P. 4. For, X. =-r-n, and Z. , both equipped with the Euclidean norm, is it true that for every Y ? X, any Lipschitz f : Y ? Z admits an AMLE g : X ? Z? Extending results on AMLE's to vector valued functions presents many difficulties

J. C. Archer and E. Le-gruyer, On the Whitney's extension theorem, Bibliography Bull. Sci. Math, vol.119, pp.235-266, 1995.

A. , S. N. Smart, and C. K. , As easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equation, vol.37, pp.3-4, 2010.

A. , G. Crandall, M. G. , J. , and P. , A tour of the theory of Absolutely Minimizing Functions, Bull. Am. Math. Soc, vol.41, issue.4, pp.439-505, 2004.

B. , G. Busca, and J. , Existence and comparison results for fully nonlinear degenerate elliptic equations, Commun. Partial Differ. Equ, vol.26, pp.11-12, 2001.

B. , H. H. Wang, and X. , Firmly nonexpansive and Kirszbraun-Valentine extensions: a constructive approach via monotone operator theory. Nonlinear analysis and optimization I, Contemp. Math., Amer. Math. Soc, vol.513, pp.55-64, 2010.

B. , Y. Lindenstrauss, and J. , Geometric Nonlinear Functional Analysis, 2000.

B. , K. Connelly, and R. , Pushing disks apart-the kneser-poulsen conjecture in the plane, J. reine angew. Math, vol.553, pp.221-236, 2002.

T. Bhattacharya, E. Dibenedetto, and J. And-manfredi, Limits as p ? +? of ? p u p = f and related extremal problems. Some topics in nonlinear PDEs, Rend. Sem. Mat. Univ. Politec. Torino, pp.15-68, 1989.

C. , T. Pascale, and L. D. , Principles of comparison with distance functions for absolute minimizers, J. Convex Anal, vol.14, issue.3, pp.515-541, 2007.

C. , M. G. Evans, L. C. Gariepy, and R. F. , Optimal Lipschitz extensions and the infinity laplacian, Calc. Var. Partial Differential Equation, pp.123-139, 2001.

C. , M. G. Lions, and P. L. , Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc, vol.277, issue.1, pp.1-42, 1983.

C. , M. G. And, and L. C. Evans, A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis, pp.123-129, 2000.

E. , L. C. And, and C. K. Smart, Everywhere differentiability of infinity harmonic functions , Calc. Var, pp.289-299, 2011.

G. Glaeser, ??tude de Quelques Alg??bres Tayloriennes, Journal d'Analyse Math??matique, vol.245, issue.1, pp.1-124, 1958.
DOI : 10.1007/BF02790231

H. , M. J. Le-gruyer, and E. L. , A general theorem of existence of quasi absolutely minimal Lipschitz extensions, Math. Ann, vol.359, issue.3, pp.595-628, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00758247

J. , W. B. Lindenstrauss, J. Preiss, D. And-schechtman, and G. , Lipschitz quotients from metric trees and from Banach spaces containing l 1, J. Funct. Anal, vol.194, issue.2, pp.332-346, 2002.

M. D. Kirszbraun, ¨ Uber die zusammenziehende und Lipschitzsche Transformationen, Fund. Math, vol.22, pp.77-108, 1934.

V. M. Kneser, Einige Bemerkungen ??ber das Minkowskische Fl??chenma??, Archiv der Mathematik, vol.67, issue.5, pp.382-390, 1955.
DOI : 10.1007/BF01900510

L. Gruyer, E. Archer, and J. C. , Harmonious Extensions, SIAM Journal on Mathematical Analysis, vol.29, issue.1, pp.279-292, 1998.
DOI : 10.1137/S0036141095294067

L. Gruyer and E. , Minimal Lipschitz Extensions to Differentiable Functions Defined on a Hilbert Space, Geometric and Functional Analysis, vol.36, issue.1, pp.1101-1118, 2009.
DOI : 10.1007/s00039-009-0027-1

URL : https://hal.archives-ouvertes.fr/hal-00456975

L. Gruyer and E. , On absolutely minimizing Lipschitz extensions and PDE ? ? u = 0. NoDEA: Nonlinear Differ, Equ. Appl, vol.14, issue.12, pp.29-55, 2007.

L. Gruyer, E. Phan, and T. , Sup???Inf explicit formulas for minimal Lipschitz extensions for 1-fields on <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math>, Journal of Mathematical Analysis and Applications, vol.424, issue.2, pp.1161-1185, 2015.
DOI : 10.1016/j.jmaa.2014.11.067

A. Naor, Topic in Georetric Nonlinear Functional Analysis, 2014.

N. , A. Sheffield, and S. , Absolutely minimal Lipschitz extension of treevalued mappings, Math. Ann, vol.354, issue.3, pp.1049-1078, 2012.

P. , Y. Schramm, O. Sheffield, S. Wilson, and D. B. , Tug-of-war and the infinity Laplacian, J. Am. Math. Soc, vol.22, issue.1, pp.167-210, 2009.

S. , S. Smart, and C. K. , Vector-valued optimal Lipschitz extension, Commun. Pure. Appl. Math, vol.65, issue.1, pp.128-154, 2012.

W. , J. H. Williams, and L. R. , Embeddings and Extensions in Analysis, 1975.