S. Apprentissage-des, 104 4.2.1 Etape hors-ligne d'estimation de quantiles

A. D. Courbes, . Cor, . Un, . Signal, . Bruit et al., Database-friendly random projections, Journal of Computers and System Sciences, vol.66, issue.4, pp.671-687, 2003.

P. [. Arlot and . Massart, Data-driven calibration of penalties for least squares regression, Journal of Machine Learning Research, vol.10, pp.245-279, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00243116

]. T. And73 and . Anderson, Asymptotically efficient estimation of covariance matrices with linear structure, The Annals of Statistics, vol.1, issue.1, pp.135-141, 1973.

]. S. Arl07 and . Arlot, Rééchantillonnage et Sélection de modèles, 2007.

]. Bau09 and . Baudry, Sélection de modèle pour la classification non supervisée, Choix du nombre de classes, 2009.

G. [. Biernacki, G. Celeux, and . Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

B. [. Buades, J. Coll, and . Morel, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

]. C. Bcsag08a, G. Biernacki, J. Celeux, G. Abdellah, and . Govaert, High Performance Model- Based Cluster and Discrimination Analysis, 2008.

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, Series B, vol.36, issue.2, pp.192-236, 1974.

]. J. Bes77 and . Besag, Efficiency of pseudolikelihood estimation for simple gaussian fields, Biometrika, vol.64, issue.3, pp.616-618, 1977.

R. [. Bunch and . Fierro, A constant-false-alarm-rate algorithm, Linear Algebra and its Applications, vol.172, pp.231-241, 1992.
DOI : 10.1016/0024-3795(92)90028-9

J. [. Breiman, C. Friedman, R. Stone, and . Olshen, Classification and Regression Trees, 1984.

S. [. Baraud, B. Huet, and . Laurent, Adaptive tests of linear hypothesis by model selection. The Annals of Statistics, pp.225-251, 2003.

A. [. Bennett and . Khotanzad, Maximum likelihood estimation methods for multispectral random field image models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.6, pp.537-543, 1999.
DOI : 10.1109/34.771322

D. [. Burg, D. L. Luenberger, and . Wenger, Estimation of structured covariance matrices, Proceedings of the IEEE, pp.963-974, 1982.
DOI : 10.1109/PROC.1982.12427

. J. Bm, S. Bruna, and . Mallat, Codes pour le calcul les coefficients de scattering

H. [. Bingham and . Mannila, Random projection in dimensionality reduction, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, 2001.
DOI : 10.1145/502512.502546

P. [. Birge and . Massart, Minimal penalties for gaussian model selection. Probab. Theory Related Fields, pp.33-73, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00141376

[. Bruna and S. Mallat, Classification with scattering operators, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995635

[. Bruna and S. Mallat, Invariant Scattering Convolution Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, p.2013
DOI : 10.1109/TPAMI.2012.230

[. Baudry, C. Maugis, and B. Michel, Slope heuristics: overview and implementation, Statistics and Computing, vol.6, issue.2, pp.455-470, 2011.
DOI : 10.1007/s11222-011-9236-1

URL : https://hal.archives-ouvertes.fr/hal-00461639

I. [. Basseville and . Nikiforov, Detection of Abrupt Changes : Theory and Applications, 1993.

R. [. Bien and . Tibshirani, Sparse estimation of a covariance matrix, Biometrika, vol.98, issue.4, pp.807-820, 2011.
DOI : 10.1093/biomet/asr054

D. [. Chafa¨?chafa¨? and . Concordet, A new method for the estimation of variance matrix with??prescribed zeros in nonlinear mixed effects models, Statistics and Computing, vol.10, issue.1, pp.129-138, 2009.
DOI : 10.1007/s11222-008-9076-9

M. [. Chaudhuri, T. S. Drton, and . Richardson, Estimation of a covariance matrix with zeros, Biometrika, vol.94, issue.1, pp.199-216, 2007.
DOI : 10.1093/biomet/asm007

G. [. Celeux and . Govaert, A classification EM algorithm for clustering and two stochastic versions, Cha02] A. Chambaz. Detecting abrupt changes in random fields. ESAIM Probability and Statistics, pp.315-332189, 1992.
DOI : 10.1016/0167-9473(92)90042-E

URL : https://hal.archives-ouvertes.fr/inria-00075196

A. [. Cross and . Jain, Markov Random Field Texture Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.5, issue.1, pp.25-39, 1983.
DOI : 10.1109/TPAMI.1983.4767341

]. N. Cre93 and . Cressie, Statistics for Spatial Data, 1993.

]. R. Dah12, . Dahlhausdev15-]-e, and . Devijver, Locally stationary processes. Handbook of Statistics Modèle de mélange pour la régression en grande dimension, 2012.

R. [. Denney and . Figueiredo, <title>Optimal point target detection using adaptive auto regressive background prediction</title>, Signal and Data Processing of Small Targets 2000, 2000.
DOI : 10.1117/12.392005

A. [. Dasgupta and . Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structures and Algorithms, vol.15, issue.1, pp.60-65, 2003.
DOI : 10.1002/rsa.10073

H. [. Dahlhaus and . Künsch, Edge effects and efficient parameter estimation for stationary random fields, Biometrika, vol.74, issue.4, pp.877-882, 1987.
DOI : 10.1093/biomet/74.4.877

N. [. Demptser, D. B. Laird, F. Rubin, N. Galland, P. Bertaux et al., Maximum likelihood from incomplete data via the em algorithm Minimum desciption length synthetic aperture radar image segmentation, Journal of the Royal statistical Society, IEEE Transactions on Image Processings, vol.39, issue.129, pp.1-38, 1977.

I. [. Goldman and . Cohen, Anomaly subspace detection based on a multi-scale Markov random field model, Signal Processing, vol.85, issue.3, pp.463-479, 2005.
DOI : 10.1016/j.sigpro.2004.10.013

]. X. Gen09 and . Gendre, Estimation par sélection de modèles en régression hétéroscédastique, 2009.

]. L. Gen13 and . Genin, Détection d'objets de petite taille sur des séquences aériennes ou satellitaires, 2013.

]. X. Gen14 and . Gendre, Model selection and estimation of a component in additive regression, ESAIM : Probability and Statistics, vol.18, pp.77-116, 2014.

D. [. Geman and . Geman, Stochastic relaxation, gibbs distribution, and the bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.6, pp.6721-741, 1984.

B. Guyon, -dimensional lattice, Biometrika, vol.69, issue.1, pp.95-105, 1982.
DOI : 10.1093/biomet/69.1.95

URL : https://hal.archives-ouvertes.fr/dumas-01357431

]. X. Guy07 and . Guyon, Statistiques spatiales, 2007.

A. [. Hory, W. J. Kokaram, and . Christmas, Threshold Learning from Samples Drawn from the Null Hypothesis for the Generalized Likelihood Ratio CUSUM Test, 2005 IEEE Workshop on Machine Learning for Signal Processing, 2005.
DOI : 10.1109/MLSP.2005.1532884

R. [. Hastie, J. Tibshirani, and . Friedman, The Elements of Statistical Learning, 2001.

R. [. Kashyap and . Chellappa, Estimation and choice of neighbors in spatial-interaction models of images, IEEE Transactions on Information Theory, vol.29, issue.1, pp.60-72, 1983.
DOI : 10.1109/TIT.1983.1056610

]. E. Kel86 and . Kelly, An adaptive detection algorithm, IEEE Transactions on Aerospace and Electronic Systems, issue.1, p.22, 1986.

B. [. Kim, C. C. Mallick, and . Holmes, Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes, Journal of the American Statistical Association, vol.100, issue.470, 2005.
DOI : 10.1198/016214504000002014

D. [. Kleiber and . Nychka, Nonstationary multivariate spatial covariance modeling, Journal of Multivaraite Analysis, vol.112, 2012.

. Lévine, Fondements théoriques de la radiotechnique statistique, 1973.

]. M. Lav98 and . Lavielle, Optimal segmentation of random processes, IEEE Transactions on Signal Processings, vol.46, issue.5, pp.1365-1373, 1998.

]. T. Lee98 and . Lee, Segmenting images corrupted by correlated noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.5, pp.481-492, 1998.

M. [. Ludena and . Lavielle, The multiple change-points problem for the spectral distribution, Bernouilli, vol.6, issue.5, pp.845-869, 2000.

[. Pennec and S. Cohen, Partition-based conditional density estimation. ESAIM, Probability and Statistics, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00915854

]. P. Mas03, . Massartmas09-]-p, and . Massart, Concentration inequalities and model selection Sélection de modèle : de la théoriè a la pratique, Journal de la SFDS, vol.149, issue.4, pp.5-28, 2003.

N. [. Moura and . Balram, Recursive structure of noncausal Gauss-Markov random fields, IEEE Transactions on Information Theory, vol.38, issue.2, pp.334-354, 1992.
DOI : 10.1109/18.119691

]. B. Mcm56 and . Mcmillan, Two inequalities implied by unique decipherability, IEEE Trans. Information Theory, vol.2, issue.4, pp.115-116, 1956.

M. [. Matteoli, G. Diani, and . Corsini, A tutorial overview of anomaly detection in hyperspectral images, IEEE Aerospace and Electronic Systems Magazine, vol.25, issue.7, p.25, 2010.
DOI : 10.1109/MAES.2010.5546306

]. C. Mey12 and . Meynet, Sélection de variables pour la classification non supervisée en grande dimension, 2012.

]. O. Mic06 and . Michel, Cours d'introductionàintroductionà la théorie de la détection, Laboratoire LUAN CNRS, 2006.

B. [. Maugis and . Michel, A non asymptotic penalized criterion for Gaussian mixture model selection, ESAIM: Probability and Statistics, vol.15, pp.41-68, 2011.
DOI : 10.1051/ps/2009004

URL : https://hal.archives-ouvertes.fr/inria-00284613

I. [. Margalit, R. M. Reed, and . Gagliardi, Adaptive Optical Target Detection Using Correlated Images, IEEE Transactions on Aerospace and Electronic Systems, vol.21, issue.3, pp.21394-405, 1985.
DOI : 10.1109/TAES.1985.310570

]. F. Pas06 and . Pascal, Détection et Estimation en Environnement Non Gaussien, 2006.

. J. Ps, E. Portilla, and . Simonelli, Codes pour la synthèse d'images avec les descripteurs de portilla/simoncelli

E. [. Portilla and . Simoncelli, A parametric model based on joint statistics of complex wavelet coefficients, International Journal of Computer Vision, vol.40, issue.1, pp.49-71, 2000.
DOI : 10.1023/A:1026553619983

V. [. Portilla, M. J. Strela, E. P. Wainwright, and . Simoncelli, Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Transactions on Image Processing, vol.12, issue.11, pp.1338-1351, 2003.
DOI : 10.1109/TIP.2003.818640

L. [. Rue and . Held, Gaussian Markov Random Field : Theroy and Applications, 2005.
DOI : 10.1201/9780203492024

]. J. [-ris86 and . Rissanen, Stochastic complexity and modeling. The Annals of Statistics, pp.1080-1100, 1986.

M. Sart, Estimation of the transition density of a markov chain Annales de l'Institut Henry Poincaré, Probabilités et Statistiques, p.2014

B. [. Scharf and . Freidlander, Matched subspace detector, IEEE Transaction On signal processing, issue.8, p.42, 1994.

W. [. Simoncelli and . Freeman, The steerable pyramid: a flexible architecture for multi-scale derivative computation, Proceedings., International Conference on Image Processing, pp.444-447, 1995.
DOI : 10.1109/ICIP.1995.537667

]. E. Sim98 and . Simoncelli, Statistical models for images : Compression restoration and synthesis, IEEE Computer Society, vol.1, pp.673-678, 1998.

]. J. The14 and . Theiler, Transductive and matched-pair machine learning for difficult target detection problems, Proc. SPIE, 2014.

]. M. Uns95 and . Unser, Texture classification and segmentation using wavelet frames, IEEE Transactions on Image Processing, vol.4, issue.11, pp.1549-1560, 1995.

]. V. Vap99 and . Vapnik, An overview of statistical learning theory, IEEE Transactions on Neural Networks, vol.10, issue.5, pp.988-999, 1999.

]. E. Vas11 and . Vasquez, Techniques statistiques de détection de cibles dans des images infrarouges inhomogènes en milieu maritime [Ver09] N. Verzelen. Data-driven neighborhood selection of a gaussian field, Comput. Statist. Data Anal, vol.54, issue.5, 2009.

]. N. Ver10 and . Verzelen, Adaptive estimation of stationary gaussian fields, Annals of Statistics, vol.38, issue.3, pp.1363-1402, 2010.

]. G. Vez78 and . Vezzosi, Détection d'un signal dans un bruit auto-régressif gaussien, Ann. Télécommunications, vol.33, issue.78, 1978.

]. P. Whi54 and . Whittle, On stationary processes in the plane, Biometrika, vol.414, issue.3, pp.434-449, 1954.