N. Abani and A. F. Ghoniem, Large eddy simulations of coal gasification in an entrained flow gasifier, Fuel, vol.104, issue.0, pp.664-680
DOI : 10.1016/j.fuel.2012.06.006

N. Abdoulmoumine, S. Adhikari, A. Kulkarni, and S. , A review on biomass gasification syngas cleanup, Applied Energy, vol.155, pp.294-307, 2015.
DOI : 10.1016/j.apenergy.2015.05.095

A. Abánades, E. Ruiz, E. M. Ferruelo, F. Hernández, A. Cabanillas et al., Experimental analysis of direct thermal methane cracking, International Journal of Hydrogen Energy, vol.36, issue.20, pp.3612877-12886, 2011.
DOI : 10.1016/j.ijhydene.2011.07.081

I. Adeyemi, Modeling of the entrained flow gasification: Kinetics-based ASPEN Plus model, Renewable Energy, vol.82, pp.77-84
DOI : 10.1016/j.renene.2014.10.073

R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. , Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames, Combustion and Flame, vol.127, issue.3, pp.2102-2118, 2001.
DOI : 10.1016/S0010-2180(01)00313-3

P. Basu, Biomass Gasification and Pyrolysis : Practical Design and Theory, 2010.

A. Bhattacharya, A. Bhattacharya, and A. Datta, Modeling of hydrogen production process from biomass using oxygen blown gasification, International Journal of Hydrogen Energy, vol.37, issue.24, pp.18782-18790
DOI : 10.1016/j.ijhydene.2012.09.131

H. Böhm, D. Hesse, H. Jander, B. Lüers, J. Pietscher et al., The influence of pressure and temperature on soot formation in premixed flames, Symposium (International) on Combustion, vol.22, issue.1, pp.403-411, 1989.
DOI : 10.1016/S0082-0784(89)80047-5

B. Bitowft and L. A. , Fast pyrolysis of sawdust in an entrained flow reactor, Fuel, vol.68, issue.5, pp.561-566, 1989.
DOI : 10.1016/0016-2361(89)90150-6

H. Bockhorn, Soot Formation in Combustion Mechanisms and Models, 1994.

C. A. Callaghan, Kinetics and Catalysis of the Water-Gas-Shift Reaction : A Microkinetic and Graph Theoretic Approach, Thèse de doctorat, 2006.

J. Cances, Formation et réduction de NOx par un charbon, un lignite, un anthracite et un coke de pétrole dans les conditions d'un précalcinateur de cimenterie, Thèse de doctorat, Institut National Polytechnique de Toulouse -INPT, Ecole des Mines d, 2006.

S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, vol.81, issue.8, pp.1051-1063, 2002.
DOI : 10.1016/S0016-2361(01)00131-4

C. Chen, M. Horio, and T. Kojima, Numerical simulation of entrained flow coal gasifiers. Part II: effects of operating conditions on gasifier performance, Chemical Engineering Science, vol.55, issue.18, pp.3875-3883, 2000.
DOI : 10.1016/S0009-2509(00)00031-2

C. Chen, C. Hung, and W. Chen, Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier, Applied Energy, vol.100, issue.0, pp.218-228
DOI : 10.1016/j.apenergy.2012.05.013

L. Chen, Fast pyrolysis of millimetric wood particles between 800?C and 1000?C, Thèse de doctorat, 2009.

V. R. Choudhary, V. H. Rane, and A. M. , Simultaneous thermal cracking and oxidation of propane to propylene and ethylene, AIChE Journal, vol.28, issue.10, pp.2293-2301, 1998.
DOI : 10.1002/aic.690441018

B. Coda, M. K. Cieplik, P. J. De-wild, and J. H. Kiel, Slagging Behavior of Wood Ash under Entrained-Flow Gasification Conditions, Energy & Fuels, vol.21, issue.6, pp.3644-3652, 2007.
DOI : 10.1021/ef700247t

C. Couhert, S. Salvador, and J. , Impact of torrefaction on syngas production from wood, Fuel, vol.88, issue.11, pp.2286-2290, 2009.
DOI : 10.1016/j.fuel.2009.05.003

P. Dagaut and G. Pengloan, Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modelingElectronic supplementary information (ESI) available: Arrhenius parameters for reactions. See http://www.rsc.org/suppdata/cp/b1/b110282f/, Physical Chemistry Chemical Physics, vol.4, issue.10, pp.1846-1854, 2002.
DOI : 10.1039/b110282f

P. Dagaut, F. Karsenty, G. Dayma, P. Diévart, K. Hadj-ali et al., Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel, Combustion and Flame, vol.161, issue.3, pp.161835-847, 2014.
DOI : 10.1016/j.combustflame.2013.08.015

P. Dagaut and C. Togbé, Experimental and modeling study of the kinetics of oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor, Fuel, vol.89, issue.2, pp.280-286, 2010.
DOI : 10.1016/j.fuel.2009.06.035

A. D. Anna and J. H. Kent, Modeling of particulate carbon and species formation in coflowing diffusion flames of ethylene, Combustion and Flame, vol.144, issue.1-2, pp.249-260, 2006.
DOI : 10.1016/j.combustflame.2005.07.011

A. Deydier, Modélisation d'un réacteur de gazéification à lit fixe, Thèse de doctorat, 2012.

C. and D. Blasi, Combustion and gasification rates of lignocellulosic chars, Progress in Energy and Combustion Science, pp.121-140, 2009.
DOI : 10.1016/j.pecs.2008.08.001

P. Diévart and P. Dagaut, The oxidation of n-butylbenzene: Experimental study in a JSR at 10atm and detailed chemical kinetic modeling, Proceedings of the Combustion Institute, pp.209-216, 2011.
DOI : 10.1016/j.proci.2010.05.013

. Marin, An experimental and kinetic modeling study of cyclopentadiene pyrolysis : First growth of polycyclic aromatic hydrocarbons, Combustion and Flame, vol.161, issue.11, pp.2739-2751

R. A. Dobbins and H. Subramaniasivam, Soot Precursor Particles in Flames, Soot Formation in Combustion, num. 59 de Springer Series in Chemical Physics, pp.290-301, 1994.
DOI : 10.1007/978-3-642-85167-4_16

A. Dufour, Optimisation de la production d'hydrogène par conversion du méthane dans les procédés de pyrolyse/gazéification de la biomasse, Thèse de doctorat, Institut National Polytechnique de Lorraine -INPL, 2007.

C. Dupont, S. Rougé, A. Berthelot, D. Da-silva-perez, A. Graffin et al., Bioenergy II: Suitability of Wood Chips and Various Biomass Types for Use in Plant of BtL Production by Gasification, International Journal of Chemical Reactor Engineering, vol.8, issue.1, 2010.
DOI : 10.2202/1542-6580.1949

C. Dupont, Vapogazéification de la biomasse : Contribution à l'étude de la phénoménologie entre 800 et 1000?C, Thèse de doctorat, 2006.

C. Dupont, J. Commandré, P. Gauthier, G. Boissonnet, S. Salvador et al., Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073K and 1273K, Fuel, vol.87, issue.7, pp.1155-1164, 2008.
DOI : 10.1016/j.fuel.2007.06.028

L. Fagbemi, L. Khezami, and R. Capart, Pyrolysis products from different biomasses: application to the thermal cracking of tar, Fuel and Energy Abstracts, vol.43, issue.4, pp.293-306, 2001.
DOI : 10.1016/S0140-6701(02)86434-7

T. S. Farrow, C. Sun, and C. E. , Impact of CO2 on biomass pyrolysis, nitrogen partitioning, and char combustion in a drop tube furnace, Journal of Analytical and Applied Pyrolysis, vol.113, pp.323-331, 2015.
DOI : 10.1016/j.jaap.2015.02.013

K. Froment, F. Defoort, C. Bertrand, J. Seiler, J. Berjonneau et al., Thermodynamic equilibrium calculations of the volatilization and condensation of inorganics during wood gasification, Fuel, vol.107, pp.269-281, 2013.
DOI : 10.1016/j.fuel.2012.11.082

K. Froment, J. M. Seiler, J. Poirier, and L. , Colombel : Determining cooling screen slagging reactor operating temperature, Energy & Fuels, 2015.

G. Gauthier, Synthèse de biocarburants de deuxième génération : étude de la pyrolyse à haute température de particules de bois centimétriques, 2013.

C. Guizani, F. J. Sanz, and S. Salvador, The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2, Fuel, vol.108, pp.812-823, 2013.
DOI : 10.1016/j.fuel.2013.02.027

C. N. Hamelinck and A. P. , Outlook for advanced biofuels, Energy Policy, vol.34, issue.17, pp.3268-3283, 2006.
DOI : 10.1016/j.enpol.2005.06.012

J. Hernández, R. Ballesteros, and G. Aranda, Characterisation of tars from biomass gasification: Effect of the operating conditions, Energy, vol.50, pp.333-342
DOI : 10.1016/j.energy.2012.12.005

J. J. Hernández, G. Aranda-almansa, and A. Bula, Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time, Fuel Processing Technology, vol.91, issue.6, pp.91681-692, 2010.
DOI : 10.1016/j.fuproc.2010.01.018

H. Huang and S. Ramaswamy, Modeling Biomass Gasification Using Thermodynamic Equilibrium Approach, Applied Biochemistry and Biotechnology, vol.44, issue.2, pp.14-25, 2009.
DOI : 10.1007/s12010-008-8483-x

R. Huyghe, P. Marion, and M. Roy-auberger, Liquéfaction du charbon (CTL) Techniques de l'ingénieur, Procédés industriels de base en chimie et pétrochimie, 2010.

S. Jiménez, P. Remacha, J. C. Ballesteros, A. Giménez, and J. Ballester, Kinetics of devolatilization and oxidation of a pulverized biomass in an entrained flow reactor under realistic combustion conditions, Combustion and Flame, vol.152, issue.4, pp.588-603, 2008.
DOI : 10.1016/j.combustflame.2007.10.001

J. Kiel, S. V. Paasen, J. Neeft, L. Devi, K. Ptasinski et al., Bramer : Primary measures to reduce tar formation in fluidised-bed biomass gasifiers, Rap. tech, 2004.

N. Kobayashi, M. Tanaka, G. Piao, J. Kobayashi, S. Hatano et al., High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier, Waste Management, vol.29, issue.1, pp.245-251, 2009.
DOI : 10.1016/j.wasman.2008.04.014

X. Ku and T. Li, Eulerian???Lagrangian Simulation of Biomass Gasification Behavior in a High-Temperature Entrained-Flow Reactor, Energy & Fuels, vol.28, issue.8, pp.5184-5196, 2014.
DOI : 10.1021/ef5010557

S. Li, S. Xu, S. Liu, C. Yang, and Q. Lu, Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas, Fuel Processing Technology, vol.85, issue.8-10, pp.8-101201, 2004.
DOI : 10.1016/j.fuproc.2003.11.043

C. Ma, F. Weiland, H. Hedman, D. Boström, and R. Backman, Characterization of Reactor Ash Deposits from Pilot-Scale Pressurized Entrained-Flow Gasification of Woody Biomass, Energy & Fuels, vol.27, issue.11, pp.6801-6814
DOI : 10.1021/ef401591a

J. Ma and S. E. Zitney, Computational Fluid Dynamic Modeling of Entrained-Flow Gasifiers with Improved Physical and Chemical Submodels, Energy & Fuels, vol.26, issue.12, pp.7195-7219
DOI : 10.1021/ef301346z

S. Mani, L. G. Tabil, and S. Sokhansanj, Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass, Biomass and Bioenergy, vol.27, issue.4, pp.339-352, 2004.
DOI : 10.1016/j.biombioe.2004.03.007

H. Marsh, Rodríguez-Reinoso : Activated carbon, 2006.

K. Mitsuoka, S. Hayashi, H. Amano, K. Kayahara, E. Sasaoaka et al., Gasification of woody biomass char with CO2: The catalytic effects of K and Ca species on char gasification reactivity, Fuel Processing Technology, vol.92, issue.1, pp.26-31, 2011.
DOI : 10.1016/j.fuproc.2010.08.015

R. Molinder and O. Öhrman, Characterization and Cleanup of Wastewater from Pressurized Entrained Flow Biomass Gasification, ACS Sustainable Chemistry & Engineering, vol.2, issue.8, pp.2063-2069, 2014.
DOI : 10.1021/sc500313x

J. D. Murphy and K. Mccarthy, Ethanol production from energy crops and wastes for use as a transport fuel in Ireland, Applied Energy, vol.82, issue.2, pp.148-166, 2005.
DOI : 10.1016/j.apenergy.2004.10.004

G. Newalkar, K. Iisa, A. D. D-'amico, and C. Sievers, Effect of Temperature, Pressure, and Residence Time on Pyrolysis of Pine in an Entrained Flow Reactor, Energy & Fuels, vol.28, issue.8, pp.5144-5157, 2014.
DOI : 10.1021/ef5009715

K. Norinaga, O. Deutschmann, N. Saegusa, and J. , Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry, Journal of Analytical and Applied Pyrolysis, vol.86, issue.1, pp.148-160, 2009.
DOI : 10.1016/j.jaap.2009.05.001

K. Norinaga, Y. Sakurai, R. Sato, and J. , Numerical simulation of thermal conversion of aromatic hydrocarbons in the presence of hydrogen and steam using a detailed chemical kinetic model, Chemical Engineering Journal, vol.178, pp.282-290, 2011.
DOI : 10.1016/j.cej.2011.10.003

K. Norinaga, T. Shoji, S. Kudo, and J. , Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose, Fuel, vol.103, pp.141-150, 2013.
DOI : 10.1016/j.fuel.2011.07.045

A. Nzihou, B. Stanmore, and P. Sharrock, A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, pp.305-317, 2013.

O. G. Öhrman, R. Molinder, F. Weiland, and A. Johansson, Analysis of trace compounds generated by pressurized oxygen blown entrained flow biomass gasification, Environmental Progress & Sustainable Energy, vol.41, issue.3, pp.699-705, 2014.
DOI : 10.1002/ep.11975

O. G. Öhrman, F. Weiland, A. Johansson, E. Pettersson, H. Hedman et al., Pressurized oxygen blown entrained flow gasification of pyrolysis oil, Proceedings of the 21st European Biomass Conference : setting the course for a biobased economy, pp.441-445

O. G. Öhrman, F. Weiland, E. Pettersson, A. Johansson, H. Hedman et al., Pressurized oxygen blown entrained flow gasification of a biorefinery lignin residue, Fuel Processing Technology, vol.115, pp.130-138
DOI : 10.1016/j.fuproc.2013.04.009

O. Olsvik and O. A. Rokstad, Pyrolysis of methane in the presence of hydrogen, Chemical Engineering & Technology, vol.72, issue.5, pp.349-358, 1995.
DOI : 10.1002/ceat.270180510

S. V. Paasen, J. Kiel, and J. Neeft, Guideline for sampling and analysis of tar and particles in biomass producer gases. Rap. tech, 2002.

R. H. Perry and D. W. , Green, éds. Perry's chemical engineers' handbook, 2008.

K. Qin, Entrained Flow Gasification of Biomass, Thèse de doctorat, 2012.

K. Qin, P. A. Jensen, W. Lin, and A. D. Jensen, Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation, Energy & Fuels, vol.26, issue.9, pp.5992-6002, 2012.
DOI : 10.1021/ef300960x

K. Qin, W. Lin, S. Faester, P. A. Jensen, H. Wu et al., Characterization of Residual Particulates from Biomass Entrained Flow Gasification, Energy & Fuels, vol.27, issue.1, pp.262-270, 2013.
DOI : 10.1021/ef301432q

K. Qin, W. Lin, P. A. Jensen, and A. D. Jensen, High-temperature entrained flow gasification of biomass, Fuel, vol.93, issue.0, pp.589-600, 2012.
DOI : 10.1016/j.fuel.2011.10.063

E. Ranzi, M. Corbetta, F. Manenti, and S. Pierucci, Kinetic modeling of the thermal degradation and combustion of biomass, Chemical Engineering Science, vol.110, pp.2-12, 2014.
DOI : 10.1016/j.ces.2013.08.014

E. Ranzi, A. Frassoldati, S. Granata, and T. Faravelli, -Alkanes, Industrial & Engineering Chemistry Research, vol.44, issue.14, pp.5170-5183, 2005.
DOI : 10.1021/ie049318g

URL : https://hal.archives-ouvertes.fr/hal-00992165

G. Ratel, B. Spindler, and M. Peyrot, Simulation de la pyrolyse et de la gazéification des particules de biomasse : Amélioration du logiciel GASPAR. Rapport Technique DTBH, pp.2012-136, 2013.

K. Roth, Soot Formation During the Production of Syngas from the Partial Oxidation of Diesel Fuel, Thèse de doctorat, 2006.

M. Saffaripour, A. Veshkini, M. Kholghy, and M. J. Thomson, Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane, Combustion and Flame, vol.161, issue.3, pp.848-863, 2014.
DOI : 10.1016/j.combustflame.2013.10.016

C. Saggese, A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of pyrolysis and oxidation of benzene, Combustion and Flame, vol.160, issue.7, pp.1168-1190
DOI : 10.1016/j.combustflame.2013.02.013

C. Saggese, N. E. Sánchez, A. Frassoldati, A. Cuoci, T. Faravelli et al., Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons and Soot Formation in Acetylene Pyrolysis, Energy & Fuels, vol.28, issue.2, pp.1489-1501
DOI : 10.1021/ef402048q

Y. Sakurai, S. Yamamoto, S. Kudo, K. Norinaga, and J. , -Blown Modes, Energy & Fuels, vol.27, issue.4, pp.1974-1981, 2013.
DOI : 10.1021/ef301658d

URL : https://hal.archives-ouvertes.fr/hal-01307233

S. Septien, S. Valin, M. Peyrot, C. Dupont, and S. Salvador, Characterization of char and soot from millimetric wood particles pyrolysis in a drop tube reactor between 800??C and 1400??C, Fuel, vol.121, pp.216-224
DOI : 10.1016/j.fuel.2013.12.026

S. Septien, High temperature gasification of millimetric wood particles between 800?C and 1400?C, Thèse de doctorat, Institut National Polytechnique de, 2011.

S. Septien, S. Valin, C. Dupont, M. Peyrot, and S. Salvador, Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000???1400??C), Fuel, vol.97, issue.0, pp.97202-210, 2012.
DOI : 10.1016/j.fuel.2012.01.049

S. Septien, S. Valin, M. Peyrot, B. Spindler, and S. Salvador, Influence of steam on gasification of millimetric wood particles in a drop tube reactor: Experiments and modelling, Fuel, vol.103, pp.1080-1089, 2013.
DOI : 10.1016/j.fuel.2012.09.011

V. B. Silva and A. Rouboa, Using a two-stage equilibrium model to simulate oxygen air enriched gasification of pine biomass residues, Fuel Processing Technology, vol.109, pp.111-117, 2013.
DOI : 10.1016/j.fuproc.2012.09.045

M. Skjøth-rasmussen, P. Glarborg, M. Østberg, J. Johannessen, H. Livbjerg et al., Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor, Combustion and Flame, vol.136, issue.1-2, pp.91-128, 2004.
DOI : 10.1016/j.combustflame.2003.09.011

A. Slezak, J. M. Kuhlman, L. J. Shadle, J. Spenik, and S. Shi, CFD simulation of entrained-flow coal gasification: Coal particle density/sizefraction effects, Powder Technology, vol.203, issue.1, pp.98-108, 2010.
DOI : 10.1016/j.powtec.2010.03.029

X. Song and Z. Guo, Technologies for direct production of flexible H 2 /CO synthesis gas. Energy Conversion and Management, pp.560-569, 2006.

T. Stocker, Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, 2014.

S. Sun, H. Tian, Y. Zhao, R. Sun, and H. Zhou, Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor, Bioresource Technology, vol.101, issue.10, pp.3678-3684, 2010.
DOI : 10.1016/j.biortech.2009.12.092

G. Tingey, Kinetics of the Water???Gas Equilibrium Reaction. I. The Reaction of Carbon Dioxide with Hydrogen, The Journal of Physical Chemistry, vol.70, issue.5, pp.1406-1412, 1966.
DOI : 10.1021/j100877a011

R. Turton, A short note on the drag correlation for spheres, Powder Technology, vol.47, issue.1, pp.83-86, 1986.
DOI : 10.1016/0032-5910(86)80012-2

Y. Ueki, T. Isayama, and R. Yoshiie, Naruse : Effects of various gaseous agents on gasification of woody biomass Air and Waste Management Association, International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors 2010, pp.151-168, 2010.

L. Van-de-steene, Thermochimie de la combustion à basses températures de solides pulvérisés : application à un charbon, Thèse de doctorat, Institut National Polytechnique de, 1999.

A. Van-der-drift, H. Boerrigter, B. Coda, and M. Cieplik, Hemmes : Entrained flow gasification of biomass : Ash behaviour, feeding issues, and system analyses. Rap. tech, 2004.

M. Vascellari, R. Arora, M. Pollack, and C. , Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis, Fuel, vol.113, pp.654-669
DOI : 10.1016/j.fuel.2013.06.014

Y. Wang, T. Namioka, and K. Yoshikawa, Effects of the reforming reagents and fuel species on tar reforming reaction, Bioresource Technology, vol.100, issue.24, pp.6610-6614, 2009.
DOI : 10.1016/j.biortech.2009.07.026

H. Watanabe, K. Tanno, H. Umetsu, and S. Umemoto, Modeling and simulation of coal gasification on an entrained flow coal gasifier with a recycled CO2 injection, Fuel, vol.142, pp.250-259, 2015.
DOI : 10.1016/j.fuel.2014.11.012

H. Watanabe, Y. Morinaga, and K. Okazaki, Steam-Reforming Characteristics of Heavy and Light Tars Derived from Cellulose, Journal of Thermal Science and Technology, vol.7, issue.1, pp.180-189, 2012.
DOI : 10.1299/jtst.7.180

L. Wei, S. Xu, L. Zhang, C. Liu, H. Zhu et al., Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor, International Journal of Hydrogen Energy, vol.32, issue.1, pp.24-31, 2007.
DOI : 10.1016/j.ijhydene.2006.06.002

L. Wei, S. Xu, L. Zhang, H. Zhang, C. Liu et al., Characteristics of fast pyrolysis of biomass in a free fall reactor, Fuel Processing Technology, vol.87, issue.10, pp.863-871, 2006.
DOI : 10.1016/j.fuproc.2006.06.002

F. Weiland, H. Hedman, M. Marklund, H. Wiinikka, O. Öhrman et al., Pressurized Oxygen Blown Entrained-Flow Gasification of Wood Powder, Energy & Fuels, vol.27, issue.2, pp.932-941
DOI : 10.1021/ef301803s

F. Weiland, M. Nordwaeger, I. Olofsson, and H. Wiinikka, Entrained flow gasification of torrefied wood residues, Fuel Processing Technology, vol.125, pp.51-58, 2014.
DOI : 10.1016/j.fuproc.2014.03.026

F. Weiland, H. Wiinikka, H. Hedman, J. Wennebro, E. Pettersson et al., Influence of process parameters on the performance of an oxygen blown entrained flow biomass gasifier, Fuel, vol.153, pp.510-519, 2015.
DOI : 10.1016/j.fuel.2015.03.041

H. Wiinikka, F. Weiland, E. Pettersson, O. Öhrman, P. Carlsson et al., Characterisation of submicron particles produced during oxygen blown entrained flow gasification of biomass, Combustion and Flame, vol.161, issue.7, pp.1923-1934
DOI : 10.1016/j.combustflame.2014.01.004

D. Worster, Les pionniers de l'écologie : une histoire des idées écologiques, 1992.

H. Yu, Z. Li, X. Yang, L. Jiang, Z. Zhang et al., Experimental research on oxygen-enriched gasification of straw in an entrained-flow gasifier, Journal of Renewable and Sustainable Energy, vol.5, issue.5, p.53127, 2013.
DOI : 10.1063/1.4822260

R. Zanzi, K. Sjöström, and E. Björnbom, Rapid pyrolysis of agricultural residues at high temperature, Biomass and Bioenergy, vol.23, issue.5, pp.357-366, 2002.
DOI : 10.1016/S0961-9534(02)00061-2

K. Zhang, H. Li, Z. Wu, and T. Mi, The Thermal Cracking Experiment Research of Tar Model Compound, 2009 International Conference on Energy and Environment Technology, pp.655-659, 2009.
DOI : 10.1109/ICEET.2009.627

Y. Zhang, M. Ashizawa, S. Kajitani, and K. Miura, Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars, Fuel, vol.87, issue.4-5, pp.4-5475, 2008.
DOI : 10.1016/j.fuel.2007.04.026

Y. Zhang, S. Kajitani, and M. Ashizawa, Peculiarities of Rapid Pyrolysis of Biomass Covering Medium- and High-Temperature Ranges, Energy & Fuels, vol.20, issue.6, pp.2705-2712, 2006.
DOI : 10.1021/ef060168r

Y. Zhang, S. Kajitani, M. Ashizawa, and Y. Oki, Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace, Fuel, vol.89, issue.2, pp.302-309, 2010.
DOI : 10.1016/j.fuel.2009.08.045

Y. Zhao, S. Sun, H. Tian, J. Qian, F. Su et al., Characteristics of rice husk gasification in an entrained flow reactor, Bioresource Technology, vol.100, issue.23, pp.6040-6044, 2009.
DOI : 10.1016/j.biortech.2009.06.030

Y. Zhao, S. Sun, H. Zhou, R. Sun, H. Tian et al., Experimental study on sawdust air gasification in an entrained-flow reactor, Fuel Processing Technology, vol.91, issue.8, pp.91910-914, 2010.
DOI : 10.1016/j.fuproc.2010.01.012

J. Zhou, Q. Chen, H. Zhao, X. Cao, Q. Mei et al., Biomass???oxygen gasification in a high-temperature entrained-flow gasifier, Biotechnology Advances, vol.27, issue.5, pp.606-611, 2009.
DOI : 10.1016/j.biotechadv.2009.04.011