J. Diaz, K. Schmidt, and C. Heier, Non-conforming Galerkin finite element method for symmetric local absorbing boundary conditions, Computers and Mathematics with Applications, p.22, 2015.

M. Amara, S. Chaudhry, J. Diaz, R. Djellouli, and S. Fiedler, A local wave tracking strategy for efficiently solving mid- and high-frequency Helmholtz problems, Computer Methods in Applied Mechanics and Engineering, vol.276, pp.473-508, 2014.
DOI : 10.1016/j.cma.2014.03.012

URL : https://hal.archives-ouvertes.fr/hal-01010465

C. Agut and J. Diaz, Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.3, pp.903-932, 2013.
DOI : 10.1051/m2an/2012061

URL : https://hal.archives-ouvertes.fr/hal-00759457

H. Barucq, J. Diaz, and V. Duprat, LONG-TERM STABILITY ANALYSIS OF ACOUSTIC ABSORBING BOUNDARY CONDITIONS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.11, pp.2129-2154, 2013.
DOI : 10.1142/S0218202513500280

H. Barucq, T. Chaumont-frelet, J. Diaz, and V. Péron, Upscaling for the Laplace problem using a discontinuous Galerkin method, Journal of Computational and Applied Mathematics, vol.240, 2012.
DOI : 10.1016/j.cam.2012.05.025

URL : https://hal.archives-ouvertes.fr/hal-00757098

C. Baldassari, H. Barucq, H. Calandra, B. Denel, and J. Diaz, Abstract, Communications in Computational Physics, vol.43, issue.02, pp.660-673, 2012.
DOI : 10.1190/1.3124931

C. Agut, J. Diaz, and A. Ezziani, Abstract, Communications in Computational Physics, vol.27, issue.02, pp.691-708, 2012.
DOI : 10.1190/1.1442040

H. Barucq, J. Diaz, and V. Duprat, Abstract, Communications in Computational Physics, vol.82, issue.02, pp.674-690, 2012.
DOI : 10.1090/S0025-5718-1977-0436612-4

C. Baldassari, H. Barucq, H. Calandra, and J. Diaz, Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration, Geophysical Prospecting, vol.25, issue.5-40, pp.907-919, 2011.
DOI : 10.1111/j.1365-2478.2011.00975.x

URL : https://hal.archives-ouvertes.fr/hal-00627603

H. Barucq, J. Diaz, and M. Tlemcani, New absorbing layers conditions for short water waves, Journal of Computational Physics, vol.229, issue.1, pp.58-72, 2010.
DOI : 10.1016/j.jcp.2009.08.033

URL : https://hal.archives-ouvertes.fr/inria-00418317

J. D. De-basabe and M. K. Sen, Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping, Geophysical Journal International, vol.181, issue.1, pp.577-590, 2010.
DOI : 10.1111/j.1365-246X.2010.04536.x

J. Diaz and A. Ezziani, Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media. Part I: The 2D Case, Communications in Computational Physics, vol.7, issue.1, pp.171-194, 2010.
DOI : 10.4208/cicp.2009.08.148

URL : https://hal.archives-ouvertes.fr/inria-00404228

J. Diaz and A. Ezziani, Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media. Part II: The 3D Case, Communications in Computational Physics, vol.7, issue.3, pp.445-472, 2010.
DOI : 10.4208/cicp.2009.08.149

URL : https://hal.archives-ouvertes.fr/inria-00404228

J. Diaz and M. J. Grote, Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1985-2014, 2009.
DOI : 10.1137/070709414

URL : https://hal.archives-ouvertes.fr/inria-00193160

R. Madec, D. Komatitsch, and J. Diaz, Energy-conserving local time stepping based on high-order finite elements for seismic wave propagation across a fluid-solid interface, Computer Modeling in Engineering and Sciences, vol.49, issue.2, pp.163-189, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00436429

J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.29-32, pp.29-32, 2006.
DOI : 10.1016/j.cma.2005.02.031

URL : https://hal.archives-ouvertes.fr/inria-00410313

J. Diaz and P. Joly, An Analysis of Higher Order Boundary Conditions for the Wave Equation, SIAM Journal on Applied Mathematics, vol.65, issue.5, pp.1547-1575, 2005.
DOI : 10.1137/S0036139903436145

URL : https://hal.archives-ouvertes.fr/inria-00071617

J. Diaz and P. Joly, ROBUST HIGH ORDER NON-CONFORMING FINITE ELEMENT FORMULATION FOR TIME DOMAIN FLUID-STRUCTURE INTERACTION, Journal of Computational Acoustics, vol.13, issue.03, pp.403-431, 2005.
DOI : 10.1142/S0218396X05002736

URL : https://hal.archives-ouvertes.fr/inria-00409201

B. H. Barucq, L. Boillot, H. Calandra, and J. Diaz, Absorbing Boundary Conditions for 2D Tilted Transverse Isotropic elastic media, Proceedings de conférences [ ESAIM : Proceedings, 45, pp.400-409, 2014.
DOI : 10.1051/proc/201445041

H. Barucq, H. Calandra, J. Diaz, and F. Ventimiglia, High-Order Time Discretization of The Wave Equation by Nabla-P Scheme., ESAIM : Proceedings, 45, pp.67-74, 2014.
DOI : 10.1051/proc/201445007

URL : https://hal.archives-ouvertes.fr/hal-01111071

M. De-castro, J. Diaz, and V. Péron, Equivalent Absorbing Boundary Conditions for Heterogeneous Acoustic Media, Trends in Applied and Computational Mathematics, vol.15, issue.3, p.10, 2014.

J. Diaz and V. Lisitsa, Simulation of Seismic Wave Propagation in Models with Complex Free-surface Topography, 6th Saint Petersburg International Conference and Exhibition, 2014.
DOI : 10.3997/2214-4609.20140203

C. H. Barucq, L. Boillot, H. Calandra, and J. Diaz, Absorbing Boundary Conditions for 3D Tilted Transverse Isotropic media, Conférences Internationales avec Comité de Lecture [ First Pan-American Congress on Computational Mechanic Buenos Aires, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184104

H. Barucq, L. Boillot, H. Calandra, J. Diaz, M. Bonnasse-gahot et al., Discontinuous Galerkin Approximations for Seismic Wave Propagation in a HPC Framework, Platform for Advanced Scientific Computing Conference, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184106

H. Barucq, J. Diaz, R. Djellouli, and E. Estecahandy, High-order Discontinuous Galerkin approximations for elasto-acoustic scattering problems, XXIV Congress on Differential Equations and Applications / XIV Congress on Applied Mathematics (XXIV CEDYA / XIV CMA), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184107

M. Bonnasse-gahot, H. Calandra, J. Diaz, and S. Lanteri, Performance Assessment on Hybridizable DG Approximations for the Elastic Wave Equation in Frequency Domain
URL : https://hal.archives-ouvertes.fr/hal-01184111

L. Boillot, H. Barucq, H. Calandra, and J. Diaz, (Portable) Task-based programming model for elastodynamics, EAGE workshop on HPC for Upstream, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070015

H. Barucq, H. Calandra, J. Diaz, and F. Ventimiglia, Arbitrary High Order Time Scheme for Wave Equation, The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01111091

M. Amara, J. Diaz, and R. Djellouli-kouba, Mesh Free Frontier-based Formulation for Helmholtz Problems, Congrès de Mathématiques Appliquées en l'honneur de Mohamed Amara, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00924026

M. Amara, J. Diaz, and R. Djellouli, Mesh Free Frontier-Based Formulation (MF3) for High Frequency Helmholtz Problems, COMPDYN 2013 : 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00924012

H. Barucq, J. Chabassier, J. Diaz, and E. Estecahandy, Numerical Analysis of a reduced formulation of an elasto-acoustic scattering problem, WAVES 13 : 11th International Conference on Mathematical and Numerical Aspects of Waves, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873633

C. Agut and J. Diaz, Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation, Conference on Frontiers in Applied and Computational Mathematics, 2012.
DOI : 10.1051/m2an/2012061

URL : https://hal.archives-ouvertes.fr/hal-00759457

C. Baldassari, H. Barucq, and J. Diaz, Explicit hp-Adaptive Time Scheme for the Wave Equation, Domain Decomposition (DD20), 2011.
URL : https://hal.archives-ouvertes.fr/hal-00660048

C. Baldassari, H. Barucq, and J. Diaz, An hp-adaptive energy conserving time scheme for the wave equation, Third Chilean Workshop on Numerical Analysis of Partial Differential Equations, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00508541

C. Baldassari, H. Barucq, and J. Diaz, High-Order Schemes with Local Time Stepping for Solving the Wave Equation in a Reverse Time Migration Algorithm, 2010 ISFMA Symposium & Shanghai Summer School on Maxwell' equations : Theoretical and Numerical Issues with Applications, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00508634

H. Barucq, J. Diaz, and V. Duprat, Absorbing Boundary Condition Taking into Account the Grazing Modes, 2010 SIAM Annual Meeting (AN10), 2010.
URL : https://hal.archives-ouvertes.fr/inria-00508632

C. Agut, J. Diaz, and A. Ezziani, Fast High-Order Method for Solving the Transient Wave Equation, International Conference on Spectral and High Order MethodsICOSAHOM09), 2009.
URL : https://hal.archives-ouvertes.fr/inria-00508582

J. Diaz and P. Joly, Application of Cagniard de Hoop Method to the Analysis of Perfectly Matched Layers, 3rd IFAC Workshop on Fractional Differentiation and its Applications, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00343016

J. Diaz and M. J. Grote, Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations, The 8th International Conference on Mathematical and Numerical Aspects of Waves Propagation, 2007.
DOI : 10.1137/070709414

URL : https://hal.archives-ouvertes.fr/inria-00193160

J. Diaz and M. J. Grote, Explicit local time stepping for second-order wave equations, International Conference on SCIentific Computation And Differential Equations, SCI- CADE 2007, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00508577

D. H. Barucq, H. Calandra, J. Diaz, and F. Ventimiglia, High order schemes for the first order formulation of the wave equation. Application to seismic imaging, Workshops et Conférences Nationales [ Journées Ondes du Sud-Ouest, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01111082

H. Barucq, H. Calandra, J. Diaz, and F. Ventimiglia, High-Order Explicit Time Scheme for Simulation of Wave Propagation, HOSCAR -3rd Brazil-French workshop on High performance cOmputing and SCientific dAta management dRiven by highly demanding applications (INRIA-CNPq), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00929904

H. Barucq, J. Diaz, H. Calandra, and F. Ventimiglia, High Order Schemes and Local Time Stepping for Solving Elastodynamic Wave Equation in Strongly Heterogeneous Media, First Russian-French Conference on Mathematical Geophysics, Mathematical Modeling in Continuum Mechanics and Inverse Problems, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00764181

. [. Vulgarisation and . Diaz, Prospectionpétrolì ere : le sous-sol révélé. TDC (Textes et Documents pour la Classe), pp.32-33, 1062.

J. Diaz, Jeter un oeil Au centre de la Terre, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00924636

J. Diaz and R. Martin, Sonder l'invisible (du séisme au modèle) Interstices, 2010.

J. Diaz, A. Langlois, and R. Martin, Probing the invisible, from the earthquake to the model. Vidéothèque Inria, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00904051

. Rapports-de-recherche-[-f1-]-h, J. Barucq, V. Diaz, and . Duprat, Long-term stable acoustic absorbing boundary conditions for regular-shaped surfaces, 2013.

M. Amara, S. Chaudry, J. Diaz, R. Djellouli, and S. Fiedler, A local wave tracking strategy for efficiently solving mid- and high-frequency Helmholtz problems, Computer Methods in Applied Mechanics and Engineering, vol.276, 2013.
DOI : 10.1016/j.cma.2014.03.012

URL : https://hal.archives-ouvertes.fr/hal-01010465

H. Barucq, J. Diaz, and V. Duprat, A new family of second-order absorbing boundary conditions for the acoustic wave equation -Part II : Mathematical and numerical studies of a simplified formulation, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00578152

C. Agut, J. Bart, and J. Diaz, Numerical study of the stability of the Interior Penalty Discontinuous Galerkin method for the wave equation with 2D triangulations, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00617817

H. Barucq, J. Diaz, and V. Duprat, A new family of second-order absorbing boundary conditions for the acoustic wave equation -Part I : Construction and mathematical analysis, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00570301

C. Agut and J. Diaz, Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.3, 2010.
DOI : 10.1051/m2an/2012061

URL : https://hal.archives-ouvertes.fr/hal-00759457

C. Agut and J. Diaz, New high order schemes based on the modified equation technique for solving the wave equation, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00497627

J. Diaz and A. Ezziani, Analytical Solution for Wave Propagation in Stratified Acoustic/Porous Media. Part I : the 2D Case, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00274136

J. Diaz and A. Ezziani, Analytical Solution for Wave Propagation in Stratified Acoustic/Porous Media. Part II : the 3D Case, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00274136

J. Diaz and A. Ezziani, Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part I : the 2D Case, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00305395

J. Diaz and A. Ezziani, Analytical Solution for Wave Propagation in Stratified Poroelastic Medium. Part II : the 3D Case, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00305395

J. Diaz, J. Grote, and M. , Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, 2007.
DOI : 10.1137/070709414

URL : https://hal.archives-ouvertes.fr/inria-00193160

J. Diaz and P. Joly, Une présentation mathématique de la méthode de Cagniard-de Hoop Partie I En dimension deux, 2006.

J. Diaz and P. Joly, Une présentation mathématique de la méthode de Cagniard-de Hoop Partie II En dimension trois, 2006.

J. Diaz and P. Joly, An Analysis of Higher Order Boundary Conditions for the Wave Equation, SIAM Journal on Applied Mathematics, vol.65, issue.5, 2003.
DOI : 10.1137/S0036139903436145

URL : https://hal.archives-ouvertes.fr/inria-00071617

T. Diaz, Analytical and Numerical Approach of Transmission Problems of Wave Propagation in Time Domain. Application to Fluid-Structure Coupling and Perfectly Matched Layers. Theses, 2005.
URL : https://hal.archives-ouvertes.fr/tel-00008708

. [. Divers, J. Agut, A. Diaz, and . Ezziani, A New Modified Equation Approach for solving the Wave Equation, Proceedings of the Tenth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 2008.

H. Barucq, J. Diaz, and V. Duprat, High Order Absorbing Boundary Conditions for solving the Wave Equation by Discontinuous Galerkin Methods, Proceedings of the Tenth International Conference Zaragoza-Pau on Applied Mathematics and Statistics, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00508630

S. Abarbanel, D. Gottlieb, and J. S. Hesthaven, Well-posed Perfectly Matched Layers for Advective Acoustics, Journal of Computational Physics, vol.154, issue.2, pp.266-283, 1999.
DOI : 10.1006/jcph.1999.6313

C. Agut, Schémas numériques d'ordré elevé en temps et en espace pour l'´ equation des ondes, 2011.

M. Ainsworth, P. Monk, and W. Muniz, Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation, Journal of Scientific Computing, vol.15, issue.2, pp.5-40, 2006.
DOI : 10.1007/s10915-005-9044-x

G. B. Alvarez, A. F. Loula, E. G. Carmo, and F. A. Rochinha, A discontinuous finite element formulation for Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.33-36, pp.4018-4035, 2006.
DOI : 10.1016/j.cma.2005.07.013

M. Amara, H. Calandra, R. Dejllouli, and M. Grigoroscuta-strugaru, A stable discontinuous Galerkin-type method for solving efficiently Helmholtz problems, Computers & Structures, vol.106, issue.107, pp.258-272, 2012.
DOI : 10.1016/j.compstruc.2012.05.007

URL : https://hal.archives-ouvertes.fr/hal-00768455

M. Amara, H. Calandra, R. Djellouli, and M. Grigoroscuta-strugaru, A modified discontinuous Galerkin method for solving efficiently Helmholtz problems, Communications in Computational Physics, vol.11, issue.2, pp.335-350, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00768457

L. Anné, P. Joly, and Q. H. Tran, Construction and analysis of higher order finite difference schemes for the 1D wave equation, Computational Geosciences, vol.4, issue.3, pp.207-249, 2000.
DOI : 10.1023/A:1011520202197

T. Arbogast, S. Minkoff, and P. Keenan, An operator-based approach to upscaling the pressure equation, Texas Institute for Computational and Applied Mathematics, 1998.

D. Arnold, F. Brezzi, B. Cockburn, and L. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1749-1779, 2002.
DOI : 10.1137/S0036142901384162

D. N. Arnold, An Interior Penalty Finite Element Method with Discontinuous Elements, SIAM Journal on Numerical Analysis, vol.19, issue.4, pp.742-760, 1982.
DOI : 10.1137/0719052

U. M. Ascher, S. J. Ruuth, and B. T. Wetton, Implicit-Explicit Methods for Time-Dependent Partial Differential Equations, SIAM Journal on Numerical Analysis, vol.32, issue.3, pp.797-823, 1995.
DOI : 10.1137/0732037

I. Babu?ka, F. Ihlenburg, E. T. Paik, and S. A. Sauter, A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution, Computer Methods in Applied Mechanics and Engineering, vol.128, issue.3-4, pp.325-359, 1995.
DOI : 10.1016/0045-7825(95)00890-X

I. M. Babuska and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers ? SIAM review, pp.451-484, 2000.

A. Baeza and P. Mulet, Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, International Journal for Numerical Methods in Fluids, vol.23, issue.4, pp.455-471, 2006.
DOI : 10.1002/fld.1191

D. Baffet, J. Bielak, D. Givoli, T. Hagstrom, and D. Rabinovich, Long-time stable high-order absorbing boundary conditions for elastodynamics, Computer Methods in Applied Mechanics and Engineering, vol.241, issue.244, pp.20-37, 2012.
DOI : 10.1016/j.cma.2012.05.007

C. Baldassari, Modélisation et simulation numérique pour la migration terrestre paréquation paréquation d'ondes, 2009.

H. Barucq, R. Djellouli, and E. Estécahandy, Efficient DG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, International Journal for Numerical Methods in Engineering, vol.62, issue.6, pp.98-747, 2014.
DOI : 10.1002/nme.4652

URL : https://hal.archives-ouvertes.fr/hal-00931852

S. Bassi and F. Rebay, A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier???Stokes Equations, Journal of Computational Physics, vol.131, issue.2, pp.267-279, 1997.
DOI : 10.1006/jcph.1996.5572

E. Baysal, D. D. Kosloff, and J. W. Sherwood, Reverse time migration, GEOPHYSICS, vol.48, issue.11, pp.48-1514, 1983.
DOI : 10.1190/1.1441434

E. Bécache, E. Chovet, F. Delprat-jannaud, and P. Lailly, Reflection tomography : How to cope with multiple arrivals, Proc. of the 62th SEG Meeting, 1992.

E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics, vol.188, issue.2, pp.399-433, 2003.
DOI : 10.1016/S0021-9991(03)00184-0

E. Bécache, P. Joly, and J. Rodr?guez, Space?time mesh refinement for elastodynamics. numerical results. Computer methods in applied mechanics and engineering, pp.355-366, 2005.

E. Bécache, P. Joly, and J. Rodríguez, Space???time mesh refinement for elastodynamics. Numerical results, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.355-366, 2005.
DOI : 10.1016/j.cma.2004.02.023

L. Beirão-da-veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini et al., BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.01, pp.199-214, 2013.
DOI : 10.1142/S0218202512500492

L. Beirao-da-veiga, F. Brezzi, L. Marini, and A. Russo, The Hitchhiker's Guide to the Virtual Element Method, Mathematical Models and Methods in Applied Sciences, vol.24, issue.08, pp.1541-1573, 2014.
DOI : 10.1142/S021820251440003X

J. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

J. Bérenger, Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves, Journal of Computational Physics, vol.127, issue.2, pp.363-379, 1996.
DOI : 10.1006/jcph.1996.0181

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics, vol.82, issue.1, pp.64-84, 1989.
DOI : 10.1016/0021-9991(89)90035-1

M. J. Berger and R. Leveque, Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2298-2316, 1998.
DOI : 10.1137/S0036142997315974

M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, vol.53, issue.3, pp.484-512, 1984.
DOI : 10.1016/0021-9991(84)90073-1

B. Biondi, Velocity estimation by beam stack, GEOPHYSICS, vol.57, issue.8, pp.1034-1047, 1992.
DOI : 10.1190/1.1443315

B. Biondi, 3D seismic imaging. Number 14. Society of Exploration Geophysicists, 2006.

B. Biondi, Concepts and applications in 3D seismic imaging : 2007 Distinguished Instructor Short course. Distinguished instructor series. Tulsa, Okla. Society of Exploration Geophysicists, 2007.
DOI : 10.1190/1.9781560801665

T. Bishop, K. Bube, R. Cutler, R. Langan, P. Love et al., Tomographic determination of velocity and depth in laterally varying media, GEOPHYSICS, vol.50, issue.6, pp.903-923, 1985.
DOI : 10.1190/1.1441970

N. Bleistein, Mathematical methods for wave phenomena, 2012.

L. Boillot, Contributions to the mathematical modeling and to the parallel algorithmic for the optimization of an elastic wave propagator in anisotropic media. Theses Collaboration Inria-Total, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01133713

S. Brandsberg-dahl, M. V. De-hoop, and B. Ursin, Velocity analysis in the common scattering???angle/azimuth domain, SEG Technical Program Expanded Abstracts 1999, pp.799-818, 1999.
DOI : 10.1190/1.1820865

F. Brezzi and L. Marini, Virtual Element and Discontinuous Galerkin Methods, Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, pp.209-221, 2014.
DOI : 10.1007/978-3-319-01818-8_9

F. Brezzi and L. D. Marini, Virtual Element Methods for plate bending problems, Computer Methods in Applied Mechanics and Engineering, vol.253, pp.455-462, 2013.
DOI : 10.1016/j.cma.2012.09.012

F. Casadei and J. Halleux, Binary spatial partitioning of the central-difference time integration scheme for explicit fast transient dynamics, International Journal for Numerical Methods in Engineering, vol.11, issue.6, pp.1436-1473, 2009.
DOI : 10.1002/nme.2303

E. Celledoni, R. I. Mclachlan, D. I. Mclaren, B. Owren, G. Reinout et al., Energy-preserving Runge-Kutta methods, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.4, pp.43-645, 2009.
DOI : 10.1051/m2an/2009020

J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string, Wave Motion, vol.50, issue.3, pp.456-480, 2013.
DOI : 10.1016/j.wavemoti.2012.11.002

URL : https://hal.archives-ouvertes.fr/hal-00738233

W. F. Chang and G. A. Mcmechan, Reverse???time migration of offset vertical seismic profiling data using the excitation???time imaging condition, GEOPHYSICS, vol.51, issue.1, pp.67-84, 1986.
DOI : 10.1190/1.1442041

W. F. Chang and G. A. Mcmechan, 3-D elastic prestack, reverse???time depth migration, GEOPHYSICS, vol.59, issue.4, pp.597-609, 1994.
DOI : 10.1190/1.1443620

G. Chavent and C. A. Jacewitz, Determination of background velocities by multiple migration fitting, GEOPHYSICS, vol.60, issue.2, pp.476-490, 1995.
DOI : 10.1190/1.1443785

P. G. Ciarlet, The finite element method for elliptic problems, Siam, vol.40, 2002.

J. Claerbout, Imaging the earth interior, 1996.

R. G. Clapp, Geologically constrained migration velocity analysis, 2000.

R. G. Clapp, Reverse time migration : saving the boundaries, 2008.

G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation, Applied Mechanics Reviews, vol.55, issue.5, 2002.
DOI : 10.1115/1.1497470

URL : https://hal.archives-ouvertes.fr/hal-01166961

G. C. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

G. C. Cohen, P. Joly, and N. Tordjman, Construction and analysis of higher-order finite elements with mass lumping for the wave equation, Proceedings of the second international conference on mathematical and numerical aspects of wave propagation, pp.152-160, 1993.

G. C. Cohen, P. Joly, and N. Tordjman, Higher-order finite elements with masslumping for the 1d wave equation. Finite elements in analysis and design, pp.329-336, 1994.

F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation. I. Construction, Numer. Math, vol.95, issue.2, pp.197-221, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

F. Collino, T. Fouquet, and P. Joly, A conservative space-time mesh refinement method for the 1-D wave equation, II. Analysis. Numer. Math, vol.95, issue.2, pp.223-251, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00989055

F. Collino, T. Fouquet, and P. Joly, Conservative space-time mesh refinement methods for the FDTD solution of Maxwell???s equations, Journal of Computational Physics, vol.211, issue.1, pp.9-35, 2006.
DOI : 10.1016/j.jcp.2005.03.035

F. Collino and P. Monk, The Perfectly Matched Layer in Curvilinear Coordinates, SIAM Journal on Scientific Computing, vol.19, issue.6
DOI : 10.1137/S1064827596301406

URL : https://hal.archives-ouvertes.fr/inria-00073643

F. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, GEOPHYSICS, vol.66, issue.1, pp.294-307, 2001.
DOI : 10.1190/1.1444908

L. B. Da-veiga, F. Brezzi, and L. D. Marini, Virtual Elements for Linear Elasticity Problems, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.794-812, 2013.
DOI : 10.1137/120874746

L. B. Da-veiga and G. Manzini, A virtual element method with arbitrary regularity, IMA Journal of Numerical Analysis, vol.34, issue.2, p.18, 2013.
DOI : 10.1093/imanum/drt018

M. A. Dablain, High order differencing for the scalar wave equation. SEG Technical Program Expanded Abstracts, pp.854-854, 1984.

M. A. Dablain, The application of high???order differencing to the scalar wave equation, GEOPHYSICS, vol.51, issue.1, pp.54-66, 1986.
DOI : 10.1190/1.1442040

J. D. De-basabe and M. K. Sen, New developments in the finite-element method for seismic modeling. The Leading Edge, pp.562-567, 2009.

J. D. De-basabe and M. K. Sen, Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping, Geophysical Journal International, vol.181, issue.1, pp.577-590, 2010.
DOI : 10.1111/j.1365-246X.2010.04536.x

A. D. Hoop, A modification of cagniard???s method for solving seismic pulse problems, Applied Scientific Research, Section B, vol.34, issue.1, pp.349-356, 1959.
DOI : 10.1007/BF02920068

J. De-la-puente, M. Käser, M. Dumbser, and H. Igel, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - IV. Anisotropy, Geophysical Journal International, vol.169, issue.3, pp.1210-1228, 2007.
DOI : 10.1111/j.1365-246X.2007.03381.x

S. Delcourte, L. Fezoui, and N. Glinsky-olivier, A high-order Discontinuous Galerkin method for the seismic wave propagation, ESAIM : Proceedings, pp.70-89, 2009.
DOI : 10.1051/proc/2009020

URL : https://hal.archives-ouvertes.fr/hal-00868418

S. Descombes, S. Lanteri, and L. Moya, Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell???s Equations, Journal of Scientific Computing, vol.14, issue.3, pp.190-218, 2013.
DOI : 10.1007/s10915-012-9669-5

C. H. Dix, SEISMIC VELOCITIES FROM SURFACE MEASUREMENTS, GEOPHYSICS, vol.20, issue.1, pp.68-86, 1955.
DOI : 10.1190/1.1438126

V. Dolean, H. Fahs, L. Fezoui, and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics, Journal of Computational Physics, vol.229, issue.2, pp.512-526, 2010.
DOI : 10.1016/j.jcp.2009.09.038

URL : https://hal.archives-ouvertes.fr/inria-00403741

J. Douglas, J. , and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Computing methods in applied sciences (Second Internat. Sympos ., Versailles, pp.207-216, 1975.
DOI : 10.1007/BFb0120591

M. Dumbser and M. Käser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case, Geophysical Journal International, vol.167, issue.1, pp.319-336, 2006.
DOI : 10.1111/j.1365-246X.2006.03120.x

M. Dumbser, M. Käser, and E. F. Toro, -adaptivity, Geophysical Journal International, vol.171, issue.2, pp.695-717, 2007.
DOI : 10.1111/j.1365-246X.2007.03427.x

URL : https://hal.archives-ouvertes.fr/hal-00949831

M. Dumbser, O. Zanotti, A. Hidalgo, and D. S. Balsara, ADER-WENO finite volume schemes with space???time adaptive mesh refinement, Journal of Computational Physics, vol.248, pp.257-286, 2013.
DOI : 10.1016/j.jcp.2013.04.017

E. Dussaud, W. W. Symes, P. Williamson, L. Lemaistre, P. Singer et al., Computational strategies for reverse-time migration ContributionàContributionà l'analyse mathématique etàetà la résolution numérique d'unprobì eme inverse de scatteringélastoscatteringélasto-acoustique, SEG Technical Program Expanded Abstracts, pp.2267-2271, 2008.

J. T. Etgen, Prestacked migration of P and SV-waves, 58th Annual International Meeting, SEG, Expanded Abstracts, 1988.

J. T. Etgen, Interval velocity estimation using residual prestack migration, SEG Technical Program Expanded Abstracts 1993, 1990.
DOI : 10.1190/1.1822584

V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling, Geophysical Journal International, vol.183, issue.2, pp.941-962, 2010.
DOI : 10.1111/j.1365-246X.2010.04764.x

URL : https://hal.archives-ouvertes.fr/insu-00565022

S. Fauqueux, Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondesélastiquesondesélastiques en régime transitoire, 2003.

L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6, pp.39-1149, 2005.
DOI : 10.1051/m2an:2005049

URL : https://hal.archives-ouvertes.fr/hal-00210500

J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco et al., Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws, Journal of Parallel and Distributed Computing, vol.47, issue.2, pp.139-152, 1997.
DOI : 10.1006/jpdc.1997.1412

M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.1643-1681, 2003.
DOI : 10.1137/S003614290139559X

O. Gauthier, J. Virieux, and A. Tarantola, Two???dimensional nonlinear inversion of seismic waveforms: Numerical results, GEOPHYSICS, vol.51, issue.7, pp.1387-1403, 1986.
DOI : 10.1190/1.1442188

K. Gerdes and F. Ihlenburg, On the pollution effect in FE solutions of the 3D-Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, vol.170, issue.1-2, pp.155-172, 1999.
DOI : 10.1016/S0045-7825(98)00239-4

R. W. Graves, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bulletin of the Seismological Society of America, vol.86, issue.4, pp.1091-1106, 1996.

A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods and Software, vol.1, issue.1, 1992.
DOI : 10.1080/10556789208805505

M. J. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell???s equations, Journal of Computational and Applied Mathematics, vol.234, issue.12, pp.3283-3302, 2010.
DOI : 10.1016/j.cam.2010.04.028

M. J. Grote and T. Mitkova, High-order explicit local time-stepping methods for damped wave equations, Journal of Computational and Applied Mathematics, vol.239, issue.0, pp.270-289, 2013.
DOI : 10.1016/j.cam.2012.09.046

M. J. Grote, A. Schneebeli, and D. Schötzau, Discontinuous Galerkin Finite Element Method for the Wave Equation, SIAM Journal on Numerical Analysis, vol.44, issue.6, pp.2408-2431, 2006.
DOI : 10.1137/05063194X

URL : https://hal.archives-ouvertes.fr/hal-01443184

M. J. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell's equations: Energy norm error estimates, Special Issue : The Seventh International Conference on Mathematical and Numerical Aspects of Waves (WAVES'05), pp.375-386, 2007.
DOI : 10.1016/j.cam.2006.01.044

M. J. Grote, A. Schneebeli, and D. Schötzau, Interior penalty discontinuous Galerkin method for Maxwell's equations: optimal L2-norm error estimates, IMA Journal of Numerical Analysis, vol.28, issue.3, pp.440-468, 2008.
DOI : 10.1093/imanum/drm038

M. J. Grote and D. Schötzau, Optimal Error Estimates for the Fully Discrete Interior Penalty DG Method for the Wave Equation, Journal of Scientific Computing, vol.8, issue.23, pp.257-272, 2009.
DOI : 10.1007/s10915-008-9247-z

B. Gustafsson, High Order Difference Methods for Time Dependent PDE, 2008.

T. Hagstrom, A. Mar-or, and D. Givoli, High-order local absorbing conditions for the wave equation: Extensions and improvements, Journal of Computational Physics, vol.227, issue.6, pp.3322-3357, 2008.
DOI : 10.1016/j.jcp.2007.11.040

T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems, Wave Motion, vol.39, issue.4, pp.327-338, 2004.
DOI : 10.1016/j.wavemoti.2003.12.007

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration : structurepreserving algorithms for ordinary differential equations, 2006.

L. Halpern, LOCAL SPACE-TIME REFINEMENT FOR THE ONE-DIMENSIONAL WAVE EQUATION, Journal of Computational Acoustics, vol.13, issue.03, pp.547-568, 2005.
DOI : 10.1142/S0218396X0500275X

I. Harari, A survey of finite element methods for time-harmonic acoustics, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16, pp.1594-1607, 2006.
DOI : 10.1016/j.cma.2005.05.030

F. Hu, A Perfectly Matched Layer absorbing boundary condition for linearized Euler equations with a non-uniform mean flow, Journal of Computational Physics, vol.208, issue.2, pp.469-492, 2005.
DOI : 10.1016/j.jcp.2005.02.028

F. Q. Hu, On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer, Journal of Computational Physics, vol.129, issue.1, pp.201-219, 1996.
DOI : 10.1006/jcph.1996.0244

F. Q. Hu, A Stable, Perfectly Matched Layer for Linearized Euler Equations in Unsplit Physical Variables, Journal of Computational Physics, vol.173, issue.2, pp.455-480, 2001.
DOI : 10.1006/jcph.2001.6887

T. J. Hughes, The finite element method : linear static and dynamic finite element analysis. Courier Corporation, 2012.

P. Joly and J. Rodríguez, An Error Analysis of Conservative Space-Time Mesh Refinement Methods for the One-Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.43, issue.2, pp.825-859, 2005.
DOI : 10.1137/040603437

C. Kane, J. E. Marsden, M. Ortiz, and M. West, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, International Journal for Numerical Methods in Engineering, vol.76, issue.10, pp.1295-1325, 2000.
DOI : 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W

A. Kanevsky, M. H. Carpenter, D. Gottlieb, and J. S. Hesthaven, Application of implicit???explicit high order Runge???Kutta methods to discontinuous-Galerkin schemes, Journal of Computational Physics, vol.225, issue.2, pp.1753-1781, 2007.
DOI : 10.1016/j.jcp.2007.02.021

M. Käser and M. Dumbser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophysical Journal International, vol.166, issue.2, pp.855-877, 2006.
DOI : 10.1111/j.1365-246X.2006.03051.x

R. M. Kirby, S. J. Sherwin, and B. Cockburn, To CG or to HDG: A Comparative Study, Journal of Scientific Computing, vol.29, issue.13, pp.183-212, 2012.
DOI : 10.1007/s10915-011-9501-7

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.139, issue.3, pp.806-822, 1999.
DOI : 10.1046/j.1365-246x.1999.00967.x

D. Komatitsch and J. Vilotte, The spectral-element method : an efficient tool to simulate the seismic response of 2D and 3D geological structures, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

D. Komatitsch and J. Vilotte, The spectral element method : an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bulletin of the seismological society of America, vol.88, issue.2, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

D. Komatitsch, J. Vilotte, R. Vai, J. M. Castillo-covarrubias, and F. J. Sanchez-sesma, The spectral element method for elastic wave equations???application to 2-D and 3-D seismic problems, International Journal for Numerical Methods in Engineering, vol.86, issue.9, pp.45-1139, 1999.
DOI : 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T

URL : https://hal.archives-ouvertes.fr/hal-00669075

O. Korostyshevskaya and S. E. Minkoff, A Matrix Analysis of Operator-Based Upscaling for the Wave Equation, SIAM Journal on Numerical Analysis, vol.44, issue.2, pp.586-612, 2006.
DOI : 10.1137/050625369

P. Lailly, G. Chavent, and A. Bamberger, Une application de la théorie du contrôlecontrôlè a unprobì eme inverse de sismique, 1976.

S. Leung and J. Qian, An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals, Communications in Mathematical Sciences, vol.4, issue.1, pp.249-266, 2006.
DOI : 10.4310/CMS.2006.v4.n1.a10

L. Li, S. Lanteri, and R. Perrussel, Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2D time-harmonic Maxwell's equations. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, pp.1112-1138, 2013.

F. Lörcher, G. Gassner, and C. Munz, A Discontinuous Galerkin Scheme Based on a Space???Time Expansion. I. Inviscid Compressible Flow in One Space Dimension, Journal of Scientific Computing, vol.182, issue.2, pp.175-199, 2007.
DOI : 10.1007/s10915-007-9128-x

Y. Luo, H. Zhu, Y. Luo, T. Nissen-meyer, C. Morency et al., Seismic modeling and imaging based upon spectral-element and adjoint methods, The Leading Edge, vol.28, issue.5, 2009.
DOI : 10.1190/1.3124932

R. Madariaga, Dynamics of an expanding circular fault, Bulletin of the Seismological Society of America, vol.66, issue.3, pp.639-666, 1976.

S. Minisini, E. Zhebel, A. Kononov, and W. A. Mulder, Local time stepping with the discontinuous Galerkin method for wave propagation in 3D heterogeneous media, GEOPHYSICS, vol.78, issue.3, pp.67-77, 2013.
DOI : 10.1190/geo2012-0252.1

C. Morency, Y. Luo, and J. Tromp, Finite-frequency kernels for wave propagation in porous media based upon adjoint methods, Geophysical Journal International, vol.179, issue.2, 2009.
DOI : 10.1111/j.1365-246X.2009.04332.x

C. Morency and J. Tromp, Spectral-element simulations of wave propagation in porous media, Geophysical Journal International, vol.175, issue.1, pp.301-345, 2008.
DOI : 10.1111/j.1365-246X.2008.03907.x

N. C. Nguyen, J. Peraire, and B. Cockburn, High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics, Journal of Computational Physics, vol.230, issue.10, pp.3695-3718, 2011.
DOI : 10.1016/j.jcp.2011.01.035

T. Nissen-meyer, A. Fournier, and F. Dahlen, A 2-D spectral-element method for computing spherical-earth seismograms-II. Waves in solid-fluid media, Geophysical Journal International, vol.174, issue.3, pp.873-888, 2008.
DOI : 10.1111/j.1365-246X.2008.03813.x

URL : https://hal.archives-ouvertes.fr/insu-00354179

T. Ohminato and B. A. Chouet, A free-surface boundary condition for including 3D topography in the finite-difference method, pp.494-515, 1997.

S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Mathematics of Computation, vol.41, issue.164, pp.321-336, 1983.
DOI : 10.1090/S0025-5718-1983-0717689-8

A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, vol.54, issue.3, pp.468-488, 1984.
DOI : 10.1016/0021-9991(84)90128-1

I. Perugia, P. Pietra, and A. Russo, A plane wave virtual element method for the Helmholtz problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.50, issue.3, 2015.
DOI : 10.1051/m2an/2015066

S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.5, pp.815-841, 2006.
DOI : 10.1051/m2an:2006035

URL : https://hal.archives-ouvertes.fr/hal-00607709

S. Piperno, M. Remaki, and L. Fezoui, A Nondiffusive Finite Volume Scheme for the Three-Dimensional Maxwell's Equations on Unstructured Meshes, SIAM Journal on Numerical Analysis, vol.39, issue.6, pp.2089-2108, 2002.
DOI : 10.1137/S0036142901387683

R. Plessix, Y. Roeck, and G. Chavent, Waveform Inversion of Reflection Seismic Data for Kinematic Parameters by Local Optimization, SIAM Journal on Scientific Computing, vol.20, issue.3, pp.1033-1052, 1998.
DOI : 10.1137/S1064827596311980

R. Plessix and W. A. Mulder, Frequency-domain finite-difference amplitude-preserving migration, Geophysical Journal International, vol.157, issue.3, pp.975-987, 2004.
DOI : 10.1111/j.1365-246X.2004.02282.x

J. O. Robertsson, A numerical free-surface condition for elastic/viscoelastic finitedifference modeling in the presence of topography, Geophysics, issue.6, pp.61-1921, 1996.

M. D. Samson, H. Li, and L. Wang, A new triangular spectral element method I: implementation and analysis on a triangle, Numerical Algorithms, vol.49, issue.2, pp.519-547, 2013.
DOI : 10.1007/s11075-012-9677-4

P. Sava and B. Biondi, Wave-equation migration velocity analysis. I. Theory, Geophysical Prospecting, vol.68, issue.6, pp.593-606, 2004.
DOI : 10.1190/1.1443179

A. Sei and W. W. Symes, Gradient calculation of the traveltime cost function without ray tracing, SEG Technical Program Expanded Abstracts 1994, pp.1351-1354, 1994.
DOI : 10.1190/1.1822780

G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elements in Analysis and Design, vol.16, issue.3-4, pp.337-348, 1994.
DOI : 10.1016/0168-874X(94)90076-0

K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, Journal of Computational Physics, vol.205, issue.2, pp.401-407, 2005.
DOI : 10.1016/j.jcp.2004.11.017

J. Shen, L. Wang, and H. Li, A Triangular Spectral Element Method Using Fully Tensorial Rational Basis Functions, SIAM Journal on Numerical Analysis, vol.47, issue.3, pp.1619-1650, 2009.
DOI : 10.1137/070702023

P. Shen, W. W. Symes, and C. C. Stolk, Differential semblance velocity analysis by wave???equation migration, SEG Technical Program Expanded Abstracts 2003, pp.2132-2135, 2003.
DOI : 10.1190/1.1817759

G. R. Shubin and J. B. Bell, A Modified Equation Approach to Constructing Fourth Order Methods for Acoustic Wave Propagation, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.2, pp.135-151, 1987.
DOI : 10.1137/0908026

R. Sidler, J. M. Carcione, and K. Holliger, Simulation of surface waves in porous media, Geophysical Journal International, vol.183, issue.2, pp.820-832, 2010.
DOI : 10.1111/j.1365-246X.2010.04725.x

R. Sidler, J. M. Carcione, and K. Holliger, A pseudo-spectral method for the simulation of poro-elastic seismic wave propagation in 2D polar coordinates using domain decomposition, Journal of Computational Physics, vol.235, 2012.
DOI : 10.1016/j.jcp.2012.09.044

J. C. Simo, N. Tarnow, and K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics Computer methods in applied mechanics and engineering, pp.63-116, 1992.

D. Soares, W. Mansur, and D. Lima, An explicit multi-level time-step algorithm to model the propagation of interacting acoustic-elastic waves using finite element/finite difference coupled procedures, Computer Modeling in Engineering and Sciences, vol.17, issue.1, p.19, 2007.

C. Stork, Reflection tomography in the postmigrated domain, GEOPHYSICS, vol.57, issue.5, pp.680-692, 1992.
DOI : 10.1190/1.1443282

C. Stork and R. Clayton, Linear aspects of tomographic velocity analysis, GEOPHYSICS, vol.56, issue.4, pp.483-495, 1991.
DOI : 10.1190/1.1443065

R. Sun, G. A. Mcmechan, C. Lee, J. Chow, and C. Chen, Prestack scalar reverse-time depth migration of 3D elastic seismic data, GEOPHYSICS, vol.71, issue.5, pp.71-199, 2006.
DOI : 10.1190/1.2227519

W. W. Symes, Reverse time migration with optimal checkpointing, GEOPHYSICS, vol.72, issue.5, pp.213-221, 2007.
DOI : 10.1190/1.2742686

J. Tago, V. M. Cruz-atienza, J. Virieux, V. Etienne, and F. J. Sánchez-sesma, A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics, Journal of Geophysical Research: Solid Earth, vol.84, issue.3, pp.117-2012, 1978.
DOI : 10.1785/0120030104

C. K. Tam, L. Auriault, and F. Cambuli, Perfectly Matched Layer as an Absorbing Boundary Condition for the Linearized Euler Equations in Open and Ducted Domains, Journal of Computational Physics, vol.144, issue.1, pp.213-234, 1998.
DOI : 10.1006/jcph.1998.5997

A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, GEOPHYSICS, vol.49, issue.8, pp.1259-1266, 1984.
DOI : 10.1190/1.1441754

A. Tarantola, Inversion of travel times and seismic waveforms. Seismology and Exploration Geophysics, pp.135-157, 1987.

A. Tarantola, Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure and Applied Geophysics, Pure and Applied Geophysics, issue.12, pp.365-399, 1988.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics, 2005.
DOI : 10.1137/1.9780898717921

N. Tarnow and J. Simo, How to render second order accurate time-stepping algorithms fourth order accurate while retaining the stability and conservation properties, Computer Methods in Applied Mechanics and Engineering, vol.115, issue.3-4, pp.233-252, 1994.
DOI : 10.1016/0045-7825(94)90061-2

A. Taube, M. Dumbser, C. Munz, and R. Schneider, A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.129, issue.42-44, pp.77-103, 2009.
DOI : 10.1002/jnm.700

M. A. Taylor and B. Wingate, A generalized diagonal mass matrix spectral element method for non-quadrilateral elements, Applied Numerical Mathematics, vol.33, issue.1-4, pp.259-265, 2000.
DOI : 10.1016/S0168-9274(99)00091-4

E. Tessmer and D. Kosloff, 3-D elastic modeling with surface topography by a Chebychev spectral method, GEOPHYSICS, vol.59, issue.3, pp.464-473, 1994.
DOI : 10.1190/1.1443608

L. Thomsen, Weak elastic anisotropy, GEOPHYSICS, vol.51, issue.10, pp.1954-1966, 1986.
DOI : 10.1190/1.1442051

L. Thomsen, Understanding seismic anisotropy in exploration and exploitation, Society of Exploration Geophysicist, vol.5, 2002.

J. Tromp, C. Tape, and Q. Liu, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Seismological Laboratory, California Institute of Technology, 2005.

I. Tsvankin, K. Helbig, and S. Treitel, Seismic signatures and analysis of reflection data in anisotropic media, 2001.

J. A. Van-trier, Tomographic determination of structural velocities from depthmigrated seismic data, 1990.

T. Vdovina and S. Minkoff, An a priori error analysis of operator upscaling for the acoustic wave equation, Internat. J. Numer. Anal. Modeling, vol.5, pp.543-569, 2008.

T. Vdovina, S. E. Minkoff, and S. M. Griffith, A Two???Scale Solution Algorithm for the Elastic Wave Equation, SIAM Journal on Scientific Computing, vol.31, issue.5, pp.31-3356, 2009.
DOI : 10.1137/080714877

F. Ventimiglia, Schémas numérique d'ordré elevé en temps et en espace pour l'´ equation des ondes du premier ordre. ApplicationàApplicationà la Reverse Time Migration, 2014.

J. Verwer, Component splitting for semi-discrete Maxwell equations, BIT Numerical Mathematics, vol.14, issue.2, pp.427-445, 2011.
DOI : 10.1007/s10543-010-0296-y

J. Virieux, wave propagation in heterogeneous media: Velocity???stress finite???difference method, GEOPHYSICS, vol.51, issue.4, pp.889-901, 1986.
DOI : 10.1190/1.1442147

N. Whitmore, Iterative depth migration by backward time propagation, SEG Technical Program Expanded Abstracts 1983, 1983.
DOI : 10.1190/1.1893867

P. Yang, J. Gao, and B. Wang, RTM using effective boundary saving: A staggered grid GPU implementation, Computers & Geosciences, vol.68, pp.64-72, 2014.
DOI : 10.1016/j.cageo.2014.04.004

L. Zhao and A. Cangellaris, A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation. Microwave and Guided Wave Letters, IEEE, vol.6, issue.5, pp.209-211, 1996.

J. Zhe and S. A. Greenhalgh, Prestack multicomponent migration, GEOPHYSICS, vol.62, issue.2, pp.598-613, 1997.
DOI : 10.1190/1.1444169