B. D. Ratner and S. J. Bryant, Biomaterials: Where We Have Been and Where We Are Going, Annual Review of Biomedical Engineering, vol.6, issue.1, pp.41-75, 2004.
DOI : 10.1146/annurev.bioeng.6.040803.140027

B. M. Holzapfel and J. C. Reichert, How smart do biomaterials need to be? A translational science and clinical point of view, Advanced Drug Delivery Reviews, vol.65, issue.4, pp.581-603, 2013.
DOI : 10.1016/j.addr.2012.07.009

J. Black, Biomaterials for internal fixation, 1980.

C. D. Newton and N. D. , Textbook of small animal orthopaedics, 1985.

M. Kamitakahara and C. Ohtsuki, Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition, Journal of Biomaterials Applications, vol.23, issue.3, pp.197-212, 2008.
DOI : 10.1177/0885328208096798

M. Semlitsch, Titanium alloys for hip joint replacements, Clinical Materials, vol.2, issue.1, pp.1-13, 1987.
DOI : 10.1016/0267-6605(87)90015-1

K. H. Browy and K. H. Kramer, Titanium science and technology, Deutsche Geshellshaft fur Metallkunde E.V, pp.1381-1386, 1985.

Y. Okazaki and Y. Ito, Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al, Materials Science and Engineering: A, vol.213, issue.1-2, pp.138-147, 1996.
DOI : 10.1016/0921-5093(96)10247-1

Y. Okazaki, A New Ti???15Zr???4Nb???4Ta alloy for medical applications, Current Opinion in Solid State and Materials Science, vol.5, issue.1, pp.45-53, 2001.
DOI : 10.1016/S1359-0286(00)00025-5

A. Wichelhaus and L. Brauchli, Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles, American Journal of Orthodontics and Dentofacial Orthopedics, vol.137, issue.5, pp.671-678, 2010.
DOI : 10.1016/j.ajodo.2008.06.029

A. Bansiddhi and T. D. Sargeant, Porous NiTi for bone implants: A review, Acta Biomaterialia, vol.4, issue.4, pp.773-782, 2008.
DOI : 10.1016/j.actbio.2008.02.009

E. Bertrand and T. Gloriant, Synthesis and characterisation of a new superelastic Ti???25Ta???25Nb biomedical alloy, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.8, pp.559-564, 2010.
DOI : 10.1016/j.jmbbm.2010.06.007

T. Ozaki and H. Matsumoto, Beta Ti Alloys with Low Young's Modulus, MATERIALS TRANSACTIONS, vol.45, issue.8, pp.2776-2779, 2004.
DOI : 10.2320/matertrans.45.2776

M. Kutz, Biomedical engineering and design handbook, 2009.

D. T. Reilly and A. H. Burstein, The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics, vol.8, issue.6, pp.393-405, 1975.
DOI : 10.1016/0021-9290(75)90075-5

D. B. Mcgregor and R. A. Baan, Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies ??? a report of an IARC Monographs Programme Meeting, European Journal of Cancer, vol.36, issue.3, pp.307-313, 2000.
DOI : 10.1016/S0959-8049(99)00312-3

M. Calin and A. Gebert, Designing biocompatible Ti-based metallic glasses for implant applications, Materials Science and Engineering: C, vol.33, issue.2, pp.875-883, 2013.
DOI : 10.1016/j.msec.2012.11.015

G. Sjögren and G. Sletten, Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests, The Journal of Prosthetic Dentistry, vol.84, issue.2, pp.229-236, 2000.
DOI : 10.1067/mpr.2000.107227

J. C. Hornez and A. Lefèvre, Multiple parameter cytotoxicity index on dental alloys and pure metals, Biomolecular Engineering, vol.19, issue.2-6, pp.103-117, 2002.
DOI : 10.1016/S1389-0344(02)00017-5

W. M. Elshahawy and I. Watanabe, In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials, Dental Materials, vol.25, issue.12, pp.1551-1555, 2009.
DOI : 10.1016/j.dental.2009.07.008

R. Boyer and G. Welsch, Materials properties handbook titanium alloys, 1994.

P. Villars and K. , Cenzual, Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), Release, ASM International®, vol.11, 2010.

C. Leyens and M. Peters, Titanium and Titanium Alloys Fundamentals and Applications, 2003.

D. L. Moffat and U. R. Kattner, The stable and metastable Ti-Nb phase diagrams, Metallurgical Transactions A, vol.1, issue.5, pp.2389-2397, 1988.
DOI : 10.1007/BF02645466

J. M. Silcock, An X-ray examination of the to phase in TiV, TiMo and TiCr alloys, Acta Metallurgica, vol.6, issue.7, pp.481-493, 1958.
DOI : 10.1016/0001-6160(58)90111-1

S. L. Sass, The ?? phase in a Zr-25 at.% Ti alloy, Acta Metallurgica, vol.17, issue.7, pp.813-820, 1969.
DOI : 10.1016/0001-6160(69)90100-X

S. L. Sass, Double diffraction between Bragg reflections and planes of diffuse intensity observed with high energy electron diffraction, Journal of Applied Crystallography, vol.4, issue.3, pp.252-254, 1971.
DOI : 10.1107/S0021889871006794

A. T. Balcerzak and S. L. Sass, The formation of the ?? phase in Ti-Nb alloys, Metallurgical Transactions, vol.245, issue.6, pp.1601-1605, 1972.
DOI : 10.1007/BF02643051

D. L. Moffat and D. C. Larbalestier, The compctition between the alpha and omega phases in aged Ti-Nb alloys, Metallurgical Transactions A, vol.1, issue.6, pp.1687-1694, 1988.
DOI : 10.1007/BF02645136

D. L. Moffat and D. C. Larbalestier, The compctition between martensite and omega in quenched Ti-Nb alloys, Metallurgical Transactions A, vol.27, issue.8, pp.1677-1686, 1988.
DOI : 10.1007/BF02645135

S. K. Sikka and Y. K. Vohra, Omega phase in materials, Progress in Materials Science, vol.27, issue.3-4, pp.245-310, 1982.
DOI : 10.1016/0079-6425(82)90002-0

B. S. Hickman, The formation of omega phase in titanium and zirconium alloys: A review, Journal of Materials Science, vol.20, issue.1, pp.554-563, 1969.
DOI : 10.1007/BF00550217

D. and D. Fontaine, Mechanical instabilities in the b.c.c. lattice and the beta to omega phase transformation, Acta Metallurgica, vol.18, issue.2, pp.275-279, 1970.
DOI : 10.1016/0001-6160(70)90035-0

D. De-fontaine and N. E. Paton, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, Acta Metallurgica, vol.19, issue.11, pp.1153-1162, 1971.
DOI : 10.1016/0001-6160(71)90047-2

D. De-fontaine and R. Kikuchi, Bragg-williams and other models of the omega phase transformation, Acta Metallurgica, vol.22, issue.9, pp.1139-1146, 1974.
DOI : 10.1016/0001-6160(74)90069-8

H. Y. Kim and Y. Ikehara, Martensitic transformation, shape memory effect and superelasticity of Ti???Nb binary alloys, Acta Materialia, vol.54, issue.9, pp.2419-2429, 2006.
DOI : 10.1016/j.actamat.2006.01.019

H. Matsumoto and S. Watanabe, Beta TiNbSn Alloys with Low Young’s Modulus and High Strength, MATERIALS TRANSACTIONS, vol.46, issue.5, pp.1070-1078, 2005.
DOI : 10.2320/matertrans.46.1070

J. C. Williams and B. S. Hickman, The effect of ternary additions on the decompositon of metastable beta-phase titanium alloys, Metallurgical Transactions, vol.60, issue.2, pp.477-484, 1971.
DOI : 10.1007/BF02663337

Y. L. Zhou and M. Niinomi, Dynamic Young's Modulus and Mechanical Properties of Ti−Hf Alloys, MATERIALS TRANSACTIONS, vol.45, issue.5, pp.1549-1554, 2004.
DOI : 10.2320/matertrans.45.1549

C. R. Wong and R. L. Fleischer, Low frequency damping and ultrasonic attenuation in Ti3Sn-based alloys, Journal of Materials Research, vol.1, issue.06, pp.1441-1448, 1994.
DOI : 10.1557/JMR.1994.1441

K. A. Bywater and J. W. Christian, Precipitation reactions in titanium-tantalum alloys, Philosophical Magazine, vol.81, issue.6, pp.1275-1289, 1972.
DOI : 10.1016/0001-6160(69)90100-X

A. R. Yavari and K. Ota, Chill zone copper with the strength of stainless steel and tailorable color, Acta Materialia, vol.56, issue.8, pp.1830-1839, 2008.
DOI : 10.1016/j.actamat.2007.12.052

Y. Li and K. Georgarakis, AlNiY chill-zone alloys with good mechanical properties, Journal of Alloys and Compounds, vol.477, issue.1-2, pp.346-349, 2009.
DOI : 10.1016/j.jallcom.2008.09.160

URL : https://hal.archives-ouvertes.fr/hal-00389381

K. Otsuka, Shape memory materials, 1999.

H. Warlimont and L. Delaey, Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations, Journal of Materials Science, vol.8, issue.9, pp.1545-1555, 1974.
DOI : 10.1007/BF00552941

D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys, 1981.
DOI : 10.1007/978-1-4899-3051-4

R. V. Krishnan and L. Delaey, Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations, Journal of Materials Science, vol.7, issue.9, pp.1536-1544, 1974.
DOI : 10.1007/BF00552940

L. Delaey and R. V. Krishnan, Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations, Journal of Materials Science, vol.9, issue.9, pp.1521-1535, 1974.
DOI : 10.1007/BF00552939

T. Zhou and M. Aindow, Pseudo-elastic deformation behavior in a Ti/Mo-based alloy, Scripta Materialia, vol.50, issue.3, pp.343-348, 2004.
DOI : 10.1016/j.scriptamat.2003.10.012

L. C. Zhang and T. Zhou, Nucleation of stress-induced martensites in a Ti/Mo-based alloy, Journal of Materials Science, vol.51, issue.11, pp.2833-2836, 2005.
DOI : 10.1007/s10853-005-2426-5

H. Y. Kim and H. Satoru, Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys, MATERIALS TRANSACTIONS, vol.45, issue.7, pp.2443-2448, 2004.
DOI : 10.2320/matertrans.45.2443

E. Takahashi and T. Sakurai, Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys, MATERIALS TRANSACTIONS, vol.43, issue.12, pp.2978-2983, 2002.
DOI : 10.2320/matertrans.43.2978

H. Matsumoto and S. Watanabe, Microstructures and mechanical properties of metastable ?? TiNbSn alloys cold rolled and heat treated, Journal of Alloys and Compounds, vol.439, issue.1-2, pp.146-155, 2007.
DOI : 10.1016/j.jallcom.2006.08.267

Y. L. Hao and S. J. Li, Elastic deformation behaviour of Ti???24Nb???4Zr???7.9Sn for biomedical applications, Acta Biomaterialia, vol.3, issue.2, pp.277-286, 2007.
DOI : 10.1016/j.actbio.2006.11.002

K. F. Kelton and A. L. Greer, Nucleation in condensed matter applications in materials and biology, 2010.

M. K. Miller and P. K. Liaw, Bulk metallic glasses an overview, 2008.

C. Suryanarayana and A. Inoue, Bulk metallic glasses, 2011.
DOI : 10.1201/9781420085976

F. Faupel and W. Frank, Diffusion in metallic glasses and supercooled melts, Reviews of Modern Physics, vol.75, issue.1, pp.237-280, 2003.
DOI : 10.1103/RevModPhys.75.237

R. Busch and Y. J. Kim, alloy, Journal of Applied Physics, vol.77, issue.8, pp.4039-4043, 1995.
DOI : 10.1063/1.359485

C. A. Angell, Perspective on the glass transition, Journal of Physics and Chemistry of Solids, vol.49, issue.8, pp.863-871, 1988.
DOI : 10.1016/0022-3697(88)90002-9

W. Klement and R. H. Willens, Non-crystalline Structure in Solidified Gold???Silicon Alloys, Nature, vol.31, issue.4740, pp.869-870, 1960.
DOI : 10.1107/S0365110X55001321

H. S. Chen and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Acta Metallurgica, vol.17, issue.8, pp.1021-1031, 1969.
DOI : 10.1016/0001-6160(69)90048-0

A. Inoue and N. Nishiyama, Preparation and Thermal Stability of Bulk Amorphous Pd<SUB>40</SUB>Cu<SUB>30</SUB>Ni<SUB>10</SUB>P<SUB>20</SUB> Alloy Cylinder of 72 mm in Diameter, Materials Transactions, JIM, vol.38, issue.2, pp.179-183, 1997.
DOI : 10.2320/matertrans1989.38.179

D. Turnbull and M. H. Cohen, Concerning Reconstructive Transformation and Formation of Glass, The Journal of Chemical Physics, vol.29, issue.5, pp.1049-1054, 1958.
DOI : 10.1063/1.1744654

D. Turnbull, Contemporary Physics, pp.473-488, 1969.

Z. P. Lu and C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Materialia, vol.50, issue.13, pp.3501-3512, 2002.
DOI : 10.1016/S1359-6454(02)00166-0

A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, vol.48, issue.1, pp.279-306, 2000.
DOI : 10.1016/S1359-6454(99)00300-6

W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Progress in Materials Science, vol.57, issue.3, pp.487-656, 2012.
DOI : 10.1016/j.pmatsci.2011.07.001

C. A. Schuh and T. C. Hufnagel, Mechanical behavior of amorphous alloys, Acta Materialia, vol.55, issue.12, pp.4067-4109, 2007.
DOI : 10.1016/j.actamat.2007.01.052

A. Inoue and A. Takeuchi, Recent development and application products of bulk glassy alloys???, Acta Materialia, vol.59, issue.6, pp.2243-2267, 2011.
DOI : 10.1016/j.actamat.2010.11.027

A. Inoue and A. Hoshi, Ductile superconducting Ti???Nb???Si???B alloys with a duplex structure of amorphous and crystalline phases, Scripta Metallurgica, vol.14, issue.10, pp.1077-1082, 1980.
DOI : 10.1016/0036-9748(80)90209-4

A. Inoue and N. Nishiyama, Ti-based amorphous alloys with a wide supercooled liquid region, Materials Letters, vol.19, issue.3-4, pp.131-135, 1994.
DOI : 10.1016/0167-577X(94)90057-4

G. He and J. Eckert, Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti???Cu???Ni???Sn???Nb alloys, Acta Materialia, vol.52, issue.10, pp.3035-3046, 2004.
DOI : 10.1016/j.actamat.2004.03.006

G. He and J. Eckert, Glass-forming ability and crystallization behavior of Ti???Cu???Ni???Sn???M (M=Zr, Mo, and Ta) metallic glasses, Journal of Applied Physics, vol.95, issue.4, pp.1816-1821, 2004.
DOI : 10.1063/1.1643776

D. E. Polk and A. Calka, The preparation and thermal and mechanical properties of new titanium rich metallic glasses, Acta Metallurgica, vol.26, issue.7, pp.1097-1103, 1978.
DOI : 10.1016/0001-6160(78)90137-2

T. Zhang and A. Inoue, Thermal and Mechanical Properties of Ti&ndash;Ni&ndash;Cu&ndash;Sn Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization, Materials Transactions, JIM, vol.39, issue.10, pp.1001-1006, 1998.
DOI : 10.2320/matertrans1989.39.1001

G. He and J. Eckert, Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites, Acta Materialia, vol.51, issue.6, pp.1621-1631, 2003.
DOI : 10.1016/S1359-6454(02)00563-3

T. Zhang and A. Inoue, Preparation of Ti&ndash;Cu&ndash;Ni&ndash;Si&ndash;B Amorphous Alloys with a Large Supercooled Liquid Region, Materials Transactions, JIM, vol.40, issue.4, pp.301-306, 1999.
DOI : 10.2320/matertrans1989.40.301

A. Inoue and H. S. Chen, Young's modulus sound velocity and Young's modulus of Ti-, Zr- and Hf-based amorphous alloys, Journal of Non-Crystalline Solids, vol.68, issue.1, pp.63-73, 1984.
DOI : 10.1016/0022-3093(84)90034-6

Y. C. Kim and W. T. Kim, Glass Forming Ability and Crystallization Behavior in Amorphous Ti<SUB>50</SUB>Cu<SUB>32-x</SUB>Ni<SUB>15</SUB>Sn<SUB>3</SUB>Be<SUB>x</SUB> (x=0, 1, 3, 7) Alloys, MATERIALS TRANSACTIONS, vol.43, issue.5, pp.1243-1246, 2002.
DOI : 10.2320/matertrans.43.1243

C. L. Ma and S. Ishihara, Formation of New Ti-based Metallic Glassy Alloys, MATERIALS TRANSACTIONS, vol.45, issue.5, pp.1802-1806, 2004.
DOI : 10.2320/matertrans.45.1802

J. M. Park and H. J. Chang, Enhancement of plasticity in Ti-rich Ti???Zr???Be???Cu???Ni bulk metallic glasses, Scripta Materialia, vol.53, issue.1, pp.1-6, 2005.
DOI : 10.1016/j.scriptamat.2005.03.024

M. X. Xia and C. L. Ma, Preparation and crystallization of Ti53Cu27Ni12Zr3Al7Si3B1 bulk metallic glass with wide supercooled liquid region, Materials Science and Engineering: A, vol.390, issue.1-2, pp.372-375, 2005.
DOI : 10.1016/j.msea.2004.08.019

K. B. Kim and B. C. Ko, Formation of nanocrystals in Ti78Fe15Si7 amorphous alloy with a wide supercooled liquid region, Materials Science and Engineering: A, vol.366, issue.2, pp.421-425, 2004.
DOI : 10.1016/j.msea.2003.08.026

K. Fujita and T. Hashimoto, Fatigue Strength in Nanocrystalline Ti- and Cu-Based Bulk Metallic Glasses, Journal of the Japan Institute of Metals and Materials, vol.70, issue.10, pp.816-823, 2006.
DOI : 10.2320/jinstmet.70.816

Z. Y. Suo and K. Q. Qiu, Effect of Nb on glass forming ability and plasticity of (Ti???Cu)-based bulk metallic glasses, Materials Science and Engineering: A, vol.527, issue.10-11, pp.2486-2491, 2010.
DOI : 10.1016/j.msea.2010.01.058

J. J. Oak and D. Louzguine, Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants, Materials Science and Engineering: C, vol.29, issue.1, pp.322-327, 2009.
DOI : 10.1016/j.msec.2008.07.009

E. H. Yin and M. Zhang, Formation of Ti???Zr???Cu???Ni???Sn???Si bulk metallic glasses with good plasticity, Journal of Alloys and Compounds, vol.504, pp.10-13, 2010.
DOI : 10.1016/j.jallcom.2010.04.008

S. L. Zhu and X. M. Wang, New TiZrCuPd Quaternary Bulk Glassy Alloys with Potential of Biomedical Applications, MATERIALS TRANSACTIONS, vol.48, issue.9, pp.2445-2448, 2007.
DOI : 10.2320/matertrans.MRA2007086

L. Zhao and Z. Q. Zhang, -BASED BULK METALLIC GLASSES, International Journal of Modern Physics B, vol.24, issue.15n16, pp.2326-2331, 2010.
DOI : 10.1142/S0217979210064873

URL : https://hal.archives-ouvertes.fr/hal-00807197

L. Bai and C. X. Cui, Ti???Zr???Fe???Si system amorphous alloys with excellent biocompatibility, Journal of Non-Crystalline Solids, vol.354, issue.33, pp.3935-3938, 2008.
DOI : 10.1016/j.jnoncrysol.2008.05.015

J. J. Oak and A. Inoue, Formation, mechanical properties and corrosion resistance of Ti???Pd base glassy alloys, Journal of Non-Crystalline Solids, vol.354, issue.17, pp.1828-1832, 2008.
DOI : 10.1016/j.jnoncrysol.2007.10.025

M. X. Xia and H. X. Zheng, Thermal stability and glass-forming ability of new Ti-based bulk metallic glasses, Journal of Non-Crystalline Solids, vol.351, issue.49-51, pp.3747-3751, 2005.
DOI : 10.1016/j.jnoncrysol.2005.09.033

E. H. Yin and S. J. Pang, Correlation of glass-forming ability to thermal properties in Ti-based bulk metallic glasses, Journal of Alloys and Compounds, vol.546, pp.7-13, 2013.
DOI : 10.1016/j.jallcom.2012.07.037

I. Seki and H. Kimura, Thermal Stability and Mechanical Properties of Ti<SUB>47.4</SUB>Cu<SUB>42</SUB>Zr<SUB>5.3</SUB>TM<SUB>5.3</SUB>(TM = Co, Fe) Metallic Glass Sheets Prepared by Twin-Roller Casting Method, MATERIALS TRANSACTIONS, vol.49, issue.3, pp.498-501, 2008.
DOI : 10.2320/matertrans.MBW200738

W. J. Boettinger, DTA and heat-flux DSC measurements of alloy melting and freezing, U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2006.

M. B. Reynolds, The Determination of the Elastic Constants of Metals by the Ultrasonic Pulse Technique, 1952.

P. Goodhew and J. Humphreys, Electron microscopy and analysis, 2001.

C. Landron and L. Hennet, Aerodynamic laser-heated contactless furnace for neutron scattering experiments at elevated temperatures, Review of Scientific Instruments, vol.71, issue.4, pp.1745-1751, 2000.
DOI : 10.1063/1.1150531

M. Long and H. J. Rack, Titanium alloys in total joint replacement???a materials science perspective, Biomaterials, vol.19, issue.18, pp.1621-1639, 1998.
DOI : 10.1016/S0142-9612(97)00146-4

J. L. Murray, Phase diagrams of binary titanium alloys, 1987.

E. W. Collings, The Physical Metallury of Titanium Alloys, Asm Series in Metal Processing Asm Intl, 1984.

D. Kuroda and M. Niinomi, Design and mechanical properties of new ?? type titanium alloys for implant materials, Materials Science and Engineering: A, vol.243, issue.1-2, pp.244-249, 1998.
DOI : 10.1016/S0921-5093(97)00808-3

W. Y. Kim and H. S. Kim, Microstructure and elastic modulus of Ti???Nb???Si ternary alloys for biomedical applications, Scripta Materialia, vol.54, issue.5, pp.887-891, 2006.
DOI : 10.1016/j.scriptamat.2005.11.001

S. Uehara and H. Sasano, Effect of oxygen on the martensitic transformation temperature of the TiNi compacts prepared by blended elemental powder metallurgy., Journal of the Japan Society of Powder and Powder Metallurgy, vol.33, issue.2, pp.73-77, 1986.
DOI : 10.2497/jjspm.33.73

K. Bhattacharya, Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect, 2003.

D. S. Lieberman and M. S. Wechsler, Cubic to Orthorhombic Diffusionless Phase Change??? Experimental and Theoretical Studies of AuCd, Journal of Applied Physics, vol.26, issue.4, pp.473-484, 1955.
DOI : 10.1063/1.1722021

J. L. Murray, Phase diagram of binary titanium alloys, ASM, 1987.

M. Rappaz and C. A. Gandin, Probabilistic modelling of microstructure formation in solidification processes, Acta Metallurgica et Materialia, vol.41, issue.2, pp.345-360, 1993.
DOI : 10.1016/0956-7151(93)90065-Z

C. Y. Wang and C. Beckermann, A multiphase solute diffusion model for dendritic alloy solidification, Metallurgical Transactions A, vol.21, issue.12, pp.2787-2802, 1993.
DOI : 10.1016/0025-5416(84)90201-5

C. Y. Wang and C. Beckermann, Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification, Metallurgical and Materials Transactions A, vol.99, issue.5, pp.1081-1093, 1994.
DOI : 10.1007/BF02652282

C. A. Gandin and M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes, Acta Metallurgica et Materialia, vol.42, issue.7, pp.2233-2246, 1994.
DOI : 10.1016/0956-7151(94)90302-6

G. Welsch and R. Boyer, Materials Properties Handbook: Titanium Alloys, 1994.

C. M. Lee and C. P. Ju, Structure-property relationship of cast Ti-Nb alloys, Journal of Oral Rehabilitation, vol.29, issue.4, pp.314-322, 2002.
DOI : 10.1046/j.1365-2842.2002.00825.x

D. Hull and D. J. Bacon, Introduction to Dislocations, 2011.

C. S. Barrett, Structure of metals, 1943.

R. W. Davidge, Mechanical behaviour of ceramics, 1980.

J. Huang and H. Xing, Structural stability and generalized stacking fault energies in ?? Ti???Nb alloys: Relation to dislocation properties, Scripta Materialia, vol.66, issue.9, pp.682-685, 2012.
DOI : 10.1016/j.scriptamat.2012.01.023

W. H. Wang, Elastic moduli and behaviors of metallic glasses, Journal of Non-Crystalline Solids, vol.351, issue.16-17, pp.1481-1485, 2005.
DOI : 10.1016/j.jnoncrysol.2005.03.024

C. Suryanarayana and I. Seki, A critical analysis of the glass-forming ability of alloys, Journal of Non-Crystalline Solids, vol.355, issue.6, pp.355-360, 2009.
DOI : 10.1016/j.jnoncrysol.2008.12.009

V. Elser, Indexing problems in quasicrystal diffraction, Physical Review B, vol.32, issue.8, pp.4892-4898, 1985.
DOI : 10.1103/PhysRevB.32.4892

J. Q. Guo and E. Abe, Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems, Physical Review B, vol.62, issue.22, pp.14605-14608, 2000.
DOI : 10.1103/PhysRevB.62.R14605

K. F. Kelton, Ti/Zr-Based Quasicrystals - Formation, Structure And Hydrogen Storage Properties, MRS Proceedings, vol.400, pp.471-482, 1998.
DOI : 10.1016/S0038-1098(97)10199-5

F. C. Frank, Supercooling of Liquids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.215, issue.1120, pp.43-46, 1952.
DOI : 10.1098/rspa.1952.0194

D. Turnbull and R. E. Cech, Microscopic Observation of the Solidification of Small Metal Droplets, Journal of Applied Physics, vol.21, issue.8, pp.804-810, 1950.
DOI : 10.1063/1.1699763

O. Heinen and D. Holland-moritz, In situ diffraction studies of the phase selection in undercooled Ti???Fe???Si???O melts, Journal of Crystal Growth, vol.286, issue.1, pp.146-151, 2006.
DOI : 10.1016/j.jcrysgro.2005.09.020

G. A. Yurko and J. W. Barton, The crystal structure of Ti2Ni, Acta Crystallographica, vol.12, issue.11, pp.909-911, 1959.
DOI : 10.1107/S0365110X59002559

R. A. Gittens and R. Olivares-navarrete, Electrical Implications of Corrosion for Osseointegration of Titanium Implants, Journal of Dental Research, vol.90, issue.12, pp.1389-1397, 2011.
DOI : 10.1177/0022034511408428

F. Qin and M. Yoshimura, Corrosion Behavior of a Ti-Based Bulk Metallic Glass and Its Crystalline Alloys, MATERIALS TRANSACTIONS, vol.48, issue.7, pp.1855-1858, 2007.
DOI : 10.2320/matertrans.MJ200713

M. Calin and A. Gebert, Designing biocompatible Ti-based metallic glasses for implant applications, Materials Science and Engineering: C, vol.33, issue.2, pp.875-883, 2013.
DOI : 10.1016/j.msec.2012.11.015

J. Fornell and E. Pellicer, Improved plasticity and corrosion behavior in Ti???Zr???Cu???Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications, Materials Science and Engineering: A, vol.559, pp.159-164, 2013.
DOI : 10.1016/j.msea.2012.08.058

F. Qin and X. Wang, Microstructure and Corrosion Resistance of Ti&ndash;Zr&ndash;Cu&ndash;Pd&ndash;Sn Glassy and Nanocrystalline Alloys, MATERIALS TRANSACTIONS, vol.48, issue.2, pp.167-170, 2007.
DOI : 10.2320/matertrans.48.167

M. L. Morrison and R. A. Buchanan, Electrochemical behavior of a Ti-based bulk metallic glass, Journal of Non-Crystalline Solids, vol.353, issue.22-23, pp.2115-2124, 2007.
DOI : 10.1016/j.jnoncrysol.2007.03.012

A. Kawashima and T. Wada, A Ni- and Cu-free Zr-based bulk metallic glass with excellent resistance to stress corrosion cracking in simulated body fluids, Materials Science and Engineering: A, vol.542, pp.140-146, 2012.
DOI : 10.1016/j.msea.2012.02.047

Z. Liu and K. C. Chan, Development of Ni- and Cu-Free Zr-Based Bulk Metallic Glasses for Biomedical Applications, MATERIALS TRANSACTIONS, vol.52, issue.1, pp.61-67, 2011.
DOI : 10.2320/matertrans.M2010068

S. L. Zhu and X. M. Wang, A new Ti-based bulk glassy alloy with potential for biomedical application, Materials Science and Engineering: A, vol.459, issue.1-2, pp.233-237, 2007.
DOI : 10.1016/j.msea.2007.01.044

A. R. Yavari and A. L. Moulec, Excess free volume in metallic glasses measured by X-ray diffraction, Acta Materialia, vol.53, issue.6, pp.1611-1619, 2005.
DOI : 10.1016/j.actamat.2004.12.011

J. Bednarcik and S. Michalik, high-energy x-ray diffraction, Journal of Physics: Condensed Matter, vol.23, issue.25, p.254204, 2011.
DOI : 10.1088/0953-8984/23/25/254204

Y. Waseda, The structure of non-crystalline materials : liquids and amorphous solids, 1980.

S. P. Pan and J. Y. Qin, Origin of splitting of the second peak in the pair-distribution function for metallic glasses, Physical Review B, vol.84, issue.9, p.92201, 2011.
DOI : 10.1103/PhysRevB.84.092201

D. B. Miracle, A structural model for metallic glasses, Nature Materials, vol.41, issue.10, pp.697-702, 2004.
DOI : 10.1016/0022-3093(84)90573-8

T. Ichikawa, The assembly of hard spheres as a structure model of amorphous iron, Physica Status Solidi (a), vol.44, issue.1, pp.293-302, 1975.
DOI : 10.1002/pssa.2210290132

V. P. Voloshin and Y. I. Naberukhin, On the origin of the splitting of the second maximum in the radial distribution function of amorphous solids, Journal of Structural Chemistry, vol.35, issue.1, pp.62-70, 1997.
DOI : 10.1007/BF02768808

K. Zhang and H. Li, Why does the second peak of pair correlation functions split in quasi-two-dimensional disordered films?, Applied Physics Letters, vol.102, issue.7, p.71907, 2013.
DOI : 10.1063/1.4793187