U. Häfeli, Magnetism in Medicine: A Handbook, p.15, 1998.

P. C. Lauterbur, Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature, vol.178, issue.5394, pp.190-191, 1973.
DOI : 10.1038/242190a0

R. Damadian, M. Goldsmith, and L. Minkoff, «NMR in cancer: XVI. FONAR image of the live human body, Physiol Chem Phys, vol.9, issue.n°11, pp.97-100, 1977.

A. Detappe, S. Kunjachan, J. Rottmann, J. Robar, P. Tsiamas et al., AGuIX nanoparticles as a promising platform for image-guided radiation therapy, Cancer Nanotechnology, vol.38, issue.5, p.4, 2015.
DOI : 10.1186/s12645-015-0012-3

URL : https://hal.archives-ouvertes.fr/hal-01275211

Z. Wu, RBC micromotors carrying multiple cargos towards potential theranostic applications, Nanoscale, vol.137, issue.32, p.13680, 2015.
DOI : 10.1021/acsnano.5b02807

L. Chen, H. Li, H. He, H. Wu, and Y. Jin, Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing, Analytical Chemistry, vol.87, issue.13, pp.6868-6874, 2015.
DOI : 10.1021/acs.analchem.5b01260

A. Fernandez-fernandez, R. Manchanda, and A. J. Mcgoron, Theranostic Applications of Nanomaterials in Cancer: Drug Delivery, Image-Guided Therapy, and Multifunctional Platforms, Applied Biochemistry and Biotechnology, vol.21, issue.Suppl I
DOI : 10.1007/s12010-011-9383-z

W. Wu, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Research Letters, vol.108, issue.259, 2008.
DOI : 10.1007/s11671-008-9174-9

P. Tartaj, M. Del-puerto-morales, S. Veintemillas-verdaguer, T. Gonzalez-carreno, and C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13
DOI : 10.1088/0022-3727/36/13/202

T. Hyeon, «Chemical synthesis of magnetic nanoparticles, Chem. Commun, pp.927-934, 2003.

A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

V. K. Lamer and R. H. , Dinegar, «Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J Am Chem Soc, vol.72, 1950.

J. P. Jolivet, P. Belleville, and E. Tronc, Livage, «Influence of the Fe(II) on the formation of the spinel iron oxide in alkaline medium, Clays and Clay Minerals, vol.40, p.15, 1992.

J. P. Jolivet and C. , Chaneac et E.Tronc, «Iron oxide chemistry. From molecular clusters to extended solid networks, Chem. Commun, vol.5, 2004.

J. P. Jolivet, E. Tronc, and C. , Chanéac, «Synthesis of iron oxide-based magnetic nanomaterials and composites, C. R. Chimie, vol.5, 2002.

J. P. Jolivet, L. Vayssieres, and C. , Chaneac et E.Tronc, «Precipitation of Spinel Iron Oxide : Nanoparticle Size Control,» Res, Symp. Proc, vol.432, 1997.

Q. Chen, A. Rondinone, B. C. Chakoumakos, and Z. J. Zhang, Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation, Journal of Magnetism and Magnetic Materials, vol.194, issue.1-3, 1999.
DOI : 10.1016/S0304-8853(98)00585-X

L. Han, Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis, Journal of Magnetism and Magnetic Materials, vol.313, issue.1, 2007.
DOI : 10.1016/j.jmmm.2007.01.004

L. Shen, Y. Qiao, Y. Guon, S. Meng, G. Yang et al., «Facile coprecipitation synthesis of shape-controlled magnetite nanoparticles, Ceramics International, vol.40, 2014.

S. Lee, J. Jeong, S. Shin, J. Kim, and J. Kim, Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique, Journal of Magnetism and Magnetic Materials, vol.282
DOI : 10.1016/j.jmmm.2004.04.035

L. Vayssières, C. Chanéac, E. Tronc, and J. P. , Jolivet, «Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles, J Colloid Interface Sci, vol.205, 1998.

W. W. Yu, J. C. Falkner, C. T. Yavuz, and V. L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chemical Communications, issue.20, pp.2306-2307, 2004.
DOI : 10.1039/b409601k

S. Navaladian, B. Viswanathan, R. P. Viswanath, and T. K. , Varadarajan, «Thermal decomposition as route for silver nanoparticles, Nanoscale Res Lett, vol.2, 2007.

K. Simeonidis, S. Mourdikoudis, M. Moulla, I. Tsiaoussis, C. Martinez-boubeta et al., «Controlled synthesis and phase characterization of Febased nanoparticles obtained by thermal decomposition, J. Magn. Magn. Mater, vol.316, 2007.

M. Stefanescu, O. Stefanescu, M. Stoia, and C. , Lazau, «Thermal decomposition of some metalorganic precursors Fe2O3 nanoparticles, Journal of Thermal Analysis and Calorimetry, vol.88, 2007.

D. Maity, S. Choo, J. Yi, J. Ding, and J. M. , Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route, Journal of Magnetism and Magnetic Materials, vol.321, issue.9, pp.1256-1259, 2009.
DOI : 10.1016/j.jmmm.2008.11.013

D. Maity, S. N. Kale, R. Kaul-ghanekar, J. M. Xue, J. et al., Ding, «Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol)

F. J. Arriagada, Osseo-Asare, «Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: Effects of the Water/Surfactant Molar Ratio and Ammonia Concentration, Journal of Colloid and Interface Science, vol.211, 1999.

X. Zhang, Water-in-Oil Microemulsion Synthesis of Platinum???Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties, Chemistry of Materials, vol.15, issue.2, 2003.
DOI : 10.1021/cm0203868

H. Ohde, F. Hunt, and C. M. Wai, Synthesis of Silver and Copper Nanoparticles in a Water-in-Supercritical-Carbon Dioxide Microemulsion, Chemistry of Materials, vol.13, issue.11, 2001.
DOI : 10.1021/cm010030g

S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard et al., Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion:?? The Effect of Nonionic Surfactants, Langmuir, vol.17, issue.10, 2001.
DOI : 10.1021/la0008636

C. Feldmann, «Polyol-mediated synthesis of nanoscale functional materials, » Solid State Sciences, vol.7, 2005.

C. Feldmann, «Polyol-Mediated Synthesis of, Nanoscale Functional Materials,» Adv. Funct. Mater, vol.13, 2003.

B. Wiley, T. Herricks, Y. Sun, and Y. Xia, «Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons, Nano Letters, vol.4, p.19, 2004.

J. Wan, W. Cai, X. Meng, and E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging, Chemical Communications, vol.58, issue.33, pp.5004-5006, 2007.
DOI : 10.1039/b712795b

B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim et al., Synthesis and size control of monodisperse copper nanoparticles by polyol method, Journal of Colloid and Interface Science, vol.311, issue.2, 2007.
DOI : 10.1016/j.jcis.2007.03.039

E. Alphandéry, «Applications of magnetosomes synthesized by magnetotactic bacteria in medicine, Frontiers in Bioengineering and Biotechnology, vol.2, 2014.

H. Fischer, G. Mastrogiacomo, J. F. Löffler, R. J. Warthmann, P. G. Weidler et al., Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense, Earth and Planetary Science Letters, vol.270, issue.3-4, 2008.
DOI : 10.1016/j.epsl.2008.03.022

J. Sun, F. Zhao, T. Tang, W. Jiang, J. S. Tian et al., High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air, Applied Microbiology and Biotechnology, vol.94, issue.5, 2008.
DOI : 10.1007/s00253-008-1453-y

C. J. Brinker and G. W. Sherer, Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing, 1990.

A. Cabanas and M. Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water, Journal of Materials Chemistry, vol.11, issue.5, 2001.
DOI : 10.1039/b009428p

T. Gonzalez-carreno, M. P. Morales, M. Gracia, and C. J. Serna, «Preparation of uniform Y-Fe203 particles with nanometer size by spray pyrolysis, » Materials Letters, vol.18, 1993.

H. R. Kahn and K. Petrikowski, Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina, Journal of Magnetism and Magnetic Materials, vol.215, issue.216, pp.215-216, 2000.
DOI : 10.1016/S0304-8853(00)00209-2

E. H. Kim, H. S. Lee, B. K. Kwak, and B. Kim, «Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, J. Magn. Magn. Mater, vol.289, 2005.

X. Lu, H. Tuan, and B. A. , Korgel et Y.Xia, «Facile Synthesis of Gold Nanoparticles with Narrow Size Distribution by Using AuCl or AuBr as the Precursor, Chemistry, vol.14, p.15, 2008.

X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. , Klabunde, «Formation of Long-Range-Ordered Nanocrystal Superlattices on Silicon Nitride Substrates, J. Phys. Chem. B, vol.105, 2001.

L. Maurizi, «Elaboration de nanoparticules fonctionnelles: applications comme agents de contraste en IRM, 2010.

W. R. Hendee and C. J. Morgan, «Magnetic Resonance Imaging Part I-Physical Principles, West J Med, vol.141, pp.491-500, 1984.

B. Basly, «Conception et caractérisation de nano-objets magnétiques pour l'imagerie par résonance magnétique, 2010.

B. Gleich and J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles, Nature, vol.13, issue.7046, 2005.
DOI : 10.1002/mrm.20356

P. W. Goodwill, K. Lu, B. Zheng, and S. M. , Conolly, «An x-space magnetic particle imaging scanner, REVIEW OF SCIENTIFIC INSTRUMENTS, vol.83, 2012.

F. Ludwig, T. Wawrzik, and M. Schilling, Characterization of Magnetic Nanoparticles for Magnetic Particle Imaging by Magnetorelaxometry, AC Susceptibility, Magnetic Particle Spectroscopy and Static Magnetization Measurements, » SPPHY, vol.140, 2012.
DOI : 10.1007/978-3-642-24133-8_6

R. M. Ferguson, K. R. Minard, and K. M. Krishnan, Optimization of nanoparticle core size for magnetic particle imaging, Journal of Magnetism and Magnetic Materials, vol.321, issue.10, p.110, 2009.
DOI : 10.1016/j.jmmm.2009.02.083

D. Eberbeck, F. Wiekhorst, S. Wagner, and L. , Trahms, «How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance, Appl. Phys. Lett, vol.98, 2011.

G. Storm, S. O. Belliot, T. Daemen, and D. D. , Lasic, «Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system, » Advanced Drug Delivery Reviews, vol.17, 1995.

T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, and B. , Rechenberg, «Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater, vol.293, 2005.

W. B. Liechty and N. A. , Peppas, «Expert opinion: Responsive polymer nanoparticles in cancer therapy, » European Journal of Pharmaceutics and Biopharmaceutics, vol.80, 2012.

B. Haley and E. Frenkel, Nanoparticles for drug delivery in cancer treatment, Urologic Oncology: Seminars and Original Investigations, 2008.
DOI : 10.1016/j.urolonc.2007.03.015

D. E. Owens and N. A. , Peppas, «Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, International Journal of Pharmaceutics, vol.307, 2006.

O. S. Nielsen, M. Horsman, and J. Overgaard, A future for hyperthermia in cancer treatment?, European Journal of Cancer, vol.37, issue.13, 2001.
DOI : 10.1016/S0959-8049(01)00193-9

G. Vallejo-fernandez, O. Whear, A. G. Roca, S. Hussain, J. Timmis et al., Mechanisms of hyperthermia in magnetic nanoparticles, Journal of Physics D: Applied Physics, vol.46, issue.31, 2013.
DOI : 10.1088/0022-3727/46/31/312001

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, vol.166, issue.1-2, 2011.
DOI : 10.1016/j.cis.2011.04.003

R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, Journal of Physics: Condensed Matter, vol.18, issue.38, 2006.
DOI : 10.1088/0953-8984/18/38/S26

S. Dutz and R. Hergt, Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy, International Journal of Hyperthermia, vol.25, issue.8, 2013.
DOI : 10.1021/nn300060u

S. Dutz and R. Hergt, Magnetic particle hyperthermia???a promising tumour therapy?, Nanotechnology, vol.25, issue.45, p.452001, 2014.
DOI : 10.1088/0957-4484/25/45/452001

S. Y. Wong, Apoptosis in cancer: from pathogenesis to treatment, Journal of Experimental & Clinical Cancer Research, vol.30, issue.1, 2011.
DOI : 10.1016/j.bbrc.2007.04.134

H. Kiaris and A. V. Schally, «Apoptosis Versus Necrosis: Which Should Be the Aim of Cancer Therapy, Exp Biol Med, vol.221, 1999.

D. Liu, L. Wang, Z. Wang, and A. Cuschieri, Magnetoporation and Magnetolysis of Cancer Cells via Carbon Nanotubes Induced by Rotating Magnetic Fields, Nano Letters, vol.12, issue.10, 2012.
DOI : 10.1021/nl301928z

B. Wang, C. Bienvenu, J. Mendez-garza, P. Lançon, A. Madeira et al., Bossis, «Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles, Journal of Magnetism and Magnetic Materials, vol.344, 2013.

M. F. Contreras, R. Sougrat, A. Zaher, T. Ravasi, and J. Kosel, Non-chemotoxic induction of cancer cell death using magnetic nanowires, International Journal of Nanomedicine, vol.10, 2015.
DOI : 10.2147/IJN.S77081

M. H. Kang and C. P. Reynolds, Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy, Clinical Cancer Research, vol.15, issue.4, p.14, 2009.
DOI : 10.1158/1078-0432.CCR-08-0144

R. J. Mannix, S. Kumari, F. Cassiola, F. Montoya-zavala, E. Feinstein et al., Ingber, «Nanomagnetic actuation of receptor-mediated signal transduction, Nature Nanotechnology, vol.3, 2008.

M. H. Cho, E. J. Lee, M. Son, J. Lee, D. Yoo et al., A magnetic switch for the control of cell death signalling in in vitro and in vivo systems, Nature Materials, vol.13, 2012.
DOI : 10.1155/2011/609579

D. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh et al., «Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, Nature Materials, vol.9, 2010.

S. Leulmi, «Destruction de cellules cancéreuses par vibrations magnéto-mécaniques de micro/nano particules magnétiques: Elaboration des particules par approche top-down, biofonctionnalisation et tests in vitro, 2014.

S. Leulmi, X. Chauchet, M. Morcrette, G. Ortiz, H. Joisten et al., Dieny, «Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cells membrane, Nanoscale, 2015.

. Querelle, «Synthèse et utilisation de copolymères triblocs ABA pour l'élaboration de membranes poreuses à morphologies et performances contrôlées, 2008.

M. W. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt, Physical Review Letters, vol.72, issue.16, p.116, 1994.
DOI : 10.1103/PhysRevLett.72.2660

A. Andreozzi, E. Poliani, G. Seguini, and M. Perego, -PMMA thin films, Nanotechnology, vol.22, issue.18, 2011.
DOI : 10.1088/0957-4484/22/18/185304

URL : https://hal.archives-ouvertes.fr/in2p3-00012393

A. Böker, Microscopic Mechanisms of Electric-Field-Induced Alignment of Block Copolymer Microdomains, Physical Review Letters, vol.89, issue.13, p.113, 2002.
DOI : 10.1103/PhysRevLett.89.135502

T. Thurn-albrecht, J. Schotter, G. A. Kästle, N. Emley, and T. Shibauchi, Krusin-Elbaum, «Ultrahigh- Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates, SCIENCE, vol.290, 2000.

G. Kim and M. Libera, Kinetic Constraints on the Development of Surface Microstructure in SBS Thin Films, Macromolecules, vol.31, issue.8, 1998.
DOI : 10.1021/ma9714070

G. Kim and M. Libera, Morphological Development in Solvent-Cast Polystyrene???Polybutadiene???Polystyrene (SBS) Triblock Copolymer Thin Films, Macromolecules, vol.31, issue.8, 1998.
DOI : 10.1021/ma971349i

S. H. Kim, M. J. Misner, T. Xu, M. Kimura, and T. P. Russell, Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation, Advanced Materials, vol.16, issue.3, p.226, 2004.
DOI : 10.1002/adma.200304906

S. H. Kim, M. J. Misner, and T. P. Russell, Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures, Advanced Materials, vol.11, issue.23-24, p.2119, 2004.
DOI : 10.1002/adma.200306577

I. A. Zucchini, E. Poliani, and M. Perego, «Microdomain orientation dependence on thickness in thin films of cylinder-forming PS-b-PMMA, Nanotechnology, vol.21, 2010.

K. A. Orso and P. F. Green, Phase Behavior of Thin Film Blends of Block Copolymers and Homopolymers:?? Changes in Domain Dimensions, Macromolecules, vol.32, issue.4, 1999.
DOI : 10.1021/ma981356m

T. Hashimoto, H. Tanaka, and H. Hasegawa, Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers, Macromolecules, vol.23, issue.20, 1990.
DOI : 10.1021/ma00222a009

H. Tanaka, H. Hasegawa, and T. Hashimoto, Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers, Macromolecules, vol.24, issue.1, 1991.
DOI : 10.1021/ma00001a037

Y. S. Jung and C. A. Ross, Orientation-Controlled Self-Assembled Nanolithography Using a Polystyrene???Polydimethylsiloxane Block Copolymer, Nano Letters, vol.7, issue.7, p.17, 2007.
DOI : 10.1021/nl070924l

M. D. Ninago, A. E. Ciolino, M. A. Villar, F. C. Giacomelli, P. Cernoch et al., «Self-Assembly of Well-Defined PS-b-PDMS Copolymers in Bulk and in Selective Solvent, » Chemical Engineering Transactions, vol.17, 2009.

T. L. Bucholz and Y. Loo, Phase Behavior of Near-Monodisperse Semifluorinated Diblock Copolymers by Atom Transfer Radical Polymerization, Macromolecules, vol.39, issue.18, 2006.
DOI : 10.1021/ma0609679

T. Nose, «Coexistence curves of polystyrene/poly(dirnethylsiloxane) blends,» Polymer, p.111, 1995.

K. Peinemann, V. Abetz, and P. F. Simon, Asymmetric superstructure formed in a block copolymer via phase separation, Nature Materials, vol.5, issue.12, 2007.
DOI : 10.1021/ma00076a022

Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari et al., Shape effects of filaments versus spherical particles in flow and drug delivery, Nature Nanotechnology, vol.47, issue.4, pp.249-255, 2007.
DOI : 10.1038/nnano.2007.70

R. Duncan, J. K. Coatsworth, and S. Burtles, Preclinical toxicology of a novel polymeric antitumour agent: HPMA copolymer-doxorubicin (PK1), Human & Experimental Toxicology, vol.17, issue.2, pp.12-93, 1998.
DOI : 10.1191/096032798678908378

R. C. Hayward and D. J. Pochan, Tailored Assemblies of Block Copolymers in Solution: It Is All about the Process, Macromolecules, vol.43, issue.8, pp.3577-3584, 2010.
DOI : 10.1021/ma9026806

C. Park, J. Yoon, and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, vol.44, issue.22, 2003.
DOI : 10.1016/j.polymer.2003.08.011

Y. Jun, J. H. Lee, and J. Cheon, Chemical Design of Nanoparticle Probes for High???Performance Magnetic Resonance Imaging, Angewandte Chemie International Edition, vol.45, issue.28, 2008.
DOI : 10.1002/anie.200701674

J. Vidal-vidal, J. Rivas, and M. A. , Lopez-Quintela, «Synthesis of monodisperse maghemite nanoparticles by the microemulsion method,» Colloids and Surfaces A: Physicochem, Eng. Aspects, vol.288, 2006.

S. A. Kahani and Z. Yagini, A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite, Bioinorganic Chemistry and Applications, vol.1, issue.4, 2014.
DOI : 10.1016/j.biomaterials.2007.07.051

M. Fang, V. Ström, R. T. Olsson, L. Belova, and K. V. Rao, Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles, Nanotechnology, vol.23, issue.14, 2012.
DOI : 10.1088/0957-4484/23/14/145601

R. Lang and N. X. Xanh, «Smolushowski's Theory of Coagulation in Colloids Holds Rigorously in the Boltzmann-Grad-Limit, Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol.54, 1980.

S. K. Friedlander and C. S. Wang, The self-preserving particle size distribution for coagulation by brownian motion, Journal of Colloid and Interface Science, vol.22, issue.2, 1966.
DOI : 10.1016/0021-9797(66)90073-7

L. B. Kiss, J. Söderlund, G. A. Niklasson, and C. G. Granqvist, The real origin of lognormal size distributions of nanoparticles in vapor growth processes, Nanostructured Materials, vol.12, issue.1-4, 1999.
DOI : 10.1016/S0965-9773(99)00128-2

R. B. Bill and A. Bergmann, «On the origin of logarithmic-normal distributions: An analytical derivation, and its application to nucleation and growth processes, Journal of Crystal Growth, vol.310, 2008.

W. Eerenstein, «Spin-dependent transport across anti-phase boundaries in magnetite films, 2003.

M. Pauly, «Structuration de nanoparticules magnétiques d'oxyde de fer en films et étude de leurs propriétés magnétiques et de magnétotransport»

F. Walz, The Verwey transition - a topical review, Journal of Physics: Condensed Matter, vol.14, issue.12, 2002.
DOI : 10.1088/0953-8984/14/12/203

J. Garcia, Subias, «The Verwey transition -a new perspective, J. Phys.: Condens. Matter, vol.16, 2004.

I. Leonov and A. N. Yaresko, On the Verwey charge ordering in magnetite, Journal of Physics: Condensed Matter, vol.19, issue.2, 2007.
DOI : 10.1088/0953-8984/19/2/021001

Ö. Özdemir and D. J. Dunlop, «The effect of oxidation on the verwey transition in magnetite, Geophysical Research Letters, vol.20, p.116, 1993.

G. F. Goya, T. S. Berquó, F. C. Fonseca, and M. P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, Journal of Applied Physics, vol.94, issue.5, p.15, 2003.
DOI : 10.1063/1.1599959

P. Li, E. Y. Jiang, and H. L. Bai, «Grain boundaries controlled magnetic and magnetotransport properties of reactively sputtered polycristalline and epitaxial Fe3O4 films

S. Celotto and W. , Characterization of anti-phase boundaries in epitaxial magnetite films, The European Physical Journal B - Condensed Matter, vol.36, issue.2, pp.271-279, 2003.
DOI : 10.1140/epjb/e2003-00344-7

F. Delille, B. Dieny, J. Moussy, M. Guittet, S. Gota et al., Gautier-Soyer et C.Marin, «Study of the electronic paraprocess and antiphase boundaries as sources of the demagnetisation phenomenon in magnetite, J. Magn. Magn. Mater, vol.294, 2005.

J. Moussy, S. Gota, A. Bataille, M. Guittet, M. Gautier-soyer et al., Gatel et E.Snoeck, «Thickness dependence of anomalous magnetic behavior in epitaxial Fe3O4 (111) thin films: Effect of density of antiphase boundaries, Physical Review B, vol.70, 2004.

C. A. Vaz, T. J. Hayward, J. Llandro, F. Schackert, D. Morecroft et al., Ferromagnetic nanorings, «Ferromagnetic nanorings, p.255207, 2007.
DOI : 10.1088/0953-8984/19/25/255207

Y. Yang, X. Liu, J. Yi, Y. Yang, H. Fan et al., Stable vortex magnetite nanorings colloid: Micromagnetic simulation and experimental demonstration, Journal of Applied Physics, vol.111, issue.4, 2012.
DOI : 10.1063/1.3684963

P. Landeros, J. Escrig, D. Altbir, M. Bahiana, and J. , Albuquerque e Castro, «Stability of magnetic configurations in nanorings, Journal of Applied Physics, vol.100, 2006.

D. J. Dunlop, Superparamagnetic and single-domain threshold sizes in magnetite, Journal of Geophysical Research, vol.4, issue.B1, p.111, 1973.
DOI : 10.1029/JB078i011p01780

W. T. Coffey and Y. P. Kalmykov, Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown, Journal of Applied Physics, vol.112, issue.12, p.121301, 2012.
DOI : 10.1063/1.4754272

X. Battle and A. Labarta, Finite-size effects in fine particles: magnetic and transport properties, Journal of Physics D: Applied Physics, vol.35, issue.6, 2002.
DOI : 10.1088/0022-3727/35/6/201

D. H. Han, J. P. Wang, and H. L. Luo, Crystallite size effect on saturation magnetization of fine ferrimagnetic particles, Journal of Magnetism and Magnetic Materials, vol.136, issue.1-2, 1994.
DOI : 10.1016/0304-8853(94)90462-6

M. P. Morales, S. Veintemillas-verdaguer, M. I. Montero, and C. J. Serna, «Surface and Internal Spin Canting in gamma-Fe2O3 Nanoparticles, Chem. Mater, vol.11, 1999.

O. Iglesias and A. Labarta, Role of surface disorder on the magnetic properties and hysteresis of nanoparticles, Physica B: Condensed Matter, vol.343, issue.1-4, 2004.
DOI : 10.1016/j.physb.2003.08.109

R. V. Pickrodt, M. C. Fuentes, P. Carolina, J. Baeza, N. Duran et al., «Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the coprecipitation method, Journal of Alloys and Compounds, vol.488, 2009.

G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, and J. Philip, Raj, «Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles, Materials Chemistry and Physics, vol.103, 2007.

M. Fang, V. Ström, R. T. Olsson, L. Belova, and K. V. Rao, Rapid mixing: A route to synthesize magnetite nanoparticles with high moment, Applied Physics Letters, vol.99, issue.22, 2011.
DOI : 10.1063/1.3662965

D. Jiles, Introduction to Magnetism and Magnetic Materials, 1991.
DOI : 10.1007/978-1-4615-3868-4

P. Poddar, Dipolar interactions in two- and three-dimensional magnetic nanoparticle arrays, Physical Review B, vol.66, issue.6, 2002.
DOI : 10.1103/PhysRevB.66.060403

J. L. Dormann, L. Bessais, and D. Fiorani, A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws, Journal of Physics C: Solid State Physics, vol.21, issue.10, 1988.
DOI : 10.1088/0022-3719/21/10/019

D. Kechrakos, Magnetic properties of dipolar interacting single-domain particles, Physical Review B, vol.58, issue.18, p.118, 1998.
DOI : 10.1103/PhysRevB.58.12169

D. Kechrakos and K. N. Trohidou, Dipolar interaction effects in the magnetic and magnetotransport properties of ordered nanoparticle arrays, 2008.

W. C. Nunes, F. Cebollada, and M. Knobel, Zanchet, «Effects of dipolar interactions on the magnetic properties of gamma-Fe2O3 nanoparticles in the blocked state, Journal of Applied Physics, vol.99, 2006.

J. L. Dormann, R. Cherkaoui, L. Spinu, M. Noguès, F. Lucari et al., Jolivet, «From pure superparamagnetic regime to glass collective state of magnetic moments in ?-Fe2O3 nanoparticle assemblies, J. Magn. Magn. Mater, vol.187, 1998.

M. Genua, N. Reinhardt, J. Faure-vincent, R. Calemczuk, T. Livache et al., Integrating Multi-Functionalities Into Non-Spherical Microparticles Fabricated by Top-Down Approach, Science of Advanced Materials, vol.7, issue.9, 2015.
DOI : 10.1166/sam.2015.2429

V. F. Puntes, K. M. Krishnan, and P. , Alivisatos, «Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ?-Co nanoparticles, Applied Physics Letters, vol.78, p.115, 2001.

W. M. Gelbart, R. P. Sear, J. R. Heath, and S. Chaney, Array formation in nano-colloids: Theory and experiment in 2D, Faraday Discussions, vol.112, 1999.
DOI : 10.1039/a809582e

C. Petit, A. Taleb, and M. Pileni, «Self-Organization of Magnetic Nanosized Cobalt Particles, Adv. Mater, vol.10, p.13, 1998.

L. Motte, F. Billoudet, and M. P. Pileni, Self-Assembled Monolayer of Nanosized Particles Differing by Their Sizes, The Journal of Physical Chemistry, vol.99, issue.44, 1995.
DOI : 10.1021/j100044a033

L. Motte, Self-Organization into 2D and 3D Superlattices of Nanosized Particles Differing by Their Size, The Journal of Physical Chemistry B, vol.101, issue.2, 1997.
DOI : 10.1021/jp962398k

A. Taleb, C. Petit, and M. P. Pileni, Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles:?? A Way to 2D and 3D Self-Organization, Chemistry of Materials, vol.9, issue.4, 1997.
DOI : 10.1021/cm960513y

H. Hillaireau and P. Couvreur, Nanocarriers??? entry into the cell: relevance to drug delivery, Cellular and Molecular Life Sciences, vol.31, issue.Suppl 1
DOI : 10.1007/s00018-009-0053-z

C. D. Bain, J. Evall, and G. M. , Whitesides, «Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Head Group, Tail Group, and Solvent, J. Am. Chem. Soc, vol.111, p.118, 1989.

R. I. Carey, J. P. Folkers, and G. M. , Whitesides, «Self-Assembled Monolayers Containing w- Mercaptoalkylboronic Acids Adsorbed onto Gold Form a Highly Cross-Link?d, p.17, 1994.

J. P. Folkers, P. E. Laibinis, and G. M. , Whitesides, «Self Assembled Monolayers of Alkanethiols on Gold: Comparison of Monolayers Containing Mixtures of Short-and Long-Chain Constituents with CH3 and CH2OH Terminal groups, » Langmuir, vol.8, p.15, 1992.

J. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. , Whitesides, «Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev, vol.105, 2005.

H. Joisten, T. Courcier, P. Balint, P. Sabon, J. Faure-vincent et al., Dieny, «Self-polarization phenomenon and control of dispersion of synthetic antiferromagnetic nanoparticles for biological applications,» Applied Physics Letters, p.97, 2010.

S. Leulmi, H. Joisten, T. Dietsch, C. Iss, M. Morcrette et al., Sabon et B.Dieny, «Comparison of dispersion and actuation properties of vortex and synthetic antiferromagnetic particles for biotechnological applications, Applied Physics Letters, vol.103, 2013.

C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello et al., Large-scale synthesis of ultrafine Si nanoparticles by ball milling, Journal of Crystal Growth, vol.220, issue.4, 2000.
DOI : 10.1016/S0022-0248(00)00882-4

J. Munoz, J. Cervantes, R. Esparza, and G. Rosas, «Iron nanoparticles produced by high-energy ball milling, J Nanopart Res, vol.9, 2007.

Y. Wang, Sm???Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling, Nanotechnology, vol.18, issue.46, 2007.
DOI : 10.1088/0957-4484/18/46/465701

W. Hu, Patterning of high density magnetic nanodot arrays by nanoimprint lithography, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.25, issue.4
DOI : 10.1116/1.2484497

G. M. Mcclelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter et al., Terris, «Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold, Applied Physics Letters, vol.81, p.18, 2002.

J. Moritz, B. Dieny, J. P. Nozières, S. Landis, A. Lebib et al., Domain structure in magnetic dots prepared by nanoimprint and e-beam lithography, Journal of Applied Physics, vol.91, issue.10, p.110, 2002.
DOI : 10.1063/1.1452260

W. Wu, B. Cui, X. Sun, W. Zhang, L. Zhuang et al., Large area high density quantized magnetic disks fabricated using nanoimprint lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.6, p.16, 1998.
DOI : 10.1116/1.590417

A. Masseboeuf, «Microscopie Electronique en Transmission pour l'étude de phénomènes magnétiques à l'échelle du nanomètre, 2008.

E. F. Bertaut, Raies de Debye???Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines, «Raies de Debye-Scherrer et Répartition des Dimensions des Domaines de Bragg dans les Poudres Polycristallines, p.14, 1950.
DOI : 10.1107/S0365110X50000045

J. I. Langford, D. Louër, ». «powder-diffraction, and . Rep, Powder diffraction, Reports on Progress in Physics, vol.59, issue.2, pp.131-234, 1996.
DOI : 10.1088/0034-4885/59/2/002

W. Eerenstein, T. T. Palstra, and T. , films, Physical Review B, vol.68, issue.1, p.14428, 2003.
DOI : 10.1103/PhysRevB.68.014428

M. F. Contreras, Non-chemotoxic induction of cancer cell death using magnetic nanowires, International Journal of Nanomedicine, vol.10, 2015.
DOI : 10.2147/IJN.S77081

G. Volpe and D. Petrov, Torque Detection using Brownian Fluctuations, Physical Review Letters, vol.97, issue.21, 2006.
DOI : 10.1103/PhysRevLett.97.210603

C. D. Bain, Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent, Journal of the American Chemical Society, vol.111, issue.18, p.118, 1989.
DOI : 10.1021/ja00200a039

R. Bjork, C. R. Bahl, and A. , Smith et N.Pryds, «Comparison of adjustable permanent magnetic field sources, J. Magn. Magn. Mater, vol.322, p.122, 2010.