H. Beinert, R. H. Holm, and E. Munck, Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures, Science, vol.277, issue.5326, pp.653-659, 1997.
DOI : 10.1126/science.277.5326.653

D. C. Rees and J. B. Howard, The Interface Between the Biological and Inorganic Worlds: Iron-Sulfur Metalloclusters, Science, vol.300, issue.5621, pp.929-931, 2003.
DOI : 10.1126/science.1083075

J. A. Imlay, Ironesulphur clusters and the problem with oxygen, Mol. Microbiol, vol.59, 2006.

J. Frazzon, J. R. Fick, and D. R. Dean, Biosynthesis of ironesulphur clusters is a complex and highly conserved process, Biochem. Soc. Trans, pp.30-680, 2002.

H. Beinert and W. Lee, Evidence for a new type of iron containing electron carrier in mitochondria, Biochemical and Biophysical Research Communications, vol.5, issue.1, pp.40-45, 1961.
DOI : 10.1016/0006-291X(61)90077-8

D. R. Dean and K. E. Brigle, Azotobacter vinelandii nifD- and nifE-encoded polypeptides share structural homology, Proceedings of the National Academy of Sciences, vol.82, issue.17, p.82, 1985.
DOI : 10.1073/pnas.82.17.5720

L. Zheng, V. L. Cash, D. H. Flint, and D. R. Dean, Assembly of ironesulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii, J. Biol. Chem, pp.273-13264, 1998.

B. Schilke, C. Voisine, H. Beinert, and E. Craig, Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae, Proc. Natl
DOI : 10.1073/pnas.96.18.10206

G. Kispal, P. Csere, C. Prohl, and R. , The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins, The EMBO Journal, vol.18, issue.14, 1999.
DOI : 10.1093/emboj/18.14.3981

P. J. Kiley and H. Beinert, The role of Fe???S proteins in sensing and regulation in bacteria, Current Opinion in Microbiology, vol.6, issue.2, pp.181-185, 2003.
DOI : 10.1016/S1369-5274(03)00039-0

M. Fontecave, Iron-sulfur clusters: ever-expanding roles, Nature Chemical Biology, vol.12, issue.4, pp.171-174, 2006.
DOI : 10.1038/nchembio0406-171

H. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises, Journal of Biological Inorganic Chemistry, vol.5, issue.1, pp.2-15, 2000.
DOI : 10.1007/s007750050002

L. A. Sazanov and P. Hinchliffe, Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus, Science, vol.311, issue.5766, pp.1430-1436, 2006.
DOI : 10.1126/science.1123809

A. H. Robbins and C. D. Stout, The structure of aconitase, Proteins: Structure, Function, and Genetics, vol.745, issue.4, 1989.
DOI : 10.1002/prot.340050406

H. Lauble, M. C. Kennedy, H. Beinert, and C. D. Stout, Crystal structures of aconitase with isocitrate and nitroisocitrate bound, Biochemistry, vol.31, issue.10, pp.2735-2748, 1992.
DOI : 10.1021/bi00125a014

T. A. Rouault, D. J. Haile, W. E. Downey, C. C. Philpott, C. Tang et al., An iron-sulfur cluster plays a novel regulatory role in the iron-responsive element binding protein, BioMetals, vol.265, issue.3, pp.131-140, 1992.
DOI : 10.1007/BF01061319

R. M. Cicchillo and S. J. Booker, Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide, J. Am. Chem. Soc, vol.127, 2005.

V. M. Sellers, K. F. Wang, M. K. Johnson, and H. A. Dailey, Evidence that the fourth ligand to the [2Fee2S] cluster in animal ferrochelatase is a cysteine. Characterization of the enzyme from Drosophila melanogaster, J. Biol. Chem, pp.273-22311, 1998.

A. N. Suhasini, R. M. Brosh-jr, C. M. Netz, M. Stith, G. Stumpfig et al., Disease-causing missense mutations in human DNA helicase disorders, Eukaryotic DNA polymerases require an ironesulfur cluster for the formation of active complexes, pp.125-132, 2012.
DOI : 10.1016/j.mrrev.2012.12.004

B. Py and F. Barras, Building Fe???S proteins: bacterial strategies, Nature Reviews Microbiology, vol.28, issue.6, pp.436-446, 2010.
DOI : 10.1038/nrmicro2356

S. Schmucker, A. Martelli, F. Colin, A. Page, M. Wattenhofer-donze et al., Mammalian Frataxin: An Essential Function for Cellular Viability through an Interaction with a Preformed ISCU/NFS1/ISD11 Iron-Sulfur Assembly Complex, PLoS ONE, vol.1, issue.1, p.16199, 2011.
DOI : 10.1371/journal.pone.0016199.s009

A. Martelli, M. Wattenhofer-donze, S. Schmucker, S. Bouvet, L. Reutenauer et al., Frataxin is essential for extramitochondrial FeeS cluster proteins in mammalian tissues, Hum. Mol. Genet, p.16, 2007.

L. Loiseau, S. Ollagnier-de-choudens, L. Nachin, M. Fontecave, and F. Barras, Biogenesis of FeeS cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase, J. Biol. Chem, pp.278-38352, 2003.

N. Wiedemann, E. Urzica, B. Guiard, H. Muller, C. Lohaus et al., Essential role of Isd11 in mitochondrial iron???sulfur cluster synthesis on Isu scaffold proteins, The EMBO Journal, vol.33, issue.1, pp.184-195, 2006.
DOI : 10.1038/sj.emboj.7600906

URL : https://hal.archives-ouvertes.fr/hal-00136402

A. Pandey, H. Yoon, E. R. Lyver, and A. , Dancis, D. Pain, Isd11p protein activates the mitochondrial cysteine desulfurase Nfs1p protein, J. Biol. Chem, pp.286-38242, 2011.

A. C. Adam, C. Bornhovd, H. Prokisch, W. Neupert, and K. Hell, The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria, The EMBO Journal, vol.90, issue.1, pp.174-183, 2006.
DOI : 10.1038/sj.emboj.7600905

G. Isaya, H. A. O-'neill, O. Gakh, S. Park, R. Mantcheva et al., Functional studies of frataxin, Acta Paediatrica, vol.278, 2004.
DOI : 10.1111/j.1651-2227.2004.tb03061.x

M. Nair, S. Adinolfi, C. Pastore, G. Kelly, P. Temussi et al., Solution Structure of the Bacterial Frataxin Ortholog, CyaY, Structure, vol.12, issue.11, 2004.
DOI : 10.1016/j.str.2004.08.012

C. L. Tsai and D. P. Barondeau, Human Frataxin Is an Allosteric Switch That Activates the Fe???S Cluster Biosynthetic Complex, Biochemistry, vol.49, issue.43, pp.9132-9139, 2010.
DOI : 10.1021/bi1013062

F. Colin, A. Martelli, M. Clemancey, J. M. Latour, S. Gambarelli et al., Cluster Assembly, Journal of the American Chemical Society, vol.135, issue.2, pp.733-740, 2013.
DOI : 10.1021/ja308736e

URL : https://hal.archives-ouvertes.fr/hal-01054359

S. Adinolfi, C. Iannuzzi, F. Prischi, C. Pastore, S. Iametti et al., Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS, Nature Structural & Molecular Biology, vol.5, issue.4, pp.390-396, 2009.
DOI : 10.1038/nsmb.1579

J. Bridwell-rabb, C. Iannuzzi, A. Pastore, and D. P. Barondeau, Effector Role Reversal during Evolution: The Case of Frataxin in Fe???S Cluster Biosynthesis, Biochemistry, vol.51, issue.12, pp.2506-2514, 2012.
DOI : 10.1021/bi201628j

Y. Shi, M. Ghosh, G. Kovtunovych, D. R. Crooks, and T. A. Rouault, Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1823, issue.2, pp.484-492, 2012.
DOI : 10.1016/j.bbamcr.2011.11.002

J. H. Kim, R. O. Frederick, N. M. Reinen, A. T. Troupis, and J. L. Markley, [2Fee2S]- Ferredoxin binds directly to cysteine desulfurase and supplies an electron for ironesulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin, J. Am. Chem. Soc, vol.135, issue.22, 2013.

R. Yan, P. V. Konarev, C. Iannuzzi, S. Adinolfi, B. Roche et al., Ferredoxin Competes with Bacterial Frataxin in Binding to the Desulfurase IscS, Journal of Biological Chemistry, vol.288, issue.34, pp.28834-24777, 2013.
DOI : 10.1074/jbc.M113.480327

A. D. Sheftel, O. Stehling, A. J. Pierik, H. P. Elsasser, U. Muhlenhoff et al., Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis, Proceedings of the National Academy of Sciences, vol.107, issue.26, 2010.
DOI : 10.1073/pnas.1004250107

R. Spiegel, A. Saada, J. Halvardson, D. Soiferman, A. Shaag et al., Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy, European Journal of Human Genetics, vol.129, issue.7, 2013.
DOI : 10.1038/ejhg.2013.269

L. E. Vickery, J. R. Cupp, and . Vickery, Molecular chaperones HscA/Ssq1 and HscB/ Jac1 and their roles in ironesulfur protein maturation, Crit. Rev. Biochem. Mol. Biol, pp.42-95, 2007.

H. Uhrigshardt, A. Singh, G. Kovtunovych, M. Ghosh, and T. A. Rouault, Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis, Human Molecular Genetics, vol.19, issue.19, pp.3816-3834, 2010.
DOI : 10.1093/hmg/ddq301

E. A. Craig and J. Marszalek, A specialized mitochondrial molecular chaperone system:??A role in formation of Fe/S centers, Cellular and Molecular Life Sciences, vol.59, issue.10, pp.1658-1665, 2002.
DOI : 10.1007/PL00012493

R. Dutkiewicz, B. Schilke, S. Cheng, H. Knieszner, E. A. Craig et al., Sequence-specific interaction between mitochondrial FeeS scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function, J. Biol. Chem, pp.279-29167, 2004.

K. G. Hoff, J. R. Cupp-vickery, and L. E. Vickery, Contributions of the LPPVK motif of the ironesulfur template protein IscU to interactions with the Hsc66eHsc20 chaperone system, J. Biol. Chem, pp.278-37582, 2003.

M. A. Uzarska, R. Dutkiewicz, S. A. Freibert, R. Lill, and U. Muhlenhoff, The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation, Molecular Biology of the Cell, vol.24, issue.12, pp.24-1830, 2013.
DOI : 10.1091/mbc.E12-09-0644

H. Ye, S. Y. Jeong, M. C. Ghosh, G. Kovtunovych, L. Silvestri et al., Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts, Journal of Clinical Investigation, vol.120, issue.5, pp.1749-1761, 2010.
DOI : 10.1172/JCI40372DS1

C. H. Lillig, C. Berndt, and A. Holmgren, Glutaredoxin systems, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1780, issue.11, pp.1304-1317, 2008.
DOI : 10.1016/j.bbagen.2008.06.003

A. D. Sheftel, O. Stehling, A. J. Pierik, D. J. Netz, S. Kerscher et al., Human ind1, an ironesulfur cluster assembly factor for respiratory complex I, Mol. Cell. Biol, pp.29-6059, 2009.

J. M. Cameron, A. Janer, V. Levandovskiy, N. Mackay, T. A. Rouault et al., Mutations in Iron-Sulfur Cluster Scaffold Genes NFU1 and BOLA3 Cause a Fatal Deficiency of Multiple Respiratory Chain and 2-Oxoacid Dehydrogenase Enzymes, The American Journal of Human Genetics, vol.89, issue.4, pp.486-495, 2011.
DOI : 10.1016/j.ajhg.2011.08.011

A. Navarro-sastre, F. Tort, O. Stehling, M. A. Uzarska, J. A. Arranz et al., A Fatal Mitochondrial Disease Is Associated with Defective NFU1 Function in the Maturation of a Subset of Mitochondrial Fe-S Proteins, The American Journal of Human Genetics, vol.89, issue.5, pp.656-667, 2011.
DOI : 10.1016/j.ajhg.2011.10.005

A. D. Sheftel, C. Wilbrecht, O. Stehling, B. Niggemeyer, H. P. Elsasser et al., The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation, Molecular Biology of the Cell, vol.23, issue.7, pp.1157-1166, 2012.
DOI : 10.1091/mbc.E11-09-0772

N. A. Bolar, A. V. Vanlander, C. Wilbrecht, N. Van-der-aa, J. Smet et al., Mutation of the irone sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy, Hum. Mol. Genet, pp.22-2590, 2013.

L. T. Jensen and V. C. Culotta, Role of Saccharomyces cerevisiae ISA1 and ISA2 in Iron Homeostasis, Molecular and Cellular Biology, vol.20, issue.11, pp.3918-3927, 2000.
DOI : 10.1128/MCB.20.11.3918-3927.2000

A. Kaut, H. Lange, K. Diekert, G. Kispal, and R. , Isa1p is a component of the mitochondrial machinery for maturation of cellular ironesulfur proteins and requires conserved cysteine residues for function, J. Biol. Chem, pp.275-15955, 2000.

J. Lu, J. P. Bitoun, G. Tan, W. Wang, W. Min et al., Iron-binding activity of human ironesulfur cluster assembly protein hIscA1, Biochem. J, pp.428-125, 2010.

H. Ding, J. Yang, L. C. Coleman, and S. Yeung, Distinct iron binding property of two putative iron donors for the ironesulfur cluster assembly: IscA and the bacterial frataxin ortholog CyaY under physiological and oxidative stress conditions, J. Biol. Chem, pp.282-7997, 2007.

D. Vinella, C. Brochier-armanet, L. Loiseau, E. Talla, and F. Barras, Iron-Sulfur (Fe/S) Protein Biogenesis: Phylogenomic and Genetic Studies of A-Type Carriers, PLoS Genetics, vol.353, issue.5, p.1000497, 2009.
DOI : 10.1371/journal.pgen.1000497.s004

URL : https://hal.archives-ouvertes.fr/hal-00698313

A. P. Landry, Z. Cheng, and H. Ding, Iron binding activity is essential for the function of IscA in ironesulphur cluster biogenesis, pp.42-3100, 2013.

D. T. Mapolelo, B. Zhang, S. G. Naik, B. H. Huynh, and M. K. Johnson, IscA, Biochemistry, vol.51, issue.41, pp.8071-8084, 2012.
DOI : 10.1021/bi3006658

L. Qian, C. Zheng, and J. Liu, Characterization of iron-sulfur cluster assembly protein isca from Acidithiobacillus ferrooxidans, Biochemistry (Moscow), vol.78, issue.3, pp.244-251, 2013.
DOI : 10.1134/S000629791303005X

U. Muhlenhoff, N. Richter, O. Pines, A. J. Pierik, and R. , Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fee4S] proteins, J. Biol. Chem, pp.286-41205, 2011.

C. Gelling, I. W. Dawes, N. Richhardt, R. Lill, and U. Muhlenhoff, Mitochondrial Iba57p Is Required for Fe/S Cluster Formation on Aconitase and Activation of Radical SAM Enzymes, Molecular and Cellular Biology, vol.28, issue.5, pp.28-1851, 2008.
DOI : 10.1128/MCB.01963-07

S. E. Calvo, E. J. Tucker, A. G. Compton, D. M. Kirby, G. Crawford et al., High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency, Nature Genetics, vol.1792, issue.10, pp.42-851, 2010.
DOI : 10.1093/hmg/7.6.981

E. J. Tucker, A. G. Compton, S. E. Calvo, and D. R. Thorburn, The molecular basis of human complex I deficiency, IUBMB Life, vol.348, pp.63-669, 2011.
DOI : 10.1002/iub.495

S. H. Kevelam, R. J. Rodenburg, N. I. Wolf, P. Ferreira, R. J. Lunsing et al., NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern, Neurology, vol.80, issue.17, pp.1577-1583, 2013.
DOI : 10.1212/WNL.0b013e31828f1914

E. V. Tenisch, A. S. Lebre, D. Grevent, P. De-lonlay, M. Rio et al., Massive and exclusive pontocerebellar damage in mitochondrial disease and NUBPL mutations, Massive and exclusive pontocerebellar damage in mitochondrial disease and NUBPL mutations, p.391, 2012.
DOI : 10.1212/WNL.0b013e3182611232

K. Bych, S. Kerscher, D. J. Netz, A. J. Pierik, K. Zwicker et al., The iron???sulphur protein Ind1 is required for effective complex I assembly, The EMBO Journal, vol.21, issue.12, pp.1736-1746, 2008.
DOI : 10.1038/emboj.2008.98

Y. Liu, J. A. Cowan, W. H. Tong, G. N. Jameson, B. H. Huynh et al., Ironesulfur cluster biosynthesis: characterization of a molten globule domain in human NFU Subcellular compartmentalization of human Nfu, an ironesulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster, Biochemistry Proc. Natl. Acad. Sci. U. S. A, vol.48, issue.100, pp.9762-9767, 2003.

Y. Liu and J. A. Cowan, Iron sulfur cluster biosynthesis. Human NFU mediates sulfide delivery to ISU in the final step of [2Fe???2S] cluster assembly, Chemical Communications, vol.280, issue.30, pp.3192-3194, 2007.
DOI : 10.1039/b704928e

B. Py, C. Gerez, S. Angelini, R. Planel, D. Vinella et al., Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier, Molecular Microbiology, vol.183, issue.1, pp.155-171, 2012.
DOI : 10.1111/j.1365-2958.2012.08181.x

URL : https://hal.archives-ouvertes.fr/hal-01054360

X. Ferrer-cortes, A. Font, N. Bujan, A. Navarro-sastre, L. Matalonga et al., Protein expression profiles in patients carrying NFU1 mutations. Contribution to the pathophysiology of the disease, Journal of Inherited Metabolic Disease, vol.44, issue.1, pp.36-841, 2013.
DOI : 10.3109/07853890.2011.598547

T. B. Haack, B. Rolinski, B. Haberberger, F. Zimmermann, J. Schum et al., Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings, Journal of Inherited Metabolic Disease, vol.14, issue.3, pp.36-55, 2013.
DOI : 10.1007/s10545-012-9489-7

S. Bekri, G. Kispal, H. Lange, E. Fitzsimons, J. Tolmie et al., Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic ironesulfur protein maturation, Blood, vol.96, pp.3256-3264, 2000.

A. K. Sharma, L. J. Pallesen, R. J. Spang, and W. E. Walden, Cytosolic ironesulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation, J. Biol. Chem, p.285, 2010.

H. Lange, T. Lisowsky, J. Gerber, U. Muhlenhoff, G. Kispal et al., An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins, EMBO reports, vol.273, issue.8, pp.715-720, 2001.
DOI : 10.1093/embo-reports/kve161

A. Biederbick, O. Stehling, R. Rosser, B. Niggemeyer, Y. Nakai et al., Role of human mitochondrial Nfs1 in cytosolic ironesulfur protein biogenesis and iron regulation, Mol. Cell. Biol, pp.26-5675, 2006.

R. Allikmets, W. H. Raskind, A. Hutchinson, N. D. Schueck, M. Dean et al., Mutation of a Putative Mitochondrial Iron Transporter Gene (ABC7) in X-Linked Sideroblastic Anemia and Ataxia (XLSA/A), Human Molecular Genetics, vol.8, issue.5, pp.743-749, 1999.
DOI : 10.1093/hmg/8.5.743

A. Maguire, K. Hellier, S. Hammans, and A. , X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L, British Journal of Haematology, vol.13, issue.4, pp.115-910, 2001.
DOI : 10.1093/hmg/7.13.2021

M. D. 'hooghe, D. Selleslag, G. Mortier, R. Van-coster, P. Vermeersch et al., X-linked sideroblastic anemia and ataxia: a new family with identification of a fourth ABCB7 gene mutation, Eur. J. Paediatr. Neurol, vol.16, pp.730-735, 2012.

C. Pondarre, D. R. Campagna, B. Antiochos, L. Sikorski, H. Mulhern et al., Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis, Blood, vol.109, issue.8, pp.3567-3569, 2007.
DOI : 10.1182/blood-2006-04-015768

C. Pondarre, B. B. Antiochos, D. R. Campagna, S. L. Clarke, E. L. Greer et al., The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic ironesulfur cluster biogenesis, Hum. Mol. Genet, pp.15-953, 2006.

P. Cavadini, G. Biasiotto, M. Poli, S. Levi, R. Verardi et al., RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload, Blood, vol.109, issue.8, pp.3552-3559, 2007.
DOI : 10.1182/blood-2006-08-041632

K. Sipos, H. Lange, Z. Fekete, P. Ullmann, R. Lill et al., Maturation of cytosolic ironesulfur proteins requires glutathione, J. Biol. Chem, p.277, 2002.

D. J. Netz, J. Mascarenhas, O. Stehling, A. J. Pierik, and R. , Maturation of cytosolic and nuclear ironesulfur proteins, Trends Cell. Biol, 2013.

O. Stehling, D. J. Netz, B. Niggemeyer, R. Rosser, R. S. Eisenstein et al., Human Nbp35 is essential for both cytosolic ironesulfur protein assembly and iron homeostasis, Mol. Cell. Biol, p.28, 2008.

D. J. Netz, A. J. Pierik, M. Stumpfig, U. Muhlenhoff, and R. , The Cfd1???Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol, Nature Chemical Biology, vol.126, issue.5, pp.278-286, 2007.
DOI : 10.1093/nar/22.25.5767

D. Song and F. S. Lee, A Role for IOP1 in Mammalian Cytosolic Iron-Sulfur Protein Biogenesis, Journal of Biological Chemistry, vol.283, issue.14, pp.9231-9238, 2008.
DOI : 10.1074/jbc.M708077200

J. Balk, A. J. Pierik, D. J. Netz, U. Muhlenhoff, and R. , The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron???sulphur proteins, The EMBO Journal, vol.179, issue.10, pp.2105-2115, 2004.
DOI : 10.1016/S0168-6445(01)00063-8

V. Srinivasan, D. J. Netz, H. Webert, J. Mascarenhas, A. J. Pierik et al., Structure of the Yeast WD40 Domain Protein Cia1, a Component Acting Late in Iron-Sulfur Protein Biogenesis, Structure, vol.15, issue.10, pp.1246-1257, 2007.
DOI : 10.1016/j.str.2007.08.009

J. Balk, D. J. Aguilar-netz, K. Tepper, A. J. Pierik, and R. , The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear ironesulfur protein assembly, Mol. Cell. Biol, p.25, 2005.

Y. Zhang, E. R. Lyver, E. Nakamaru-ogiso, H. Yoon, B. Amutha et al., Dre2, a Conserved Eukaryotic Fe/S Cluster Protein, Functions in Cytosolic Fe/S Protein Biogenesis, Molecular and Cellular Biology, vol.28, issue.18, pp.5569-5582, 2008.
DOI : 10.1128/MCB.00642-08

T. Land and T. A. Rouault, Targeting of a Human Iron???Sulfur Cluster Assembly Enzyme, nifs, to Different Subcellular Compartments Is Regulated through Alternative AUG Utilization, Molecular Cell, vol.2, issue.6, pp.807-815, 1998.
DOI : 10.1016/S1097-2765(00)80295-6

Y. Shi, M. C. Ghosh, W. H. Tong, and T. A. Rouault, Human ISD11 is essential for both iron-sulfur cluster assembly and maintenance of normal cellular iron homeostasis, Human Molecular Genetics, vol.18, issue.16, pp.3014-3025, 2009.
DOI : 10.1093/hmg/ddp239

W. H. Tong and T. A. Rouault, Functions of mitochondrial ISCU and cytosolic ISCU in mammalian ironesulfur cluster biogenesis and iron homeostasis, Cell. Metab, vol.3, 2006.

Z. Marelja, M. M. Chowdhury, C. Dosche, C. Hille, O. Baumann et al., The L-Cysteine Desulfurase NFS1 Is Localized in the Cytosol where it Provides the Sulfur for Molybdenum Cofactor Biosynthesis in Humans, PLoS ONE, vol.275, issue.4, p.60869, 2013.
DOI : 10.1371/journal.pone.0060869.s004

M. Cossee, M. Schmitt, V. Campuzano, L. Reutenauer, C. Moutou et al., Evolution of the Friedreich's ataxia trinucleotide repeat expansion: Founder effect and premutations, Proceedings of the National Academy of Sciences, vol.94, issue.14, pp.94-7452, 1997.
DOI : 10.1073/pnas.94.14.7452

A. H. Koeppen, Friedreich's ataxia: Pathology, pathogenesis, and molecular genetics, Journal of the Neurological Sciences, vol.303, issue.1-2, pp.1-12, 2011.
DOI : 10.1016/j.jns.2011.01.010

A. E. Harding and R. L. Hewer, The heart disease of Friedreich's ataxia: a clinical and electrocardiographic study of 115 patients, with an analysis of serial electrocardiographic changes in 30 cases, Q. J. Med, pp.52-489, 1983.

A. Rotig, P. De-lonlay, D. Chretien, F. Foury, M. Koenig et al., Aconitase and mitochondrial ironesulphur protein deficiency in Friedreich ataxia, Nat. Genet, pp.17-215, 1997.

J. B. Lamarche, M. Cote, and B. Lemieux, SUMMARY:, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, vol.3, issue.04, pp.389-396, 1980.
DOI : 10.1002/path.1700580414

M. Emond, G. Lepage, M. Vanasse, and M. Pandolfo, Increased levels of plasma malondialdehyde in Friedreich ataxia, Neurology, vol.55, issue.11, pp.1752-1753, 2000.
DOI : 10.1212/WNL.55.11.1752

J. B. Schulz, T. Dehmer, L. Schols, H. Mende, C. Hardt et al., Oxidative stress in patients with Friedreich ataxia, Neurology, vol.55, issue.11, pp.1719-1721, 2000.
DOI : 10.1212/WNL.55.11.1719

A. Saveliev, C. Everett, T. Sharpe, Z. Webster, and R. Festenstein, DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing, Nature, vol.422, issue.6934, 2003.
DOI : 10.1038/nature01596

S. Schmucker and H. Puccio, Understanding the molecular mechanisms of Friedreich's ataxia to develop therapeutic approaches, Human Molecular Genetics, vol.19, issue.R1, 2010.
DOI : 10.1093/hmg/ddq165

V. Campuzano, L. Montermini, M. D. Molto, L. Pianese, M. Cossee et al., Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion, Science, vol.271, issue.5254, pp.1423-1427, 1996.
DOI : 10.1126/science.271.5254.1423

M. Cossee, A. Durr, M. Schmitt, N. Dahl, P. Trouillas et al., Friedreich's ataxia: Point mutations and clinical presentation of compound heterozygotes, Annals of Neurology, vol.19, issue.2, p.45, 1999.
DOI : 10.1002/1531-8249(199902)45:2<200::AID-ANA10>3.0.CO;2-U

C. Gellera, B. Castellotti, C. Mariotti, R. Mineri, V. Seveso et al., Frataxin gene point mutations in Italian Friedreich ataxia patients, Neurogenetics, vol.16, issue.4, pp.289-299, 2007.
DOI : 10.1007/s10048-007-0101-5

M. Cossee, H. Puccio, A. Gansmuller, H. Koutnikova, A. Dierich et al., Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation, Human Molecular Genetics, vol.9, issue.8
DOI : 10.1093/hmg/9.8.1219

A. Martelli, M. Napierala, and H. Puccio, Understanding the genetic and molecular pathogenesis of Friedreich's ataxia through animal and cellular models, Disease Models & Mechanisms, vol.5, issue.2, pp.165-176, 2012.
DOI : 10.1242/dmm.008706

M. G. Cotticelli, L. Rasmussen, N. L. Kushner, S. Mckellip, M. I. Sosa et al., Primary and Secondary Drug Screening Assays for Friedreich Ataxia, Journal of Biomolecular Screening, vol.64, issue.3, 2012.
DOI : 10.1056/NEJM199610173351601

L. E. Larsson, H. Linderholm, R. Mueller, T. Ringqvist, and R. Soernaes, Hereditary metabolic myopathy with paroxysmal myoglobinuria due to abnormal glycolysis, Journal of Neurology, Neurosurgery & Psychiatry, vol.27, issue.5, pp.361-380, 1964.
DOI : 10.1136/jnnp.27.5.361

R. E. Hall, K. G. Henriksson, S. F. Lewis, R. G. Haller, and N. G. Kennaway, Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several ironesulfur proteins, J. Clin. Invest, p.92, 1993.

F. Mochel, M. A. Knight, W. H. Tong, D. Hernandez, K. Ayyad et al., Splice Mutation in the Iron-Sulfur Cluster Scaffold Protein ISCU Causes Myopathy with Exercise??Intolerance, The American Journal of Human Genetics, vol.82, issue.3, pp.652-660, 2008.
DOI : 10.1016/j.ajhg.2007.12.012

A. Olsson, L. Lind, L. E. Thornell, and M. Holmberg, Myopathy with lactic acidosis is linked to chromosome 12q23.3-24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect, Human Molecular Genetics, vol.17, issue.11, pp.539-544, 2008.
DOI : 10.1093/hmg/ddn057

A. Nordin, E. Larsson, L. E. Thornell, and M. Holmberg, Tissue-specific splicing of ISCU results in a skeletal muscle phenotype in myopathy with lactic acidosis, while complete loss of ISCU results in early embryonic death in mice, Human Genetics, vol.281, issue.38, pp.129-371, 2011.
DOI : 10.1007/s00439-010-0931-3

G. Kollberg, M. Tulinius, A. Melberg, N. Darin, O. Andersen et al., Clinical manifestation and a new ISCU mutation in ironesulphur cluster deficiency myopathy, pp.2170-2179, 2009.

G. Kollberg and E. Holme, Antisense oligonucleotide therapeutics for iron???sulphur cluster deficiency myopathy, Neuromuscular Disorders, vol.19, issue.12, pp.833-836, 2009.
DOI : 10.1016/j.nmd.2009.09.011

C. Camaschella, A. Campanella, L. De-falco, L. Boschetto, R. Merlini et al., The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload, Blood, vol.110, issue.4, 2007.
DOI : 10.1182/blood-2007-02-072520

R. A. Wingert, J. L. Galloway, B. Barut, H. Foott, P. Fraenkel et al., Deficiency of glutaredoxin 5 reveals FeeS clusters are required for vertebrate haem synthesis, Nature, vol.436, 2005.

A. D. Fonzo, D. Ronchi, T. Lodi, E. Fassone, M. Tigano et al., The Mitochondrial Disulfide Relay System Protein GFER Is Mutated in Autosomal-Recessive Myopathy with Cataract and Combined Respiratory-Chain Deficiency, The American Journal of Human Genetics, vol.84, issue.5, pp.594-604, 2009.
DOI : 10.1016/j.ajhg.2009.04.004

R. A. Pagon, T. D. Bird, J. C. Detter, and I. Pierce, Hereditary sideroblastic anaemia and ataxia: an X linked recessive disorder., Journal of Medical Genetics, vol.22, issue.4, p.22, 1985.
DOI : 10.1136/jmg.22.4.267

K. D. Hellier, E. Hatchwell, A. S. Duncombe, J. Kew, and S. R. , Hammans, X-linked sideroblastic anaemia with ataxia: another mitochondrial disease?, J. Neurol. Neurosurg. Psychiatr, pp.70-65, 2001.

J. Boultwood, A. Pellagatti, M. Nikpour, B. Pushkaran, C. Fidler et al., The Role of the Iron Transporter ABCB7 in Refractory Anemia with Ring Sideroblasts, PLoS ONE, vol.80, issue.4, p.1970, 2008.
DOI : 10.1371/journal.pone.0001970.t001

M. Nikpour, C. Scharenberg, A. Liu, S. Conte, M. Karimi et al., The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts, Leukemia, vol.89, issue.4, pp.889-896, 2013.
DOI : 10.1182/blood-2011-12-399774

C. Camaschella, Recent advances in the understanding of inherited sideroblastic anaemia, British Journal of Haematology, vol.27, issue.1, pp.27-38, 2008.
DOI : 10.1111/j.1365-2141.2008.07290.x

J. A. Mayr, F. A. Zimmermann, C. Fauth, C. Bergheim, D. Meierhofer et al., Lipoic Acid Synthetase Deficiency Causes Neonatal-Onset Epilepsy, Defective Mitochondrial Energy Metabolism, and Glycine Elevation, The American Journal of Human Genetics, vol.89, issue.6, pp.792-797, 2011.
DOI : 10.1016/j.ajhg.2011.11.011

K. P. Shay, R. F. Moreau, E. J. Smith, A. R. Smith, and T. M. Hagen, Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.10, p.1790, 2009.
DOI : 10.1016/j.bbagen.2009.07.026

A. Suomalainen, Therapy for mitochondrial disorders: Little proof, high research activity, some promise, Seminars in Fetal and Neonatal Medicine, vol.16, issue.4, pp.236-240, 2011.
DOI : 10.1016/j.siny.2011.05.003

Y. Shiloh and Y. Ziv, The ATM protein kinase: regulating the cellular response to genotoxic stress, and more, Nature Reviews Molecular Cell Biology, vol.13, issue.4, p.14, 2013.
DOI : 10.4161/cc.23592

B. Galy, D. Ferring-appel, S. W. Sauer, S. Kaden, S. Lyoumi et al., Iron Regulatory Proteins Secure Mitochondrial Iron Sufficiency and Function, Cell Metabolism, vol.12, issue.2, 2010.
DOI : 10.1016/j.cmet.2010.06.007

M. W. Hentze, M. U. Muckenthaler, B. Galy, and C. Camaschella, Two to Tango: Regulation of Mammalian Iron Metabolism, Cell, vol.142, issue.1, pp.24-38, 2010.
DOI : 10.1016/j.cell.2010.06.028

B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py et al., Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.3, pp.455-469, 2013.
DOI : 10.1016/j.bbabio.2012.12.010

D. C. Angeles and B. H. Gan, increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death, Human Mutation, vol.44, issue.12, pp.1390-1397, 2011.
DOI : 10.1002/humu.21582

L. Banci and D. Brancaccio, [2Fe-2S] cluster transfer in iron-sulfur protein biogenesis, Proceedings of the National Academy of Sciences, vol.111, issue.17, pp.6203-6208, 2014.
DOI : 10.1073/pnas.1400102111

L. K. Beilschmidt and H. M. Puccio, Mammalian Fe???S cluster biogenesis and its implication in disease, Biochimie, vol.100, pp.48-60, 2014.
DOI : 10.1016/j.biochi.2014.01.009

K. Bych and S. Kerscher, The iron???sulphur protein Ind1 is required for effective complex I assembly, The EMBO Journal, vol.21, issue.12, pp.1736-1746, 2008.
DOI : 10.1038/emboj.2008.98

C. Camaschella and A. Campanella, The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload, Blood, vol.110, issue.4, pp.1353-1358, 2007.
DOI : 10.1182/blood-2007-02-072520

J. M. Cameron and A. Janer, Mutations in Iron-Sulfur Cluster Scaffold Genes NFU1 and BOLA3 Cause a Fatal Deficiency of Multiple Respiratory Chain and 2-Oxoacid Dehydrogenase Enzymes, The American Journal of Human Genetics, vol.89, issue.4, pp.486-495, 2011.
DOI : 10.1016/j.ajhg.2011.08.011

F. Colin and A. Martelli, Cluster Assembly, Journal of the American Chemical Society, vol.135, issue.2, pp.733-740, 2013.
DOI : 10.1021/ja308736e

URL : https://hal.archives-ouvertes.fr/hal-01054359

H. Ding and R. J. Clark, Characterization of iron binding in IscA, an ancient iron-sulphur cluster assembly protein, Biochemical Journal, vol.379, issue.2, pp.433-440, 2004.
DOI : 10.1042/bj20031702

H. Ding and R. J. Clark, IscA Mediates Iron Delivery for Assembly of Iron-Sulfur Clusters in IscU under the Limited Accessible Free Iron Conditions, Journal of Biological Chemistry, vol.279, issue.36, pp.37499-37504, 2004.
DOI : 10.1074/jbc.M404533200

M. H. Emptage and J. L. Dreyers, Optical and EPR characterization of different species of active and inactive aconitase, J Biol Chem, vol.258, issue.18, pp.11106-11111, 1983.

L. Florens and M. J. Carozza, Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors, Methods, vol.40, issue.4, pp.303-311, 2006.
DOI : 10.1016/j.ymeth.2006.07.028

P. R. Gardner and I. Fridovich, Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical, J Biol Chem, vol.267, issue.13, pp.8757-8763, 1992.

S. A. Garland and K. Hoff, Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly, Journal of Molecular Biology, vol.294, issue.4, pp.897-907, 1999.
DOI : 10.1006/jmbi.1999.3294

C. Gelling and I. W. Dawes, Mitochondrial Iba57p Is Required for Fe/S Cluster Formation on Aconitase and Activation of Radical SAM Enzymes, Molecular and Cellular Biology, vol.28, issue.5, pp.1851-1861, 2008.
DOI : 10.1128/MCB.01963-07

V. Gupta and M. Sendra, SufA, Coexpressed with SufBCDSE, Purifies as a [2Fe???2S] Protein and Acts as an Fe???S Transporter to Fe???S Target Enzymes, Journal of the American Chemical Society, vol.131, issue.17, pp.6149-6153, 2009.
DOI : 10.1021/ja807551e

URL : https://hal.archives-ouvertes.fr/hal-00374830

L. T. Jensen and V. C. Culotta, Role of Saccharomyces cerevisiae ISA1 and ISA2 in Iron Homeostasis, Molecular and Cellular Biology, vol.20, issue.11, pp.3918-3927, 2000.
DOI : 10.1128/MCB.20.11.3918-3927.2000

A. Kaut and H. Lange, Isa1p Is a Component of the Mitochondrial Machinery for Maturation of Cellular Iron-Sulfur Proteins and Requires Conserved Cysteine Residues for Function, Journal of Biological Chemistry, vol.275, issue.21, pp.15955-15961, 2000.
DOI : 10.1074/jbc.M909502199

J. H. Kim and R. O. Frederick, [2Fe-2S]-Ferredoxin Binds Directly to Cysteine Desulfurase and Supplies an Electron for Iron???Sulfur Cluster Assembly but Is Displaced by the Scaffold Protein or Bacterial Frataxin, Journal of the American Chemical Society, vol.135, issue.22, 2013.
DOI : 10.1021/ja401950a

R. Lill, Function and biogenesis of iron???sulphur proteins, Nature, vol.283, issue.7257, pp.831-838, 2009.
DOI : 10.1038/nature08301

L. Loiseau and C. Gerez, ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli, Proceedings of the National Academy of Sciences, vol.104, issue.34, pp.13626-13631, 2007.
DOI : 10.1073/pnas.0705829104

URL : https://hal.archives-ouvertes.fr/hal-00379510

J. Lu and J. P. Bitoun, Iron-binding activity of human iron???sulfur cluster assembly protein hIscA1, Biochemical Journal, vol.253, issue.1, pp.125-131, 2010.
DOI : 10.1016/j.febslet.2005.10.046

D. T. Mapolelo and B. Zhang, IscA, Biochemistry, vol.51, issue.41, pp.8056-8070, 2012.
DOI : 10.1021/bi300664j

D. T. Mapolelo and B. Zhang, Monothiol glutaredoxins and A-type proteins: partners in Fe???S cluster trafficking, Dalton Transactions, vol.279, issue.9, pp.3107-3115, 2013.
DOI : 10.1039/c2dt32263c

URL : https://hal.archives-ouvertes.fr/hal-01268219

A. Martelli and M. Wattenhofer-donze, Frataxin is essential for extramitochondrial Fe S cluster proteins in mammalian tissues, Human Molecular Genetics, vol.16, issue.22, pp.2651-2658, 2007.
DOI : 10.1093/hmg/ddm163

URL : https://hal.archives-ouvertes.fr/hal-00187819

M. Mimaki and X. Wang, Understanding mitochondrial complex I assembly in health and disease, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.6, pp.851-862, 2012.
DOI : 10.1016/j.bbabio.2011.08.010

K. Morimoto and E. Yamashita, The Asymmetric IscA Homodimer with an Exposed [2Fe-2S] Cluster Suggests the Structural Basis of the Fe-S Cluster Biosynthetic Scaffold, Journal of Molecular Biology, vol.360, issue.1, pp.117-132, 2006.
DOI : 10.1016/j.jmb.2006.04.067

U. Muhlenhoff and N. Richter, Specialized Function of Yeast Isa1 and Isa2 Proteins in the Maturation of Mitochondrial [4Fe-4S] Proteins, Journal of Biological Chemistry, vol.286, issue.48, pp.41205-41216, 2011.
DOI : 10.1074/jbc.M111.296152

A. Navarro-sastre and F. Tort, A Fatal Mitochondrial Disease Is Associated with Defective NFU1 Function in the Maturation of a Subset of Mitochondrial Fe-S Proteins, The American Journal of Human Genetics, vol.89, issue.5, pp.656-667, 2011.
DOI : 10.1016/j.ajhg.2011.10.005

S. Ollagnier-de-choudens and T. Mattioli, Iron-Sulfur Cluster Assembly: CHARACTERIZATION OF IscA AND EVIDENCE FOR A SPECIFIC AND FUNCTIONAL COMPLEX WITH FERREDOXIN, Journal of Biological Chemistry, vol.276, issue.25, pp.22604-22607, 2001.
DOI : 10.1074/jbc.M102902200

S. Ollagnier-de-choudens and Y. Sanakis, SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly, JBIC Journal of Biological Inorganic Chemistry, vol.275, issue.7, pp.828-838, 2004.
DOI : 10.1007/s00775-004-0581-9

A. Pandey and H. Yoon, Isd11p Protein Activates the Mitochondrial Cysteine Desulfurase Nfs1p Protein, Journal of Biological Chemistry, vol.286, issue.44, pp.38242-38252, 2011.
DOI : 10.1074/jbc.M111.288522

W. Pelzer and U. Muhlenhoff, Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins, FEBS Letters, vol.194, issue.3, pp.134-139, 2000.
DOI : 10.1016/S0014-5793(00)01711-7

H. Puccio and D. Simon, Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits, Nature Genetics, vol.27, issue.2, pp.181-186, 2001.
DOI : 10.1038/84818

E. C. Raulfs and I. P. Carroll, In vivo iron-sulfur cluster formation, Proceedings of the National Academy of Sciences, vol.105, issue.25, pp.8591-8596, 2008.
DOI : 10.1073/pnas.0803173105

T. A. Schaedler and J. D. Thornton, A Conserved Mitochondrial ATP-binding Cassette Transporter Exports Glutathione Polysulfide for Cytosolic Metal Cofactor Assembly, Journal of Biological Chemistry, vol.289, issue.34, pp.23264-23274, 2014.
DOI : 10.1074/jbc.M114.553438

S. Schmucker and M. Argentini, The in vivo mitochondrial two-step maturation of human frataxin, Human Molecular Genetics, vol.17, issue.22, pp.3521-3531, 2008.
DOI : 10.1093/hmg/ddn244

URL : https://hal.archives-ouvertes.fr/inserm-00350838

S. Schmucker and A. Martelli, Mammalian Frataxin: An Essential Function for Cellular Viability through an Interaction with a Preformed ISCU/NFS1/ISD11 Iron-Sulfur Assembly Complex, PLoS ONE, vol.1, issue.1, p.16199, 2011.
DOI : 10.1371/journal.pone.0016199.s009

A. D. Sheftel and O. Stehling, Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I, Molecular and Cellular Biology, vol.29, issue.22, pp.6059-6073, 2009.
DOI : 10.1128/MCB.00817-09

A. D. Sheftel and C. Wilbrecht, The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation, Molecular Biology of the Cell, vol.23, issue.7, pp.1157-1166, 2012.
DOI : 10.1091/mbc.E11-09-0772

D. T. Ta and L. E. Vickery, Cloning, sequencing, and overexpression of a [2Fe-2S] ferredoxin gene from Escherichia coli, J Biol Chem, vol.267, issue.16, pp.11120-11125, 1992.

G. Tan and J. Lu, under aerobic growth conditions, Biochemical Journal, vol.282, issue.3, pp.463-472, 2009.
DOI : 10.1074/jbc.M803395200

A. Teplyakov and G. Obmolova, Crystal Structure of the YgfZ Protein from Escherichia coli Suggests a Folate-Dependent Regulatory Role in One-Carbon Metabolism, Journal of Bacteriology, vol.186, issue.21, pp.7134-7140, 2004.
DOI : 10.1128/JB.186.21.7134-7140.2004

C. L. Tsai and D. P. Barondeau, Human Frataxin Is an Allosteric Switch That Activates the Fe???S Cluster Biosynthetic Complex, Biochemistry, vol.49, issue.43, pp.9132-9139, 2010.
DOI : 10.1021/bi1013062

M. A. Uzarska and R. Dutkiewicz, The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation, Molecular Biology of the Cell, vol.24, issue.12, pp.1830-1841, 2013.
DOI : 10.1091/mbc.E12-09-0644

D. Vinella and C. Brochier-armanet, Iron-Sulfur (Fe/S) Protein Biogenesis: Phylogenomic and Genetic Studies of A-Type Carriers, PLoS Genetics, vol.353, issue.5, p.1000497, 2009.
DOI : 10.1371/journal.pgen.1000497.s004

URL : https://hal.archives-ouvertes.fr/hal-00698313

K. R. Vinothkumar and J. Zhu, Architecture of mammalian respiratory complex I, Nature, vol.8, issue.7525, 2014.
DOI : 10.1038/nature13686

K. Wada and Y. Hasegawa, SufA involved in biosynthesis of iron-sulfur clusters: Implications for a functional dimer, FEBS Letters, vol.93, issue.29, pp.6543-6548, 2005.
DOI : 10.1016/j.febslet.2005.10.046

J. C. Waller and S. Alvarez, A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life, Proceedings of the National Academy of Sciences, vol.107, issue.23, pp.10412-10417, 2010.
DOI : 10.1073/pnas.0911586107

H. C. Whitaker and D. Patel, Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress, British Journal of Cancer, vol.13, issue.4, pp.983-993, 2013.
DOI : 10.1038/bjc.2013.396

N. Wiedemann and E. Urzica, Essential role of Isd11 in mitochondrial iron???sulfur cluster synthesis on Isu scaffold proteins, The EMBO Journal, vol.33, issue.1, pp.184-195, 2006.
DOI : 10.1038/sj.emboj.7600906

URL : https://hal.archives-ouvertes.fr/hal-00136402

R. A. Wingert and J. L. Galloway, Erratum: Deficiency of glutaredoxin 5 reveals Fe???S clusters are required for vertebrate haem synthesis, Nature, vol.437, issue.7060, pp.1035-1039, 2005.
DOI : 10.1038/nature03887

H. Ye and S. Y. Jeong, Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts, Journal of Clinical Investigation, vol.120, issue.5, pp.1749-1761, 2010.
DOI : 10.1172/JCI40372DS1

J. Zeng and M. Geng, The IscA from Acidithiobacillus ferrooxidans is an iron???sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur, Archives of Biochemistry and Biophysics, vol.463, issue.2, pp.237-244, 2007.
DOI : 10.1016/j.abb.2007.03.024

S. E. Abdel?ghany and H. Ye, Iron-Sulfur Cluster Biogenesis in Chloroplasts. Involvement of the Scaffold Protein CpIscA, PLANT PHYSIOLOGY, vol.138, issue.1, pp.161-172, 2005.
DOI : 10.1104/pp.104.058602

A. C. Adam and C. Bornhovd, The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondriaAssembly of iron?sulfur clusters. Identification of an iscSUA? hscBA?fdx gene cluster from Azotobacter vinelandii, 174?183. References References References References References References References References References References References References References References References Zheng, pp.13264-13272, 1998.

C. Zincarelli and S. Soltys, Analysis of AAV Serotypes 1???9 Mediated Gene Expression and Tropism in Mice After Systemic Injection, Molecular Therapy, vol.16, issue.6, pp.1073-1080, 2008.
DOI : 10.1038/mt.2008.76

B. Zybailov and A. L. Mosley, Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae, 2339?2347. French summary des Fe?S pour les protéines cytosoliques et nucléaires (Beinert, 1997.

. Cependant, plusieurs fonctions ont été proposées : 1) donneur de fer lors de l'assemblage initiale du Fe?S (Ding and Clark, 2004.

Z. Mapolelo, 2012); 2) protéine d'échafaudage des Fe?S alternative à ISCU, 2001.