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SCOPE OF THIS THESIS

Quantum interferences refer to the superposition of matter waves. They
modify the physical response of a system to an incident light. In this
thesis, two specific cases of laser-matter interaction where quantum
interference plays a key role are discussed. Quantum interferences can
be used to image quantum world. One of many ways to image molecules
using quantum interference is discussed in the first part of the thesis.
The method is demonstrated for symmetric linear CO2. The second
part deals with collective effects in dense atomic vapors, overlapping
resonances and associated quantum interferences. Once two or more
transitions are broadened enough by the collective effects, they overlap
and this leads to destructive interference. Effect of such interferences in
the optical response of the system is discussed in detail.

Keywords:
Strong Field Physics, Recollision, Attosecond Dynamics, Laser Induced
Electron Diffraction (LIED), Orbital Tomography, Dense Vapors, Strong
Dipole-Dipole Interactions, Transparency, Dipole Induced Electromag-
netic Transparency (DIET), Slow Light





Preface

This thesis was submitted to the Faculty of Science, Université Paris Sud, Université
Paris Saclay, Orsay, as a partial fulfillment of the requirements to obtain the Doctoral
degree in Quantum Physics. The work presented was carried out during the period
2012-2015 in the group of Prof. Eric Charron, Institut des Sciences Moléculaires
d’Orsay, France. A part of the thesis was done in collaboration with the Computational
Optics Group of Dr. Maxim Sukharev at Arizona State University, U.S.A

The work was supported by the Marie Curie project CORINF (Correlated Multielectron
Dynamics in the Intense Laser Field: Project ITN-2010-264951). The aim of this
work was to study quantum interferences in the laser-matter interaction in the non-
Relativistic regime. Quantum interferences refer to the superposition of matter waves.
They modify the physical response of a system to the interacting outer world.

Among many quantum interference problems, two specific cases are chosen. One of
them is to make use of these interferences to image the quantum world. The second
project was to investigate collective response and associated overlapping resonances in
dense atomic vapors.

These two problem in the two different landscapes of atomic and molecular physics
provide a unique opportunity to explore many conceptual, theoretical and technical
aspects. I thank my supervisor Eric Charron for offering this challenge.

Raiju Puthumpally-Joseph





List of Papers

Published
Dipole-Induced Electromagnetic Transparency
R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron
Physical Review Letters. 113, 163603 (2014)
Theoretical Analysis of Dipole-Induced Electromagnetic Transparency
R. Puthumpally-Joseph, O. Atabek, M. Sukharev, and E. Charron
Physical Review A. 91, 043835 (2015)

In Press
Non-Hermitian wavepacket propagation in Intense Laser Fields
R. Puthumpally-Joseph, M. Sukharev, and E. Charron
Journal of Chemical Physics (2016)(arXiv)

Submitted
Imaging molecular orbitals using laser induced electron diffraction
R. Puthumpally-Joseph, M. Peters, J. Viau-Trudel, T. T. Nguyen-Dang, O. Atabek,
E. Charron
Submitted to Physical Review A (arXiv)

In Preparation
Imaging orbitals of aligned Linear Molecules
R. Puthumpally-Joseph, O. Atabek, and E. Charron

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.163603
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.043835
http://arxiv.org/find/all/1/au:+Puthumpally%5fJoseph%5fRaiju/0/1/0/all/0/1
http://arxiv.org/find/all/1/au:+Puthumpally%5fJoseph%5fRaiju/0/1/0/all/0/1




Declaration of Authorship

I, Raijumon Puthumpally Joseph, declare that this thesis titled, Quantum Interferences
in the Dynamics of Atoms and Molecules in Electromagnetic Fields and the work
presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for the doctoral degree
at Université Paris Sud.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

RPJ
29-02-2016





Dedicated to all who have lighted my way.





Acknowledgment

I feel extremely fortunate to be one of the PhD students of an excellent scientist,
outstanding professor and an exceptional human being. I express my sincere gratitude
to my advisor Prof: Eric Charron for the continuous supports of my research work,
for his patience, motivation and wide and deep knowledge. I could not have imagined
having a better advisor for my research and better mentor for last four years.

Besides my advisor, I thank my collaborators. Dr: Osman Atabek taught me many
aspects of research career from his own career including research ethics and consideration
towards young researchers. Our discussions outside science were very interesting and
informative. Dr: Maxim Sukharev partially supervised the project on collective effects
in dense media and hosted my exchange visitor program in Arizona State University.
He gave me a different kind of training on the field of nano-optics. I express my sincere
gratitude towards them.

Discussions among us were the prime source that helped me to understand different
roles of a researcher as an author and reviewer of papers and projects, as a critique
of an idea or concept, as a speaker and organizer of conferences and seminars and as
a trainer and collaborator in research community. I enjoyed all those open-minded
discussions.

I thank the two referees of my thesis Dr. Richard Taieb and Dr. Robin Kaiser for their
critical view into the work I did. And I convey my heartfelt thanks to all members of
the jury.

Being away from homeland and adapting to a community with different culture and
language was difficult in the beginning. But the presence of a wonderful group of people
was a real relief from many tensions and helped for keeping a healthy environment,
especially Nitin chetan, Ibrahim Saideh, Andrea Le-Marec.

Last but not least, I thank my family for the immense support they have given
throughout these periods. I thank especially my parents Joseph and Mary for letting
and supporting me to choose a carrier that I love. I also thank my best friend and wife
Fency for the special care she gave throughout my life to achieve things I have dreamed
of. She kept my hope, motivation and momentum. She never let me to be depressed
in failures. And her courageous mind while carrying our little angel Christelle was a
great relief for concentrating on the preparation of the thesis manuscript.

Raiju Puthumpally-Joseph





Résumé succinct en Français

Les interférences quantiques apparaissant lors de la superposition cohérente d’états
quantiques de la matière sont à l’origine de la compréhension et du contrôle de nombreux
processus élémentaires au niveau microscopique.

Dans cette thèse, deux problèmes distincts, qui ont pour origine de tels effets, sont
discutés avec leurs applications potentielles :

1. La diffraction électronique induite par Laser (LIED) et l’imagerie des orbitales
moléculaires que l’on peut réaliser grâce à ce processus,

2. Les effets collectifs dans des vapeurs atomiques ou moléculaires denses et un effet
de transparence électromagnétique induite par interaction dipôle-dipôle (DIET) qui
apparaît dans ces systèmes denses.

Le manuscrit est donc constitué de deux parties distinctes qui peuvent lues indépen-
damment l’une de l’autre. La première partie de cette thèse traite du mécanisme de
recollision dans des molécules linéaires simples lorsque le système est exposé à un champ
laser infrarouge de forte intensité. Cette interaction provoque une ionisation tunnel du
système moléculaire, conduisant à la création d’un paquet d’ondes électronique dans le
continuum. Ce paquet d’ondes suit une trajectoire oscillante, dirigée par le champ laser.
Cela provoque une collision avec l’ion parent qui lui a donné naissance. Ce processus
de diffraction peut être de nature inélastique, engendrant la génération d’harmoniques
d’ordre élevé (HHG) ou l’ionisation double non-séquentielle, ou de nature élastique,
processus que l’on appelle généralement “ diffraction électronique induite par laser”.
La LIED porte des informations sur la molécule et sur l’état initial à partir duquel
les électrons sont arrachés sous forme de motifs de diffraction formés en raison de
l’interférence entre différentes voies de diffraction. Dans ce projet, une méthode est
développée pour l’imagerie des orbitales moléculaires, reposant sur des spectres de
photoélectrons obtenus par LIED. Cette méthode est basée sur le fait que la fonction
d’ondes du continuum conserve la mémoire de l’objet à partir duquel elle a été diffractée.
Un modèle analytique basé sur l’approximation de champ fort (SFA) est développé
pour des molécules simples linéaires et appliqué aux orbitales moléculaires HOMO
et HOMO-1 du dioxyde de carbone. L’interprétation et l’extraction des informations
orbitalaires imprimées dans les spectres de photoélectrons sont présentées en détail.
Par ailleurs, nous estimons que ce type d’approche pourrait être étendu à l’imagerie
de la dynamique électronucléaire de tels systèmes.

La deuxième partie de cette thèse traite des effets collectifs dans des vapeurs atomiques
ou moléculaires denses. L’action de la lumière sur ces gaz crée des dipôles induits
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localisés qui oscillent temporellement et produisent des ondes électromagnétiques
secondaires. Lorsque les particules constitutives de ce gaz sont assez proches, ces ondes
secondaires peuvent coupler les dipôles induits entre-eux, et lorsque cette corrélation
devient prépondérante la réponse du gaz devient une réponse collective : les atomes
ou molécules sont alors fortement couplées. Ceci conduit à des effets uniques pour de
tels systèmes, comme l’effet Dicke, la super-radiance, ou les décalages spectraux de
Lorentz-Lorenz ou de Lamb. A cette liste d’effets collectifs, nous avons ajouté un effet
de transparence induite dans l’échantillon. Cet effet collectif a été appelé “transparence
électromagnétique induite par interaction dipôle-dipôle”, ou DIET. La nature collective
de l’excitation du gaz dense réduit la vitesse de groupe de la lumière transmise à
quelques dizaines de mètre par seconde, créant ainsi une lumière dite “lente”. Ces effets,
qui ont été prédits théoriquement dans le cas d’un système modèle, sont démontrés
ensuite pour les transitions de type D1 du Rubidium-85, et d’autres applications
potentielles sont également discutées, en particulier un effet de façonnage spectral
d’impulsions laser ainsi que les applications liées au ralentissement très important de
la vitesse de propagation de la lumière dans le milieu.



Abstract

Quantum interferences, the superposition of quantum mechanical quantities, are widely
used for the understanding and engineering of the quantum world. In this thesis, two
distinct problems that are rooted in quantum interferences are discussed with their
potential applications:

1. Laser induced electron diffraction (LIED) and molecular orbital imaging,

2. Collective effects in dense vapors and dipole induced electromagnetic transparency
(DIET).

The first part deals with the recollision mechanism in molecules when the system is
exposed to high intensity infrared laser fields. The interaction with the intense field
will tunnel ionize the system, creating an electron wave packet in the continuum. This
wave packet follows an oscillatory trajectory directed by the laser field. This results in
a collision with the parent ion from which the wave packet was formed. This scattering
process can end up in different channels including either inelastic scattering resulting
in high harmonic generation (HHG) and non-sequential double ionization, or elastic
scattering often called laser induced electron diffraction. LIED carries information
about the molecule and about the initial state from which the electron was born
as diffraction patterns formed due to the interference between different diffraction
pathways. In this project, a method is developed for imaging molecular orbitals
relying on scattered photoelectron spectra obtained via LIED. It is based on the
fact that the scattering wave function keeps the memory of the object from which
it has been scattered. An analytical model based on the strong field approximation
(SFA) was developed for linear molecules and applied to the HOMO and HOMO-1
molecular orbitals of carbon dioxide. Extraction of orbital information imprinted in the
photoelectron spectra is presented in detail. It is anticipated that it could be extended
to image the electro-nuclear dynamics of such systems.

The second part of the thesis deals with collective effects in dense atomic or molecular
vapors. The action of light on the vapor samples creates dipoles which oscillate and
produce secondary electro-magnetic waves. When the constituent particles are close
enough and exposed to a common exciting field, the induced dipoles can affect one
another, setting up a correlation which forbids them from responding independently
towards the external field. The result is a cooperative response leading to effects
unique to such systems which include Dicke narrowing, superradiance, Lorentz-Lorenz
and Lamb shifts. To this list of collective effects, one more candidate has been
added, which was revealed during this study: an induced transparency in the sample.
This transparency, induced by dipole-dipole interactions, is named “dipole-induced
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electromagnetic transparency”. The collective nature of the dense vapor excitation
reduces the group velocity of the transmitted light to a few tens of meter per second
resulting in ’slow’ light. These effects are demonstrated for the D1 transitions of 85Rb
and other potential applications are also discussed.
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1
General Introduction

This chapter is the General Introduction of the topics in this thesis.
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1.1 A Brief History of Light 3

1.1 A Brief History of Light

The interaction of matter with light is one of the fundamental topic of research since the
beginning of scientific culture. Understanding the fundamentals of the dynamics of physical
systems such as atoms and molecules due to the interaction with light provides a path
towards engineering and manipulating the systems. Their electromagnetic response led to
many breakthroughs in science and technology and extended the area of our knowledge by
providing new methods and tools to explore more in all science fields including chemistry,
cosmology, biology etc...

Nowadays, light and related technologies became an integral part of our daily life. The UN
General Assembly on the 20th of December 2013 proclaimed 2015 as the ”International
Year of Light and Light-based Technologies” by ”... recognizing the importance of light
and light-based technologies in the lives of the citizens of the world and for the future
development of global society on many levels .... This year, in fact, ... coincides with
the anniversaries of a series of important milestones in the history of the science of light,
including the works on optics by Ibn Al-Haytham in 1015, the notion of light as a wave
proposed by Fresnel in 1815, the electromagnetic theory of light propagation proposed by
Maxwell in 1865, Einstein’s theory of the photoelectric effect in 1905 and of the embedding
of light in cosmology through general relativity in 1915, the discovery of the cosmic
microwave background by Penzias and Wilson and Kao’s achievements concerning the
transmission of light in fibres for optical communication, both in 1965, ...”(a)

The most important conceptual milestones that changed our ’vision about light’ are recalled
here.

1.1.1 From Corpuscles to Wave

Light propagation has always been an interesting topic of scientific studies. Sir Issac
Newton (1642-1726) developed the corpuscular theory of light in his book Opticks (1704)
to understand the classical behavior of light, including the straight line propagation of
light through a medium by assuming it as a collection of perfectly elastic particles. In

(a) Quoted from the Resolution adopted by the UN General Assembly on 20 December 2013:
A/68/440/Add.2; Globalization and interdependence: science and technology for development -
Report of the Second Committee

http://www.un.org/ga/search/view_doc.asp?symbol=A/68/440/Add.2


4 Chapter 1. General Introduction

1678 Christian Huygens (1629-1695) communicated to the Académie des sciences his
alternative longitudinal wave model of light and published it in 1690 in his Traité de la
lumière which did not get a lot of attention at that time. As explained by Huygens, light
was then considered as a disturbance in a luminiferous aether. Almost a century after
Newton’s Opticks, in 1801, the experiments on interference of light by Thomas Young
(1773-1829) were explained by the concepts of wave theory. Later in 1818, Augustin-Jean
Fresnel (1788-1827) used the idea of a wave character of light to explain the phenomenon
of diffraction. He also showed mathematically that the polarization of light can be explained
only if light is a transverse wave. Those studies confirmed the wave character of light and
the corpuscular theory was rejected completely.

1.1.2 The Electromagnetic Character of Light

In 1845, Michael Faraday (1791-1867) demonstrated in the presence of a dielectric, that
linearly polarized light can be rotated by the application of a magnetic field. This was an
indication of the relation of light with electricity and magnetism. James Clark Maxwell
(1831-1879) unified the electric and magnetic fields via his famous four equations first
appeared in 1865 in [1] describing the self-propagating electromagnetic field. The theory
suggested that electromagnetic (EM) waves travel with the speed of light though vacuum
and Maxwell himself proposed that light is a disturbance of the same hypothetical medium,
aether. In 1887 Albert A. Michelson (1852-1931) and Edward W. Morley (1838-1923)
disproved in their famous experiment the existence of this unrealistic hypothetical aether.
The existence of electromagnetic waves was then confirmed by Heinrich Rudolf Hertz
(1857-1894) in 1888 [2].

1.1.3 The dual nature of Light

In 1900 the theoretical model of light was again revised by Max Planck (1858-1947)
while explaining the black body spectrum. He proposed that light waves could loose or
gain energy only as an integral multiple of a fundamental unit of energy, called quantum,
which is proportional to the frequency of the light wave. This quantization of energy
exchange explained the black body spectrum. This theoretical proposal of the dual nature
of light was used by Albert Einstein (1879-1955) for giving a convincing explanation for
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the photo-electric effect in 1905, which in turn proved the existence of photons. Later, in
1927, the wave-particle duality of matter, as suggested by Louis de Broglie (1892-1987) in
his PhD thesis (1924), was confirmed experimentally by Clinton Davisson (1881-1958) and
Lester Germer (1896-1971) and independently by Sir George Paget Thomson (1892-1975).
These discoveries triggered the development of the quantum mechanical description of
matter.

The complete and exact description of Light-Matter interactions requires quantized theories
of light and matter, an exercise which is often extremely difficult in practice. But in many
cases, and for example for the propagation of weak EM fields through a medium, the
quantum model of light can be neglected. In those problems light will be described by
simple oscillatory functions which obey Maxwell’s equations. This semi-classical treatment
of the light-matter interaction is used in this thesis.

1.2 Maxwell’s Equations

Maxwell’s Equations are very influential because of their wide applicability in different
domains of physics. The most interesting and important remark we obtained from Maxwell’s
equations is the insight regarding the electromagnetic character of light: ”Changing electric
fields produce magnetic fields, and changing magnetic fields produce electric fields. Thus
the fields can animate one another in turn, giving birth to self-reproducing disturbances
that travel at the speed of light. Ever since Maxwell, we understand that these disturbances
are what light is” - Frank Wilczek. Those equations are used in this thesis because of the
classical behavior of light considered throughout the investigation.

Maxwell’s equations in the presence of a dielectric medium can be written as [3]

O× E = −∂B
∂t

(1.1a)

O×H = J + ∂D
∂t

(1.1b)
O·D = ρ (1.1c)
O·B = 0 (1.1d)

where E is the electric field, ρ is the free charge density, J is the free charge current density,
H is the magnetic field, D is the displacement current and B is the magnetic flux.
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In a linear dielectric, those electrodynamic quantities are related via

D = εE (1.2a)

H = B
µ

(1.2b)

where ε = ε0(1 + χe) is the electric permittivity and µ = µ0(1 + χm) is the magnetic
permeability of the medium. ε0 is the absolute permittivity and µ0 is the absolute
permeability of free space. χe and χm are the electric and magnetic susceptibilities
that tell us how the system responds to an applied electromagnetic field.

The electric field E and magnetic field B are related to the scalar and vector potentials as

E = −OV − ∂A
∂t

(1.3a)
B = O×A (1.3b)

where A is the vector potential and V is the scalar (electrostatic) potential.

The electromagnetic force acting on a charge q moving under the influence of an electro-
magnetic field with a velocity v is given by the Lorentz force

F = q(E + v×B) . (1.4)

Maxwell’s equations together with the Lorentz force explain classical electrodynamics
completely, provided that the boundary conditions related to the electromagnetic fields are
given at the interfaces. The interaction of a system with the electromagnetic fields can be
studied using these equations (under the semiclassical approximations) by modeling the
system under consideration properly so that the quantum behavior of the observables of
the system are taken into account.

1.3 Structure of the Thesis

In this thesis, a non-relativistic semiclassical approach is used to study the interaction of
light with dilute and dense samples of simple quantum emitters, such as atoms or molecules.

My thesis is divided into two major parts: 1) Interaction of strong electromagnetic field
with single atoms and molecules, and 2) Interaction of weak electromagnetic field with
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dense layer of atoms and molecules.

The first part is devoted to the electron dynamics in atoms and molecules induced by the
action of intense infrared (IR) laser fields. Due to the high energy applied to the system,
the electrons are ionized and are driven back and forth by the oscillating external electric
field. This leads to multiple collisions of ionized electrons with the residual ion system, a
phenomenon also known as ”recollision”. The action of strong laser pulses and the induced
process of recollision lead to many phenomena, including Above Threshold Ionization (ATI),
High Harmonic Generations (HHG), and Laser Induced Electron Diffraction (LIED).

Laser induced electron diffraction can be used to analyse the initial electron density of the
system. In the first part of the thesis, the possibility for extracting informations regarding
the initial orbital (or electron density) from the LIED signal is studied. This tomography
technique is applied to simple linear molecules in two dimensions. Simple approximate
expressions are derived to calculate the ionization signal, and are compared with ”exact”
numerical calculations, so that the essential information for the reconstruction of the initial
wave function can be extracted.

In the second part of the thesis, the response of a dilute or dense collection of quantum
emitters (atoms or molecules) towards an applied laser field is studied. The influence of the
inter-particle interactions on the collective response of the system to the applied field is
investigated in detail. A numerical approach based on the Liouville-von Neumann equation
is developed for the calculation of the response of the system, and a simple analytical model
is derived to analyse the results obtained from the numerical simulations.
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in Intense Laser Fields





1
Introduction to Strong Field

Physics

This chapter is a short introduction towards strong field physics. Prior to
the realization of laser systems producing high intensity beams, the
observation of the dynamics of atoms and molecules was limited to linear or
a few orders of non-linear effects. In the weak interaction regime, the
dynamics is turned on via single photon excitations. All higher order
excitations are then negligible compared to the dominant single photon
processes. The action of intense electromagnetic fields on an atom or
molecule will turn on these higher order processes and the response of the
system will become more interesting due to the presence of many non-linear
phenomena that drastically change the outcomes of light-matter
interactions. Such effects are introduced in this chapter.

Keywords:
Recollision, Three-Step Model, Strong-Field Ionization, Tunnel Ionization,
Long and Short Trajectories, laser Induced Electron Diffraction, High
Harmonic Generation, Double Ionization.

Contents
1.1 Introduction 13

1.2 Basics of Strong Field Physics 13

1.3 Orbital Imaging 21

1.4 References 22





1.1 Introduction 13

1.1 Introduction

The dynamics of atomic and molecular systems was studied widely using relatively weak and
long laser pulses since the 1960s. Until the end of the 1980s, many interesting phenomena
were out of the scope due to the short time scales of the nuclear and electronic motions.
The nuclear dynamics is occurring in the tens of femtosecond (fs) time scale while the
electronic dynamics is taking place at shorter time scale, of a few hundred attoseconds
(as). The introduction of Q-switching in 1961 [1] and mode-locking in 1965 [2] were two
great tools that helped for decreasing the pulse duration of such laser systems. To achieve
much shorter pulses, say in sub-femtosecond or attosecond regime, one has to go for a
combination of high harmonics which can be achieved only via electron dynamics. To
turn on nonlinear electron dynamics in atoms and molecules that can eventually produce
harmonic generation demand intense laser fields.

The electric field experienced by the ground state electron of the hydrogen atom can be
estimated as about 5.1× 1011 V/m. Depending on the size of the orbitals in which the
electrons are located, the Coulomb attraction experienced by each electron will be different
from one another. The field intensity corresponding to the electric field experienced by the
ground state electron of the Hydrogen atom is about 3.5× 1016 W/cm2. Thus having an
intense laser field is essential in order to excite an atomic system to such high energies
that lead finally to the production of high harmonics. Getting a higher intensity, say 1013

W/cm2 at least, became an issue because of the saturation of the system. Amplifying
electromagnetic fields to values comparable with the field at atomic sites will ionize and
damage laser systems permanently. Chirped Pulse Amplification (CPA) [3] revolutionized
the race for high intensity by reducing the cost and the size of laser systems. With the
help of the CPA technique, the field can be amplified up to the ultra-relativistic regime.

1.2 Basics of Strong Field Physics

Increasing the intensity and reducing the pulse duration triggered the development of Strong
field physics and attosecond science [4]. In 1979, Agostini et. al published their results on
the multiphoton ionization in xenon atoms at a pressure of 5× 10−5 Torr using a linearly
polarized 15 ns pulse with an intensity of the order of 1013 W/cm2 [5]. For the second
harmonic of the laser applied on the system, they observed a signature of above threshold
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ionization for the first time as an additional peak appeared exactly at the separation of a
photon energy from the six-photon ionization peak. Since then, the studies on quantum
systems in the presence of strong electromagnetic fields became a hot topic of research.
Later, Paul Corkum introduced a semi-classical description for the understanding of the
electron dynamics in the presence of strong electromagnetic fields [6].

1.2.1 Electron in intense laser field

The states |Φv
k〉 of electrons in a linearly polarized plane-wave electric field were analyzed

within the framework of quantum mechanics by D. M. Volkov as early as 1935 [7]. They
are solutions of the time-dependent Schrödinger equation

i~ ∂t|Φv
k〉 = Ĥv |Φv

k〉 , (1.1)

where |Φv
k〉 are the Volkov states and Ĥv is the Volkov Hamiltonian given in Eq. (4.11a).

Volkov states, the quantum states of charged particles in the presence of an oscillating
electric field, are widely used in studies including Compton scattering, photoionization or
bremsstrahlung effects. Here, the atomic or molecular system is subjected to intense laser
fields and ionized. For a general view, it is easier to consider the ionized electron as a
classical point charge in the laser field with certain initial velocity and direction, determined
by the phase and strength of the field at the time of ionization.

Now, let us consider a free electron in the presence of a linearly polarized sinusoidal electric
field of amplitude E0 and frequency ωL. The force acting on the electron within the frame
of classical mechanics can be written as

F (t) = −eE0 sin(ωL t). (1.2)

The classical trajectory followed by the electron under the action of the applied field is
given by

r(t) = eE0

mω2
L

sin(ωL t) + Vd t+ r0 , (1.3)

where m denotes the mass of the electron, r0 its initial position and Vd the drift velocity.

Fig. 1.1 shows as red dots the graphical solutions for the equation |r(t) − r0| = 0.
Depending on the ionization time, the number of solutions will vary. They give the times
at which the electron in the laser field returns to its initial position. The return of electron
to its initial position is referred as a recollision [6]. If the electron is ionized from an atom
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referred as the core located at r = r0, the field will drive back the electron to the core
(parent atom or ion) that results in this recollision process. In such a recollision event, the
field contributed by the core will be important compared to the case discussed here.

t
r(
t)

Vdt

Figure 1.1.: Typical classical trajectory of an electron in the presence
of an oscillating field.

In such an oscillating field, the average electron energy is given by the ponderomotive
potential

Up = e2 E2
0

4mω2
L

. (1.4)

In the presence of strong fields, an electron wave packet can therefore be formed in the
continuum, where the motion of the wave packet is mainly determined by the electric field.

1.2.2 Strong field ionization

In the presence of intense fields, nonlinear effects will show up in the laser-matter interaction.
They were initially treated using perturbation theory [8, 9]. But the experimental results of
[5] where not fitting with the well established lowest order perturbation theory, indicating
the breakdown of the approximation and the need for introducing higher order terms which
became equally important as the lower order terms. It was because of the dynamic shift –
known as AC-Stark shift – in the atomic energy levels.

The problem became more complex as the laser intensity increased to values at which the
first ionization peak starts to diminish in favor of higher order ionization events, disagreeing
with the power laws of perturbation theory [8, 10, 11]. This disappearance or suppression of
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first order peak is due to the AC-Stark shift in the continuum. If the intensity is large enough,
the shift in the ionization potential can almost be equal to the ponderomotive energy Up.
That means, in addition to the number of photons required to overcome the ionization
energy nI ≈ Ip/(~ωL), the system has to absorb additional photons nS ≈ Up/(~ωL) to
overcome the AC-Stark shift. As a result, the first appearance of ATI peaks will be at the
energy (nS + nP )~ωL − (Ip + Up).

In the infrared regime, strong field ionization can take place due to the formation of a
potential barrier in the quasi-static picture of the system potential coupled to the intense
laser field. If the field is varying slowly, i.e. if ωL � Ip/~, as the field gets stronger the
total potential will be distorted forming a barrier through which the bound electrons can
tunnel out. It was first proposed by Keldysh in 1965 [12, 13] and later on, it was realized
that it was the key process behind strong field ionization in low frequency fields. Fig. 1.2
(a) shows the quasi-static picture of an atomic potential coupled to such an intense field.

(a) Tunnel ionization (b) Above the barrier ionization

Figure 1.2.: Quasi-static picture of an atomic potential coupled to
an intense infrared laser field. Panel (a): Tunneling regime. Panel (b):
Above the barrier ionization.

Since the barrier formation is an intensity dependent phenomenon, above a certain intensity,
the barrier formed can be smaller and lower resulting in the exposure of the bound state
to the continuum, which eventually will end in the ionization of the system. This type of
strong field ionization is known as above the barrier ionization [14]. It is illustrated in Fig.
1.2 (b). A review of the Keldysh theory of strong field ionization can be found in [15].

1.2.3 The three-step model of recollision physics

The three-step model introduced by Paul Corkum [6] is based on three major events in the
dynamics of the system while it is exposed to an intense infrared laser field. The action of
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the electromagnetic field alters the tails of the Coulomb potential and when the oscillating
field becomes high enough, a barrier appears, depending on the intensity of the applied
field. Fig. 1.3 at t = π/(2ωL) shows such a situation for the peak value of the oscillating
electric field. Depending on the height of the barrier formed, the bound state electron wave
function can be ionized either through tunnel ionization or via above the barrier ionization.
The ionized wave packet will be accelerated in the applied field until the field cancels out
at t = π/ωL. As the driving field changes sign, the wave packet starts to return to the
parent ion from which it has been ionized initially.

0 π/2ωL π/ωL 3π/2ωL 2π/ωL

t

Figure 1.3.: Three step model. At t = 0: The bound state electron.
At t = π/(2ωL): Formation of the potential barrier and ionization of
an electron. At t = π/ωL: Excursion of the ionized electron in the
laser field. At t = 3π/(2ωL): The ionized electron is driven back to
the parent ion. At t = 2π/ωL: Recollision with the parent ion.

Since the barrier formation is a slow process compared to the time scales of the electronic
dynamics, the bound electrons will be tunneling out when the barrier is thin enough and the
ionization rate will increase as the barrier gets thinner over a half cycle and will progressively
be stopped when the field changes sign. This behavior of tunnel ionization will give birth
to electron wave packets in the continuum at different times ti. During tunnel ionization,
the electron wave packets are formed in the continuum, outside of the Coulomb dominant
potential well, so that the effect of the Coulomb core can be neglected in the presence of
the applied field. This is the main assumption of the Strong Field Approximation (SFA).

Fig. 1.4 shows the classical trajectories followed by electrons born at different moments
of an optical cycle. Electrons born early are shown in blue and the ones born later are in
red. Curves with colors in between are the trajectories of electrons born in between. Each
electron born at time ti will follow the electric field and at certain time tr it will return to
its initial position. Early born electrons are traveling very far from the core and hence will
return to the core very late. These trajectories, which go very far and return late to the
core, are called long trajectories. On the other hand, those born late during the first half
cycle can not go far from the core. Relatively, a short interval of time after the birth of
these electrons the field will change its sign and will direct the electron back to the core.
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These trajectories are called short trajectories.
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Figure 1.4.: Classical trajectories of electrons ionized at different
intervals of time. Electron born at earlier time is shown in blue and
that born late in the cycle is shown in red. Other electrons born in
between are shown in order with colors from blue to red

The kinetic energy distribution of these different electron trajectories upon recollision can
be estimated from the classical equations of motion. Being transcendental equations, exact
analytical solutions for the kinetic energy of electrons at the moment of recollision are not
possible. Fig. 1.5 shows a typical recollision energy distribution obtained from numerical
analysis of long and short trajectories. The recolliding electrons are distributed over an
energy range between zero and a maximum of 3.17Up. This peak value of the recolliding
energy is possessed by those electrons born at about ti ' 0.3 (2π/ωL). This value of energy
is the upper limit for the energy accumulated in recolliding process. Thus, as Up increases,
electrons will acquire more energy from the field and will posses higher energy at the time
of recollision with the core. This rescattering process leads to different outcomes described
hereafter: High harmonic generation, non-sequential double ionization and laser induced
electron diffraction.

1.2.3.1 High Harmonic Generation (HHG)

The kinetic energy accumulated during the excursion in the continuum can be emitted in
a recombination process. This emitted energy will be of frequencies of an odd multiple
of the frequency of the driving field. This process is known as high harmonic generation.
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Figure 1.5.: Kinetic energy at the moment of recollision obtained
from the classical equations of motion for ionized electrons in the laser
field as a function of the ionization time.

In a quantized picture, the process can be seen as the multiple excitation of the electron
due to the presence of an intense low-frequency field. The electron absorbs many photons,
a process which can lead to above threshold ionization (ATI) [16]. On the course of
recollision, the energy absorbed from the laser field can also be emitted as a single photon,
constituting the HHG signal.

The generation of harmonics was first observed in an experiment using a ruby laser of
intensity 103 W/cm2 [17] and a quartz crystal as nonlinear medium. This system being in
the pertubative (weak intensity) regime, the amplitude of the harmonics was decreasing
with the energy. In 1980, harmonic orders up to 27 were reported for much higher intensities
(about 5×1014 W/cm2) [18, 19]. Later, in 1987, an experiment on rare gases exposed to an
intense (3×1013 W/cm2) picosecond Nd:YAG laser radiation at 1064 nm showed production
of high harmonics up to the 21th order in the case of xenon [20] with considerable intensity.
Contrary to relatively weak field experiments, this experiment showed the presence of a
plateau of constant amplitude up to the 17th order. After the 17th harmonic, the amplitude
of the HHG signal drops very quickly. This effect is known as the cut off [21] of the
HHG signal. Accurate theoretical studies and understanding of the underlying physics
came out later [22–25], from the three-step mechanism discussed previously. Studies on
HHG led to many discoveries and became an important tool for studying the electronic
or nuclear dynamics in intense laser fields. HHG is used for the development of coherent
sources of light in the XUV regime [26–30] and serves as a key process for developing
attosecond pulses and attosecond physics [31–37]. HHG is also widely used in molecular
orbital tomography [38–41].
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1.2.3.2 Non-Sequential Double Ionization (NSDI)

Double ionization is a process in which two electrons leave the system simultaneously as
the liberation of the second electron is assisted by the first one via electron correlations.
It was first observed in alkaline earth elements in 1975 [42] and then observed in noble
gases in the presence of low frequency fields of high intensity [43, 44]. In such a field, the
energy of the recolliding electron can be shared with another bound electron of the system,
leading to non-sequential double ionization. Multiple ionization was also observed in rare
gas atoms in strong low frequency laser fields [45, 46]. Studying double ionization yields
gives insights to the electron correlations in the system, which can be used for probing the
inner atomic electron dynamics that is occurring in the attosecond time scale.

Some studies showed that NSDI can occur through two different channels. Either the
returning electron has acquired enough energy so that both electrons end up in the
continuum after the recollision. In this case NSDI occurs instantaneously and the two
electrons leave the system in the same direction. If the energy acquired by the recolliding
electron is not sufficient for the ionization of the second electron, the former can still excite
the ion so that the second electron can be ionized by the field. This process is delayed and
the two electrons leave in opposite directions due to the electron-electron repulsion [47].

1.2.3.3 Laser Induced Electron Diffraction (LIED)

In conventional electron diffraction, a few kV electron beam from an external source is
diffracted by a molecular system via elastic scattering. Likewise, the coherent electron
wave packet recolliding with the core can be scattered elastically. This leads to electron
diffraction known as laser induced electron diffraction. As in the case of conventional
electron diffraction, LIED can be used for the estimation of the structural details of the
molecules and imaging the molecular dynamics [48, 49]. It can also be used for the
reconstruction of molecular orbitals. This is the subject of this part of the thesis.
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1.3 Orbital Imaging

Understanding the dynamics of molecular systems is an important problem. Properties of
atoms and molecules are depending on how the electrons are distributed around nuclei.
Hence, understanding changes in the electron densities are of importance especially to study
the reaction dynamics of the molecular systems. Due to the ultrashort time scales of the
electron dynamics, it is extremely hard to investigate changes in the electron density during
a reaction dynamics. A way to image the molecular orbitals is via orbital tomography.

Tomography is a general technique for reconstructing an object from a set of sectional
images. The idea of the orbital tomography technique also lies in the same principle of
extracting informations about the electron density. It was shown experimentally that such
reconstructions of molecular orbitals are possible in the case of aligned molecules in the gas
phase using the HHG spectrum obtained from selective ionization [38]. The spectrum of
the emitted harmonics is recorded from spatially aligned molecules excited with strong near
infrared laser fields. The characteristics of the oriented molecular orbital will be imprinted
in this HHG spectrum since the spectrum is a projection of the recolliding electron wave
packet on the ground state wave function. Hence, by repeating the procedure at different
relative orientations (molecule with respect to the applied field), one can get more details
about the orbitals in space. These spectra provide sectional images and then, following the
tomographic technique [50], the molecular orbitals can be reconstructed.

The experimental realization of orbital tomography enhanced research in the related fields
and there were many modifications done on improving the reconstruction procedure [41,
51–55]. The molecular orbital imaging technique shows a possibility for imaging the
chemical reactions and reaction dynamics occurring at the molecular level in femtosecond
timescales [48, 49, 56, 57].

In this part of the thesis, molecular orbital imaging using LIED is discussed with the help of
a theoretical model based on the strong field approximation (SFA). The model is applied for
reconstructing of the highest occupied molecular orbitals HOMO and HOMO-1 of carbon
dioxide. The effect of the degree of alignment is also discussed.

The system, numerical method and relevant details for the calculation of photoelectron
spectra are discussed in the forthcoming chapter. An analytical model based on SFA is
then developed and the model is applied for extracting the information from the calculated
photoelectron signals that are relevant for the reconstruction of molecular orbitals.
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2
System and Numerical

Implementation

This chapter discusses the numerical modeling of the molecular system
dynamics in intense laser fields. All approximations and the details of
numerical method used are explained. Convergence conditions are also
demonstrated. Preliminary results are finally given. For simplicity, starting
from this chapter and for the rest of Part I, we are using atomic units.
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2.1 Introduction

During the interaction of strong fields with dilute samples of atoms and/or molecules in
which the applied field can no more be treated as a simple perturbation to the system, the
ionized electron wave packet on the course of recollision with its parent ion will end up in
different output channels as explained in the previous chapter. The process considered here
is the elastic scattering of the returning wave packet from the ionic core. On scattering, the
wave packet will be diffracted from the core that gives rise to the diffraction pattern. This
spectrum contains many information about the system and the ionization processes. The
goal of this project is to extract those informations that are relevant for the reconstruction
of the initial orbital from which the electron was ionized.

In this chapter, the numerical model is discussed by which the system is treated in order to
get the relevant quantities.

2.2 System and interaction potential

In general the systems considered are multi-particle systems like atoms or molecules.
Treating exactly such systems in intense laser field is not practical because of the complexity
in the potentials and dynamics. But there are some approximations that can be used
for transforming the problem tractable both numerically and experimentally. The main
ingredients chosen for modeling the problem of laser-matter interaction in the intense near-
infrared are the following: Single active electron approximation, soft-Coulomb potentials,
frozen nuclei, dipole approximation.

2.2.1 Single active electron approximation

An atom (molecule) is a multi-particle system composed of a heavy nucleus (nuclei)
surrounded by lighter electrons. Depending on the complexity of the system, the number
of particles involved in the electronic dynamics can vary from one to a few tens. For such
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an atom the potential of the system can be written as

Vc =
N∑

ı=1

(
− 1
|rı|

+
N∑

=ı+1

1
|rı|

)
, (2.1)

where rı is the position of the ıth electron and rı = rı − r are the relative positions of
the electrons in the system. An exact quantum treatment of such a system beyond the
simplest cases of hydrogen or helium by considering all interaction terms between particles
makes it intractable.

In a single-active electron approximation (SAE), we will assume that the laser field will
interact only with the most weakly-bound electron in the system. One can then reduce
the multi-particle problem to a two body problem, provided the central bound potential is
modified such that it accounts for the influence of other interactions empirically. In this
approach all other electrons are considered as a frozen [1–3].

By choosing the SAE model, the actual system is approximated to a single electron atom
similar to the hydrogen atom but with a modified core potential. The potential can thus
be reduced to

Vc(r′) = −V
r′ , (2.2)

where r′ is a function of the spatial coordinate of the active electron and the coefficient V
is chosen empirically such that the potential behaves well (see below).

The model assumes that the response of the system is entirely due to the active electron in
this effective potential given by Eq. (2.2). Similar to atoms, SAE models are widely used
for understanding the dynamics of simple molecules in intense fields [4–7].

It is counter-intuitive when one considers the real physical picture in which there are many
equivalent electrons that can interact with the electromagnetic field in a similar way. But in
practice there are many cases where all interaction terms in the system are not important
in determining the results of the laser-matter interaction and in explaining experimental
results. The reason for the wide applicability of SAE-models for explaining experimental
results lies in the fact that multiply excited states are usually well separated from singly
excited states [6, 8–10]. In the case of closely spaced levels, the approximation collapses
[11]. In the case of processes like non-sequential double ionization, the correlation between
the electrons is important and has to be discussed for a real physical picture [12–14]. In this
specific case the SAE-model is obviously inappropriate. There are other studies showing
evidences of the breakdown of the SAE approximation [5, 15–18] and many attempts for
including multi-electron effects were proposed [19–22].
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2.2.2 Soft-Coulomb potential

There is yet another major problem to be fixed in order to be ready with the model system
for numerical calculations: The form of the Coulomb potential causes numerical difficulties
due to the divergence at the origin. A simple and elegant way to skip this numerical
challenge is the choice of a soft-core potential that can mimics the main features of the
real potential [23]. In general, soft-core potentials are defined by choosing the following
form for r′ in Eq. (2.2)

r′ =
(
|r|l + al

)1/l

, (2.3)

where r is the coordinate of the active electron and a is a parameter chosen specifically
to remove the singularity of the Coulomb potential at the origin. It can also be seen as a
parameter that empirically represents the screening effects of the other electrons in the
system. l is a power that can be chosen depending on the problem. Here we have chosen
the usual value of l = 2 [24, 25](a) .

The exact value of a is chosen such that the energy of the lowest eigenvalue of the potential
matches the ground state energy of the system. In addition, the non-zero value chosen for
a converts the infinite Coulomb well to a finite well which falls like −1/|r| asymptotically
in order to represent the long range part of the potential accurately. Thus the effective
soft-Coulomb potential for an atom under the SAE approximation can be written as

Vc(r) = −V√
|r|2 + a2

. (2.4)

In general, for molecules composed of N atoms, the soft-Coulomb potential is given by

Vc(r) =
N∑

=1

−V√
|r −R|2 + a2



, (2.5)

where R is the position vector of th nucleus. The functions V and the parameters a are
chosen depending on the system.

In this part of the thesis, the strong field ionization and the associated electron scattering
from a symmetric CO2 molecule are discussed in detail. The system is prepared by aligning
it along the so-called y-axis. The C-O bond length is denoted by R and a linearly polarized
laser pulse is applied perpendicular to the alignment direction.

(a) Reference [25] gives a nice account on soft-Coulomb potentials
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The choice of molecule fixes the potential and is chosen from [26], in which the same
system was studied. The potential is given by

Vc(r) =
3∑

=1

−V(r)√
|r −R|2 + a2



, (2.6)

where

V(r) = V∞
 +

(
V0

 − V∞


)
exp

[
− |r −R|2

σ2


]
, (2.7)

where V∞
 is the he effective nuclear charge of th nucleus as seen by the electron at infinite

distance, V0
 is the bare charge of the th nucleus and the decrease of the effective charge of

the nucleus with distance due to the distance-dependent electron-electron screening effects
is taken into account via the parameter σ.

y

x
E

R

R

Figure 2.1.: CO2 molecule aligned along the y axis. A linearly
polarized (in the x direction) electric field is applied to the molecule.

The pulse is chosen such that its duration is smaller than the time scale of the nuclear
dynamics of the molecule. We therefore further simplify the problem by freezing the nuclear
coordinates. If the polarization of the applied field is taken as the x-axis, as shown in Fig.
2.1, the three dimensional problem is reduced to two dimensions with all relevant dynamics
of the system limited in the xy-plane.



2.3 Numerical Method 35

2.2.3 Interaction potential

Being in the long wavelength regime (IR domain), the interaction of the system with the
applied field is taken into account under the dipole approximation. Thus the total potential
energy of the system can be written as

V (r, t) =
3∑

=1

−V(r)√
|r −R|2 + a2



− µ.E(t) , (2.8)

where µ denotes the electric dipole. The Hamiltonian of the system can then be written a

Ĥ(t) = −∇2/2 + V (r, t). (2.9)

It is important to note that the interaction potential and the Hamiltonian are written here
in the length gauge [27]. Being gauge invariant, the results of exact quantum mechanical
calculations obtained in different gauges should be the same. But the calculations based
on approximate theoretical models may be gauge-dependent [28–30]. It is chosen that the
length gauge will be employed for all calculations in the present thesis.

2.3 Numerical Method

As introduced previously, the system considered here is the symmetric CO2 molecule. The
HOMO is of 1πg symmetry and the HOMO-1 is 1πu. Fig. 2.2 shows these two orbitals for
the equilibrium geometry. For the HOMO, which has an ionization energy of 13.8 eV at
equilibrium separation, the electron density is concentrated around the two oxygen atoms
and is characterized by two nodal planes. For the HOMO-1 of ionization energy 17.6 eV,
the electron density is distributed in all atoms [31].

Being a polyatomic molecule, CO2 possesses additional degrees of freedoms including
vibrational degrees. Since the molecule in the following studies is assumed to have frozen
nuclei, one has to be careful with the choice of pulse duration. The CO2 molecule has
three vibrational modes. Out of them, asymmetric bending has a time scale of about 15
fs. Thus the constraint on the nuclear degrees of freedom restricts us from choosing a
pulse that lasts for more than this time. It is also important to keep in mind that choosing
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HOMOHOMO-1
E0 −13.8 eV−17.6 eV

Figure 2.2.: HOMO & HOMO-1 of the CO2 molecule.

a pulse longer than the time scale of asymmetric vibration will essentially invalidate the
assumption of a symmetric molecule. The following numerical model is prepared for treating
this particular problem which can be adapted to other systems very easily.

Solving the time-dependent Schrödinger equation (TDSE) using numerical techniques is
the key for studying the dynamics of such a quantum system in the presence of the time
dependent potential V̂ (r, t). In general, solving the TDSE numerically is based on three
steps:

1. The representation of the initial wave function and operators related to the problem
on a finite spatial grid.

2. The propagation of the wave function in time.

3. The analysis of the wave function at a specific time as required by the problem for
calculating the desired quantities.

These steps are discussed in the following subsections.

2.3.1 Spatial grid

The implementation of the numerical simulation relies on the definition of the grid which
will be used for describing the system and the operators. The grid, in general, needs not be
an equidistant grid. There are many methods using non-uniform spatial grids for solving
the TDSE like [32] for instance. The advantage of having non-uniform grids is that it
gives a freedom to choose a very fine mesh in regions where the wave function is of more
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interest or where it varies quickly, and to choose a relatively wide mesh in regions of least
interest or where the wave function varies smoothly. But the efficiency of the FFT algorithm
associated with uniform grids is a strong argument, in terms of computation times, in favor
of uniform grids without compromising on the accuracy of the computation.

The spatial grid is defined as follows:

xı = xmin + (ı− 1) ∆x, ı = 1, 2, · · · , Nx, (2.10)

where ı is the index associated with a grid point and Nx is the total number of grid points
in the x direction. The grid step is given by

∆x = (xmax − xmin) /(Nx − 1), (2.11)

where xmax and xmin are the upper and lower limits of the grid in x. A similar grid is used
in the y direction, giving finally a two dimensional spatial grid. In principle, the space in x
that one has to take into account for the exact solution of the TDSE is continuous and
infinite.

Discretization in space converts all continuous integrals into finite sums. Indeed, any x
integral of a function g(x) can be expressed approximately as∫ ∞

−∞
g(x)dx '

∑
ı

g(xı) ∆x . (2.12)

The methods also requires to discretize all operators and wave functions on the defined
grid for the calculations. Out of many ways to solve the TDSE, the system under the SAE
is simulated here using the split operator method.

The code is prepared as described in [33, 34], and detailed below.

2.3.2 Split operator method

The split operator method was used first in the context of the paraxial wave equation in
optics which is quite similar to the TDSE in the mathematical point of view [35]. The
method was then adapted for solving the TDSE to make use of its easiness in applying
fast Fourier transforms (FFT). As the name indicates this method relies on the effective
splitting of the operator used for propagating the wave function.
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A formal solution for the TDSE at any time t can be written as

Ψ(t) = Û(t, t0)Ψ(t0) (2.13)

where t0 is the initial time and t is the arbitrary time. Û(t, t0) denotes the propagation
operator. Solving Eq. (2.13) is as difficult as solving the TDSE. But for time dependent
systems, if the Hamiltonian varies only a little over a chosen time step ∆t, Eq. (2.13) can
be approximated to

Û(t, t0) ≈
Nt∏
=1

exp
(
−i Ĥ ∆t

)
(2.14)

where Ĥ denotes the Hamiltonian at time t = t0 + (− 1/2) ∆t and ∆t = (t− t0)/Nt

is the time step used while propagating the wave function in time. Thus it is clear that
the value of ∆t has to be very small for an accurate description of the dynamics. In
principle the Hamiltonian of the system can be partitioned in different ways depending
on the circumstances, most probably to find approximate solutions for the problem. Here
in this case of solving the TDSE numerically, the Hamiltonian is split in two parts: The
first part contains all explicit functions of the momentum p and the other part contains all
explicit functions of the coordinate r, i.e

Ĥ(t) = T̂ + V̂ (r, t) (2.15)

Using the partition used above, the components of Eq. (2.14) can be written as

e−iĤ∆t = e− i
2 V̂ ∆te−iT̂ ∆te−i i

2 V̂ ∆t +O(∆t3) (2.16)

The advantage of separating the spatial from the momentum dependence of the Hamiltonian
is the fact that non-local quantum mechanical operators in the spatial representation are
local in the momentum representation and vice versa. Indeed, V̂ (r, t) is diagonal in the
coordinate representation and the operator T̂ is diagonal in the momentum representation.
The effect of a localized operator on the wave function represented in the appropriate space
is then a simple multiplication. Hence calculating the action of the first exponent e− i

2 V̂ ∆t

on the initial wave function Ψ(r, t = 0) is easy when the wave function is properly described
on the spatial grid. The resultant wave function is then transformed to the momentum
space via Fourier transform (numerically using a fast Fourier transform or FFT) for the
application of e−iT̂ ∆t. The wave function obtained after this is Fourier transformed back
to the spatial representation and the final operator e− i

2 V̂ ∆t is applied. This procedure is
repeated for all successive time steps (Nt) to get the final wave function.

Note that the ordering V̂ /2, T̂ , V̂ /2 can also be changed for T̂ /2, V̂ , T̂ /2 for the
application of above procedure. Both methods are accurate to the second order in ∆t
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and the error is proportional to [[T̂ , V̂ ], Ĥ]∆t3. The choice between these two approaches
is merely a question of the implementation of the problem, the two approaches being as
efficient and accurate.

2.3.3 Absorbing boundaries

A common difficulty with propagating wave functions in a finite grid is the unwanted
reflection of outgoing wave functions at the boundary of the simulation region (end of
the grid). Here, the FFT algorithm used for Fourier transforms will give rise to unphysical
reflections which have to be avoided for the proper description of the dynamics. This can
be done by patching the boundaries of the grid with an absorbing term C2D(r), or mask
function, which will absorb the outgoing wave function.

The procedure for including such boundaries is rather complicated because of the fact
that any kind of action on the wave function will add additional momentum components
to the wave packet that ultimately affect the accuracy of the calculation. This error on
the calculation cannot be completely avoided but can be reduced by optimizing various
parameters of the mask function. C2D(r) can be any normalized piece-wise function which
has value 1 in the regions where the dynamics is taking place (simulation region) and goes
to zero smoothly in the regions close to the boundaries. Multiplying such a function with
the wave function on the course of the evolution at each time step will solve the problem
of unwanted reflections.

The mask function C2D(r) chosen in the following calculations is

C2D(r) = C(x)× C(y) (2.17)

where r =
√
x2 + y2. The one dimensional components of the mask function are given by

C(x) =


0 |x| > 2xs[
1 + cos

(
π x−xs

xs

)]
/2 xs < |x| < 2xs

1 |x| 6 xs

(2.18)

where xs is a pre-fixed position in space defining the range of the simulation region. It
should be adjusted with the specific problem under consideration. This value depends on
the laser parameters used and on the type of dynamics considered. xs also defines the
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Figure 2.3.: One dimensional mask function used in the calculation
for avoiding unphysical reflections to the simulation region during
time propagation. Region 1 is where the outgoing wave function is
multiplied by zero to avoid the reflection and the region 2 is where
the mask function varies relatively slowly in space. Region 3 is
the simulation region within which the dynamics of the system is
calculated.

edges of the grid since in our case we can obviously use xmax = −xmin > 2xs because
the wave function is completely absorbed beyond this limit. The function defined above
is one out of many possible forms that are used widely [1]. For example in [1], the mask
function is a similar cosine function but with a power of 1/8. For the problems which will
be considering here we have verified numerically that using different forms of C(x) does
not have a dramatic effect on the results obtained.

Figure 2.3 shows the spatial dependence of the mask function in one dimension. The
piece-wise parts are clearly marked using shaded regions. The smooth variation of the mask
function over two wide ranges of the grid that are marked as regions 2 will make sure that
the fast momenta added to the wave packet due to the action of the mask function are
minimized so that the dynamics of the system is not affected with artifacts. While trying
to smooth absorbing boundaries one should keep in mind that, because of the broad range
of energy components in the wave packets, it is not possible to design a perfect absorbing
boundary mask function. The simulation region which is marked as 3 is the part of the grid
where the dynamics of the system is taking place. The dynamics can lead to the elongation
of wave packets due to the action of strong laser fields and one has to make sure that
the simulation region covers this dynamics effectively. Such optimization of the grid will
help in fixing xs. The grid should be designed wide enough so that the boundaries are
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beyond the slowly varying part of the mask function. An alternative way to implement
an absorbing boundary condition is by adding an artificial purely imaginary component to
the potential part of the Hamiltonian, similar to an imaginary optical potential in optics.
In split operator methods this technique helps to dampen the wave function where the
imaginary terms are defined. It has been shown that both methods, adding an imaginary
part to the Hamiltonian or using a well defined mask function, give similar results.

2.3.4 Asymptotic analysis of the wave function

The wave packet is propagated as described above and the procedure for extracting the
photo-electron spectrum is based on analyzing the wave function near the grid boundaries,
where the Coulomb potential is negligible.At each time step, the total wave function is split
in two parts: The inner part ΨI(r, t) and the asymptotic part ΨA(r, t). It can be done by
multiplying the wave function Ψ(r, t) with C2D(r). The inner part of the wave function,
which is the part of wave packet that interacts with the attractive Coulomb potential, can
be separated out as follows

ΨI(r, t) = C2D(r)Ψ(r, t). (2.19)

The asymptotic part is then

ΨA(r, t) = [1− C2D(r)] Ψ(r, t). (2.20)

This asymptotic part of the wave function can be considered as evolving under a simplified
Hamiltonian where the Coulomb potential is neglected. Hence it can be seen as a free
electron wave packet propagating in an electric field.

The asymptotic part of the wave function can thus be expanded in Volkov states in order
to propagate it analytically. For this purpose, the numerical procedure we are following is
described in details in Refs. [33, 34]. It allows to calculate accurately and efficiently the
accumulated ionized wave packet at any time t after the end of the pulse in the momentum
representation. The photo-electron spectrum is directly obtained from the square modulus
of this propagated momentum wave function.

In this approach, the calculated ionization amplitude is approximate. It is in part because
of the fact that there are very slow electrons which will take infinite time to reach the
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asymptotic boundary. The wave function is therefore propagated for a long period of time
after the end of the pulse to collect all electrons, whatever their energy. This is tested
numerically until convergence is achieved.

2.4 Preliminary Results

The CO2 molecule is assumed to be aligned along the y axis. The applied field is acting
perpendicular to the molecular axis. This scheme sets a natural orthonormal coordinate
system for the problem. The linearly polarized applied field ionizes the system both in the
positive and negative directions of this axis and drives back and forth the ionized electron
via the interaction potential. Hence the electron motion is taking place in the xy-plane.

The numerical code was prepared with a spatial grid in x and y such that −250 a.u 6

x 6 250 a.u and −250 a.u 6 y 6 250 a.u with a time step ∆t ' 0.45 a.u. The potential
parameters for CO2 are taken from [26].

2.4.1 Imaginary time propagation: Calculation of the initial state

The initial state Ψ(r, 0) of the system can be any of the eigenstates Ψn(r) of the system
Hamiltonian. These states are calculated using the split operator method in imaginary time
t = −iτ . The time evolution of an arbitrary wave packet in imaginary time can be written
as

Ψ(r, τ) =
∑

n

an e
−Enτ Ψn(r) . (2.21)

It is clear from the above equation that as the propagation goes on, the wave packet will
concentrate to the lowest energy eigenstate. This method is very efficient in calculating
the ground state of the system. But here it is also aimed at getting orbitals other than the
ground state. It can be obtained by recognizing the possible solutions with their symmetry.
The solutions should be correctly symmetrized and orthonormalized at each time step so
that the right solutions are picked from different numerical solutions. This can be done
via the Gram-Schmidt orthogonalization procedure. More details of the imaginary time
propagation (ITP) technique are given in [36]. While calculating the initial state, it is
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important to look at the symmetry of the solution obtained via ITP. It is equally important
to verify the convergence of the calculation to make sure that the obtained solution is
accurate within the model used. Here, the convergence is checked by looking at the energy
of the calculated state.

Let Ψi(r) be the initial guess function which is propagated using ITP. The energy associated
with this state can be calculated via

E0 = 〈Ψi|Ĥ|Ψi〉 (2.22)

The function is then propagated in imaginary time to find the initial state. Let us thus
denote Ψ(r, tn) as the state obtained at time tn from this initial guess function. Its
associated energy is given by

En = 〈Ψ(tn)|Ĥ|Ψ(tn)〉 (2.23)

The calculation of the initial state is said to be converged if the following condition is
satisfied

∣∣∣∣En+1 − En

En

∣∣∣∣ = ∆ 6 ε , (2.24)

where ε� 1 is a convergence parameter. If the time step used for the ITP is too large,
the propagation can ultimately lead to an inaccuracy of the calculated state or even to an
increase in the energy of the propagated wave function. For better convergence, the time
step should thus be regularly decreased during the computation. This change of time step
will be repeated until the condition (2.24) is fully achieved.

A graph of this optimization problem is given in Fig. 2.4. Panel (a) shows the relative error
(2.24) as a function of the iteration step in log scale and panel (b) is the calculated energy
(2.23) as a function of the iteration step. The relative error is calculated at every step
and it is decreased as the wave function is propagated longer in imaginary time: When
convergence is first achieved the time step is decreased and another round of optimization
starts. This procedure will create a spike-like structure in the graph shown Panel (a) and a
step-like structure in the graph of the energy shown Panel (b). These regular decreases of
the time step will be repeated till the calculation is fully converged.
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Figure 2.4.: Convergence scheme chosen in the ITP. Panel (a):
Optimization of the relative error (2.24). A zoom of a portion of
the graph is given in the inset. Panel (b): Convergence of the state
energy (2.23). A zoom of a portion of the graph is given in the inset.

2.4.2 Ionization of the HOMO and HOMO-1 of CO2

The HOMO and HOMO-1 of CO2 are calculated using ITP. Electron density plots
corresponding to these states are given in Fig. 2.5. The equilibrium bond length for
the molecule is 1.2 Å, but for the sake of clarify in the present figure an elongated molecule
is considered with C-O bonds of length 2.5 Å. These orbitals and their dynamics will be
discussed in detail in the forthcoming chapters.

The system is excited with a strong laser pulse E(t) = −∂tAx(t), where Ax(t) is the
potential vector given by

Ax(t) = E0

ωL

sin2
(
πt

T

)
cos(ωLt+ φ) (2.25)

and hence the associated electric field is given by
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Figure 2.5.: Square modulus of the HOMO and HOMO-1 of a
symmetric CO2 molecule with R = 2.5 Å calculated by imaginary
time propagation.

E(t) = E0

[
sin2

(
πt

T

)
sin(ωLt+ φ)− π

ωLT
sin

(2πt
T

)
cos(ωLt+ φ)

]
, (2.26)

where E0 ∝
√
I0 is the field amplitude, T is the pulse duration, ωL = 2πc/λL is the laser

frequency and φ is the career envelope phase. In the present study we will choose the IR
wavelength λL = 2.1 µm and intensities around I0 = 1× 1014 W/cm2. A typical electric
pulse obtained from Eq.(2.26) is shown Fig. 2.6.
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Figure 2.6.: Typical normalized electric field E(t)/E0 from Eq.(2.26)
used for inducing the dynamics in the system.

The choice made on the form of the electric field given by Eq. (2.26) ensures that the
vector potential goes to zero when the field vanishes at time t = T , in agreement with
Maxwell’s equations. This is important since the asymptotic analysis is build upon the
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value of the vector potential Ax(T ) at the end of the pulse [33, 34]. Non-zero values of the
vector potential at t = T give rise to unphysical DC components, which can be unphysically
present in the LIED spectrum as a global shift.

The pre-aligned target molecule is exposed to an intense laser pulse lasing at a wavelength
of 2.1 µm with an intensity of the order of 1014 W/cm2. A schematic representation of
the ionization process in strong IR fields is given in Fig. 2.7.

z
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e−

e−

CO2

Figure 2.7.: Schematic drawing of LIED from a CO2 molecule.

Fig. 2.8 shows typical ionization probabilities obtained for the HOMO and HOMO-1,
calculated from the norm of the electronic wave function, together with the associated
electric field. Both the HOMO and HOMO-1 ionization probabilities show a quite similar
time dependence. There are here two jumps in the ionization signal followed by a plateau.
This is because ionization of the system in intense infrared laser fields is occurring only over
time windows during which the intensity reaches values large enough to tunnel ionize the
system. The ionization bursts do not show up when the field is maximum, this is because
it takes some time for the ionized electrons to reach the grid boundary where they will be
counted as ionized.

The two main peaks of the exciting pulse trigger two ionization events which are imprinted
in the ionization signal as a function of time. At the end of the pulse, the remaining
continuum wave packet is left with a distribution of kinetic energies. This wave packet
will take a certain time to reach the detector. Thus, the asymptotic analysis should be
done for certain time even after the pulse. Once all high energy components reach the
detector, the signal starts to form the second plateau which will keep increasing with a
small slope due to the arrival of low kinetic energy electrons. Due to the presence of very
small kinetic energy components in the wave packet, a negligible increment in the signal
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Figure 2.8.: Time dependence of the HOMO and HOMO-1 ionization
signals for a pulse of carrier wavelength 2.1 µm and intensity 1014

W/cm2. The electric field is given as a blue solid line and the
corresponding ionization probabilities are shown as a red dotted line
for the HOMO and as a red solid line for the HOMO-1.

will sustain forever. The convergence of the calculation can, hence, be checked by looking
at the ionization probability versus time. Once the increment in the signal is small enough,
i.e, smaller than a fixed threshold, the propagation and the asymptotic analysis can be
stopped and the LIED (photo-electron) spectrum can be computed.

2.5 Conclusion and Outlook

In this chapter, the system and the numerical model that will be used for studying the
dynamics of CO2 in strong IR laser pulses are discussed in detail. The system considered
here is an aligned carbon dioxide molecule. The strong field ionization and the associated
elastic scattering of the ionized wave packet will be studied using a numerical solution of
the time-dependent Schrödinger equation obtained from the split operator method. The
states from which electrons are ionized are the HOMO and HOMO-1. These initial states
are calculated using the imaginary time propagation technique. The code is optimized for
the system and tested in terms of convergence.

The numerical results are discussed in the next chapter.
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3
Laser induced Electron Diffraction

in CO2

In this chapter we study the structure of the photoelectron spectra obtained
from laser induced electron diffraction from the HOMO and HOMO-1 orbitals
of carbon dioxide molecules. Different pathways for electron wave packets
to interfere in photoelectron spectra are discussed in detail.

The different diffraction patterns that appear in the spectra are discussed.

Keywords:

Electron Diffraction, Interference, Recollision, Direct ionization, LIED spec-
trum.
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3.1 Introduction

In the previous chapter, all essential details were given for calculating the SAE dynamics of
of a model CO2 molecule. In the current chapter, the elastic scattering of the ionized wave
packet is discussed.

In brief, the photoionization of CO2 is calculated by propagating the initial wave function
using the split operator method. The asymptotic part of the wave function is analyzed
and the photoelectron spectrum is calculated. Photoelectrons obtained via strong infrared
field excitation can be classified in two main categories: Directly ionized and rescattered
electrons. These photoelectrons are carrying essential information about the system.

High energy electrons and high frequency electromagnetic waves are used widely for studying
the structure of matter [1, 2]. After a scattering event, the diffraction patterns drawn by
the electrons or photons can be analyzed, and some structural information on the system
can be extracted. Laser induced electron diffraction can be seen in the same perspective [3,
4]. Unlike traditional scattering processes, in LIED the scattering beam of electrons is taken
from the molecule itself. After ionization, the resulting outgoing waves carry information
about the scattering centers. Just like in the case of photons, the electrons which are
scattered from the ionic core can be considered as an image of the system in the reciprocal
space. If it is possible to transfer this information back to the spatial coordinate space, one
should gain an image of the system taken by the rescattering electrons.

In the case of a single polyatomic molecule, the recolliding process can simply be related
to the well-known multiple-slit experiment. Here, the slits are replaced by the attraction
due to the different nuclei in the molecule. In the case of CO2, there are a maximum of
three potential slits corresponding to the three atoms. But the spectra obtained via LIED
is complicated due to many physical processes involved throughout the formation of the
spectra. These are discussed in the following sections.

3.2 Interference Patterns of the LIED Spectrum

LIED spectra will be also referred as photoelectron spectra. They give a picture of the
momentum distribution of the ionized electron. A typical photoelectron spectrum obtained
from the solution of the TDSE for the HOMO of CO2 is given in Fig. 3.1 for a square
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pulse consisting of a single optical cycle. Panel (a) shows the spectrum in a linear scale
while panel (b) shows the same spectrum using a logarithmic scale.

The spectrum is elongated in the kx direction along which the electric field is acting.
Two successive ionization events create a continuum wave packet which is driven very
far from the molecule. These two events happen along the direction of the field, giving
photoelectrons distributed with momenta as shown in the figure.
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Figure 3.1.: Typical Photoelectron spectrum S(kx, ky) in linear (a)
and log (b) scale for a square pulse consisting of a single optical cycle
with a wavelength of 2.1 µm and an intensity of 1014 W/cm2.

Two ionization events and a single recollision event occur over a single optical cycle and give
rise to interferences between the photoelectrons in momentum space via two major types
of ionization pathways: Directly ionized electron, and electrons ionized after a recollision
event. The spectrum will be more complicated as the number of cycles increases. This is
due to the repeated ionization and recollision events which can be seen as an overlay of
many single optical cycle spectra. Thus it is interesting to understand the basic structures
that can be found in the simplest LIED spectrum that we obtain with a single optical cycle.

Fig.3.1 (b) contains bright and dark regions, which are due to the interference between the
ionized wave packets. The horizontal diffraction patterns seen in the spectra are due to
the interference between the different components of the electron wave packet that are
scattered from different atoms in the molecule.

It is well-known from optical physics that the diffracted waves from an object will carry the
image of the scattering centers in the reciprocal space. These images, when transformed
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back to the real space, give an image of the scattering object. This property of diffraction
is transposable to matter waves and has been used in a wide variety of experiments and
studies proving the correspondence of matter waves with optical waves. It has also been
used for practical purposes [2, 5, 6]. These interference patterns carry information about
the structure of the molecule [7–9].

Fig. 3.2 gives an emphasized zoom of the LIED spectrum shown in Fig. 3.1 (b). The
black parallel dashed lines show the multiple slit-like interference due to the superposition
of scattered wave packets from different atomic centers.
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Figure 3.2.: Zoom of the photoelectron spectrum S(kx, ky) given in
Fig. 3.1 (b) showing interferences between electron wave packets in
momentum space. The dashed horizontal lines mark some multiple-slit
like interference patterns due to the interference between wave packets
rescattered by different atomic centers. The faint circular dotted
curves mark interferences between long and short trajectories.

Apart from multiple-slit like diffraction patterns, there are other interference patterns
appearing in the spectra. Indeed, additional ring-like structures can be seen, which also
come from the interference between the rescattered electron wave packets. These ring-like
structures appearing in the photoelectron spectra (marked with faint dotted lines in Fig. 3.2)
are due to the interference between the long and short trajectories of the recolliding electrons.
As shown in Fig. 1.4 and Fig. 1.5, for a specific energy we can find two trajectories: A
long and a short trajectory which will necessarily interfere in the photoelectron spectrum.
This results in the ring-like structures seen in the LIED spectrum [10].

Another interesting interference in the LIED spectrum is due to the superposition of the
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direct and recollision pathways of the strong field process. This holographic interference
of the electron wave occurs only over a small window of ky, due to the limited spread of
directly ionized electrons in the transverse direction [11–13]. To see distinct structures
due to this particular type of interference, it is worth to use, in the numerical simulation,
a hypothetical electric field which consists of a half-cycle pulse with very high intensity
and an associated counter part with very low amplitude, sustaining for a longer time [14].
Such a pulse does not lead to recollision. Mathematically, it can be designed by taking an
appropriate time-dependent envelop. The long half-cycle with very small amplitude will
impose a zero potential vector at the end of the pulse. The strong field ionization will be
triggered only when the intense half-cycle interacts with the system. Being very weak, the
second half of the optical cycle will be unable to brings back the ionized electron to the
core. The spectrum obtained will be a spectrum build up of directly ionized electrons only.
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Figure 3.3.: Holographic structure in the LIED spectrum S(kx, ky).
Recolliding wave packets interfere with the directly ionized wave
packet creating rich interference patterns around the region where the
directly ionized electrons are distributed.

Fig. 3.3 (a) shows the log scale LIED spectrum obtained for such a half-cycle calculation.
In the case of a full cycle excitation, holographic interferences take place in this energy
range. They can be easily identified by comparing the photoelectron spectra of Panel
(a) and Panel (b), which shows the log scale photoelectron spectrum with a full cycle
where the holographic interference is taking place. The branchings appearing in the LIED
spectrum given in Fig. 3.3 (b) are the holographic structures. It should be possible to get
information about the molecules from these structures but they are very hard to measure
because they are shifted for molecules seeing different field intensities because located at
different positions within the focal volume of the laser beam.

These interference patterns are widely used for extracting information about molecules.
LIED was suggested as a tool for extracting the structural information by T. Zuo, A. D.
Bandrauk and P. B. Corkum in [3]. Later on, it was demonstrated both theoretically and
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experimentally that LIED is a reliable tool for retrieving structural information [4, 8, 9,
11–13, 15, 16].

An important comment on the LIED spectrum is that the final energies are not equal to the
recollision energy. The laser field keeps accelerating the electron after the recollision. This
additional velocity gained by the photoelectrons is playing a role in the interference between
different electron waves recolliding at different times with different energies. For the problem
considered here which is aimed at retrieving the information about the molecule from
the LIED spectrum, out of different interferences in this spectrum, the multiple-slit type
interference is a rather good candidate, because it is at the origin of the robust interference
structure seen in the ky momentum distribution which is mainly due to the rescattering
with the ionic core. The most interesting information about the system, including the
position of the nuclei and the orbital of origin of the photoelectron, is imprinted in the ky

momentum distribution, along the molecular axis.

Thus, to get a simpler spectrum for analyzing these details, the least interesting part of
the spectrum, that is also affected by many different interference processes and distortions
induced by the laser field itself, is averaged out so that a simplified 1D photoelectron
spectrum S(ky) is obtained. Averaging out the kx component of the 2D spectrum S(kx, ky)
yields the averaged 1D spectrum

S(ky) =
∫ ∞

−∞
S(kx, ky) dkx . (3.1)

One has to keep in mind that there are some cases where the spectrum is not resolved
enough for extracting information. This is the case when Up is too small, leading to small
recolliding energies. Low energy electrons are characterized by large de Broglie wavelengths
which are inappropriate for resolving the short distances in the diffraction process. This
problem can be avoided to a certain extend by using low frequency fields and high intensities
so that the recolliding energy increases. The dependence of the LIED spectrum on different
laser parameters is analyzed in the next section.

3.3 Dependence of the LIED on various Laser Parameters

LIED, as its name is indicating, has a strong dependence on the laser parameters including
intensity, wavelength, carrier envelop phase (CEP), pulse duration and state of polarization
(ellipticity). For instance, there are many works discussing strong field ionization in
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elliptically or circularly polarized fields [17, 18]. For our study, linearly polarized fields of
intensities around 1014 W/cm−2 are used. In the following subsections we explore the
dependence of the LIED spectrum on the wavelength, pulse duration and CEP.

3.3.1 Dependence of the LIED Spectrum on the Wavelength

The quasi-static picture of laser induced ionization holds well for infrared frequencies. But
the dependence of the recollision energy on the wavelength of the applied field has a
strong influence on the outcome of the process. Being proportional to the square of the
wavelength, the recollision energy increases quickly with longer wavelengths. In the case
of LIED, gaining more energy while in the continuum will increase the resolution of the
photoelectron spectrum because the recolliding electron is then characterized by a smaller
de Broglie wavelength. Interference patterns will be more pronounced and will be extended
to higher kinetic energies.

Fig. 3.4 shows for instance the 2D LIED spectrum S(kx, ky) (in log scale) obtained for a
single optical cycle pulse of λ = 800 nm, 1300 nm and 2100 nm in panels (a), (b) and (c)
respectively. All spectra are plotted with the same color map, i.e., between 10−8 and 1.
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Figure 3.4.: LIED spectrum S(kx, ky) obtained for a single optical
cycle pulse and an internuclear distance R = 3 Å. The field intensity is
1014 W/cm−2. Panel (a) is for 800 nm, (b) is for 1300 nm and panel
(c) is for 2100 nm.

The interference structures are well pronounced at 1.3µm and 2.1µm. At 800 nm, the
interference patterns are more difficult to read. Averaged 1D spectra S(ky) obtained from
Eq. (3.1) are plotted in Fig. 3.5. Being primarily due to the recollision, the distribution of
the photoelectrons in ky shows a dependence on the wavelength. The blue solid line is the
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averaged spectrum at 800 nm. The red and green solid curves show the same for 1.3 and
2.1 µm respectively.
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Figure 3.5.: Normalized average photoelectron spectrum S(ky) for
the same laser parameters as in Fig. 3.4. The blue, red and green
solid curves are the spectra for 800 nm, 1.3 µm and 2.1 µm.

Here, λ = 2.1µm will be chosen in order to have a better resolution and in order to provide
a broader range of energies where the LIED spectrum can be analyzed. This is of course
important for a reliable analysis.

3.3.2 Dependence of the LIED Spectrum on the Pulse Duration

For few optical cycle pulses, the LIED spectrum has a strong dependence on the pulse
duration. An important and evident change in the LIED spectrum is the shape of the
spectrum itself. With a single optical cycle pulse, the spectrum has a shape which indicates
the directionality of the process of ionization and associated recollision. Fig. 3.6 shows the
LIED spectrum S(kx, ky) obtained with a single optical cycle pulse of λ = 2.1µm from the
HOMO at the internuclear distance R = 3 Å.

In a single optical cycle pulse, there are two ionization events and a recollision event.
Ionized electrons from the first half cycle will be recolliding with the core on the phase
change of the field. While the recollision is occurring, a second ionization event is also
launched. This creates an asymmetry in the spectrum. In addition, the maximum kinetic
energy that recolliding electrons can achieve is 3.17Up. Thus in the momentum space, the
photoelectron spectrum will drop quickly to zero beyond this energy limit. The momentum
distribution should therefore be mainly contained inside a circle of radius

√
3.17Up, as seen
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in Fig. 3.6. This circular shape associated with the asymmetry discussed above are the
main reasons behind the peculiar brain-shape of this photoelectron spectrum.
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Figure 3.6.: LIED spectrum obtained for a single optical cycle pulse.
The blue circle represents the maximum recolliding energy of 3.17Up.

This shape will of course be modified by the action of a multi-cycle field. Fig. 3.7 depicts
the LIED spectra S(kx, ky) for multi-cycle pulses. The laser parameters used are the same
as in Fig. 3.6 except for the pulse duration. Panel (a) is the LIED spectrum for a 2-optical
cycle pulse while (b) and (c) are for 3- and 4-optical cycle pulses.
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Figure 3.7.: LIED spectra S(kx, ky) obtained for (a) 2 optical cycles
(b) 3 optical cycles and (c) 4 optical cycles.

The asymmetry in the spectrum, due to unbalanced ionization and recollision events,
gradually disappears in the case of multi-cycle pulses. The ionization process thus becomes
more and symmetric with large pulse durations.

An important assumption made on modeling the system was on the nuclear degrees of
freedom of the molecule. Nuclear coordinates participate in both rotational and vibrational
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motions of the molecule. Rotational degrees of freedom will be out of the time scales
considered in the present case and they are neglected. The vibrational degrees of freedom
of an isolated CO2 molecule are characterized by three vibrational modes: A symmetric,
an anti-symmetric and a bending mode. Out of these, the anti-symmetric stretch has the
shortest period, around 15 fs. For the pulses used in this calculation, the 4-optical cycle
pulse, which lasts for 10 fs (FWHM), is already a bit long but one can also note that the
anti-symmetric stretch can only be excited if the symmetry of the system is broken, but
this is not the case here.

3.3.3 Dependence of the LIED Spectrum on the CEP

In general, the phase of any oscillating function can be written as

θ(t) = ωL t+ φ , (3.2)

where ωL is the frequency of the oscillation and φ is a constant phase. In the case of
pulsed oscillations of long durations, i.e. oscillations with a slowly varying envelop, this
additional constant φ does not affect the oscillatory characteristics, but shifts the positions
of the maxima and minima in the pulse. This phase φ is known as the carrier envelop phase
(CEP). In other words, in the case of a sinus pulse, φ is translating the oscillation smoothly
from a sine to a cosine wave.
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Figure 3.8.: Normalized electric fields E(t)/E0 with CEP φ = 0
(blue curve) and CEP φ = π/2 (red curve) in the case of a single
optical cycle laser pulse.

In addition, since strong field processes are highly nonlinear, the CEP becomes an important
parameter while using ultra-short pulses. Fig. 3.8 shows typical single optical cycle pulses
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for the CEPs φ = 0 and φ = π/2. We clearly see that the blue curve corresponding to the
CEP φ = 0 shows two identical maxima pointing in opposite directions. On the other hand,
the red curve corresponding to the CEP φ = π/2 shows the presence of a main negative
peak. One can thus expect that the associated LIED spectra will be very different.

Fig. 3.9 depicts these LIED spectra. The spectrum obtained for φ = 0 with two identical
maxima pointing in opposite directions has more high kinetic energy electrons than what
is obtained when the recolliding mechanism is absent as for φ = π/2 which shows the
presence of a main negative peak in the associated electric field.

−4 −2 0 2 4

−4

−2

0

2

4

kx (a.u.)

k
y
(a
.u
.)

(a)

−4 −2 0 2 4

kx (a.u.)

(b)

−2 −1 0 1 2
−4

−3

−2

−1

0

ky (a.u.)

S(
k
y
)
(l
og

sc
al
e)

(c)

Figure 3.9.: LIED spectra S(kx, ky) obtained for a single optical
cycle for the CEPs φ = 0 (a) and φ = π/2 (b). Panel (c) shows the
averaged 1D spectra S(ky): The blue curve is for φ = 0 and the red
curve is for φ = π/2.

Panel (c) of Fig. 3.9 shows the corresponding 1D spectra for these two cases. The blue
solid curve corresponds panel (a) and the red solid curve to panel (b). The ky distribution
of the photoelectrons dies of very quickly for the cosine pulse. Again, this is due to the
weak recollision probability. In the case of a sine wave, the recollision process enhances the
signal for large values of ky.

The dependence of the LIED spectrum with the CEP is much less dramatic with more
optical cycles because in this case a larger number of ionization-followed-by-recollision
events takes place. To illustrate this effect, Fig. 3.10 shows the average 1D spectra S(ky)
for the CEPs φ = 0 and φ = π/2 with a 4-optical cycle pulse. As it can be seen, the two
spectra coincide rather well when compared with Fig. 3.9 (c).

In the forthcoming discussions, for such longer pulses, we will chose a CEP fixed at φ = 0.



3.4 LIED Spectra of the HOMO and HOMO-1 65

−2 0 2
−4

−2

0

2

ky (a.u.)

S(
k
y
)
(l
og

sc
al
e)

Figure 3.10.: 1D spectra S(ky) obtained for a 4-optical cycle pulse
with CEP φ = 0 (blue curve) and CEP φ = π/2 (red curve).

3.4 LIED Spectra of the HOMO and HOMO-1

All the discussions done in the previous sections are for the HOMO of the molecule. It
is interesting to see the modifications in the LIED spectra due to the initial state of the
photoelectrons. Indeed, the key ideas for an attempt to extract the orbital information
from the LIED spectra must rely in this modification.

In the LCAO approximation, the HOMO of CO2, an antisymmetric orbital, is mainly formed
by mixing the 2px orbitals of the oxygen atoms. The zero contribution of the carbon atom
orbitals arises from the presence of a nodal plane perpendicular to the molecular axis (see
Figs. 2.2 and 2.5 of Chapter 2). In the case of an aligned molecule as considered here, this
nodal plane is parallel to the polarization direction of the field. This anti-symmetry implies
that the electron necessarily leaves the molecule with a non-zero ky component of its
momentum. Thus it indicates the presence of a nodal plane parallel to the field polarization
in the reciprocal space of (kx, ky). A signature of this symmetry information can be seen
in the 2D spectra S(kx, ky) and in the 1D spectra S(ky) of the HOMO (see Fig. 3.9 for
instance). The antisymmetric nature of the initial state also gives a vanishing recollision
probability at the origin, where the carbon atom is located. The mono-periodic interference
structure seen for the HOMO along ky with a continuously decreasing amplitude (see
Fig. 3.10 for instance) is therefore an indication of a double-slit type interference effect
reminiscent of a standard Young’s type experiment.

A different interference pattern will be obtained for the HOMO-1. This is because this
orbital is a symmetric mixture of the 2px orbitals of both oxygens and carbon. As explained
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in details in the next chapter, this symmetry leads to a doubly-periodic structure in the ky

dependence of the LIED spectrum, as shown in Fig. 3.11. This doubly-periodic structure is
reminiscent of a triple-slit Young’s type experiment.
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Figure 3.11.: LIED spectra from the HOMO-1 of CO2. Panel (a) is
the 2D spectrum S(kx, ky) obtained for a single optical cycle pulse
and panel (b) shows the same for a 4-optical cycle pulse. Panel (c)
shows the corresponding averaged 1D LIED spectra S(ky). The blue
curve is for one optical cycle and the red curve is for 4 optical cycles.
The wavelength is 2.1 µm and the intensity 1014 W/cm2.

The doubly-periodic structure is clearly seen in the successive periodic appearance of peaks
of higher and lower amplitudes in the red curve of panel (c), associated with a 4-optical
cycle pulsed ionization. The period between the higher peaks is the double of that between
the higher and lower peaks. The later coincides with the fringe separation between the peaks
obtained for the HOMO, indicating that this smaller inter-fringe separation corresponds to
the distance between the two oxygen atoms. The larger separation is doubled compared to
the previous one, and it therefore corresponds to the C-O bond length.

A noticeable difference is therefore seen in both the 2D and 1D photoelectron spectra of the
HOMO-1 in comparison with the ones of the HOMO. This is due to the different symmetries
of these orbitals and therefore to the additional contribution of the 2px orbital of the carbon
atom in the HOMO-1. With this qualitative understanding of the photoelectron LIED
spectra, it is clear that these spectra should now be analyzed in more details, quantitatively,
using an analytical model, hoping that the structural information about the molecular
orbitals could be retrieved with a reasonable accuracy using such an analytical approach.

This will be done in the next chapter.
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Figure 3.12.: Photoelectron spectra for different internuclear dis-
tances: The left column is for the HOMO and the right column is
for the HOMO-1 of CO2. The wavelength is 2.1 µm, the intensity is
1014 W/cm2 with a 4 optical cycle pulse.
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A choice of pulse duration much smaller than the vibrational timescale will help to analyze
the system within the frozen nuclei approximation. Such an approximate analysis of the
dependence of the LIED spectrum on the C-O bond length can be done with independent
calculations at different internuclear distances. Because of the change in the position of
the scattering centers, the spectrum will necessarily be affected.

Fig. 3.12 shows the 2D LIED spectra obtained for internuclear distances of 2, 3, 4 and
5 Å. The left column shows the photoelectron spectra of the HOMO and the right column
shows the same for the HOMO-1. For both the HOMO and HOMO-1, the LIED spectra
show a modification in the periodicity along ky which is connected to the arrangement
of the nuclei in the molecule. As the bond length increases, the fringes become thinner
and are getting closer. One should note that it has already been shown that for the case
considered here, the bond length can directly be extracted from the interference patterns [7,
19].
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4
SFA Model and Orbital Imaging

In this chapter an approximate analytical model is developed using the strong
field approximation (SFA). The model is then used for extracting information
from the LIED spectrum of the HOMO and HOMO-1 orbitals of the CO2

molecule. The extracted information is then used for the reconstruction of
the molecular orbitals at different internuclear distances.
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4.1 Introduction

The numerical calculations and some preliminary results obtained for the HOMO and
HOMO-1 of aligned CO2 molecules were discussed in Chapters 2 and 3.

The 2D LIED spectrum S(kx, ky) calculated by solving the time-dependent Schrödinger
equation contains some information about the molecule and therefore about the initial
electronic wave function.

We will try to extract this information from the momentum distribution in the direction
y parallel to the molecular axis since the momentum distribution along the direction x

parallel to the field is dominated by the interaction with the strong linearly polarized field.
It is therefore of a lower interest for the imaging purpose we intend to develop.

Averaging S(kx, ky) along the field direction provides a 1D spectrum S(ky) from which
the information will be extracted. But to extract this information, we need to derive an
analytical model that will be compared, at some stage, with the calculated 1D spectra.

The model we develop is a very simplified approximate analytical model for LIED based on
the strong field approximation (SFA). It is first developed in the general case of a linear
molecule aligned in a direction normal to the polarization vector. It is then applied to the
HOMO and HOMO-1 of the CO2 molecule.

This model will finally be used to image the molecular orbitals at different internuclear
distances to estimate if it is of interest for imaging a dynamical process such as the
symmetric dissociation of the CO2 molecule.

4.2 Building Blocks for the SFA Model

The CO2 molecule is aligned perpendicular to the field. Ionization and the associated
dynamics take predominantly place in the plane defined by the orthogonal system of
coordinates consisting of the molecular axis and the polarization of the applied field. The
field direction is taken as the x-axis and the molecular axis as the y-axis. The system is
exposed to an intense IR electric field of the form

E = f(t) sin(ωL t+ φ) x̂ , (4.1)
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where f(t) is the envelop of the pulse. As a first simplification, during the derivation of the
SFA model we will consider that f(t) = E0 is constant over an optical cycle. The vector
potential associated to a single optical cycle is then given by

A(t) = E0

ωL

[
cos(ωL t)− 1

]
x̂ . (4.2)

The system evolves according to the TDSE and the state of the system |Ψt〉 at time t can
be written formally as

|Ψt〉 = Û(t← ti) |Ψti
〉 , (4.3)

where |Ψti
〉 is the initial state and Û(t← ti) is the evolution operator obeying the TDSE

i ∂t Û(t← ti) = Ĥ(t) Û(t← ti) , (4.4)

where Ĥ(t) is the system Hamiltonian given in Eq. (2.9). It contains a kinetic energy
part and a time dependent potential part. Depending on the situation, one of them could
be more influential than the other and could decide for the outcome of the dynamical
process [1]. To take such an idea into account, we partition the Hamiltonian Ĥ(t) in two
parts as

Ĥ(t) = Ĥ1(t) + Ĥ2(t) , (4.5)

without specifying, at the moment, which parts of the Hamiltonian are included in Ĥ1(t)
and which parts are included in Ĥ2(t). It is important to note that neither Ĥ1 nor Ĥ2(t)
stand necessarily for the field free Hamiltonian Ĥ0(t). They can stand for any part of the
total Hamiltonian Ĥ(t). In practice, one of these two Hamiltonians, say Ĥ2(t) for instance,
is usually chosen as the part of Ĥ(t) which is responsible for the particular physical process
under study.

With such an arbitrary partition of the Hamiltonian, the total evolution operator Û(t← ti)
can be related to the evolution operator Û1(t← ti) associated with Ĥ1(t) and to Ĥ2(t)
via the Dyson equation [2]

Û(t← ti) = Û1(t← ti)− i
∫ t

ti

Û(t← t′) Ĥ2(t′) Û1(t′ ← ti) dt′ . (4.6)
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It is easy to prove that this equation is exact simply by verifying that this formal expression
is a solution Eq. (4.4). Here, Û1(t← ti) is the evolution operator obeying

i ∂t Û1(t← ti) = Ĥ1(t) Û1(t← ti) . (4.7)

4.3 Formal Exact Solution of the TDSE

Eq. (4.6) gives a formal exact solution of the TDSE. Following Eq. (2.9), the system
Hamiltonian can be written as

Ĥ(t) = −∇̂2/2 + V̂c(r)− µ̂.E(t) , (4.8)

where ∇̂ = i k̂ is the gradient operator and V̂c(r) is the Coulomb or soft-Coulomb SAE
potential of the molecule given in Eq. (2.5). The last term denotes the length gauge
coupling with the field written within the dipole approximation.

The simplest realistic picture of strong field ionization including the essential ingredients of
tunnel ionization followed by recollision, requires to consider at least a complete optical
cycle. For the derivation of the model we limit ourself to a single optical cycle.

We now specify the partition we use to describe the tunnel ionization process as [3, 4]

Ĥ1 ≡ Ĥ0 = k̂2

2 + V̂c(r) (4.9a)

Ĥ2(t) ≡ −µ̂.E(t) (4.9b)

Under such a partition the Dyson equation (4.6) can be written as

Û(t← ti) = Û0(t← ti)− i
∫ t

ti

Û(t← t′)
[
− µ̂.E(t′)

]
Û0(t′ ← ti) dt′ . (4.10)

The physical interpretation of this equation is simple: Starting from the right, the system
evolves field free and accumulates a phase from the initial time ti until the excitation by the
field at time t′. The resulting ionization process forms an electron wave packet propagating
in the field under the total Hamiltonian until an arbitrary final time t. The integral over t′

simply means that the ionization process can take place at any time between ti and t.

The Dyson equation (4.10) involves the total evolution operator (also called propagator
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in the present study) Û(t ← t′) between the time of ionization t′ and the final time t.
During this time interval a recollision event may take place. In order to emphasize this
recollision event in the expression of Û(t ← t′), we now adopt another partition of the
total Hamiltonian as

Ĥ1(t) ≡ Ĥv(t) = k̂2

2 − µ̂.E(t) (4.11a)

Ĥ2 ≡ V̂c(r) (4.11b)

In this case Ĥ1(t) ≡ Ĥv(t) is the Volkov Hamiltonian that we have already introduced in
Eq. (1.1). Using this new partition, the evolution operator Û(t← t′) can be written as

Û(t← t′) = Ûv(t← t′)− i
∫ t

t′
Û(t← t′′) V̂c(r) Ûv(t′′ ← t′) dt′′ , (4.12)

where Ûv(t← t′) is the propagator associated with Ĥv(t). It verifies

i ∂t Ûv(t← t′) = Ĥv(t) Ûv(t← t′) . (4.13)

Substituting Eq.(4.12) in Eq.(4.10) we get

Û(t← ti) = Û0(t← ti) + Ûd(t← ti) + Ûr(t← ti) (4.14)

where

Û0(t← ti) = exp
[
− i Ĥ0 (t− ti)

]
(4.15a)

Ûd(t← ti) = −i
∫ t

ti

dt′ Ûv(t← t′)
[
− µ̂.E(t′)

]
Û0(t′ ← ti) (4.15b)

Ûr(t← ti) = −
∫ t

ti

dt′
∫ t

t′
dt′′ Û(t← t′′) V̂c(r) Ûv(t′′ ← t′)

[
− µ̂.E(t′)

]
Û0(t′ ← ti)(4.15c)

In this expression Û0(t← ti) is the field free evolution of the system, Ûd(t← ti) corresponds
a direct ionization process and Ûr(t← ti) includes the recollision. It is worth noting that
Eq. (4.14) with the definitions given in Eq. (4.15) is still exact. This type of Dyson
expansion can be iterated as much as necessary. In our simplified model we stop at second
order and we make use of Eq. (4.14). The total wave function can be split in accordance
such that

|Ψt〉 = |Ψ0
t 〉+ |Ψd

t 〉+ |Ψr
t 〉 (4.16)
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where

|Ψ0
t 〉 = Û0(t← ti) |Ψti

〉 (4.17a)

|Ψd
t 〉 = Ûd(t← ti) |Ψti

〉 (4.17b)

|Ψr
t 〉 = Ûr(t← ti) |Ψti

〉 (4.17c)

4.4 Exact Transition Amplitude

Once the formal solution of the problem is established, the transition amplitude between the
state at the end of the pulse and the continuum can be calculated by projecting the formal
solution given by Eqs. (4.16) and (4.17) at the end of the pulse (t = tf ) on the field-free
ionized states. Let |Ψ+

k 〉 be the elastically scattered outgoing waves in the direction of
the electron wave vector k = (k, θk) for a prescribed asymptotic kinetic energy k2/2. The
transition amplitude can be calculated as

a(k) = 〈Ψ+
k |Ψtf

〉 (4.18a)

= 〈Ψ+
k |Ψ0

t 〉+ 〈Ψ+
k |Ψd

t 〉+ 〈Ψ+
k |Ψr

t 〉 (4.18b)

The dynamics is starting at the initial time ti from an eigenstate |Φ0〉 of the field-free
Hamiltonian Ĥ0, of energy −Ip where Ip is the ionization potential. Therefore

|Ψ0
tf
〉 = exp

[
i Ip (tf − ti)

]
|Φ0〉 . (4.19)

Since the ionized states |Ψ+
k 〉 are orthogonal to |Φ0〉, the transition amplitude reduces to a

sum of two terms

a(k) = ad(k) + ar(k) (4.20)

where

ad(k) = 〈Ψ+
k |Ψd

tf
〉 (4.21a)

ar(k) = 〈Ψ+
k |Ψr

tf
〉 (4.21b)
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ad(k) is the transition amplitude associated to direct ionization and ar(k) includes the
recollision process. Hence, the energy-resolved and angle-resolved ionization probability, or
in other words the 2D LIED spectrum, can be written as

S(kx, ky) =
∣∣∣ad(k)

∣∣∣2 + 2 Re
[
a∗

d(k)ar(k)
]

+
∣∣∣ar(k)

∣∣∣2 (4.22)

where

ad(k) = −i
∫ tf

ti

〈Ψ+
k | Ûv(tf ← t′)

[
− µ̂.E(t′)

]
Û0(t′ ← ti) |Φ0〉 dt′ , (4.23)

and

ar(k) = −
∫ tf

ti

dt′
∫ tf

t′
dt′′ 〈Ψ+

k | Û(tf ← t′′) V̂c Ûv(t′′ ← t′)

×
[
− µ̂.E(t′)

]
Û0(t′ ← ti) |Φ0〉 . (4.24)

These formal expressions where the total evolution operator Û(tf ← t′′) is still involved,
are exact for the calculation of the 2D LIED spectrum S(kx, ky).

4.5 Approximate Transition Amplitude

To take into account recollision processes one needs to evaluate the amplitude ar(k) given
in Eq. (4.24). However, because of the appearance of Û(tf ← t′′) in this expression, it
appears that evaluating ar(k) is as difficult as solving the TDSE. To render this evaluation
simpler, an approximation should be made. For this purpose, we use the Strong Field
Approximation (SFA) [4, 5]. At this point, the evolution operator Û(t← t′′) in Eq. (4.24)
is replaced by the Volkov evolution operator Ûv(t← t′′). Thus

ar(k) ' −
∫ tf

ti

dt′
∫ tf

t′
dt′′ 〈Ψ+

k | Ûv(tf ← t′′) V̂c Ûv(t′′ ← t′)

×
[
− µ̂.E(t′)

]
Û0(t′ ← ti) |Φ0〉 . (4.25)

Replacing Û(t ← t′′) by Ûv(t ← t′′) in Eq. (4.24) means that after the first recollision
event we neglect the Coulomb interaction compared to the interacting with the strong IR
field. It means that we are not taking into account any recollision process beyond the first
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one. If a second recollision takes place the approximation should break down. These events
are however relatively rare and the approximation seems relatively reasonable. In addition,
the wave packets are analyzed in the asymptotic region where SFA should hold within a
reasonable accuracy in comparison with the exact treatment of the problem.

The second important approximation we are going to make is that the outgoing waves
|Ψ+

k 〉 are approximated by simple plane waves |Φpw
k 〉, whose coordinate representation is

Φpw
k (r) = 〈r|Φpw

k 〉 = eik.r

2π . (4.26)

This approximation is obviously valid at large distances where the Coulomb interaction is
weak compared to the kinetic energy of the wave packet but it is not very accurate in the
vicinity of the ionic core. The reason behind this approximation is that the action of the
Volkov evolution operator Ûv(t← t′′) on a plane wave can be evaluated analytically using
an expansion in a basis of Volkov states {|Φv

k(t)〉} (see Eq. (1.1)). Within an arbitrary
time interval [t1, t2], the Volkov propagator can be written as

Ûv(t2 ← t1) =
∫
dk |Φv

k(t2)〉 〈Φv
k(t1)| (4.27)

where
〈r|Φv

k(t)〉 = Φv
k(r, t) = e−i S(k,t) ei [k+ A(t)].r

2π , (4.28)

and
S(k, t) = 1

2

∫ t

ti

[k + A(τ)]2 dτ . (4.29)

is the classical action. The effect of the Volkov propagator Ûv(t← t′′) on a plane wave
〈Φpw

k | gives rise to a different form for the action as

〈Φpw
k | Ûv(t2 ← t1) = e−i S̄(k,t1,t2) 〈Φpw

k′ | (4.30)

where
k′ = k −A(t2) + A(t1) (4.31)

and
S̄(k, t1, t2) = 1

2

∫ t2

t1
[k − A(t2) + A(τ)]2 dτ . (4.32)

The substitution of the exact outgoing waves |Ψ+
k 〉 with the plane waves |Φpw

k 〉 and the
insertion of Eqs. (4.19) and (4.30) in Eqs. (4.23) and (4.25) lead to

ad(k) ' −i
∫ tf

ti

e−i
[
S̄(k,t′,tf )−Ip(t′−ti)

]
〈Φpw

k′ | − µ̂.E(t′)|Φ0〉 dt′ (4.33)
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where
k′ = k −A(tf ) + A(t′) (4.34)

and to

ar(k) ' −
∫ tf

ti

dt′
∫ tf

t′
dt′′ e−i

[
S̄(k,t′′,tf )−Ip(t′−ti)

]
× 〈Φpw

k′′ |V̂c Ûv(t′′ ← t′) [−µ̂.E(t′)] |Φ0〉 (4.35)

where
k′′ = k −A(tf ) + A(t′′) (4.36)

In a realistic case, the potential vector A(tf) will be zero at the end of the pulse, thus
simplifying Eqs. (4.34) and (4.36). In addition, the electrons with a large recollision energy
are ionized around t′ ' 0.3 (2π/ωL), near the maximum of the field, as explained in section
1.2.3. Thus the value of the potential vector A(t′) at the time t′ of ionization will be
relatively small for these high kinetic energy electrons and we are going to neglect this
quantity in Eq. (4.34). The same high kinetic energy electron recollides with the ionic core
at a time t′′ close to a minimum of the field, corresponding to a maximum of the vector
potential A(t′′) ' ±E0/ωL x̂ [6, 7]. We thus finally end up with

k′ ' k (4.37a)

k′′ ' k ± E0/ωL x̂ (4.37b)

The potential vector A(t′′) therefore induces a strong shift on the parallel component kx

of the electron momentum. Since our aim is to derive an approximate expression for the
1D spectrum along ky we will safely assume that this shift is of no real importance since
it will be averaged out in the calculation of S(ky) and we will therefore not take it into
account in the following.

To avoid large discrepancies between the approximate SFA spectrum and the spectrum
obtained from the solution of the TDSE we should keep in mind that we should restrict
the analysis to the highest electron momentum components. Moreover, it is clear from
the numerical calculations that the multiple-slit interference patterns are not well resolved
in the LIED spectra for slow electrons. These approximations allow us to separate the
temporal from the spatial integral in Eq. (4.33) as

ad(k) ' Ad 〈Φpw
k |x |Φ0〉 (4.38)

where
Ad = −i

∫ tf

ti

E(t′) e−i
[
S̄(k,t′,tf )−Ip(t′−ti)

]
dt′ (4.39)
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Similarly, the recollision amplitude becomes

ar(k) ' −
∫ tf

ti

dt′
∫ tf

t′
dt′′ E(t′) e−i

[
S̄(k,t′′,tf )−Ip(t′−ti)

]
〈Φpw

k | V̂c Ûv(t′′ ← t′)x |Φ0〉 (4.40)

The completion of the general approximate formula for the calculation of ar(k) relies on
the evaluation of the integrals shown in (4.40). This calculation requires the knowledge of
the wave function at the time of recollision

|Φrec(t′′)〉 = Ûv(t′′ ← t′)x |Φ0〉 (4.41)

This wave function can be evaluated by making use of the closure relation of the complete
basis set of plane waves {|Φpw

k 〉}

|Φrec(t′′)〉 =
∫
dk′ 〈Φpw

k′ | Ûv(t′′ ← t′)x |Φ0〉 |Φpw
k′ 〉 (4.42a)

'
∫
dk′ e−i k′2(t′′−t′)/2 〈Φpw

k′ |x |Φ0〉 |Φpw
k′ 〉 (a) (4.42b)

where we have again dropped the momentum shift along the parallel component kx since
it will be averaged out in the calculation of S(ky). Finally, as seen previously, high kinetic
energy electrons have an excursion time in the continuum between ionization and recollision
which lasts for about t′′− t′ = ∆t ' 0.7 (2π/ωL) [6, 7]. We will therefore approximate the
recolliding wave function as

|Φrec〉 '
∫
dk′ e−i k′2∆t/2 〈Φpw

k′ |x |Φ0〉 |Φpw
k′ 〉 (b) (4.43)

an expression which does not depend anymore on t′′.

The temporal and spatial integrals can then be separated in the expression (4.40) of the
recollision amplitude as

ar(k) ' Ar 〈Φpw
k | V̂c |Φrec〉 (4.44)

where

(a) This integral can also be evaluated in the coordinate representation, yielding the convolution

Φrec(r, t′′) ∝
∫

dr′ ei
(r−r′)2

2(t′′−t′) x′ Φ0(r′) .

(b) Note that this evolution is reminiscent from a free wave packet evolution during the time interval
∆t. This is because the momentum shift in the kx direction was dropped.
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Ar = −
∫ tf

ti

dt′
∫ tf

t′
dt′′ E(t′) e−i

[
S̄(k,t′′,tf )−Ip(t′−ti)

]
(4.45)

Thus the approximate, but still general expression for total transition amplitude is given by

a(k) = Ad 〈Φpw
k |x |Φ0〉+ Ar 〈Φpw

k | V̂c |Φrec〉 (4.46)

and the approximate 2D photoelectron spectrum can be calculated as

S(kx, ky) =
∣∣∣Ad 〈Φpw

k |x |Φ0〉+ Ar 〈Φpw
k | V̂c |Φrec〉

∣∣∣2 (4.47)

It is possible to calculate the coefficients Ad and Ar via the saddle point method. We
will not perform this calculation because we would rather prefer to use the coefficients as
two adjustable parameters that we will be able to tune in order to match the approximate
formula (4.47) with the spectrum calculated from the TDSE.

4.6 Application of the SFA model on CO2

The general expression obtained for the transition amplitude should now be applied to the
specific case of CO2 discussed so far. With the adapted expression of the LIED spectra for
CO2 we will be able to compare the approximate spectra with the ones obtained from the
numerical solution of the TDSE in order to verify the validity of the model.

4.6.1 A choice of initial state

We now need to specify more precisely the initial state |Φ0〉 of the system. In quantum
chemistry, there are many basis set ansatz for representing localized wave functions like
Gaussian- or Slater -type orbitals, which can facilitate the calculation of bound states. Here
we will choose a similar but simplified approach. The HOMO and HOMO-1 of CO2 were
presented in Chapter 2. Here, appropriate functional forms will be chosen that can represent
these wave functions with a reasonable precision.

In order to obtain a simple analytical form of the 1D ionization probability S(ky) in the
case of CO2, the initial state can be assumed, in a crude approximation, to be a simple
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combination of 2px Slater type orbitals (STO), whose coordinate representation is

Φs
2px

(r) = 〈r|Φs
2px
〉 = Ns r cos(θr) e−ζ r (4.48)

in two dimensions, with the normalization factor

Ns =
√

8
3π ζ

2 , (4.49)

ζ being the so-called Slater orbital exponent. This analytical form, which constitutes a
reasonable candidate for representing the orbitals, will be used for the present imaging and
reconstruction purpose.

In quantum chemistry, STOs are sometimes used as basis set functions for developing
molecular orbitals due to their similarity with the eigenfunctions of the hydrogen atom.
A linear combination of these atomic orbitals with the right symmetry, following the
LCAO theory, can therefore provide a realistic approximate molecular orbital. One of
the disadvantage of STOs lies however in the difficulty of the evaluation of multi-center
integrals with such analytical forms. This was an important reason, historically, for the
introduction of Gaussian-type orbitals (GTO). If we express CO2 molecular orbitals as linear
combinations of atomic orbitals centered on different nuclei, such integrals will show up in
the evaluation of Eq. (4.44). We will therefore also use 2px Gaussian type orbitals, whose
coordinate representation is

Φg
2px

(r) = 〈r|Φg
2px
〉 = Ng r cos(θr) e−α r2 (4.50)

in two dimensions, with the normalization factor

Ng =
√

8
π
α , (4.51)

α being the so-called Gaussian orbital exponent.

The overlap between these STO and GTO orbitals can be easily calculated. It depends on
the adimensional parameter ζ/

√
α. This overlap is shown Fig. 4.1.

It is clear from this picture that for a particular choice of the ratio ζ/
√
α the STO and

GTO orbitals are very similar. It can be shown numerically that this ratio corresponds to
ζ ' 2.165

√
α (see Fig. 4.1) or, equivalently, to α ' 0.2134 ζ2. For this particular choice,

the overlap between the STO and GTO, 〈Φs
2px
|Φg

2px
〉, approaches 0.98. In this case, even

though the STO and GTO show a different asymptotic behavior, they are quite similar
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Figure 4.1.: Overlap between a 2px STO and a 2px GTO orbital, as
a function of the adimensional parameter ζ/

√
α.

at short range, as show Fig. 4.2. We will use these two types of basis functions in the
following in order to derive a simple analytical formula for S(ky).

(a) STO (b) GTO

Figure 4.2.: Panel (a): 2px Slater type orbital (STO). Panel (b):
2px Gaussian orbital (GTO) for α ' 0.2134 ζ2.

4.6.2 Ionization Amplitude

Here there are three atoms and two of them are identical. Thus, in general, the HOMO
and HOMO-1 molecular orbitals can be represented using STOs or GTOs as the following
linear combination

|Φ0〉 = ξo1 |Φ−
2px
〉+ ξc |Φ2px

〉+ ξo2 |Φ+
2px
〉 , (4.52)
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where ξo1 and ξo2 are distinct weighting factors applied on the two oxygen atoms and ξc is
the weighting factor of carbon. These parameters are assumed to be real. They can be
either positive or negative. |Φ2px

〉 denotes the 2px orbital centered on carbon. |Φ−
2px
〉 is

the 2px orbital centered on the first oxygen atom at r = −R and |Φ+
2px
〉 is the 2px orbital

centered on the second oxygen atom at r = +R. We thus have

|Φ±
2px
〉 = T̂±R |Φ2px

〉 (4.53)

where T̂±R denotes the translation operator by the displacement vector ±R.

The expression for the transition amplitude a(k) given in Eq. (4.46) can be expanded on
this initial guess.

a(k) = Ad

[
ξo1 〈Φ

pw
k |x |Φ−

2px
〉+ ξc 〈Φpw

k |x |Φ2px
〉+ ξo2 〈Φ

pw
k |x |Φ+

2px
〉
]

+ Ar

[
ξo1 〈Φ

pw
k | V̂c |Φ−

rec〉+ ξc 〈Φpw
k | V̂c |Φ0

rec〉+ ξo2 〈Φ
pw
k | V̂c |Φ+

rec〉
]

(4.54)

where, following Eq. (4.43), |Φ0
rec〉 and |Φ±

rec〉 are given by

|Φ0
rec〉 =

∫
dk′ e−i k′2∆t/2 〈Φpw

k′ |x |Φ2px
〉 |Φpw

k′ 〉 (4.55a)

|Φ±
rec〉 =

∫
dk′ e−i k′2∆t/2 〈Φpw

k′ |x |Φ±
2px
〉 |Φpw

k′ 〉 (4.55b)

The above general expression for a(k), Eq. (4.54), can be further simplified for the aligned
CO2 molecule. Looking at the properties of the integrals in Eq. (4.54), the first three
integrals represent direct ionization from displaced orbitals and the last three are the
ionization amplitudes after a recollision event. From this expression, it appears that the
three direct ionization amplitudes are nothing but Fourier transforms of products of the
dipole with displaced 2px orbitals. In momentum space, this spatial translation becomes a
simple phase shift of the form e±ikyR. Taking this simplification into account, Eq. (4.54)
can be reduced to

a(k) = Ad

[
ξo1 ei kyR + ξc + ξo2 e−i kyR

]
〈Φpw

k |x |Φ2px
〉

+ Ar

[
ξo1 〈Φ

pw
k | V̂c |Φ−

rec〉+ ξc 〈Φpw
k | V̂c |Φ0

rec〉+ ξo2 〈Φ
pw
k | V̂c |Φ+

rec〉
]

(4.56)

Compared to Eq. (4.54), the number of integrals that we have to evaluate is reduced to
four. Out of them, the last three are very similar. The evaluation of the first integral using
a GTO orbital yields

〈Φpw
k |x |Φ

g
2px
〉 ∝ (k2

x − 2α) exp
[
−
k2

x + k2
y

4α

]
, (4.57)
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and the direct ionization amplitude using a GTO becomes

ag
d(k) = Ad

[
ξo1 ei kyR + ξc + ξo2 e−i kyR

]
(k2

x − 2α) exp
[
−
k2

x + k2
y

4α

]
, (4.58)

where the proportionality factor of Eq. (4.57) has been included in Ad.

The calculation of the recollision amplitude ar(k) is more involved since it needs the
knowledge of the functional form of the recolliding wave functions |Φ−

rec〉, |Φ0
rec〉 and |Φ+

rec〉.
Using a GTO initial state we obtain

Φ0
rec(r) = 〈r|Φ0

rec〉 ∝
(
α− iβ − 2β2x2

(α− iβ)3

)
exp

[
i

αβ

α− iβ
r2
]
, (4.59)

where β−1 = 2∆t in atomic units. From Eq. (4.55a) we see that the initial 2px orbital used
for the calculation of the wave function Φ0

rec(r) is centered at the origin where the carbon
atom is located. Eq. (4.59) therefore gives the recolliding wave function for electrons
emitted from the 2px orbital of the carbon atom. The two other wave functions Φ±

rec(r)
are the recolliding wave functions for electrons emitted from the 2px orbitals of the two
oxygen atoms. In a similar maner as what we have obtained for the direct ionization
amplitude, these two additional wave functions are identical to the one of carbon apart
from an additional phase shift. The total recolliding wave function is therefore

Φrec(r) = Φ−
rec(r) + Φ0

rec(r) + Φ+
rec(r)

=
[
ξo1 ei αβ

α−iβ
(R2+2yR) + ξc + ξo2 ei αβ

α−iβ
(R2−2yR)

]
Φ0

rec(r) , (4.60)

Φ0
rec(r) being given by Eq. (4.59). It is also interesting to note that in the near IR (800 nm

to 2.5µm) the parameter β is in the range 10−2 to 10−3 a.u. In comparison, the Gaussian
orbital exponent α is usually of the order of 1 a.u. These orders of magnitudes will be used
in following in order to simplify the expression of the ionization amplitude.

To evaluate precisely the amplitude ar(k) we have 9 integrals to calculate since ionization
may originate from any of the three atoms and recollision may take place on any of the
three atoms. Fortunately, these 9 integrals are similar. To understand the origin of these 9
terms, we can consider a simple picture, as shown in Fig. 4.3.

In general, all three atoms are contributing to the ionization signal. On recollision, the
contribution from the first oxygen atom O1 will scatter from the parent atom O1 itself
(shown as O1 - O1 in Fig. 4.3) as well as from the two neighboring atoms: from the carbon
atom C (shown as O1 - C) and from the second oxygen atom O2 (shown as O1 - O2). This
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O1 - O1

O1 - C

O1 - O2

y
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Figure 4.3.: Schematic of the recollision process in CO2.

part of the rescattering amplitude shown in the figure can be written as

aO1
r (k) = 〈Φpw

k | V̂c |Φ−
rec〉 . (4.61)

where the potential operator V̂c, supposed to be of a Coulomb form, is given in the
coordinate representation by

Vc(r) = − 1
|r + R|

− 1
|r|
− 1
|r −R|

(4.62)

On the course of recollision one is interested by the scattering taking place in the vicinity
of the three Coulombic cores. At first order near the singularities of the potential wells, i.e.
for x → 0 and y → {−R, 0, R }, and taking into account Eqs. (4.59) and (4.60), the
above integral can be reduced to

aO1
r (k) ∝ − ξo1

|ky|

[
eikyR + eiβR2 + e−ikyR eiβ4R2

]
. (4.63)

Similarly, we obtain for the second oxygen atom

aO2
r (k) = 〈Φpw

k | V̂c |Φ+
rec〉 ∝ −

ξo2

|ky|

[
e−ikyR + eiβR2 + eikyR eiβ4R2

]
, (4.64)

and for the carbon atom

aC
r (k) = 〈Φpw

k | V̂c |Φ0
rec〉 ∝ −

ξc

|ky|

[
2 eiβR2 cos(kyR) + 1

]
. (4.65)

Finally, the total recollision amplitude is
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ar(k) = Ar

[
aO1

r (k) + aC
r (k) + aO2

r (k)
]
, (4.66)

where the proportionality factors have been included in Ar. Note that within this
approximation the recolliding amplitude ar(k) depends only on ky and not on kx. In
this simplified case there is no need for integrating the recolliding amplitude over kx to
obtain S(ky). It significantly simplifies our quest for a 1D LIED spectrum. We will now
apply this model to the specific cases of the HOMO and HOMO-1 of CO2.

4.6.2.1 Approximate LIED Spectrum of the HOMO

The HOMO of CO2 can be seen as a combination of two 2px orbitals of opposite sign
localized on the oxygen atoms of the molecule. This structure of the HOMO can be
imitated by choosing the weighting parameters of the model as follows: ξc = 0, ξo1 = 1
and ξo2 = −1. This choice will reduce the general expressions obtained for the direct and
rescattering amplitudes significantly. The direct ionization amplitude becomes

aHOMO
d (k) = Ad (k2

x − 2α) e−
k2

x+k2
y

4α sin(kyR) . (4.67)

The recollision amplitude is reduced to

aHOMO
r (k) = Ar

(
1− ei4βR2

|ky|

)
sin(kyR) , (4.68)

and the 1D spectrum can finally be written as

SHOMO(ky) =
(
|Ad|2 e−

k2
y

2α + |Ar|2

k2
y

)
sin2(kyR) . (4.69)

4.6.2.2 Approximate LIED Spectrum of the HOMO-1

The HOMO-1 of CO2 has contributions from all atoms of the molecule. It can be seen
as a combination of three 2px orbitals of same sign localized on the oxygens and on the
carbon. Hence the weighting parameters of the model are chosen as follows: ξc = 1 and
ξo1 = ξo2 = ξo 6= 0. With this choice, the direct ionization probability is given by
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aHOMO-1
d (k) = Ad (k2

x − 2α) e−
k2

x+k2
y

4α

[
2ξo cos(kyR) + 1

]
. (4.70)

The recolliding amplitude can be written as

aHOMO-1
r (k) = Ar

|ky|

[
cos(kyR)

(
eiβR2 + ξo ei4βR2 + ξo

)
+ 1

2 + ξo eiβR2
]
, (4.71)

and the 1D spectrum can finally be written as

SHOMO-1(ky) = A2
d e−

k2
y

2α

[
2ξo cos(kyR) + 1

]2
+ A2

r

k2
y

∣∣∣∣ cos(kyR)
(
eiβR2 + ξo ei4βR2 + ξo

)
+ 1

2 + ξo eiβR2
∣∣∣∣2 . (4.72)

4.6.2.3 Presentation of the Approximate 1D LIED Spectra

Fig 4.4 shows the 1D spectra for the HOMO and for the HOMO-1, SHOMO(ky) and
SHOMO-1(ky), as a function of ky, for an arbitrary set of parameters. The HOMO spectrum,
shown in blue, has a regular periodicity similar to that of the TDSE results (see for instance
Fig. 3.10 for the HOMO). This periodicity is related to the sin2(kyR) function in the
approximate model of Eq. (4.69). The HOMO-1 spectrum, shown in red, has a double
periodicity consisting of relatively high peaks separated by small peaks. These are the
characteristic features of the LIED spectra from the HOMO-1, as observed in the TDSE
calculations (see for instance Fig. 3.11 for the HOMO-1).

As expected, both spectra are dropping to zero as they go to higher kinetic energies.
Globally, since they show the right behavior, the functions SHOMO(ky) and SHOMO-1(ky)
are promising candidates in terms of possibilities to find a set of parameters that could
adequately reproduce the LIED spectra calculated from the TDSE.

4.7 Reconstruction of the Molecular Orbitals

Within the ansatz we have chosen for the initial state of the HOMO, there are two key
parameters that are essential if we want to reconstruct the orbital from the 1D spectra:
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Figure 4.4.: 1D Approximate spectra for the HOMO and HOMO-1
of CO2. Both signals are estimated for an arbitrary set of parameters.

first the Gaussian orbital exponent α, and second the internuclear separation R. A third
important parameters appears for the HOMO-1: the weighting parameter ξo.

As we can figure out from the sin2(kyR) function of the approximate model for the HOMO,
the internuclear distance can be extracted directly from the LIED spectrum by measuring
the position of the fringes. The minima of the spectrum correspond to a destructive
interference and they can hence can be equated to the momenta

kn = n
π

R
, (4.73)

where n is the order of diffraction. Once the bond length R is obtained from the minima of
the spectrum, it can be set in the model as a known parameter and we can then perform a
fitting procedure in order to search for other parameters such as α or ξo.

One should remember that the fringes will be profoundly imprinted in the LIED spectra
only if the de Broglie wavelength of the ionized electrons is small enough to resolve the
different scattering centers. One of the problems we will be facing is that the criterion
set by the de Broglie wavelength of the electrons will become an important issue if the
bond length is small. For example, in the case of CO2, the equilibrium value for R is about
1.16 Å. For this distance the fringe separation is ∆k = π/R ' 2.7 a.u. One has therefore
to have recolliding electrons with momenta larger than 5.4 a.u. in order to see a minimum
of two diffraction peaks. This corresponds to a recolliding kinetic energy of 14.6 a.u. If the
tunnel ionization process is induced by a 2µm radiation, such energies are obtained for laser
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intensities larger than 2.5× 1014 W/cm2. This is therefore relatively demanding in terms of
laser performance if we take into account the fact that the reconstruction procedure also
requires ultra-short pulses. In such cases of small internuclear separations, the extraction
of R from the LIED spectrum is difficult, as we will see in the following sections.

In a first step, the reconstruction procedure will be shown considering an elongated CO2

molecule. We will then check wether the method could be used as an imaging process for
the dissociation of CO2.

4.7.1 The HOMO of an elongated molecule

Let us first consider an elongated CO2 molecule, with R = 5 Å. This large value of R helps
to obtain a well contrasted LIED spectrum.

Fig. 4.5 shows the 1D spectrum SHOMO(ky) and the fitted model for obtaining R and α.
The result of the TDSE is given in blue and the fit obtained with our approximate formula
(4.69) is shown in red. The value of R that we have extracted from the fitting procedure is
5.12 Å. The error obtained in the extraction of R is therefore of 2.4 % only.

We have also obtained the value α = 0.92 a.u for the Gaussian orbital exponent. The
associated Slater exponent ζ can be estimated using the relation ζ ' 2.165

√
α ' 2.08 a.u.

The accuracy of α and ζ can be estimated from the reconstruction of the initial state.
Panel (a) of Fig. 4.6 shows the initial state used in the TDSE for calculating the blue
spectrum given in Fig. 4.5. Panel (b) of the same figure is the reconstructed Slater HOMO
orbital and Panel (c) shows the reconstructed Gaussian HOMO orbital.

In order to quantify the quality of the reconstruction, we also compute the overlaps of the
reconstructed HOMO orbitals with the initial state used in the TDSE calculation. They are
defined as

OG = 〈Φg
0|ΦT DSE

0 〉 (4.74a)
OS = 〈Φs

0|ΦT DSE
0 〉 (4.74b)

The values we have obtained here are OG ' 91.1 % and OS ' 94.7 %. Obviously, the
Slater HOMO orbital has a better overlap with the TDSE initial state. This is not too
surprising since this state shows a correct asymptotic behavior while the Gaussian HOMO
orbital does not.
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Figure 4.5.: Fit obtained for the HOMO in the case of R = 5 Å.
The blue solid line is the TDSE result and the red dashed line is
the model fitted to the calculated spectrum. The wavelength used is
2.1 µm for a total pulse duration of 4 optical cycles and an intensity
of 1014 W/cm2.

The absolute differences between the TDSE wave function and the reconstructed states are
shown in Fig. 4.7. The difference with the Gaussian HOMO orbital (ΦTDSE

0 −Φg
0) is shown

in panel (a) and the difference with the Slater HOMO orbital (ΦTDSE
0 − Φs

0) is shown in
panel (b).

As expected from the overlaps, the Gaussian orbital has more discrepancy compared to
the Slater orbital. One can also note that, apart from the inaccuracy in the value of α,
the small mismatch in the bond length R will shift the peaks of the reconstructed orbitals
from the expected position by 0.12 Å. This creates a small distortion that one can see in
panels (a) and (b) of Fig. 4.7. This can be verified by calculating the same differences
for the fitted values α = 0.92 a.u and ζ ' 2.08 a.u and for the exact internuclear distance
R = 5 Å. Panels (c) and (d) of Fig. 4.7 show the result of this additional estimation.

Compared to panels (a) and (b) of Fig. 4.7 where both errors in R and ζ or α are considered,
panels (c) and (d) of the same figure explicitly show the discrepancy in the reconstructed
orbital due to the error in the estimated value of ζ or α. The distortion induced due to the
error in R can be seen by comparing both figures.

With the satisfactory results obtained here for an elongated CO2 molecule, the model will
now be applied to more complicated situations. Here, in this demonstration of orbital
reconstruction, the spectrum is well resolved with many maxima and minima that helped



4.7 Reconstruction of the Molecular Orbitals 93

−10 0 10

−10

0

10

x (a.u.)

y
(a
.u
.)

(a) TDSE

−0.4

−0.2

0

0.2

0.4

Color map

−10 0 10

−10

0

10

x (a.u.)

y
(a
.u
.)

(b) Slater

−10 0 10

−10

0

10

x (a.u.)

y
(a
.u
.)

(c) Gaussian

Figure 4.6.: Reconstructed HOMO for R = 5 Å. Panel (a) is the
initial state used in the TDSE calculation of the LIED spectrum shown
in Fig. 4.5. Panel (b) is the reconstructed Slater HOMO orbital and
panel (c) is the reconstructed Gaussian HOMO orbital.

to extract information with a very good accuracy (see the TDSE spectrum shown in blue
in Fig. 4.5). The position of the maxima and minima are the key for fitting accurately the
analytical model with the numerical result. Once several maxima and minima are clearly
seen, fitting all parameters is relatively easy.

4.7.2 Imaging the dissociation dynamics of CO2

In the present section, the molecule is assumed to be following a dissociation dynamics.
We suppose that the experiment is realized with ultrashort pulses such that the frozen
nuclei approximation can still be used to obtain snapshots of the dynamics at different
times, and therefore at different internuclear distances.
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0). Panels (c) and (d) show the same quantity but
for the exact internuclear distance R = 5 Å.

The HOMO and HOMO-1 are leaving different signatures in the LIED spectrum and the
model developed will be fitted to the spectrum, as demonstrated in Section 4.7.1. The
fitting procedure will be performed for both the HOMO and HOMO-1 at internuclear
distances R equal to 2.0, 3.0, 4.0 and 5.0 Å.

4.7.2.1 Imaging the HOMO orbital dynamics

Fig. 4.8 shows the 1D LIED spectra for the HOMO at different internuclear distances. The
blue solid curves are the numerical TDSE results and the red dashed lines are the fit of
our analytical model. Panel (a) shows the results for R = 2 Å, (b) for R = 3 Å, (c) for
R = 4 Å and (d) for R = 5 Å.

Table 4.1 summarizes the retrieved values of the parameters obtained by the fit, especially
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α and ζ, for different internuclear distances. It also shows the corresponding overlaps
between the TDSE wave function and the GTO and STO reconstructed initial states.

R α ζ R′ |R−R′|
R

(%) OG (%) OS (%)

2.0 1.06 2.23 2.13 6.4% 89.1% 92.7%
3.0 0.98 2.15 3.11 3.6% 90.5% 94.2%
4.0 0.94 2.10 4.12 2.9% 90.8% 94.4%
5.0 0.92 2.08 5.12 2.3% 91.7% 94.7%

Table 4.1.: Retrieved parameters for the HOMO orbital at different
internuclear distances.

In table 4.1, the internuclear distance obtained by the fitting procedure is denoted by R′,
while R is the exact value of the internuclear distance used in the TDSE calculation. The
relative error achieved in the retrieval of the internuclear distance is also given.

Fig. 4.9 finally shows the reconstructed GTO and STO orbitals along with the exact initial
state. The color map used for these plots is the same as the one given in Fig. 4.6. The
orbitals in the left column are the initial states used in the TDSE. Those in the middle
column are the reconstructed orbitals using the Gaussian approximated initial states, and
the right column contains the approximate Slater HOMO orbitals.

The internuclear distances R′ are retrieved with very good accuracy, even from spectra
with relatively small internuclear distances. The accuracy of R′ increases as the spectrum
gets more and more resolved. The overlaps of the reconstructed orbitals are good and the
Slater type orbitals, as expected, show better overlap with the TDSE initial states.
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Figure 4.8.: Calculated and fitted 1D LIED spectra for the HOMO
orbital at different internuclear distances. Panel (a) is for R = 2.0 Å,
(b) shows R = 3.0 Å, (c) shows R = 4.0 Å, and (d) is at R = 5.0 Å.
The blue solid lines are the numerical results of the TDSE and the red
dashed lines are the results of the analytical model. The wavelength
used is 2.1 µm for a total pulse duration of 4 optical cycles and an
intensity of 1014 W/cm2.
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−20 −10 0 10 20
−20

−10

0

10

20

y
(a

.u
.)

3.0 Å
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Figure 4.9.: Reconstructed HOMO orbitals at different internuclear
distances. The left column contains the initial states used in the TDSE.
The middle column contains the reconstructed Gaussian orbitals and
the right column is for the reconstructed Slater type orbitals.
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4.7.2.2 Imaging the HOMO-1 orbital dynamics

The HOMO-1 of CO2 is an interesting case since, unlike the HOMO, it has contributions
from all atoms of the molecule. The symmetry of this molecular orbital with the contribution
from the carbon atom create a double period structure in the 1D LIED spectra (see Fig.
3.11). The photoelectron spectrum obtained from the model also possesses this double
period structure (see the red curve in Fig. 4.4). This analytical model will be fitted to the
numerical spectra at different internuclear distances for retrieving the set of parameters R′,
α and ξo.

The additional parameter ξo is a crucial quantity that determines how much is the
contribution from the 2px of the oxygen atoms compared to the 2px of the carbon
atom in the HOMO-1. Since it is a non-bonding orbital, the structure of the HOMO
remains unchanged when the internuclear distance is varied, as shown in Fig. 4.9. This is
no more the case for the HOMO-1, which is a bonding orbital whose dependence on the
internuclear distance is strong.

Fig. 4.10 shows the different fits obtained. The parameters obtained from the plots are
used for the reconstruction of the HOMO-1 and for the calculation of the overlaps. The
retrieved values of bond lengths are in very good agreement with the values used in the
TDSE calculations. The orbitals reconstructed are also of good quality, as shown by the
values of the overlaps in table 4.2. This table gives the numerical values of all relevant
quantities obtained from the fitting procedure.

R α ζ ξo R′ |R−R′|
R

(%) OG (%) OS (%)

2.0 0.98 2.15 0.35 2.11 5.4% 88.5% 92.9%
3.0 0.94 2.09 0.08 3.08 2.7% 90.4% 94.1%
4.0 0.93 2.09 0.00 4.10 2.5% 90.7% 94.4%
5.0 0.88 2.03 0.00 5.11 2.1% 91.5% 95.1%

Table 4.2.: Retrieved parameters for the HOMO-1 orbital at different
internuclear distances. Compared to Table 4.1, a column has been
added with the value of ξo.
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The reconstructed orbitals are finally given in Fig. 4.11. The color map used for these plots
is the same as the one given in Fig. 4.6. The orbitals in the left column are the initial
states used in the TDSE. Those in the middle column are the reconstructed orbitals using
the Gaussian approximated initial states, and the right column contains the approximate
Slater HOMO orbitals.
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Figure 4.10.: Calculated and fitted LIED spectra for the HOMO-1
at different internuclear distances. Panel (a) is for R = 2.0 Å, (b)
shows R = 3.0 Å, (c) shows R = 4.0 Å, and (d) is at R = 5.0 Å. The
blue solid lines are the TDSE results and the red dashed lines are the
analytical model.

As expected, the HOMO-1 is mainly made up of the atomic orbital of carbon and the
contributions from the oxygens are relatively small. This contribution drops quickly as
the bond length increases. Beyond 3 Å, the HOMO-1 is simply the 2px orbital located on
carbon. But the potential wells of the oxygens still play an important role during recollision,
and leave their signature in the LIED spectra. If there was not such contributions from the
oxygens, the 1D LIED spectra would not posses any periodicity. The analytical model we
have derived is able to extract the correct information from the LIED spectrum, as shown
in the reconstructed images of Fig. 4.11.
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−20 −10 0 10 20
−20

−10

0

10

20

4.0 Å
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Figure 4.11.: Reconstructed HOMO-1 orbitals at different internu-
clear distances. The left column contains the initial states used in
the TDSE. The middle column contains the reconstructed Gaussian
orbitals and the right column is for the reconstructed Slater type
orbitals.
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4.8 Conclusion

In this chapter, a simple analytical model for extracting the molecular information for
imaging the orbitals was developed. The model deployed is based on the strong field
approximation. It separates the direct and recolliding parts of the wave function in the
evaluation of the ionization spectrum. The general model is applied to the HOMO and
HOMO-1 orbitals of CO2. The orbitals of CO2 are assumed as linear combinations of
Gaussian-type orbitals for the evaluation of the integrals associated with the model. The
Gaussian-type orbitals are then fitted with more realistic Slater-type orbitals to obtain an
approximate form that can mimic the HOMO and HOMO-1 with a good accuracy.

The model is used to fit the results obtained from the TDSE calculations. The Gaussian and
the Slater orbital exponents are extracted along with the bond length and other parameters.
The overlaps between the initial states used in the TDSE and the reconstructed orbitals
are in the range 90 - 95%, depending on the value of the internuclear distance. The bond
lengths are extracted with a maximum error of 6%.

A slow dissociation of the CO2 molecule can therefore be imaged using this model, which
showed its ability to extract the orbital information over a wide range of internuclear
distances (2 Å and beyond).
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This chapter concludes the Part I of this thesis.

Contents
5.1 Conclusion 105

5.2 Outlook 106





5.1 Conclusion 105

5.1 Conclusion

In this part of the thesis, Laser Induced Electron Diffraction (LIED) from a CO2 molecule
initiated by an intense ultra-short linearly polarized infrared laser field was studied in detail.

The molecule was assumed to be initially pre-aligned in a direction perpendicular to the
field polarization. Spectra of rescattered photoionized electrons were calculated by solving
a 2D time dependent Schrödinger equation (TDSE) using the split operator method.

The diffraction patterns obtained via LIED imprint information about the molecular structure
and orbitals which are of interest for imaging the molecular dynamics in real time.

The calculations were performed for different bond lengths and orientations of the system.
Extraction of the bond length seems relatively accessible with current laser facilities for
distances larger than 2 Å, from clear diffraction patterns observed in the LIED spectra.

In order to extract the information about the orbital, an analytical model was developed
based on the Strong Field Approximation (SFA) using a Linear Combination of Atomic
Orbitals (LCAO) as a guess initial molecular wave function.

The 2D LIED spectra obtained by solving the TDSE were averaged along the polarization
direction of the applied field to obtain 1D photoelectron spectra.

The SFA model we have developed includes a limited number of adjusting parameters.
These parameters were adjusted to match the TDSE 1D spectra in order to retrieve the
geometrical and orbital parameters characterizing the initial molecular orbital.

The parameters obtained in this fitting procedure are in good agreement with the exact
initial molecular orbital, proving that the approximation we have derived has the potential
to be used for imaging purposes based on LIED.

This analytical model allowed us to extract R, the bond length, α, the Gaussian orbital
exponent, and ξo the relative contribution of the 2px atomic orbitals of the oxygen atoms
in comparison with the contribution from the 2px atomic orbital of the carbon atom in the
molecular orbitals we have analyzed: the HOMO and HOMO-1.

R could be extracted with an error that never exceeds 6%. The Gaussian orbital exponents
that we obtained can be used to design Slater-type orbitals in order to obtain an accurate
reconstructed molecular orbital. The reconstructed molecular orbitals are in good agreement
with the exact initial states, with overlaps in the range of 90 to 95%.
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5.2 Outlook

Imaging the dissociation dynamics of a molecular system is of wide interest in the community.
The main difficulty that is faced on this matter is the short time scale of typical molecular
fragmentation processes.

The recollision process that occurs within a very few femtoseconds, hence, has the potential
to reveal these dynamics which is hidden from traditional imaging techniques. Aside of the
popular HHG based imaging techniques, LIED can also be an alternative candidate in the
race for imaging fast reaction dynamics.

LIED spectra have a strong dependence on the geometry of the scattering centers and
hence the nuclear motions can be related to modifications seen in the LIED spectra. Thus
the mapping of time resolved LIED spectra to the nuclear dynamics will give the possibility
for imaging the reaction dynamics with very good spatial and temporal resolutions.

However, the LIED reconstructing method still suffers from important limitations.

For a reliable reconstruction of the molecular orbitals, high energy photoelectrons are
required. With high kinetic energy electrons, the diffraction patterns show clear signatures
of the internuclear distance which are the key information to analyze the reaction dynamics.
In contrast to this inevitable need, typical LIED spectra are mainly built with directly ionized
slow electrons and this reduces the quality of the spectrum significantly.

Another disadvantage of LIED based imaging techniques is the need for pre-aligned molecules.
We are currently working on this topic, and we hope that in the near future the LIED
reconstructing method could be extended to molecular systems which are not perfectly
aligned.
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1.1 Introduction

In a clear contrast with the first part of this thesis, in which interactions of isolated atoms
and molecules with intense laser fields and following dynamics were discussed, this second
part deals with dense samples of atoms or molecules, that we will denote as quantum
emitters, in the weak field regime.

The aim of this part is to understand the effect of dipole-dipole interactions in dense samples
of quantum emitters coupled to a weak electromagnetic field. The action of the laser field
will induce dipoles which will in turn act as local sources of electromagnetic fields oscillating
at a frequency determined by the applied field and the collective nature of the medium.
Dipole fields produced by the excited particles in the system will keep them coupled to each
other. If the couplings are strong enough, the entire system will response cooperatively such
that the field will not see the system as a collection of independent particles. The response
of such systems towards the light will be modified dramatically via cooperative effects,
which opens a broad regime with a lot of interesting practical applications, including slow
light, storage of light, elements for light based memory devices and quantum information
technologies, radiation transport in light-harvesting systems, sources of coherent radiation
and even cooperative effect based lasers [1–10]. Investigations for designing attosecond
sources based on high harmonic generations are nowadays extended to dense atomic and
molecular systems and even to solids [11–14]. These diversities in interest of research and
concomitant technical developments demand an intensive study on how quantum emitters
interact with each other as they transit from weakly dense systems, where they behave
almost independently, to dense systems, where they behave cooperatively. Research on
the cooperative behavior of dense systems is hence a hot area owing to the fact that its
complexity leads to the observation of new dynamics and better engineering of materials
for future technologies. Before proceeding further, a brief account of collective effects is
given below.

1.2 Collective Effects

The interaction of a laser field with an ensemble of collectively responding quantum emitters
is a complex physical problem. These complexities are arising from dipole-dipole interactions
in the system which lead to many well-known collective effects. These effects are profound
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when the average inter-particle separation is smaller than the transition wavelengths of the
constituent particles. At this condition, the cooperativeness between quantum emitters will
induce shifts in the resonance frequencies and other associated effects.

1.2.1 Lorentz-Lorenz (or LL) Shift

A detailed analysis of how a dense system respond to an electric field in the weak field
regime dates back to 1888. In the phenomenal works of H. A. Lorentz and L. Lorenz, they
introduced a simple and elegant way to correct the driving field of an arbitrary quantum
emitter in a dense system which is now known as the Lorentz-Lorenz correction. It is
a mean field correction used to account for electric fields from the induced sources in
the system. It will induce, as it is known for coupled oscillators, a shift in the resonance
frequency which is known as the Lorentz-Lorenz (or LL) shift

∆LL = Nµ
2

3~ε0
, (1.1)

where N is the number density of the system and µ is the electric dipole. This shift in the
resonance frequency of the system is clearly a signature that the quantum emitters in the
system are well coupled via dipole-dipole interactions.

This predicted LL shift was observed experimentally by different research teams of the
domain, validating the applicability of this mean field approach while determining the
optical properties of such systems in normal conditions [15, 16]. But in the case of cold
atomic samples, the shift in the resonance frequency is still a matter of debate since there
are some experimental results defying the models based on the mean field approach. The
interesting fact here is that the expected mean field behavior is retrieved in such systems
when some incoherence broadenings are added [17, 18].

1.2.2 Cooperative Lamb Shift

An additional shift of resonance frequency in dense systems is the cooperative Lamb shift.
The standard Lamb shift is the shift introduced to the resonance frequency of an atom
due to its interaction with the vacuum, through which the atom absorbs and emits virtual
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photons [19].

Similar to the interaction of an atom with the vacuum, quantum emitters in a dense sample
can absorb and emit virtual photons among themselves, keeping the constituent emitters
coupled, and resulting in a shift of the resonance frequency known as the collective or
cooperative Lamb shift (CLS). Because of the exchange of virtual photons among the
atoms or molecules in the system, the CLS is a geometry dependent shift which can be
given as a function of the LL shift. To give an example, for a system of atoms confined in
a rectangular slab the CLS is given by [20]

∆CLS = 3
4∆LL

[
1− sin(2k`)

2k`

]
. (1.2)

The existence of the CLS in dense systems was observed in various systems [21–23].

1.2.3 Dicke Narrowing

Robert H. Dicke predicted in 1952 that, if a system is prepared with a large number of
quantum emitters, frequent coherence-preserving collisions could decrease the Doppler
width of a spectral line of the system [24]. This narrowing of the spectral width, which
is now known as the Dicke narrowing, occurs when the mean free path of an atom gets
smaller than the resonance wavelength of the system. In a system that preserves coherence
during collision processes, it leads to an averaging over different Doppler states which
results in a narrower line width than the Doppler width. The spectrum SD of the system
can then be written as

SD = Γ + ηΓD

∆2 + (Γ + ηΓD)2 , (1.3)

where ΓD is the Doppler width of the spectrum, ∆ is the detuning and η = 2πΛ/λ is the
Dicke parameter, where Λ is the mean free path and λ is the wavelength. The understanding
of Dicke narrowing is very important in spectroscopy and for analyzing the optical response
of a many particle systems for processes like electromagnetically induced transparency-EIT
[25–29] for instance.
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1.2.4 Superradiance

In a dense sample of atoms where the average separation between the constituent particles
is smaller than the radiative transition wavelength of the system, spontaneous emission can
be enhanced via cooperative effects.

If an electric field excites a system prepared in the cooperative regime, the excited emitters
will be coupled via dipole-dipole interactions. This interaction between particles will force
them to emit photons collectively via spontaneous emission which will scale as the square
of the number of total excited atoms in the system. This enhancement in spontaneous
emission is know as superradiance [30–32]. Superradiance was observed in many different
systems, see [33–36] for instance, and it continues to be a topic of investigation.

1.3 Towards New Directions

There are many works on these topics of collective effects giving insight to the laser-matter
interaction in the cooperative regime [37, 38]. Collective effects start to be used for
developing new technologies which can revolutionize current technology. Cooperative
effects in coherent and incoherent systems are studied extensively by many research teams
[39–41]. Out of them, one of the recent developments was based on superradiance for
designing a new laser system as suggested in [42]. In traditional laser systems using a
resonance cavity to create a standing wave, the coherence is maintained by the photons
trapped in this cavity. Because of the vibrations of the cavity mirrors, the monochromaticity
of emitted photons is affected and will give a spread in the frequency around the resonance.
But if one uses the superradiance in which the coherence is stored in the coupled excited
atoms, the problem related to the vibrating mirrors is solved. In 2012, a group of scientists
from the University of Colorado designed a laser based on superradiance [6, 42] and
there are many propositions and studies on this topic, hoping that superradiance can be
efficiently used for lasing purposes [43, 44]. The superradiant laser offers a highly stable
and monochromatic source of light that could influence all fields of science, from defining
time to detecting gravitational waves.

Other interesting developments in the field deal with the use of cooperative effects for
designing essential elements for light storage, for light based memory devices or for making
use of the ability of photons to transfer quantum information effectively [1, 45–48]. These
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are based on the slowing down of light inside a medium [49]. Slow light, which was
demonstrated both in cold and thermal systems, is caused by a dramatic increase in the
group index of refraction of a dispersive system [50, 51] due to the nonlinearity. Besides
slow light, there are experimental realizations on stopping and storing of light up to
one minute and then retrieving the information stored, thus indicating the possibility for
developing photon-based memory devices [52–57]. These developments, which are based on
electromagnetic induced transparency, have however small fidelity due to the distortion of
the photon [58–60]. On this ground, the interest is now turned on improving the mechanism
for storing photons for useful purposes [61, 62].

Nonlinearity can thus be achieved by preparing the system in the cooperative regime. The
purpose of this part of the PhD work was to investigate collective scattering of light from a
dense sample of quantum emitters for understanding the response of such system towards
the electromagnetic field in different interaction regimes. The collective response can
be observed in any dense medium composed of homogeneous as well as heterogeneous
quantum emitters. But the mixing of different types of quantum emitters with different
physical properties and energy level structures can make the system extremely complicated.
Thus, in this part, the system is first assumed to be composed of only one type of quantum
emitters. These studies can be extended in a straightforward way to a mixture of more
than one type of quantum emitters.

We have shown during this study that the cooperativeness of systems with at least
two excited states coupled to a ground state via a laser field can posses an interesting
phenomenon which is named as dipole-induced electromagnetic transparency. In the coming
chapters of the thesis, this topic will be discussed in detail with a theoretical demonstration
by using a realistic system of rubidium atoms.
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2
Atom-Field Interactions in Dense

Media

The purpose of this chapter is to introduce the basic theory and the
approximations used for studying the interaction of weak electromagnetic
fields with a dilute or dense sample of atoms and/or molecules. The model
used, based on Maxwell-Bloch equations, is first explained for the simple
case of two-level systems in order to introduce all essential physics of the
model. It is then generalized to multilevel systems. An alternative approach
based on non-Hermitian wave packet propagation for treating the atom-field
interaction is also discussed in detail for multilevel systems. Numerical
implementations are also described in this chapter.
Keywords:
Maxwell’s Equations, Optical Bloch Equations, Non-Hermitian Wave pack-
ets, Two and Multilevel Systems, Nano-Layer, Susceptibility, Resonances,
Finite-Difference Time Domain, Perfectly Matched Layers
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2.1 Introduction

This part of the thesis deals with a collection of millions of quantum emitters confined in a
cell of nanometric size exposed to weak electromagnetic fields. In principle, a full description
of such a system needs a complete quantum approach based on quantum electrodynamics.
In this quantum picture, the electromagnetic field is a collection of discretized wave modes
propagating through space: the photons. Even if the system we consider contains only a
few number of atoms or molecules and a small number of photons, it is already difficult to
treat the system by preserving the quantum description of light.

In practice, for a laser power of 1 mW and a photon energy of 1.5 eV, the approximate
number of photons encountering the surface of the nano-layer per second can be estimated
as about 1011. Treating this large number of photons individually becomes a herculean
task. At this point, it is important to make an approximation in order to exclude the
difficulty for treating the system exactly. Therefore, as we discussed in chapter 1, we use a
semi-classical approach in which the material system is described quantum mechanically
(in order to include the quantized behavior of the observables of interest), while explaining
the light-mater interaction by keeping the electromagnetic field under the classical picture
governed by Maxwell’s equations.

There is another complementary approximation to the system by treating it as a statistical
ensemble: quantities like position, velocity, or electric dipole are averaged to produce some
continuous distribution functions of those quantities. This approach is justified when the
particle density is not too weak. It is the case in our theoretical study since the dynamics
we are interested in concerns the collective response of the quantum system which shows
up for relatively large densities.

2.2 Maxwell’s Equations in Source Free Isotropic Medium

The system under consideration is assumed to be non-magnetic and to have no free electric
charges, so that χm = 0, and ρ = 0 (see Chapter 1).

In that case
J = ∂P

∂t
(2.1)
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where P is the macroscopic polarization of the system induced by the field. In weak fields
the polarization varies linearly with E

P = ε0χeE . (2.2)

Maxwell’s equations become

OOO× E = −µ0
∂H
∂t

(2.3a)

OOO×H = ∂P
∂t

+ ε0
∂E
∂t

(2.3b)

OOO·E = 0 (2.3c)

OOO·H = 0 (2.3d)

Since the system is approximated as a continuous medium, the field obtained by solving
Maxwell’s equations is a macroscopic field. The wave equation for the macroscopic electric
field can be written as (

O2 − ε0µ0
∂2

∂t2

)
E = µ0

∂2P
∂t2

. (2.4)

Substituting for the polarization P and taking into account Eq.(2.4), in the frequency
domain we obtain

O2Ẽ− ε0µ0ω
2
[
1 + χe(ω)

]
Ẽ = 0 (2.5)

where Ẽ(ω) denotes the Fourier transform of E(t). The factor ε0µ0[1 + χe(ω)] can be
equated to 1/v 2, where v is the velocity of light through the medium. It can also be shown
that in the time domain the complex functions

E±(r, t) = E0 e
∓i(k·r−ωt) ê , (2.6)

where ω2/v2 = |k|2 = k2 and ê is a unit vector, are solutions of the wave equation whose
Fourier transform is given in Eq.(2.5), k being the wave vector. The magnetic field can
finaly be calculated from the electric field using Eq.(2.3a) as

H±(r, t) = H0 e
∓i(k·r−ωt) ĥ (2.7)

where ĥ = (k/k)× ê and H0 = k E0/(µ0ω). The positive and negative signs on the fields
represent the positive and negative frequency solutions respectively.

Note that the vectors ê, h and k form an orthonormal system. The modes of the
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electromagnetic field described here, which contain the transverse electric and magnetic
fields (TEM modes), will be used for studying the dense system of quantum emitters. Note
that the electric field corresponding to the wave equation can also be written as a linear
combination of the positive and negative parts

E(r, t) = 1
2
[
E+(r, t) + E−(r, t)

]
, (2.8a)

H(r, t) = 1
2
[
H+(r, t) + H−(r, t)

]
. (2.8b)

Note finaly that a general temporal shape of the propagating wave can be obtained by
superimposing different spectral components together, i.e,

E+(r, t) = 1
2π

∫ ∞

0
Ẽ+(r, ω) ei(ωt−k·r) dω , (2.9a)

H+(r, t) = 1
2π

∫ ∞

0
H̃+(r, ω) ei(ωt−k·r) dω . (2.9b)

2.2.1 Correction to the Electric Field

The equations detailed here are sufficient to treat the propagation of the macroscopic
electromagnetic fields. While doing the assumption of classical propagation of light through
the medium, the system is considered as a continuous ensemble of quantum emitters.
This smoothing of a system comprised of discretized constituent particles (atoms and/or
molecules), approximates the system to a continuous medium as in the ”Polarium” model
of R. J. Glauber [1]. The averaging on the position of the particles also suggests that in
the presence of an applied electromagnetic field, the polarization of the system can be
written as a smooth (continuous) function that depends on the position vector r.

While solving the dynamical equations at any point inside the system, one has to account
for the electric fields at the position of calculation due to the neighboring polarization
elements. Since the averaging process removes the structural information of the system,
the solutions of Maxwell’s equations give only the macroscopic field, which is different
from the microscopic field experienced by individual particles. The separation between the
particles at the microscopic level modifies the field depending on the inter-particle distance
and therefore on the number of particles per unit volume [2]. This mutual influence of the
constituent particles can be included by doing a correction to the electric field locally. An
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elegant way to include this correction is via the Lorentz-Lorenz correction term that can be
easily derived for a dense system as a function of the macroscopic polarization.

The electric field experienced by a constituent particle, the so-called local field Elocal(r, t),
can be written as the sum of the macroscopic field E(r, t) and the internal field produced
by the constituent dipoles in the system Eint(r, t). It can be shown that [3, 4]

Eint(r, t) = P(r, t)
3ε0

. (2.10)

Thus, inside the system

Elocal(r, t) = E(r, t) + P(r, t)
3ε0

. (2.11)

This correction to the macroscopic field is essential for explaining the collective macroscopic
response of a dense system, including light scattering, reflection, absorption and transmission
of incident electromagnetic waves. This correction and related formula were discovered by
H. A. Lorentz [5] and independently by L. Lorenz [6] at the end of the 19th century. Thus,
the correction made on the local field is known as the Lorentz-Lorenz correction, or LL
correction.

2.2.2 Energy flow and reflection or transmission spectra

Our ultimate aim is to study the response of a system of interest towards an applied
electromagnetic field. From a fundamental point of view, the action of the electromagnetic
field will turn on the energy flow into and out of the system. A part of this energy will
be dissipated in the system due to decay effects and incoherent processes which can be
estimated classically from the well-known Beer-Lambert’s law [7]. In addition, energy
transfer in the system directly relates to the excitation dynamics and hence by analyzing
the energy flow, the dynamics of the system can be studied.

The electromagnetic energy flow can be represented by the Poynting vector, first proposed
by J. H. Poynting [8], which gives the rate of energy flux per unit area of an electromagnetic
field. The law of energy conservation is written

∂u

∂t
= −OOO·S (2.12)

where u(r, t) is the energy density of the electromagnetic field and S(r, t) is the Poynting
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vector, given by
S(r, t) = E(r, t)×H(r, t) . (2.13)

Being a vector, S(r, t) gives the energy flux at a particular point and in a particular
direction. Thus, knowing the electric and magnetic fields, the reflection and transmission
spectra characterizing the response of the system can be defined as the ratio

F(ω) = |S(r, ω)|
|S0(r, ω)| (2.14)

where |S(r, ω)| is the magnitude of energy flux measured at a particular position and in
a particular direction, and |S0(ω)| is the incident energy flux at the same position and
direction.

2.3 Maxwell-Bloch Equations

The electromagnetic field equations given in section 2.2 are used to describe the field
propagation through the system. Describing the system itself by retaining its quantum
behavior alongside the classically described fields including the particle-field interaction
forms the basic platform for performing the calculations to study the dynamics and response
of the system. Quantum mechanically, the dynamics of a system under the influence of
any potential is described by the time dependent Schrödinger equation (TDSE) or by the
Liouville-von Neumann equation. From the fundamental point of view, a weak field acting
on a quantum emitter can excite the system to a higher energy state which is resonant
with the frequency of the field. First, it is better to understand the dynamics by considering
the simplest case of a two-level system that can encapsulate the basic physics that we will
explore later on with more complicated systems.

2.3.1 The two-level system

In a real physical world, there are many and sometimes infinite energy levels in a quantum
emitter. In some cases a multilevel system can be approximated by a two level system
that provides a simplified physical insight to its basics quantum behavior. An ideal
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E(t)

h̄ω1

h̄ω12

h̄ω2

|1〉

|2〉

Figure 2.1.: Two-level system of transition frequency ω12 = ω2 − ω1
coupled to a monochromatic electromagnetic field E(t) at frequency
ω = ω12. The ground state |1〉 is associated to the energy ~ω1 and
the excited state |2〉 to ~ω2.

monochromatic field acting on a system having an energy level resonant with the field
can usually be treated as a two level system (see Fig. 2.1). A system that contains a
large number of such atoms is of interest to explain the basic physics of dense samples of
ideal two-level systems. Relatively large number of photons are also necessary to keep the
electromagnetic field classical in practice. Since the system is assumed to have a very large
number of interacting quantum emitters, it is advisable to approach the system via the
density matrix formalism in order to include decay and decoherence processes associated,
for instance, with atomic or molecular collisions.

Let ω2 − ω1 = ω12 be the transition frequency of the two level system under consideration,
where the frequency ω1 corresponds to state |1〉 and ω2 to state |2〉 (see Fig. 2.1). The
field free Hamiltonian of the system can de written as

H0 = ~ω1|1〉〈1|+ ~ω2|2〉〈2| (2.15)

Assuming for simplicity that the applied electric field is monochromatic and linearly polarized
along ŷ(a) , the interaction of the system with the applied field can be written using the
electric dipole approximation as

HI = −µ·E = −
[
|1〉〈2|+ |2〉〈1|

]
〈2|µŷ|1〉E0 cos(ωt) (2.16)

where µ is the electric dipole and E0 cos(ωt) is the ŷ component of the electric field given
by Eq.(2.8a). µŷ is the ŷ component of the electric dipole and 〈2|µŷ|1〉 is the associated
dipole matrix element. Note that we have assumed here that, for symmetry reasons,
〈1|µŷ|1〉 = 〈2|µŷ|2〉 = 0.

(a) i.e. ê = ŷ in Eq.(2.6).
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The Rabi frequency, which can be used to define the frequency of the oscillations of the
populations of states |1〉 and |2〉 due to the coupling with the field, can be written as

Ω12 = −〈2|µŷ|1〉E0

~
(2.17)

and substituting it in Eq. (2.16) we obtain

HI = ~Ω12 cos(ωt)
[
|1〉〈2|+ |2〉〈1|

]
. (2.18)

Note that this expression simplifies within the rotating wave approximation (RWA) [9],
where we only keep the slowly varying components in the interaction Hamiltonian

HRW A
I = ~Ω12

2

[
|1〉〈2| eiωt + |2〉〈1| e−iωt

]
. (2.19)

In order to introduce the density matrix formulation of the same two-state problem, let us
now assume that the system is initially in a pure state

|Ψ〉 = C1|1〉+ C2|2〉 , (2.20)

so that the associated density matrix is

ρ̂ = |Ψ〉〈Ψ| =
ρ11 ρ12

ρ21 ρ22

 (2.21)

with

ρ11 = C∗
1C1 (2.22a)

ρ12 = C∗
1C2 = ρ∗

21 (2.22b)
ρ21 = C∗

2C1 = ρ∗
12 (2.22c)

ρ22 = C∗
2C2 (2.22d)

The evolution of the system can be evaluated using the von-Neumann equation, written in
atomic units as

˙̂ρ = −i
[
H, ρ̂

]
(2.23)

where the dot symbol denotes the first order time derivative and where

H = H0 +HI . (2.24)
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Writing explicitly the evolution equations for each element in the density matrix we get

ρ̇11 = iΩ12 cos(ωt) (ρ12 − ρ21) (2.25a)
ρ̇12 = iΩ12 cos(ωt) (ρ11 − ρ22) + i ω12 ρ12 (2.25b)
ρ̇21 = iΩ12 cos(ωt) (ρ22 − ρ11)− i ω12 ρ21 (2.25c)
ρ̇22 = iΩ12 cos(ωt) (ρ21 − ρ12) (2.25d)

The equations (2.25a) and (2.25d) describe the evolution of the populations and the
equations (2.25b) and (2.25c) show the evolution of the coherences. The two-level system
described by these equations was assumed to have no decay. But in practice it is almost
impossible to find such a system without any interaction with its surroundings (or reservoir).
In the cases where the coupling of the system with the reservoir is weak, so that any change
in the reservoir due to the interaction with the system is negligible, the master equation
which governs the evolution of the system can be written in the interaction picture as

˙̂ρ = −i
[
H, ρ̂

]
+ Λ̂ ρ̂ (2.26)

where ρ̂ now denotes the quantum emitter reduced density matrix which is calculated
by taking the partial trace over the reservoir degrees of freedom of the density matrix
associated with the total system { quantum emitter + reservoir }. The approximation
performed here is known as the Born approximation.

The operator Λ̂ contains the self correlations in the reservoir which carry the information
regarding the interaction of the reservoir with the system, i.e, the memory regarding the
interaction with the system. If the characteristic time scales over which the reservoir
correlation function decays are much smaller than the characteristic time scales of the
system, memory effects in the dynamics of reduced density matrix can be neglected. This
approximation is known as the Markov approximation [10, 11]. Now, the positivity of the
reduced density matrix ensures the Lindblad form of the master equation, first introduced
by V. Gorini, A. Kossakowski, E. Sudarshan [12, 13] and independently by G. Lindblad [14].

Finally, the operator Λ̂ contains all decay effects in the system due to the interaction
with the reservoir. The non-diagonal elements of Λ̂ include a pure dephasing rate γ and
the diagonal elements account for the radiationless decay rate Γ of the excited state |2〉.
This leads to the following set of evolution equations of the system, including decay and
dephasing [15, 16]
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ρ̇11 = iΩ12 cos(ωt) (ρ12 − ρ21) + Γ ρ22 (2.27a)

ρ̇12 = iΩ12 cos(ωt) (ρ11 − ρ22) + [iω12 − (γ + Γ/2)] ρ12 (2.27b)

ρ̇21 = iΩ12 cos(ωt) (ρ22 − ρ11)− [iω12 + (γ + Γ/2)] ρ21 (2.27c)

ρ̇22 = iΩ12 cos(ωt) (ρ21 − ρ12)− Γ ρ22 (2.27d)

The set of equations given in (2.27) is known as the Optical Bloch Equations [17].

2.3.2 Multi-level system

In reality, the incident electromagnetic field consists in a laser pulse which is characterized
by a certain spread in frequency and the physical system may have many energy levels
close enough so that the action of such a laser pulse can drive the system to a coherent
superposition of all those states (see Fig. 2.2). Thus, the model should be extended to
multilevel systems. However, the physical insight gained from two-level system simulations
can still be used to analyse multi-level results.

h̄ω1

h̄ω2

h̄ω3

h̄ω

h̄ωN

|1〉

|2〉
|3〉
|〉

|N〉

h̄ω12 h̄ω13 h̄ω1 h̄ω1N

E
(ω

)

Figure 2.2.: N -level system of transition frequencies ω1 coupled
to an electromagnetic field of limited duration. The action of the
electromagnetic pulse can populate more than one excited state.

The evolution of a multi-level system can be calculated using Eq.(2.26), provided that the
total Hamiltonian H is given by

H = H0 +HI (2.28)



134 Chapter 2. Atom-Field Interactions in Dense Media

where
H0 =

∑


~ω|〉〈| (2.29)

and
HI (r, t) =

∑
,ı

~Ωı(r, t) |〉〈ı| . (2.30)

Note that, compared to Eq.(2.17), we have used here a generalized definition of an
instantaneous Rabi frequency associated with the value of the electric field at position r
and time t

Ωı(r, t) = −〈|µ |ı〉·E(r, t)
~

(2.31)

The density matrix ρ̂ for multilevel systems can be defined from its elements

ρı = 〈|ρ̂|ı〉 . (2.32)

It is important to note that for this study, the electromagnetic field that will be used to
turn on the dynamics of the system will be weak enough so that stimulated emission and
multiple excitations can be neglected, such that

ρ00 �
∑



ρ (2.33)

Following the same weak field assumption, we will also neglect coherences between two
excited states. This assumption reduces the number of equations to be solved for analyzing
the dynamics of the system. Following now the same development as the one detailed for
two-level systems, one can easily show that the N -level density matrix elements obey the
following optical Bloch equations

ρ̇11 =
∑
>1

iΩ1(r, t) [ρ1 − ρ1] + Γ ρ (2.34a)

ρ̇1 = iΩ1(r, t) [ρ11 − ρ] + [iω1 − (γ + Γ/2)] ρ1 (2.34b)

ρ̇1 = iΩ1(r, t) [ρ − ρ11]− [iω1 + (γ + Γ/2)] ρ1 (2.34c)

ρ̇ = iΩ1(r, t) [ρ1 − ρ1]− Γ ρ (2.34d)

A detailed report on the density-matrix approach to the dynamics of multilevel atoms in
electromagnetic fields can be found for instance in [18]. These equations describe the
evolution of the system. They allow the evaluation of the density matrix elements provided
the decay rates of the system and the field acting on the system are known. This system
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of equations is necessarily coupled to Maxwell’s equation, describing the propagation of the
electromagnetic field in the medium.

2.3.3 Connection with the electromagnetic field

The action of the electromagnetic field produces a macroscopic polarization in the medium
which can be calculated, in the linear regime, via

P(r, t) = N〈 µ̂ 〉, (2.35)

where N is the number of quantum emitters per unit volume and 〈 µ̂ 〉 is the expectation
value of the transition dipole calculated from the density matrix at position r and time t
using the following definition

〈 µ̂ 〉 = Tr[ρ̂(r, t) µ] . (2.36)

Solving Eqs.(2.34) requires to know the electromagnetic field since the Rabi frequencies
demand the knowledge of the electric field as a function of t and r. In turn, solving
Maxwell’s equations (2.3) at any position and time requires to know the density matrix at
the same position and time in order to calculate the macroscopic polarization. Thus, the
equations (2.34) and (2.3) have to be solved self-consistently. These set of equations are
called Maxwell-Bloch equations.

Once the electromagnetic field is calculated, the energy flow into and out of the system can
be estimated by calculating the Poynting vector from which the reflection and transmission
spectra are obtained. The difference between the incident and the transmitted plus reflected
energy flows gives finally access to the energy loss in the medium. This procedure can
therefore be used to calculate the extinction spectrum associated with the system.

2.4 Non-Hermitian Wave Packet Propagation Technique

An alternative approach based on non-Hermitian Hamiltonians was suggested recently [19]
for describing the dynamics of the system under the influence a of weak field.
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The time-dependent Schrödinger equation (TDSE) for a two-level system described by the
state vector |Ψ(t)〉 given in Eq. (2.20) with time-dependent coefficients C1(t) and C2(t)
can be written as

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉. (2.37)

In principle, the energies of the ground state |1〉 and of the excited state |2〉 are real,
and correspond to the frequencies ω1 and ω2. The idea presented in [19] is to introduce
some arbitrary imaginary parts to these energies so that by fixing them in comparison with
the optical Bloch equations describing the two-level system given by Eq. (2.27), one can
evaluate the dissipative dynamics in a simpler way.

Let us therefore assume that the ground state energy includes an imaginary part (+~γ1/2)
and that the excited state energy includes (−~γ2/2) in its imaginary part. Writing down
the TDSE including the new terms yields in atomic units

i Ċ1 = (ω1 + iγ1/2)C1(t) + Ω12(t)C2(t) (2.38a)
i Ċ2 = Ω12(t)C1(t) + (ω2 − iγ2/2)C2(t) (2.38b)

It is also possible to derive a density matrix form of evolution from Eq.(2.38) where
C∗

ı C = ρNH
ı . The superscript NH stands for the non-Hermitian form of the Hamiltonian.

For the populations, the evolution of the density matrix elements takes the form

ρ̇NH
11 = iΩ12(t) (ρNH

12 − ρNH
21 ) + γ1 ρ

NH
11 (2.39a)

ρ̇NH
22 = iΩ12(t) (ρNH

21 − ρNH
12 )− γ2 ρ

NH
22 (2.39b)

where ρ̇NH
11 + ρ̇NH

22 = 0 due to the conservation of the norm. It therefore comes that,
necessarily,

γ1 ρ
NH
11 (t) = γ2 ρ

NH
22 (t) (2.40)

and it appears that the ratio (γ1/γ2) has therefore to be time-dependent.

We now write the complete set of evolution equations for the density matrix elements of
the system:

ρ̇NH
11 = iΩ12(t) (ρNH

12 − ρNH
21 ) + γ2 ρ

NH
22 (2.41a)

ρ̇NH
12 = iΩ12(t) (ρNH

11 − ρNH
22 ) + [i ω12 − (γ2 − γ1)/2] ρNH

12 (2.41b)
ρ̇NH

21 = iΩ12(t) (ρNH
22 − ρNH

11 )− [i ω12 + (γ2 − γ1)/2] ρNH
21 (2.41c)

ρ̇NH
22 = iΩ12(t) (ρNH

21 − ρNH
12 )− γ2 ρ

NH
22 (2.41d)

An immediate comparison with the optical Bloch equations (2.34) gives two options for
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choosing the additional imaginary parts γ1 and γ2 introduced in the energies:

– Choosing γ2 = Γ allows to describe correctly the population dynamics at the cost of
a bad description of the coherences ρ12(t) and ρ21(t).

– Choosing γ2− γ1 = 2γ+ Γ allows to describe correctly the coherence dynamics while
loosing the accuracy in the description of the populations ρ11(t) and ρ22(t).

At this point it is interesting to note that, unlike in the optical Bloch equations, the decay
terms which appear in Eq.(2.41) are due to the imaginary terms introduced in the state
energies. This is in contrast with the optical Bloch equations where they are defined by the
super-operator Λ̂ (2.26) which contains all decay effects in the system.

Note also that the two options mentioned previously are not compatible if one wants to
maintain the conservation of the norm, as defined in Eq.(2.40). A choice has therefore
to be made between these two options. Now assuming that the system is initially in its
ground state, and looking at Eq.(2.41) we can see that the evolution of the populations
[Eqs.(2.41a) and (2.41d)] involves terms of second order in Ω12 while the evolution of the
coherences [Eqs.(2.41b) and (2.41c)] involves terms of first order in Ω12. We hence adopt
the second option

γ2 − γ1 = 2γ + Γ. (2.42)

In the linear regime, this choice should be able to describe the dynamics of the system
adequately.

From Eqs.(2.40) and (2.42), we obtain

γ1(t) = (2γ + Γ) |C2(t)|2
|C1(t)|2 − |C2(t)|2

(2.43a)

γ2(t) = (2γ + Γ) |C1(t)|2
|C1(t)|2 − |C2(t)|2

(2.43b)

Another difference between the decay terms in the optical Bloch equations and in the
non-Hermitian model is that in the later they are time dependent. The time dependence is
coming into the picture described by Eq.(2.43) via the populations |C1(t)|2 and |C2(t)|2.
As mentioned before, the reason for the intrinsic wrong description of the populations in the
chosen model is due to the fact that they are formulated as quantities that help to adapt
the equations for describing correctly the coherences, which are essential for analyzing the
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dynamics of the system. This non-Hermitian model is supposed to hold if

|C1(t)|2 � |C2(t)|2 (2.44)

at any time t.

With this choice of γ1(t) and γ2(t), the evolution of the coefficients C1(t) and C2(t) can
finally be written in atomic units as

i Ċ1 =
[
ω1 + i

(γ + Γ/2) |C2(t)|2
|C1(t)|2 − |C2(t)|2

]
C1(t) + Ω12(t)C2(t) (2.45a)

i Ċ2 = Ω12(t)C1(t) +
[
ω2 − i

(γ + Γ/2) |C1(t)|2
|C1(t)|2 − |C2(t)|2

]
C2(t) (2.45b)

It is possible to generalize the non-Hermitian model to multi-level systems by following the
same path, i.e, by adding imaginary parts: (+~γ1/2) to the ground state and (−~γ/2) to
the th excited state, where  = 2, 3, ..., N , and solving the equations in comparison with
the optical Bloch equations given in Eq.(2.34). One arrives at the following expressions for
the time-dependent decay rates

γ1(t) = (2γ + Γ)
∑

k>2 |Ck(t)|2

|C1(t)|2 −
∑

k>2 |Ck(t)|2 (2.46)

γ(t) = (2γ + Γ) |C1(t)|2
|C1(t)|2 −

∑
k>2 |Ck(t)|2 (2.47)

and the evolution of the coherences can then be written in atomic units as

i Ċ1 =
[
ω1 + iγ1(t)/2

]
C1(t) +

∑
>2

Ω1(t)C(t) (2.48a)

i Ċ = Ω1(t)C1(t) +
[
ω − iγ(t)/2

]
C(t) (2.48b)

The advantage of this model is clear while implementing the numerical scheme. Optical
Bloch equations demand the evaluation of a full density matrix which is in practice a set of
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Figure 2.3.: Schematic view of the system: a nano-layer of thickness `
is exposed to a normal incident ŷ-polarized electric field represented in
blue in this figure. The excitation dynamics of the quantum emitters
is solved and the calculated reflected (in red) and transmitted (in
dark green) fields are used to extract the reflection and transmission
spectra associated to this system.

first order differential equations. The density matrix elements have to be calculated for
each couple of states, i.e, three equations for each transition, which is time consuming if
the quantum emitter has many levels. On the contrary, the non-Hermitian model requires
only two equations (corresponding to the coefficients C1(t) and C(t)) to be solved for
each transition. There is therefore a clear practical advantage for the non-Hermitian wave
packet propagation if there are many allowed transitions in the system. It is however limited
to weak fields in order to fulfill the condition (2.44).

2.5 System

Before going into the details of the numerical evaluation of the coupled Maxwell-Bloch
equations described above, I will describe here the type of system and its geometry.

The system is a nanometric thick infinite layer of quantum emitters having two flat surfaces
(see Fig. 2.3). The quantum emitter density N and the thickness ` of the layer are fixed
so that the effects arisen in the system can only be due to the fundamental dynamics of
the quantum emitters themselves. These quantum emitters could be atoms, molecules or
nano-particles. The potential transitions involved are, for example, transitions between
electronic, vibrational or rotational levels in a molecule. Another candidate could be
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electronic transitions in atoms, including if necessary the fine and hyperfine structures of
the atom, such as in the D1 and D2 lines of rubidium for instance. To fulfill the condition
(2.33) the molecules/atoms have to be initially in their ground state.

The prepared system is exposed to a ŷ-polarized electric field acting normal to the nano-layer
(see Fig. 2.3). The electric field drives the quantum emitters to excited states. This field
driven dynamics produces a macroscopic polarization in the layer which is the cause of
back-actions to the field which can be studied by analyzing the reflected and transmitted
fields. The associated transmission and reflection spectra can be used to extract some
information regarding the dynamics turned on by the external field in the nano-layer.

In practice, the electromagnetic field is applied to the system through a laser source. By
focusing the laser radiation to a spot whose size is of a few µm, a layer of quantum emitters
with a transverse surface of about 1 cm2, and with a finite nano-thickness in the direction
of the propagation of the field, can be easily approximated to an infinite layer of quantum
emitters. Such a system reduces the dimension of the problem to the one of a 1D system.
Indeed, in this case Maxwell’s equations (2.3a) and (2.3b) reduce to

µ0 ∂t Hz(x, t) = − ∂x Ey(x, t) (2.49a)

ε0 ∂t Ey(x, t) = − ∂x Hz(x, t)− ∂t Py(x, t) (2.49b)

Note also that if, numerically, Maxwell’s equations are treated in 1D, an additional factor
1/
√

3 should be introduced in the polarization Py(x, t) (or equivalently in the transition
dipole) in order to take into account the averaging performed over the other directions x̂
and ẑ [4].

2.6 Numerical implementation

The system is described quantum mechanically either via optical Bloch equations or via
non-Hermitian wave packet propagations. These descriptions of the system’s dynamics
are nothing but some sets of first order differential equations which can be solved using
the fourth order Runge-Kutta method. This method is discussed in Appendix B. Solving
Maxwell’s equations (2.3a) and (2.3b) in 3D or (2.49a) and (2.49b) in 1D can be done
through a discretization of space and time. This can be done by using a finite difference time
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domain (FDTD) method [20] within which both the electric and magnetic fields, E and
H , are propagated in time and space on a spatial and temporal grid. This method ensures
the explicit description of the electromagnetic field and it is numerically very stable. The
boundary conditions are automatically taken into account through a staggered grid which
was developed initially by K. S. Yee [21, 22] and later named as the Yee cell. Maxwell’s
equations are discretized on the Yee cell using the central finite difference scheme.
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Figure 2.4.: Yee cell used in the simulations of the 1D electromagnetic
field equations (2.49). The grid in red is for the electric field and
the one in black is for the magnetic field. The grids for the electric
and magnetic fields are shifted by ∆x/2 in space and ∆t/2 in time.
The electric field is calculated at spatial points (nx − 1)∆x, nx∆x,
(nx+1)∆x, etc... for the times (nt−3/2)∆t, (nt−1/2)∆t, (nt+1/2)∆t,
etc... The magnetic field is calculated at spatial points (nx − 3/2)∆x,
(nx − 1/2)∆x, (nx + 1/2)∆x, etc... for the times (nt − 1)∆t, nt∆t,
(nt + 1)∆t, etc...

Since this discretization necessarily induces some error in the evaluation of the derivatives,
the spatial and temporal grid steps have to be chosen carefully. Let ∆t′ be the time taken
by the electromagnetic wave to travel by ∆x in the vacuum, then ∆t′ = ∆x/c where c is
the speed of light in vacuum. If ∆x is the spatial grid step then the temporal grid step ∆t
should be less than ∆t′, i.e,

∆t ≤ ∆x
c
. (2.50)

Eq.(2.50) is known as the Courant-Friedrichs-Lewy condition (CFL), which appeared in 1928
in the seminal paper of R. Courant, K. Friedrichs and H. Lewy explaining the conditional
stability of explicit time-dependent finite difference schemes [23, 20]. In our simulations,
we use the temporal step ∆t = ∆t′/2, i.e. for a spatial grid step ∆x = 1 nm the temporal
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grid step is ∆t = 1.67 as.

Yee’s scheme consists in considering the electric and magnetic components shifted spatially
by half the cell step (∆x/2) and by half the temporal step (∆t/2) when considering a
central difference approximation of the derivatives. Figure 2.4 shows the Yee cell in one
dimension used for discretizing the electromagnetic field equations in space and time.

The algorithm can be summarized in three steps:

1. Replace all the derivatives in Eq.(2.49) with finite differences. Discretize space and time
so that the electric and magnetic fields are staggered in both dimensions, i.e(b) ,

Ent+1/2,nx+1
y − Ent+1/2,nx

y

∆x = −µ0
Hnt+1,nx+1/2

z −Hnt,nx+1/2
z

∆t (2.51a)

Hnt,nx+1/2
z −Hnt,nx−1/2

z

∆x = −ε0
Ent+1/2,nx

y − Ent−1/2,nx
y

∆t − ∂t P
nt−1/2,nx
y (2.51b)

2. Solve (2.51) to obtain ”updated” electromagnetic fields from past (known) fields using

Ent+1/2,nx
y = Ent−1/2,nx

y + ∆t
ε0

(
Hnt,nx−1/2

z −Hnt,nx+1/2
z

∆x − ∂tP
nt−1/2,nx
y

)
(2.52a)

Hnt+1,nx+1/2
z = Hnt,nx+1/2

z + ∆t
µ0∆x

(
Ent+1/2,nx

y − Ent+1/2,nx+1
y

)
(2.52b)

3. Update the electric and magnetic field for each time step by using Eq. (2.52) until the
fields have been obtained over the desired duration.

Figure 2.5 shows a schematic view of the simulation region for better understanding. The
nano-layer of length ` is placed at the center of the spatial grid (in x̂), within which
Maxwell’s equations are discretized along with a temporal grid.

In order to avoid unphysical numerical reflections of outgoing electromagnetic fields back
to the simulation region, the boundaries are covered with artificial non-physical absorbing
layers which can efficiently absorb any incident electromagnetic field. It can be done by
using the most powerful perfectly matched layers (PML) [24, 25]. The numerical approach
used for this purpose is the most economical variant of this method known as convolutional
perfectly matched layers (CPML) [26].

(b) Note that ∂t Py can be calculated directly from the quantum evolution equations of the system.
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Figure 2.5.: Schematic view of the numerical implementation: a
nano-layer of thickness `, exposed normal to a ŷ-polarized electric
field, is placed in a spatio-temporal grid. The incident, reflected
and transmitted fields are calculated by solving Maxwell’s equations
using the finite-difference time domain method. Polarization inside
the system is calculated using one of the models described in the
previous sections. Perfectly matched layers are used at the boundaries
of the simulation region in order to avoid unphysical reflections of the
electromagnetic fields back to the simulation region.
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The ŷ-polarized electromagnetic field is acting normal to the nano-layer. A part of the
incident field is reflected from the interface of the nano-layer. The rest of the field is
transmitted through the layer. A part of the field is however lost in the layer due to the
dissipative forces in the system. The calculation scheme of the cross-coupled equations,
either Maxwell-Bloch equations or Maxwell-non-Hermitian wave packet equations, is given
below [27] (see Fig. 2.6).

Ampère’s &
Faraday’s law

(FDTD)

E and H
Quantum
dynamics

(Runge-Kutta 4)

ρı

Calculation of the Macro-
scopic Polarization

P

Figure 2.6.: Scheme used for the numerical implementation of the
nano-layer and electromagnetic field dynamics.

The magnetic field H is calculated in accordance with Eq.(2.49a) and then by using
Eq.(2.49b), the electric field E is updated. The knowledge of the macroscopic polarization
P calculated via the density matrix elements ρı (or via the wave packet coefficients C)
from the previous time step is utilized in this step of the calculation. The density matrix
elements (or the wave packet coefficients) are then updated at all spatial grid points
using the electric field calculated previously. Finally, from the calculated electromagnetic
field components and the density matrix elements (or the wave packet coefficients), the
macroscopic polarization P is updated at each grid point.

2.6.1 Comparison of the two quantum models

The self consistent model described above was implemented for both Maxwell-Bloch
equations and Maxwell-non-Hermitian wave packet equations as described in [19].
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As a preliminary step we compare the two models by calculating coherences and populations
as a function of time. The calculation is performed for a number densities N = 2.5 ×
1021 cm−3 in a nano-layer of thickness ` = 400 nm consisting of two level atoms having a
radiationless decay rate Γ = 0.5 THz and a pure dephasing rate γ = 10 THz for a transition
energy of 2 eV with a transition dipole of 2 D. The system is excited with a weak delta
kick (in practice a 180 as Gaussian pulse of central frequency tuned near the transition
frequency). Fig. 2.7 shows the results obtained with these two models.
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Figure 2.7.: Panel (a) shows the populations and panel (b) shows
the coherence as a function of time for a 400 nm thick layer of two
level atoms of density N = 2.5 × 1021 cm−3. The solid blue lines
are obtained from non-Hermitian wave packet propagations and the
dashed red line are from optical Bloch equations (see text for details).

The evolution of the population of the excited state is shown in panel (a). The solid blue line
shows the excited state population calculated via a non-Hermitian wave packet propagation
and the red dashed line shows the same calculated by using optical Bloch equations. As
expected, for the non-Hermitian model, the population shows a clear mismatch with the
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optical Bloch equations, which are, by definition, describing them correctly. This is because
of the arbitrary choice made on γ(t) for  = 1, 2 [Eq.(2.42)]. The evolution of the ground
state gain factor γ1(t) for this system is shown in Fig. 2.8.
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Figure 2.8.: Dependence of the ground state gain factor γ1(t) of the
two-level system described in the non-Hermitian wave packet model.
All parameters are the same as in Fig. 2.7.

One can easily notice the similar time-dependence of γ1(t) [Fig. 2.8] and of the excited
state population |C2(t)|2 [Fig. 2.7, panel (a), blue line]. This is not surprising in view of
the equation (2.43a). For a system prepared according to Eq.(2.44) and probed by a weak
field, the ground state gain factor in the non-Hermitian wave packet model γ1(t) is nothing
but the excited state population scaled by (2γ + Γ). Meanwhile, the wrong description
of the populations ensures the accuracy in the description of the coherences as it can be
noticed from Fig.2.7, panel (b). Thus, for the analysis of coherence dynamics, especially
for the calculation of the macroscopic polarization Py(x, t) that we feed into Eq.(2.52),
one can choose any of these two models in weak fields.

For a multilevel system there is however a clear advantage for choosing the non-Hermitian
wave packet model in terms of computation time. Fig. 2.9 shows a comparison of the
CPU time used by a non-Hermitian wave packet simulation compared to solving the optical
Bloch equations, as a function of the number of quantum states involved.

The graph shows the CPU time taken by both models for a 1D spatial grid of total size
2.56µm with a spatial step ∆x = 1 nm. The coupled equations were propagated for a
nano-layer of width ` = 400 nm for a total propagation time of 1.67 ps with a time step
of 1.67 as. The excitation pulse is a delta kick similar to the one used for Figs. 2.7 and
2.8. These estimations were done on a Intel Xeon E5-1650 processor. The blue line shows
the time taken by the non-Hermitian wave packet propagation and the red line is the time
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Figure 2.9.: Comparison between the CPU times taken by the non-
Hermitian wave packet model and by optical Bloch equations as a
function of the number of states involved. The blue line shows the
time taken by the non-Hermitian wave packet propagation and the
red line is the time taken by optical Bloch equations.

taken to solve the optical Bloch equations.

There are some situations in which the multilevel system is characterized by low damping
rates. In this case, the equations have to be propagated for longer times, and it is advisable
to choose the non-Hermitian wave packet propagation scheme instead of the ”exact” optical
Bloch equation scheme.

2.7 Conclusion

The basic theory describing the dynamics of quantum emitters in the presence of weak
electromagnetic fields was discussed in this chapter in order to introduce the basic concepts
and the fundamental assumptions made for the present research.

The coupled equations known as Maxwell-Bloch equations were introduced along with the
numerical implementation of these dynamical equations in a spatial and temporal grid.

The system studied was introduced. It is a nano-layer composed of quantum emitters
(atoms, molecules, nano particles, ...) driven by an electromagnetic field acting normal to
the layer surface. The finite difference time domain (FDTD) method was described with
relevant details for such geometry.
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An alternative model for the description of the coherences in the system, the non-Hermitian
wave packet model, was also discussed. This approximate model can reduce the computation
time when dealing with multilevel systems. Preliminary calculations comparing optical
Bloch equations with the non-Hermitian approach were done.

The theory discussed here will be used in the forthcoming chapters for analyzing both
two-state model systems and more complicated realistic quantum multilevel systems.
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3
Collective Response of Two Level

Systems

This chapter discusses the optical response of a two level system exposed to
weak electromagnetic fields. Collective effects in the nano-layer are studied
via the calculation of the electromagnetic fields reflected, transmitted and
absorbed by the medium using the FDTD method. We also calculate the
susceptibility of the medium from the numerical integration of the optical
Bloch equations. We finally interpret our results using a simple analytical
semi-classical description based on an extension of the Lorentz oscillator
model for dense media.
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3.1 Introduction

The simplest case for studying the interaction of light with matter as described in the
previous chapter is a two-level system where only one of the many allowed transitions (of
frequency ω12) of a quantum emitter is in resonance with the applied field. The dynamics
of such system can be studied using Eq.(2.34). Reflected and transmitted electromagnetic
energies are calculated from Maxwell’s equations and by normalizing them with respect to
the incident energy, the reflection and transmission probabilities can be calculated.

Since the system under consideration is a collection of two-level emitters, there are many
other effects that should be considered for understanding the spectra calculated from the
numerical simulations which includes broadening mechanisms and other density effects.
Temperature dependent broadening mechanisms like Doppler and pressure (collisional)
broadening can be reduced to a certain extend in a dense system.

3.2 Spectral Broadening, Lineshapes and Shifts

Let us assume that there are N particles (two-level quantum emitters) per unit volume. In
weak fields, the response of the system can be described in terms of the electric susceptibility
χe(ω) which is a complex quantity that does not depend on the geometry of the system.

For the present discussion, we are only concerned with the time-dependence of a real
monochromatic optical wave of linear polarization that we write as

E(t) = E0 cos(ωt) ŷ = E0

2

[
eiωt + e−iωt

]
ŷ (3.1)

Being in the linear regime, the polarization can be obtained from Eq.(2.2) as

P = 1
2ε0E0

[
χe(ω) eiωt + χe(−ω) e−iωt

]
ŷ (3.2)

since the field contains two conjugate frequencies ±ω.

The polarization can also be expressed using Eq.(2.35) as written below

P = N〈 µ̂ 〉 . (3.3)
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Knowing from Eq.(2.16) that

µ̂ =
[
|1〉〈2|+ |2〉〈1|

]
µ12 ŷ (3.4)

where µ12 denotes the dipole matrix element 〈2|µŷ |1〉, we finally obtain

P = N
[
ρ12 + ρ21

]
µ12 ŷ . (3.5)

Let us now introduce the slowly-varying density matrix elements

ρ̄12 = ρ12(t) eiωt (3.6a)
ρ̄21 = ρ21(t) e−iωt (3.6b)

in Eq.(3.5) to obtain
P = N

[
ρ̄21 e

iωt + ρ̄12 e
−iωt

]
µ12 ŷ . (3.7)

The comparison of Eqs.(3.2) and (3.7) yields

χe(ω) = 2µ12

ε0E0
N ρ̄21 = 2µ12

ε0E0
N ρ21(t) e−iωt . (3.8)

It is now possible to solve Eq.(2.34c) (with  = 2) analytically if we assume that ρ̄21 varies
slowly with time (i.e. ˙̄ρ21 ≈ 0) and that we are in the linear regime (i.e. ρ11 − ρ22 ≈ 1 if
we start initially from the ground state). In this case, within the RWA [see Eq.(2.19)] we
obtain

ρ̄21 = ρ21(t) e−iωt ≈ −iΩ12/2
i(ω12 − ω) + (γ + Γ/2) . (3.9)

From these equations and from the definition (2.17) of the Rabi frequency it comes that

χe(ω) ≈ Nµ
2
12

~ε0

1
(ω12 − ω)− i (γ + Γ/2) . (3.10)

The expression (3.10) gives the RWA approximation of the susceptibility, thus neglecting the
(very small) counter-rotating contribution. Note also that in this expression, as mentioned
at the end of Section 2.5, the factor 1/3 that one may find in the literature (due to an
average over the orientation of the dipole) is here already included in µ2

12.

Separating the real from the imaginary part, we have
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χe(ω) ≈ Nµ
2
12

~ε0

[
ω12 − ω

(ω12 − ω)2 + (γ + Γ/2)2 + i
γ + Γ/2

(ω12 − ω)2 + (γ + Γ/2)2

]
. (3.11)

Typical variations of the real and imaginary parts of χe(ω) are shown figure 3.1.
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Figure 3.1.: Real and imaginary parts of the susceptibility in a
two-state system as a function of the adimensional detuning.

Since in weak fields the transition probability between states |1〉 and |2〉 is proportional to
|χe(ω)|2, it appears from Eq.(3.10) that this transition is characterized by a Lorentzian shape.
It can be (and in practice will be) modified by other physical effects like inhomogeneous
broadening [1] (which assumes that different atoms see different electromagnetic fields),
homogeneous broadening [2], or local field effects [3] for instance.

In general the particles are distributed within the nano-layer with different velocities.
Assuming a Maxwell-Boltzmann distribution of the particles of mass m [4], the number
density N‖(v‖) associated with the speed v‖ along the direction k̂ of the propagation of
the electromagnetic field can be written as

N‖(v‖) = N
(

m

2πkBT

)1/2
exp

(
−

v 2
‖

v 2
p

)
, (3.12)
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where N is the total number density for the uniform distribution of particles and

vp =
√

2kBT

m
(3.13)

is the most probable velocity at temperature T . This velocity distribution which is due to
the distribution of kinetic energies possessed by the particles has to be considered when
dealing with a realistic sample. At room temperature, say for noble gases around 25 ◦C,
the most probable velocity varies between 250 to 1500 m/s depending on the mass of the
atom. This thermal motion induces a shift in the resonance frequency which is nothing but
the Doppler shift which can be written as

∆Doppler = − k v‖ (3.14)

where k is the propagation constant of the applied field. Eq.(3.12) being the particle
velocity distribution in the direction of the propagation of the applied field, this thermal
distribution will induce an inhomogeneous broadening in the transition spectrum that should,
in principle, be taken into account. The spectral shape induced by the Gaussian distribution
of particles will also be Gaussian.

Combining the natural broadening with the inhomogeneous Doppler broadening, the
susceptibility will become a function of velocity and will have a temperature dependence

χe(ω, v‖) = Nµ
2
12

~ε0

1
(ω12 − ω − k v‖)− i (γ + Γ/2)

(
m

2πkBT

)1/2
exp

(
−

v 2
‖

v 2
p

)
(3.15)

to be compared with Eq.(3.10).

Averaging over all velocities in the nano-layer

χe(ω) =
∫ +∞

−∞
χe(ω, v‖) dv‖ (3.16)

is equivalent to the calculation of the convolution of a Lorentzian shape with a Gaussian
shape. It is well known that the lineshape offered by Eq.(3.16) is a Voigt profile [5]. The
Gaussian lineshape associated with the thermal (Doppler) broadening contributes more
around the resonance frequency and dies of quickly in the wings in comparison with the
Lorentzian shape due to the natural decay. Thus the Voigt profile has a Gaussian core and
a Lorentzian tail.

There are many other broadening mechanisms like pressure broadening or collisional
broadening in the system which can be important when one deals with systems with large
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number of particles. The source of the collisional broadening is the close encounters between
the quantum emitters carrying an electric dipole due to the polarization. Calculation of
precise expressions for these type of broadening mechanisms is complicated since it involves
many particles in different quantum states. But the collisional broadening is often treated
as a Lorentzian-type broadening [2, 6] which makes the calculation of the susceptibility
not so hard in comparison with the inhomogeneous effects. Even though the timescales of
collisional broadening and natural broadening are different it is proven that they usually
have comparable values [2, 6].

The dependence of the pressure broadening can be estimated from classical considerations.
Let τ be the relaxation time for a mean free path l = 1/(Nσ) where σ is the collision
cross section, then

τ = l

vp

,∝ 1
N
√
T
. (3.17)

Thus the shift in the frequency is proportional to the number density N and to the square
root of the temperature. A detailed review on the broadening mechanisms and associated
frequency shifts in two level systems can be found in [7].

From this point we will assume that we deal with relatively cold atoms or molecules
(temperatures typically below 1 K) and the constituent particles are assumed to be frozen.
The Doppler broadening will therefore be neglected in order to investigate the collective
effects due to the local fields. This also helps for keeping the profile simple and easily
tractable. On the contrary, the contributions from the collisional broadening are included
in our model using the Lindblad formalism of the operator Λ̂ (see chapter 2, Eqs.(2.26)
and (2.27)) [8, 9].

3.2.1 Lorentz Model for Two Level Systems

An alternative classical way of deriving an expression for the susceptibility is by modeling
the system as a collection of a large number of oscillating dipoles driven by an external field.
This is the Lorentz oscillator model, and it takes all relevant physical processes into account
classically. This approach is usually valid in the linear regime where the susceptibility does
not dependent on the applied field.

The basic assumption of the Lorentz model is that an incident light wave propagating
through the medium of quantum emitters excites the system. The quantum emitters
are considered as identical damped harmonic oscillators. The evolution of the induced
oscillating dipoles is due to a displacement of the positive and negative charge densities in
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the particle, compared to their equilibrium positions. This results in a polarization of the
system, which in turn modifies the external electric field.

The differential equation for the displacement y(t) of the charged particles from their
equilibrium positions due to the action of the local electric field Elocal(t) can be written as

m ÿ = −mω2
12 y −mγm ẏ + q Elocal(t) (3.18)

where m and q are the mass and electric charge, respectively, of the particles considered.
ω12 is the frequency of the harmonic oscillations and γm is the damping constant of these
oscillations. In this expression −mω2

12 y(t) denotes the binding force, −mγm ẏ(t) is the
friction force and q Elocal(t) is Coulomb’s force.

Let us now remember that the polarization is modeled according to Eq.(2.35) as

P = N〈 µ̂ 〉 (3.19)

and that one can relate the dipole operator µ̂ with the displacement operator ŷ

〈 µ̂ 〉 = q 〈 ŷ 〉 . (3.20)

Assuming now that the expectation value of the displacement operator can be assimilated
with its classical counterpart y(t) we obtain a classical equation of motion for the polarization
component Py(t) [3]

mP̈y = −mω2
12 Py −mγm Ṗy +N q2 Elocal(t) (3.21)

The local field Elocal(t) is given by Eq.(2.11) and γm is the classical damping factor that
is necessarily related to the quantum decoherence and decay rates γ and Γ introduced in
Eq.(2.27) to explain the damping effects.

Substituting Eq.(2.11) for the local field and collecting the polarization terms we get

P̈y = −
(
ω2

12 −
$2

12
3

)
Py − γm Ṗy + ε0$

2
12 Ey(t) (3.22)

where

$12 =
√
N q2

mε0
(3.23)
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denotes the plasma frequency.

The solution of equation (3.22) can be obtained by the standard method of introducing the
Fourier decomposition of the time-dependent quantities Py(t) and Ey(t) into this equation.
The result expressed in terms of the susceptibility is

χe(ω) = Py

ε0Ey

= $2
12

(ω′ 2
12 − ω2) + i ωγm

(3.24)

where

ω′ 2
12 = ω2

12 −
$2

12
3 = ω2

12 −
N q2

3mε0
. (3.25)

We see here that the resonance frequency is shifted by a term which depends on the density
N and on the ratio q2/m. Reminding the argument for introducing the local field correction
in Section 2.2.1, one can safely interpret that this shift is induced by the dipole-dipole
coupling between the constituent quantum emitters in the system.

The difficulty for estimating the coupling frequency $12 in the system is because of the
presence of the parameter q2/m which can be estimated by quantizing the dipole oscillations.
For this purpose let us consider an oscillating transition dipole µ12(t) characterized by
the charge q, the amplitude of oscillation x0 and the frequency ω12. We assume for the
moment that there is no damping. The length of the dipole is then x(t) = x0 cos(ω12t)
and µ12(t) = q x(t) = q x0 cos(ω12t). The RMS value of the dipole is therefore given by

µ12 =
√〈

µ2
12(t)

〉
=
√〈

q2 x2(t)
〉

= q x0√
2
. (3.26)

If the oscillation energy is quantized to the zero-point energy ~ω12/2 of the harmonic
oscillator, it is easy to show that the amplitude of oscillation x0 is nothing else than the
characteristic length of the harmonic oscillator

x0 =
√

~
mω12

. (3.27)

Introducing Eq.(3.27) in Eq.(3.26) yields

µ12 = q

√
~

2mω12
, (3.28)

and therefore
q2

m
= 2ω12µ

2
12

~
. (3.29)
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Thus the plasma frequency given by Eq.(3.23), which is due to the interaction with the
neighboring quantum emitters, can be written as [3]

$12 =
√

2Nω12

~ε0
µ12 , (3.30)

and Eq.(3.25) becomes

ω′ 2
12 = ω2

12 −
2Nω12µ

2
12

3~ε0
. (3.31)

Let us now define ∆12 as the dipole shift induced in the resonance frequency as

ω′
12 = ω12 −∆12 , (3.32)

it appears from Eq.(3.31) that

∆12 = ω12

1−
√

1− 2Nµ2
12

3~ω12ε0

 (3.33)

If ∆12 � ω12, the first order approximation on Eq.(3.33) will reduce ∆12 to

∆12 ≈
Nµ2

12
3~ε0

, (3.34)

which is nothing but the well-known Lorentz-Lorenz (LL) shift [10, 11] introduced in
Eq.(1.1). This LL shift and its contribution towards collective effects will be discussed later
in this chapter and the forthcoming chapter.

In the Lorentz model, the frequency $12 is known as the plasma frequency that explains
the oscillation of charge centers in conducting media such as metals and plasmas. In the
present case, it represents the natural collective oscillation frequency of the ”sea” of dipoles
in the system, not of individual dipoles. This collective oscillation of the coupled dipoles
matters for the response of the system when the dipole-dipole interaction is not negligible.
Indeed, these collective or cooperative behavior of the dipoles (which arise from the fact
that the electromagnetic field experienced by an arbitrary quantum emitter in the system is
modified by its neighboring dipoles) can modify the response of the system towards the
electromagnetic field drastically [12–14].
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3.2.2 Detuning and Scaling

There are some quantities that help to generalize the equations and variables to an
adimensional form. The collective effects are represented by the plasma (or dipole coupling)
frequency $12. Eq.(3.30) can be rewritten in terms of the LL shift,

$2
12 ≈ 6∆12ω12 . (3.35)

The Lorentz-Lorenz shift contains the essential part in the coupling frequency that describes
how strongly the system is interacting. It will be shown in the forthcoming section that the
quantity Nµ2

12 is the key parameter for seeing the collective effects in the nano-layer of the
two-level systems under consideration. Hence a dimensionless quantity called interaction
strength S12 is defined as

S12 = ∆12

γ + Γ/2 (3.36)

that helps to quantify the interaction regime. Note that the relation between the classical
damping rate γm and the decay and decoherence rates is γ+ Γ/2 = γm/2. For large values
of S12 the dipole coupling frequency dominates over the damping rate, and the constituent
particles interact strongly.

In the forthcoming section a reduced detuning is also used to analyze the optical response
of the dense two-level system. This reduced detuning is defined as

δ = ω − ω12

γ + Γ/2 . (3.37)

3.3 Optical Response of a Two-Level System

When the dipoles are close enough, the radiation from a dipole couples it with its neighbors.
This effect can be explored by calculating probabilities for reflection and transmission at
different interaction regimes characterized by the value of S12 [15].

The reflection probability R can be calculated from Eq.(2.14) by measuring the reflected
energy, i.e,

R(ω) = |S(ω)|R
|S0(ω)| (3.38)
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where |S(ω)|R is the reflected energy.

The transmission probability T can be calculated in the same manner,

T (ω) = |S(ω)|T
|S0(ω)| . (3.39)

where |S(ω)|T is the transmitted energy. Here the indexes R and T denote calculations
of the energy flux performed in front of (x = xR < 0) and beyond (x = xT > `) the
nano-layer.

A part of the energy given to the system will be lost (extinction) while propagating through
the layer. It is not recovered in the reflection or in the transmission. The probability of
extinction E can thus be calculated from the conservation of energy as

E(ω) = 1−
[
R(ω) + T (ω)

]
. (3.40)

This loss of energy is related to the imaginary part of the propagation constant k inside
the nano-layer.
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Figure 3.2.: Reflection spectra from a layer of identical two-level
quantum emitters of thickness ` = 600 nm as a function of the reduced
detuning δ and interaction strength S12. γ is 10 THz and Γ = 1 THz.
Reflection from a layer of weakly interacting identical dipoles is feeble.
Those are therefore multiplied by some constant factors given alongside
with the same color codes for a better comparison.

Fig. 3.2 shows some reflection spectra from a 600 nm thick layer composed of identical
two-level emitters for different values of S12 [15]. The system is assumed to have a transition
energy of 2 eV with a damping rate γ + Γ/2 = γm/2 = 10.5 THz due to the decay and
decoherence processes.
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The incident electromagnetic fields are reflected selectively from the layer around the
transition frequency [16, 17]. The reflection increases with the increase in the interaction
strength. For S12 6 0.01, the system shows very weak reflection around the transition
frequency and almost all energy given to the sample is transmitted or extinct. The response
of the system towards the electromagnetic field is very close to the independent particle
response characterized by a Lorentzian profile in the frequency domain. It is because in
weak densities, the effect of the polarization of the medium barely modifies the local electric
field experienced by the constituent dipoles. Hence they respond to the field as if they were
independent.
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Figure 3.3.: Extinction (panel a) and transmission (panel b)
probabilities for the weak (blue solid line) and strong (brown solid
line) interaction regime specified in Fig. 3.2. The y-scale on the left is
for weakly (S12 = 10−3) interacting dipoles and the one on the right
is for strongly (S12 = 12) interacting dipoles (see text for details).

The reflection gets stronger as the interaction between the induced dipoles increases. It
starts to show some additional features that will be explained later as S12 approaches 1.

For S12 > 10, the constituent particles feel very strongly the presence of neighboring dipoles
that modify the system response. As the interaction strength increases, the layer becomes
opaque, reflects most of the incident energy and absorbs the remaining. The energy
absorbed by the system can be dissipated due to many physical phenomena represented by
the decay constants γ and Γ. In the strong interaction regime (S12 > 1), the presence of
other dipoles becomes really significant. The system loses its transparency and behaves
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like a mirror around the transition frequency.

The transmission through the layer then falls to zero. Fig. 3.3 shows the extinction
[panel (a)] and transmission [panel (b)] corresponding to weakly (S12 = 10−3) and strongly
(S12 = 12) interacting dipoles.

For S12 = 12, the system behaves like a mirror by reflecting the major portion (≈ 80%)
of the incident energy, the remaining portion being absorbed and dissipated. We note
that the window of reflection within which the incident field is mainly reflected measures
3∆12 (see Fig. 3.2). This measure will be explained in the next section. The interaction
between the induced dipoles enhances the reflection probability so that in this regime, the
system (nano-layer of two-level quantum emitters) behaves like a metal. Note that a similar
problem was studied analytically by R. J. Glauber and S. Prasad in 2000 [13, 18] as an
eigenvalue problem for a dense layer of quantum emitters.

3.3.1 Lorentz-Lorenz shift and reflection window

As demonstrated in Section 3.2.1, the LL correction on the local field experienced by an
arbitrary quantum emitter induces a shift in the resonance frequency. We have shown
using the Lorentz model that the frequency shift is ∆12 and that it originates from the
presence of neighboring interacting dipoles. Indeed, as shown schematically Fig. 3.4, two
neighboring oscillating dipoles interact through the electric field they create.

The induced LL-shift has been known for a long time and the initial theoretical prediction of
Lorentz and Lorenz has been confirmed by several experiments [19–22]. It was for instance
measured while studying the optical response of dense atomic vapors (for N of the order
of 1017 cm−3) in the vicinity of the fundamental atomic resonance frequency [19, 23]. The
dependence of the shift on the degree of excitation was also predicted [7] and experimental
evidences showed the presence of such a dependence [24, 25]. The validity of the LL shift
has thus been shown by many different experimental groups. These measurement therefore
validate the theories based on the LL correction introduced in the local field experienced by
the quantum emitters [14, 26].

In the calculation executed here for studying the linear optical response of dense two-level
systems, the LL red-shift is obtained in the associated susceptibility χe(ω), as shown in
Eqs.(3.24), (3.32) and (3.34).

Eq.(3.24) is able to reproduce exactly the susceptibility extracted from the full quantum
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calculation [3]. Fig. 3.5 shows a comparison between the susceptibilities obtained from
the quantum calculation and the semi-classical analytical model developed in this chapter
[Eq.(3.24)] for the parameters used to obtain S12 = 12 in Fig. 3.3, as a function of the
reduced detuning δ. The blue solid line is the susceptibility obtained from the semi-classical
model and the red dashed line shows the susceptibility obtained from the numerical
integration of the optical Bloch equations. They mach in great accuracy, showing the
following essential feature: the resonance frequency is red-shifted by the LL shift ∆12.

p1 p2

Figure 3.4.: Dipole fields produced by two arbitrary oscillating
dipoles p1 and p2. The presence of the two oscillating fields keep them
coupled.

Analyzing the susceptibility, one can also estimate the width of the reflection window
obtained for large densities (see Fig. 3.2). Apart from the energy dissipated in the layer,
this system reflects a large part of the incident radiation from the surface which receives it,
where the reflectivity

R =
∣∣∣∣∣n(ω)− 1
n(ω) + 1

∣∣∣∣∣
2

(3.41)

is close to unity.

In this expression, n(ω) = Re[
√

1 + χe(ω)] is the real part of the refractive index of the
medium. At maximum reflection R(ω) = 1, and the real part of the electric susceptibility
goes to −1. Equating the real part of Eq.(3.24) with -1 gives the range of frequencies at
which the reflection is maximum:

Re
[
χe(ω)

]
= −1 ⇐⇒ ω12 −∆12 < ω < ω12 + 2∆12 . (3.42)
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From Eq. (3.42) it is clear that the frequency window having maximum reflection is span
over 3∆12 which gives a reflection window of width 3∆12 (see Fig. 3.6).
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Figure 3.5.: Susceptibility of a dense two-level system: the blue
solid line is the susceptibility given by Eq.(3.24) and the red dashed
line is the same calculated by integrating the optical Bloch equations
numerically.
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Figure 3.6.: Reflection spectrum for S12 = 12. The reflection reaches
a maximum within a window of width 3∆12 due to the collective
response of the two-level system.

Even though the real part of the refractive index is zero, there is a non-vanishing imaginary
part associated that explains the absorption and dissipation in the system and the associated
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zero transmission through the system. At R = 1, the nano-layer therefore behaves like
a dissipative mirror. Zero transmission through the layer within the window of reflection
means that the electromagnetic field cannot penetrate through the entire layer of thickness
` = 600 nm. The field can however propagate though the layer to a certain extend which
is determined by the system parameters. The field inside the nano-layer is exponentially
decaying and the distance from the interface to the point inside the layer at which the
exponentially decaying evanescent field falls to 1/e is known as the skin depth, ζ(ω). By
definition this skin depth is given by

ζ(ω) = 1
κ

= c

ω

1
Im

[√
1 + χe(ω)

] (3.43)

where κ is the imaginary part of the propagation constant.
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Figure 3.7.: Skin depth ζ(ω) as a function of the reduced detuning
δ for S12 = 12. ζ(ω) is minimum at the shifted resonance frequency
ω = ω′

12 of Eq.(3.32). The skin depth at ω′
12 is very small (≈ 15 nm)

due to the collective response of the two-level system.

Fig. 3.7 shows the skin depth for the strongly interacting system (S12 = 12) as a function of
the reduced detuning δ around the shifted resonance frequency ω′

12. The skin depth reaches
a minimum of about 15 nm at the shifted resonance frequency ω = ω′

12 (corresponding
to δ ≈ −12.4 in Fig. 3.7) i.e, the electromagnetic field of this frequency enters the layer
and dies off very quickly, within a distance of 15 nm. In this situation the calculation of
polarization, electromagnetic fields, populations and coherences should be done within this
skin depth limit where the field is not yet zero.
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3.3.2 Fabry-Pérot Modes

The sidebands seen in Fig. 3.6 in the tails of the reflection spectrum arise from the
interference between multiply reflected and transmitted electromagnetic fields and can be
interpreted as Fabry-Pérot modes [26, 27]. Indeed, systems with more than one interface
can produce interferences between multiply reflected and transmitted fields. The system
studied here can be seen as a Fabry-Pérot étalon consisting of two parallel partially reflecting
planes. Fig. 3.8 illustrates these multiple reflections and transmissions in the layer.
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Figure 3.8.: Schematic view of multiple reflections and transmissions
in the system: Reflection is measured at a point xR in region I and
transmission is measured at a point xT in region III. Region II covers
the nano-layer of thickness `. Linearly polarized light is incident on
the interface between I and II that results in primary reflection and
transmission. A part of the field is reflected back and forth inside the
layer in region II and contributes to the reflection and transmission
measurements.

The reflected electromagnetic fields are calculated at a point xR in region I (xR < 0) and
the transmitted fields are calculated at xT in region III (xT > `). Inside the layer (region
II), a part of the incident electromagnetic field is reflected back and forth, and is therefore
associated with partial transmissions. These partially transmitted electromagnetic fields
contribute to the reflected and transmitted fields at positions xR and xT . Due to the path
differences between different contributions induced by the additional geometrical paths
traveled inside the layer, the interference between them gives maxima and minima. These
interference fringes appear as sidebands in the reflection spectrum (see Fig. 3.6) and in
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the transmission spectrum (see Fig. 3.3, panel b).

Approaching the problem formally, the (complex) geometrical path difference between any
successive fields can be written as

D = 2k′` (3.44)

where k′ = k′
r + iκ is the wave vector of the electromagnetic field inside the layer. Let t1

be the transmissivity of the interface I→ II and t2 be the same for the interface II→ III,
then the primary field noted 1st in Fig. 3.8 in the transmission region can be written as

E1st = t1t2e
−κ`eikx (3.45)

where k is the wave vector in the vacuum. Similarly, the nth order electromagnetic field
transmitted to region III due to the everlasting multiple reflections inside the layer can be
written as

Enth =
(
r2

2e
−2κ`eiD

)n−1
E1st (3.46)

where r2
2 = 1− t22.

Eq.(3.46) suggests that the transmitted field contributions behave like a geometric
progression. Thus the total transmitted field can be calculated by summing up all the
contributions. Taking the ratio between the incident amplitude and the transmitted
amplitude of the electric field, the collective transmissivity can then be extracted as

t(ω) = 4ne−κ`

(n+ 1)2 − (n− 1)2e−i2nk`
(3.47)

since we know the classical relations between the refractive index n and t1, t2 and r2

t1(ω) = 2
1 + n(ω) (3.48a)

t2(ω) = 2n(ω)
1 + n(ω) (3.48b)

r2(ω) = n(ω)− 1
1 + n(ω) . (3.48c)

Following the same path, the global coefficient of collective reflection can be derived as

r(ω) = −2i(n2 − 1)e−ink`sin(nk`)
(n+ 1)2 − (n− 1)2e−i2nk`

(3.49)

and the reflection and transmission probabilities can be finally written as
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R = |r(ω)|2 (3.50a)

T = |t(ω)|2 . (3.50b)
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Figure 3.9.: Comparison between the calculated reflection spectrum
obtained from the numerical solution of the optical Bloch equations
and the reflection probability obtained from Fabry-Pérot interference
scheme (Eq. 3.50) as a function of the reduced detuning δ for S12 = 12.

Fig. 3.9 shows a comparison between the calculated reflection spectrum obtained from the
numerical solution of the optical Bloch equations and the analytical form of the reflection
spectrum obtained via the semi-classical Lorentz model including the Fabry-Pérot formula
treatment. The blue dotted line is the calculated spectrum and the red solid line is the
analytical form of the reflection spectrum given by Eq. (3.50). The reflection window
and the sidebands are represented quite accurately by the analytical model, giving a very
accurate analytical tool for analyzing the calculated dynamics in more complex systems.

3.4 Conclusion and Outlook

The collective response of a nanometric layer composed of two-level quantum emitters was
calculated by integrating the coupled Maxwell-Bloch equations. It was also analyzed using
a semi-classical model based on the Lorentz oscillator which can describe the linear optical
response of dielectrics.
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A clear collective behavior of the system is obtained for large densities in which the
predominant selective reflection associated with zero transmission is described by the
collective oscillation frequency of the induced dipoles in the system.

The analytical model developed in this thesis is accurate enough to explain the collective
effects observed in a dense layer of quantum emitters exposed to weak electromagnetic
fields. Fig. 3.10 shows for instance the relative error in the susceptibility given by Eq.(3.24)
in comparison with the electric susceptibility calculated with the optical Bloch equations.
The blue solid curve is the relative error for weakly coupled dipoles and the red solid line
is the same for strongly interacting dipoles. The error is maximum around the transition
frequency, where the absorption of electromagnetic energy is more important and hence
where the susceptibility varies abruptly. The shift in the curve for strongly interacting
dipoles is due to the LL shift [15]. The relative errors in both cases are very small (of the
order of a few 10−4). Thus the analytical model developed here is accurate enough to
explain the physics of both dilute and dense systems.
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Figure 3.10.: Relative error in the electric susceptibilities |χe(ω)|
obtained from the analytical model when compared to the numerical
integration of the optical Bloch equations as a function of the reduced
detuning δ. The blue curve is for S12 = 10−3 and the red curve for
S12 = 12.

All features including the broad reflection window for strongly interacting dipoles and the
Frabry-Pérot sidebands were explained from classical optics considerations and with the
help of the mean-field Lorentz-Lorenz correction. The model is therefore convincing for
treating more complicated systems and this will be subject of the forthcoming chapters.
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Dipole Induced Electromagnetic

Transparency

This chapter introduces the concept of Dipole Induced Electromagnetic
Transparency (DIET) in three level systems. The manipulation of the
reflection spectrum is also discussed. The concept is then further extended
to a realistic multilevel system: the D1 transition of rubidium atoms.
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4.1 Introduction

The collective response of a nano-layer of two level quantum emitters was discussed in
the previous chapter. It was shown that, for a dense layer of identical coupled dipoles,
reflection becomes dominant within a window around the transition frequency along with a
redshift [1–3].

For a nano-layer comprised of three-level quantum emitters one can expect a similar behavior
with two predominant reflection windows associated with the two transitions with their
own LL shifts whose amplitude will depend on the corresponding transition dipoles.

Depending on the energy splitting between the excited states, the system could behave
differently. In this chapter, the optical response of such systems is discussed.

4.2 Multilevel Systems

The light sources and their associated bandwidths usually allow energetically more than
one transition in a quantum emitter. Limiting our study to two-level systems only would
therefore be very restrictive.

In a more realistic and general picture, one has to treat more than one excited states when
dealing with light-matter interactions. In the previous chapter, a simple analytical model
was developed for two level systems in order to analyze their optical response. This model
will now be extended to the case of multilevel transitions within the same framework.

In a multilevel system, we consider (N − 1) transition dipoles between the ground state
|1〉 and the excited states |〉, with  = 2, ..., N . When the system is subjected to an
external electromagnetic field, these dipoles will get excited, thus creating a macroscopic
polarization in the system. Here the system is a bit complicated due to the presence of
different types of macroscopic polarizations that we note P1(t) due to the transition dipoles
µ1, where  = 2, ..., N .

As shown in the previous chapter, within the limits of linear optics, and thus for weak
excitation where ρ11 �

∑
>2

ρ, the equation of evolution of the macroscopic polarization
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associated with the |1〉 → |〉 transition in the system can be written as

P̈1 + γm Ṗ1 + ω2
1 P1 = ε0$

2
1 Elocal(t), (4.1)

where $1 is the coupling (or plasma) frequency associated with the th transition, defined as
in Eqs.(3.23) and (3.30). Note that we are still considering here an incident electromagnetic
field of linear polarization.

The driving field Elocal(t) includes the fields radiated by all dipoles. Thus the constituent
particles with many levels can be imagined as a collection of dipoles of different kinds
immersed in a collective field of these dipoles along with the applied field.

Thus in a system with more than one type of dipoles, additional couplings arise between
dipoles of different kinds which will be taken into account via the total polarization included
in the local field

Elocal(t) = E(t) + 1
3ε0

N∑
=2

P1(t) . (4.2)

By taking into account the modification in the local field given by Eq.(4.2) and subsequently
looking for the steady state solution, one can take the Fourier decomposition of Eq.(4.1)

W1(ω) P̃1(ω) = ε0$
2
1 Ẽ(ω) +

$2
1

3

N∑
k=2

P̃1k(ω) , (4.3)

where
W1(ω) = ω2

1 − ω2 + iγmω (4.4)

and
$1 =

√
2Nω1

~ε0
µ1. (4.5)

In Eq.(4.3) we recognize the total polarization

P̃ (ω) =
N∑

k=2
P̃1k(ω) (4.6)

and therefore
W1(ω) P̃1(ω) = ε0$

2
1 Ẽ(ω) +

$2
1

3 P̃ (ω) . (4.7)

If we divide this equation by W1(ω)ε0Ẽ(ω) we can finally extract the partial susceptibility
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χ1(ω) associated with the |1〉 → |〉 transition

χ1(ω) =
$2

1

W1(ω) +
$2

1

3W1(ω) χ(ω) , (4.8)

where χ(ω) is the total susceptibility of the system. Summing over all excited states we
finally obtain the total susceptibility of the system as

χ(ω) = 3X(ω)
3−X(ω) , (4.9)

where

X(ω) =
N∑

k=2

$2
1k

W1k(ω) (4.10)

Eq.(4.9) gives the total susceptibility associated with a system having N levels in which all
(N − 1) excited states are coupled to the ground state only. There exists some systems
which can potentially be candidates for such studies, like vibrational states of molecules [4]
or electronic states of atomic species [2] for instance. The later will be discussed in detail
in this chapter.

4.3 Dipole Induced Electromagnetic Transparency (DIET)

Eq.(4.9) is a general expression for an N -level system. Now looking at the specific case of
a three-level system, this equation can be further simplified to get a clear picture. Indeed,
the susceptibility for a three-level system can be simplified to

χ(ω) = $2
13W12 +$2

12W13

W12W13 − 1
3 ($2

13W12 +$2
12W13)

. (4.11)

The resonance frequencies of the three-level system are shifted due to the coupling between
dipoles of same kind as well as between dipoles of different kinds, i.e, due to the transitions
|1〉 → |2〉 and |1〉 → |3〉. Thus the resonance frequencies are expected to be shifted in a
complex way. These resonance frequencies, the eigenfrequencies of the coupled oscillators
at which the collective dipoles absorb the incident radiation, can be found when the real
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part of the denominator of Eq. (4.11) is zero. This is a simple second order equation in ω
that one can easily solve for a specific system. It therefore appears that the contributions
from different dipoles to the dynamics are not independent. The system responds to the
field collectively with two eigenfrequencies, that we will denote by ω− and ω+.

When the splitting between the two excited states is large enough, the two dipoles will
respond to the applied field independently, which means they produce their own reflection
windows with certain width determined by the coupling terms. But the response is more
complex for closely spaced transitions. Indeed, when the two dipoles are oscillating at
similar resonance frequencies, the widths associated the large density could lead to an
overlapping of these two transitions that potentially enables quantum interference effects
between these two transitions. One such case is discussed below.
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Figure 4.1.: Reflection spectrum for S12 = S13 ≈ 12 as a function of
the reduced detuning defined with respect to the first excited state.
The second excited state is shifted by ω13−ω12 = 48 THz. The red line
shows the expected reflection probability in the case of independent
dipoles and the blue line shows the same for coupled dipoles. The black
dashed vertical lines show the positions of the shifted eigen-frequencies
ω− and ω+.

The calculated reflection from a three-level system of transition frequencies ω12 = 484 THz
and ω13 = 532 THz having transition dipoles µ12 = µ13 = 2 D is given in Fig. 4.1 as a
function of the reduced detuning. The reduced detuning is defined with respect to the first
excited state. These two transitions broaden due to dipole-dipole interactions and result in
the overlapping of the two reflection windows.

Approximating the system to a collection of two types of dipoles, it is possible to calculate
the expected reflection probability in the absence of coupling between dipoles of different
kinds. For this we perform two separate calculations with a single dipole and we multiply
the calculated reflection probabilities. The result, shown as a red solid line in Fig. 4.1, peaks
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around the resonance frequency ω+ where both dipoles contribute towards the collective
reflection. But in reality, these dipoles are coupled via dipole fields that change the response
of the system dramatically with two well separated windows of reflection.

The blue curve shows the reflection probability from a system of coupled dipoles. Due
to the couplings the reflection windows are broadened and overlap. In the region where
they overlap, the reflection probability is maximum for an uncoupled system. The coupling
between the dipoles leads however to an interference effect that produces a spectral hole, as
seen Fig. 4.1. Thus, instead of a maximum in the reflection, the dipole coupling produces
a minimum.

It can be seen as the cancellation of the induced dipoles in the medium [1]. When the
dipoles in the system are aligned and out of phase, the resulting macroscopic polarization
has a minimum value. Depending on the coupling, this minimum value could be zero when
the system has no effective total dipole.
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Figure 4.2.: Susceptibility of the three-level system for
S12 = S13 ≈ 12 as a function of the reduced detuning defined with
respect to the first excited state. The two peaks correspond to the
positions of the shifted eigenfrequencies ω− and ω+. The first one has
a Lorentzian shape and the second one is a Fano profile which is due
to the presence of overlapping transitions.

The susceptibility associated with each dipole possesses independently a Lorentzian shape
similar to the case discussed in the previous chapter. But here, in the presence of
dipole-dipole couplings, the line shape is modified. Fig. 4.2 shows the susceptibility in the
case of the three-level system discussed here.

The susceptibility shows a double peak structure that corresponds to the two transitions in
the system. The first transition corresponds to the shifted resonance frequency ω−. It has
a Lorentzian profile and the second peak shows a Fano profile characterizing the quantum
interference between the two indistinguishable excitation pathways [5]. The minimum in
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the Fano profile corresponds to the cancellation of the two dipoles resulting in the minimum
of the reflection window.

The frequency ωh at which the reflection has a minimum is

ωh =

√√√√ω2
12$

2
13 + ω2

13$
2
12

$2
12 +$2

13
. (4.12)

It corresponds to the frequency at which the real part of the numerator of Eq. (4.11) is
zero. If the second dipole is stronger than the first one (µ12 < µ13), ωh shifts towards the
transition frequency ω12 of the first excited state. In the opposite case (µ12 > µ13), ωh

shifts towards ω13. Thus the position of the minimum reflection in the case of a three-level
system is somewhere in between the transition frequencies of the system [1], depending on
the coupling strengths.

ωh
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Figure 4.3.: Transmission spectrum for S12 = S13 ≈ 12 as a function
of the reduced detuning. The blue line is for a layer of thickness
` = 600 nm and the red line is for ` = 300 nm. The total decay rate
is γm = 10.5 THz. The black dashed vertical line shows ωh calculated
from Eq. (4.12). The peaks in the middle correspond to DIET.

The most interesting information from the analysis done here is that a field of frequency
ωh incident on such a system, will pass and will propagate though the layer without
any collective reflective effects. The medium is lossy because of the propagation losses
associated with the imaginary part of the refractive index.Thus the layer behaves like a lossy
and transparent medium. Transparent in the sense that the real part of the refractive index
is one. Thus for a layer of low decay effects, the field corresponding to the spectral hole
ωh in the reflection spectrum can be observed in the transmitted signal. This transparency
is induced in the system due to the destructive interference of the overlapping excitation
pathways and hence named as Dipole Induced Electromagnetic Transparency [1, 2]. Similar
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situation has previously predicted in the case of overlapping transitions in isolated atom or
molecule [6, 7].

Fig. 4.3 shows the transmission spectrum of the three-level system considered here. The
peak corresponding to DIET is exactly at the position predicted by Eq. (4.12). This
figure shows the transmission spectra for two different thicknesses. The blue curve is
the transmission spectrum for a layer of thickness ` = 600 nm. Even though the field
corresponding to the DIET frequency enters the system, feeling no reflection at the interface,
a part of it is lost in the medium while propagating from one interface to the other via the
decay mechanisms of the system characterized by γm = 10.5 THz.

This propagation loss depends on the thickness of the medium via the Beer-Lambert’s
law [8]. Thus a reduction in the layer thickness can increase the transmitted signal. The
red curve in Fig. 4.3 is the transmission from a ` = 300 nm layer of the same three-level
quantum emitters.
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Figure 4.4.: Transmission spectrum for γm = 5.5 THz as a function
of the reduced detuning for a layer of thickness ` = 300 nm.

Apart from the thickness, choosing a system with low damping rates, like with colder atoms
for instance, can improve the signal remarkably. This is shown in Fig. 4.4 for a layer of
thickness ` = 300 nm. The decay rate γm is reduced to 5.5 THz in comparison with the
previous calculation. The peak corresponding to DIET is increased compared to that of
γm = 10.5 THz shown in Fig. 4.3. The modification in the scale of reduced detuning is
due to the difference in γm.

Since the transmittance depends on the decay effects and hence on the imaginary part of
the susceptibility of the system, the DIET signal could be absent in the transmitted signal
of a system with high damping effects or large thicknesses even though the destructive
interference effect is present. The presence of this destructive interference can be identified
by looking at the reflected signal. The presence of a spectral hole in the reflection spectrum
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is a clear signature of the destructive interference between the radiation emitted by the
coupled dipoles and hence it constitutes a signature of DIET [1].

4.4 Rubidium Atoms

These studies can be further extended to a realistic multilevel system having more than
two excited states. In the strong dipole interaction (i.e. dense) regime, the Lorentz-Lorenz
correction to the local field felt by the quantum emitters leads to redshifts in all transitions,
as shown in the previous section. The most interesting case, discussed above, is when two
nearby transitions are significantly overlapping. This leads to interferences between these
two transitions which modify the optical response of the system. It leads to DIET, which is
due to the interference between two indistinguishable excitation pathways [1]. A series of
such narrow windows can thus surely be obtained in the case of a multilevel system.

The DIET effect in a realistic multilevel system can be studied in a nano-layer of dense
rubidium atoms for instance. Rb is widely used both in thermal gases experiments [9] and in
cold atomic gases experiments [10]. In addition, the Rb D line transitions are characterized
by large S to P transition dipoles [11]. Having large transition dipoles is of special interest
since the dipole-dipole interaction depends on the square of the transition dipoles. The
same scales linearly with the number density. Thus Rb allows to have relatively low density
with strong interactions. Among most common isotopes of Rb, 85Rb is considered here. It
is possible to choose either the D1 or D2 transitions in 85Rb. Here the D1 transitions are
considered, i.e, the system under consideration is a nano-layer of dense 85Rb atoms exposed
to an electromagnetic field tuned near the 52S1/2 to 52P1/2 transitions (see Fig. 4.5) [11].

52S1/2 is the ground state of the system and 52P1/2 is the excited state. These levels are
split into two sub-levels, as shown in Fig. 4.5, due to the hyperfine coupling [12] that
effectively turn the system into a multilevel system with four dipole-allowed transitions.
Transitions between the hyperfine levels of same electronic state are obviously forbidden.
Thus the D1 transitions of the 85Rb isotope can be considered as a mixture of two three-level
systems having same excited states but different ground states. From Eqs. (4.9) and
(4.10), the susceptibility of such a system can be written as

χ(ω) =
∑

 $
2
1/W1 +∑

′ $2
1′′/W1′′

1− 1
3

(∑
 $

2
1/W1 +∑

′ $2
1′′/W1′′

) , (4.13)

where the indices 1 correspond to the transitions from the sub-level F = 2 of 52S1/2 and
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1′′ is for the transitions from F = 3.

52S1/2

52P1/2

377.10738569 THz

F = 3
150.659 MHz

F = 2
210.923 MHz

F = 3
1.26488851 GHz

1.77084392 GHz
F = 2

Figure 4.5.: 85Rb- D1 Transitions

Now the possible overlapping that can be achieved in such a system for observing the DIET
effect are of two different kinds [2].

When the dipole interactions are strong enough the excited states can broaden, leading to
overlapping resonances that will induce DIET. There are two such possible DIET signals in
the system since transitions are possible to two different excited states from two different
ground states. If the interaction between the dipoles extends further, it may exceed the
ground state splitting, giving rise to a new DIET effect due to the overlap of the two
different ground states.

The LL shifts for the D1 transitions of Rb can be written as

∆F F ′ = ∆0 S
2

F F ′ (4.14)

where ∆0 = Nµ2
SP/(3~ε0) is the LL shift defined in the absence of hyperfine splitting and

SF F ′ is a measure of the relative strength of the transitions [11] that should be multiplied
with the transition dipole µSP in the absence of hyperfine splitting in order to obtain the
transition dipoles to the hyperfine-splitted excited states. The interaction strength for the
D1 transitions is defined as

SSP = ∆0

γm

(4.15)

The electric susceptibility and the associated reflection spectrum from a ` = 600 nm thick
85Rb atomic layer for SSP = 3.8 × 10−3 are shown in Fig. 4.6. The sample is assumed
to have negligible Doppler and collisional shifts. The reduced detuning δ is defined with
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respect to the D1 transition frequency in the absence of hyperfine splitting [11].
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Figure 4.6.: Panel (a): Absolute value of the susceptibility in log
scale. Panel (b): Reflection spectrum from a 600 nm thick layer of
85Rb atoms with negligible Doppler and collisional broadening with
SSP = 3.8×10−3. The transitions are marked with red dashed vertical
lines and with the corresponding (F, F ′) values

Panel (a) in Fig. 4.6 shows the magnitude of the susceptibility of the sample in log scale.
The two double peaks are characterized by a Lorentzian shape in the negative detuning
side corresponding to the transitions F = 3 → F ′ = 2 and F = 2 → F ′ = 2 and by
another Lorentzian shape in the positive detuning side corresponding to the transitions
F = 3→ F ′ = 3 and F = 2→ F ′ = 3. These transitions are marked in the figure with
the corresponding (F, F ′) values. The separation of the two double peaks is due to the
hyperfine splitting of the ground state which is of the order of 3 GHz. The reflection
spectrum associated with these transitions is shown in Fig. 4.6(b). It shows a series of
Lorentzian profiles corresponding to the different transitions. This was expected for a
weakly interacting sample of dipoles (see Fig. 3.2).

The transition dipoles are large for the D1 transitions, of the order of 10 D and the excited
states are separated by 350 MHz only. A relatively small increment in the density N can
therefore lead to the DIET regime. The calculated reflection and transmission spectra and
the susceptibility for such a system with SSP = 21 are given in Fig. 4.7.

The absolute value of the susceptibility of the system is shown in panel (a). Panel (b)



4.4 Rubidium Atoms 187

Fano Fano

−150 −100 −50 0 50 100 150
0

0.5

1

Reduced Detuning δ

T
(ω

)

(c)

0

0.5

1

R
(ω

)
(b)

10−1

100.7

102

|X
(ω

)|

(a)

Figure 4.7.: Panel (a): Absolute value of the susceptibility (log scale)
of 85Rb atoms with negligible Doppler and collisional broadening at
SSP = 21. Panel (b): Reflection spectrum. Panel (c): Transmission
spectrum. The width of the sample is 600 nm.

presents the reflection spectrum and panel (c) shows the transmission. The expected
overlapping of the two transitions originating from F = 3 (or from F = 2 also) result in
two Fano profiles for the susceptibility. This explains the two sharp minima in the reflection
spectrum. Concurrently, two narrow peaks appear in the transmission spectrum. Those are
characteristic from a DIET effect [2]. We have here a first theoretical demonstration of the
existence of DIET in a realistic multi-level system.

An additional increase of the dipole-dipole interaction can lead to the mixing of the F = 2
and F = 3 ground states into a (approximate) single excitation state which is coupled to
the excited states. This leads to two broadened excitations from the two different ground
states to an approximate single excited state which can overlap to result in a destructive
interference. Fig. 4.8 shows this effect in very strongly interacting samples of 85Rb atoms,
with SSP = 200.

Panel (a) in Fig. 4.8 is the modulus of the susceptibility. Panel (b) is the reflection
spectrum for a layer of thicknesses ` = 600 nm. Panel (c) is the corresponding transmission
spectrum. The susceptibility of the system, in comparison with the previous case, is modified
significantly. The system has an enhanced Lorentzian profile and one dominant and two
faint Fano-type profiles.
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Figure 4.8.: Panel (a): Absolute value of the susceptibility (log scale)
of 85Rb atoms at SSP = 200. Panel (b): Reflection spectrum. Panel
(c): Transmission spectrum. The width of the sample is 600 nm.

The dominant Fano profile located near the zero of the reduced detuning arises from the
overlapping of two coupled dipoles F = 3 → F ′ = 2, 3 and F = 2 → F ′ = 2, 3. This
superposition of transition dipoles from two distinct ground states to an approximate single
excited state leads to DIET, as seen in the reflection (Fig. 4.8(b)) and transmission (Fig.
4.8(c)) signals of the layer. The other two faint Fano lineshapes are due to the splitting in
the excited states that also result in DIET, going along with two small transmission peaks
on the left and right of the dominant DIET transmission signal. These two DIET effect are
more clearly imprinted in the reflection spectrum via associated spectral holes (Fig. 4.8(c)).

The reflection and transmission spectra of the system have a background where DIET is
observed. This is because of the Fabry-Pérot etalon effect discussed previously. Due to
the mismatching between the layer thickness ` = 600 nm and the transition wavelength
λ0 ' 795 nm, long tails are created near the reflection window. This can be improved by
using a thicker slab.
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4.5 Conclusion

In this chapter, the semi-classical model of the Lorentz oscillator was extended to a multilevel
system. This extended model can explain the calculated response of a realistic multi-level
system towards weak electromagnetic fields.

A new collective effect named dipole induced electromagnetic transparency (DIET) was
discussed. It is an induced electromagnetic transparency in a system of strongly interacting
quantum emitters with two (or more) closely spaced excitations. The mechanism lies on
the destructive interference between two overlapping resonances. The frequency ωh of the
induced transmission window can be calculated using Eq. (4.12). An electromagnetic field
of this frequency, incident on the system, will be transmitted through the layer with an
associated extinction obeying Beer-Lambert’s law.

DIET was discussed in the case of the D1 transitions of a gas of 85Rb atoms at low
temperature. Different DIET effects were calculated due to the mixing of the different
energy levels of the considered transition.

The signature of DIET is imprinted very clearly in the reflection spectrum, which shows
a spectral hole at the transmission frequency ωh. Several applications can be suggested
in which DIET could play an important role. Some of those will be discussed in the next
chapter.
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5
Potential Applications of DIET

This chapter describes two potential applications of dipole induced electro-
magnetic transparency (DIET): pulse shaping and slow light. These effects
are discussed for model systems and for the D1 transitions of 85Rb. A simple
control knob for manipulating the DIET frequency is also given.

Keywords:

DIET, Slow Light, Refractive Index, Group Velocity, Group Index, Pulse
Shaping, Transmitted Pulse, Reflected Pulse
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5.1 Introduction

An interference between two indistinguishable pathways leads to an induced electromagnetic
transparency called dipole-induced electromagnetic transparency in a dense sample of
multilevel particules. This effect was discussed in detail in the previous chapter. It provides
some interesting applications. Two of the potential applications of DIET are pulse shaping
and slow light. These applications are discussed in this chapter.

5.2 Pulse Shaping

Shaping a laser pulse in a desired way is an interesting application [1–3]. Pulse shaping
or waveform synthesis is the process of changing the pulse shape (envelope) to a form
that is optimized for a desired application. There are many ways for achieving this goal.
In some of the techniques the pulse is modified by using a beam shaper [2], spatial light
modulators [4], deformable mirrors [5], etc...

Input Output

Pulse Shaper

Figure 5.1.: Schematic view: Pulse shaping.

Pulse shaping techniques showed their strong impact as an essential experimental control
tool in ultrafast spectroscopy, nonlinear fiber optics, and strong-field physics. There are
many research fields where pulse shaping pulse shaping is used, like superconducting
qubits [6], laser filament experiments [7], holographic and nonlinear pulse processing [4],
chemical reactions, etc... The goal can be, for instance, to find an optimal pulse shape
in order to minimize unwanted effects, for example to minimize the space-charge induced
emittance growth in RF photoinjector cathodes [8], or to maximize the desired processes in
experiments.

The cancellation of the dipoles due to the destructive interference of the overlapping
resonances seen in DIET can also be used for pulse shaping. If the layer of interacting



194 Chapter 5. Potential Applications of DIET

three-level quantum emitters is characterized by a reflection window which is wider than the
FWHM of the incident pulse ∆ω, the collective response of the quantum emitters results
in a selective reflection and transmission of the incident pulse. Fig. 5.2 shows the reflected
pulse from a layer of width ` = 3.5µm of three-level systems with the same parameters as
the one used in section 4.3, for an incident pulse of ∆ω = 40π THz.
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Figure 5.2.: The green line is the incident pulse shape normalized
with respect to the peak intensity and the red line is the normalized
reflected pulse envelope. The corresponding transmission through the
layer is shown in the inset.

The blue curve is the reflected pulse shape from the layer which is compared with the
incident pulse envelope shown by the green curve. The spectral hole is present at the
position where DIET occurs. The associated transmission is shown in the inset of the figure.
The transmission is very small due to the high damping factor used in the calculations. All
these plots are normalized with the peak intensity of the pulse. The reflected pulse has an
important modification compared to the incident field. The pulse shape now looks like the
superposition of two distinct pulses. If the position of the spectral hole that separates these
two pulses can be controlled to a certain extend, it can be of great interest to eliminate a
part of the frequencies from the pulse that could be of interest for many purposes.

Rewriting the equation for the frequency of the spectral hole

ωh =

√√√√ω2
12$

2
13 + ω2

13$
2
12

$2
12 +$2

13
, (5.1)

it is clear that the position of the spectral hole depends on the coupling between the
dipoles and on the energies of the excited states. Thus once the excited states and other
parameters of the system are chosen, the control of the position of the hole over the
reflection spectrum is limited. Since the number density N can be controlled by modifying
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the pressure of the gas [9], it opens a possibility to control the coupling between the dipoles.
For example, if the system is prepared by mixing two different types of atoms having closely
spaced energy levels, the coupling between the dipoles can be modified by changing the
number density of each type of emitters. The ratio of these couplings is

$2
12

$2
13

= ω12 N µ2
12

ω13 N ′ µ2
13
, (5.2)

where N and N ′ are the number densities of the first and the second types of atoms.
Controlling the dipole-dipole interaction in a dense medium by adjusting material parameters
offers an additional way that helps to engineer the collective effects in such systems. Fig. 5.3
shows the result for a mixture of two two-level quantum emitters of very close transition
energies. A simple change of the relative densities of the two types of quantum emitters
changes the position of the spectral hole as expected.
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Figure 5.3.: Reflected pulse shapes from a mixture of two two-level
systems. The blue line is the reflection for $2

12 > $2
13, the red line is

for $2
12 = $2

13 and the green line is for $2
12 < $2

13. Two vertical lines
show the transition frequencies ω12 and ω13.

The blue solid curve shows the reflected pulse envelope for $2
13 = 10$2

12. For this case the
spectral hole appears near the transition frequency of the first quantum emitter. The red
line is for $2

12 = $2
13 and the spectral hole appears exactly in the middle. For $2

12 = 10$2
13

which is represented with the green line, the reflected pulse is imprinted with the hole near
the second quantum emitter transition. Thus by changing the dipole-dipole coupling, the
frequency of DIET and hence the spectral hole in the reflected signal can be controlled
between the two transitions. The upper and lower limits of this window within which DIET
can be controlled are fixed by the choice of quantum emitters.



196 Chapter 5. Potential Applications of DIET

−100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

Reduced Detuning δ

N
o
rm

a
li

ze
d

P
u

ls
e

S
h

ap
e

Incident Pulse
Reflected Pulse

Figure 5.4.: The blue line is the incident pulse shape normalized
with respect to the peak intensity and the red line is the normalized
reflected pulse envelope.

In the case of a multilevel system, DIET will leave a succession of spectral holes in the
reflected pulse. Fig. 5.4 shows the reflected pulse shape from such a system with ten
transitions regularly spaced by 0.01 eV. The detuning is defined with respect to the first
transition energy of the system, which is at 2 eV.

5.3 Slow Light

The speed of light is a fascinating quantity. For an electromagnetic field, the dependence of
the field propagation on the material parameters is a consequence of Maxwell’s equations
[10]. The refractive index of a system, which gives access to the speed of the light in a
medium, depends on the resonances in the system under consideration. In addition, near
the resonances a strong dispersion is observed. Precisely, the refractive index is defined as
a ratio of phase velocities. For a pulse propagating in a dense gas, the group velocity vg

can be written as

vg(ω) = c

ng(ω) , (5.3)

where ng is called the group index of the medium and is defined as

ng(ω) = n(ω) + ω
dn

dω
. (5.4)

In general, the dispersion in a medium dn/dω is small. Large values of the dispersion
are usually associated with resonances and hence with absorption in the medium. The



5.3 Slow Light 197

interesting phenomenon of slow light, that is associated with large values of the group
index, is hence not easy to achieve in practice. The slow light effect in physical systems [11,
12] was observed in weak pulse propagation through amplifying media in the late 1960’s
[13, 14] and early 1970’s [15]. Later, researchers managed to decrease the speed of light
to a few tens of m/s and then stopped it [16–18]. There are many applications for these
effects in different fields including communications, quantum information [19, 20], optical
memories [21, 22], etc...
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Figure 5.5.: The blue line is the transmitted pulse shape normalized
with respect to the peak intensity and the red line is the group velocity
as a function of the reduced detuning.

The physics behind slow light is based on electromagnetic induced transparency (EIT).
Similar to EIT, DIET can also induce the slowing down of light at frequencies near the
overlapping resonances [23, 24]. To see this effect using DIET, we consider a 600 nm layer
of strongly interacting three-level systems. Keeping all other parameters as in the previous
section, the group velocity of light can be estimated. Fig. 5.5 shows the group velocity
and the transmitted field for the system considered. The group velocity of the transmitted
pulse is here reduced by a factor of 210, i.e, the group index of the model system is 210.

The blue solid curve is the transmitted pulse due to the induced transparency using DIET.
The transmission is not very efficient due to the inevitable losses in a dense medium. The
red curve shows the group velocity as a function of the reduced detuning. It is clear
that in the vicinity of DIET the group velocity is small compared to the speed of light
in the vacuum. Even though the model used here is not so efficient as already achieved
experiments using EIT, for example [18], it shows that the transmitted part of the incident
field at DIET frequency will be traveling with a reduced speed.

It is also interesting to examine the effect in a realistic sample. For that, we consider the D1

transitions of 85Rb atoms. We suppose that the pressure is such that the system is in the
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Figure 5.6.: Panel (a): Group index ng(ω). Panel (b): Real and
imaginary parts of the refractive index n(ω) of the system in the
vicinity of DIET. Panel (c): Group velocity (left y-axis) and normalized
transmitted pulse (right y-axis) for a layer of 2µm of 85Rb atoms.

strong interaction regime, with SSF = 200, so that the interaction between all dipoles in
the layer are strong enough to induce associated transparencies via destructive interferences.
A similar kind of reduction in the velocity of the transmitted pulse is obtained. Fig. 5.6
shows the relevant results for a layer of thickness 2µm.

Panel (a) shows the group index of the system. The group index is very high, a few 106,
similar to recent experimental studies on slow light in plasmonic waveguides [12]. The local
minimum in the group index, corresponding to ng ≈ 4.106 around δ = 15, corresponds to
the DIET transmission window. Within this window, the imaginary part of the refractive
index n(ω), shown with the red curve in the panel (b), shows a window of minimum,
making the layer less dissipative. The real part of the refractive index, represented by the
blue solid curve in panel (b), shows a point of inflation at the frequency of DIET.

The red curve in panel (c) is the transmitted pulse through the layer. It lies exactly in the
window of minimum dissipation. Even though the imaginary part of the refractive index
and hence the absorption coefficient is small, due to the relatively long distance (` = 2µm)
traveled in the layer, the transmittance is reduced to 45%. The group velocity, represented
by the blue curve in panel (c), is very small, a few tens of m/s. A zoom of the plot showing
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this very small group velocity is given in Fig. 5.7. At the maximum of the group index, the
group velocity drops below 20 m/s. At the peak of the transmission, the group velocity
reaches 80 m/s.

The transit time for the pulse through the layer which is defined in general as T = `/vg

is also an interesting quantity to look at. Being the reciprocal of the group velocity, the
transit time behaves in the similar way as the group index as a function of the reduced
detuning and the value of the transit time for a particular value of the reduced detuning is
given by the group index multiplied by the factor `/c. For the pulse considered here, the
transit time in the DIET regime lies around 30 ns, to be compared with a transit time of
about 6 fs in the vacuum.
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Figure 5.7.: Group velocity as a function of the reduced detuning δ
for the D1 transitions of 85Rb atoms.

5.4 Conclusion

In this chapter, two potential applications of DIET were discussed.

Pulse shaping was discussed in the case of a three-level system and of a multilevel system
in the strong interaction regime corresponding to a dense gas. A simple way for controlling
the position of the spectral hole in the reflected pulse was also discussed by varying the
relative pressure of two different atomic gases. By changing the position of the spectral
hole that corresponds to DIET, it is possible to exclude the desired frequency from the
deformed reflected pulse. This may be of interest for different purposes.

The slowing down of the speed of light inside the layer can be seen in systems showing
DIET. Essentially, the pulse transmitted due to DIET is experiencing a large dispersion and
hence a large group index that can slow down the pulse down to a few tens of m/s. Even



200 Chapter 5. Potential Applications of DIET

though there are some experiments showing better performance using EIT and/or even
stopped light, it is interesting to see that slow light can be observed also in DIET.
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6
Conclusion and Outlook- Part II

This chapter concludes the work described in the second part of the thesis.
It also describes some recent results obtained with stronger incident pulses.
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6.1 Conclusion

In this part of the thesis, the optical properties of multilevel systems confined in a nanometric
cell (layer) was investigated in detail within the weak field limit.

The optical response of a dense sample of two-level systems was calculated in both the weak
(dilute) and strong (dense) interaction regimes of the constituent particles. In the weak
interaction regime, the system is characterized by a weak Lorentzian lineshape that confirms
the absence of collective behavior of the constituent particles. A simple Lorentz model
describing the system is used for interpreting the physics. Many interesting collective effects
are observed in the strong interaction regime, including the enhancement and broadening
of selective reflection due to the coupling between the dipoles.

In the presence of additional closely spaced quantum states, the response of the system
changes dramatically. Broadened interactions due to dipole-dipole couplings induce an
overlap of different resonances, leading to the cancellation of the dipoles in the system
at a specific wavelength. The field then propagates through the medium, with minimum
refractive effects. This transparency induced due to the dipole coupling in the system was
named ”dipole-induced electromagnetic transparency” (DIET).

These effects were explained using model systems and realistic calculations were also
designed on the basis of the D1 transitions of 85Rb atoms at low temperature. An
anticipated transparency is obtained in the case of Rb atoms, giving a possibility for
verifying the existence of DIET experimentally. Since there are many groups working on
the field using Rb samples, this may be achieved in the near future.

DIET resembles the well-known electromagnetically induced transparency process (EIT).
Cancellation of the dipoles happens at a frequency between the two nearest transitions in
the system. The frequency at which the transparency occurs can be controlled by changing
the relative number density of different types of atoms. Just like in EIT, the light passing
through the system is delayed due to a high dispersion effect. This slow light effect was
calculated in the case of Rb atoms.

DIET modifies the reflected spectrum, which shows one or several spectral holes. This
effect can be used for excluding desired frequencies from a laser pulse. This type of pulse
shaping can be of experimental interests and it was discussed in the case of multilevel
model systems.

All these effects were discussed exclusively within the limits of a weak probe. Moving out of
this limit will affect the system significantly by populating excited states with a significant
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probability and by turning on different kinds of responses to the applied fields. These effects
are briefly introduced in this last chapter of the thesis.

6.2 Non-Hermitian Model Revisited

For treating the system quantum mechanically, either Bloch equations or non-Hermitian
wave packet equations [1] can be used. The later was of great interest while dealing with
multilevel systems since the method used speeds up the calculations. But the equations for
the non-Hermitian wave packet propagation will be diverging in strong fields due to the
large number of excitations in the system. The equations describing the coherences of a
multilevel system in the non-Hermitian wave packet model were given in Eq. (2.48). We
rewrite them here:

i
∂C1

∂t
=

[
ω1 + i

γ1(t)
2

]
C1 +

∑
>2

Ω1(t)C (6.1a)

i
∂C

∂t
= Ω1(t)C1 +

[
ω − i

γ(t)
2

]
C (6.1b)

where

γ1(t) =
(2γ + Γ)∑k>2 |Ck(t)|2

|C1(t)|2 −
∑

k>2 |Ck(t)|2 , (6.2a)

γ(t) = (2γ + Γ)|C1(t)|2
|C1(t)|2 −

∑
k>2 |Ck(t)|2 . (6.2b)

These equations were derived from the time dependent Schrödinger equation for a non-
Hermitian Hamiltonian satisfied by a normalized wave function, with coefficients Cı where
ı = 1, 2, 3..N .

The problem for extending this model beyond the weak probe limit is clear from Eq. (6.2).
In the presence of strong fields, the excitation probabilities are not negligible. Since the
definition of γı(t) depends on the population difference, these quantities will diverge as the
population of the excited states grows beyond 50%. This divergence is inevitable in this
model. It can however be avoided if one relaxes the constraint of having a normalized wave
function. In this case, both the ground and excited state populations can vary accordingly so
that the pole is eliminated from the calculation. Relaxing the condition on the conservation
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of the norm leads to another non-Hermitian model that, as we will see later, is valid in the
strong field limit.

6.2.1 Improved Non-Hermitian Model for a Two-Level System

From Eq. (2.27) it is clear that the coherences depend on the difference in populations
between the ground and excited states. Thus it is important to describe the quantity
|C1(t)|2 − |C2(t)|2 accurately in a two-level system. The aim is therefore to find a set of
dynamical equations for C1(t) and C2(t) that describes this population difference correctly,
and not necessarily the norm |C1(t)|2 + |C2(t)|2.

As seen from the previous approach, the condition on the empirical gain and decay factors
γ1(t) and γ2(t) should be

γ2(t)− γ1(t) = 2γ + Γ. (6.3)

In addition, an accurate description of the evolution of the population difference requires

2Γ |C2(t)|2 = γ1(t) |C1(t)|2 + γ2(t) |C2(t)|2 (6.4)

From Eqs. (6.3) and (6.4), we obtain

γ1(t) = (Γ− 2γ) |C2(t)|2
|C1(t)|2 + |C2(t)|2

(6.5a)

γ2(t) = (2γ + Γ) γ1(t) + 2Γ |C2(t)|2
|C1(t)|2 + |C2(t)|2

(6.5b)

With this approach, and in contrast with Eq. (6.2), it is clear that the rates γ1(t) and γ2(t)
should not diverge anymore.
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6.2.2 Comparison of the Different Non-Hermitian Models

We now compare the different models for different field strengths. A comparison between
the optical Bloch equations and the non-Hermitian model obtained for norm-conserved
wave packets was already detailed in Chapter 2. Here the calculations are performed for a
600 nm nano-layer composed of two levels systems with a transition energy of 2 eV and
with S12 = 1.26. Fig 6.1 shows the response of the system towards a Gaussian pulse with
FWHM of 2π × 98.23 THz (10 fs pulse) within the weak probe limit.
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Figure 6.1.: Response of a 600 nm layer of two-level systems
calculated using optical Bloch equations (thick blue curve), the
non-Hermitian wavepacket model-1 (thin red curve) and the non-
Hermitian wavepacket mode-2 (dashed green curve) as a function of
the reduced detuning for S12 = 1.26. Panel (a): Reflection. Panel (b):
Transmission. Panel (c): Extinction, with a weak 10 fs pulse.

The results obtained from the numerical integration of the optical Bloch equations are
plotted with the thick blue curves. The red thin curves are calculated from the non-Hermitian
model-1 (conservation of the norm) and the green dashed curves are the non-Hermitian
model-2 (revised model). Panel (a) shows the reflection spectra, panel (b) shows the
transmission and the panel (c) is the extinction. As it is clear from the figure, the optical
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response calculated using the three models match very well in the weak probe regime.
The choice made on the description of the quantity |C1(t)|2 − |C2(t)|2 for excluding the
numerical difficulty as the system approaches the population inversion does not bring any
noticeable discrepancy. Thus the non-Hermitian wave packet model-2 can be used for
studying dense two-level systems within the weak field limit.
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Figure 6.2.: Density matrix elements calculated from the non-
Hermitian wave packet models for a 600 nm layer of two-level systems
at S12 = 1.26 excited by a weak 10 fs gaussian pulse. Panel (a):
Population of the excited state. Panel (b): Modulus of the coherence.
Panel (c): Real part of the coherence. The blue solid line is the result
obtained from model-1 and the red dashed curve is for model-2.

Fig 6.2 shows the coherences and excited state population calculated using the two
non-Hermitian wave packet models. The comparison between the wave packet models with
the optical Bloch equations are excluded since a similar case for the non-Hermitian model-1
is already discussed in Chapter 2. Panel (a) in Fig. 6.2 shows the population of the excited
state. Panel (b) shows the absolute value of the coherence ρ12(t) and panel (c) shows the
real part of the coherence. The blue solid lines are the results obtained from model-1 and
the red dashed lines are from model-2. They are in excellent agreement. It is interesting to
see that the population of the excited state, which is not optimized with model-2, is still
very accurate.
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Figure 6.3.: Density matrix elements calculated for a 600 nm layer
of two-level systems at S12 = 1.26 excited by a strong 10 fs gaussian
pulse. Panel (a): Population of the excited state. Panel (b): Modulus
of the coherence. Panel (c): Real part of the coherence. The blue
thick line is obtained from the optical Bloch equations, the green
thin line is from the non-Hermitian wave packet model-1 and the red
dashed curve is for model-2.

But the case will be different as the incident field intensity increases so that the system
is disturbed significantly. In this case the condition |C1(t)|2 � |C2(t)|2 is no more valid.
Fig. 6.3 shows the population and the coherence and Fig. 6.4 shows the optical response
calculated from the three models describing the dynamics of the two-level system exposed
to a strong field. A 10 fs Gaussian pulse of amplitude E0 = 5× 109 V/m ≈ 0.01 au is used.
In the presence of such a strong field, the optical Bloch equations are used as a reference
for comparing the results obtained from the non-Hermitian wave packet models.

The thick blue curves in Figs. 6.3 and 6.4 are the results obtained from the optical Bloch
equations. The green thin curves are those obtained from the non-Hermitian model-1 (with
conservation of the norm) and the red dashed curves are those from the non-Hermitian
model-2 (revised model). The panel (a) in Fig. 6.3 shows the population of the excited
state calculated from the three models. None of the two wave packet methods are able to
describe accurately the evolution of this population even if the second method is doing
a slightly better job. An interesting feature for the population calculated from model-2
is that its variation is similar to the one of the coherence of the system which is given
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Figure 6.4.: Optical response calculated for a 600 nm layer of two-
level systems at S12 = 1.26 excited by a strong 10 fs gaussian pulse.
Panel (a): Reflection. Panel (b): Transmission. Panel (c): Extinction.
The blue thick lines are from the optical Bloch equations, the green
thin lines are from model-1 and the red dashed curves are from
model-2.

in panel (b). The coherence calculated from model-1 disagrees clearly with the optical
Bloch equations while the coherence calculated from model-2 is very accurate. A similar
conclusion can be reached from the real part of the coherence.

The well-behaved coherence obtained from model-2 in strong fields ensures a better accuracy
for the calculation of the response of the system compared to model-1. Fig 6.4 shows the
comparison between the responses obtained from the different models. Panel (a) shows the
reflection, panel (b) shows transmission and panel (c) shows the extinction. The color codes
used in this plot are the same as in Fig. 6.3. The non-Hermitian model-1 shows a clear
disagreement with the optical Bloch equations while the model-2 reproduces accurately the
”exact” results. This method could therefore be used to predict the response of the system
in strong fields.
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6.3 Outlook

DIET is of experimental interest. It can be used in many ways for practical purposes. The
system considered in this thesis is a uniform distribution of quantum emitters. The pulse
transmitted through DIET systems constitutes slow light. In the case of 85Rb, we have
shown that the transmitted pulse can travel with velocities of a few tens of m/s. Thus the
addition (or the presence) of a mechanical wave (oscillation), like a sound wave for instance,
could affect the quality of DIET. For example, the action of a longitudinal wave will set
the constituent particles in oscillation in the direction of propagation. If the acoustic wave
and the applied electromagnetic fields are propagating in the same direction, the emission
of dipolar fields will happen while the dipoles are oscillating. Since the group velocity of
the electromagnetic field is very small, there may be an important influence on DIET either
in terms of frequency or in terms of efficiency. It is a problem that could be of interest for
the future.

The development of the non-Hermitian code for a multilevel system in the strong field
regime is also interesting. Currently the model, named non-Hermitian model-2, works
well for two-level systems. The problem lies with the choice of the empirical decay and
decoherence rates introduced in the model. An appropriate definition of these empirical
quantities could lead to an accurate multilevel model. It could then be used for studying
strong field phenomena in dense gases. Some groups reported high harmonic generation
in dense systems. It may be of interest to look at similar systems to explore more about
the strong field effects in a high density sample of quantum emitters. The advantage of
having a wave packet model is that it is computationally much more efficient than a time
dependent density matrix approach when many quantum states are populated.

6.4 References

[1] E. Charron and M. Sukharev. “Non-Hermitian wave packet approximation of
Bloch optical equations”. In: The Journal of Chemical Physics 138, 024108 (2013).
doi: 10.1063/1.4774056 (cited on page 206).
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A
Atomic Unit System

It is important to use an appropriate unit system that ease the calculations we want to
do. The most commonly used unit system, the Système International (SI) is not always
practical. For example, to describe physical quantities in relativistic calculations, string
theory, etc.. the Lorentz-Heaviside system of units is more useful. When we deal with
quantum gravity, the most practical unit system is based on Planck units. Atomic units
(a.u.) is a system of units based on universal atomic physical constants related to the
ground state of the hydrogen atom. They simplify the equations and calculations of physical
quantities in atomic, molecular and optical (AMO) physics.

The standards of atomic units are described below.

A.1 Concept of Atomic Units

From the fundamental concept of charge in the low energy regime, the charge that can
be carried by any particle is an integer multiple of the electron charge e which is about
1.60217657× 10−19 C. Or in other words, in atomic and molecular physics, charges can be
specified as units of the fundamental charge e. Thus it is convenient to set e as the unit of
charge when dealing with atoms and molecules. Therefore,

e = 1.60217657× 10−19 C = 1 a.u. of charge. (A.1)

In the SI system, the time-dependent Schrödinger equation (TDSE) for a one electron
atom with infinite nuclear mass can be written as

i~ ∂tψ = − ~2

2me

∆ψ + V ψ (A.2)

where me is the electron mass. If we rescale the coordinates associated with the equation
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(A.2) using the Bohr radius a0, we get ∆′ ≡ a2
0 ∆ and the TDSE becomes

i
mea

2
0

~
∂tψ = −1

2 ∆′ψ + me a
2
0

~2 V ψ. (A.3)

The LHS of equation (A.3) reveals the appearance of a characteristic time scale t0 = mea
2
0/~

while the RHS of the same equation reveals the appearance of a characteristic energy scale
E0 = ~2/(mea

2
0). If we define t′ = t/t0 and V ′ = V/E0 Eq.(A.3) can be reorganized as the

following dimensionless equation

i ∂t′ψ = −1
2 ∆′ψ + V ′ ψ . (A.4)

We have the intrinsic scales of length, energy and time, a0, E0 and t0 that simplify the
TDSE. In the atomic system of units, the Bohr radius is defined as 1 a.u. of length and the
quantities E0 and t0 define the atomic units of energy and time. Note that the ionization
energy of the hydrogen atom is 0.5 a.u. of energy and that the Bohr orbital period is
2π a.u. of time.

A.2 Other Units

Comparing equations (A.2) and (A.4), we can see that the definition of atomic units are
compatible with the choices ~ = 1 a.u. for the unit of angular momentum and me = 1 a.u.
for the unit of mass.

Defining now the atomic unit of electric field F0 as the field strength due to the hydrogen
nucleus (a proton) at a distance a0, we get

F0 = e

4πε0a2
0

= 1 a.u. of electric field. (A.5)

The intensity of a linearly polarized electric field of amplitude F0 can now be written as

I0 = 1
2

√
ε0

µ0
F 2

0 = 1 a.u. of intensity. (A.6)

One can finaly note that since dimensionless physical constants keep their value unchanged
in any unit system, the fine structure constant α = e2

4πε0~c
≈ 1

137 is preserved in the atomic
unit system. The reciprocal of the fine structure constant therefore gives the speed of light
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in atomic units: c ≈ 137 a.u. of speed.

The table below summarizes the atomic unit system.

Table A.1.: Conversion Factors for Atomic Units

Physical Quantity Expression in the SI system Conversion Factor

Mass me (electron rest mass) 9.10938291.10−31 kg
Electric Charge e (electron charge) 1.60217657.10−19 C

Angular Momentum ~ 1.05457173.10−34 J.s
Coulomb Constant 1/4πε0 8.98755178.109 m/F

Length 4πε0~2/mee
2 5.29177210.10−11 m

Time (4πε0)2~3/mee
4 2.41888432.10−17 s

Energy mee
4/(4πε0~)2 4.35974417.10−18 J

Electric Field m2
ee

5/(4πε0)3~4 5.14220652.1011 V/m
Intensity cε0m

4
ee

10/(4πε0)6~8 3.50944758.1016 W.cm−2

Fine Structure Constant e2/4πε0~c ≈ 1/137
Electric Dipole Moment 4πε0~2/mee 8.47835326.10−30 C.m

Magnetic Dipole Moment e~/2me 9.27400968.10−24 J.T−1

For More Details

– A short history of the SI units in electricity by Ludwik Kowalski
in The Physics Teacher 24, 97 (1986).

– Scaling Mount Planck I: A view from the bottom by Frank Wilczek
in Physics Today 54, 6 (2001).





B
Runge-Kutta Method

The optical Bloch equations and the non-Hermitian wave packet approach used for describing
the system quantum mechanically are a set of first-order differential equations of the form
dy/dx = f(x, y). First order differential equations of this form can be solved numerically
by the well-known fourth-order Runge-Kutta method (the RK-4 method) provided the initial
conditions are known (i.e, y(x0) = y0). This method was developed by the mathematician
C. Runge and extended by another mathematician, M. W. Kutta.

The differential equation that should be solved is

dy

dx
= f(x, y(x)) (B.1)

The value of y at a point x+ h can be written as

y(x+ h) = y(x) +
∫ x+h

x
f(x′, y(x′))dx′ (B.2)

In those cases where the integration in Eq.(B.2) cannot be done analytically, the only way
to do it is by looking at possible ways to calculate them numerically. For this numerical
purpose, the integration can be replaced by the quadrature of order N

y(x+ h) ≈ y(x) + h
N∑

i=1
Ci f(x+ αih, y(x+ αih)) (B.3)

where Ci and αi are some numbers that will be determined later. In principle, the summation
is an infinite sum that is truncated at a certain finite value N for numerical reasons. The
accuracy on y(x+ h) strictly depends on the order of this quadrature.

Solving the quadrature is again difficult since it depends on the values of y at other positions
(x+ αih). The unknown quantities αi and Ci can be estimated using a Taylor expansion
of Eq.(B.3). For the first term we get

hC1 f(x+ α1h, y(x+ α1h)) = C1 K1 (B.4)
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where K1 = h f(x, y(x)). The second term can be written as follows

hC2 f(x+ α2h, y(x+ α2h)) = C2 K2 (B.5)

where K2 = h f(x+ α2, y(x) + α2K1). This procedure can be extended to any order i up
to i = N . If one uses only two terms from this quadrature, we obtain the second order
RK-2 method. Here, for reasons related to a balance between accuracy and numerical
efficiency, we use the RK-4 method, and four terms are included in the quadrature. In the
case of RK-4, the four expressions of the Ki’s are given by

K1 = h f(x, y(x)) (B.6a)
K2 = h f(x+ h/2, y(x) +K1/2) (B.6b)
K3 = h f(x+ h/2, y(x) +K2/2) (B.6c)
K4 = h f(x+ h, y(x) +K3) (B.6d)

Eq.(B.3) can therefore be written as

y(x+ h) ≈ y(x) + 1
6 (K1 + 2K2 + 2K3 +K4) (B.7)

Starting from the initial values to the final values of the domain, the solution of Eq. (B.1)
will be obtained from Eq. (B.7).

For More Details

– Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical
Tables by M. Abramowitz and I. A. Stegun, Dover Publications (1964).

– Numerical Methods for Ordinary Differential Systems: The Initial Value Problem by
J. D. Lambert, Wiley (1991).

– The Art of Scientific Computing by W. H. Press, Cambridge University Press (1992).





Interférences quantiques dans la dynamique d’atomes et molécules dans un
champ électromagnétique
Mots-clés: Recollision et Champs Intenses, Effets collectifs, Imagerie orbitalaire,
Diffraction Electronique Induite par Laser, Transparence Electromagnétique Induite par
Interaction Dipôle-Dipôle, Lumière Lente

Dans cette thèse, nous discutons deux
cas spécifiques d’interaction laser-matière
où des effets d’interférences quantiques
jouent un rôle clé. Dans la première par-
tie nous montrons qu’on peut obtenir une
image d’une molécule par photo-ionisation
par champ laser intense infrarouge. On
crée ainsi un paquet d’ondes électronique
oscillant dans le continuum. Ces élec-
trons subissent une collision élastique avec
l’ion moléculaire parent, qui peut être util-
isée pour imager la molécule et ses or-
bitales. Le processus est démontré dans
le cas de la HOMO et de la HOMO-1 de

CO2. La deuxième partie traîte des ef-
fets collectifs dans des vapeurs atomiques
denses confinées dans des cellules de taille
nanométrique. Les atomes répondent alors
collectivement à un champ laser incident,
ce qui conduit à un décalage et à un élar-
gissement des transitions. Lorsque deux
résonances se recouvrent, une interférence
quantique destructive se produit à une
fréquence caractéristique. Ceci induit un
phénomène de transmission électromagné-
tique induite par interaction dipolaire, ou
DIET.

Quantum Interferences in the Dynamics of Atoms and Molecules in
Electromagnetic Fields
Keywords: Recollision and Strong Fields, Collective Effects, Orbital Imaging,
Laser Induced Electron Diffraction, Dipole Induced Electromagnetic Transparency, Slow
Light

In this thesis, two specific cases of laser-
matter interaction where quantum interfer-
ence plays a key role are discussed. The
first part deals with imaging a molecule us-
ing its own electrons. An intense infrared
laser field acting on the molecule can create
laser-driven electron wave packets in the
continuum. These electrons undergo elas-
tic collision with the parent molecule that
can be used for imaging the molecule and
its orbitals. The process is demonstrated in
the case of both the HOMO and HOMO-
1 of symmetric CO2. The second part

discusses collective effects and overlapping
resonances in dense atomic vapors confined
in nano-cells. Closely spaced atoms re-
spond collectively to a common exciting
field that leads to shifts and broadening of
resonances. Once two or more transitions
are broad enough to overlap, quantum in-
terference will take place and it leads to
destructive interference corresponding to a
characteristic frequency determined by the
system parameters. It will lead to a trans-
mission peak called “Dipole-Induced Elec-
tromagnetic Transparency" or DIET.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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