Skip to Main content Skip to Navigation

New insights on dust properties from Planck intensity and polarization data

Abstract : Interstellar dust is a key component of the interstellar medium (ISM). Not only does it play an important role in thephysics and chemistry of the ISM, but its thermal emission can be used to trace the gas column density, and itspolarization angle to trace the magnetic field orientation projected on the plane of the sky.Different dust models have been built to reproduce the main dust observables: extinction curve and albedo, spectralenergy distribution (SED) from the near-infrared to the microwave continuum, polarization in extinction and emission,within cosmic elemental abundance constraints. Our understanding of interstellar dust is, however, still incomplete;among other things, we do not fully understand the local variations in the emission and extinction properties of dust.The variation of the dust far-infrared opacity from the diffuse ISM to molecular clouds is well established, and modelshave been proposed. With the Planck submillimeter survey we have, for the first time, a multi-wavelength, all-sky mapof dust emission allowing for a precise measure of dust temperature, and therefore of dust opacity variations in thediffuse ISM.This thesis, based on the comparison of Planck data with extinction measures toward stars and QSOs, makes use of bothdust models and data analysis to constrain the dust optical properties and evolution within the diffuse ISM, and toimprove our understanding on the interplay between grain alignment and dust optical properties in the emission ofpolarized thermal radiation.The first half of the thesis focuses on the total emission of dust in the diffuse ISM. The variations in the ratio of dustemission to extinction is used to constrain the variations of the dust optical properties. We fit the 20 SEDs normalizedper unit extinction of Planck intermediate results XXIX with three dust models (Draine & Li 2007, Compiegne et al2011, Jones et al 2013). The best agreement between model and observations is obtained for the model with the moreemissive grains (Jones 2013), with optical properties derived from recent laboratory data on silicates and amorphouscarbons. We develop a new estimator of the radiation field intensity G0, which combines the dust SED and theextinction on the same line of sight. We show that this new estimator is less biased than the one obtained through thefitting of the dust SED. With their fixed optical properties, none of the models can simultaneously reproduce thevariations of G0 and of the shape of the SED. With our new estimator of G0, we demonstrate that the variations in thedust optical properties and in the radiation field intensity give similar contributions to the scatter observed in the dustSED per unit extinction in the diffuse ISM.The second half of the thesis focuses on polarized dust extinction and emission in molecular clouds. By confrontingPlanck and stellar observations to a dust model, we attempt to disentangle the effects of variations in the dust opticalproperties from the effects of variations in the grain alignment. We find a correlation between the ratio of polarizedemission to polarized extinction, RP/p = P353/pv, and the wavelength of maximum polarization in extinction, λmax, whichtraces the typical size of the aligned grains. Using a new dust model for polarization based on Planck data, we show thatthe variation of the minimal size of aligned grains can reproduce the observed correlation, without any need for achange in the size distribution or in the optical properties of grains. This scenario is also compatible with the drop of thefractions of polarization with λmax. Alternative models cannot however be ruled out.
Complete list of metadata

Cited literature [123 references]  Display  Hide  Download
Contributor : Abes Star :  Contact Connect in order to contact the contributor
Submitted on : Thursday, March 17, 2016 - 1:22:29 PM
Last modification on : Thursday, September 9, 2021 - 5:33:14 PM
Long-term archiving on: : Sunday, June 19, 2016 - 2:21:02 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01289876, version 1


Lapo Fanciullo. New insights on dust properties from Planck intensity and polarization data. Galactic Astrophysics [astro-ph.GA]. Université Paris-Saclay, 2015. English. ⟨NNT : 2015SACLS194⟩. ⟨tel-01289876⟩



Record views


Files downloads