Synthèse de nanocomposites cœur-coquille silicium carbone par pyrolyse laser double étage : application à l’anode de batterie lithium-ion

Julien Sourice 1
1 LEDNA - Laboratoire Edifices Nanométriques
NIMBE UMR 3685 - Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M)
Abstract : The replacement of carbon graphite, the commercial anode material in Li-ion batteries, by silicon is one of the most promising strategies to increase the capacity of anode in these devices. However, micrometric silicon suffers from strong degradation effect while cycling. The volume expansion of the lithiated particles and the direct contact between the active material and the solvents induce the continuous formation and pulverization of a solid electrolyte interphase (SEI) leading to the rapid fading of the capacity. Many research groups suggest decreasing the size of the particle to the nanoscale where pulverization of the particles is almost inexistent. Furthermore, the formation of a carbon shell around these silicon nanoparticles is cited as the most efficient way to isolate the material from the direct contact with the solvent. The main issue is to obtain these core shell nanocomposites with a process able to meet industrial requirement.The Nanometric Structure Laboratory (LEDNA) is experimented in the synthesis of nanomaterial thanks to the gas phase laser pyrolysis method. This versatile process is characterized by a high yield of production and permits an efficient control over the reaction parameters. In order to obtain core shell structures, a new reactor has been developed by the combination of two stages of reaction. Thanks to this original setup, crystalline silicon cores covered or not with a carbon shell were achieved in one step for the first time. Likewise, amorphous cores were covered with a carbon shell, leading to the synthesis of a novel nanocomposite. Microscopic study reveals that these materials are obtained in a chain-like structure that can be beneficial to the electronic and ionic conduction properties. The carbonaceous compound were characterized by Raman spectroscopy and appeared to be non-graphitic sp2 rich species known in the literature as basic structural units (BSU). Auger electron spectroscopy study highlights the homogeneity of the carbon covering, in particular over smaller silicon cores. Neutron diffraction showed that the amorphous silicon cores covered with carbon are protected against passive oxidation unlike bare amorphous cores.The nanocomposites were used as anode materials in lithium-metal coin cell configuration. A cyclic voltammetry study highlights that crystalline silicon cores embedded into carbon need many sweeps before their full lithiation whereas amorphous core shell nanocomposites deeply lithiated from the first sweep, a phenomena yet not described in the literature. A potential resolved electronic impedance spectroscopy technic was used to determine the main degradation process of the core shell materials. We showed that the capacity fading can be mainly attributed to SEI dissolution and reformation through cycling, obstructing the porous structure of the electrode and limiting the cyclability. Finally, galvanostatically tested the core-shell nanocomposites reveal enhanced performance compared to graphite carbon. At the high charge/discharge rate of 2C, hardly reachable to the commercial anode material, the amorphous core-shell nanocomposite was cycled up to 500 cycles while maintaining a high capacity of 800 mAh.g-1 and outstanding coulombic efficiency of 99,99 %.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01302856
Contributor : Abes Star <>
Submitted on : Friday, April 15, 2016 - 11:39:19 AM
Last modification on : Tuesday, April 16, 2019 - 4:56:50 AM
Long-term archiving on : Tuesday, November 15, 2016 - 4:18:04 AM

File

VD2_SOURICE_JULIEN_22092015.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01302856, version 1

Citation

Julien Sourice. Synthèse de nanocomposites cœur-coquille silicium carbone par pyrolyse laser double étage : application à l’anode de batterie lithium-ion. Matériaux. Université Paris Sud - Paris XI, 2015. Français. ⟨NNT : 2015PA112166⟩. ⟨tel-01302856⟩

Share

Metrics

Record views

847

Files downloads

931