H. A. Dehwah, M. Maslehuddin, and S. A. Austin, Effect of sulfate ions and associated cation type on the pore solution chemistry in chloride-contaminated plain and blended cements, 513-525. 2. Cement Technology roadmap 2009 -Carbon emissions reductions up to 2050. World Business Council for Sustainable Developement and InternationalEnergy Agency, 2003.
DOI : 10.1016/S0958-9465(02)00091-4

J. Baron, R. Sauterey, and . Le-béton-hydraulique, Presse de l'Ecole Nationale des Ponts et Chaussées 1981. 5. Plassais, A. Nanoporosité, texture et propriétés mécaniques de pâtes de ciments, Thèse de doctorat, 2003.

Y. Houst, Diffusion de gaz, carbonatation et retrait de la pâte de ciment durcie

. Ecole-polytechnique-fédérale-de-lausanne, AFNOR, Norme française EN 197-1 Ciment -Partie 1 : composition, spécifications et critères de conformité des ciments courants AFNOR, Norme française XP P18-545, Granulats -Éléments de définition, conformité et codification Eau de gâchage pour bétons -Spécifications d'échantillonnage, d'essais et d'évaluation de l'aptitude à l'emploi, y compris les eaux des processus de l'industrie du béton, telle que l'eau de gâchage pour béton, pp.1-41, 1993.

A. El-haleem, S. M. Aal, E. E. Wanees, S. Diab, A. Longuet et al., Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)(2) solutions Bases expérimentales de l'étude électtrochimique du comportement des métaux en présence du béton. Corrosion Traitement Protection Finition The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement long-term of calcium hydroxide saturation of pore solutions in hardened cements, La phase liquide du ciment hydraté. Revue des Matériaux de Construction Pore solution expression as a method to determine the influence of mineral additives on chloride binding. Cement and Concrete Research, pp.3875-3882, 1973.

D. Rothstein, J. J. Thomas, B. J. Christensen, H. A. Jennings, S. Solubility-behavior-of-ca-, et al., -bearing solid phases in Portland cement pore solutions as a function of hydration time Cement and Concrete Research Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction Effect of two Danish Flyashes on alkali contents of pore solutions of cement-flyash pastes. Cement and Concrete Research Recommandations pour la prévention des désordres dus à l'alcaliréaction Les parements en béton More than 10 years successful field applications of FRP bars in Canada, durability and composites for construction and rehabilitation. 2011; p 6. 27. Perier, V.; Chataigner, S.; Pruvost, A. comparaison de différentes armatures utilisées pour le renforcement du béton, Métallurgie du minerai au matériau; le concours du ministère de l'Education nationale, de l'Enseignement supérieur et de la Recherche EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cement & Concrete Composites, pp.1663-1671, 1981.
URL : https://hal.archives-ouvertes.fr/jpa-00214103

A. El-haleem, S. M. Wanees, S. Bahgat, and A. , Environmental factors affecting the corrosion behaviour of reinforcing steel. V. Role of chloride and sulphate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions, Corrosion Science, vol.75, pp.1-15, 2013.
DOI : 10.1016/j.corsci.2013.04.049

M. Saremi and E. Mahallati, A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement and Concrete Research, 1915-1921. 33. Pourbaix, M., Atlas d'équilibres électrochimiques, 1963.

C. Andrade, L. Soler, X. R. Novoa, and S. Haruyama, Advances in electrochemical impedance measurements in reinforced concrete The impedance characteristics of passive films on iron An electrochemical and ellipsometric investigation of surface films grown on iron in saturated calcium hydroxide solutions with or without chloride ions, In Materials Science Forum, Electrochemical Methods in Corrosion Research V Noda, K.; Tsuru, T Corrosion Science Oranowska, H.; Szklarskasmialowska, Z. Corrosion Science, vol.35, issue.2111, pp.843-855673, 1981.

K. K. Sagoe-crentsil and F. O. Glasser, Steel in concrete. Part II: Electron microscopy analysis. Magazine of Concrete Research 41, pp.213-220, 1989.

M. Cohen, The passivity and breakdown of passivity on iron

H. B. Gunay, P. Ghods, O. B. Isgor, G. J. Carpenter, X. Wu et al., Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS, Construction and Building Materials 2012, pp.195-202, 2013.
DOI : 10.1016/j.apsusc.2013.03.014

P. Ghods, O. B. Isgor, J. R. Brown, F. Bensebaa, and D. Kingston, XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties, Applied Surface Science, vol.257, issue.10, pp.4669-4677, 1993.
DOI : 10.1016/j.apsusc.2010.12.120

S. Ahmad, Reinforcement corrosion in concrete structures, its monitoring and service life prediction -a review. Cement & Concrete Composites Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement Materials and Corrosion- Werkstoffe Und Korrosion, Gulikers, J, vol.25, issue.456, pp.459-471, 2003.

R. D. Browne, E. London, E. T. London, K. A. Soudki, Y. Liu et al., Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete Modeling the time to corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures. Ph.D. Dissertation. Blacksburg Virginia, 1996. 49. Tutti, K. Corrosion of steel in concrete, CBI Research Report n°4.82; Swedish Cement and Concrete, Research Institute 50. Simon, L. Réactivité des espèces du fer en milieu aqueux contenant des anions de la famille du soufre : sulfite, sulfate, thiosulfate, séléniate. Propriétés thermodynamiques et structurales de composés Fe(II)-Fe(II) de type rouille verte Principales origines et natures de la fissuration d'un béton en milieu insaturé, Note technique CEA, NT SCCME 101. Juin 2001. 53. Fontana, M., Corrosion Engineering, 3 éme édition. Mc Graw Hill International Edition The mechanismes of protection of steel by concrete. Corrosion of Reinforcement in Concrete Construction The iron oxides -Structure, Properties, Occurrences and Uses, The performance of concrete structures in the marine environment, Symposium on Corrosion in the marine environment, International Corrosion Conference Thèse de Doctorat 51. Tuutti, K. Corrosion of steel in concrete, CBI Research Report n°4.82; Swedish Cement and Concrete, Research Institute Corrosion of steel in concrete, Understanding, Investigation and Repair. Chapman and Hall: 1997. 55. Arup, Chaussadent, T. Corrélation entre les produits de corrosion et les mécanismes initiateurs, pp.50-57, 1973.

A. El-haleem, S. M. Wanees, S. Aal, E. E. Diab, and A. , Environmental factors affecting the corrosion behavior of reinforcing steel II Role of some 46

E. Zornoza and C. Andrade, 61. Bach, M. Inhibitions de la corrosion des armatures métalliques dans les maçonneries anciennes Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution, Thèse de doctorat. Université Louis Pasteur ?Strasbourg I., 2002. 62. Garces, pp.292-302, 2010.

J. O. Okeniyi, O. A. Omotosho, O. O. Ajayi, and C. A. James, Modelling the Performance of Sodium Nitrite and Aniline as Inhibitors in the Corrosion of Steel-reinforced Concrete, Asian Journal of Applied Sciences, vol.5, issue.3, pp.132-143, 2012.
DOI : 10.3923/ajaps.2012.132.143

H. Gerengi, Y. Kocak, A. Jazdzewska, M. Kurtay, and H. Durgun, Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite-and zeolitecontaining concrete exposed to sulphuric acid, Construction and Building Materials 2013, pp.471-477

D. Muynck, W. De-belie, N. Verstraete, and W. , Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete, Cement and Concrete Composites, vol.31, issue.3, pp.31-163, 2009.
DOI : 10.1016/j.cemconcomp.2008.12.004

M. A. Tommaselli, N. A. Mariano, S. E. Kuri, and C. E. Marino, Effectiveness of corrosion inhibitors in saturated calcium hydroxide solutions acidified by acid rain components. Construction and Building Materials Electrochemical impedance behavior of mortar subjected to a sulfate environment -A comparison with chloride exposure models, Construction and Building Materials 2014, pp.328-333, 2009.

K. Y. Ann, H. Song, H. Song, F. Bensebaa, and D. Kingston, Chloride threshold level for corrosion of steel in concrete Chloride Threshold Value for Steel Corrosion considering Chemical Properties of Concrete Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution, Corrosion Science Journal of the Korean Society of Civil Engineers A Ghods, P.; Isgor, O. B Corrosion Science, vol.49, issue.58, pp.4113-4133, 2007.

B. Huet, V. Hostis, F. Miserque, H. Idrissi, R. Zhang et al., Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution Chloride-induced reinforcement corrosion and concrete cracking simulation The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment, Electrochimica Acta Cement & Concrete Composites, vol.51, issue.7311, pp.172-180, 2005.

C. Monticelli, A. Frignani, G. Trabanelli, G. K. Glass, and N. R. Buenfeld, Study on corrosion inhibitors for concrete application Cement and Concrete Research The presentation of the chloride threshold level for corrosion of steel in concrete Chloride threshold value for reinforcement corrosion in concrete with additions of silica fume or fly ash. Magazine of Concrete Research Chloride threshold for corrosion of reinforcement in concrete, Corrosion Science Aci Materials Journal, vol.30, issue.63126, pp.635-642, 1996.

J. Tritthart, C. L. Page, P. Lambert, P. R. Vassie, W. Stumm et al., 79. Byfors, K. chloride-initiated reinforcement corrosion chloride binding; Swedish Cement and Concrete Research Institute Investigations of reinforcement corrosion.1. The pore electrolyte phase in chloride-contaminated concrete Mécanismes de corrosion des aciers constitutifs des moules pour les bétons, en présence d'un agent de démoulage Aquatic Chemistry Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement and Concrete Research Influence of porosity and water-content on the diffusivity of co2 and o2 through hydrated cement paste. Cement and Concrete Research Progressive changes in the structure of hardened c3s cement pastes due to carbonation Predeterminate model of corrosion rate of steel in concrete Effect of global climatic change on carbonation progress of concrete Competition of several carbonation reactions in concrete: A parametric study, Thèse Université Paris 6, pp.683-691, 1981.

M. Castellote, L. Fernandez, C. Andrade, and C. R. Alonso, Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations Materials and Structures Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS, Cement and Concrete Research, vol.42, issue.402, pp.515-525, 2009.

A. Neville, Consideration of durability of concrete structures: Past, present, and future Reduction of concrete sorptivity with age through carbonation, Materials and Structures Cement and Concrete Research, vol.34, issue.2368, pp.114-118, 2000.

J. Ollivier and A. Vichot, La durabilité des bétons Association technique de l'industrie des liants hydrauliques, 95. Collepardi, M., A state-of-the-art review on delayed ettringite attack on concrete, 2008.

M. Zhang, J. Chen, Y. Lv, D. Wang, and J. Ye, Study on the expansion of concrete under attack of sulfate and sulfate???chloride ions, Cement & Concrete Composites Construction and Building Materials 2013, pp.401-407, 2003.
DOI : 10.1016/j.conbuildmat.2012.05.003

I. Oliveira, S. H. Cavalaro, and A. Aguado, New kinetic model to quantify the internal sulfate attack in concrete, Cement and Concrete Research, vol.43, pp.95-104, 2013.
DOI : 10.1016/j.cemconres.2012.09.010

G. Escadeillas, J. Aubert, M. Segerer, and W. Prince, Some factors affecting delayed ettringite formation in heat-cured mortars. Cement and Concrete Research, pp.37-1445, 2007.

L. Fedrizzi, F. Azzolini, and P. L. Bonora, The use of migrating corrosion inhibitors to repair motorways' concrete structures contaminated by chlorides, Cement and Concrete Research, vol.35, issue.3, pp.551-561, 2005.
DOI : 10.1016/j.cemconres.2004.05.018

J. Broomfield, corrosion inhibitors for steel in concrete, 1999.

C. M. Hansson, L. Mammoliti, and B. B. Hope, Corrosion inhibitors in concrete -Part I: The principles. Cement and Concrete Research, pp.1775-1781, 1998.

T. A. Soeylev and M. G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report, Construction and Building Materials, vol.22, issue.4, pp.609-622, 2008.
DOI : 10.1016/j.conbuildmat.2006.10.013

H. E. Jamil, A. Shriri, R. Boulif, C. Bastos, M. F. Montemor et al., Electrochemical behaviour of amino alcohol-based inhibitors used to control corrosion of reinforcing steel, Electrochimica Acta, vol.49, issue.17-18, pp.17-18, 2004.
DOI : 10.1016/j.electacta.2004.01.041

E. Azhar, M. Mernari, B. Traisnel, M. Bentiss, F. Lagrenee et al., Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media, Corrosion Science, vol.43, issue.12, pp.43-2229, 2001.
DOI : 10.1016/S0010-938X(01)00034-8

C. K. Nmai, Multi-functional organic corrosion inhibitor, Cement and Concrete Composites, vol.26, issue.3, pp.199-207, 2004.
DOI : 10.1016/S0958-9465(03)00039-8

J. Cruz, R. Martinez, J. Genesca, and E. Garcia-ochoa, Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media, Journal of Electroanalytical Chemistry, vol.566, issue.1, pp.111-121, 2004.
DOI : 10.1016/j.jelechem.2003.11.018

M. Ormellese, L. Lazzari, S. Goidanich, G. Fumagalli, and A. Brenna, A study of organic substances as inhibitors for chloride-induced corrosion in concrete, Corrosion Science, vol.51, issue.12, pp.51-2959, 2009.
DOI : 10.1016/j.corsci.2009.08.018

L. Feng, H. Yang, and F. Wang, Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution, Electrochimica Acta, vol.58, pp.427-436, 2011.
DOI : 10.1016/j.electacta.2011.09.063

M. M. Mennucci, E. P. Banczek, P. R. Rodrigues, and I. Costa, Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution, Cement and Concrete Composites, vol.31, issue.6, pp.31-418, 2009.
DOI : 10.1016/j.cemconcomp.2009.04.005

A. M. Vaysburd and P. H. Emmons, Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts, Cement and Concrete Composites, vol.26, issue.3, pp.255-263, 2004.
DOI : 10.1016/S0958-9465(03)00044-1

F. H. Karman, I. Felhosi, E. Kalman, I. Cserny, and L. Kover, The role of oxide layer formation during corrosion inhibition of mild steel in neutral aqueous media, Electrochimica Acta, vol.43, issue.1-2, pp.69-75, 1998.
DOI : 10.1016/S0013-4686(97)00236-3

F. Mansfeld, M. W. Kendig, and W. J. Lorenz, Corrosion Inhibition in Neutral, Aerated Media, Journal of The Electrochemical Society, vol.132, issue.2, pp.290-296, 1985.
DOI : 10.1149/1.2113820

P. Lorbeer and W. J. Lorenz, The kinetics of iron dissolution and passivation in solutions containing oxygen, Electrochimica Acta, vol.25, issue.4, pp.375-381, 1980.
DOI : 10.1016/0013-4686(80)87026-5

M. Ormellese, M. Berra, F. Bolzoni, and T. Pastore, Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures, Cement and Concrete Research, vol.36, issue.3, pp.536-547, 2006.
DOI : 10.1016/j.cemconres.2005.11.007

C. Andrade, C. Alonso, M. Acha, and B. Malric, Preliminary testing of Na2PO3F as a curative corrosion inhibitor for steel reinforcements in concrete, Cement and Concrete Research, vol.22, issue.5, pp.869-881, 1992.
DOI : 10.1016/0008-8846(92)90111-8

L. Dhouibi, E. Triki, M. Salta, P. Rodrigues, and A. Raharinaivo, Studies on corrosion inhibition of steel reinforcement by phosphate and nitrite, Materials and Structures, issue.262, pp.36-530, 2003.

K. Soeda and T. Ichimura, Present state of corrosion inhibitors in Japan, Cement and Concrete Composites, vol.25, issue.1, pp.117-122, 2003.
DOI : 10.1016/S0958-9465(01)00058-0

O. T. De-rincon, O. Perez, E. Paredes, Y. Caldera, C. Urdaneta et al., Long-term performance of ZnO as a rebar corrosion inhibitor, Cement and Concrete Composites, vol.24, issue.1, pp.79-87, 2002.
DOI : 10.1016/S0958-9465(01)00029-4

P. Gu, S. Elliott, R. Hristova, J. J. Beaudoin, R. Brousseau et al., A study of corrosion inhibitor performance in chloride contaminated concrete by electrochemical impedance spectroscopy, Aci Materials Journal, issue.5, pp.94-385, 1997.

A. A. Jeknavorian and E. F. Barry, Determination of durability-enhancing admixtures in concrete by thermal desorption and pyrolysis gas chromatography-mass spectrometry, Cement and Concrete Research, vol.29, issue.6, pp.899-907, 1999.
DOI : 10.1016/S0008-8846(99)00062-9

M. Balonis and F. P. Glasser, Calcium Nitrite Corrosion Inhibitor in Portland Cement: Influence of Nitrite on Chloride Binding and Mineralogy, Journal of the American Ceramic Society, vol.19, issue.[5], pp.2230-2241, 2011.
DOI : 10.1111/j.1551-2916.2010.04362.x

N. S. Berke and K. M. Sundberg, The effect of calcium nitrite and microsilica admixtures on corrosion resistance of steel in concrete, Performance of Concrete, 1989.

U. Nurneberger, Possibilities of corrosion protection of reinforcing steel in concrete, COST 521, pp.15-56, 2000.

T. Chaussadent, W. Nobel-pujol, F. Farcas, I. Mabille, and C. Fiaud, Effectiveness conditions of sodium monofluorophosphate as a corrosion inhibitor for concrete reinforcements, Cement and Concrete Research, vol.36, issue.3, pp.556-561, 2006.
DOI : 10.1016/j.cemconres.2005.09.006

C. Alonso, C. Andrade, C. Argiz, and B. Malric, Na2PO3F as inhibitor of corroding reinforcement in carbonated concrete, Cement and Concrete Research, vol.26, issue.3, pp.405-415, 1996.
DOI : 10.1016/S0008-8846(96)85028-9

J. K. Buffenbarger, M. Miltenberger, B. Miller, and H. Casal, In Long-term performance of an organic corrosion inhibitor: a decade of mechanism study and its impact on concrete service life, International congress on advanced materials their processes and applications, 2000.

J. O. Okeniyi, C. A. Loto, and A. P. Popopla, Corrosion Inhibition Performance of Rhizophora mangle L Bark-Extract on Concrete Steel-Reinforcement in Industrial/Microbial Simulating-Environment, International Journal of Electrochemical Science, vol.2014, issue.8, pp.9-4205

L. Holloway, K. Nairn, and M. Forsyth, Concentration monitoring and performance of a migratory corrosion inhibitor in steel-reinforced concrete, Cement and Concrete Research, vol.34, issue.8, pp.1435-1440, 2004.
DOI : 10.1016/j.cemconres.2004.01.019

S. Masadeh, The Influence of Added Inhibitors on Corrosion of Steel in Concrete Exposed to Chloride Containing Solutions, Advances in Materials Sciences 2013, pp.5-11
DOI : 10.2478/adms-2013-0004

U. Mäder, A New Class of Corrosion Inhibitors, in Corrosion and Corrosion Protection of Steel in Concrete, p.851, 1994.

S. Y. Qian and D. Cusson, Electrochemical evaluation of the performance of corrosion-inhibiting systems in concrete bridges, Cement and Concrete Composites, vol.26, issue.3, pp.217-233, 2004.
DOI : 10.1016/S0958-9465(03)00041-6

J. Hu, D. A. Koleva, J. H. De-wit, H. Kolev, and K. Van-breugel, Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles, Journal of The Electrochemical Society, vol.158, issue.3, pp.76-87
DOI : 10.1149/1.3534796

P. Kern and D. Landolt, Adsorption of organic corrosion inhibitors on iron in the active and passive state. A replacement reaction between inhibitor and water studied with the rotating quartz crystal microbalance, Electrochimica Acta, vol.47, issue.4, pp.589-598, 2001.
DOI : 10.1016/S0013-4686(01)00781-2

F. Violetta, F. Munteanu, and F. D. Kinney, Corrosion Inhibition Properties of a Complex Inhibitor -Mechanism of Inhibition, In CANMET, pp.255-269, 2000.

J. Buffenbarger, M. Miltenberger, B. Miller, and H. Casal, Long term performance of organic inhibitors, the international congress on advanced materials, their process and applications, 2000.

F. Fei, J. Hu, J. Wei, and Q. Yu, -j.; Chen, Z.-s., Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor, Construction and Building Materials 2014, pp.43-53
URL : https://hal.archives-ouvertes.fr/in2p3-00506665

J. O. Okeniyi, C10 H1 8 N2 N a 2O 10 inhibition and adsorption mechanism on concrete steel-reinforcement corrosion in corrosive environments, Journal of the Association of Arab Universities for Basic and Applied Sciences, 2014.

M. Mahdavian and R. Naderi, Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes, Corrosion Science, vol.53, issue.4, pp.1194-1200, 2011.
DOI : 10.1016/j.corsci.2010.12.013

C. O. Olsson, P. Agarwal, M. Frey, and D. Landolt, An XPS study of the adsorption of organic inhibitors on mild steel surfaces, Corrosion Science, vol.42, issue.7, pp.42-1197, 2000.
DOI : 10.1016/S0010-938X(99)00140-7

A. K. Singh, )-Indolin-3-ylideneamino)phenylimino)indolin-2-one, Industrial & Engineering Chemistry Research, vol.51, issue.8, pp.51-3215
DOI : 10.1021/ie2020476

H. Zheng, W. Li, F. Ma, and Q. Kong, The effect of a surface-applied corrosion inhibitor on the durability of concrete, Construction and Building Materials, vol.37, pp.36-40, 2012.
DOI : 10.1016/j.conbuildmat.2012.07.007

J. Li, B. Zhao, J. Hu, H. Zhang, S. Dong et al., Corrosion Inhibition Effect of D-sodium Gluconate on Reinforcing Steel in Chloride-contaminated Simulated Concrete Pore Solution, International Journal of Electrochemical Science, vol.2015, issue.101, pp.956-968

L. B. Mechmeche, L. Dhouibi, M. Ouezdou, E. Triki, and F. Zucchi, Investigation of the early effectiveness of an amino-alcohol based corrosion inhibitor using simulated pore solutions and mortar specimens, Cement and Concrete Composites, vol.30, issue.3, pp.167-173, 2008.
DOI : 10.1016/j.cemconcomp.2007.05.007

G. Ji, S. K. Shukla, P. Dwivedi, S. Sundaram, and R. Prakash, Inhibitive Effect of Argemone mexicana Plant Extract on Acid Corrosion of Mild Steel, Industrial & Engineering Chemistry Research, issue.21, pp.50-11954, 2011.

L. Afia, R. Salghi, A. Zarrouk, H. Zarrok, E. H. Bazzi et al., Comparative Study of Corrosion Inhibition on Mild Steel in HCl Medium by Three Green Compounds: Argania spinosa Press Cake, Kernels and Hulls Extracts, Transactions of the Indian Institute of Metals 2013, pp.43-49
DOI : 10.1007/s12666-012-0168-z

A. Bouyanzer, B. Hammouti, and L. Majidi, Pennyroyal oil from Mentha pulegium as corrosion inhibitor for steel in 1M HCl, Materials Letters, vol.60, issue.23, pp.60-2840, 2006.
DOI : 10.1016/j.matlet.2006.01.103

A. K. Satapathy, G. Gunasekaran, S. C. Sahoo, K. Amit, and P. V. Rodrigues, Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution, Corrosion Science, vol.51, issue.12, pp.51-2848, 2009.
DOI : 10.1016/j.corsci.2009.08.016

F. S. De-souza and A. Spinelli, Caffeic acid as a green corrosion inhibitor for mild steel, Corrosion Science, vol.51, issue.3, pp.642-649, 2009.
DOI : 10.1016/j.corsci.2008.12.013

P. C. Okafor, M. E. Ikpi, I. E. Uwah, E. E. Ebenso, U. J. Ekpe et al., Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media, Corrosion Science, vol.50, issue.8, pp.50-2310, 2008.
DOI : 10.1016/j.corsci.2008.05.009

J. C. Da-rocha, J. A. Da-cunha-ponciano-gomes, and E. Elia, Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts, Corrosion Science, vol.52, issue.7, pp.52-2341, 2010.
DOI : 10.1016/j.corsci.2010.03.033

L. G. Da-trindade and R. S. Goncalves, Evidence of caffeine adsorption on a low-carbon steel surface in ethanol, Corrosion Science, vol.51, issue.8, pp.51-1578, 2009.
DOI : 10.1016/j.corsci.2009.03.038

E. Khamis and N. Alandis, Herbs as new type of green inhibitors for acidic corrosion of steel, Materialwissenschaft und Werkstofftechnik, vol.33, issue.9, pp.550-554, 2002.
DOI : 10.1002/1521-4052(200209)33:9<550::AID-MAWE550>3.0.CO;2-G

M. A. Quraishi, A. Singh, V. K. Singh, D. K. Yadav, and A. K. Singh, Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves, Materials Chemistry and Physics, vol.122, issue.1, pp.114-122, 2010.
DOI : 10.1016/j.matchemphys.2010.02.066

E. E. Oguzie, C. K. Enenebeaku, C. O. Akalezi, S. C. Okoro, A. A. Ayuk et al., Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media, Journal of Colloid and Interface Science, vol.349, issue.1, pp.283-292, 2010.
DOI : 10.1016/j.jcis.2010.05.027

S. P. Ramesh, K. P. Kumar, and M. G. Sethuraman, Extract of Andrographis Paniculata as corrosion inhibitor of mild steel in acid medium, Bulletin of Electrochemistry, vol.17, issue.3, pp.141-144, 2001.

P. C. Okafor, I. E. Uwah, O. O. Ekerenam, and U. J. Ekpe, extracts as eco???friendly corrosion inhibitor for mild steel in acidic medium, Pigment & Resin Technology, vol.38, issue.4, pp.236-241, 2009.
DOI : 10.1108/03699420910973323

A. Y. El-etre, Inhibition of acid corrosion of carbon steel using aqueous extract of olive leaves, Journal of Colloid and Interface Science, vol.314, issue.2, pp.578-83, 2007.
DOI : 10.1016/j.jcis.2007.05.077

M. A. Chidiebere, C. E. Ogukwe, K. L. Oguzie, C. N. Eneh, and E. E. Oguzie, Corrosion Inhibition and Adsorption Behavior of Punica granatum Extract on Mild Steel in Acidic Environments: Experimental and Theoretical Studies, Industrial & Engineering Chemistry Research, vol.51, issue.2, pp.51-668
DOI : 10.1021/ie201941f

K. L. Oguzie, Natural Products for Materials Protection: Mechanism of Corrosion Inhibition of Mild Steel by Acid Extracts of Piper guineense, The Journal of Physical Chemistry C, vol.116, issue.25, pp.13603-13615
DOI : 10.1021/jp300791s

C. A. Loto, O. O. Joseph, R. T. Loto, and A. P. Popoola, Inhibition Effect of Vernonia amygdalina Extract on the Corrosion of Mild Steel Reinforcement in Concrete in 3, 5M NaCl Environment. International Journal of Electrochemical Science, vol.2013, issue.89, pp.11087-11100

C. A. Loto, R. T. Loto, and A. P. Popoola, Electrode Potential Monitoring of Effect of Plants Extracts Addition on the Electrochemical Corrosion Behaviour of Mild Steel Reinforcement in Concrete, International Journal of Electrochemical Science, vol.6, issue.8, pp.3452-3465, 2011.

S. A. Asipita, M. Ismail, M. Z. Majid, Z. A. Majid, C. Abdullah et al., Green Bambusa Arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete, Journal of Cleaner Production, vol.67, pp.139-146, 2014.
DOI : 10.1016/j.jclepro.2013.12.033

J. O. Okeniyi, C. A. Loto, and A. P. Popoola, Electrochemical Performance of Anthocleista djalonensis on Steel-Reinforcement Corrosion in Concrete Immersed in Saline/Marine Simulating-Environment. Transactions of the Indian Institute of Metals, pp.67-959, 2014.

M. El-sayed, O. Y. Mansour, I. Z. Selim, and M. M. Ibrahim, Identification and utilization of banana plant juice and its pulping liquor as anti-corrosive materials, Journal of Scientific & Industrial Research, issue.9, pp.60-738, 2001.

S. H. Tantawi and I. Z. Selim, Improvement of concrete properties and reinforcing steel inhibition using a natural product admixture, Journal of Materials Science & Technology, vol.12, issue.2, pp.95-99, 1996.

J. E. Gonzalez, F. J. Santana, and J. C. Mirza-rosca, Effect of bacterial biofilm on 316 SS corrosion in natural seawater by eis, Corrosion Science, vol.40, issue.12, pp.40-2141, 1998.
DOI : 10.1016/S0010-938X(98)00100-0

R. Javaherdashti, R. K. Raman, C. Panter, and E. V. Pereloma, Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria, International Biodeterioration & Biodegradation, vol.58, issue.1, pp.27-35, 2006.
DOI : 10.1016/j.ibiod.2006.04.004

F. Feugeas, A. Cornet, and B. Tribollet, Biodétérioration des matériaux -Action des microorganismes de l'échelle nanométrique à l'échelle macroscopique, 2008.

G. K. Glass, A. M. Hassanein, and N. R. Buenfeld, Monitoring the passivation of steel in concrete induced by cathodic protection, Corrosion Science, vol.39, issue.8, pp.39-1451, 1997.
DOI : 10.1016/S0010-938X(97)00051-6

S. Roux, N. Bur, G. Ferrari, B. Tribollet, and F. Feugeas, Influence of a biopolymer admixture on corrosion behaviour of steel rebars in concrete. Materials and Corrosion- Werkstoffe Und Korrosion, pp.61-1026, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591985

C. Dagbert, T. Meylheuc, and M. Bellon-fontaine, Pit formation on stainless steel surfaces pre-treated with biosurfactants produced by Pseudomonas fluorescens, Electrochimica Acta, vol.54, issue.1, pp.35-40, 2008.
DOI : 10.1016/j.electacta.2008.02.118

URL : https://hal.archives-ouvertes.fr/hal-01247953

C. Dagbert, T. Meyheuc, and M. Bellon-fontaine, Corrosion behaviour of AISI 304 stainless steel in presence of a biosurfactant produced by Pseudomonas fluorescens, Electrochimica Acta, vol.51, issue.24, pp.51-5221, 2006.
DOI : 10.1016/j.electacta.2006.03.063

URL : https://hal.archives-ouvertes.fr/hal-01250340

E. Volpi, A. Olietti, M. Stefanoni, and S. P. Trasatti, Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment, Journal of Electroanalytical Chemistry, vol.736, pp.38-46, 2015.
DOI : 10.1016/j.jelechem.2014.10.023

A. El-haleem, S. M. Wanees, S. Aal, E. E. Diab, and A. , Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions, Corrosion Science, vol.52, issue.2, pp.292-302, 2010.
DOI : 10.1016/j.corsci.2009.09.004

C. Deslouis, O. Gil, B. Tribollet, G. Vlachos, and B. Robertson, Oxygen as a tracer for measurements of steady and turbulent flows, Journal of Applied Electrochemistry, vol.138, issue.9, pp.835-842, 1992.
DOI : 10.1007/BF01023727

A. Carnot, Mécanismes de corrosion des aciers constitutifs des moules pour les bétons, en présence d'un agent de démoulage, Thèse Université Paris 6, 2003.

K. K. Sagoe-crentsil and F. O. Glasser, Steel in concrete. Part II: Electron microscopy analysis. Magazine of Concrete Research 41, pp.213-220, 1989.

P. Ghods, O. B. Isgor, G. Mcrae, and T. Miller, The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement, Cement and Concrete Composites, vol.31, issue.1, pp.31-33, 2009.
DOI : 10.1016/j.cemconcomp.2008.10.003

V. M. Huang, V. Vivier, M. E. Orazem, N. Pebere, B. S. Tribollet et al., The apparent constant-phase-element behavior of an ideally polarized blocking electrode -A global and local impedance analysis Influence of a biopolymer admixture on corrosion behaviour of steel rebars in concrete Materials and Corrosion- Werkstoffe Und Korrosion Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions Enhanced graphical representation of electrochemical impedance data, C81-C88. 10. Roux, B129- B136. 13. Hirschorn, B.; Orazem, M. E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M., Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films II, pp.61-1026, 2006.

A. Rodriguez, P. Ramirez, E. Gonzalez, J. A. Carnot, A. Frateur et al., Methods for studying corrosion in reinforced concrete Magazine of Concrete Research Corrosion mechanisms of steel concrete moulds in the presence of a demoulding agent Resistance to pitting and chemical-composition of passive films of a Fe-17%-Cr aloy in chloride-containing acid-solution, Journal of Applied Electrochemistry Journal of the Electrochemical Society Hirschorn, B.; Orazem, M. E.; Tribollet, B Journal of the Electrochemical Society, vol.157, issue.201012, pp.81-90, 1994.

I. Frateur, L. Lartundo-rojas, C. Methivier, A. Galtayries, and P. Marcus, Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron???chromium alloy, Electrochimica Acta, vol.51, issue.8-9, pp.8-9, 2006.
DOI : 10.1016/j.electacta.2005.02.116

URL : https://hal.archives-ouvertes.fr/hal-00109440

M. Maurice, W. P. Yang, P. Marcus, S. Xps, N. Study-hara et al., Passive Films Formed on Fe?22Cr(110) Single?Crystal Surfaces Properties of high purity Fe-Cr alloy Research Committee for high purity Fe-Cr alloys, Specific Fundamental Research Division Surface and interface analysis A combined surface analytical and electrochemical study of the formation of passive layers on fe/cr alloys in 0.5 m h2so4, depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties, pp.1182-1200, 1983.

H. B. Gunay, P. Ghods, O. B. Isgor, G. J. Carpenter, X. Wu et al., Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS, Applied Surface Science, vol.274, issue.3812, pp.195-202, 1986.
DOI : 10.1016/j.apsusc.2013.03.014

E. J. Calvo, D. J. Schiffrin, E. J. Calvo, . Stratmann, M. Stratmann et al., The electrochemical reduction of oxygen on passive iron in alkaline-solutions electrocatalysis of oxygen reduction at welldefined iron-oxide electrodes the mechanism of the oxygen reduction on rust-covered metal substrates the mechanism of oxygen reduction on iron in neutral solutions Oxygen reduction on iron: Part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions, Oxygen reduction on a duplex stainless steel, pp.171-18511, 1986.

L. Bozec, N. Compere, C. Her, M. Laouenan, A. Costa et al., Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater Oxygen electro-reduction on iron-oxide electrodes .3. heterogeneous catalytic h2o2 decomposition Oxygen reduction on iron .7. Temperature dependence of oxygen reduction on passivated iron in alkaline solutions Electrochemical impedance spectroscopy Determination of effective capacitance and film thickness from constant-phase-element parameters, Corrosion Science Journal of Electroanalytical Chemistry Gojkovic, S. L.; Zecevic, S. K.; Drazic, D. M. Journal of Electroanalytical Chemistry Orazem, M. E.; Tribollet, B. Hirschorn, B.; Orazem, M. E.; Tribollet, B Electrochimica Acta, vol.43, issue.3721, pp.765-786, 1995.

E. R. Vago and E. J. Calvo, Electrocatalysis of oxygen reduction at Fe3O4 oxide electrodes in alkaline solutions, Journal of Electroanalytical Chemistry, vol.339, issue.1-2, pp.41-67, 1992.
DOI : 10.1016/0022-0728(92)80444-9

E. Yeager, Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, Journal of Molecular Catalysis, vol.38, issue.1-2, pp.5-25, 1986.
DOI : 10.1016/0304-5102(86)87045-6

H. T. Cao, L. Bucea, and V. Sirvivatnanon, Corrosion rates of steel embedded in cement pastes, Cement and Concrete Research, vol.23, issue.6, pp.1273-1282, 1993.
DOI : 10.1016/0008-8846(93)90065-H

J. K. Boah, S. K. Somuah, and P. Leblanc, Ions, CORROSION, vol.46, issue.2, pp.153-158, 1990.
DOI : 10.5006/1.3585081

K. K. Sagoecrentsil, V. T. Yilmaz, and F. P. Glasser, Corrosion inhibition of steel in concrete by carboxylic acids, Cement and Concrete Research, vol.23, issue.6, pp.1380-1388, 1993.
DOI : 10.1016/0008-8846(93)90075-K

L. Freire, X. R. Novoa, M. F. Montemor, and M. J. Carmezim, Study of passive films formed on mild steel in alkaline media by the application of anodic potentials, Materials Chemistry and Physics, vol.114, issue.2-3, pp.962-972, 2009.
DOI : 10.1016/j.matchemphys.2008.11.012

O. A. Albani, L. M. Gassa, J. O. Zerbino, J. R. Vilche, and A. J. Arvia, Comparative study of the passivity and the breakdown of passivity of polycrystalline iron in different alkaline solutions, Electrochimica Acta, vol.35, issue.9, pp.1437-1444, 1990.
DOI : 10.1016/0013-4686(90)85018-I

M. Moreno, W. Morris, M. G. Alvarez, and G. S. Duffo, Corrosion of reinforcing steel in simulated concrete pore solutions -Effect of carbonation and chloride content, Corrosion Science, issue.11, pp.46-2681, 2004.

A. El-haleem, S. M. Aal, E. E. Wanees, S. Diab, and A. , Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)2 solutions, Corrosion Science, vol.52, issue.12, pp.52-3875, 2010.
DOI : 10.1016/j.corsci.2010.07.035

Y. M. Tang, Y. F. Miao, Y. Zuo, G. D. Zhang, and C. L. Wang, Corrosion behavior of steel in simulated concrete pore solutions treated with calcium silicate hydrates, Construction and Building Materials 2012, pp.252-256
DOI : 10.1016/j.conbuildmat.2011.11.033

A. El-haleem, S. M. Wanees, S. Aal, E. E. Diab, A. Mcrae et al., Environmental factors affecting the corrosion behavior of reinforcing steel II Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)(2) solutions. Corrosion Science The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement The Corrosion and Oxidation of Metals, Growth and stability of passive films, pp.292-302, 1960.

. Oudars, Corrosion Mechanism in Theory and Practice, pp.143-156, 1995.

P. Combrade, P. Scott, P. Marcus, and K. Komote, XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy Effect of sulfate ion on corrosion of carbon steel in carbonate/bicarbonate solutions,. Corrosion engineering, Electrochimica Acta Haruna, T, vol.49, issue.51, pp.22-23, 2002.

A. El-haleem, S. M. Wanees, S. Bahgat, and A. , Environmental factors affecting the corrosion behaviour of reinforcing steel. V. Role of chloride and sulphate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions, Corrosion Science, vol.75, pp.1-15, 2013.
DOI : 10.1016/j.corsci.2013.04.049

J. Gui and T. M. Devine, The influence of sulfate ions on the surface enhanced raman spectra of passive films formed on iron, Corrosion Science, vol.36, issue.3, pp.441-462, 1994.
DOI : 10.1016/0010-938X(94)90036-1

M. F. Montemor, A. M. Simoes, M. G. Ferreira, A. J. Altayyib, S. K. Somuah et al., Analytical Characterization of the Passive Film Formed on Steel in Solutions Simulating the Concrete Interstitial Electrolyte, Laboratory study on the effect of sulfate-ions on rebar corrosion. Cement and Concrete Research, pp.347-353, 1988.
DOI : 10.5006/1.3284861

J. Gui, T. M. Devine, G. Singh, and V. K. Gouda, The influence of sulfate-ions on the surface-enhanced ramanspectra of passive films formed on iron A Survey of corrosivity of underground mine waters from Indian coal mines Corrosion and corrosion inhibition of reinforcing steel: 1. Immersed in alkaline solution An electrochemical and ellipsometric investigation of surface films grown on iron in saturated calcium hydroxide solutions with or without chloride ions, Corrosion Science J.Mine Water Oranowska, H.; Szklarskasmialowska, Z. Corrosion Science, vol.36, issue.2111, pp.441-462, 1970.

K. K. Sagoe-crentsil and F. O. Glasser, Steel in concrete. Part II: Electron microscopy analysis. Magazine of Concrete Research 41, pp.213-220, 1989.

M. Cohen, The passivity and breakdown of passivity on iron

H. B. Gunay, P. Ghods, O. B. Isgor, G. J. Carpenter, X. Wu et al., Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution, 27. Zhang, J., Passive Film and Corrosion of Reinforcing steel, A Research Project of the National Research Council Canada, pp.195-202, 1928.

I. Frateur, L. Lartundo-rojas, C. Methivier, A. Galtayries, P. Marcus et al., Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium alloy Resistance to pitting and chemical-composition of passive films of a Fe-17%-Cr aloy in chloride-containing acid-solution The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid Inhibitor effects of triazole derivatives on corrosion of mild steel in acidic media, Electrochimica Acta Journal of the Electrochemical Society Tang, L. B Corrosion Science Bentiss, F British Corrosion Journal International Journal of Electrochemical Science, vol.5189, issue.41, pp.1550-1557, 1994.

B. A. Abd-el-naby, O. A. Abdullatef, A. M. Abd-el-gabr, M. A. Shaker, and G. Esmail, Effect of Some Natural Extracts on the Corrosion of Zinc in 0.5 M NaCl Investigations of the inhibition of copper corrosion in nitric acid solutions by ketene dithioacetal derivatives XPS analysis of biosystems ans biomaterials, Medical Application of Colloids, pp.5864-5879, 2007.

M. Genet, C. C. Dupont-gillain, P. Rouxhet, Y. F. Dufr, P. G. Rouxhet et al., XPS analysis of biosystems and biomaterials. Medical Applications of Colloids X-ray photoelectron spectroscopy analysis of the surface composition of Azospirillum brasilense in relation to growth conditions, mechanism for oxidation of metals The presentation of the chloride threshold level for corrosion of steel in concrete, Colloids Surfaces B Biointerfaces, pp.177-307, 1970.

A. El-haleem, S. M. Wanees, S. Bahgat, and A. , Environmental factors affecting the corrosion behaviour of reinforcing steel. V. Role of chloride and sulphate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions, Corrosion Science, vol.75, pp.1-15, 2013.
DOI : 10.1016/j.corsci.2013.04.049

O. Girciene, M. Samuleviciene, V. Burokas, and R. Ramanauskas, Corrosion behaviour of phosphated reinforcing steel in alkaline media contaminated with chloride ions, Chemija, vol.19, issue.1, pp.14-19, 2008.

A. El-haleem, S. M. Aal, E. E. Wanees, S. Diab, and A. , Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)2 solutions, Corrosion Science, vol.52, issue.12, pp.52-3875, 2010.
DOI : 10.1016/j.corsci.2010.07.035

E. Haleem, S. M. Wanees, S. A. Aal, E. E. Diab, and A. , Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions, Corrosion Science, vol.52, issue.2, pp.292-302, 2010.
DOI : 10.1016/j.corsci.2009.09.004

C. L. Page and K. W. Treadaway, Aspects of the electrochemistry of steel in concrete, Nature, vol.68, issue.5862, pp.109-115, 1982.
DOI : 10.1038/297109a0

M. Wasim and R. R. Hussain, Passive film formation and corrosion initiation in lightweight concrete structures as compared to self compacting and ordinary concrete structures at elevated temperature in chloride rich marine environment, Construction and Building Materials, vol.78, pp.144-152, 2015.
DOI : 10.1016/j.conbuildmat.2015.01.024

J. Kader and A. Din, Film Thickening on Nickel in Aqueous Solution in Relation to Anion Type and Concentration, British Corrosion Journal, vol.193, issue.1, pp.40-45, 1979.
DOI : 10.1179/000705968798326325

K. K. Sagoe-crentsil and F. O. Glasser, Steel in concrete. Part II: Electron microscopy analysis. Magazine of Concrete Research 41 Conclusion générale, pp.213-220, 1989.