect (MOSFET) transistor. This device is comparable to an electrical switch, as its 

principal function is to alternatively pass or block an electrical current. The MOS transistor in 

Figure I. 1 is fabricated on bulk silicon, over active zones isolated by two trenches of oxide 

called STI (shallow trench isolation). It is mainly composed of:   

o A silicon substrate doped P (NMOS transistor) or N (PMOS transistor). 

o An insulating dielectric layer. It is usually SiO2, or a high-K dielectric placed above an 

SiO2 interfaced layer in advanced technologies. 

o A commanding gate, which can be patterned in Poly-silicon or composed of a stack of 

metals in advanced technologies. 

o Two highly doped charge tanks with a doping concentration of opposite type to the 

substrate called source and drain.  

 
Figure I. 1: a) NMOSFET BULK transistor b) PMOSFET BULK transistor 

 

I.1.1 Operation principle 

The operation of MOSFET transistors is based on the „field‟ effect, where the local 

density of mobile charges in the semiconductor is electrostatically modulated by: 

o Applying a potential difference between the Gate and the source (VGS). This potential 

difference creates inversion charges (minority carriers) at the surface of the semi-

conductor by a transversal field effect through the dielectric. 

P type Substrate

Dielectric

N+

D

G

S

N+

STI STI

N type Substrate

Dielectric

P+

D

G

S

P+

STI STI

(a) (b)
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o Applying a potential difference between the source and the drain (VDS). This potential 

difference allows the circulation of the minority carriers between the source and the 

drain and thus creates a drain current (ID). 

If the applied VGS is lower than a potential called threshold voltage (Vt), the transistor is 

blocked and no current circulates between the source and the drain as shown in Figure I. 2.a. 

However, if VGS is equal or higher than Vt, the minority carriers are modulated vertically to 

the surface of the semiconductor, and a region called channel is formed on the oxide/semi-

conductor interface. The minority carriers can also be modulated horizontally by applying a 

VDS, and thus forming a drain current that circulates between drain and source, as shown in 

Figure I. 2.b. 

 

Figure I. 2 Example of Field effect in the case of NMOS transistor [Skotnicki03] 

 

I.1.2 Electrical figures of merits for static performance 

The performance of MOS transistors in static regime can be evaluated by measuring: 

the drain current when the transistor is in the open state (Ioff) (Blocked channel), the drain 

current when the transistor is in the closed state (Ion) (Passing channel), the sub-threshold 

swing (SS), the Ion/Ioff ratio and the threshold voltage (Vt), as shown in Figure I. 3. 

VS=0V

G
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Dielectric
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S D

a- Empty channel => IDS=0A=> Blocked channel
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o Ioff is measured between source and drain when VGS=0V, and VDS=VDD (NMOS) / 

VDS=-VDD (PMOS). Note that VDD is the power supply voltage. This current is mainly 

composed of the contributions of leakage currents between for instance the gate and 

the substrate, the gate and the drain, the gate and the source, the drain and the 

substrate, the source and the substrate. Ioff also depends on the amplitude of the 

potential barrier between the channel and the source/drain. 

o Ion is measured between source and drain when VGS=VDS=VDD (NMOS) or VGS=VDS=-

VDD (PMOS). This current is mainly modulated by VDS. When VDS is increased the 

drain current is also increased as shown in Figure I. 3. 

The objective of an ideal transistor is to have an Ioff as low as possible, an Ion as high 

as possible and a transition between Ioff and Ion as abrupt as possible. This transition is 

characterized by the sub threshold swing (SS). Note that the theoretical limit of the sub 

threshold swing is of 60mV/decade at 300K of temperature. The Ion/Ioff ratio is mainly used 

as a single global performance parameter of the transistor. The higher the value of Ion/Ioff, the 

better the device. Finally, the threshold voltage (Vt) represents the barrier separating the 

blocked mode from the passing mode. 

 

 
Figure I. 3 : IDS(VGS) characteristic for two different VDS values (NMOS transistor). 

 

I.1.3 Operating Regimes   

Considering the Metal/Oxide/Semiconductor structure (MOS capacitor), if a voltage 

(VGS) is applied to the gate, the energy bands at the interface between the oxide and the 
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semiconductor bend. The MOS capacitor goes through different regimes as a function of the 

applied gate voltage.  

We introduce: 

o ΦS:  The potential at oxide/semi-conductor interface 

o ΦF: The Fermi potential, it represents the difference between the extrinsic Fermi level 

(for a doped semiconductor with acceptor doping NA in the case of NMOS and donor 

doping ND in the case of PMOS) and the intrinsic Fermi level (for the undoped 

semiconductor). 

o Φm:  The metal work function 

o ΦSC: The semiconductor work function 

o VFB: The flat band voltage, the required gate voltage to push ΦS to 0, thus producing 

flat bands in the semiconductor. In the case of an ideal MOS transistor (no traps or 

charges in the oxide/semiconductor interface), VFB is thus equal to the difference 

between (Φm) and (ΦSC). 

Adding the source and drain to the MOS capacitor, the difference of the types of doping 

between the substrate and the source/drain junctions creates a potential barrier ΦD, where its 

height can also be modulated by the applied gate voltage. 

The different operation regimes of the MOS transistor thus arise from the different 

applied gate voltages and consequently from the different values of ΦS. Considering the case 

of NMOS transistors: 

 

a- Accumulation regime: VGS < VFB  => ΦS < 0  

The energy bands of the semiconductor bend down as shown in Figure I. 4. The 

gate attracts holes from the substrate to the Oxide/Semiconductor interface.  This 

phenomenon is called accumulation. 

As a consequence, the potential barrier (ΦD) is very high for the electrons present in 

the source to cross it. Even if a drain voltage (VDS) is applied no drain current is 

observed.  
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Figure I. 4 : Energy bands and potential barrier in Accumulation Regime (NMOS 

transistor) [Mathieu 01] 

 

b- Flat band regime: VGS = VFB = Φm- ΦSC  => ΦS = 0 

The energy band of the semi-conductor doesn‟t bend. The potential barrier (ΦD) is 

still very high for the electrons present in the source to cross it as shown in      

Figure I. 5. 

 

 
Figure I. 5 : Energy bands and potential barrier in Flat band Regime (NMOS transistor). 

[Mathieu 01] 

 

c- Depletion regime: VFB = Φm- ΦSC  < VGS < Vt   => 0 < ΦS < ΦF 

The semiconductor energy bands bend upward as shown in Figure I. 6. The holes 

are rejected from the Oxide/Semiconductor interface to the substrate. An empty 

zone of mobile carriers is formed with a depletion charge Qd.  

The potential barrier (ΦD) starts to decrease, but is still too high for the electron to 

cross it. Also, in this case, even if a drain voltage (VDS) is applied, no drain current is 

observed.  
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Figure I. 6:  Energy bands and potential barrier in Depletion Regime (NMOS transistor). 

[Mathieu 01] 

 

d- Inversion Regime: 

o Weak inversion regime: VFB = Φm- ΦSC  < VGS < Vt  and  ΦF < ΦS < 2ΦF 

The semiconductor energy bands bend more compared with the depletion regime and 

the potential barrier (ΦD) height is thus decreased. Some electrons present in the 

source manage to cross ΦD by thermal activation, and an inversion zone at the 

Oxide/Semiconductor interface starts to form. However the density of the electrons at 

the interface is lower than the density of the holes in the substrate. The electrons thus 

circulate due to a charge gradient (from the high concentration region, the Source, to 

the low concentration region, the drain). A diffusion drain current is thus formed that 

evolves exponentially with VG.   

The threshold voltage (Vt) is defined as the voltage that causes the concentration of the 

electrons at the interface to be equal to the concentration of the holes in the substrate, 

in other term when ΦS = 2ΦF. This potential marks the state change of the transistor, 

which switches from weak to strong inversion regime. Vt can be expressed as shown 

in Equation I.1.   
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o Strong inversion regime: VGS > Vt  and ΦS > 2ΦF 

The semiconductor energy bands bend in such a way that ΦS > 2ΦF. The potential 

barrier (ΦD) drastically decreases and the electrons can easily cross the barrier as 

shown in Figure I. 7. The concentration of the electrons at the interface becomes much 

higher than the concentration of the holes in the substrate. The electrons can thus 
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circulate in the channel from the source to the drain due to the applied VDS, following 

the drift-diffusion law. 

 

 
Figure I. 7 : Energy bands and potential barrier in Strong Inversion Regime (NMOS 

transistor) [Mathieu 01] 

 

VDS determines the regime of operation of the transistor. Three regimes can be 

observed: Linear, non-linear and saturation regimes. 

  

We introduce the channel effective potential Veff (x), where x is the coordinate 

that spans the length of the channel. At the source (x=0), Veff=VGS, while at the drain 

(x=d), Veff= VGS-VDS. 

 

d.1 - Linear Regime: VDS < VGS – Vt 

The channel is almost equipotential Veff(x=0) ≈ Veff(x=d) as shown in Figure I. 8.a.  

- The electrons concentration is almost uniform along the channel 

- The inversion channel extends over the entire area between the source and the 

drain 

The MOS transistor operates like a resistor controlled by both the gate and the 

drain voltage. ID increases linearly with VDS, and is given by Equation I.2.  

DS

DS

GSD V
V

VtVI ).
2

.(    (I. 2) 

Cox
L

W
0 

,
 (I. 3) 

 where: 

 β is the current gain factor given by Equation I.3.  

W is the transistor width 

y x

VG > Vt

+ + + +  + +

EFm

Ec

EF

EFi

EV
ϴ
ϴϴ

-eΦF-eΦS

- - -
- -
-

eVG

Metal Oxide Semiconductor Source Substrate Drain

ΦD

EF



Chapter I: Transistor MOSFET: Theory, characterization and mismatch concept 

27 

 

L is the transistor length 

0  is the low field mobility  

Cox  is gate oxide capacitance. 

 

d.2 – Non-Linear or pinch off Regime: VDS = VGS – Vt 

By increasing VDS, the potential changes along the channel and is reduced 

considerably at the drain side, Veff(x=0) > Veff(x=d). The electrons concentration at 

the drain side is decreased, implying an augmentation of the channel electrical 

resistance. The drain current continues to increase with VDS, but less rapidly than in 

the linear regime, until reaching the pinch off point P shown in Figure I. 8.b. 

At the pinch-off point, saturation is achieved with VDS = VGS – Vt. The channel 

effective potential becomes equal to VGS at the source and VGS -VGS + Vt at the drain. 

This means that in the proximity of the drain the gate voltage is just enough to form 

the inversion layer and the electron concentration is almost negligible. The channel 

becomes more resistive and the drain current reaches saturation. Moreover, any higher 

potential applied to the drain will cause the channel effective potential at the drain side 

to be reduced below the threshold voltage and the region near the drain will be 

depleted. 

 

d.3 - Saturation Regime: VDS ≥ VGS – Vt 

The region near the drain is not in strong inversion regime any more (Veff (x=d) < VGS -

VGS + Vt), but rather in weak inversion regime. The electrons spread out and part of the 

channel is disconnected. While the depletion region lacks mobile carriers, there is no 

restriction on current flow through it: if an electron with initial velocity enters the 

depletion region from one side, and if there is a field across the region, this electron will 

be dragged by the field. The drain current is therefore quasi-independent of VDS and is 

controlled only by VGS and the ID(VDS) characteristic becomes flat, as shown in Figure 

I. 8.c. Note that when VDS is increased, the pinch-off point moves towards the source 

and the channel length is decreased. 

Considering VDS,sat=VGS - Vt, the saturation drain current can be written as  Equation I.4: 

 

2).(
2

VtVI GSD 


 (I. 4) 
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Figure I. 8 : Energy bands and potential barrier in Strong Inversion Regime (NMOS   

transistor) [Skotnicki03] 

I.1.4 Parasitic effects due to the Miniaturization of MOS transistors  

In 1975 Gordon Moore predicted that the numbers of transistors in circuits of a given 

size will double every two years, allowing an exponential performance enhancement. The 

miniaturization of MOS transistors that enables the increase in device number per area unit 

allows the saturation current to be high enough to increase the operating speed of the 

products. The challenge in this case is to prevent disruptive increase of leakage currents, in 

order to limit the power consumption of these products, especially if battery powered. 

The miniaturization of MOS transistors also induces parasitic phenomena, disrupting 

the electrical operation of ideal devices and it is necessary to understand and control such 

effects. In this paragraph, we introduce the main parasitic effects encountered and mentioned 

in this work and some of their control techniques.  

1-  Short channel effect (SCE) and Drain induced barrier Lowering (DIBL). 

In real devices, the n/p junctions between the source/drain extensions and the channel 

are not abrupt. These junctions create depleted zones (depletion charge) of a few 

nanometers uncontrolled by the gate polarization. In these regions called Space 

Charge Zones (SCZ), the potential is decreased in a quadratic fashion. 

o Linear regime. 

P type Substrat

Dielectric

N+

D

G

S

N+

P type Substrat

Dielectric

N+

D

G

S

N+

P type Substrat

Dielectric

N+

D

G

S

N+

ID IDID

VDS VDSVDS

VDS < VGS – Vt VDS = VGS – Vt VDS > VGS – Vt

(a) (c)(b)



Chapter I: Transistor MOSFET: Theory, characterization and mismatch concept 

29 

 

 For long transistors, the surface potential is constant along the channel except 

near the source and the drain junctions due to the SCZs, as shown in Figure I. 

9.a.  

 For short transistors, the SCZs approach each other with the reduction of the 

gate length, until they are partly overlapped. In this case, the flat behavior of 

the surface potential noticed for long transistors is no more observed, as shown 

in Figure I. 9.b. The depletion charge in the channel is not completely 

controlled by the gate polarization but majorly by the junction zones. The 

potential barrier (ΦD) is thus decreased. As a consequence the inversion regime 

is quickly reached and Vt is lowered. This phenomenon is called short channel 

effect (SCE). 

o Saturation regime. 

In addition to the SCE, when polarizing the drain with a strong drain field the 

potential barrier will also decrease as shown in Figure I. 9.c. This phenomenon, 

called Drain Induced Barrier Lowering (DIBL), induces a further lowering of Vt 

compared to the case of linear regime shown in Figure I. 10.a and b. 

 

 
Figure I. 9: Surface potential in Strong Inversion Regime as a function of transistor length 

(NMOS transistor) [Skotnicki03][Gallon 07] 

 

 

SCE and DIBL denote a loss of the electrostatic control of the channel by the gate, due 

to the miniaturization of the channel length. The gate modulation of the channel 

potential barrier in less efficient, implying a degradation of SS. The uncontrolled 

decrease of the potential barrier will induce an uncontrolled lowering of the threshold 

voltage Vt, and a significant degradation of Ioff as shown in Figure I. 10.b. 
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Figure I. 10: Short channel effect and Drain induced barrier lowering effect on (a) 

threshold voltage as a function of L and (b) ID(VGS) characteristic for long and short 

devices [Skotnicki03][Gallon 07] 

 

The SCZ mainly extends a few nanometers in the channel, due to its low doping as 

compared to the source/drain. To eliminate the SCE and DIBL effects, two highly 

doped regions called pockets or halo, having the same doping type as the substrate, are 

implanted near the source and the drain as shown in Figure I. 11. This pocket 

implantation limits the extension of the SCZ and thus of the SCE.  

 
Figure I. 11: Transistor NMOS with pocket implant 

 

For small gate lengths, the pocket regions are close to each other‟s forming a 

homogenous channel controlled by the gate polarization. As the pockets are highly doped, the 

channel doping is increased, increasing the potential barrier and thus Vt. This phenomenon is 

called reverse short channel effect. 

2- Gate leakage due to the reduction of the oxide thickness (Tox).   

In the purpose of granting sufficient drain current, it is important to maintain high Cox 

value as shown in Equations I.2, I.3 and I.4. The traditional technique to improve the 
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capacitive coupling between the gate and the channel is to reduce the oxide thickness 

(Tox). However, by decreasing the oxide thickness to a few Angstroms, it becomes 

more probable for the minority carriers to cross the potential barrier of the dielectric. 

A leakage gate current can be observed between the gate and the substrate and the gate 

and the source drain extensions.  To face this issue, the silicon dioxide is replaced by a 

high-k material in advanced technologies such as HfO2 and HfSiON. This enables 

larger oxide thickness for a given target Cox value, limiting therefore the gate leakage. 

The high-k layer is usually deposited on a SiO2 interfacial layer. As a 

consequence, instead of considering the oxide thickness Tox as in the case of simple 

silicon dioxide dielectric, an equivalent oxide thickness (EOT) is considered, equal to 

the sum of the contributions of the SiO2 interfacial layer and the high-k dielectric 

layer. 

 

3- Increasing EOT due to Poly-Silicon Gate 

The Poly-Silicon gate is known to induce a depletion layer between the gate itself and 

the oxide, thus increasing the EOT. One of the main solutions to this problem is the 

use of a metal gate. The metal gate technology, even with its difficulty of integration 

(compatibility with the gate oxide, chemical contamination, etc. [Tavel 01]) has 

another advantage over the poly-silicon technology, which is given by its low 

resistivity. This enables a decrease of the delay in signal propagation in high 

frequency applications.  

By using a metal gate, the threshold voltage will be dependent of the gate material 

through VFB (VFB = Φm- ΦSC).  

I.2 Methodology of extraction of MOS transistors parameters 

The development of MOS transistors technology leads to additional complexities that 

make the calculation of its electrical parameters increasingly difficult. Several methods for 

measuring these electrical parameters under static conditions exist, meeting various 

constraints such as repeatability, ease and speed of measurement and reliability. 

While the drain current (ID) can be directly extracted for a known gate and drain voltage, the 

extraction of the threshold voltage (Vt) and current gain factor (β) is more complex. Some of 

the most known and used methods to extract these two parameters are the constant current 
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method [Deen 90], the maximum slope method [Hao 85], the three-point method [Hamer 86], 

the Y function method [Ghibaudo 88] and the shift & ratio method [Taur 92]. 

In this thesis the constant current, maximum slope and Y function methods are used and 

thus detailed below. 

I.2.1 Maximum slope method 

The drain current ID is measured as a function of gate bias (VGS) in linear regime. The 

Trans-conductance (Gm) is then calculated using Equation I.5.  

 

GS

D

V

I
Gm




  (I. 5) 

 

ID and Gm are plotted as a function of VGS, as shown in Figure I. 12 with drain bias DSV

= mV50 . 

 

As shown in Figure I. 12, the maximum value of Gm (y = GmMax) and the inflection point (y = 

GmMaxDI ) of the ID(VGS) characteristic are obtained for the same gate bias 
GmMaxGSV . Note that 

the inflection point marks the transition of MOS transistor from weak to strong inversion 

regime. The current gain factor βextrapolated can thus be extracted at the maximum Gm point 

using Equation I.6, while the threshold voltage Vtextrapolated can be extracted using Equation 

I.7. 
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Figure I. 12 : Maximum slope method for linear regime (VGS=1.1V, VDS=50mV), for Bulk 

transistors with W=0.135µm and L=0.04µm 

 

This is a reproducible method that gives a physical value of threshold voltage [Ghibaudo 89]. 

However, [Ghibaudo 89] shows that this value depends on the mobility attenuation factor θ1. 

If θ1 is large, the extrapolated Vt can deviate from the real Vt value as shown in Equation I.8. 

 

2

1 ).( VtVVtVt
GmMaxGSedextrapolat    (I. 8) 

 

Although a method has been demonstrated at a later stage [Shimizu 02] to extract Vt and 

β in saturation regime, the values of Vt and β used in this thesis were extracted in linear 

regime.  

I.2.2 Constant current method 

The threshold voltage is defined as the necessary gate voltage to obtain a defined 

current level Icc as shown in Equation I.9.   
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Usually, the normalized current is defined in weak inversion mode, where the drain current 

equation follows an exponential law as a function of VG. 

The constant current method is faster than the maximum slope method. Indeed, while 

the maximum slope method is based on scanning the gm(VGS) curve to find the maximum 
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slope, the constant current method is based on classical interpolation extractions such as 

dichotomy, and thus requires less measurement points. This method is also reproducible and 

can be used in linear and saturation regimes as shown in Figure I. 13.  

 
Figure I. 13: Constant current method for (a) linear regime (VGS=1.1V, VDS=50mV) and (b) 

saturation regime (VGS=1.1V, VDS=1.1V), for Bulk transistors with W=0.135µm and 

L=0.04µm 

 

The disadvantage of this method is that it only enable the extraction of Vt values. 

I.2.3 Y function method 

The drain current equation as a function of VG, in linear regime, can be written as shown 

in Equation I.10.  
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Where 1  (defined in Equation I.11 where 0,1  is the intrinsic mobility reduction factor) and 

2 are the mobility attenuation factors, and β is the current gain factor (defined in Equation 

I.12). 
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As shown in Equation I.11, 1  depends on Rsd values. For short gate lengths Rsd has an large 

impact on the values of ID in strong inversion regime, as shown in Figure I. 14. It is thus 

mandatory to extract Vt and β values in a method that overcomes the influence of Rsd.  

 

 
Figure I. 14 : Calculated drain current values as a function of gate voltage, for Rsd=20Ω 

and Rsd=0Ω. (FD SOI transistors with W=0.08μm/L=0.05μm and VD =50mV). 

 

The Y function given by Equation I.13, which has been introduced as a simple method to 

extract the MOS transistor‟s parameters [Ghibaudo88] & [Fleury08], is immune to Rsd values 

as shown in Figure I. 15. 
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so that the Y function can be written as shown in Equation I.15 
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Note that in practice 02  except for very high VG values [Fleury08]. 

 

 
Figure I. 15: Calculated Y function values as a function of gate voltage, for Rsd=20Ω and 

Rsd=0Ω. (FD SOI transistors with W=0.08μm/L=0.05μm and VD =50mV). 

 

In strong inversion regime, the Y(VG) characteristic varies linearly with VG as shown in 

Figure I. 15. It is thus easy to extract the threshold voltage value by extrapolating the value at 

Y=0 of the linear portion of the Y(VG) curve, as shown in Figure I. 15. Moreover, the current 

gain factor (β) can also be extracted by calculating the slope of the linear region of Y(VG). 

I.3 Types of electrical variability 

When measuring the electrical variability of MOS transistors between two factories, two 

lots, two wafers or two separate dies, the global devices variability is characterized as shown 

in Figure I. 16. Often, this global variability is due to different fabrication processes, such as 

the use of different fabrication tools between two factories or the temperature gradient effect 

during the oxidation or annealing steps of the back end fabrication. In contrast, the local 

devices variability, also called mismatch, is characterized by measuring two identical MOS 

devices: 

 

o Placed in pairs 

o Spaced by the minimum allowed distance 

o Laid out in identical environment  

o Electrically independent with symmetric connections 
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Figure I. 16 : Different types of electrical variability [Mezzomo10b][Croon 04] 

 

I.4 Local variability 

We will first introduce the concept of statistical local variability computation, allowing 

the decomposition of the local variability into systematic and stochastic mismatch. Then we 

will define each type of variability and we will mostly concentrate on the stochastic 

mismatch. 

I.4.1 Measurement phase  

With the aim of measuring the local variability, a 300mm wafer is considered as an 

example. The measurements are conducted on two identical devices (MOS transistors in this 

case) within the same die. The electrical parameter P1 of device1 (MOS1) and the electrical 

parameter P2 of device2 (MOS2) are measured, then P  or 
P

P
 are calculated as shown in 

Figure I. 17. 
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Figure I. 17: Measurement of the electrical parameters P1 and P2 for a pair of devices 

 

This measurement is repeated for N pairs of MOS transistors. A large number of transistors in 

pairs (70 pairs and above) are considered to assure a significant statistical population. 

I.4.2 Gaussian distribution verification  

I.4.2.a Data plot 

When the N samples of P  or 
P

P
are plotted as a function of their number of 

occurrence, a Gaussian shape is usually obtained as shown in Figure I. 18.  

 
Figure I. 18: An example of statistical plot of the number of occurrences of each measured 

value of P  or 
P

P
  

This Gaussian plot is characterized by its mean value ( P  or
P

P
) (Equation I.16) and its 

standard deviation ( P or
P

P ) (Equation I.17). 
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I.4.2.b Gaussian law verification 

Theoretically, considering a finite number of samples, the random measured variable 

P  or 
P

P
is Gaussian if its probability density function is of the form: 

)
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exp(

.2.
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Pf
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 (I. 18) 

 

In practice, however, even if considering an important number of samples, the experimental 

data doesn‟t perfectly follow this law. Thus, a test to verify that the experimental distribution 

matches the normal law is mandatory. The chi-squared test enables to validate or to reject the 

Gaussian distribution.  

To explain how this test works, the hypothesis H is first considered: the distribution of the 

experimental data is Gaussian. 

The
2  function expresses the difference between: 

- the observed (Oi) frequency of occurrence of the measured data  

- the expected (E) frequency of occurrence of the data calculated using Equation I.18  

2  is defined as: 

 

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k

i Ei

EiOi

1

2
2 )(

  (I. 19) 

 

where k represents the number of classes (the number of intervals over which the distribution 

is divided to determine the frequency of occurrence: [ 1 ii PP ]). 

To verify the H hypothesis, an assessment parameter 2

  
must be defined, which depends on 

the confidence level )1(   and on the degrees of freedom   [Montgomery01], with 

1 mk  (I. 20) 

 

 

where m represents the number of parameters to be determined and k is chosen from the 

Cochran criterion [Cochran54], which states that all classes should have a theoretical non-zero 

value and 80% of the classes should have a theoretical value greater than or equal to 5. In our 
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case k = 56 and m = 2 (2 parameters, P  and P ), thus 30 . 
 

2

  can in this case be 

written as shown in Equation I.21: 

22 )12.(
2

1
   Z  (I. 21) 

 

where Z represents the standard deviation number from the normal central limit theorem and 

can be extracted from Table I.1 below. 

 

Table I.1: Z values of the central limit theorem 

)1(   99.73% 99% 98% 96% 95.45% 95% 90% 80% 68.27% 50% 

Z  3 2.58 2.33 2.05 2 1.96 1.645 1.28 1 0.6745 

 

In our case we consider a restricted interval  PP PP    3;3 , thus our confidence level 

is 99%, and consequently 58.2Z . 

Once all parameters have been evaluated, the test requires to verify whether 22

  , in 

which case H will be accepted, else H will be rejected. 

The chi-squared test methodology can therefore be conducted on our data to identify 

whether it follows a Gaussian distribution or not. 

I.4.3 Data filtering and separation between systematic and stochastic mismatch  

 The experimental data must be filtered to exclude erroneous values arising from 

measurement errors such as high probe resistance [Cathignol07], or technology defects during 

MOS transistor fabrication. After verifying that the data follows a Gaussian law, and 

computing the mean and the standard deviation, a recursive filter is applied to obtained P  or 

P

P
 values. The used filter is of iterative type: it selects only the values between PP  .3  

with a 99% probability of occurrence, and repeats this action until no values of P  or 
P

P

outside PP  .3  are present, as shown in Figure I. 19. 

After eliminating all the erroneous data, a final estimation of P and P is calculated. 

At this point a separation between stochastic and systematic mismatches can be introduced by 

associating P  to systematic mismatch and P  to stochastic mismatch. 
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Figure I. 19: Scheme of recursive filter 

I.4.4 Concept and computation of systematic mismatch 

I.4.4.a Concept of systematic mismatch 

Systematic mismatch is mainly caused by the difference in the environment where the 

pair of examined devices is laid out. Tuinhout in [Tuinhout96] [Tuinhout97b] explained that 

systematic mismatch arises mainly due to inadequate design practices For example, the use of 

a metallic cover over only one device of the pair can induce local differences in terms of 

mechanical constraints, which in turn induce systematic mismatch. The same author also 

identified in [Tuinhout03] the phenomena that can induce differences in the measurement 
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conditions for the pair of devices, thus inducing systematic mismatches. As systematic 

mismatch is mostly due to design factors, it can also be reduced by following more 

mismatch-aware practices. One of the techniques to reduce this kind of local variability is the 

use of dummies in MOS transistors conception. Dummy devices are not connected to the pair 

of transistors, but are placed on both sides of the gate to assure the same surrounding 

environment for both transistors of the pair.  

I.4.4.b Systematic mismatch computation 

Systematic mismatch is usually considered to be negligible compared to stochastic 

mismatch. To validate this hypothesis, a zero-mean test is considered.  

This test is used to validate or reject the following hypothesis: 

- H: the experimental values follow a Gaussian distribution with 0P . 

For this test, the reduced centered variable of [Pergoot95] for a confidence level of

%991 K  is considered, defined as: 

 

N

P
Z

P

2.2 





 (I. 22) 

 

where N is the number of samples. 

The comparison parameter for this test is 2/kZ , which for %1K  is equal to 2.58. 

Based on these parameters, if 2/KZZ  , H will be accepted and the systematic mismatch can 

be deemed negligible, else H is rejected. 

I.4.4.c Confidence interval 

In practice, a finite sample of random variables is considered, thus the mean and the 

standard deviation of the Gaussian law represent estimated values of the real ones. These 

estimated values have a small probability to coincide with the real ones. A confidence interval 

is therefore introduced, mainly based on the estimated values of P and P  and on the 

number of samples considered. The confidence interval so defined guarantees that the real 

value (the mean in this case) falls within the identified interval with a confidence level of 

(%)1 K . 
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For numbers of samples greater than 30, the real mean value follows a normal central 

limit theorem and falls in the confidence interval  

 

N
ZPP

N
ZP P

Kel
P

K
 


.. 2/Re2/  (I. 23) 

I.4.5 Stochastic mismatch  

I.4.5.a Concept and computation of stochastic mismatch 

For correct operation, analogue and digital applications such as power amplifiers or 

Static Random Access Memories (SRAM) cells require pairs of identical transistor devices. 

The two MOS of the pair should be identically designed and laid out in an identical 

environment in order to ensure identical electrical performance. Real devices, however, suffer 

from variations in the electrical parameters, a problem known as mismatch.  

While well know design solutions exist to improve systematic mismatch, intrinsic 

sources of random dispersions exist within the devices, arising from stochastic variations 

inherent to the discrete nature of dopant impurities, point defects, or, more generally, due to 

the random nature of processing steps. 

The first mismatch studies were conducted in 1972 by Hoeneisen and Mead 

[Hoeneisen72]. The authors observed that random dopant fluctuation in the MOSFET‟s body 

can result in unpredictable threshold voltage values, and that such unpredictability can gravely 

hinder advances in MOSFET technologies. The same problem was also studied by Keyes 

[Keyes75] whose work was focused on the creation of a model to predict the amplitude of the 

threshold voltage variations, without considering the MOSFET operation. Shyu et al. also 

created a complete mismatch model for MOS capacitors and MOS transistors [Shyu84] by 

considering as source of variability the fluctuations in the physical dimensions of the active 

zone and in the process parameters. Based on this model, Lakshmikumar et al. experimentally 

demonstrated the dimensional dependence of mismatch in MOS devices [Lakshmikumar86]. 

In 1989 Pelgrom et al. indicated a direct dependency between the local fluctuations of an 

electrical parameter P and the channel area (denoted as S) through a coefficient A 

[Pelgrom89]. This is known as Pelgrom‟s Law, expressed in Equation I.24. 

 

S

A
P   (I. 24) 
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These preliminary studies, in combination with the miniaturization of MOSFET 

devices, have set the ground for increasing research efforts aimed at achieving a deeper 

understanding of the causes of mismatch phenomena and characterizing their effects, with the 

objective of guaranteeing reliable integrated circuits performance. 

I.4.5.b Confidence interval  

Considering a finite sample of random variables, the mean and the standard deviation of 

a Gaussian law represent estimated values of the real quantities. Such estimated values have a 

small probability to coincide with the real values. A confidence interval is thus introduced,  

mainly based on the estimated P  values and on the number of samples considered. The 

confidence interval so defined guarantees that the real value (the standard deviation in this 

case) falls within the identified interval with a confidence level of %99)%1(  . Using the 

approach proposed by Pergoot [Pergoot95], it is possible to state that the real value of the 

standard deviation can fall within the confidence interval expressed in Equation I.25. 
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The upper and lower standard deviation limits can be obtained by writing Equation I.25 as 

follows: 

 

)1.()1.(
Re

XY PelPP     (I. 26) 
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Table I.2 lists examples of errors (upper and lower uncertainity limits) and the confidence 

level on the estimated standard deviation for a given number of samples. The table shows that 

when the number of samples increases, the uncertainity decreases. The values  also shows a 
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dyssimetry between upper and lower uncertainity limits, that can be reduced when the number 

of samples is increased. This highlights the importance of using large numbers of samples. 

 

Table I.2: Upper and lower confidence limits for a confidence levels of 99%. 

Number of 

samples 

Upper Uncertainty 

(%) 

Lower Uncertainty 

(%) 

Average Uncertainty 

(%) 

10 127.8 38.2 83.0 

20 66.6 29.8 48.2 

30 48.7 25.6 37.1 

40 39.7 22.8 31.2 

50 34.1 20.9 27.5 

60 30.3 19.4 24.8 

70 27.4 18.2 22.8 

80 25.2 17.2 21.2 

90 23.5 16.3 19.9 

100 22.0 15.6 18.8 

120 19.7 14.4 17.1 

140 18.0 13.5 15.7 

160 16.7 12.7 14.7 

180 15.6 12.1 13.8 

200 14.7 11.5 13.1 

300 11.7 9.6 10.6 

400 10.0 8.4 9.2 

 

I.4.5.c Deviations from Pelgrom’s Law  

With the miniaturization of MOS transistors, different phenomena affecting the Vt 

values are observed such as the SCE or the effect of pocket implants in the channel. These 

phenomena may cause various deviations from Pelgrom‟s law, such as variations in the A 

parameter (not any more a constant, [Stolk98], [Croon02b] and [Rochereau04]). An 

individual constant of matching (iAΔP) is thus introduced. This new parameter allows the 

evaluation of the mismatch values for each channel dimension as shown in Equation I.29.  

 

 LWiA PP ..   (I. 29) 

                  

This parameter will be the main object of investigation for the characterization work reported 

in this thesis. 
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I.5 Mismatch measurement system and test structures 

I.5.1 Mismatch measurement system 

Electrical characterization and reliability measurements require special equipment, such 

as the system depicted in Figure I. 20. 

 
Figure I. 20 : Wafer prober 

 

This equipment consists of: 

a- « FOOP », from which the wafers are automatically fed to the prober via a mechanical 

arm  

b- « Chuck», where the wafer to be measured is placed. The chuck can be temperature-

controlled and displaced during testing to align the test structure on the wafer with the 

electrical probes 

c- «Test Head», contains the probe card and the switching matrix. The probe card used 

for mismatch measurements is shown in Figure I. 21.a. It comprises two lines with 

twelve pins (probes) each and is connected to a switching matrix which connects each 

pin to the correct SMU (Source/Monitor Unit). A picture of a pin is shown in Figure I. 

21.b. Through the SMU, the parameter analyzer supplies the defined voltages/currents 

and measures the currents/voltages of the devices under test. Finally, before any test, 

(a)

(c)

(b)

(d)

(e)
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contact resistance verification is recommended. This test allows validating the contact 

between the pins and the test structure to prevent any measurement errors. Figure I. 

21.c shows a part of resistance test structure not yet tested, while Figure I. 21.d shows a 

tested part of resistance test structure. Note that this resistance scribe is composed of 

24-shorted pads.    

 

 
Figure I. 21 : Picture a) a Probe card b) a probe c) not measured scribe d) measured scribe 

 

d- « Command interface », provides the controls to start testing (showing the test 

structures and the probes).  

e- « Unix station», communicates with the measurement equipment and collects the 

experimental data. It supports programming and test execution via specific software. 

I.5.2 Mismatch test structures 

The mismatch scribe is shown in Figure I. 22,  

 

 
Figure I. 22: Mismatch scribe composed of five pairs of MOS transistors. 

 

This test structure is composed of: 

1- 24 pads (2 parallel lines with 12 pads each) 

2- 5 pairs of N- or P-type MOS devices of the same technology but different geometries. 

(a)

(c)
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3- 2 MOS transistors placed in pairs spaced by the minimum allowed distance, laid out in 

identical environment and electrically independent with symmetric connections as 

shown in Figure I. 23. They have common Bulk, separate gate, drain and source and 

the currents flow through them in the same direction. Gate dummies are also 

positioned on both sides of transistors gates to improve lithography and etching 

processes 

 

Figure I. 23: MOS transistor pairs (test structure) 

 

 

4- A protection diode is connected upstream of each gate to prevent the gate oxide from 

charging during the manufacturing process. 

I.6 Stochastic mismatch contributions and effects in Bulk technology: state 

of the art. 

Different studies have been led on the threshold voltage mismatch, demonstrating that 

the random dopant fluctuations schematically illustrated in Figure I. 24, the poly gate 

granularity (PGG) in Figure I. 25 and the line edge roughness in Figure I. 26 are the most 
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important sources of fluctuation in modern bulk MOSFET technologies, up until the 45nm 

Node [Tuinhout97b], [Difrenza01], [Difrenza02b], [Fukutome06b], [Asenov07] and 

[Cathignol08b].  

 
Figure I. 24: Random dopant fluctuation [Asenov00] 

 

 
Figure I. 25 : Poly gate granularity [Difrenza03] 

 

Figure I. 26 : Line edge roughness [Oldiges00] 

 

One of the first studies on the contribution of dopant fluctuations was conducted by 

Mizuno et al. [Mizuno93], [Mizuno94] and [Mizuno96], who experimentally demonstrated 

that the Vt mismatch follows a Gaussian law that derives from the doping fluctuations in the 

depletion region of MOS transistors. Their work also shows that the Vt mismatch is directly 
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proportional to ToxNc .4/1 , where Nc is the doping concentration and Tox the physical oxide 

thickness. 

Since then, and due to the miniaturization of MOS devices, the effects of doping 

fluctuations on the Vt mismatch have become the main object of various studies [Steyaert94], 

[Wong 97], [Bastos97] and [Tanaka00]. For short transistors, moreover, short channel effects 

(SCE) have been observed that are responsible for a reduction in the threshold voltage (Vt). 

Thus, to enable an ongoing miniaturization of transistor devices, pocket implants were 

introduced so as to reverse the short channel effects (RSCE) and allow a better modulation of 

Vt. Pocket implants have been demonstrated to increase the Vt mismatch in short gate 

transistors, due to the global increase of impurity concentration in the channel [DiFrenza00]. 

For large gate lengths, instead, the observed mismatch trends do not follow the scaling law 

any more [Stolk98], [Croon02b] and [Rochereau04]. An exhaustive study of the effects of 

pocket implants on the Vt mismatch in advanced MOSFET‟s has finally been presented by 

Mezzomo et al. [Mezzomo10c]. 

Other studies have been conducted to investigate the effects of polysilicon granularity 

fluctuations on the Vt mismatch [DiFrenza03], [Cathignol06] and [Brown06], as polysilicon 

has been the most commonly gate material until the 45nm node. A significant amount of 

research was also conducted on the investigation of the mismatch effects of Line Edge 

Roughness (LER) and Gate Width Roughness (GWR) [Oldiges00], [Asenov03], [Xiong04], 

[Gunther05] and [Fukutome06a]. It has been shown that LER has a more significant 

contribution in miniaturized transistors, as the roughness of the lithography contours does not 

scale consistently with the feature size and becomes comparable to the gate length. Finally, an 

exhaustive study was presented by Cathignol et al. [Cathignol08b] that quantifies each 

mismatch contribution factor for the 45nm technology by assigning percentage values. The 

study demonstrates that the contribution of random dopant fluctuations (RDF) accounts to 

60% of the total observed mismatch. 

As for the current gain factor (β) mismatch, DiFrenza showed that the major sources of 

β variability are the local fluctuations of the number of dopants in the substrate and the 

interface trap charges at the Si/SiO2 interface [DiFrenza02a]. 

Finally, the local fluctuations of the threshold voltage and current gain factor have been 

shown to be the major sources of the drain current (ID) mismatch [Lakshmikumar86]. 

Different models have thus been proposed to explain the behavior of the ID mismatch, valid in 

weak inversion region [Forti94], in weak to strong inversion regime as a function of gate bias 
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and transistor geometry [Croon02a] [Serrano03], and in weak to strong inversion regime and 

in linear to saturation regime for transistors with pockets [Mezzomo10a].  In advanced 

technologies such as the 28nm metal gate node, the Rsd contribution was added to the 

threshold voltage and current gain factor mismatch [Rahhal13], and this term was 

demonstrated to be a significant contributing factor to the ID mismatch. 

I.7 Improvements due to FD SOI technology 

With the reduction of MOS transistors dimensions, different parasitic effects such as the 

control of SCE appeared limiting the continuous scaling of BULK MOS transistors [Gallon 

07]. Different candidates were adopted to replace the BULK technology such as Fin-Shaped 

Field Effect Transistor (Fin FET, adopted by Intel) [Jan 12] or Silicon On Insulator (SOI) 

(adopted by STMicroelectronics) [Planes 12], [Arnaud 12]. In this work, SOI transistors have 

been used and characterized. An illustration of NMOS SOI transistor is shown in Figure I. 27.  

 

 
Figure I. 27 : SOI NMOS Transistor 

 

SOI differs from the Bulk technology as transistors are fabricated on an undoped Si 

layer of thickness TSi. This layer is isolated from the substrate by a buried oxide, called BOX, 

of thickness TBOX. The active zones are thus defined by the Si Film. Moreover, in some SOI 

technologies a highly doped zone implanted under the BOX called ground-plane are 

integrated.  

As a consequence two additional features are introduced with respect to Bulk 

transistors: the undoped Si layer and the BOX. 
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o If the un-doped Si film is thick enough, then the depletion zone doesn‟t reach the 

BOX. In this case the transistor is called partially depleted Silicon On Insulator (PD 

SOI). The depletion zone depT  is defined in Equation I.30, where depQ  is the depletion 

charge and AN  the doping concentration. 

  

A

dep

dep
Nq

Q
T

.
  (I. 30) 

 

o If a very thin undoped Si film is considered, the depletion zone reaches the BOX and 

the transistor is called Fully Depleted Silicon On Insulator (FD SOI), as the depletion 

region spans the whole thickness of the undoped silicon layer. 

I.7.1 Main advantages of SOI over BULK technology 

FD SOI transistors have many advantages on BULK devices. Many studies have been 

conducted to characterize, fabricate and demonstrate the benefits of SOI over the BULK 

technology [Gallon 07], [Barral 07] and [Fenouillet-Beranger 08]. Some of the main 

advantages of SOI on BULK technology are listed below. 

o The use of undoped ultra-thin silicon layer allows a better control of the short channel 

effects, lower sub-threshold swing, and reduced leakage and Random Dopant 

Fluctuation (RDF) [Gallon 07]. 

o FD SOI transistors enable a better electrostatic control because of the shallow source 

and drain junctions and the thin Tdep [Barral 07] and [Fenouillet-Beranger 08]. 

o The presence of the BOX in FD SOI technology permits a total isolation of the device. 

Thus, no current circulates in the substrate between devices, preventing latch-up 

phenomena [Gallon 07]. 

o The presence of a ground plane enables the threshold voltage to be adjusted via 

electrostatic coupling through the BOX by setting the doping type and the polarization 

[Gallon 07].  This coupling gives better electrostatic control compared with bulk 

devices. 

o The reduced depletion region hinders the development of transversal fields and thus 

improves the carriers‟ mobility [Gallon 07]. 
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I.7.2 Stochastic mismatch contributions and effects in FD SOI technology: State 

of the art 

FD SOI transistors integrating high k/metal gate and thin BOX exhibit promising 

characteristics in terms of improved electrical parameters mismatch [Gallon07]. 

Different studies have been conducted on threshold voltage mismatch, showing that the 

exclusion of random dopant fluctuations in FD SOI transistors can improve the Vt mismatch 

and that the metal gate stack is the main contributing factor to the Vt variability [Vinet12]. 

Vinet et al. also showed that other sources of variability (Ground Plane doping, silicon 

thickness fluctuations) are not recognized as key contributors. Moreover, [Ohtou07] showed 

that FDSOI transistors with a thin BOX, low channel impurity concentration, and high 

substrate concentration have high immunity to both process-induced variations and random-

dopant-induced variations. This is mainly because the effect of RDFs is suppressed by the 

impurity charges that are located below the BOX. 

Very good matching performance has been reported for advanced FD SOI devices by 

[Weber08], with a global variability µmmVAVt .95.0 . The mismatch value in this case is  

2.AVtiA Vt   [Cathignol 08a]. The authors experimentally distinguish the sources of Vt 

mismatch in 25nm undoped FDSOI devices integrating a high-k/metal gate stack. Figure I. 28 

illustrates the different Vt mismatch contributions. The major contributing factors were 

identified to be the charges in the gate dielectric and/or the fluctuations of the TiN gate work 

function. Variations in the undoped silicon thickness (TSi) were found to have a negligible 

impact until TSi=7nm. Finally, the scaling of TSi was shown to limit both local and inter-die Vt 

variability induced by gate length fluctuations. 

 

 
Figure I. 28 : Vt mismatch sources in advanced FD SOI transistors [Weber08] 
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Atomistic quantification studies were moreover conducted by the Asenov group for 

advanced FDSOI transistors. The impact of various sources of statistical variability in 

nominal nano-CMOS transistors was investigated, including random discrete dopants (RDD), 

line edge roughness (LER), polysilicon granularity (PSG) and oxide thickness fluctuations 

(OTF) [Asenov07]. The authors also demonstrated that thin BOX in SOI technology can 

improve the mismatch performance and that SRAMs based on 10 nm ultra-thin BOX perform 

better than SRAMs based on 35 nm bulk MOSFETs. 

Several other positive studies advocating the benefits of FD SOI advanced transistors in 

terms of reducing threshold voltage have been reported [Sugii10] [Wang12] [Fenouillet-

Beranger08].  The influence of silicon thickness on transistor matching has been studied by 

Hook [Hook11]. The authors showed that device spacing plays a key role in mismatch, that 

silicon thickness variations depends strongly on the wafer preparation, and that increasing 

transistor widths can only slightly improve the matching performance, for widths of 1000nm 

or more. The authors also showed that silicon thickness variations is amenable to 

improvement through process optimization. One of the process optimization is the use of 

strained SOI wafers as reported in [Mazurier10].  

The presence of the BOX requires studies of the dependence of the statistical variability on 

the back-gate bias to be also conducted. [Yang13] showed that in the absence of WFV, the 

application of reverse (negative) back-bias reduces the variability in saturation regime. 

Other studies have been reported on the integration of germanium in the channel of ultrathin 

FDSOI pMOSFETs (L = 23 nm) [Villalon13]. This integration proves to shift the Vt values, 

yields excellent DIBL and good threshold voltage mismatch performances, with

µmmVVtA .47.1 . 

The mismatch performance in linear and saturation regime has been investigated by 

[Nauman12]. The authors presented a simple analytical approach to model and characterize 

the mismatch increase in saturation with respect to the linear mode. The mismatch increase in 

saturation mode was shown to be mainly due to DIBL variability and induced by RDF in the 

channel. Hence, the saturated mode mismatch can be reduced by optimizing the channel 

doping through stronger halo and weaker or counter doped well implants.  

Different studies were focused instead on the metal gate granularity (MGG) and on the 

corresponding work function effects on the threshold voltage variability. [Zhang09] predicted 

a substantial worsening of the work function variability, inducing comparable or larger 

threshold voltage mismatch compared with LER and RDF. [Ohmori08], [Dadgour08] and 
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[Wang11] analyzed in details this new source of variability and attributed it to the metal grain 

size and orientation. 

As for current mismatch, it was demonstrated experimentally in [Mazurier11] that the 

drain current mismatch is highly correlated with the fluctuations of both Vt and RON. On the 

other hand, Markov showed in [Markov12] using atomistic simulations, an enhanced 

influence of the source/drain dopant fluctuations on the on-current and its mismatch. A 

comparison between statistical variability in SOI and conventional bulk MOSFETs was 

proposed in [Hiramoto10]. As for the current mismatch, the authors showed that current-onset 

voltage variability is well suppressed in the intrinsic channel SOI MOSFETs, thanks to non-

intentionally doped channel. Finally [Yang13] demonstrated that the drain current mismatch 

in saturation is also increased by forward back-biasing of the device. They attributed this 

increase to the RDF in the source access resistance. 

I.8 Conclusions 

In this chapter, a general introduction of the MOS transistor conception, modeling and 

variability was presented and discussed. The state of the art for stochastic mismatch in Bulk 

technology was subsequently detailed, showing the advantages and the drawbacks of this 

technology. The FD SOI technology was then introduced as a potential candidate to improve 

the parasitic effects and the mismatch values and contributions observed in the BULK 

technology. The FDSOI profile was completed by a detailed state of the art of the associated 

Stochastic mismatch characteristics. This introduction chapter sets the ground for initial 

mismatch investigations, analysis and modeling activities on advanced technologies, which 

are treated in the main part of  this thesis. 
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Chapter II 

New method for the extraction of the 

threshold voltage and current gain 

factor mismatch and new drain current 

mismatch model 

 

This methodology chapter proposes a new Y-function based method for the extraction 

of the threshold voltage (Vt) and current gain factor (β) mismatch. A drain current mismatch 

model is also proposed that takes into account the value and variability of Rsd. 

 

This chapter is divided into the following five sections. 

o Section I discusses the need to revise the drain current mismatch models by 

considering the influence of the values and variability of Rsd in advanced 

technologies. 

o Section II details a proposed Vt and β mismatch extraction method based on the 

Y-function statistical variability study. The method is shown to overcome the 

influence of Rsd values. 

o Section III demonstrates a simple drain current mismatch model valid in strong 

inversion regime that includes the contributions of Vt, β and Rsd values and 

mismatch. 

o Section IV presents the experimental results. The new extraction method and the new 

drain current mismatch model were applied to 28nm FDSOI and Bulk devices of 

different dimensions and conclusions are discussed. 

o Section V closes the chapter with general conclusions and perspectives.
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II.1 Introduction and motivation of this work 

The drain current mismatch is one of the critical problems in scaled MOSFET‟s. Since 

the beginning of variability studies it has been analyzed that the local fluctuations of the 

threshold voltage (Vt) and current gain factor (β) are the major sources of drain current (ID) 

mismatch [Lakshmikumar86] [Croon 02a]. 

As the channel length is scaled down, the source/drain series resistance (Rsd) becomes a 

non-negligible contribution to the total device resistance (Rtot). Figure II. 1.a shows that for 

long-gate transistors Rsd is negligible compared to the channel resistance (Rch). However, 

when the gate length is reduced, Rsd is not any more negligible compared to Rch, and the total 

device resistance will be equal to Rch + Rsd as shown in Figure II. 1.b. 

 

Figure II. 1: BULK MOS transistor (a) with a long gate length (b) with a short gate length 

 

This Rsd contribution to the total device resistance has been demonstrated to limit the drain 

current performance of advanced MOSFET‟s [Ng 87] & [Thompson 98]. Figure II. 2 shows 

(a)

(b)
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that, in strong inversion regime and in the linear region, the drain current decreases when Rsd 

is increased.  

 

 
Figure II. 2: Calculation of the drain current values as a function of gate voltage, for 

Rsd=2775Ω and Rsd=0Ω.  (FD SOI transistors with W=0.08µm/L=0.05µm and VD=50mV) 

 

The plotted curves are obtained using the Equations II.1- II.4 that follow, where Qi, Gd0, Gd, 

K, T, n, and θ1, θ2 are respectively the channel inversion charge, the intrinsic channel 

conductance, the extrinsic channel conductance, the reduced Boltzmann constant, the 

temperature, the sub-threshold slope ideality factor, and the mobility reduction factors. 

Typical values are assigned to the parameters to plot the Rsd contribution: 

L=0.05µm/W=0.08µm and Rsd=0 and Rsd=2775Ω and drain voltage VD=50mV. 
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Moreover, in regards to mismatch issues, Markov showed in [Markov 11] & [Markov 12] that 

for short channel lengths, the local fluctuations of Rsd represent an additional contribution to 

the drain current mismatch. This phenomenon is more pronounced in ultra-thin silicon body 

Fully Depleted Silicon On Insulator (FDSOI) devices. 

Finally, Rsd has an important impact on the ID values, and its variability has been 

demonstrated in literature to have an impact on the drain current mismatch. Any future drain 

current mismatch model for advanced technologies must therefore take into account this 

contribution. 

II.2 New Y-function based mismatch extraction method (strong inversion 

regime) 

The main contributions to the drain current mismatch reported in literature are the 

threshold voltage and the current gain factor [Lakshmikumar86] [Croon 02a]. Moreover,  

different techniques and methods to extract the Vt and β values have also been reported, as 

detailed in section I.2. 

One of these methods is the Y-function extraction technique, that allows the extraction 

of the values of Vt and β by excluding the Rsd contribution (section I.2.3). In this section a 

mismatch study was presented where  the values of Vt and β were extracted for N samples of 

MOSFET transistor pairs. After applying a recursive filter to eliminate erroneous data, the 

standard deviation Vt and  / of the Gaussian distribution was calculated (Section I.5). 

In this paragraph, however, we propose a direct Vt and  / extraction method, also 

based on the Y-function extraction technique, that avoids following the previously detailed Vt 

and β extraction steps. As shown in section I.3.3 and Figure II. 3, the Y-function has the 

advantage to be independent from Rsd. 
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Figure II. 3 : Calculated Y function values as a function of the gate voltage, for 

Rsd=2775Ω and Rsd=0Ω (FD SOI transistors with W=0.08µm/L=0.05µm and VD =50mV). 

Starting from the Y-function equation (Equation I.15), the Y-function derivative can be 

written using the first order Taylor approximation, as shown in Equation II.5. In this equation 

the principal contributions to the variability of the Y function are assumed to be Vt and β, 

while the derivative of Y function versus Rsd is equal to zero. 
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The Y function variance is then calculated as shown in Equation II.6. Note that the 

correlation between the variability of Vt and β is deemed negligible. 
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If VG > Vt and VG falls within a range where θ2 can be neglected for the calculation of 

the drain current (Equation I.10 & Equation II.4) and the Y function (Equation I.15), it is 

possible to write: 
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Using Equations I.15, II.6, II.7 and II.8, the Y function variability can be written as 

shown in Equation II.9. 
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Considering then the difference between two identical MOS devices, the drain current 

mismatch can be written as shown in Equation II.10. In this equation 
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To validate Equation II.10, a short channel FD SOI transistor is considered with the 

parameters below: 

a. W=0.08µm/L=0.05µm 

b. Vt = 0.34V 

c. Tox=15 nm 

d. Effective mobility μ0 = 110cm
2
.V

-1
.s

-1
, θ1 =0.3 and θ1 =0.1 

e. Rsd=2775Ω 

f. GV = Vt =0.001V 

g.  =0.1β  

h. RsdRsd 1.0  

i. σΔVt=0.01V, σΔβ/β =0.131 and σΔRsd =0.1Rsd 

 

The drain current and Y function mismatch, and Equation II.10 were calculated as a function 

of 2)( VtVG  for VG values in the range of 0.66 - 1V and for VD=0.05V. As shown in Figure 

II. 4, 
22

/
)( VtVGDIDI

  is not linear as a function of 2)( VtVG  . Instead, 
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Figure II. 4: Extraction of σΔVt and σΔβ/β using σ

2
ΔY/ Y (VG-Vt)

2
 as a function of (VG-Vt)

2
 and 

σ
2

ΔID/ ID (VG-Vt)
2
 as a function of (VG-Vt)

2
 (FD SOI transistors with W=0.08µm/L=0.05µm 

and VD =50mV , Vt=0.34V). 

 

The benefit of this new extraction method lies in its easy and rapid application, and in 

its independence from the values and variability of Rsd. The classical Y-function extraction 

method requires the extraction of Vt and β, followed by the calculation of their mismatch. 

However, the new Y function mismatch extraction technique proposed in this paragraph 

(equation II.10) enables a direct extraction of Vt and β mismatches by simply considering the 

standard deviation of the Y function in strong inversion regime. Note that to maintain 

robustness with respect to the θ2 parameter while using this method, VG should not be very 

high (VGmax = 1V for this study). 
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II.3 New drain current mismatch model 

Different models have been proposed to explain the behavior of ID mismatch: in weak 

inversion region [Forti 94], in weak to strong inversion regime as a function of gate bias and 

transistor geometry [Serrano 03], and in weak to strong inversion regime and in linear to 

saturation regime for transistors with pockets [Mezzomo 10a]. A mismatch model has been 

published by Croon [Croon 02a] that expresses the drain current mismatch as a function of the 

threshold voltage and current gain factor mismatch, the surface roughness scattering and the 

saturation velocity. This model gives mismatch trends as a function of the gate bias and of 

transistor geometries. 

As shown in section II.1, Rsd has an important impact on ID. We therefore propose a new 

drain current mismatch model that takes into account the influence and variability of Rsd. 

Starting from the first order Taylor approximation of the drain current, the principal 

contributions to ID variability are, based on literature, Vt, β and Rsd. The drain current 

derivative can be written as shown in Equation II.11. 
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Calculating the drain current variance, the drain current variability can be written as 

shown in Equation II.12. Note that the cross-correlations factors between the Vt, β and Rsd 

variabilities are considered negligible. 
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If VG >Vt and VG is in a range where θ2 can be neglected for the calculation of the drain current 

(Equation I.10 & Equation II.4), the partial derivatives of ID using Equations I.10 and II.4 are 

calculated with respect to Vt, β and Rsd in Equations II.13, II.14, II.15, II.16 and II.17. The 

drain current variability model is thus obtained in Equation II.18, where Gm is the trans-

conductance. 
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For mismatch studies, considering the difference between two identical MOS transistors, 

Equation II.18 can be written as shown in Equation II.19 that represents the new drain current 

mismatch model  
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II.3.1 Validation of the new drain current mismatch model 

In order to validate the new drain current mismatch model in Equation II.19, the same 

short channel FD SOI transistor as section II.2 is considered with W=0.08µm and L =0.05µm. 

The three models below are plotted as a function of VG in Figure II. 5:  

a- Theoretical drain current mismatch represented by Equation II.12. Note that in 

Equation II.12 the difference between two identical MOS devices are used: 

σΔVt=0.01V, σΔβ/β =0.131 and σΔRsd =0.1Rsd 

b- Drain current mismatch model represented by Equation II.19 

c- Croon‟s model [Croon 02a] expressed in Equation II.20 (where Vt-β correlation, 

surface roughness scattering and saturation velocity have been neglected). 
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Note that Vt and β standard deviations are extracted using the new Y function mismatch 

extraction method proposed in section II.2. 
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Figure II. 5: Comparison between calculated full drain current mismatch, drain current 

mismatch model and Croon model without correlation, roughness scattering and saturation 

velocity terms (FD SOI transistors with W=0.08µm/L=0.05µm and VD =50mV). 

  

Figure II. 5 shows that, Croon‟s model does not reproduce the calculated drain current 

mismatch for short gate length (L=0.05µm). It is moreover possible to improve Croon‟s 

model by multiplying 
2

/ 
  by 

2).1( RsdGd (which represent the Rsd contribution and thus 

the mobility attenuation) and by excluding the Vt-β correlation term, so that the theoretical 

drain current mismatch is reproduced. 

II.4 Experimental Results  

II.4.1 Experimental setup 

Electrical characterizations have been carried out on 28 nm FD-SOI and Bulk devices 

integrating High-k gate oxide and metal gate. A sample of 70 pairs of identical MOS 

transistors has been considered, with  the test structures detailed in section I.5.2. All presented 

results refer to measurements performed in linear regime with drain voltage VD=50mV and 

gate voltage ranging from 0 to 1V, at 25°C. 
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II.4.2 FD SOI NMOS transistors of moderate gate length (W=1μm/L=0.1μm) 

Starting from NMOS transistors of moderate length (L=0.1µm), the drain current ID is 

measured and plotted in Figure II. 6 as a function of VG. The Y function is calculated from the 

drain current using Equation I.15 and plotted in Figure II. 7 as a function of VG. Figure II. 6 & 

Figure II. 7 show typical behaviors of ID and Y as a function of VG.  

 

 

Figure II. 6: Drain current as a function of gate voltage (FD SOI transistors with 

W=1µm/L=0.1µm and VD =50mV). 

 

 

Figure II. 7: Y Function as a function of gate voltage (FD SOI transistors with 

W=1µm/L=0.1µm and VD =50mV). 
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The relative difference of ID (noted ΔID/ID) and Y (noted ΔY/Y) between the pair of 

MOS transistors are calculated. This method is repeated for 70 pairs of identical NMOS 

transistors. The standard deviations of ΔID/ID and ΔY/Y are then calculated. Subsequently, the 

quantities 
2

/ DIDI . 2)( VtVG   and 
2

/ YY
  . 2)( VtVG   are plotted as a function of 2)( VtVG   

in Figure II. 8. This graph shows that while 
22

/
)( VtVGDIDI

  as a function of 2)( VtVG   

might be nonlinear due to the combined effect of Rsd and mobility degradation, 

22

/
)( VtVGYY

  presents a better linearity as a function of 2)( VtVG   , with a correlation of 

0.98. Using Equation II.10, 2

Vt  and 
2

/ 
 

  are finally extracted with a method that excludes 

the influence of Rsd. 

 

Figure II. 8:  VG>Vt (VG in the range of 0.6 -1V, with Vt=0.36V), Y function and drain 

current mismatch multiplied by (VG-Vt)
2
 and plotted as a function of (VG-Vt)

2
 (FD SOI 

transistors with W=1µm/L=0.1µm and VD =50mV). 

 

To verify if the values of Vt and β mismatch are correct, 
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using the classical Y function method explained in section I.2.3. Table II.1 represents a 
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Vt  and 2

/   extracted with the classical Y function method and the 
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Table II.1:  Comparison between Vt and β mismatch extracted by classical and new Y 

function extraction methods. 

 

(σParameter)
2 

 

 

(σΔVt)
2
 

 

(σΔβ/β)
2
 

Mismatch values extracted 

with the classical Y 

function method  

3.10
-5 

V
2
 

 

9.10
-4

 

 

Mismatch values extracted 

with the new mismatch 

extraction method (σ
2

ΔY/Y) 

2.10
-5 

V
2
 

 

8.10
-4

 

 

 

 

In order to validate the new mismatch model proposed in experimentally Equation II.19, 

first, the values of 
2

Vt  and 2

/   are extracted using the new Y function mismatch method. 

Second, the values of Rsd are extracted using the Rtot=f(1/β) method proposed by [Fleury 09]. 

The Rsd extraction technique is shown in Figure II. 9 where Rsd is the intercept of Rtot (1/β) 

on the vertical axis. This figure shows that the extracted value Rsd=216.84Ω is not negligible 

for short devices, where Rtot falls in the range of 300 Ω - 500 Ω for gate lengths ranging 

between 0.03 and 0.06 µm.  

The new drain current mismatch model is then calculated with Equation II.19 using the 

obtained values for 
2

Vt , 2

/   and Rsd. Note that the 22 .)( RsdGd   
term in Equation II.19 

can be neglected due to the moderate gate length [Markov 11] & [Markov 12]. The measured 

drain current mismatch, Croon‟s model [Croon 02a] expressed by Equation II.20 (without Vt-

β correlation) and the new drain current mismatch model are plotted as a function of VG in 

Figure II. 10 for the strong inversion regime. 
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Figure II. 9 Rsd extraction using the Rtot=f(1/β) method for W=1µm and L=0.03µm, 

0.05µm, 0.06µm, and 0.1µm, for NMOS FD SOI transistors with VG=1V and VD=50mV. 

 

Figure II. 10: VG>Vt (VG in the range of 0.5-1V, with Vt=0.36V). Comparison between the 

new drain current mismatch model, the drain current mismatch model proposed by Croon 

and the measured drain current mismatch as a function of VG (FD SOI transistors with 

W=1µm/L=0.1µm and VD =50mV, Rsd=220Ω). 

Figure II. 10 shows that Croon‟s model without the Vt-β correlation term does not fit the 

measured data. Thus, after improving Croon‟s model, by multiplying 
2

/ 
 

 by 
2).1( RsdGd

(which represent the Rsd contribution), the drain current mismatch is well reproduced without 

any need for Vt-β correlation, indicating also that the Rsd variability is negligible. The interest 

of this new model is that, while [Croon 02a] must use Vt-β correlation term to fit the data, the 

new drain current variability model well accounts for the measured data only by considering 

the Rsd contribution.  
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II.4.3 FD SOI NMOS transistors with short gate length (W=0.08μm/L=0.05μm)  

In this paragraph, the same approach as section II.4.2 is considered for short gate 

lengths. For each pair of MOS transistors, ID and Gm are first measured, and then the Y 

function is calculated from ID using Equation I.15. The standard deviations of ΔID/ID and 

ΔY/Y are then calculated for 70 pairs of identical NMOS transistors. Subsequently, the 

quantities 
2

/ DIDI . 2)( VtVG   and 
2

/ YY
 . 2)( VtVG   are plotted as a function of 2)( VtVG 

in Figure II. 11. This figure shows again that, while 
22

/
)( VtVGDIDI

  as a function of 

2)( VtVG  might be nonlinear, 
22

/
)( VtVGYY

 presents a better linearity as a function of 

2)( VtVG  . 

 

 

Figure II. 11: VG>Vt (VG in the range of 0.5-1V, with Vt=0.34V). Y function and drain 

current mismatch multiplied by (VG-Vt)
2
 and plotted as a function of (VG-Vt)

2
 (FD SOI 

transistors with W=0.08µm/L=0.05µm and VD =50mV). 

 

 

Using Equation II.10,  2

Vt  and 2

/    are then calculated, yielding 
242 10 V

Vt




 and

0172.02

/   .  
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Once values have been obtained for 2

Vt  and 
2

/ 
 

, the new drain current mismatch 

model of Equation II.19 is calculated with the Rsd value extracted using the Rtot=f(1/β) 

method shown in [Fleury 09]. Note that at the first order the 22.)( RsdGd   
term in Equation 

II.19 is negligible. The measured drain current mismatch, Croon‟s model [Croon 02a] 

(without correlation) expressed by Equation II.20, and the new drain current mismatch model 

are plotted as a function of VG in Figure II. 12. 

 

 
Figure II. 12: VG>Vt (VG in the range of 0.5-1V, with Vt=0.34V). Comparison between the 

new drain current mismatch model, Croon’s drain current mismatch model and the 

measured drain current mismatch as a function of VG (FD SOI transistors with 

W=0.08µm/L=0.05µm and VD =50mV, Rsd=2775Ω). 

 

Figure II. 12 shows that, for short lengths, Croon‟s model without the Vt-β correlation 

term also does not fit the measured data. Conversely, by improving Croon‟s model as in 

Equation II.19, the new drain current mismatch model enables the experimental variability data 

to be very well reproduced. Note that the Rsd variability is negligible also in the case of short 

lengths. Another observation is that the gap between Croon‟s model (without Vt-β correlation) 

and the new drain current variability model is more prominent for L=0.05µm than for 

L=0.1µm. Thus, Rsd value and β mismatch have more impact on ID mismatch for short 

lengths, emphasizing the benefit of the new drain current variability model. 
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II.4.4 Bulk NMOS transistors with short gate length (W=10μm/L=0.03μm) 

The new Vt and β mismatch extraction method has also been applied with success to 

bulk NMOS devices (W=10µm/L=0.03µm, VD=50mV) as illustrated in Figure II. 13, where 

252 10.3 V
Vt




 and 

42

/ 10.4 

  . 

 

Figure II. 13: VG>Vt (VG in the range of 0.6-1V, with Vt=0.31V). Y function and drain 

current mismatch multiplied by (VG-Vt)
2
 and plotted as a function of (VG-Vt)

2
 (BULK 

transistors with W=10µm/L=0.03µm and VD =50mV). 

Once values for 
2

Vt
  and 

2

/ 
 

 have been obtained, and once Rsd is extracted using 

[Fleury 09], the new drain current mismatch model of Equation II.19 was also applied with 

success to this measurement data. Figure II. 14 shows that, using the new drain current 

mismatch model, the measurement drain current mismatch data are well reproduced in strong 

inversion regime. 
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Figure II. 14: VG>Vt (VG in the range of 0.5-1V, with Vt=0.31V). Comparison between the 

new drain current mismatch model, Croon’s drain current mismatch model and the 

measured drain current mismatch as a function of VG (Bulk transistors with 

W=1µm/L=0.03µm and VD =50mV, Rsd=23Ω). 

II.5 Conclusions  

After showing the impact of Rsd on the drain current in short devices, a new threshold 

voltage and current gain factor mismatch method was demonstrated. This method excludes the 

influence of Rsd and is based on the well-known Y function. Also, a new drain current 

mismatch model based on the values and variability of Vt, β and Rsd valid in strong inversion 

regime was demonstrated. The new extraction method and the new drain current mismatch 

model were successfully applied to measured data for 28 nm FD SOI and Bulk NMOS 

transistors of different lengths and widths. 

For future technologies, this model can also be used to extract the contribution of the 

variability of Rsd to the variability of the drain current. Note that in the case of 28nm Bulk and 

FD SOI technology this variability was demonstrated to be negligible. Note that by considering 

Vt-β correlation term in Croon and Improved Croon Model, this correlation is demonstrated to 

be negligible in all devices characterized in this thesis (Appendix A). 
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Chapter III  

Cascode configuration as a substitute to 

LDE MOSFET for improved electrical 

mismatch performance 

 

The work presented in this chapter aims at optimising the mismatch performances of 

circuit configurations based on design considerations. In light of this, the option of replacing a 

Lateral Drain Extended MOS (LDEMOS) SOI transistor by a cascode configuration with the 

aim of improving the electrical mismatch performance is investigated. The cascode connection 

of two MOS devices is known to sustain as high drain voltage as LDEMOS SOI transistors. 

The investigation herein detailed aims at discovering whether this configuration offers the 

same mismatch robustness as Silicon On Insulator (SOI) MOS transistors. 

 

This chapter is divided into the following four sections: 

o Section I is a general introduction of the three devices considered for this study, 

with a particular focus on their advantages and drawbacks in terms of sustaining 

high drain voltages, mismatch issues and contributing factors. 

o Section II provides details on the measurement conditions and test structures. 

o Section III is divided in two parts. The mismatch behaviour of Vt, β and ID for the 

three devices is discussed for linear regime in part I and for saturation regime in 

part II. 

o Section IV draws general conclusions and proposes perspectives for future work. 
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III.1 Introduction and motivation of this work 

In the field of power management, some analogue applications (current mirrors, power 

amplifiers…) require matched pair of MOS transistors that can sustain high drain voltages. It 

is thus crucial to select MOS transistor types and architectures that combine adequate 

mismatch performance and the ability to sustain high voltages. 

Usually the classical MOS transistor is considered. In this study a partially depleted 

SOI, P type transistor is considered as illustrated in Figure III. 1. This device of 

L=0.28µm/W=0.7µm has a floating body and an oxide thickness of 5nm. It also has a good 

channel length control with L_channel ≈ L_gate. Little variability is thus introduced by the 

channel length. This device shown in Figure III. 1cannot however individually sustain high 

drain voltages.  

 

 

Figure III. 1:  Partially depleted SOI PMOS transistor with thick oxide (Tox=5nm) with 

L=0.28µm and W=0.7µm. 
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Multiple architectures exist for high voltage (HV) devices, which can be selected based 

on the desired trade-off such as, for instance, (Ron.Surface), breakdown, reliability or 

fabrication cost. Among the different available architectures, the Lateral Drain Extended 

MOS (LDEMOS) on Silicon On Insulator (SOI) transistor shown in Figure III. 2 is of 

particular interest. This device is known to sustain high drain voltages [Ishikawa 85], [Kim 

00] and [D‟Halleweyn 04] due to its extended resistance between the drain and the channel. In 

Figure III. 2, a partially depleted SOI, P type transistor with multi-fingered structure is 

considered. However, due to the diffused channel where L_gate=0.4µm ≠ 

L_channel=0.25µm, the gate length is not well controlled, thus introducing a significant 

source of variability. 

 

 

Figure III. 2:  PLDE MOS, The device is fabricated on SOI, with a polysilicon gate length 

of 0.4µm, gate oxide thickness of 5nm, Box thickness (tbox) of 400nm, SOI thickness (tSi) 

of 160nm and an estimated channel length of 0.25µm. 

 

Another potential solution for devices that can sustain high drain voltages is the cascode 

connection two or more MOSFET‟s illustrated in Figure III. 3. In this figure two MOS 

devices connected in cascode configuration are considered, with the aim of combining the 
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mismatch properties of MOS devices with the ability to sustain high drain voltages of 

LDEMOS. The source of the first MOS (MOS1) is connected to the drain of the second MOS 

(MOS2) to form a floating node. The drain of MOS1 is then considered as the drain of the 

overall device, while the source of MOS2 is considered as the source of the overall device. 

Note that this device presents two separate gates. This configuration offers the advantage of 

being able to sustain high drain voltages up to 5V. The challenge, however, is to maintain the 

same mismatch values as those observed in individual MOSFET. 

The purpose of this work is to examine the mismatch performance of this specific 

architecture as compared to the well-known individual and LDEMOS devices. 

 

 

Figure III. 3 Two cascode-connected PMOS devices with L1=L2=0.28µm and W=0.7µm 

III.2 Experimental details 

Electrical characterisation was performed on partially depleted silicon on insulator (PD-

SOI) PMOS transistors of different types, such as LDEMOS, individual MOSFET and 

MOSFET connected in cascode configuration. The oxide thickness is Tox=5nm, constant for 

all the devices under test. For matching measurements, a sample of 136 pairs of identical 

MOS transistors was considered within the mismatch test structures of Section I.5.2. All the 

presented results refer to measurements performed at 25°C. 

 In this work the individual mismatch constant of Equation I.29 is considered. This 

parameter allows the evaluation of the mismatch values for each channel dimension (Section 

I.4.5.c).  
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III.3 Vt, β and ID mismatches comparison for LDEMOS, Individual and 

cascode configuration devices. 

The high drain voltage matched pair of MOS transistors can be used for analogue 

applications in linear and saturation regimes. In this section the electrical parameters of the 

three devices types are characterised and analysed in linear and saturation regimes. 

III.3.1 Linear Regime 

 In linear regime, Vt, β and ID were measured at VG=-2.5V and VD=-0.1V for all devices. 

As a first order approximation, the total gate length in the cascode configuration was assumed 

to be the sum of the gate lengths of the two connected devices.  

III.3.1.a Vt and β mismatch 

The ID(VG) characteristics were first measured for all devices of the same width 

W=10µm and specific lengths L (L=0.25µm for LDEMOS device, L=0.28µm for individual 

MOS devices and L1=L2=0.28µm for the cascode configuration). The curves reported in 

Figure III. 4 show that at maximum |VG|, LDEMOS and cascode devices have identical 

performance, while the individual MOS device exhibits almost double ID values. Moreover, 

individual and cascode configuration devices conduct the same IDoff current, while LDEMOS 

devices exhibit an improved characteristic with lower off current. Note that the cascode 

configuration has a gate length value which is double than that of individual MOS devices, 

hence the ID value at max VG is almost halved. 

The threshold voltage was measured for all devices using the maximum slope method 

proposed by Hao et al. [Hao 85] and the absolute values were plotted as a function of the area 

S of the MOS transistors. The obtained graph is reported in Figure III. 5. Note that all 

LDEMOS devices have same gate length (L=0.4µm), same channel length (0.25µm) and 

different gate widths and number of fingers. The channel length value has been extracted 

based on capacitance measurements using the method proposed by Valtonen et al.     

[Valtonen 01].  
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Figure III. 4: Comparison of ID(VG)  for cascoded MOSFETs, individual MOSFETs and 

PLDE MOS devices in linear regime, plotted with linear scale (a) and Log scale (b). 
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Figure III. 5: Comparison of |Vt(V)| in cascoded MOSFETs, individual MOSFETs and 

PLDE MOS devices in linear regime. 

 

 iAΔVt is then calculated and plotted as a function of S as shown in  

Figure III. 6. LDEMOS devices show very high iAΔVt values, ranging from 14.9mV.µm for 

S=15µm
2
 to 17.9mV.µm for S=20 µm

2
. In the case of individual MOS devices, instead, iAΔVt 

ranges from 4.1mV.µm for S=25µm
2
 to 7.3mV.µm for S=0.126µm

2
. It‟s clear that LDEMOS 

devices present a high degraded Vt mismatch performance as compared to individual and 

cascode devices, due to its diffused channel and not well controlled gate length. As plotted in        

Figure III. 6, cascoded MOSFETs present iAΔVt values ranging from 4.3mV.µm for 

S=0.28µm
2
 to 5.89mV.µm for S=19.6µm

2
. This shows that individual and cascoded MOS 

devices exhibit similar variability performance, both benefiting from an improved robustness 

to Vt mismatch compared to LDEMOS devices. 
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Figure III. 6: Comparison of iAΔVt (mV.µm) for cascoded MOSFETs, individual 

MOSFETs and PLDE MOS devices in linear regime. 

  

The same study was conducted for the current gain factor β. The individual mismatch 

constants are plotted for all devices as a function of S. The graph reported in  

Figure III. 7 shows that, even in this case, MOS devices perform better than LDEMOS, 

with individual mismatch constants ranging from iAΔβ/β=2.14%.µm for S=5µm
2
 to 

iAΔβ/β=3.1%.µm for S=15µm
2
 in individual MOS devices and from iAΔβ/β=1.04%.µm for 

S=0.175µm
2
 to iAΔβ/β=2%.µm for S=14µm

2
 in LDEMOS devices. Again, cascoded and 

individual MOS devices exhibit similar behaviour, showing improved β mismatch 

performance compared to LDEMOS devices. Cascoded MOS devices exhibit in fact iAΔβ/β 

values ranging from 0.8%.µm for S=0.392µm
2
 to 1.19%.µm for S=19.6µm

2
. 

 

 
Figure III. 7: Comparison of iAΔβ/β (%.µm) for cascoded MOSFETs, individual 

MOSFETs and PLDE MOS devices in linear regime. 
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III.3.1.b ID mismatch 

The drain current mismatch was also investigated for the same MOS transistors types 

and configurations. Figure III. 8 shows that the mismatch in MOS and LDEMOS devices 

relative to the drain current is not affected by drastic variations, contrary to the mismatch for 

Vt and β. To understand this phenomenon, Croon‟s model [Croon 02a] and the improved 

Croon model proposed in [Rahhal 13] and detailed in chapter II were considered and 

compared. 

As shown in Equation III.1, Croon‟s model expresses the ID mismatch as a function of 

the Vt and β mismatch, their inter-correlation and the term Gm/ID. This first order model and 

the improved Croon Model in Equation III.2 were used to describe the observed behaviour of 

LDEMOS as well as individual and cascoded MOSFET devices. The results are reported in 

Figure III. 9, Figure III. 10 and Figure III. 11: 

o Figure III. 9 shows that for individual MOS devices, Croon‟s model of Equation III.1 

does not reproduce the data relative to small surfaces. The improved Croon model of 

Equation III.2, instead, reproduces the measured data across the whole range of S. 

This means that for small surfaces the Rsd term is an important contribution to the 

drain current mismatch. For big surfaces, instead, this contribution becomes less 

relevant. 

o Figure III. 10 shows that for LDEMOS devices, Croon‟s model of Equation III.1 does 

not reproduce the data across the whole range of surface values. A huge gap between 

the measured data and Equation III.1 is in fact observed. The improved Croon model 

of Equation III.2, instead, reproduces the measured data across the whole range of S. 

This means that the Rsd term is an important contribution to the drain current 

mismatch across the whole range of surface values. 

o Figure III. 11 shows that for the cascode configuration, the improved Croon model in 

Equation III.2 fits the measured data better than Croon‟s model. However, the gap 

between Croon‟s model of Equation III.1 and the measured data is not very 

pronounced across the whole range of S. Thus the Rsd effect on the drain current 

mismatch is less pronounced in cascode configuration than in individual and 

LDEMOS devices. 



Chapter III: Cascode configuration as a substitute to LDE MOSFET for improved electrical 

mismatch performance 

83 

 

 

)/,(..2.)( /

2

/

222

/
 

  Vt
I

Gm

I

Gm
TV

D
Vt

D
DIDI

 (III. 1) 

 

2

/

2222

/
.).1(.)(




  RsdGd
I

Gm
Vt

D
DIDI

 (III. 2) 

      

 

Figure III. 8: Comparison of iAΔID/ID (%.µm) for cascoded MOSFETs, individual 

MOSFETs and PLDE MOS devices in linear regime. 

 

 

Figure III. 9: Croon’s model and improved Croon model applied to the measured data for 

individual PMOS transistors in linear regime. 
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Figure III. 10: Croon’s model and improved Croon model applied to the measured data for 

PLDEMOS transistors in linear regime. 

 

 

Figure III. 11: Croon’s model and improved Croon model applied to the measured data for 

cascoded PMOS configuration in linear regime. 

 

To fully explain the similarity observed in the ID mismatch values of LDEMOS, 

individual and cascoded MOSFETs, the Gm/ID term was additionally investigated. Figure III. 

12 is a plot of Gm/ID as a function of S for the three devices tested in this study. Individual 

and cascoded MOS devices perform better in terms of Vt and β mismatch, while at the same 

time exhibiting almost double Gm/ID values as compared to LDEMOS devices. Thus the 

combination of Rsd and Gm/ID values explains the ID mismatch similarity between LDEMOS, 

individual and cascoded MOS devices. 
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Figure III. 12: Comparison of |Gm/ID| (Siemens/A) for cascoded MOSFETs, individual 

MOSFETs and PLDE MOS devices in linear regime. 

III.3.2 Saturation Regime 

Vt, β and ID were measured in saturation regime at VG=VD = -2.5V for individual MOS 

devices and VG = -2.5V and VD=-5V for LDEMOS and cascode configuration devices. 

As a first order approximation, the total gate length in the cascode configuration was assumed 

to be the sum of the gate lengths of the two connected devices. 

III.3.2.a Vt mismatch 

The ID(VG) characteristics were first measured for all devices of the same width 

W=10µm and specific lengths L (L=0.25µm for LDEMOS device, L=0.28µm for individual 

MOS devices and L1=L2=0.28µm for cascode configuration devices). The curves reported in 

Figure III. 13.a show that at maximum |VG|, LDEMOS devices exhibits higher ID as 

compared to individual MOS devices and cascode configuration devices, which exhibits 

lowest ID. This result is due to the double gate length of cascode devices as compared to 

individual and LDEMOS devices. Moreover, the three devices conduct almost the same IDoff 

current as shown in Figure III. 13.b. 

The threshold voltage was measured for all devices using the constant current method 

proposed by Deen et al. [Deen 90] and the absolute values were plotted as a function of the 

channel area S (µm
2
) of the MOS transistors. The obtained results are reported in Figure III. 

14. Note that all LDEMOS devices have same gate length (L=0.4µm), same channel length 

(0.25µm) and different gate widths and number of fingers. The channel length value has been 
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extracted based on capacitance measurements using the method proposed by Valtonen et al.     

[Valtonen 01].  

In saturation regime, the three tested devices exhibit constant and similar |Vt| values as a 

function of S, as opposed to the linear regime, where LDEMOS exhibits higher |Vt| values 

compared to individual and cascode configuration devices. This result mainly indicates that 

LDEMOS devices are affected by high DIBL effects that reduce |Vt| in saturation regime and 

increase the drain current at high VG values. Such DIBL effect is clearly observed in Figure 

III. 15, that shows a comparison of Vt for LDEMOS devices in linear and saturation regime. 

 

 

 

Figure III. 13: Comparison of ID(VG)  for cascoded MOSFETs, individual MOSFETs and 

PLDE MOS devices in saturation regime plotted in linear scale (a) e in Log scale (b). 
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Figure III. 14: Comparison of |Vt(V)| for cascoded MOSFETs, individual MOSFETs and 

PLDE MOS devices in saturation regime. 

 

 

Figure III. 15: Comparison of |Vt(V)| for PLDE MOS devices in linear and saturation 

regimes. 

 

iAΔVt is then calculated and plotted as a function of S, as shown in Figure III. 16. 

LDEMOS devices show very high iAΔVt values, ranging from 16.7mV.µm for S=10µm
2
 to 

17.9mV.µm for S=7.5 µm
2
. In the case of individual MOS devices, instead, iAΔVt ranges from 

3.4mV.µm for S=25µm
2
 to 6.4mV.µm for S=0.027µm

2
. By comparing these values, it is clear 

that the Vt mismatch has a stronger detrimental effect in LDEMOS devices compared to MOS 

devices also in saturation regime. These results also show that for LDEMOS devices, Vt 

mismatch is more degraded in saturation regime (iAΔVt around 19 mV.µm) as compared to 

linear regime (iAΔVt around 16.4 mV.µm). This degradation may be due to DIBL effect.  
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As plotted in Figure III. 16, cascoded MOSFETs present iAΔVt values ranging from 

4.8mV.µm for S=0.315µm
2
 to 6.4mV.µm for S=19.6µm

2
. This shows that individual and 

cascoded MOS devices exhibit similar variability performance, both benefiting from an 

improved robustness to Vt mismatch compared to LDEMOS devices, as well as a less 

significant DIBL effect. 

 

 
Figure III. 16: Comparison of iAΔVt (mV.µm) for cascoded MOSFETs, individual 

MOSFETs and PLDE MOS devices in saturation regime. 

 

 

III.3.2.b ID mismatch 

The drain current mismatch was also investigated for the same MOS transistors types 

and configurations in saturation regime. Figure III. 17 shows that the drain current mismatch in 

the three devices considered in this study is not affected by drastic variations as opposed to the 

Vt mismatch. This result is similar to that obtained in linear regime (paragraph III.3.1.b), 
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Figure III. 17: Comparison of iAΔID/ID (%.µm) for cascoded MOSFETs, individual 

MOSFETs and PLDE MOS devices in saturation regime. 

 

To try to understand this phenomenon, the same drain current mismatch model 

approach as chapter II is considered, this time in saturation regime. The drain current equation 

without the contribution of the source resistance (Rs) can be written as shown in Equation 

III.3. 
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 (III. 3) 

 

The Rs contribution can be assumed as a first order approximation to be Rsd/2. Hence the 

drain current can be written as shown in Equation III.4. 
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 (III. 4) 

 

As for mismatch, by applying the first order Taylor approximation with the hypothesis that 

the principal contributions to the drain current mismatch in saturation regime are the threshold 

voltage and the current gain factor, the drain current mismatch can be written as shown in 

Equation III.5 
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By replacing Rs with Rsd/2, Equation III.5 can be written as shown in Equation III.6, that 

represents a drain current mismatch model in saturation regime. 
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Croon‟s mismatch model in Equation III.1 and the new drain current mismatch model in 

Equation III.6 were applied to the measured data for the three devices considered in this 

study, and plotted in Figure III. 18, Figure III. 19 and Figure III. 20. 

 In the case of individual MOS devices, Figure III. 18 shows a small gap between 

Croon‟s model and the improved Croon model, compared to the measured data. This gap can 

be due to the uncertainties in the Rsd extraction technique or to more contributing factors that 

should be added to the model. This figure also shows that the 2

/
))(1(

1





 RsdVtVG

term 

is the main contribution to the ID mismatch. 

For the cascode configuration, the same results as individual devices were obtained in 

Figure III. 20 with no gap between Croon‟s model and the improved Croon model, compared 

to the measured data.  

The two previous results show that in the case of individual and cascode configuration, 

the Rsd contribution to the drain current mismatch in saturation is negligible. 

Concerning LDEMOS transistors, Figure III. 19 shows that Croon‟s model and the 

improved Croon model in saturation regime do not reproduce the data, while the 22)( Vt

DI

Gm
  

term reproduces the measured data across the whole range of S. This proves that this term 

represents the principal contribution to the ID mismatch of LDEMOS devices in saturation 

regime. 

 All the previous conclusions imply that in saturation regime, while the Vt mismatch is 

very degraded for LDEMOS as compared to individual devices and devices in cascode 

configuration, the ID mismatch for LDEMOS devices joins individual and cascode 

configuration due to Gm/ID term.  
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Figure III. 18: Croon’s model and improved Croon model applied to the measured data for 

individual PMOS transistors in Saturation Regime. 

 

 

 

Figure III. 19: Croon’s model and improved Croon model applied to the measured data for 

PLDEMOS transistors in Saturation Regime. 
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Figure III. 20: Croon’s model and improved Croon model applied to the measured data for 

cascoded PMOS configuration in Saturation Regime. 

 

III.4 Conclusions and perspectives 

In the context of designing High Voltage MOSFET devices, by taking into account 

mismatch issues on top of the classical Ron.Surface/Breakdown trade-off, this work confirms 

that the LDEMOS architecture is not the optimal candidate architecture. The cascode 

connection of two MOSFET devices offers improved Vt and β mismatch performances in 

linear regime, exhibiting characteristics that are very similar to what obtained with individual 

MOSFETs. The ID mismatch performances of the cascode configuration are moreover 

comparable to the characteristics of LDEMOS and individual MOS devices. As for the 

saturation regime, the Vt values were also shown to be degraded in LDEMOS devices as 

compared to individual devices and devices in cascode configuration. Degraded results were 

also obtained in LDEMOS devices in comparison to the linear regime, with highlighted DIBL 

effect. 

As for the drain current, it was shown that the three devices considered in this study 

exhibit mutually similar and very comparable mismatch performances in saturation regime. A 

drain current mismatch model was developed for the saturation regime,  based on the drain 

current equation in saturation regime with an Rsd contribution term. This model was applied 

to the three devices considered in this study. For individual and cascode devices, this model 

reproduces the experimental data with a certain level of Rsd uncertainty in the case of 
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individual MOS devices. As for LDEMOS devices, a big gap was observed between the 

model and the measured data. However, the 22)( Vt

DI

Gm
  term in the model was shown to 

reproduce individually measured data. 

For future work, a closer investigation of the three devices can be considered for 

specific applications. The following two strategies can be devised. 

1- The first one is to consider and study LDEMOS, individual MOS devices and 

devices in cascode configuration having the same drain current values. 

In this case, a comparison of Vt, β and ID mismatch for the three devices can be 

considered in linear and saturation regime. Moreover, the area of each device on 

silicon can be calculated to propose the optimal device for specific applications. 

2- The second one is to consider the three devices with the same geometries on silicon. 

In this case, the drain current values for of each device on silicon can be measured. 

Moreover, Vt, β and ID mismatch can also be studied and compared in linear and 

saturation regimes to propose the optimal device for specific applications.
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Chapter IV 

Impact of Ge proportions in P-MOSFET 

channel on matching performances in 

28nm Gate first Bulk technology 

 

While chapter II is dedicated to methodology and chapter III to design considerations, 

this chapter is the first of a series of three dedicated to mismatch contributions and effects in 

advanced technologies. 

In this chapter an exhaustive study of the impact on the mismatch of Vt, , and ID of Ge 

introduction in the channel of bulk 28nm P-MOS transistors is presented. This study is led in 

parallel on two types of PMOS transistors, i.e. with and without pockets. The interaction 

between Ge and pocket dopants and its impact on the mismatch properties is also studied. 

  

This chapter is organized in the following sections. 

o Section I presents a general introduction of the introduction of Germanium in the 

MOSFET channel. A state of the art of the influence of Germanium on MOSFET 

electrical mismatch performances is detailed. 

o Section II is dedicated to a description of the experimental setup. 

o Section III is focused on MOS transistors without pockets. In this part the matching 

performances of threshold voltage (Vt), current gain factor () and drain current (ID) 

measured on devices with and without SiGe are presented. 

o Section IV presents the impact of SiGe channel on the Vt,  and ID matching 

properties for devices with pocket implants. 

o Section V closes the chapter drawing conclusions and devising perspectives. 
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IV.1 Introduction (State of the art) 

 Different techniques have been introduced to boost the transistors performances such as 

the introduction of Germanium (Ge) in the P-MOS channel. The fully strained SiGe channel 

grown on Si substrates has been demonstrated to tune the threshold voltage (Vt) [Takagi 08] 

[Krishnamohan 06] [Harris 07] [Lee 09] [Khakifirooz 11] and to boost the hole mobility 

[Goto 93] [Verdonckt 94] [Voinigescu 94] of P-MOS transistors.  

Different studies have been conducted on the influence of SiGe on the electrical 

transport parameters in P-MOS transistors [Yeo 05] [Clavelier 07] [De Jaeger 07] [Hellings 

10]. However, increasing the Ion of the devices is not the only challenge. Many blocks such 

as SRAM or Analog-Digital converters are based on the availability of electrically matched 

pairs of transistors [Hu 04] [Boeuf 08] [Bhavnagarwala 05] [Saxena 08]. Studying the impact 

of SiGe channel on the matching properties of PMOS transistors is therefore mandatory. 

Some studies have been led on the variations of electrical parameters affected by the 

presence of Germanium in P-MOS channel. Yuan in [Yuan 12] showed that the presence of 

Ge in the P-MOS channel introduces an additional variability source and degrades the Vt 

mismatch, while Le Royer in [Le Royer 11] showed that in SOI P-MOSFET‟s, the 

introduction of Ge in the channel does not degrade the Vt variability. 

In this work, P-MOS transistors of 28nm Bulk technology integrating High K/Metal 

gate and SiGe channel are considered. An exhaustive study of the Vt, β, and ID mismatch with 

different Ge proportions in the channel is performed in linear regime for transistors with and 

without pocket implants. A comparison between channels with and without Germanium and 

with different proportions of Germanium is also presented. 

IV.2 Experimental setup 

Electrical characterizations have been carried out on 28nm Bulk transistors with and 

without pocket implant, where a SiGe channel of 7nm thickness is grown on Si substrates as 

shown in Figure IV. 1. These transistors integrate High-k gate oxide and TiN metal gate with 

0.03µm nominal designed channel length and oxide thickness of 1.71nm. 
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Tests have been performed in linear regime with drain voltage │VD│ = 0.05V and gate 

voltage │VG│ in the range of 0 - 1V. All presented results refer to measurements performed 

at 25°C. 

 

Figure IV. 1: SiGe channel (thickness=7nm) grown on Si Substrate (thickness=10nm) 

 

For matching measurements, a sample of 75 pairs of identical MOS transistors has been 

considered, laid in the mismatch test structures of Section I.5.2. Note that all transistors 

belong to the same lot, with one wafer per Ge content, including no germanium  (W/O Ge). 

For matching studies, the statistical processing described in section I.4 is applied: 

o  An electrical parameter P is measured for each of the two paired devices. 

o The difference of P noted ΔP (or P/P) between the pair is calculated. 

o This method is then repeated for the 75 samples present on each wafer. 

o A recursive filter is then applied to this population to remove erroneous data. The 

number of rejects is comprised between 0 and 5 for all tested wafers presented in this 

work. 

o Once the distribution after filtering has been verified to be Gaussian and centered on 0, 

the standard deviation σΔP (or σΔP/P) of the distribution is calculated. 

In this work the individual mismatch constant of Equation I.29 is considered. This 

parameter allows the evaluation of the mismatch values for each channel dimension (Section 

I.4.5.c).  
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IV.3 Electrical parameters mismatch characterization on transistors 

without pocket implants 

IV.3.1 Threshold Voltage mismatch 

For transistors with and without Ge, the threshold voltage is extracted using the 

maximum slope method with │VD│=0.05V [Hao 85]. The │Vt│ values are plotted in Figure 

IV. 2 as a function of the length of the transistors (L). Figure IV. 2 shows that for small 

lengths (L<0.24µm), a short channel effect (SCE) is observed, while for long lengths (L≥0.24 

µm), │Vt│ is constant. Figure IV. 2 also shows that │Vt│ decreases when the Ge percentage 

increases. 

The reduction of │Vt│ with the Ge introduction in the MOSFET channels is explained 

in [Fischetti 96] and shown in Figure IV. 3. When Ge is introduced, the valence band is 

shifted upwards while the conduction band is almost invariable, thus reducing the band gap. 

This reduction implies that the Fermi level and the intrinsic Fermi level are shifted upwards 

and thus the semiconductor work function ( SC ) is reduced. Finally, the SC  reduction 

induces a │Vt│ decrease, as shown in Equations IV.1 & IV.2. 

  

ox

d

FBF
C

Q
VVt  2  (IV. 1) 

 

SiSiGeSCmFB VtVtV    (IV. 2) 

 

Where F  is the Fermi potential, FBV
 is the flat band voltage, dQ

 
is the depletion charge, oxC

is the gate oxide capacitance, m  
is the metal work function and SC

 
is the semiconductor 

work function. The │Vt│ shift as a function of the Ge percentage is well known and 

explained in [Weber 89]. 

The individual constants of Vt matching have been calculated and plotted as a function 

of L in Figure IV. 4. In this figure we observe that the Vt matching performances are not 

affected by the presence of Ge in the percentage range considered in this study. Indeed, the 

Ge presence in the channel may induce two additional contributions: the variation of SiGe 

layer thickness (TSiGe) and the variation of the valence band (Ev) level. 
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Concerning the first one, it has been shown in [Soussou 12] that the TSiGe (7nm in our 

case as shown in Fig.1) is large enough (TSiGe > 5nm), thus the induced Vt variations are 

negligible. 

The impact of Ev level variations on the Vt mismatch is more complex. Assuming that 

the number of Ge atoms in the channel has the same behavior than dopants i.e. governed by a 

Poisson law, the individual constant of matching due to Ev level variations can be written as 

in Equation IV.3. 

)(.
.)(

GeNT

X

X

E
GeiA

SiGe

V
Ev




  (IV. 3) 

 

Where 
X

EV




is the slope of band offset VE

 
as a function of Germanium content X      

[Soussou 12], i.e. eV
X

EV 66.0



, X  is the Germanium percentage, SiGeT is the SiGe layer 

thickness and )(GeN is the germanium concentration )/104.4)(( 322 cmatGeN   

Using Equation IV.3, Table IV.1 shows that for the percentages of Ge considered, 

)(%GeiAEv  
is not sufficiently large to create a significant difference to the Vt mismatch. The 

negligible influence on iAΔVt  due to the presence of Ge is also verified in Figure IV. 5, where 

no remarkable Vt mismatch difference is observed between the maximum and the minimum 

percentages of Ge. 

 

Figure IV. 2: Transistors without Pockets: Threshold voltage values as a function of L, for 

channels without Ge and for different percentages of Ge 
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Figure IV. 3: An illustration of the effect of the Ge introduction on the energy bands of the 

semiconductor 

 

 

Figure IV. 4: Transistors without Pockets: Comparison of iAVt as a function of L 

between transistors without and with different percentages of Ge 
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Table IV.1: iAEv (%Ge) values for different percentages of Ge derived from Equation IV.3. 

Percentage of Ge iAEv (%Ge) (eV.µm) 

20% - 22% of Ge 1.699x10
-5

 eV.µm 

28% - 30% of Ge 2.01x10
-5 

eV.µm 

32% - 34% of Ge 2.149x10
-5

 eV.µm 

 

 

Figure IV. 5: Transistors without Pockets: Comparison of iAΔVt as a function of L between 

the minimum and the maximum considered percentages of Ge 

 

IV.3.2 Current gain factor mismatch 

The current gain factor β is extracted using the maximum slope method with 

│VD│=0.05V [Hao 85]. The β individual constants of matching are then calculated and 

plotted as a function of L in Figure IV. 6, for transistors without and with different 

percentages of Ge. This figure clearly exhibits an improvement in the β mismatch 

performances when Ge is introduced in the channel. Moreover, no significant variation of 

iAΔβ/β is observed as a function of the Ge percentage between 20% and 34% as shown in 

Figure IV. 7.  

The mobility improvement with Ge introduction is the object of different studies and 

publications such as [Goto 93] and [Krishnan 11], which attribute this beneficial effect to an 
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scattering events (charges at the SiGe/SiO2 interface, defects or traps in the dielectric) when 

Ge is introduced.  

Back to mismatch issues, Difrenza in [DiFrenza 02a] showed that the major sources of β 

variability related to low field mobility are the local fluctuations in the number of dopants in 

the channel and the charges trapped at the Si/SiO2 interface. This suggests that, in our case, 

when the charges at the SiGe/SiO2 interface are reduced, the β mismatch could be improved 

as it is observed. 

 

 

Figure IV. 6: Transistors without Pockets: Comparison of iAβ/β as a function of L between 

transistors without and with different percentages of Ge 

 

 

Figure IV. 7: Transistors without Pockets: Comparison of iAβ/β as a function of L between 

the minimum and the maximum considered percentages of Ge 
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Finally, while in [Diouf 13] the authors observed an improvement in µ0 when the Ge 

content is increased, Figure IV. 7 does not show any significant variation of iAΔβ/β between 

20% Ge and 34% Ge. This indicates that, while µ0 improvement depends on the dielectric 

charges and the carriers‟ effective mass (known to be improved when the percentage of Ge is 

increased), β mismatch depends only on dielectric charges, as expected. 

IV.3.3 Drain current mismatch 

The drain current (ID) values are extracted in linear mode at VG=1V and 

VD=0.05V. ID/W values are then plotted as a function of L. Figure IV. 8 shows that ID/W 

increases with the introduction of Ge and when its percentage increases. Indeed, this is 

directly related to the Vt reduction, increasing the gate voltage drive, and, also to the µ0 

improvement with the Ge content. 

 

Figure IV. 8: Transistors without Pockets: ID/W as a function of L, for channels without 

Ge and with different Ge percentages 

 

iAΔID/ID is plotted as a function of L in Figure IV. 9, showing that when Ge is added in 

the P-MOS channel, the ID mismatch is improved. Moreover, the ID mismatch exhibits higher 
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This model is applied to the measured data for transistors without and with Germanium. 

 

Figure IV. 9: Transistors without Pockets: Comparison of iAID/ID as a function of L 

between transistors without and with different percentages of Ge. 

 

 

A comparison of 2

/ IDIDiA
 as a function of L between the measured data and Croon‟s 

model is shown in Figure IV. 10 for transistors without Ge and in Figure IV. 11 for transistors 

with 20-22% of Ge. The two cases show that this model provides a good fit, implying that, for 

both transistors without and with Ge, the drain current mismatch is the result of a combination 

of Vt and β mismatch effects plus their correlation. Thus, an improvement in one of these 

parameters induces an improvement in the current mismatch. In this case, the β mismatch 

improvement explains the lower drain current variability observed in transistors with 

Germanium. Moreover, Equation IV.4  shows that 2
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 depends of 2)(
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Gm
, thus when the 

absolute value of ID is increased, ID mismatch is improved, explaining the improvement of ID 

mismatch in Figure IV. 12 with the Ge percentage increase. 
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Figure IV. 10: Transistors without Pockets: Current variability from Croon’s model 

compared to the measured current variability for transistors without Ge. 

 

Figure IV. 11: Transistors without Pockets: Current variability from Croon’s model 

compared to the measured current variability for transistors with Ge. 
 

 

Figure IV. 12 Transistors without Pockets: Comparison of iAID/ID as a function of L 

between the minimum and the maximum considered percentages of Ge. 
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IV.4 Electrical parameters mismatch characterization on transistors with 

heavily pocket implants 

IV.4.1 Threshold Voltage mismatch 

In this section we consider devices with pockets (type: Arsenic) implanted in the 

channel. For transistors with and without Ge, the threshold voltage is extracted using the 

maximum slope method with |Vd|=0.05V [Hao 85]. The │Vt│ values are plotted in Figure 

IV. 13 as a function of the length of the transistors (L). Contrary to MOS transistors without 

pockets, no SCE is observed and │Vt│ increases when L decreases. Figure IV. 13 also shows 

that when the percentage of Ge is increased, │Vt│ decreases. 

The reduction of │Vt│ with the introduction of Ge in the MOSFET channels is due to 

the valence band shift as explained in paragraph IV.3.1. 

 

 

Figure IV. 13: Transistors with Pockets: Threshold voltage values as a function of L, for 

channels without Ge and for different percentages of Ge. 
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of L in Figure IV. 14. For transistors without Ge, iAΔVt(L) has the typical shape of MOS 
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as MOS transistors with pockets, with less degradation at L≥1µm. 
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Figure IV. 14: Transistors with Pockets: Comparison of iAVt as a function of L between 

transistors without and with different percentages of Ge. 
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dispersed pockets. Thus, the contrast between the pockets and the rest of the channel is 

reduced, as shown in Figure IV. 15, inducing less degradation at L≥1µm. 

Figure IV. 16 shows no significant variation of iAΔVt when the percentage of Ge is 

increased. Thus no impact on the Vt mismatch performance is observed for Ge contents 

between 20% and 34%, suggesting that the percentage of Ge is not sufficient to generate 

differences. 

 

Figure IV. 15: An illustration of the contrast between the pocket doping and the rest of the 

channel in the case of transistors with and without (W/O) Ge. 

 

 

Figure IV. 16: Transistors with Pockets: Comparison of iAVt as a function of L between 

the minimum and the maximum considered percentages of Ge. 
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conducted on NMOS Bulk transistors with pocket doping. The iAΔVt mismatch results show 

similar values and behavior in NMOS and PMOS devices with pocket doping, with the 

introduction of Ge as shown in Figure IV. 17: 

o Hump at L=1µm: iAΔVt value is equal to 5.1 mV.µm.  

This suggests that with the introduction of Germanium and the use of metal Gate technology, 

the previously observed higher iAΔVt in nFET with respect to pFET is not any more relevant. 

Instead, nFET and pFET devices exhibit very similar iAΔVt  values. 

 

 

Figure IV. 17: Comparison between NMOS and PMOS (with Ge) Vt mismatch as a 

function of L. 

 

IV.4.2 Current gain factor mismatch 

The current gain factor β is extracted using the maximum slope method with 
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on the dielectric charges and the carriers‟ effective mass (known to be improved when the 

percentage of Ge is increased), the β mismatch depends only on dielectric charges. 

 

 

Figure IV. 18: Transistors with Pockets: Comparison of iAβ/β as a function of L between 

transistors without and with different percentages of Ge. 

 

 

 

Figure IV. 19: Transistors with Pockets: Comparison of iAβ/β as a function of L between 

the minimum and the maximum considered percentages of Ge. 
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ID/W values increase with the introduction of increasing Ge content, due to the Vt reduction 

and mobility improvement. 

 

 

Figure IV. 20: Transistors with Pockets: ID/W as a function of L, for channels without Ge 

and for different percentages of Ge 

 

 

Similarly, 
DIDIiA /  is plotted as a function of L in Figure IV. 21. This figure shows that 

when Ge is added in the P-MOS channel, the ID mismatch is improved. Moreover, the ID 

mismatch exhibits higher improvement at higher Ge percentages, as shown in Figure IV. 22. 

 

Figure IV. 21: Transistors with Pockets: Comparison of iAID/ID as a function of L between 

transistors without and with different percentages of Ge 
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Figure IV. 22: Transistors with Pockets: Comparison of iAID/ID as a function of L between 

the minimum and the maximum considered percentages of Ge 

 

In order to explain the current mismatch improvement, Croon‟s model expressed by 

Equation IV.4 is again applied to the measured data for transistors without and with 

Germanium. A comparison of 
2

/ DIDIiA  as a function of L for the measured data and Croon‟s 

model is presented in Figure IV. 23 for transistors without Ge and in Figure IV. 24 for 

transistors with 32-34% Ge. Figure IV. 23 shows that, for channels without Ge, Croon‟s 

model offers a good fit. As for transistors with Ge, in Figure IV. 24, Croon‟s model 

overestimates the measured values. This underestimation suggests that, for SiGe channels, in 

addition to Vt, β mismatch and their correlation, more terms should be considered, such as the 

Rsd contribution. 
 

 

Figure IV. 23: Transistors with Pockets: Current variability from Croon’s model compared 

to the measured current mismatch for transistors without Ge 
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Figure IV. 24: Transistors with Pockets: Current variability from Croon’s model compared 

to the measured current mismatch for transistors with 32-34% Ge 

IV.5 Conclusions 

This chapter presented a mismatch study performed on P-MOS transistors of advanced 

technology integrating High K/metal gate and SiGe channels. Vt, β and ID mismatch have 

been studied in linear regime. Transistors with and without pocket implants, and comparisons 

between channels without Germanium and with different percentages of Germanium have 

been shown. 

It was observed that for transistors without pockets, the Vt mismatch does not vary with 

the introduction of Ge, due to the negligible variability of the SiGe layer thickness (TSiGe) and 

of the valence band offset (Ev). In contrast, for transistors with pocket implants, the Vt 

mismatch is shown to improve with the introduction of Ge. This improvement is attributed to 

the diffusion of the pocket dopants (type: Arsenic) in the channel, enlarging and dispersing 

the pockets and thus alleviating the contrast with the rest of the channel. Moreover, no Vt 

mismatch variation was observed with increasing Ge percentage. 

Concerning the current gain factor, this study shows that the corresponding mismatch is 

improved with the introduction of Ge. This improvement is attributed to the reduction of the 

Coulomb scattering (charges at the SiGe/SiO2 interface, defects or traps in the dielectric) with 

the introduction of Ge. This is the case for transistors with and without pocket implants. 

Moreover, the increased percentage of Ge does not induce any variation of current gain factor 

mismatch. 
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Finally, concerning the drain current mismatch, Croon‟s model has been found appropriate for 

transistors without pockets, with or without Ge. As the current mismatch is a combined result 

of the threshold voltage mismatch, the current gain factor mismatch and their correlation, any 

amelioration in one of these parameters induces a consequent current mismatch improvement. 

For transistors with pocket implants, Croon‟s model for current variability only offers a good 

fit for transistors without Ge, while it overestimates the measured values in the case of 

transistors with Ge. Thus, more variability sources should be considered, such as the 

source/drain series resistance Rsd, to better model the drain current mismatch, as explained in 

chapter II. 
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Chapter V  

Mismatch characterization of 20nm 

Gate-last Bulk CMOS technology 

 

This second technology chapter treats the metal gate granularity problem. Particular 

focus is given to the use of Gate-last technology to alleviate or completely remove the 

corresponding contribution to mismatch. For this purpose Vt and β mismatch for the 20nm 

Gate-last bulk CMOS technology are investigated and compared to 28nm Gate-first 

technology. Moreover, trends for iAVt and iA/ are analyzed as a function of EOT (Tox), 

from the 90nm technology node down to the 20nm technology node. 

 

This chapter comprises the following six sections. 

o Section I presents a general introduction on the problem of metal gate granularity 

(MGG). The state of the art with regards to the MGG effect on mismatch and to the 

use of Gate-last technology, known to theoretically reduce this contribution, is also 

presented. 

o Section II describes some experimental details. 

o Section III provides a comparison of the CMOS electrical parameters of GO1 and 

GO2 devices, which differ by different oxide thickness (for 20nm Gate-last 

technology). 

o Section IV presents a comparison of the CMOS electrical parameters of 20nm Gate-

last technology and 28 nm Gate first technology. 

o Section V provides an analysis of the Vt and β mismatch constants as a function of 

EOT (Tox), from the 90nm technology node down to the 20nm technology node. 

o Section VI concludes the chapter by drawing detailed conclusions and perspectives. 
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V.1 Introduction (State of the art) 

Recent mismatch studies such as [Roy 06] [Cathignol 08b] [Asenov 08] [Wang 12] 

demonstrated that the main contributing factors to the threshold voltage (Vt) mismatch in 

advanced Bulk High-k / metal gate technology are the Random Dopant Fluctuations (RDF), 

the Line Edge Roughness (LER), and the Metal Gate Granularity (MGG). 

The implantation and activation of self-aligned source and drain induces a poly-

crystallization of the metal gate [Bai 05] [Fillot 05]. The grains so created have inconsistent 

orientation and work functions, and grow in size until reaching dimensions that are 

comparable to the gate length. This phenomenon is known as Metal Gate Granularity (MGG). 

One of the proposed solutions to eliminate the variability due to MGG is the use of Gate-Last 

technology, in which the metal gate is deposited after the implantation and the activation 

processes. The metal does not undergo high temperature treatments and maintains therefore 

its amorphous phase, with nanometer-scale grain sizes [Mistry 07] [Ohmori 08]. The adoption 

of Gate-Last technology in advanced bulk MOSFET‟s integrating High-k and metal gate is 

thus a promising solution that can help reduce the Vt mismatch. 

Simulation studies by Asenov et al. [Asenov GSS] have been reported in literature on 

the advantages of Gate-Last technology in terms of reducing the Vt mismatch as compared to 

Gate-First technology. Moreover, a recent work by Fukutome et al. [Fukutome 12] showed 

that low Vt mismatch can be obtained for Gate-last technology by using embedded SiGe 

interface engineering, resulting in lower interface states density.  

In this chapter the threshold voltage Vt, the current gain factor β, and the drain current 

ID mismatch performances are investigated in the recent 20nm Gate-Last bulk CMOS 

technology. The values of Vt and β for this technology are also compared to those observed in 

the 28nm Gate-First Bulk technology.  Finally, the trends of the Vt and β mismatch 

parameters across the nodes from 90nm ST technology down to 20nm Gate-Last technology 

are plotted and conclusions drawn. 

V.2 Experimental details 

Electrical characterization was performed on bulk NMOS/PMOS transistors on two 

wafers processed with 20nm Gate-Last International Semiconductor Development Alliance 

(ISDA) and 28nm Gate-First technologies, with integrated High-k gate oxide and metal gate. 
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The characteristics of the devices under test are detailed in Table V.1. For the 20nm Gate-Last 

technology, two equivalent gate oxide thicknesses are available (GO1 vs GO2). For matching 

measurements, a sample of 76 pairs of identical MOS transistors has been considered. The 

two MOSFET‟s of the pair are spaced by the minimum allowed distance, laid out in an 

identical environment and are electrically independent with symmetrical connections.  

Table V. 1: Characteristics of the devices under test 

 

 

 

 

 

 

 

 

 

 

 

 

The dimensions of the devices used in this study are detailed in Table V.2 for 20nm 

Gate-Last and 28nm Gate-First technologies. 

Tests have been performed in linear regime with: 

- Drain voltage │VD│ = 0.05V and gate voltage 0 ≤ │VG│ ≤ 0.9V for 20nm GO1 

devices; 

- Drain voltage │VD│ = 0.1V and gate voltage 0 ≤ │VG│ ≤ 1.8V for 20nm GO2 

devices; 

- Drain voltage │VD│ = 0.05V and gate voltage 0 ≤ │VG│ ≤ 1V for 28nm GO1 devices; 

All presented results refer to measurements performed at 25°C. In this work, samples of 

76 pairs of MOS transistors are considered for each device type and wafer. The number of 

data rejects after filtering ranges between 0 and 5 in all wafers tested for this work. The 

filtered data is proven to follow a Gaussian distribution centered on 0. 

The individual mismatch constant of Equation I.29 is used in this study with the purpose 

of evaluating the mismatch properties in the 20nm Gate-Last technology and comparing the 

performances with the 28nm Gate-First technology for each channel dimension. 

 20 nm Gate-Last 28nm Gate-First 

EOT (Tox) 

GO1:12.48Ǻ/12.7Ǻ 

(NMOS/PMOS) 

GO2:31.6Ǻ/32.9Ǻ 

(NMOS/PMOS) 

GO1:15.7Ǻ/17.1Ǻ 

(NMOS/PMOS) 

………. 

High k SiON/HFO2 HFSION 

Metal Gate 
- Based on TiN/TaN/Al 

(NMOS/PMOS) 

- TiN / AO (NMOS) 

- TiN/AO/TiN/Al/TiN 

(PMOS) 

PMOS 

transistors 
Si channel SiGe channel 
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Table V. 2: Dimensions of the devices under test for 20nm Gate-Last and 28nm Gate-First 

28nm Gate-First GO1 20nm Gate-Last GO1 20nm Gate-Last GO2 

W (µm) L (µm) W (µm) L (µm) W (µm) L (µm) 

0.072 

0.072 

0.45 

0.9 

0.9 

0.9 

4.5 

9 

9 

0.45 

0.9 

0.9 

0.072 

0.45 

0.9 

0.45 
 

0.03 

0.048 

0.093 

0.03 

0.048 

0.903 

0.453 

0.03 

0.903 

0.03 

0.057 

0.219 

0.903 

0.453 

0.093 

0.219 
 

0.06 

0.2 

0.3 

0.5 

1 

0.06 

0.2 

0.2 

0.2 

0.3 

1 

0.06 

0.2 

1 

0.5 

0.5 

1 

0.5 

1 

0.5 

1 

0.5 

0.5 
 

0.02 

0.02 

0.02 

0.02 

0.02 

0.024 

0.026 

0.028 

0.024 

0.024 

0.024 

0.034 

0.034 

0.034 

0.024 

0.034 

0.06 

0.06 

0.08 

0.08 

1 

1 

2 
 

0.32 

0.16 

0.5 

0.32 

0.16 

0.5 

0.32 

0.16 

2 

2 

2 

2 

2 

2 

2 

0.5 
 

0.15 

0.15 

0.1 

0.1 

0.1 

0.07 

0.07 

0.07 

0.5 

0.3 

0.2 

0.15 

0.12 

0.1 

0.07 

0.15 
 

V.3 Comparison of devices with channel pocket implants and different 

oxide thicknesses EOT (Tox) in 20nm Gate-Last technology 

The Vt, β, and ID mismatch are analyzed in the 20nm Gate-Last technology by 

comparing GO1 and GO2 devices with different oxide thicknesses shown in Table V.1. This 

comparison enables a discussion on the possibility of reducing or eliminating the metal gate 

granularity effect in the 20nm Gate-Last technology. 

V.3.1 Threshold Voltage mismatch 

The Vt values were first measured using the maximum slope method [Hao 85], for GO1 

and GO2 devices with thinner and thicker gate oxide, respectively. The results are plotted in 
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Figure V. 1 as a function of the gate length (L). NMOS GO2 devices exhibit higher |Vt| 

values compared to PMOS GO2 devices. Moreover, for GO2 PMOS devices a width (W) 

effect is observed. Indeed for the same gate length, when W is increased Vt is decreased. For 

example in Figure V. 1, for L=0.1µm, when W varies from 2µm to 0.16µm, the 

corresponding Vt values increase from 0.48V to 0.53V. 

  

 
Figure V. 1: Comparison of |Vt| (V) as a function of the transistor surface W.L (µm

2
) 

between GO1 and GO2 for NMOS and PMOS devices of the 20nm Gate-Last technology. 

 

 

The values of Vt  for GO1 and GO2 N/PMOS devices of 20nm Gate-Last technology 

are then calculated and plotted as a function of 1/W.L in Figure V. 2. This Graph shows that 

while GO1 N/PMOS transistors follow Pelgrom‟s Law except for very large areas, GO2 

devices are much more dispersed. This higher dispersion may be due to process variations that 

might be not well controlled for GO2 devices. Future investigations should be devised to 

understand and quantify this phenomenon. 
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Figure V. 2: Pelgrom Plot: Comparison of σΔVt (V) as a function of the transistor surface 

1/W.L (1/µm
2
) between GO1 and GO2 for NMOS and PMOS devices of the 20nm Gate-

Last technology. 

 

The individual mismatch constant is then calculated using Equation I.29 for each 

geometry, and plotted as a function of the transistor surface W.L (µm
2
) in Figure V. 3. The 

graph shows higher degradation of the iAΔVt values in N/PMOS GO2 devices as compared to 

N/PMOS GO1 devices for different values of W.L (µm
2
). 

 

 
Figure V. 3: Comparison of iAΔVt (mV.µm) as a function of the transistor surface W.L 

(µm
2
) between GO1 and GO2 for NMOS and PMOS devices of the 20nm Gate-Last 

technology. 
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To explain the observed phenomenon, the effective channel doping (Na) was extracted for 

long devices W=1µm/L=1µm (GO1) and W=2µm/L=0.5µm (GO2) using Equations V.1 and 

V.2, as detailed in [Ghibaudo 97], with the bulk bias shown in Table V.3: 

 

ox

d

b

t

C

C

dV

dV
  (V.1) 

 

  







 )ln(...4..)(

i

a
asiad

n

N
TKNqNC   (V.2) 

 

where Cd is the channel depletion capacitance, Cox is the oxide capacitance, si is the channel 

permittivity, ni is the intrinsic carrier concentration, K is the Boltzmann constant, and T is the 

measurement temperature in Kelvin. 

 

Table V. 3: Bulk bias values used to extract the channel effective doping (Na). 

  GO1 devices 

(W=1µm/L=1µm) 

GO2 devices 

(W=2µm/L=0.5µm) 

NMOS Vb=-0.5V & Vb=0V Vb=-1V & Vb=0V 

PMOS Vb= 0.5V & Vb=0V Vb=1V & Vb=0V 

 

The obtained values for Na, detailed in Table V.4, show very small difference between 

GO1 and GO2 devices. 

 

Table V. 4: Effective channel doping in the 20nm Gate-Last technology. 

  GO1 devices 

(W=1µm/L=1µm) 

GO2 devices 

(W=2µm/L=0.5µm) 

Na NMOS 1.21x10
18

cm
-3

 1.12x10
18

cm
-3

 

Na PMOS 1.90x10
18

cm
-3

 9.98x10
17

cm
-3

 

 



Chapter V: Mismatch characterization of 20nm Gate-last Bulk CMOS technology 

121 

 

The individual mismatch parameter of the channel depletion charge Qd was then calculated 

using Equation V.3 in order to normalize the Vt mismatch and eliminate the Tox dependency. 

 

VtCox.    Qd  (V.3) 

  

The results, plotted in Figure V. 4 as a function of W.L (µm
2
), interestingly show that 

N/PMOS GO1 and GO2 devices exhibit comparable iAΔQd values over the studied range of 

W.L. This similarity suggests that the Vt mismatch scales with Tox and further indicates, 

based on Equation V.4 [Mezzomo 10], that in the 20nm Gate-last technology the channel 

contribution to the Vt mismatch is much more pronounced than the gate contribution. 

 

4

.
.)(

2

2

d

ox

ox
oxVt

Qqt
tA




 (V.4) 

  

where ox  is the oxide permittivity. 

 

 
Figure V. 4: Comparison of iAΔQd (F.mV.µm) as a function of W.L (µm

2
) between GO1 and 

GO2 for NMOS and PMOS devices of the 20nm Gate-Last technology. 

 

The two previous conclusions demonstrate that by using a Gate-Last technology and thus 

improving the MGG effect, the gate contribution to the Vt mismatch can be effectively 

eliminated. 
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V.3.2 Current gain factor mismatch 

The current gain factor (β) was also extracted using the maximum slope method [Hao 

85]. The β individual constant of mismatch was then calculated using Equation I.29 for each 

transistor geometry. The results are plotted in Figure V. 5, indicating that both N/P MOS GO1 

devices exhibit significant improvement and lower β mismatch dispersion as compared to 

GO2 transistors. 

 
 

Figure V. 5: Comparison of iAΔβ/β (%.µm) as a function of the transistor surface W.L (µm
2
) 

between GO1 and GO2 for NMOS and PMOS devices of the 20nm Gate-Last technology. 

 

V.3.3 Drain Current mismatch 

The drain current mismatch was finally investigated in GO1 and GO2 devices. The 

drain current was measured in linear regime with │VD│=0.05V and │VG│=0.9V for GO1 

(N/P) devices and │VD│=0.1V and │VG│=1.8V for GO2 devices. The individual constant of 

mismatch was then calculated using Equation I.29 and the results plotted in Figure V. 6. 

The graph of Figure V. 6 shows that for small devices (W.L <0.1 µm
2
) no significant 

variation is observed between GO1 and GO2 N/P MOS transistor devices. The values for 

GO1 and GO2 PMOS devices are however very dispersed. For larger dimensions (W.L ≥ 0.1 

µm
2
), GO1 exhibit degraded mismatch values as compared to GO2 devices for NMOS 

transistors and improved mismatch values for PMOS transistors. For large areas, GO1 and 

GO2 PMOS devices are also more dispersed. 
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Figure V. 6: Comparison of iAΔID/ID (%.µm) as a function of the transistor surface W.L 

(µm
2
) between GO1 and GO2 for NMOS and PMOS devices of the 20nm Gate-Last 

technology. 

 

To understand the phenomenon observed in the measurement data for ID mismatch, the 

Croon model in [Croon 02] expressed by Equation III.1 and the improved Croon model 

[Rahhal 13] derived in III.2 were plotted for GO1 and GO2 NMOS transistors in Figure V. 7.a 

and Figure V. 7.b respectively. 

 

Figure V. 7.a shows that the Croon model and the improved Croon model reproduce the 

measured ID mismatch data, indicating that the Rsd contribution to the ID mismatch is 

negligible in GO1 devices. The graph also shows that, for W.L ≤ 0.1µm
2
, the β mismatch 

term is more pronounced than the Vt mismatch term, dominating the ID mismatch as a 

function of W.L. As for W.L > 0.1µm
2
, the Vt mismatch term is more pronounced than the β 

mismatch term, dominating the ID mismatch as a function of W.L. As for GO2 devices, Figure 

V. 7.b shows that while the Croon model in Equation III.1 does not fit the measured data, the 

improved Croon model in Equation III.2 better describes the experimental trend. This 

indicates that the Rsd contribution is an important factor in the ID mismatch across the whole 

range of W.L. Figure V. 7.b also shows that the β mismatch term dominates the ID mismatch 

across the whole range of W.L. Similar results were obtained for PMOS devices. 
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Figure V. 7: 20nm Gate-last technology: Measured σΔID/ID, Croon’s model & improved 

Croon Model as a function of the transistor surface W.L (µm
2
) for (a) GO1 and (b) GO2 

NMOS devices. 

 

The presented results show that the improved Croon Model better reproduces the 

measured ID mismatch for all devices (GO1/GO2 and N/P MOS) and that the Rsd contribution 

is significant in GO2, but negligible in GO1 devices.  
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the Vt mismatch term in Equation III.2. This parameter is plotted in Figure V. 8 for the whole 
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GO2 devices. Moreover, the trend of │Gm/ID│ as a function of W.L is very similar to that 

observed for iAΔID/ID in Figure V. 6. This suggests that, while the Vt and β mismatch are 

considerably degraded in GO2 devices as compared to GO1 devices, the ID mismatch 

measurements on the two devices exhibit smaller differences due to the Rsd contribution and 

the │Gm/ID│ gap. 

 

 
Figure V. 8: Comparison of Gm/ID (Simens/A) as a function of the transistor surface W.L 

(µm
2
) between GO1 and GO2 for NMOS and PMOS devices of the 20nm Gate-Last 

technology. 

 

V.4 Comparison between 28nm Gate-first and 20 nm Gate-last Bulk 
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After demonstrating that the MGG effect is effectively eliminated in the 20nm Gate-
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with pocket implants and thin, yet different oxide thicknesses. 
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short channel effects across the whole range of L, while 20nm Gate-last devices are affected 

by smaller Vt variations as a function of L and less significant short channel effects for 

L<0.06µm. Note that both 20nm and 28nm technologies present pocket implants in the 

channel. A width effect is also observed for 28nm NMOS Gate-First technology. At a given 

gate length, when W increases, Vt decreases. For example in Figure V.9, for L=0.0.3µm, 

when W decreases from 10µm to 0.08µm, the corresponding Vt values increase from 0.34V 

to 0.55V. 

 

 
Figure V. 9: Comparison of |Vt| (V) as a function of L (µm) between NMOS and PMOS 

devices of the 28nm Gate-First and 20nm Gate-Last technologies. 

 

The individual Vt mismatch parameter is thus calculated from the Vt values for 20nm 

and 28nm technologies and plotted in Figure V. 10 as a function of L(µm). For nominal 

devices, very promising iAΔVt values of 1.79mV.µm and 1.3mV.µm are observed for N and P 

MOS devices, respectively. Furthermore, Figure V. 10 shows that, for short devices where the 

pockets are close one to another, 20nm Gate-Last devices presents improved iAΔVt values as 

compared to 28nm Gate-First devices for both N and P MOS transistors. 
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Figure V. 10: Comparison of iAΔVt (mV.µm) as a function of L (µm) between NMOS and 

PMOS devices of the 28nm Gate-First and 20nm Gate-Last technologies. 

 

 

As for long devices, the 20nm technology shows smaller hump at L=1µm. Note that the 

improvement of iAΔVt over the whole range of L is more pronounced for PMOS devices. For 

long devices, the effective channel doping (Na) was extracted for W=1µm/L=1µm using 

Equations V.1 and V.2, where Vt was obtained for bulk bias values as shown in Table V.3. 

The extracted values of Na are detailed in Table V.5. 

 

Table V. 5: Effective channel doping in the 20nm Gate-Last and 28 nm Gate-first 

technologies. 

W=1µm/L=1µm 20 nm Gate-last 28nm Gate-first 

Na NMOS 1.21x10
18

cm
-3

 1.98x10
17

cm
-3

 

Na PMOS 1.90x10
18

cm
-3

 1.65x10
17

cm
-3

 

 

Mezzomo et al. demonstrated that higher levels of pocket doping induce mismatch 

degradation in both short and long transistors, and that long transistors are additionally 

affected by larger Vt mismatch as the contrast between the doping level in the pockets and in 

the rest of the channel increases [Mezzomo 10]. With regard to the mismatch data, this 

suggests that the pocket implants in 20nm Gate-First devices are less doped compared to 

28nm Gate-Last devices. As for long devices, Table V.4 shows that Na is higher in 20nm 
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Gate-Last devices compared to 28nm Gate-First devices, suggesting that the contrast between 

the pockets and the rest of the channel is less pronounced in the 20nm node than in the 28nm 

node as illustrated in Figure V. 11. The combined contrast of pockets and channel doping 

induces the observed improvement in Vt mismatch and the smaller hump for lengths 

approaching L=1µm. 

 

 
Figure V. 11: Schematic illustration of the contrast between the pocket doping and the rest 

of the channel for 20nm Gate-last technology and 28nm Gate first technology. 

 

V.4.2 Current gain factor mismatch 

The current gain factor (β) was also extracted using the maximum slope method [Hao 85]. 

The β individual constant of mismatch was then calculated using Equation I.29 for each 

transistor geometry and the results are plotted in Figure V. 12. This graph shows that the 

20nm technology exhibits significant improvement and less dispersion of the β mismatch 

values as compared to 28nm technology for both N and P MOS devices. 
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Figure V. 12: Comparison of iAΔβ/β (%.µm) as a function of L (µm) between NMOS and 

PMOS devices of the 28nm Gate-First and 20nm Gate-Last technologies. 

 

V.5 Vt and β mismatch trends as a function of Tox 

The benchmark plot of Figure V. 13 illustrates the trend of iAΔVt for NMOS and PMOS 

transistors from the 90nm ST node down to the 20nm Gate-Last ISDA node, as a function of 

Tox (EOT). The graph shows that the linear trends of iAΔVt for older technologies until the 

45nm Poly-Gate node have a non-zero offset (y-axis intercept). Asenov et al. showed that 

such offset is directly related to the material-Gate contribution, which does not scale with Tox 

and approaches zero starting from the 28nm Metal Gate technology [Asenov 00]. This 

suggests that the gate mismatch contribution is negligible compared to the channel 

contribution. This phenomenon is more pronounced in the 20nm Gate-Last technology, 

exhibiting large iAΔVt improvement for thin Tox. The Gate-last technology therefore enables a 

reduction of the MGG contribution to the Vt mismatch, and the gap between 28nm Gate First 

and 20nm Gate-Last technologies is of 0.5 mV.µm, corresponding to iAΔVt values of 

2.4mV.µm for 28nm Gate-First and 1.9 mV.µm for 20nm Gate-Last. Note that the values of 

iAΔVt were calculated using Pelgrom‟s law, where iAΔVt is constant for varying L. The same 

conclusions were also drawn for PMOS devices from Figure V. 13.b, which indicates a higher 

gap of 0.9mV.µm between the 28nm Gate-First and the 20nm Gate-Last technologies. 
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Figure V. 13: Trend of iAΔVt (mV.µm) as a function of the oxide thickness Tox (Å) from 

90nm ST Bulk technology to 20nm Gate-Last Bulk technology (a) for NMOS devices and 

(b) for PMOS devices. 

 

Similarly, for the β mismatch the values of iAΔβ/β were calculated using Pelgrom‟s law, 

since iAΔVt  is a constant with respect to variations of L. The iAΔβ/β parameter for NMOS 

transistors was plotted as a function of Tox (EOT) for the nodes from 90nm ST bulk 

technology to the 20nm Gate-Last ISDA node. The corresponding graph, shown in Figure V. 

14.a, does not indicate any specific variation as a function of Tox or technology-dependent 

trend. Note that GO1 devices (NMOS/PMOS) of the 20nm Gate-Last technology exhibit 

improved β mismatch as a function of Tox. However, for thick Tox, the β mismatch value is 

comparable to the older ST technologies. The same conclusions were also drawn for PMOS 

devices from Figure V. 14.b. In this case, however, the values of iAΔβ/β for the 20nm Gate 
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Last-technology are comparable to those measured for the other technologies and do not 

exhibit significant improvement. 

 

 

Figure V. 14: Trend of iAΔβ/β (%.µm) as a function of the oxide thickness Tox (Å) from 

90nm ST Bulk technology to 20nm Gate-Last Bulk technology (a) for NMOS devices and 

(b) for PMOS devices. 
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the experimental data with the improved Croon model [22], which reproduces the 

measurement data and proves that the observed trend is a direct consequence of the Rsd and 

│Gm/ID│ contributions. 

With regard to the channel depletion charge (Qd) mismatch, GO1 and GO2 devices exhibit 

identical iAΔQd values. This similarity suggests that the Vt mismatch scales with Tox and that 

the channel contribution to the Vt mismatch is more prominent than the gate contribution. By 

introducing improvements in the MGG effect, the Gate-Last technology enables the gate 

contribution to the Vt mismatch to be eliminated. Furthermore, the presented comparison 

between the 20nm Gate-First and 28 nm Gate-Last technologies shows that the former 

benefits from improved Vt and β mismatch performance. 

Finally, the trends of Vt and β mismatch as a function of Tox were plotted for the nodes 

from 90nm ST technology to 20nm Gate-Last ISDA technology. iAΔβ/β does not exhibit any 

specific trend, neither as a function of Tox nor over the different technologies. iAΔVt shows a 

linear trend as a function of Tox with an offset greater than zero for all nodes until the 45nm 

Poly-gate technology. Such offset approaches zero when moving from the 28nm Metal Gate 

technology to the 20nm Gate-Last technology, confirming that the MGG-induced mismatch is 

negligible. This also confirms that, for 28nm Metal Gate technology and 20nm Gate-Last 

technology, the principal contributing factor to the Vt mismatch remains the channel doping. 
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Chapter VI  

Mismatch behavior in advanced FD SOI 

CMOS technologies 

 

This chapter presents an exhaustive study of the mismatch behavior in advanced FD 

SOI technologies and it is divided into the following four sections. 

 

o Section I presents a general introduction of FDSOI technology. 

o Section II analyses the mismatch behavior and contributions in 14nm FDSOI 

technology. For this purpose, two devices (GO1 and GO2) with different oxide 

thicknesses are considered. The mismatch trends of Vt, β, and ID are measured, 

compared and analyzed. The mismatch of these electrical parameters is further 

compared to the 28nm FD SOI technology, and conclusions are deduced. 

o Section III provides an exhaustive study of Vt, β, and ID mismatch behavior with 

transistor aging using NBTI stress tests. This study is performed on 28nm FD SOI 

technology, for which some models are presented and conclusions drawn.  

o Section IV closes the chapter by identifying detailed conclusions. 
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VI.1 Introduction 

Fully Depleted Silicon On Insulator (FD SOI) technology is considered as one of the 

best candidates to maintain consistency with the scaling law [Planes 12], [Arnaud 12]. Many 

studies have been conducted on advanced FD SOI transistors, showing that the FD SOI 

technology exhibits better Short Channel Effects (SCEs) than bulk technology, due to the thin 

film and undoped channel [Gallon 07]. Moreover, the use of ultra-thin body and buried oxide 

thickness (UTBB) offers enhanced scalability for the technology and provides an ideal sub-

threshold slope and a better drain-induced barrier lowering (DIBL) [Gallon 07] [Barral 06]. 

Finally, the large back-to-front gate coupling provides good control of the Vt [Gallon 07] 

[Fenouillet-Beranger 08].  

Many studies have demonstrated the better mismatch performance of the FD SOI 

technology compared with the Bulk technology, thanks to the mid-gap/high-k metal gate 

stack and the un-doped SOI films. A detailed report on the state of the art in SOI mismatch is 

presented in chapter I (section I.7.2). 

 All these studies were conducted on transistors at the beginning of their life (transistors 

aging time = 0). An unknown investigation is therefore herein considered: the mismatch 

behavior as a function of transistor aging (transistors aging time ≠ 0). Do the two FD SOI 

transistors of the pair age the same way? Does this have a direct impact on the stochastic 

mismatch? How does this mismatch behave as a function of time? How does it behave as a 

function of stress conditions? 

 In literature, most transistor aging mismatch studies were performed with using Bias 

Temperature Instability (BTI) Stress conditions. Indeed many studies such as [Rauch 07], 

[Huard 08], [Kaczer 10] and [Angot 13] observed the mismatch of the electrical parameter 

drift in two identical MOS transistors with the aim of quantifying the effects of aging 

differences within the pair. However, few studies were performed on the stochastic mismatch 

behavior as a function of time. 
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In this chapter, the two following major FD SOI aspects are considered. 

o The mismatch performance of Vt, β and ID for the 14nm and 28nm FD SOI 

technology at zero transistor aging time. A comparison between 14 nm and 28nm FD 

SOI technologies is proposed and conclusions are drawn in regards to the main 

electrical parameter mismatch contributions in FD SOI technology. 

o The Vt, β and ID mismatch behavior of 28 nm FD SOI technology as a function 

transistors aging. For this purpose, a Negative-Bias Temperature Instability (NBTI) 

stress is applied on GO1 and GO2 PMOS devices. The mismatch behavior of Vt, β 

and ID is explored as a function of the drift of the considered parameters. The 

parameter drift illustrates the number of traps and defects added in the Si/SiO2 

interface as a function of time. Thus, some explanations and conclusions of Vt, β and 

ID mismatch behavior as a function of the parameter drifts are drawn. 

VI.2 Mismatch behavior in 14nm and 28 nm FD SOI CMOS technology 

VI.2.1 Experimental details 

Electrical characterization of bulk NMOS/PMOS transistors was performed on two 

wafers processed with 28nm and 14nm FD SOI technologies. The features of the devices 

under test are detailed in Table VI.1. For mismatch measurements, a sample of 76 pairs of 

identical MOS transistors has been considered. The two MOSFET‟s of the pair are spaced by 

the minimum allowed distance, laid out in an identical environment and are electrically 

independent, organised in the mismatch test structures detailed in Section I.5.2. Tests have 

been performed in linear regime with drain voltage │VD│ = 0.05V for GO1 devices and 

│VD│ = 0.1V for GO2 devices. The gate voltage │VG│ ranges from 0 to 1V for 28nm and 

from 0 to 0.9V for 14nm GO1 devices. For GO2 devices, the gate voltage │VG│ ranges from 

0 to 1.8V for 28nm and 14nm GO2 devices. All the presented results refer to measurements 

performed at 25°C. In this work, the individual mismatch constant of Equation I.29 is 

considered. This parameter allows the evaluation of the mismatch values for each channel 

dimension (Section I.4.5.c). 

 

 

 

 

http://en.wikipedia.org/wiki/Negative-bias_temperature_instability
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Table VI. 1: Features of the Devices under Test  

 28 nm FD SOI 

NMOS 

28 nm FD SOI 

PMOS 

14 nm FD SOI 

NMOS 

14 nm FD SOI 

PMOS 

EOT 

(Tox) 

 

GO1: 15.5Ǻ 

GO2: 34 Ǻ 

 

 

GO1: 17.5Ǻ 

GO2: 35 Ǻ 

 

GO1: 13 Ǻ 

GO2: 35 Ǻ 

 

GO1: 14.5Ǻ 

GO2: 35 Ǻ 

 

Film 

Thickness

(Tsi) 

 

 

GO1: 7nm 

GO2: 7nm 

 

GO1: 7nm 

GO2: 7nm 

 

GO1: 5nm 

GO2: 5nm 

 

GO1: 5nm 

GO2: 5nm 

 

BOX 

thickness 

(TBOX) 

 

 

GO1: 25 nm 

GO2: 25 nm 

 

GO1: 25 nm 

GO2: 25 nm 

 

GO1: 20nm 

GO2: 20nm 

 

GO1: 20nm 

GO2: 20nm 

High k/ 

Metal 

Gate 

GO1: 

SiON/HfSiOn/TiN 

GO2: 

HTO/ 

SiON/HfSiOn/TiN 

 

GO1: 

SiON/HfSiON/TiN 

GO2: 

HTO/ 

SiON/HfSiOn/TiN 

 

GO1: 

SiON/HfO2N/TiN 

GO2: 

HTO/SiON/HfO2

N/TiN 

GO1: 

SiON/HfO2N/TiN 

GO2: 

HTO/SiON/HfO2

N/TiN 

Ge in the 

channel 

 

GO1: w/o Ge 

GO2: w/o Ge 

 

 

GO1: w/o Ge 

GO2: w/o Ge 

 

 

GO1: w/o Ge 

GO2: w/o Ge 

 

 

GO1: with Ge 

GO2: with Ge 

S/D 

Types 

 

GO1: w/o Ge 

GO2: w/o Ge 

 

 

GO1: w/o Ge 

GO2: w/o Ge 

 

 

GO1: w/o Ge 

GO2: w/o Ge 

 

 

GO1: with Ge 

GO2: with Ge 

 

 

VI.2.2 Effect of EOT: Comparison between GO1 and GO2 for 14nm FD SOI 

technology 

The Vt, β and ID mismatch are analyzed for 14 nm FDSOI technology by comparing 

GO1 and GO2 devices, which differ in oxide thickness. The effect of the oxide thickness on 

the mismatch trends in FD SOI technology is then discussed. 
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VI.2.2.a Threshold Voltage mismatch 

The Vt values were first measured using the maximum slope method [Hao 85], for GO1 

and GO2 devices with thinner and thicker gate oxide, respectively. Results are plotted in 

Figure VI. 1 as a function of the gate length (L). NMOS GO1 and GO2 devices exhibit 

identical Vt values. As for PMOS devices, GO1 transistors also exhibit values similar to those 

observed for NMOS GO1/GO2 transistors, which are lower than those measured for PMOS 

GO2 devices. The experiment also shows that short channel effects become evident in GO1 

N/P MOS devices for L<0.06µm. 

The individual mismatch constant (Equation I.29) is then calculated for each geometry, 

and plotted as a function of the transistor surface W.L (µm
2
) in Figure VI. 2.  This plot does 

not show significant differences between NMOS and PMOS transistors with thinner and 

thicker oxide, and further indicates that the Vt mismatch does not scale with Tox, as opposed 

to what seen in Bulk technology (see chapter V). The results also show that NMOS transistors 

exhibit better Vt mismatch performance compared to PMOS transistors. This difference can 

be due to process variations between NMOS and PMOS devices such as Ge additional 

processes. Soussou et al. in [Soussou 12] showed that when TSiGe > 5nm in FD SOI devices, 

Vt variations are negligible. However when TSiGe < 5nm Vt variations become noticeable, 

introducing a significant source of variability. In our case, a TSiGe of 5nm is considered, and 

this might be one of the reasons for the mismatch degradation observed in the case of PMOS 

devices. 

 

 
Figure VI. 1: Comparison of |Vt| (V) as a function of the transistor length L (µm) between 

GO1 and GO2 for NMOS and PMOS devices of 14nm FD SOI technology. 
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Figure VI. 2: Comparison of iAΔVt (mV.µm) as a function of the transistor surface W.L 

(µm
2
) between GO1 and GO2 for NMOS and PMOS devices of 14nm FD SOI technology. 

 

VI.2.2.b Current gain factor mismatch 

The current gain factor (β) was also extracted using the maximum slope method 

presented in [Hao 85]. The β individual constant of mismatch was then calculated using 

Equation I.29 for each transistor geometry and the results are plotted in Figure VI. 3. The 

graph indicates that GO1 and GO2 devices do not exhibit any significant difference and 

shows that the parameter iAΔβ/β assumes lower values for NMOS devices compared to PMOS 

devices. This difference can be due to the presence of Ge in the channel and in the S/D or to 

the differences in the NMOS and PMOS lithography processes. 

 
 

Figure VI. 3: Comparison of iAΔβ/β (%.µm) as a function of the transistor surface W.L 

(µm
2
) between GO1 and GO2 for NMOS and PMOS devices of 14nm FD SOI technology. 
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VI.2.3.c Drain current mismatch 

The drain current mismatch was also investigated for GO1 and GO2 devices. The drain 

current was measured in linear regime with VD=0.05V for GO1 devices and VD=0.1V for 

GO2 devices. The individual constants of mismatch were then calculated using Equation I.29 

and the results are plotted in Figure VI. 4. The graph does not show any significant difference 

between GO1 and GO2 devices, with PMOS transistors exhibiting higher drain current 

mismatch compared to NMOS transistors. 

 

 
Figure VI. 4: Comparison of iAΔID/ID (%.µm) as a function of the transistor surface W.L 

(µm
2
) between GO1 and GO2 for NMOS and PMOS devices of 14nm FD SOI technology. 

 

 

 With the aim of gaining a better understanding of the observed drain current mismatch 

phenomena, two plots were produced that superimpose the measured ID mismatch. These 

plots are Croon‟s model (Equation III.1) and the improved Croon model (Equation III.2) for 

GO1 and GO2 NMOS transistors, as shown in Figure VI. 5.a and Figure VI. 5.b, respectively. 

Figure VI. 5.a indicates a small deviation between the plot of Croon‟s model and the 

measured data, whereas the improved Croon model offers a better fit. This indicates that the 

Rsd contribution is not negligible in the ID mismatch for GO1 devices and that the Vt and β 

mismatch terms dominate the ID mismatch as a function of W.L. 

As for GO2 devices, Figure VI. 5.b indicates that both Croon‟s model of Equation III.1 

and the improved Croon model of Equation III.2 offer satisfactory fitting of the experimental 

data, showing that the Rsd influence to the ID mismatch is negligible across the whole range 

of investigated W.L values. Identical results were obtained for PMOS devices, suggesting that 
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the drain current mismatch and difference between NMOS and PMOS reflects the Vt and β 

mismatch, as well as Rsd and │Gm/ID │. 

   

  

                            

Figure VI. 5: 14nm FD SOI technology: Measured (σΔID/ID)
2
, Croon’s model & improved 

Croon Model as a function of the transistor surface W.L (µm
2
) for (a) GO1 and (b) GO2 

NMOS devices. 

 

VI.2.3 Comparison between 28nm and 14 nm FD SOI technologies 

The results reported in the previous sections demonstrate that the Vt, β, and ID mismatch 

in 14nm FD SOI technology do not scale with Tox. This section presents a comparison 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.001 0.01 0.1 1

(σ
Δ

I D
/I

D
)2

W.L (µm2)

(σΔID/ID)2 measured

Croon model

Improved Croon model

GO1

(a)

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.01 0.1 1

(σ
Δ

I D
/I

D
)2

W.L (µm2)

(σΔID/ID)2 measured

Croon model

Improved Croon model

GO2

(b)



Chapter VI: Mismatch behavior in advanced FD SOI CMOS technologies 

141 

 

between the mismatch phenomena in the 14 nm and 28 nm FD SOI technologies. Note that 

both devices are GO1 transistors with thin, yet different oxide thicknesses. 

VI.2.3.a Threshold Voltage mismatch 

The Vt values for 14nm and 28 nm FD SOI GO1 devices were first measured using the 

maximum slope method [Hao 95]. The results are plotted in Figure VI. 6 as a function of the 

gate length (L), showing that N/P MOS devices of the 14nm technology exhibit identical Vt 

values across the whole range of L, whereas different Vt values are observed between NMOS 

and PMOS devices of the 28nm technology. The plot also shows that short channel effects 

become evident in both 14 and 28nm FD SOI technologies at L<0.06µm. 

The individual Vt mismatch parameter is thus calculated from the Vt values for 14nm 

and 28nm technologies and plotted in Figure VI. 7 as a function of S(µm
2
). For nominal 

devices, very promising iAΔVt values of 1.3mV.µm/1.4mV.µm are observed in both N/P MOS 

devices respectively for 14 and 28nm technologies. Furthermore, Figure VI. 7 shows that the 

28 and 14 nm technologies exhibit almost identical Vt mismatch (with the exception of 

certain 28nm PMOS geometries), both offering very good mismatch performance. Note that 

an improvement in certain devices of the 14nm technology is observed (iAΔVt = 0.9 mV.µm 

for W=1µm/L=0.03µm), compared to devices of the 28nm technology. 

 

 

Figure VI. 6: Comparison of |Vt| (V) as a function of L (µm) between NMOS and PMOS 

devices of the 28nm and 14nm FD SOI technologies. 
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Figure VI. 7: Comparison of iAΔVt (mV.µm) as a function of S (µm

2
) between NMOS and 

PMOS devices of the 28nm and 14nm FD SOI technologies. 

VI.2.3.b Current gain factor mismatch 

The current gain factor (β) was extracted using the maximum slope method presented in 

[Hao 85]. The β individual constant of mismatch was then calculated using Equation I.29 for 

each transistor geometry. The results are plotted in Figure VI. 8, showing that the 14nm and 

28 nm technologies exhibit similar β mismatch performance, both boasting excellent iAΔβ/β 

values. The results also show that nominal NMOS devices (14 nm and 28nm technologies) 

exhibit better mismatch performance compared to PMOS devices. For larger dimensions, 

however, PMOS devices exhibit slightly better mismatch performance compared to NMOS 

devices.  

 

 

Figure VI. 8: Comparison of iAΔβ/β (%.µm) as a function of S (µm
2
) between NMOS and 

PMOS devices of the 28nm and 14nm FD SOI technologies. 
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VI.2.4.c Drain current mismatch 

The drain current mismatch was also investigated for 14 and 28 nm N/P MOS devices. 

The drain current was measured in linear regime for GO1 devices. The individual constant of 

mismatch was then calculated using Equation I.29 and the results are plotted in Figure VI. 9. 

Identical mismatch behavior was observed in 14 and 28 nm technologies, with excellent 

mismatch performances observed in NMOS and PMOS devices. The drain current mismatch 

is explained by the drain current mismatch Model of Equation III.2. For 28 nm technology, 

this model was shown to reproduce the measured data in chapter II for NMOS and PMOS 

devices. As for 14 nm FDSOI technology, this model also reproduces the measured data in 

paragraph VI.3.3. As the Vt and β mismatch performance are similar in 14 and 28nm 

technologies, the drain current mismatch values are almost identical. 

 

 

Figure VI. 9: Comparison of iAΔID/ID (%.µm) as a function of the transistor surface W.L 

(µm
2
) between NMOS and PMOS devices of the 28nm and 14nm FD SOI technologies. 
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MOS, GO1/GO2 devices of the 14 and 28 nm technologies, as shown in Figure VI. 10. This 

figure shows that the electrical oxide thickness of NMOS and PMOS GO1 devices of the 14 

and 28 nm technologies has a variation of less than 10%. This figure also shows that the EOT 

for GO2 devices doubles compared to GO1 devices for both technologies and channel types.  
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The average values of iAΔVt, iAΔβ/β and iAΔID/ID for W.L ranging between 0.001µm
2
 and 

0.01µm
2
 were calculated for GO1 and GO2, N/P MOS devices of the 14 and 28nm 

technology. The results are plotted in Figure VI. 11, Figure VI. 12 and Figure VI. 13, 

respectively. Figure VI. 11 shows that while the EOT doubles for GO2 devices compared to 

GO1 devices, similar Vt mismatch trends are observed by comparing GO1 with GO2 devices 

and 14 nm with 28 nm technologies. 

To explain this phenomenon, Equation VI.1 is considered, which assumes as principal 

contributions to the Vt mismatch the gate term, represented by 
2

m , and the channel term, 

represented by
2

2

ox

Qd

C


. 

The conclusions of chapter V demonstrated that the Vt mismatch scales with the EOT 

and that the gate contribution (
2

m term) is negligible in advanced Bulk technologies 

integrating High K/ Metal gate. In FD SOI technology, however, GO1 and GO2 devices 

exhibit almost identical Vt mismatch values, indicating that the 
2

2

ox

Qd

C


 term is negligible and 

that the main contribution comes in this case from the gate stack.  
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
    (VI. 1) 

 

 
Figure VI. 10: EOT(A) values for the 28 and 14 nm technologies. 
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Figure VI. 11: iAΔVt (mV.µm) mean values for the 28 and 14 nm technologies. 

 

As for the β mismatch, the iAΔβ/β values shown in Figure VI. 12 are very promising. The 

plot also indicates that the β mismatch, as seen in Bulk technology, does not scale with the 

EOT. 

 Finally, Figure VI. 13 shows excellent iAΔID/ID, particularly for 14 and 28 nm NMOS 

GO1 devices, with values of around 0.2%.µm to 0.3%.µm. Note that the ID mismatch is 

mainly shaped by the Vt and β mismatch terms in Equation II.19 as was demonstrated in 

paragraph VI.3.3, and does not scale with the EOT. 

 
Figure VI. 12: iAΔβ/β (%.µm) mean values for the 28 and 14 nm technologies. 
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Figure VI. 13: iAΔID/ID (%.µm) mean values for the 28 and 14 nm technologies. 

 

VI.3 Mismatch behavior with transistor aging in response to NBTI stress 

VI.3.1 Brief description of NBTI Stress 

With the aim of studying the different degradation mechanisms, techniques for the 

acceleration of the MOS transistor‟s aging are used employing high voltages, accompanied in 

some cases by high temperatures. Such voltages are higher than the power supply voltage 

(VDD) necessary for the optimal operation of MOS transistors. A combination of different 

constraints enables each degradation mechanism to be studied separately, and models of the 

degradation phenomena are available and constantly improved to predict the lifetime of 

transistors of set technology and dimensions and/or its operational behavior as a function of 

time such as [Arrhenius 89] [Denais 05] [Randriamihaja 12]. 

One of the aging tests for MOS transistors is the Negative-Bias Temperature Instability 

(NBTI) for PMOS devices or the Positive-Bias Temperature Instability (PBTI) for NMOS 

devices. The literature shows considerably higher interest in NBTI stress due to its significant 

impact on PMOS transistors compared to PBTI that have less impact on NMOS devices. 

The NBTI stress test studies the drift of the electrical parameters of MOS transistors 

under application of a negative gate voltage in a high temperature environment (125°C). This 

is a static mechanism of degradation where the channel is maintained uniform because of the 

applied drain voltage equal to zero (VDS=0V) as shown in Figure VI. 14. 
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Figure VI. 14: PMOS transistor polarization in the case of NBTI stress  

 

By applying high gate voltage to PMOS transistors, the holes in the inversion channel 

are confined at the Si/SiO2 interface, interacting with the atoms and defects present in the 

oxide as shown in Figure VI. 15.  

 

 

Figure VI. 15: Different interaction mechanisms between the channel holes at the Si/SiO2 

interface and the oxide atoms and defects due to NBTI stress [Denais 05]. 

 

The NBTI stress test is usually conducted by applying a high negative voltage for a 

given amount of time (typically between 1s and 1000s), followed by a relaxation time where 

the stress is stopped. Two components are observed, the recoverable component and the 

permanent component, as shown in Figure VI. 16. 
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Figure VI. 16: The two NBTI stress phases and components [Huard 07]  

 

o The recoverable part arises due to mechanisms of hole-trapping (during stress) and 

detrapping (after stress during the relaxation phase). The drift of the electrical 

parameter during the stress phase increases due to the hole trapping mechanism, only 

to drop to the permanent phase drift value following the detrapping phenomenon. 

o The permanent part is due to the creation of interface states and fixed charges in the 

oxide. This component is irreversible and even after a significant relaxation time the 

electrical parameter under test will never revert to its previous state before stress. 

 

The impact of interface traps and fixed charges induced by NBTI stress on the stochastic 

mismatch of Vt, β and ID will be the subject of this section. 

VI.3.2 Experimental details 

Electrical characterization of PMOS transistors was performed on GO1 and GO2 28nm 

FD SOI technologies. The characteristics of the devices under test are the same detailed in 

section VI.2.1 and in Table VI.I. For mismatch measurements, a sample of 65 pairs of 

identical MOS transistors was considered.  
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To measure the permanent component and exclude the recoverable one, AC NBTI stress 

(with a duty cycle of 25%) were performed (at │VD│= 0V) with gate stress voltages ranging 

from: 

 

o -1.4 to -2.4V with a step of  -0.1V for GO1 devices 

o -3 to -4V with a step of -0.2V for GO2 devices 

 

Additionally, for each given stress voltage value, transistor parameter measurements were 

conducted at the following stress time values: 0s, 10s, 40s and 100s, as shown in Figure VI. 

17. 

 

Figure VI. 17: An illustration of the electrical parameter drifts as a function of time under 

NBTI stress  

 

Electrical characterization was performed: 

o  First on fresh transistors 

o  Then after each stress step 

 

These measurements were conducted in linear regime with drain voltage │VD│ = 0.05V 

for GO1 devices and │VD│ = 0.1V for GO2 devices, and with gate voltage │VG│=1V for 

GO1 devices and │VG│= 1.8V for GO2 devices. 

All presented results refer to measurements performed at 125°C. In this work, the 

individual mismatch constant of Equation I.29 is considered. This parameter allows the 

evaluation of the mismatch values for each channel dimension (Section I.4.5.c).  
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VI.3.3 Mismatch behavior in response to NBTI stress for GO1 and GO2 28nm FD 

SOI devices 

 Tests were performed on GO1 and GO2 devices with the aim of quantifying the 

mismatch behavior in response to the formation of interface traps and fixed charges induced 

by NBTI stress. Results are then analyzed and models proposed. 

VI.3.3.a Experimental results 

Tests were first performed on L=0.03µm/W=0.07µm GO1 devices at 125°C. The 

threshold voltage (Vt) and the current gain factor (β) were extracted using the maximum slope 

method proposed in [Hao 85]. The drain current (ID), was directly extracted at maximum VG 

with VD=1V. These extractions were performed on fresh transistors and at each combination 

of VG and stress time. 

 The drifts of Vt, β and ID are then calculated at every VG and stress time, as shown in 

Equation VI.2, Equation VI.3 and Equation VI.4. The parameters‟ drift, calculated as absolute 

difference, is a direct effect of the formation of interface traps and fixed charges at the Si/SiO2 

interface and within the oxide, at each VG value and stress time. Finally, the individual 

mismatch constants (Equation I.29) are calculated, for Vt, β and ID. Results are plotted as a 

function of the parameters‟ drift respectively in Figure VI. 18.a, Figure VI. 19.b and Figure 

VI. 20.c. 

 

FreshStressDrift VtVtVt   (VI. 2) 
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Figure VI. 18: Individual constants of mismatch (Vt (a), β (b), and ID (c)), as a function of 

the drift for GO1 devices with L=0.03µm and W=0.07µm. 
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Figure VI. 19: Individual constants of mismatch (Vt (a), β (b), and ID (c)), as a function of 

the drift for GO1 devices with L=0.048µm and W=0.07µm. 
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Figure VI. 20: Individual constants of mismatch (Vt (a), β (b), and ID (c)), as a function of 

the drift for GO2 devices with L=0.105µm and W=0.14µm. 
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Figure VI. 18.a shows moderate and linear degradation of Vt mismatch as a function of 

(δVt)Drift with a few correlation of 0.4 and a difference of 0.13mV.µm between the fresh and 

the stressed transistor at VG= -2.4V and stress time of 100s. This is a direct effect on the iAΔVt 

values of the formation of interface traps and fixed charges induced at the Si/SiO2 interface 

and within the oxide at each VG value and stress time. Moreover, very small degradation is 

observed in Figure VI. 18.b for the β mismatch as a function of the (δβ/β)Drift with negligible 

correlation of 0.1 and a degradation percentage of 12.8% between the fresh and the stressed 

transistor at VG= -2.4V and stress time of 100s. 

For the ID mismatch, Figure VI. 18.c does not show any significant ID mismatch 

variation as a function of the (δID/ID)Drift with a degradation percentage of 4.3% between the 

fresh and the stressed transistor at VG= -2.4V and stress time of 100s. 

 

 The same study was performed on L=0.048/W=0.03µm GO1 devices. In this case 

significant Vt and ID mismatch degradation is observed as a function of the (δVt)Drift and 

(δID/ID)Drift, as shown in Figure VI. 19.a and Figure VI. 19.c respectively. The two plots 

correlations of 0.7 and 0.8 respectively between Vt mismatch and (δVt)Drift, and between ID 

mismatch and (δID/ID)Drift. Moreover a Vt mismatch difference of 0.76mV.µm and an ID 

mismatch degradation percentage of 51.9% are observed between the fresh and the stressed 

transistor at VG= -2.4V and stress time of 100s. However, no significant variation of β 

mismatch as a function of (δβ/β)Drift is observed in Figure VI. 19.b. 

 

 An identical study of Vt, β and ID individual constants of mismatch as a function of their 

drift was conducted at moderate gate length and width L=0.105µm/W=0.14µm for GO2 

devices (thicker oxide). Results are plotted in Figure VI. 20.a, Figure VI. 20.b and Figure VI. 

20.c for the three parameters, respectively. 

Figure VI. 20.a shows a linear and moderate Vt mismatch degradation as a function of 

(δVt)Drift with a correlation of 0.74 and a difference of 0.68mV.µm between the fresh and the 

stressed transistor at VG= -4V and stress time of 100s. Figure VI. 20.b shows very small β 

mismatch degradation as a function of (δβ/β)Drift with negligible correlation of 0.27 and a 

degradation percentage of 7.5% between the fresh and the stressed transistor at VG= -4V and 

stress time of 100s. Finally, no significant variations are observed for ID as a function of its 

Drift, with a degradation percentage of 1.3% between the fresh and the stressed transistor at 

VG= -4V and stress time of 100s. 
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VI.3.3.b Theoretical models and discussions 

 Referring to chapters II, III and V, the ID mismatch can be explained by the mismatch of 

Vt and β, as well as the contributions of Gm/ID and Rsd in Equation II.20. Analogously, the ID 

mismatch variation with NBTI stress can also be explained with this equation. Note that no 

significant ID variation is observed experimentally, except for L=0.048µm/W=0.07µm. The 

explanation of the observed behavior of Vt and β mismatch as a function of their Drift has 

however more complicated roots. To try to quantify the linear degradation of the Vt mismatch 

and the small degradation of the β mismatch in response to the effects of interface traps and 

fixed charges induced by the NBTI stress, models were developed for the Vt and β mismatch 

as a function of their Drift. This is detailed in the following paragraph. 

 

1- Vt mismatch model as a function of the induced interface traps and fixed charges 

at the Si/SiO2 interface and in the oxide: 

 

When introducing interface traps and fixed charges at the Si/SiO2 interface and in the 

oxide, the Vt Drift between fresh and stressed MOS transistors can be written as: 

ox

st

Drift
C

qN
Vt )(  (VI. 5) 

 

Where Nst is the concentration of the interface traps and fixed charges induced by the NBTI 

stress at the Si/SiO2 interface and in the oxide 

 

 Vt stochastic mismatch of two identical MOS transistors after NBTI stress can be 

written i.e. using Poisson law, as: 

2

2

0
22

)( ox

st
VtVt

WLC

WLNq
    (VI. 6) 

Where 0Vt is the fresh mismatch before stress, while 
2

2

)( ox

st

WLC

WLNq
represents the added 

interface traps and fixed charges at the Si/SiO2 interface and in the oxide. 

 

 The Vt individual mismatch constant can thus be written as: 
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 (VI. 7) 

 

Equation VI.7 can also be written as a function of Vt drift as shown in Equation VI.8: 

Drift

ox
VtVt

Vt
C

q
iAiA )(2

0

2 


 (VI. 8) 

 

 Nst values are first chosen in a way that DriftVt)(  in Equation VI.5 reproduces the 

measured data. iAΔVt induced by the obtained Nst (i.e. in Equation VI.7) are then compared to 

measured iAΔVt values. Results are plotted in Figure VI. 21, for L=0.03µm/W=0.07µm 

geometry. This figure shows that the Vt mismatch degradation model reproduces to a certain 

extent  the measured data and can thus explain and predict the Vt mismatch behavior as a 

function of the Vt Drift (i.e. as a function of Nst values). 

This model was also applied to the other geometries considered in this study as shown 

Table VI.2. A small underestimation of the model is observed and can be improved in future 

work for a better data fit. However, two important conclusions can be deduced: 

1- FD SOI transistors presents moderate degradation of Vt mismatch as a function of 

the Vt Drift. 

2- The presented model gives an estimation of the Vt mismatch as a function of Nst 

induced by NBTI stress. 

 

Figure VI. 21: Individual constant of Vt mismatch as a function of its Drift: comparison 

between measured data and theoretical degradation model for GO1 devices with L=0.03µm 

and W=0.07µm. 
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Table VI. 2: Comparison between iAΔVt measured data and theoretical degradation model 

for a specific (δVt)Drift Values 

 
GO1:L=0.048µm/W=0.07µm 

(δVt)Drift=0.06V 

GO2:L=0.105µm/W=0.14µm 

(δVt)Drift=0.05V 

Model: iAΔVt        1.45 mV.µm 2.52 mV.µm 

Measured data: iAΔVt 1.65 mV.µm 2.78 mV.µm 

 

2- β mismatch model as a function of the induced interface traps and fixed charges 

at the Si/SiO2 interface and in the oxide: 

 

When introducing interface traps and fixed charges at the Si/SiO2 interface and in the 

oxide, the low field mobility drift ( 00  ) between fresh and stressed MOS transistors, 

based on [Sun 80], can be written as: 

stDrift Nq ...)( 0

0

0 



  (VI. 9) 

 

Where  is the coefficient of the remote Coulomb Scattering 

Using the first order Taylor approximation, and supposing that the principal contribution of β 

mismatch is 0 : 

DriftDrift )()(
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






  (VI. 10)  

 

   

 (V.s/C
-1

) can thus be calculated using equations VI.5, VI.9 and VI.10 in Equation VI.11: 

 

 100.)..(..(%))( 0 DriftoxDrift VtC 



  (VI. 11) 

 

The β stochastic mismatch of two identical MOS transistors after NBTI stress can be written 

(using Poisson law) as: 
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where 0/
2

   is the mismatch in the fresh transistor before the application of stress, while 

2

2

0

22

).(

.....

LW

LWNq st 
 represents the added contribution of interface traps and fixed charges at 

the Si/SiO2 interface and in the oxide. 

 

The β individual mismatch constant can thus be written as 

2

0

222

0/

2

/
... 


stNqiAiA 


 (VI. 13) 

 

 Equation VI.10 and Equation VI.13 were compared to the measured data for the 

L=0.03µm/W=0.07µm geometry. The results plotted in Figure VI. 22 show that the β 

mismatch model of Equation VI.13 does not predict any significant degradation as a function 

of (δβ/β)Drift, while the measured data shows a small degradation of iAΔβ/β as a function of 

(δβ/β)Drift. The value assigned to   is 1.10
3
, while Nst is varied from 1.10

11
 cm

3
 to 1.2.10

12
 

cm
3
 with a step of 1.10

11
 cm

3
. 

 

Discussion about the model parameters: 

o When  is increased, iAΔβ/β suffers higher degradation. However, in this case the 

(δβ/β)Drift overestimates the measured data. 

o When Nst is increased, iAΔβ/β also suffers higher degradation. However, (δVt)Drift 

underestimates the measured data. If therefore a faithful image of the Vt mismatch as a 

function of (δVt)Drift is to be maintained, the β mismatch model does not show 

significant degradation as a function of (δβ/β)Drift. 

Equation VI.13 however predicts a very small degradation of iAΔβ/β as a function of (δβ/β)Drift, 

that is not totally far from measured data, where the worst cases shows a degradation of 

12.8%. 

 This model was also applied to the other geometries considered in this study and the 

same conclusions were observed. 
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Figure VI. 22: Individual constant of β mismatch as a function of its Drift: comparison 

between measured data and theoretical degradation model for GO1 devices with L=0.03µm 

and W=0.07µm. 

  

VI.4 Conclusions 

This chapter is divided into two major sections, from which the following conclusions 

can be drawn. 

 

o The first section reports an investigation of the Vt, β and ID mismatch in 14nm FD SOI 

technology, along with a comparison with the 28nm FD SOI technology. The 

presented results indicate identical Vt, β and ID mismatch performance in both GO1 

and GO2 devices for the 14nm N/P MOS FD SOI technology. This similarity can be 

explained by the absence of doping in the channel, which makes the channel mismatch 

contribution negligible with respect to the gate contribution. This observation can be 

further extended by observing that, on the opposite, the contribution of the channel is 

dominant in the Vt mismatch for Bulk technology. As for the ID mismatch, similar 

results were observed in N/P MOS GO1 and GO2 devices. This similarity can be 

explained by fitting the experimental data with the improved Croon model proposed in 

chapter 2. The excellent fit shows that the observed similarity is due to the Rsd 

contribution, │Gm/ID│ values as well as Vt and β mismatch. With regard to the 28nm 

technology, the results presented in this chapter show almost identical Vt, β and ID 

mismatch performance as for the 14nm technology. This also confirms that the Vt 
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mismatch is independent of the EOT, as opposed to what is observed in Bulk 

technology. The β mismatch is also independent of EOT as observed in BULK 

technology.  

 

o The second section reports the investigation of Vt, β and ID mismatch in 28nm FD SOI 

PMOS transistors as a function of their Drift due to the interface traps and fixed 

charges at the Si/SiO2 interface and in the oxide induced by means of NBTI stress tests 

at 125°C. The tested devices have small or moderate areas. Results show moderate 

degradation of Vt mismatch as a function of the effect of the induced interface traps 

and fixed charges. A compact model directly dependent on the Nst values that can 

explain the observed degradation was developed and successfully applied to the 

measured data. This model, however, shows in some cases a slight underestimation of 

measured data. Future work can be considered aimed at improving this model.  

concerning β mismatch, a small degradation of 12% in worst cases and 1% in best 

cases was observed as a function of the (δβ/β)Drift. This also reflects the dependence of 

the induced interface traps and fixed charges at the Si/SiO2 interface and in the oxide 

on the β mismatch. A compact model directly depending on the Nst values that can 

predict the β mismatch degradation was also developed. When applied to the 

measured data, however, this model underestimates the measured degradation. Using 

the same (δβ/β)Drift as in the measured data, the model predicts a less pronounced 

iAΔβ/β degradation than what experimentally measured. Nevertheless, this model can 

give an approximation of the measured variation, which is anyway negligible. 

Finally, for ID mismatch, a negligible degradation as a function of the induced Nst was 

observed except for the L=0.045µm/W=0.07µm geometry. The ID mismatch 

degradation results from a combination of the Vt and β mismatch, as well as Gm/ID 

and Rsd contributions in Equation II.20. Thus, any variation of these parameters 

induces a variation in the ID mismatch in fresh transistors.  In future work this model 

can be applied to devices subject to NBTI stress, with the main purpose of studying 

the Rsd behavior in response to NBTI stress. 
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General Conclusions and perspectives

The work reported in this thesis provides answers relevant to the four major subject areas 

proposed in the general introduction. 

 

 

In regards to the optimization of the measurement methodologies for mismatch 

phenomena, chapter II proposed: 

  

o A method for the fast and direct extraction of Vt and β mismatch, that avoids going 

through the classical statistical treatment. This new extraction methodology is based 

on the Y function mismatch as a function of VG. It is valid in strong inversion regime 

and demonstrated to be independent from the Rsd contribution. This method was 

successfully applied to measured data for 28nm FD SOI and Bulk technologies. 

However, this methodology should be used in a VG range where θ2 can be neglected, 

for example at maximum VG=VDD. 

o A new drain current mismatch model that expands from the strategy published by 

Croon [Croon07] by adding a Rsd contribution term and neglecting the mutual 

correlation terms between parameters. This model was successfully applied to the 

measured data. It can give a good estimation by a comparison with the classical Croon 

model of the influence of RSD on ID mismatch in advanced technologies and mainly in 

small areas transistors. This model can provide better understanding of the ID 

mismatch in advanced technologies, by identifying the main contributing factors. This 

can in turn enable further physical optimization  

 

In regards to the mismatch characterization of various MOS transistor configurations for 

design applications, chapter III focused on the characterization of Vt, β and ID mismatch in 

classical MOS, Lateral drain extended MOS (LDEMOS) and devices in cascode 

configuration. The study aimed at selecting the optimal architecture to guarantee good 

mismatch performance with the ability of sustaining high drain voltages. The reported 

findings showed that: 
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o LDEMOS, designed to sustain high drain voltages, exhibit very degraded Vt and β 

mismatch in linear and saturation regimes. This is due to the diffused and not well-

controlled channel. In comparison, classical MOS transistor show good robustness to 

Vt and β mismatch, with significant improvement compared to LDEMOS devices. 

This is due to the better-controlled channel which eliminates a specific source of 

variability. However, this architecture cannot sustain as high drain voltages as 

LDEMOS, therefore the proposed solution is to use two classical MOS transistors 

connected in cascode configuration. This configuration, known to sustain as high drain 

voltages as the LDEMOS transistor, was demonstrated to exhibit Vt and β mismatch 

performance similar to individual MOS devices. 

 

o For ID mismatch, the three different architectures used in this study exhibit comparable 

performance in linear and saturation regimes. In linear regime, the new drain current 

mismatch model proposed in chapter II and the classical Croon model were applied to 

the measured data. The new model was shown to reproduce data for the three 

presented architectures. The results also showed that the Rsd contribution has lowest 

impact on cascode configuration devices and highest impact on LDEMOS devices. 

The similarity amongst the ID mismatch values for the three considered architectures 

are mainly due to the Gm/ID term. Double Gm/ID values are observed in the case of 

individual and cascode configuration as compared to LDEMOS. 

For the saturation regime, a new drain current mismatch model was proposed based on 

the same approach followed for the linear regime, starting from the drain current 

equation. This model was successfully applied to the measured data for individual 

devices and devices in cascode configuration, while it overestimates the measured data 

for the LDEMOS architecture. In future work, further investigation of the reasons for 

such overestimation should be considered with the aim of improving the model. 

 

The work presented in this part of the thesis can be adapted to fit specific applications, 

according to the designer‟s objectives. For example, considering the same drain current value 

for the three devices, a comparison of their corresponding area on silicon and mismatch 

performances can be performed. Another possible approach is to consider a set area value  

(same space on Silicon) for the three architectures and compare their drain current values and 

mismatch performances. 
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In regards to the analysis and modeling of advanced MOSFET technologies, 28 nm 

Gate-first and 20nm Gate-last BULK, 28nm FD SOI and 14nm FD SOI technologies were 

considered. This subject was treated in three chapters: 

 

o In chapter IV, a complete study of Vt, β and ID mismatch behaviors for transistors with 

and without germanium, and transistors with different percentages of Germanium was 

performed on 28nm Bulk PMOS devices integrating Highk/metal gate with and 

without pocket implants. The drawn conclusions can be summarized as follows. 

- No significant effect of the Ge introduction for percentages from 20% to 34% 

on Vt mismatch was observed for transistors without pocket implants due to: 

1. Negligible variability of valence band offset 

2. Negligible variability of SiGe layer thickness. In this case, an important 

conclusion was drawn: when TSiGe is large enough, it does not introduce 

significant variability. However when TSiGe becomes small (less than 

5nm in our case, according to [Soussou12]) this source of variability 

can influence Vt mismatch. 

- Ge introduction improves the Vt mismatch for transistors with pockets. When 

the Ge is introduced, the pocket doping (Arsenic) tends to be diffused in the 

channel. The contrast between the pocket doping and the channel doping 

becomes lower, improving the Vt mismatch for moderate gate lengths.  

- Ge introduction improves the β mismatch for transistors with and without 

pocket implants. This is attributed to the reduction of Coulomb scattering 

events with the introduction of Ge. However, increased percentages of Ge do 

not induce further variations of the β mismatch. 

- Ge introduction and its increased percentage improve the drain current 

mismatch for transistors with and without pocket implants. This is explained 

by Gm/ID parameter in Croon‟s model. The model however overestimates the 

measured data for transistors with pocket implants, suggesting that more 

parameters should be considered, such as the Rsd contribution. 

 

The reported study enabled a deeper understanding of the effects of the 

introduction of Germanium in the PMOS channel on the mismatch of different 

parameters. The results showed that the introduction of Ge in the PMOS channel can 
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improve, in some cases, the Vt, β and ID mismatch, as opposed to what previously 

reported in the literature. The study can also aid the optimization of Vt, β and ID 

mismatch and provides awareness of the different effects to be taken into 

consideration in any future technology integrating Ge in PMOS channel, such as 14nm 

FD SOI. 

 

o In Chapter V, the metal gate-last effect on Vt and β and ID mismatch for 20nm bulk 

technology was investigated. Results have been compared to the 28nm metal Gate-

first technology. 

- The comparison between GO1 and GO2 devices for 20nm Gate-last revealed: 

1. Better Vt and β mismatch performance for thinner gate oxide (GO1) 

devices due to larger gate coupling. 

2. Identical iAΔQd values for the thinner and thicker gate oxides. This 

similarity suggests that Vt mismatch scales with Tox, and that the 

channel contribution to the Vt mismatch is more prominent than the 

Gate contribution. By introducing improvements in the MGG effect, 

the Gate-last technology enables the gate contribution to Vt mismatch 

to be eliminated. 

3. Similar ID mismatch performances for devices with thinner and thicker 

gate oxides. This was explained by the Rsd and │Gm/ID│ contributions 

in the new mismatch model proposed in chapter II. 

- The comparison between 20nm Gate-first and 28 nm Gate-last shows that 

20nm Gate-last technology benefits from improved Vt and β mismatch 

performance with very promising iAΔVt values. 

- The last important point investigated in this study was the behavior of Vt and β 

mismatch that was plotted as a function of Tox from 90nm ST to 20nm Gate-

last IBM. These plots showed that: 

1. iAΔVt is linear as a function of Tox with an offset greater than zero for 

all nodes until the 45nm Poly-gate technology. Such offset approaches 

zero moving from the 28nm Metal Gate technology to the 20nm Gate-

last technology. 

2. iAΔβ/β does not scale as a function of Tox. 
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This study experimentally confirmed what concluded by the simulations of 

Asenov et al. in [Asenov 00], concerning Vt mismatch improvements when using the 

metal gate technology. The results also showed experimentally the advantages of the 

Gate-last technology on the mismatch performances. The β mismatch trends as a 

function of Tox were also investigated for the first time. Finally, it was experimentally 

confirmed that the principal contribution to mismatch in Bulk 28 and 20nm 

technologies remains the channel doping. 

 

o In the first section of chapter VI, the 14 nm FD SOI and 28 nm FD SOI technologies 

were investigated and compared. 

- Identical Vt and β and ID mismatch performance for thinner and thicker oxides 

in N/P MOS 14nm FD SOI technology were observed: 

 The Vt mismatch similarity was explained by the absence of doping in 

the channel. This parameter does not scale with EOT, which makes the 

gate contribution dominant as compared to the channel contribution, 

contrary to what observed in the Bulk technology. 

 β mismatch similarity also showed that this parameter does not scale 

with Tox. This result is similar to what obtained for the Bulk 

technology in chapter V. 

  The new mismatch model proposed in chapter II was able to explain 

the similarity in the ID mismatch. ID mismatch is due to the 

contributions of Rsd, │Gm/ID│ as well as Vt and β mismatch. 

- With regard to the 28nm Technology, the results showed that the Vt, β and ID 

mismatch performance are almost identical to what observed in the 14nm 

technology. This also confirms the following. 

 Vt mismatch is independent of the EOT, as opposed to what observed 

in Bulk technology.  

 β mismatch is also independent of EOT, as already observed in BULK 

technology.  

 

The first section of chapter VI has set the ground to a better understanding of the 

principal mismatch factor in advanced FD SOI technologies: the metal gate 
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contribution. The advantages of using FD SOI in future technologies such as 14nm was 

also shown, in terms of excellent mismatch performances measured in nominal devices. 

 

Lastly, in regards to the analysis and modeling of mismatch phenomena with the 

transistor aging in advanced MOSFET transistors, NBTI stress conditions at 125°C were 

applied to 28nm FD SOI technology and the results presented in the second section of chapter 

VI. It was shown that: 

 

o Vt mismatch is moderately degraded as a function of the interface traps and fixed 

charges at the Si/SiO2 interface and in the oxide induced by NBTI stress. A compact 

model explicitly dependent on Nst values was developed that could explain this 

phenomenon. This model was successfully applied to fit the measured data. 

o β mismatch is affected by a lower degradation, with a 12% degradation observed in 

worst cases and 1% in best cases. A compact model explicitly dependent on Nst values 

and impact on the mobility (and thus β) was developed. However, this model 

underestimates the measured data. 

o The ID mismatch performance are very slightly affected by the NBTI stress, except for 

the L=0.045µm/W=0.07µm geometry. For fresh transistors, this mismatch behavior 

was shown to be a combined result of Vt and β mismatch as well as Gm/ID and Rsd 

contributions in Equation II.20. However, in future work the model of Equation II.20 

can be applied to stressed devices with the aim of analyzing the Rsd behavior and 

impact on ID mismatch in response to NBTI stress. 

 

This last part of the thesis showed that the FD SOI technology exhibits moderate 

variations in Vt mismatch and very small variations in β mismatch. Models were also 

proposed that can be used to estimate the Vt and β mismatch degradations as a function of the 

Drift of such parameters. The models can be applied, adapted or improved for other 

technologies such as 14 nm FD SOI or 28nm Bulk technologies. 
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Appendix A 

Croon‟s Model [Croon 07], expressed by Equation A.1, and the Improved Croon Model 

integrating the correlation between parameters in Equation A.2 are considered. 

A comparison of Equations A.1 and A.2 with and without the correlation term is 

provided. The results relative to 20nm Gate-Last GO2 transistors as per Chapter V/ Section 

V.3.3 are plotted in Figure A.1. The drain current was measured at maximum VG of 1.8V. The 

graph clearly shows that at maximum VG, the correlation term is negligible in both Croon‟s 

model and in the improved Croon model. Identical results are obtained for GO1 devices and 

for all the devices characterized in this thesis. 
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Figure A.1: Comparison between Croon’s Model and Improved Croon Mode, with and 

without the correlation term for GO2 20nm Gate-Last devices, as per Chapter V/ Section 

V.3.3.  
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Appendix B 

Thesis Abstract in French / Résumé de thèse en Français 

B.I Introduction Générale  

 Comme son nom le suggère, le domaine de la microélectronique s‟intéresse à l‟études et 

à la fabrication des composants électroniques à l‟échelle micro et nanométrique, connectés 

ensemble sur un même substrat formant ainsi des circuits intégrés (CI). Leurs rôle est 

d‟implémenter une ou plusieurs fonctions électroniques plus ou moins complexes sur une 

même puce. Les CI sont utilisés dans des domaines très variés, comme les smart phones, la 

télévision, les cartes crédits, les ordinateurs, les consoles de jeux vidéo, les dispositifs pour 

automobiles, les applications militaires et aéronautiques. Tout progrès, dans les perspectives 

d‟améliorer ces systèmes, débute par une amélioration du domaine de la microélectronique. 

L‟amélioration des performances des CI consiste principalement en l‟augmentation de la 

vitesse et la densité d'intégration, et en la réduction de la consommation d'énergie et des coûts 

de production. 

 Les éléments de base des circuits intégrés sont : les transistors, les diodes, les 

résistances, les condensateurs et les inductances. En 1965, Gordon Moore dans [Moore 65] 

prédit que le nombre des transistors présents dans un circuit d'une taille donnée sera doublé 

chaque année, permettant une augmentation exponentielle de ses performances. En 1975, 

Moore a révisé sa prédiction dans [Moore75], en affirmant que le nombre de transistors dans 

les processeurs va doubler tous les deux ans. Cette prédiction est connue sous „la loi de 

scaling‟. Le MOS de taille miniaturisée atteint un courant de saturation assez élevé, qui se 

traduit par une croissance de la vitesse de l‟opération des produits. Le défi sera alors de 

préserver un courant de fuite suffisamment bas afin de limiter leurs consommations, en 

particulier s‟ils sont alimentés par des batteries.  

 Un autre défi imposé par la „loi de scaling‟ est la maitrise de la variabilité locale du 

transistor MOS. Cette variabilité locale est une conséquence des fluctuations aléatoires du 

processus de fabrication. Ces fluctuations causent des comportements électriques différents 

entre deux transistors appariés. Ainsi, il est important, pour l‟industrie de la microélectronique 
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de comprendre les causes physiques d‟une telle variabilité électrique, de les quantifier et de 

proposer des solutions pour les réduire.                 

B.II Motivations et objectifs de cette thèse  

Afin de réaliser correctement leur fonction, certain blocs analogiques ou numériques 

comme les miroirs de courant ou les Static Random Access Memory (SRAM)) nécessitent des 

paires de transistors MOS électriquement identiques. Cependant, les dispositifs sur silicium, 

même appariés, subissent des variations locales aléatoires (comme le nombre de dopants), ce 

qui fait varier leurs performances électriques. Ce phénomène est connu sous le nom 

désappariement ou „mismatch‟ en anglais.  

Dans les années 1980, Pelgrom dans [Pelgrom89] a posé les fondements des études de 

désappariement en montrant que l‟écart-type de la différence d‟un paramètre P (notée ΔP) 

mesuré sur une paire de transistor MOS est directement lié à la surface S du transistor par la 

loi suivante : 

S

AP
P   (B. 1) 

 

La miniaturisation des transistors, suivant la loi de scaling, ainsi que la complexification 

de leurs procédés de fabrication ont induit des déviations de la loi de Pelgrom. Ainsi PA  n‟est 

plus une constante. On définit alors une constante individuelle de désappariement PiA qui 

sera calculée pour chaque géométrie du transistor MOS avec : 

 

SiA PP .   (B. 2) 

 

Dans ce cadre, les objectifs de ce travail de thèse sont : 

 

o D‟optimiser les méthodologies de mesures des phénomènes de désappariement ; 

  

o De caractériser différentes configurations de transistors MOS afin de proposer 

l‟architecture optimale en fonction de l‟application visée; 
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o D‟analyser et modéliser les phénomènes de désappariement observés dans les 

technologies avancées, notamment sur Silicium sur isolant complètement déserté (FD 

SOI) et sur substrat massif (Bulk).  

 

o D‟analyser et modéliser les phénomènes de désappariement en fonction du 

vieillissement des transistors MOS pour des technologies avancées. 

B.III Principaux résultats et conclusions générales 

Le chapitre I de la thèse est un chapitre introductif.  Il met en relief les principaux 

concepts théoriques du transistor MOS classique et ces différentes méthodologies de mesures. 

Il introduits les différents types de variabilité électrique, notamment la variabilité globale et la 

variabilité locale. La variabilité locale ou désappariement est ainsi détaillée en la séparant en 

désappariement systématique et désappariement stochastique. Les causes de désappariement 

systématique et stochastique, ces méthodes d‟extraction, ces effets ainsi que ces systèmes de 

mesures et structures de tests sont ensuite abordés. Un état de l‟art des travaux précédents 

dans l‟étude du désappariement des transistors MOS de technologie Bulk est ainsi proposé. 

Finalement les améliorations des performances électriques du désappariement des transistors 

MOS avec l‟introduction de la technologie SOI sont discutées en détails en fournissant un état 

de l‟art des travaux précédents de cette technologie.  

  

Le chapitre II porte sur l‟optimisation des méthodologies de mesures des phénomènes de 

désappariement. En particulier il propose : 

 

1- Une nouvelle méthode d‟extraction de désappariement de Vt et de β à partir du 

désappariement de la fonction Y [Ghibaudo 88]. Cette méthode est basée sur 

l‟équation B.3. Elle est valide en régime de forte inversion et permet une extraction 

directe et rapide de Vt  et  / en traçant  Vt)-(V. 2

G

2

/ YY
 en fonction de

 Vt)-(V 2

G . Cette méthode permet également de s‟affranchir de la contribution de la 

résistance série source/drain (Rsd) grâce à l‟utilisation de la fonction Y.  

    

2

/2

2
2

/
4

1

)(



 


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L‟équation B.3 a été appliquée avec succès sur des mesures issues des technologies 

28nm FD SOI et Bulk comme le montrent les Figures B.1 et B.2 respectivement. Les 

valeurs de Vt  et  / obtenues par cette méthode ont été comparées à la méthode 

classique d‟extraction de Vt  et  / dans le tableau B.1 pour la technologie 

FDSOI. En effet, la méthode classique consiste à extraire Vt et β en utilisant la 

fonction Y pour N paires de transistors MOS, puis à calculer ΔVt et Δβ/β pour les N 

paires. Un filtre récursif est alors appliqué afin d‟éliminer les valeurs erronées à 

l‟extérieur de la moyenne ±3σ. Une fois ce traitement effectué, les écarts types Vt  et 

 / sont calculés.  

Les résultats du Tableau B.1 montrent une similarité entre la nouvelle méthode 

d‟extraction et la méthode classique (détaillée dans la thèse). Notons que la même 

comparaison a été faite avec succès sur la technologie Bulk.  

Une réflexion sur les limitations de cette nouvelle méthode a également été 

menée. En effet cette méthode ne doit être utilisée que pour des valeurs de VG 

modérées, dans une zone où le paramètre d‟atténuation de la mobilité (θ2) peut être 

négligeable. 

 

  

 
Figure B.1 : VG>Vt (VG varie de 0.6 à 1V avec Vt=0.36V), la fonction Y et le 

désappariement de courant de drain sont multipliés par (VG-Vt)
2
 et tracés en fonction de 

(VG-Vt)
2
 (pour des transistors FD SOI avec W=1µm/L=0.1µm et VD =50mV) 
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Figure B.2 : VG>Vt (VG varie de 0.6 à 1V avec Vt=0.31V), la fonction Y et le 

désappariement de courant de drain sont multipliés par (VG-Vt)
2
 et tracés en fonction de 

(VG-Vt)
2
 (pour des transistors BULK avec W=10µm/L=0.03µm et VD =50mV) 

 

 

Tableau B.1: Comparaison entre les désappariements de Vt et de β extraits par la méthode 

classique et la nouvelle méthode  pour des transistors FD SOI de  W=1µm/L=0.1µm 

 
(σParamètre)

2 

 

 
(σΔVt)

2 
 

(σΔβ/β)
2 

Valeurs de désappariement 

extraites par la méthode 

classique 

3.10
-5 

V
2 

 
9.10

-4 
 

Valeurs de désappariement 

extraites par la nouvelle 

méthode d’extraction 

2.10
-5 

V
2 

 
8.10

-4 
 

 

 

2- Un nouveau modèle de désappariement de courant de drain : Ce modèle dérive de la 

stratégie publiée par Croon dans [Croon 02]. En effet, à partir du modèle de Croon 

(Equation B.4), nous avons ajouté la contribution de Rsd et négligé la corrélation 

mutuelle entre les paramètres. Ce nouveau modèle (Equation B.5), est valide en 

régime de forte inversion et en régime linéaire. 
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Le nouveau modèle de désappariement de ID dans l‟équation B.5 ainsi que le modèle 

publié par Croon dans Equation B.4 ont été appliqués aux valeurs mesurées sur les 

technologies 28nm FD SOI et Bulk. Les résultats sont présentés dans les Figures B.3 

et B.4 respectivement. Ces dernières montrent que le modèle de Croon ne reproduit 

pas les mesures pour les technologies avancées. Tandis que le nouveau modèle 

proposé dans cette étude dans l‟équation B.5 arrive à reproduire les mesures en 

ajoutant la contribution de Rsd au modèle de Croon.  

 

 

Figure B.3 : VG>Vt (VG varie de 0.6 à 1V avec Vt=0.36V), Comparaison entre le nouveau 

modèle de désappariement de courant de drain, le modèle proposé par Croon et les valeurs 

mesurées en fonction de VG (transistors FD SOI avec W=1µm/L=0.1µm et VD =50mV, 

Rsd=220Ω) 
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Figure B.4: VG>Vt (VG varie de 0.5 à 1V avec Vt=0.31V), Comparaison entre le nouveau 

modèle de désappariement de courant de drain, le modèle proposé par Croon et les valeurs 

mesurés en fonction de VG (transistors Bulk avec W=1µm/L=0.03µm et VD =50mV, 

Rsd=23Ω) 

 

 

Ce nouveau modèle donne une estimation de l‟influence de Rsd sur le désappariement 

de ID en le comparant avec le modèle de Croon classique, notamment pour les technologies 

avancées et les petites géométries. L‟intérêt de ce modèle est de fournir une meilleure 

compréhension du désappariement de ID, grâce à une identification de ces principaux 

contributeurs. 

 

  

Le chapitre III rentre dans le thème de caractérisation des différentes configurations de 

transistor MOS dans le but de proposer l‟architecture optimale en fonction de l‟application 

visée. Il présente une caractérisation du désappariement de Vt, β et ID du transistor MOS 

classique illustré dans la Figure B.5, du Lateral drain extended MOS (LDEMOS) illustré dans 

la Figure B.6 et de la configuration cascode illustrée dans la Figure B.7. L‟objectif est de 

proposer l‟architecture optimale qui regroupe des bonnes performances de désappariement 

ainsi que la possibilité de maintenir des hautes tensions de drain.   

 

 

Bulk



Appendix B 

195 
 

 

Figure B.5 : Transistor PMOS partiellement dépleté, contient un oxyde épais (Tox=5nm) 

avec la géométrie L=0.28µm and W=0.7µm 

 

 

 

 

Figure B.6 :  PLDE MOS, le dispositif est fabriqué sur SOI, avec une grille poly-silicium de 

longueur L=0.4µm, un oxyde de grille de 5nm d’épaisseur, et un Box d’épaisseur (tBox) de 

400nm, l’épaisseur du SOI (tSi) est de 160nm et une épaisseur de canal estimée de 0.25µm 

 

 

 

Figure B.7 : Deux transistors MOS classique connectés en configuration cascode avec 

L1=L2=0.28µm and W=0.7µm 
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Les résultats présentés dans ce chapitre ont montré que :  

 

1- Le transistor LDEMOS, connu dans la littérature pour sa capacité à maintenir de 

hautes tensions de drain, a des valeurs de désappariement de Vt et de β très dégradées 

en régimes linéaire et saturé. Cela est dû à son canal diffusé et mal contrôlé comme le 

montre la figure B.6. En comparaison, le transistor MOS classique présente de très 

bonnes valeurs de désappariement de Vt et de β grâce à son bon contrôle dimensionnel 

du canal, supprimant ainsi cette source de variabilité. Cependant ce dernier n‟a pas la 

capacité de maintenir des hautes tensions de drain. La solution proposée dans cette 

thèse est d‟utiliser la configuration cascode de la figure B.7. Cette configuration 

connue pour sa capacité à maintenir autant de tension de drain que le LDEMOS, 

présente des valeurs de désappariement de Vt et de β proches du transistor MOS 

classique. Un exemple de la comparaison du désappariement de Vt des trois 

architectures est représenté dans la figure B.8 en régime linéaire.  

 

 
Figure B.8 : Comparaison du désappariement de Vt en fonction de la surface des 

transistors entre le MOSFET classique, le PLDE MOS et la configuration cascode (en 

régime linéaire) 

 

2- Concernant le désappariement de ID, les résultats ont montré des valeurs comparables 

entre les trois architectures du transistor MOS considérées en régime linéaire dans la 

Figure B.9 ainsi qu‟en régime de saturation.  
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Figure B.9: Comparaison du désappariement de ID en fonction de la surface des transistors 

entre le MOSFET classique, le PLDE MOS et la configuration cascode (en régime linéaire) 

 

- En régime linéaire, le nouveau modèle de désappariement de courant de drain de 

l‟Equation B.5 ainsi que le modèle de Croon de l‟équation B.4 ont été comparées 

aux valeurs mesurées pour les trois architectures considérées. Les résultats 

montrent que le nouveau modèle de désappariement de courant de drain reproduit 

les mesures pour les trois architectures. Un exemple de cette comparaison est 

montré dans la Figure B.10 pour le LDEMOS. 

 

 

Figure B.10 : Comparaison du désappariement de ID en fonction de la surface des 

transistors entre le Modèle de Croon classique, le nouveau modèle proposé dans l’équation 

5 et les valeurs mesurés (pour le LDEMOS) 
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Grâce à une comparaison avec le modèle de Croon, nous avons démontré que la 

Rsd contribue faiblement à la configuration cascode, et fortement au LDEMOS. Le 

modèle de l‟équation B.5 montre que les comparables valeurs de désappariement 

des ID sont dues au Gm/ID qui présente en valeur absolu des valeurs doubles en 

MOS individuel classique et cascode configuration par rapport au LDEMOS. 

- En régime de saturation, un nouveau modèle de désappariement de courant de 

drain a été proposé dans l‟équation B.6. Ce modèle est basé sur la même approche 

que celle utilisée en régime linéaire dans le chapitre II et Equation B.5, en partant 

cette fois de l‟équation de courant de drain en régime de saturation. Ce modèle a 

été appliqué avec succès sur les valeurs mesurées pour le MOS classique 

individuel, dans la figure B.11, et la configuration cascode. Cependant, ce modèle 

surestime les valeurs mesurées pour le PLDEMOS. Dans ce cas, le terme 

22)( Vt

DI

Gm
  suffit à reproduire les mesures. Ainsi dans ce régime, le terme )(

DI

Gm

explique les résultats comparables entre les trois dispositifs de cette étude. 

Dans le futur, plus d‟investigations sur la raison de la non reproduction des data 

par le modèle proposé doivent être menées afin de l‟améliorer. 

2
/

222

))(1(

1
)(

/



 




 RsdVtVI

Gm

G
Vt

D
DIDI

 (B. 6) 

 

 

Figure B.11 : Comparaison du désappariement de ID en fonction de la surface des 

transistors entre le Modèle de Croon classique, le nouveau modèle proposé dans l’équation 

4 et les valeurs mesurées (pour le MOS Individuel classique) 
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 Le travail réalisé dans cette partie de la thèse peut être adapté à des applications 

spécifiques en fonction des objectifs du designer. Par exemple, considérant que les trois 

architectures débitent le même courant pour des géométries spécifiques. Une comparaison de 

la surface de chaque architecture sur silicium ainsi que leurs valeurs de désappariement 

peuvent être effectués. Une autre approche serait de considérer les mêmes surfaces sur 

silicium des trois architectures, et dans ce cas des comparaisons de leurs valeurs de courant 

ainsi que leurs performances désappariement peuvent être réalisées.      

 

Pour le thème d‟analyse et modélisation de technologies avancées, les technologies 28 

nm Gate-First Bulk et 20nm Gate-Last Bulk, 28nm FD SOI and 14nm FD SOI ont été 

considérées. Ce thème donne lieu à trois chapitres de la thèse : 

 

o Le chapitre IV propose une étude complète des comportements du désappariement de 

Vt, β et ID pour des transistors avec et sans Germanium et avec différents pourcentages 

de Germanium dans le canal. Cette étude a était réalisée sur des transistors PMOS 

avec et sans poches de la technologie 28nm Bulk, intégrant du High-k / grille 

métallique. Les principales conclusions déduites : 

 

1- Pour des transistors sans poches : ni l‟introduction de Ge dans le canal des PMOS 

ni l‟augmentation de son pourcentage (de 20% à 34%) n‟ont d‟impact significatif 

sur le désappariement de Vt comme le montre la Figure B.12.  
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Figure B.12 : Transistors sans poches : Comparaison de iAΔVt en fonction de L entre des 

transistors sans et avec différents pourcentages de Ge 

 

 

Ces résultats sont essentiellement dues à : 

a- La variabilité négligeable du déplacement de la bande de valence vers le haut 

comme le montre le Tableau B.2 en utilisant l‟équation B.7 : 
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X

EV




est la pente de la bande de valence VE en fonction du pourcentage de 

Ge X  d‟après [Soussou 12], i.e. eV
X

EV 66.0



, X représente le 

pourcentage de Germanium, SiGeT  représente m‟épaisseur de la couche de 

SiGe et )(GeN représente la concentration du germanium 

)/104.4)(( 322 cmatGeN   

 

Tableau B.2 : iAEv (%Ge) pour différents pourcentages de Ge utilisant l’Equation B.7  

Percentage of Ge iAEv (%Ge) (eV.µm) 

20% - 22% of Ge 1.699x10
-5

 eV.µm 

28% - 30% of Ge 2.01x10
-5 

eV.µm 

32% - 34% of Ge 2.149x10
-5

 eV.µm 

 

 

b- La variabilité due à l‟épaisseur de la couche de Ge introduite est négligeable. 

Dans ce cas, une conclusion importante doit être considérée : quand TSiGe 

(égale 7nm dans notre cas) est assez important (TSiGe >5nm), Vt est stable, et sa 

variabilité est négligeable. Cependant, quand TSiGe devient très faible (TSiGe 

>5nm, dans notre cas selon [Soussou12]), cette source de variabilité peut 

influencer le désappariement de Vt. 

 

2- Pour des transistors avec poches : l‟introduction du Ge améliore le désappariement 

de Vt dans la Figure B.13. En effet lorsque le Ge est introduit, les dopants dans les 

poches (Arsenic) tendent à diffuser dans le canal. Le contraste entre les dopants 

des poches et le reste du canal devient moins important améliorant ainsi le 

désappariement de Vt, pour des longueurs moyennes de canal, comme cela est 

illustré dans la Figure B.14.  
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Figure B.13 : Transistors avec Poches : Comparaison de iAΔVt en fonction de L entre des 

transistors sans et avec différents pourcentages de Ge 
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Figure B.14 : Illustration du contraste entre les dopants des poches et le reste du canal 

pour des transistors avec et sans Ge 

 

3- L‟introduction du Ge améliore le désappariement de β pour des transistors avec 

(Figure B.15) et sans poches. Cela est dû à la réduction du « Coulomb scattering » 

avec l‟introduction du Ge [Diouf 13]. Cependant, l‟augmentation du pourcentage 

de Ge n‟induit aucune variation additionnelle du désappariement de β. 

 

 

Figure B.15 : Transistors avec Poches : Comparaison de iAΔβ/β en fonction de L entre 

transistors sans et avec différents pourcentages de Ge 

 

4- L‟introduction du Ge améliore le désappariement de ID pour des transistors avec 

(Figure B.16) et sans poches. Cela est attribué au paramètre Gm/ID dans le modèle 

de Croon [Croon 02]. Par contre ce modèle surestime les données mesurées pour 
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les transistors avec poches. Dans ce cas, plus de paramètres doivent être pris en 

considération comme la contribution de Rsd étudiée dans le chapitre II de la thèse.        

 

Figure B.16 : Transistors avec Poches : Comparaison de iAΔID/ID en fonction de L entre 

transistors sans et avec différents pourcentages de Ge 

 

Cette étude fournit une meilleure compréhension des effets de l‟introduction du 

Germanium dans le canal PMOS sur le désappariement de Vt, β et ID. Elle montre 

pour la première fois, que l‟introduction du Ge peut améliorer, dans certains cas, le 

désappariement de Vt, β et ID contrairement à ce qui a était publié dans la littérature. 

Cette étude décortique les différentes contributions et phénomènes physiques agissant 

sur le désappariement de Vt, β et ID avec l‟introduction du Ge, et ainsi peut servir 

comme repère pour les technologies futures qui intègrent du SiGe dans leur canal.  

 

o Le chapitre V traite de l‟effet du Métal-Gate-Last sur le désappariement de Vt, β et ID 

pour la technologie 20nm Bulk. Les résultats sont ensuite comparés avec le 28 nm 

Métal-Gate-First Bulk technologie.  

- La comparaison entre les dispositifs GO1 (Tox= 12.48Ǻ/12.7Ǻ (NMOS/PMOS)) et 

GO2 (Tox= 31.6Ǻ/32.9Ǻ (NMOS/PMOS)) pour la technologie 20nm Métal-Gate-

Last montre : 

4. Une meilleure performance des désappariements de Vt et β pour les 

dispositifs d‟oxydes de grille les plus minces (GO1), due à un meilleur 

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10

iA
Δ

I D
/I

D
(%

.µ
m

)

L (µm)

w/o Ge
20%-22% Of Ge
28%-30% Of Ge
32%-34% Of Ge



Appendix B 

205 
 

couplage capacitif comme le montre la Figure B.17 (pour le 

désappariement de Vt).  

 

Figure B.17 : Comparaison de iAΔVt (mV.µm) en fonction de la surface des transistors (W.L 

(µm
2
)) entre les dispositifs GO1 et GO2 pour les transistors NMOS et PMOS de la 

technologie 20nm Métal-Gate-Last  

 

5. Des valeurs de iAΔQd identiques entre les oxydes de grille épais (GO2) 

et mince (GO1) comme le montre la Figure B.18. Cette similarité 

suggère que le désappariement de Vt est proportionnel à Tox, et que la 

contribution du canal est dominante par rapport à la contribution de la 

grille. Ainsi, en introduisant des améliorations dans l‟effet de la 

granularité de la grille métallique (MGG), la technologie Métal-Gate-

Last permet la réduction, voire la suppression de la contribution de la 

grille dans le désappariement de Vt. 
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Figure B.18 : Comparaison de iAΔQd (F.mV.µm) en fonction de la surface des transistors 

(W.L (µm
2
)) entre les dispositifs GO1 et GO2, NMOS et PMOS de la technologie 20nm 

Métal-Gate-Last  

 

 

6. Des valeurs de désappariement de ID proches entre les dispositifs GO1 

et GO2. Cela est expliqué par la contribution de Rsd et de │Gm/ID│ 

dans le nouveau modèle de désappariement de ID proposé dans le 

chapitre II.  

 

- La comparaison entre les technologies 20nm Métal-Gate-Last et 28 nm Métal-

Gate-First montre que la technologie Gate-Last bénéficie d‟une amélioration 

des désappariement de Vt et de β avec des valeurs de iAΔVt très prometteuses 

comme le montre la Figure B.19. 
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Figure B.19 : Comparaison de iAΔVt (mV.µm) en function de L (µm) entre les technologies 

28nm Métal-Gate-First et 20nm Métal-Gate-Last pour les dispositifs NMOS et PMOS  

 

 

- Le dernier point investigué dans ce chapitre concerne les tendances de 

désappariement de Vt et β en fonction de Tox en partant de la technologie 

90nm de STMicroelectronics jusqu‟à la technologie 20nm Gate-Last de IBM. 

Les résultats montrent que : 

 

3. iAΔVt est linéaire en fonction de Tox avec un offset plus grand que zéro 

allant des nœuds technologiques 90nm jusqu‟à 45nm. Ces nœuds 

intègrent une grille poly silicium. Cet offset approche zéro en 

remplaçant la grille poly par une grille métallique. Ce phénomène est 

illustré dans la Figure B.20 pour les NMOS. Notons que le même 

phénomène est aussi observé pour les PMOS 

 

4. iAΔβ/β n‟est pas proportionnel à Tox comme le montre la Figure B.21 

pour les NMOS. Notons que le même phénomène est aussi observé 

pour les PMOS. 
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Figure B.20 : Les tendances de iAΔVt (mV.µm) en fonction de l’épaisseur de l’oxyde de la 

grille Tox (Å) de la technologie 90nm ST Bulk jusqu’à la technologie 20nm Gate-Last Bulk 

pour des transistors NMOS 

 

 

Figure B.21 : Les tendances de iAΔβ/β (%.µm) en fonction de l’épaisseur de l’oxyde de la 

grille Tox (Å) de la technologie 90nm ST Bulk jusqu’à la technologie 20nm Gate-Last Bulk 

pour des transistors NMOS 

 

Cette étude a confirmé expérimentalement les simulations de Asenov et al.‟s dans 

[Asenov 00], en ce qui concerne l‟amélioration du désappariement de Vt en utilisant la 

grille métallique au lieu du poly-silicium. Elle a montré aussi les avantages de la 

technologie Gate-Last sur les performances du désappariement. Ainsi elle a investigué 

le désappariement de β en fonction du Tox pour la première fois dans la littérature. 

Finalement, elle a confirmé expérimentalement que la principale contribution dans la 

technologie bulk sur le désappariement de Vt reste le dopage de canal dans les 

technologies avancés, notamment le 28 et le 20nm.  
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o Dans la première section du chapitre VI, la technologie 14 nm FD SOI a été étudiée et 

comparée avec la technologie 28 nm FD SOI. 

  

- Des performances identiques de désappariement de Vt, β et ID pour des oxydes 

de grille mince et épais ont été observées pour les N/P MOS de la technologie 

14nm FD SOI dans les figures B.21, B.22 et B.23 respectivement : 

 

 
Figure B.21 : Comparaison de iAΔVt (mV.µm) en fonction de la surface des transistors W.L 

(µm
2
) entre les GO1 et GO2 pour les dispositifs NMOS et PMOS de la technologie 14nm 

FD SOI  

 

 
 

Figure B.22 : Comparaison de iAΔβ/β (%.µm) en fonction de la surface des transistors W.L 

(µm
2
) entre les GO1 et GO2 pour les dispositifs NMOS et PMOS de la technologie 14nm 

FD SOI  
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Figure B.23 : Comparaison de iAΔID/ID (%.µm) en fonction de la surface des transistors W.L 

(µm
2
) entre les GO1 et GO2 pour les dispositifs NMOS et PMOS de la technologie 14nm 

FD SOI  

 

 La similarité du désappariement de Vt est attribuée à l‟absence des 

dopants dans le canal dans la technologie FD SOI. Ainsi iAΔVt n‟est 

plus proportionnel à Tox (contrairement à la technologie Bulk), ce qui 

implique que la contribution de la grille est dominante par rapport à la 

contribution du canal ; 

 

 Le désappariement de β n‟est pas proportionnel à Tox. Ce résultat est 

similaire à la technologie Bulk du chapitre V ; 

 

 Le nouveau modèle de désappariement de courant de drain, proposé 

dans le chapitre II a été appliqué avec succès sur les valeurs mesurées. 

Ainsi, ce modèle explique la similarité entre les dispositifs GO1 et GO2 

où le désappariement de ID est due à la contribution de Rsd, du terme 

│Gm/ID│ ainsi que des désappariements de Vt et de β.  

 

- En ce qui concerne la technologie 28nm, les résultats montrent que les 

désappariements de Vt, β et ID sont à peu près identiques à la technologie 

14nm dans les figures B.24, B.25 et B.26.  Cela confirme que : 
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 Le désappariement de Vt est indépendant de Tox, par opposition à ce 

qui a été observé dans la technologie Bulk. 

 Le désappariement de β est aussi indépendant de Tox comme observé 

pour la technologie Bulk.  

 

 
Figure B.24: Les valeurs moyennes de iAΔVt (mV.µm) pour les technologies 28 et 14 nm 

 

 

  

 

 
Figure B.25 : Les valeurs moyennes de iAΔβ/β (%.µm) pour les technologies 28 et 14 nm 
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Figure B.26 : Les valeurs moyennes de iAΔID/ID (%.µm) pour les technologies 28 et 14 nm  

 

 

Cette section du chapitre VI a montré que la principale contribution du 

désappariement de Vt dans les technologies FD SOI avancés est la contribution de la 

grille.  Elle a montré aussi les avantages de l‟utilisation de la technologie FD SOI dans 

les nœuds avancés notamment le 14nm en ce qui concerne les très bonnes performances 

du désappariement de Vt, β et ID pour les dispositifs nominaux. 

 

La deuxième section du chapitre VI, traite le dernier thème de la thèse : analyse et  

modélisation des phénomènes de desappariement des transistors MOS avec leurs 

vieillissements. La condition de stress Negative Bias Temperature Instability (NBTI), a été 

utilisée à une température de 125°C pour la technologie 28nm FD SOI. Cette section montre 

que : 

 

o Le désappariement de Vt est  dégradé en fonction des défauts (Nst) (des charges fixes 

et des états d‟interfaces) induits par le NBTI stress à l‟interface Si/SiO2 et dans 

l‟oxyde. Un modèle compact qui dépend directement de Nst a été développé dans 

l‟équation B.8. Ce modèle a été appliqué avec succès sur les valeurs mesurées et 

explique cette dégradation en fonction du Nst dans la Figure B.27.  
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Où 
2

0Vt
iA


est la constante individuelle de désappariement de Vt à 125°C avant le stress 

q  : la charge égale à 1.6x10
-19 

Coulomb 

Cox  : la Capacité d‟oxyde 

Ns t : les charges fixes et des états d‟interfaces induites par le NBTI stress 

 

 

Figure B.27 : L=0.105µm and W=0.14µm : la constant individuelle de désappariement de 

Vt en fonction du drift de Vt: Comparaison entre les valeurs mesurées et le modèle 

théorique de l’équation B.8  

 

 

o Le désappariement de β est faiblement dégradé avec 12% de dégradation dans les pires 

cas et 1% de dégradation dans les meilleurs cas. Un modèle compact qui dépend 

directement des valeurs de Nst a également été développé dans l‟équation B.9. 

Cependant ce modèle sous-estime les dégradations réelles des transistors avec le stress 

NBTI comme le montre la Figure B.28.  
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Où 2

0/ 
iA  est la constante individuelle de désappariement de β à 125°C avant le 

stress. 

  : le coefficient de « Remote Coulomb Scattering » exprimée en (V.s/C
-1

) 

0  : la mobilité à faible champ 
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Figure B.28 : L=0.105µm and W=0.14µm : la constant individuelle de désappariement de β 

en fonction du drift de β: Comparaison entre les valeurs mesurées et le modèle théorique de 

l’équation B.9  

 

 

La dernière partie de la thèse a montré un désappariement significatif de Vt et faible de 

β de la technologie FD SOI en fonction du stress NBTI. Des modèles ont été proposés et 

peuvent être utilisés pour estimer le niveau de désappariement de Vt et de β en fonction de 

Nst. Ces modèles peuvent être appliqués et améliorés, dans le futur, sur d‟autres technologies 

comme le 14nm FD SOI et le 28nm Bulk. 

 

 

Durant cette thèse, 6 articles (Références ci-dessous) ont été présentés dans 

4 conférences et deux journaux. Aussi j’ai participé à l’organisation des 

“Journées Nationales du Réseau Doctoral en Micro-nanoélectronique 

(JNRDM 2013)” d’Octobre 2012 – Juin 2013. Cette conférence a eu lieu à 

Grenoble du 10 à 12 Juin 2013.  
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Résumé: 

 
Afin de réaliser correctement leur fonction, certains blocs analogiques ou numériques comme les 

miroirs de courant ou les SRAM, nécessitent des paires de transistors MOS électriquement 

identiques. Cependant, les dispositifs sur silicium, même appariés, subissent des variations locales 

aléatoires ce qui fait varier leurs performances électriques. Ce phénomène est connu sous le nom 

désappariement. L‟objectif de cette thèse est de comprendre les causes physiques de ce 

désappariement, de le quantifier et de proposer des solutions pour le réduire. Dans ce contexte, 

quatre thèmes principaux sont développés. Le premier thème se focalise sur l‟optimisation des 

méthodologies de mesures des phénomènes de désappariement. Une nouvelle méthode de mesure 

du désappariement de Vt et de β ainsi qu‟un nouveau modèle de désappariement de ID sont 

proposés, analysés et appliqués à des données mesurées sur des technologies 28nm Bulk et FD 

SOI. Le second thème se concentre sur la caractérisation des différentes configurations de 

transistor MOS afin de proposer l‟architecture optimale en fonction des applications visées. Ainsi, 

la possibilité de remplacer le LDEMOS par une configuration cascode est analysée en détail. Le 

troisième thème se focalise sur l‟analyse et la modélisation des phénomènes de désappariement 

des transistors MOS avancés. Trois aspects sont analysés : 1) l‟introduction du Ge dans le canal P 

des technologies 28nm BULK, 2) la suppression de la contribution de la grille sur le 

désappariement de Vt en utilisant la technologie 20 nm métal-Gate-Last 3) un descriptif des 

principaux contributeurs au désappariement de Vt, β et ID dans les technologies 28 et 14nm FD 

SOI. Le dernier thème traite du comportement du désappariement des transistors MOS après 

vieillissement. Un vieillissement NBTI a été appliqué sur des PMOS de la technologie 28nm FD 

SOI. Des modèles de comportement de Vt et de β en fonction du nombre de charges fixes ou 

d‟états d‟interfaces induits à l‟interface Si/SiO2 ou dans l‟oxyde sont proposés et analysés.  

 

Mots Clés : Désappariement, transistors MOS, Vt, β, ID, 28nm Bulk, LDEMOS, configuration 

cascode, 20nm Métal-Gate-Last, 28nm FD SOI, 14nm FDSOI, NBTI. 
 

Abstract: 

 
For correct operation, certain analog and digital circuits, such as current mirrors or SRAM, 

require pairs of MOS transistors that are electrically identical. Real devices, however, suffer from 

random local variations in the electrical parameters, a problem referred to as mismatch. The aim 

of this thesis is to understand the physical causes of mismatch, to quantify this phenomenon, and 

to propose solutions that enable to reduce its effects. In this context, four major areas are treated. 

The first one focuses on the optimization of mismatch measurement methodologies. A new 

technique for the measurement of Vt and β mismatch and an ID mismatch model are proposed, 

analyzed and applied to experimental data for 28 nm Bulk and FD SOI technologies. The second 

area focuses on the characterization of different configurations of MOS transistors in order to 

propose design architectures that are optimized for certain applications. Specifically, the 

possibility of replacing LDEMOS with transistors in cascode configuration is analyzed. The third 

area focuses on the analysis and modeling of mismatch phenomena in advanced Bulk and SOI 

transistors. Three aspects are analyzed: 1) the impact of the introduction of germanium in P 

channel of 28nm BULK transistors; 2) the elimination of the metal gate contribution to Vt 

mismatch by using 20nm Gate-last Bulk technology; 3) a descriptive study of the principal 

contributions to Vt, β and ID mismatch in 28 and 14 nm FD SOI technologies. The last area treats 

the mismatch trends with transistor aging. NBTI stress tests were applied to PMOS 28nm FD SOI 

transistors. Models of the Vt and β mismatch trends as a function of the induced interface traps 

and fixed charges at the Si/SiO2 interface and in the oxide were developed and discussed. 

 

Key words: Mismatch, transistors MOS, Vt, β, ID, 28nm Bulk, 20nm Metal-Gate-Last, LDEMOS, 

cascode configuration, 28nm FD SOI, 14nm FDSOI, NBTI. 


