J. Pezard, J. Lhuillier, Z. El-friakh, V. Soulière, B. Vilquin et al., Realization and Characterization of Graphene on 4H-SiC for Tera-Hertz Transistors, Materials Science Forum, vol.821, issue.823, pp.821-823, 2015.
DOI : 10.4028/www.scientific.net/MSF.821-823.941

URL : https://hal.archives-ouvertes.fr/hal-01391855

L. Ottaviani, M. Lazar, M. Locatelli, D. Planson, J. Chante et al., Characteristics of aluminum-implanted 6H-SiC samples after different thermal treatments, Materials Science and Engineering: B, vol.90, issue.3, pp.29-301, 2002.
DOI : 10.1016/S0921-5107(02)00002-8

URL : https://hal.archives-ouvertes.fr/hal-00140116

D. Ferrah, J. Penuelas, C. Bottela, G. Grenet, and A. Ouerghi, X-ray photoelectron spectroscopy (XPS) and diffraction (XPD) study of a few layers of graphene on 6H-SiC(0001), Surface Science, vol.615, 2013.
DOI : 10.1016/j.susc.2013.04.006

R. Murali, K. Brenner, Y. Yang, T. Beck, and J. D. , Resistivity of Graphene Nanoribbon Interconnects, IEEE Electron Device Letters, vol.30, issue.6, pp.611-613, 2009.
DOI : 10.1109/LED.2009.2020182

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin et al., Dirac charge dynamics in graphene by infrared spectroscopy, Dirac charge dynamics in graphene by infrared spectroscopy, p.532, 2008.
DOI : 10.1103/PhysRevLett.99.016803

Y. Bo, Y. Yang, . Hu, . Yao, and . Huang-, A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires, Electrochimica Acta, vol.56, issue.6, pp.2676-2681, 2011.
DOI : 10.1016/j.electacta.2010.12.034

Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, Application of graphene-modified electrode for selective detection of dopamine, Electrochemistry Communications, vol.11, issue.4, pp.889-892, 2009.
DOI : 10.1016/j.elecom.2009.02.013

A. T. Valota, I. Kinloch, K. S. Novoselov, C. Casiraghi, A. Eckmann et al., Electrochemical Behavior of Monolayer and Bilayer Graphene, ACS Nano, vol.5, issue.11, pp.8809-8815, 2011.
DOI : 10.1021/nn202878f

M. Kesik, F. Ekiz-kanik, J. Turan, M. Kolb, S. Timur et al., An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides, Sensors and Actuators B: Chemical, vol.205, pp.39-49, 2014.
DOI : 10.1016/j.snb.2014.08.058

D. Du, X. Huang, J. Cai, and A. Zhang, Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor, Biosensors and Bioelectronics, vol.23, issue.2, pp.285-289, 2007.
DOI : 10.1016/j.bios.2007.05.002

Y. Li, G. Han-jimenez-jorquera, J. Orozco, A. Baldi, M. Yuqing et al., ISFET based microsensors for environmental monitoring Ion sensitive field effect transducerbased biosensors Recent advances in biologically sensitive field-effect transistors (BioFETs) Electrical signaling of enzyme-linked immunosorbent assays with an ionsensitive field-effect transistor Calcium Ion Detection Using Miniaturized InN-based Ion Sensitive Field Effect Transistors Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film Highly sensitive heavy metal analysis on platinum-and gold-ultramicroelectrode arrays Evaluation of a platinum electrode modified with hydroxyapatite in the lead(II) determination in a square wave voltammetric procedure Micro-and nano-electrode arrays for electroanalytical sensing, El Mhammedi, M. Achak, and M. Bakasse, pp.3160-61, 1997.

G. L. Turdean, I. C. Popescu, L. Oniciu, and D. R. Thevenot, Sensitive Detection of Organophosphorus Pesticides Using a Needle Type Amperometric Acetylcholinesterase-based Bioelectrode. Thiocholine Electrochemistry and Immobilised Enzyme Inhibition, Journal of Enzyme Inhibition and Medicinal Chemistry, vol.17, issue.2, pp.107-115, 2002.
DOI : 10.1080/14756360290026469

URL : https://hal.archives-ouvertes.fr/hal-01180057

J. Clavilier, R. Faure, G. Guinet, and R. Durand, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.107, issue.1, pp.205-209, 1979.
DOI : 10.1016/S0022-0728(79)80022-4

D. G. Wierse, M. M. Lohrengel, and J. W. Schultze, Electrochemical properties of sulfur adsorbed on gold electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.92, issue.2
DOI : 10.1016/S0022-0728(78)80173-9

H. Zhang, Z. Meng, Q. Wang, and J. Zheng, A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles???carbon nanotubes composite film, Sensors and Actuators B: Chemical, vol.158, issue.1, pp.23-27, 2011.
DOI : 10.1016/j.snb.2011.04.057

X. Luo, J. Xu, Y. Du, and H. Chen, A glucose biosensor based on chitosan???glucose oxidase???gold nanoparticles biocomposite formed by one-step electrodeposition, Analytical Biochemistry, vol.334, issue.2, 2004.
DOI : 10.1016/j.ab.2004.07.005

D. Li, Q. He, Y. Cui, L. Duan, and J. Li, Immobilization of glucose oxidase -248- onto gold nanoparticles with enhanced thermostability, Biochem. Biophys

C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska et al., Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosensors and Bioelectronics, vol.25, issue.5, pp.1070-1074, 2010.
DOI : 10.1016/j.bios.2009.09.024

C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska et al., Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, Biosensors and Bioelectronics, vol.25, issue.5, pp.1070-1074, 2010.
DOI : 10.1016/j.bios.2009.09.024

K. Wang, J. Lu, and L. Zhuang, Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes, Journal of Electroanalytical Chemistry, vol.585, issue.2, pp.191-196, 2005.
DOI : 10.1016/j.jelechem.2005.08.009

M. Badihi-mossberg, V. Buchner, and J. Rishpon, Electrochemical Biosensors for Pollutants in the Environment, Electroanalysis, vol.31, issue.19-20, pp.19-20, 2007.
DOI : 10.1002/elan.200703946

T. J. Davies, R. R. Moore, C. E. Banks, and R. G. Compton, The cyclic voltammetric response of electrochemically heterogeneous surfaces, Journal of Electroanalytical Chemistry, vol.574, issue.1, pp.123-152, 2004.
DOI : 10.1016/j.jelechem.2004.07.031

L. Gugoasa, R. Staden, A. Ciucu, and J. Staden, Influence of Physical Immobilization of dsDNA on Carbon Based Matrices of Electrochemical Sensors, Current Pharmaceutical Analysis, vol.10, issue.1, pp.20-29, 2014.
DOI : 10.2174/157341291001140102104740

J. Yang, K. Song, S. Kuga, and H. Kawarada, Characterization of Direct Immobilized Probe DNA on Partially Functionalized Diamond Solution-Gate Field-Effect Transistors, Japanese Journal of Applied Physics, vol.45, issue.No. 42, pp.1114-1117, 2006.
DOI : 10.1143/JJAP.45.L1114

S. Libertino, V. Aiello, A. Scandurra, M. Renis, and F. Sinatra, Immobilization of the Enzyme Glucose Oxidase on Both Bulk and Porous SiO2 Surfaces, Sensors, vol.8, issue.9, pp.5637-5648, 2008.
DOI : 10.3390/s8095637

C. Moina and G. Ybarra, Advances in Immunoassay Technology, 2012.

M. Burke, An integrated microfluidic device for influenza and other genetic analyses, Lab Chip, vol.5, issue.10, pp.1024-1056, 2005.

P. J. Harris and ?. , Fullerene-related structure of commercial glassy carbons, Philosophical Magazine, vol.42, issue.29, pp.3159-3167, 2004.
DOI : 10.1016/0009-2614(86)80661-3

B. J. Sanghavi and A. K. Srivastava, Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode, Analytica Chimica Acta, vol.706, issue.2, pp.246-254, 2011.
DOI : 10.1016/j.aca.2011.08.040

B. J. Sanghavi and A. K. Srivastava, Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochimica Acta, vol.55, issue.28, pp.8638-8648, 2010.
DOI : 10.1016/j.electacta.2010.07.093

B. J. Sanghavi and A. K. Srivastava, Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion???carbon nanotube composite glassy carbon electrode, Electrochimica Acta, vol.56, issue.11
DOI : 10.1016/j.electacta.2011.01.097

A. M. Lyons, Photodefinable carbon films: Control of image quality, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.3, issue.1, p.447, 1985.
DOI : 10.1116/1.583284

J. Kim, X. Song, K. Kinoshita, M. Madou, and R. Whiteb, Electrochemical Studies of Carbon Films from Pyrolyzed Photoresist, Journal of The Electrochemical Society, vol.145, issue.7, p.2314, 1998.
DOI : 10.1149/1.1838636

S. T. Larsen, L. Argyraki, S. Amato, S. S. Tanzi, N. Keller et al., Pyrolyzed Photoresist Electrodes for Integration in Microfluidic Chips for Transmitter Detection from Biological Cells, ECS Electrochemistry Letters, vol.2, issue.5, pp.5-7, 2013.
DOI : 10.1149/2.005305eel

A. Dector, N. Arjona, M. Guerra-balcázar, J. P. Esquivel, F. J. Del-campo et al., Non-Conventional Electrochemical Techniques for Assembly of Electrodes on Glassy Carbon-Like PPF Materials and Their Use in a Glucose Microfluidic Fuel-Cell, Fuel Cells, vol.29, issue.6, pp.810-817, 2014.
DOI : 10.1002/fuce.201400027

A. Mardegan, M. Cettolin, R. Kamath, V. Vascotto, A. M. Stortini et al., Speciation of Trace Levels of Chromium with Bismuth Modified Pyrolyzed Photoresist Carbon Electrodes, Electroanalysis, vol.86, issue.1, pp.128-134, 2015.
DOI : 10.1002/elan.201400392

F. J. Del-campo, P. Godignon, L. Aldous, E. Pausas, M. Sarrión et al., Fabrication of PPF Electrodes by a Rapid Thermal Process, Journal of The Electrochemical Society, vol.158, issue.1, p.63, 2011.
DOI : 10.1149/1.3515169

V. ?ehá?ek, I. Hotový, M. Vojs, M. Kotlár, T. Kups et al., Pyrolyzed Photoresist Film Electrodes for Application in Electroanalysis, Journal of Electrical Engineering, vol.62, issue.1, 2011.
DOI : 10.2478/v10187-011-0008-0

J. A. Lee, S. Hwang, J. Kwak, S. Park, S. S. Lee et al., An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection, Sensors and Actuators B: Chemical, vol.129, issue.1, pp.372-379, 2008.
DOI : 10.1016/j.snb.2007.08.034

H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song et al., Carbon post-microarrays for glucose sensors, Biosensors and Bioelectronics, vol.23, issue.11, pp.1637-1644, 2008.
DOI : 10.1016/j.bios.2008.01.031

M. K. Zachek, P. Takmakov, B. Moody, R. M. Wightman, and G. S. Mccarty, Simultaneous Decoupled Detection of Dopamine and Oxygen Using Pyrolyzed Carbon Microarrays and Fast-Scan Cyclic Voltammetry, Analytical Chemistry, vol.81, issue.15, pp.6258-6265, 2009.
DOI : 10.1021/ac900790m

S. Ranganathan and R. L. Mccreery, Electroanalytical Performance of Carbon Films with Near-Atomic Flatness, Analytical Chemistry, vol.73, issue.5, pp.893-900, 2001.
DOI : 10.1021/ac0007534

J. Li, S. Guo, Y. Zhai, and E. Wang, High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film, Analytica Chimica Acta, vol.649, issue.2, pp.196-201, 2009.
DOI : 10.1016/j.aca.2009.07.030

C. Shan, H. Yang, J. Song, D. Han, A. Ivaska et al., Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene, Anal. Chem, 2009.

Y. Kim, S. Bong, Y. Kang, Y. Yang, R. K. Mahajan et al., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes, Biosensors and Bioelectronics, vol.25, issue.10, pp.2366-2369, 2010.
DOI : 10.1016/j.bios.2010.02.031

Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, Application of graphene-modified electrode for selective detection of dopamine, Electrochemistry Communications, vol.11, issue.4, pp.889-892, 2009.
DOI : 10.1016/j.elecom.2009.02.013

C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska et al., Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene, Biosensors and Bioelectronics, vol.25, issue.6, pp.1504-1508, 2010.
DOI : 10.1016/j.bios.2009.11.009

T. T. Baby, S. S. Aravind, T. Arockiadoss, R. B. Rakhi, and S. Ramaprabhu, Metal decorated graphene nanosheets as immobilization matrix for amperometric glucose biosensor, Sensors and Actuators B: Chemical, vol.145, issue.1, pp.71-77, 2010.
DOI : 10.1016/j.snb.2009.11.022

Y. Aksay and . Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry, vol.20, p.7491, 2010.

Y. Song, K. Qu, C. Zhao, J. Ren, and X. Qu, Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection, Advanced Materials, vol.14, issue.19, pp.2206-2210, 2010.
DOI : 10.1002/adma.200903783

M. Pumera, A. Ambrosi, A. Bonanni, E. L. Chng, and H. L. Poh, Graphene for electrochemical sensing and biosensing, TrAC Trends in Analytical Chemistry, vol.29, issue.9, pp.954-965, 2010.
DOI : 10.1016/j.trac.2010.05.011

F. Schedin, K. Geim, S. Morozov, E. W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene, Nature Materials, vol.88, issue.9, pp.652-655, 2007.
DOI : 10.1038/nmat1967

J. W. Strojek, M. C. Granger, G. M. Swain, T. Dallas, and M. W. Holtz, Enhanced Signal-to-Background Ratios in Voltammetric Measurements Made at Diamond Thin-Film Electrochemical Interfaces, Analytical Chemistry, vol.68, issue.13, pp.2031-2037, 1996.
DOI : 10.1021/ac9506847

M. C. Granger, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, Journal of The Electrochemical Society, vol.146, issue.12, p.4551, 1999.
DOI : 10.1149/1.1392673

O. Tall, N. Jaffrezic-renault, M. Sigaud, and O. Vittori, Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron-Doped Diamond Electrode, Electroanalysis, vol.198, issue.6, pp.1152-1159, 2007.
DOI : 10.1002/elan.200603834

M. A. Witek and G. M. Swain, Aliphatic polyamine oxidation response variability and stability at boron-doped diamond thin-film electrodes as studied by flow-injection analysis, Analytica Chimica Acta, vol.440, issue.2, pp.119-129, 2001.
DOI : 10.1016/S0003-2670(01)01055-8

T. N. Rao, B. V. Sarada, D. Tryk, and . Fujishima, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection, Journal of Electroanalytical Chemistry, vol.491, issue.1-2, pp.175-181, 2000.
DOI : 10.1016/S0022-0728(00)00208-4

C. E. Nebel, B. Rezek, D. Shin, H. Uetsuka, and N. Yang, Diamond for bio-sensor applications, Journal of Physics D: Applied Physics, vol.40, issue.20, pp.6443-6466, 2007.
DOI : 10.1088/0022-3727/40/20/S21

M. A. Dayton, A. G. Ewing, and R. M. Wightman, Diffusion processes measured at microvoltammetric electrodes in brain tissue, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.146, issue.1, pp.189-200, 1983.
DOI : 10.1016/S0022-0728(83)80121-1

J. E. Baur and R. M. Wightman, Microcylinder electrodes as sensitive detectors for high-efficiency, high-speed liquid chromatography, Journal of Chromatography A, vol.482, issue.1, pp.65-73, 1989.
DOI : 10.1016/S0021-9673(01)93207-8

D. Wipf, A. C. Michael, and R. M. Wightman, Microdisk electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.269, issue.1, pp.15-25, 1989.
DOI : 10.1016/0022-0728(89)80100-7

W. Caudill, J. Howell, and R. Wightman, Flow rate independent amperometric cell, Analytical Chemistry, vol.54, issue.14, pp.2532-2535, 1982.
DOI : 10.1021/ac00251a028

F. Belal and J. L. Anderson, Flow injection analysis of three N-substituted phenothiazine drugs with amperometric detection at a carbon fibre array electrode, The Analyst, vol.110, issue.12, p.1493, 1985.
DOI : 10.1039/an9851001493

J. Gawron, R. S. Martin, and S. M. Lunte, Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips, ELECTROPHORESIS, vol.21, issue.2, pp.242-250, 2001.
DOI : 10.1002/1522-2683(200101)22:2<242::AID-ELPS242>3.0.CO;2-W

J. Wang, S. Li, J. Mo, J. Porter, M. M. Musameh et al., Oxygen-independent poly(dimethylsiloxane)-based carbon-paste glucose biosensors, Biosensors and Bioelectronics, vol.17, issue.11-12, pp.11-12, 2002.
DOI : 10.1016/S0956-5663(02)00092-1

J. Wang, L. Fang, and D. Lopez, Amperometric biosensor for phenols based on a tyrosinase???graphite???epoxy biocomposite, The Analyst, vol.64, issue.3, pp.455-458, 1994.
DOI : 10.1039/AN9941900455

M. Brun, Electrodes nanocomposites pour applications en microfluidique, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00744588

J. Wang, Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis, vol.37, issue.15-16, pp.15-16, 2005.
DOI : 10.1002/elan.200403270

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay et al., Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis, vol.130, issue.10, pp.1027-1036, 2010.
DOI : 10.1002/elan.200900571

P. Skladal, Detection of organophosphate and carbamate pesticides using disposable biosensors based on chemically modified electrodes and immobilized cholinesterase, Analytica Chimica Acta, vol.269, issue.2, pp.281-287, 1992.
DOI : 10.1016/0003-2670(92)85414-2

M. P. Bucur, B. Bucur, and G. L. Radu, Critical Evaluation of Acetylthiocholine Iodide and Acetylthiocholine Chloride as Substrates for Amperometric Biosensors Based on Acetylcholinesterase, Sensors, vol.13, issue.2, pp.1603-1613, 2013.
DOI : 10.3390/s130201603

I. Lauermann, R. Memming, and D. Meissner, Electrochemical Properties of Silicon Carbide, Journal of The Electrochemical Society, vol.144, issue.1, 1997.
DOI : 10.1149/1.1837367

M. Kesik, F. Ekiz-kanik, J. Turan, M. Kolb, S. Timur et al., An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides, Sensors and Actuators B: Chemical, vol.205, pp.39-49, 2014.
DOI : 10.1016/j.snb.2014.08.058

G. S. Nunes, D. Barceló, and B. S. Grabaric, Evaluation of a highly sensitive amperometric biosensor with low cholinesterase charge immobilized on a chemically modified carbon paste electrode for trace determination of carbamates in fruit, vegetable and water samples, Analytica Chimica Acta, vol.399, issue.1-2, pp.37-49, 1999.
DOI : 10.1016/S0003-2670(99)00574-7

U. Yogeswaran and S. Chen, A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material, Sensors, vol.8, issue.1, pp.290-313, 2008.
DOI : 10.3390/s8010290

P. C. Pandey, S. Upadhyay, H. C. Pathak, C. M. Pandey, and I. Tiwari, Acetylthiocholine/acetylcholine and thiocholine/choline electrochemical biosensors/sensors based on an organically modified sol???gel glass enzyme reactor and graphite paste electrode, Sensors and Actuators B: Chemical, vol.62, issue.2, pp.109-116, 2000.
DOI : 10.1016/S0925-4005(99)00367-6

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, vol.108, issue.7, pp.2646-2687, 2008.
DOI : 10.1021/cr068076m

R. S. Martin, A. J. Gawron, S. M. Lunte, B. Fogarty, F. B. Regan et al., Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry, The Analyst, vol.126, issue.3, pp.277-280, 2001.
DOI : 10.1039/b009827m

Y. Li and G. Han, Retracted article: Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor, The Analyst, vol.127, issue.574, p.3160, 2012.
DOI : 10.1039/c2an35065c

B. K. Jena and C. R. Raj, Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle, Talanta, vol.76, issue.1, pp.161-165, 2008.
DOI : 10.1016/j.talanta.2008.02.027

R. Baron, B. ?ljuki?, C. Salter, R. G. Crossley, and . Compton, Electrochemical detection of arsenic on a gold nanoparticle array, Russian Journal of Physical Chemistry A, vol.81, issue.9, pp.1443-1447, 2007.
DOI : 10.1134/S003602440709018X

L. Xiao, G. G. Wildgoose, and R. G. Compton, Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry, Analytica Chimica Acta, vol.620, issue.1-2, pp.44-49, 2008.
DOI : 10.1016/j.aca.2008.05.015

X. Dai and R. G. Compton, Gold Nanoparticle Modified Electrodes Show a Reduced Interference by Cu(II) in the Detection of As(III) Using Anodic Stripping Voltammetry, Electroanalysis, vol.466, issue.14, pp.1325-1330, 2005.
DOI : 10.1002/elan.200403246

S. Fierro, T. Watanabe, K. Akai, M. Yamanuki, and Y. Einaga, on Gold-Modified Boron-Doped Diamond Electrodes, International Journal of Electrochemistry, vol.145, issue.6, pp.1-5, 2012.
DOI : 10.1021/ac061528a

S. Laschi, I. Palchetti, and M. Mascini, Gold-based screen-printed sensor for detection of trace lead, Sensors and Actuators B: Chemical, vol.114, issue.1, pp.460-465, 2006.
DOI : 10.1016/j.snb.2005.05.028

F. Kurniawan, New Analytical Applications of Gold Nanoparticles, p.145, 2008.

M. Pohanka, M. Hrabinova, J. Fusek, D. Hynek, V. Adam et al., Electrochemical Biosensor Based on Acetylcholinesterase and Indoxylacetate for Assay of Neurotoxic Compounds Represented by Paraoxon, pp.50-57, 2012.

V. Dhull, A. Gahlaut, N. Dilbaghi, and V. Hooda, Acetylcholinesterase Biosensors for Electrochemical Detection of Organophosphorus Compounds: A Review, Biochemistry Research International, vol.429, issue.5251, 2013.
DOI : 10.1021/nl025624c

J. Wang, Sol???gel materials for electrochemical biosensors, Analytica Chimica Acta, vol.399, issue.1-2, pp.21-27, 1999.
DOI : 10.1016/S0003-2670(99)00572-3

R. Pauliukaite, M. Schoenleber, P. Vadgama, and C. M. Brett, Development of electrochemical biosensors based on sol-gel enzyme encapsulation and protective polymer membranes, Analytical and Bioanalytical Chemistry, vol.511, issue.4, pp.1121-1152, 2008.
DOI : 10.1007/s00216-007-1756-3

M. E. Ghica and C. M. Brett, Development of Novel Glucose and Pyruvate Biosensors at Poly(Neutral Red) Modified Carbon Film Electrodes. Application to Natural Samples, Electroanalysis, vol.122, issue.8, pp.748-756, 2006.
DOI : 10.1002/elan.200503468

C. Agnès, S. Ruffinatto, E. Delbarre, A. Roget, J. Arnault et al., New one step functionalization of polycrystalline diamond films using amine derivatives, IOP Conference Series: Materials Science and Engineering, vol.16, issue.1, p.12001, 2010.
DOI : 10.1088/1757-899X/16/1/012001

R. Manai, E. Scorsone, L. Rousseau, F. Ghassemi, M. P. Abreu et al., Grafting odorant binding proteins on diamond bio-MEMS, Biosensors and Bioelectronics, vol.60, pp.311-317, 2014.
DOI : 10.1016/j.bios.2014.04.020

URL : https://hal.archives-ouvertes.fr/hal-01005176

S. Saddow, Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, 2011.

J. A. Lely, Sublimation process for manufacturing silicon carbide crystals, pp.492-385, 1955.

Y. M. Tairov and V. Tsvetkov, Investigation of growth processes of ingots of silicon carbide single crystals, Journal of Crystal Growth, vol.43, issue.2, pp.209-212, 1978.
DOI : 10.1016/0022-0248(78)90169-0

T. Kimoto, A. Itoh, and H. Matsunami, Step-Controlled Epitaxial Growth of

S. Contreras and J. Camassel, Matériaux semiconducteurs à grand gap : le carbure de silicium (SiC), 2014.

F. Nallet, SiC pour l'électronique de puissance du futur, 2002.

E. Nickel and M. Nichols, Mineral Reference Manual, 1991.
DOI : 10.1007/978-1-4615-3678-9

F. Nallet, Conception, Réalisation et Caractérisation d'un composant limiteur de courant en carbure de silicium, 2001.

F. Nallet, SiC pour l'électronique de puissance du futur, 2002.

M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, Properties of advanced semiconductor materials, 2001.

F. Laariedh, Technologie d ' intégration monolithique des JFET latéraux, 2013.

B. J. Baliga, Semiconductors for high???voltage, vertical channel field???effect transistors, Journal of Applied Physics, vol.53, issue.3, p.1759, 1982.
DOI : 10.1063/1.331646

E. Johnson, Physical limitations on frequency and power parameters of transistors, IRE International Convention Record, pp.27-34
DOI : 10.1109/IRECON.1965.1147520

R. W. Keyes, Figure of merit for semiconductors for high-speed switches, Proc. IEEE, pp.225-225, 1972.
DOI : 10.1109/PROC.1972.8593

L. Tolbert and B. Ozpineci, Wide bandgap semiconductors for utility applications, pp.1-5, 2003.

M. Rami, Caractérisation, modélisation et intégration de JFET de puissance en carbure de silicium dans des convertisseurs haute température et haute tension, 2001.

R. P. Elliot, Constitution of Binary Alloys, 1965.

A. Rzany and M. Schaldach, Smart Material Silicon Carbide: Reduced Activation of Cells and Proteins on a-SiC:H-coated Stainless Steel, Prog. Biomed. Res, vol.6, issue.5, pp.182-194, 2001.

R. Yakimova, R. M. Petoral, G. R. Yazdi, C. Vahlberg, L. Spetz et al., Surface functionalization and biomedical applications based on SiC, Journal of Physics D: Applied Physics, vol.40, issue.20, pp.6435-6442, 2007.
DOI : 10.1088/0022-3727/40/20/S20

S. Santavirta, M. Takagi, L. Nordsletten, A. Anttila, R. Lappalainen et al., Biocompatibility of silicon carbide in colony formation test in vitro, Archives of Orthopaedic and Trauma Surgery, vol.118, issue.1-2, pp.89-91, 1998.
DOI : 10.1007/s004020050319

K. Vassilevski, N. G. Wright, I. P. Nikitina, A. B. Horsfall, A. G. O-'neill et al., Protection of selectively implanted and patterned silicon carbide surfaces with graphite capping layer during post-implantation annealing, Semiconductor Science and Technology, vol.20, issue.3, pp.271-278, 2005.
DOI : 10.1088/0268-1242/20/3/003

O. J. Schueller, S. T. Brittain, and G. M. Whitesides, Fabrication of glassy carbon microstructures by soft lithography, Sensors and Actuators A: Physical, vol.72, issue.2, pp.125-139, 1998.
DOI : 10.1016/S0924-4247(98)00218-0

R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita et al., Surface studies of carbon films from pyrolyzed photoresist, Thin Solid Films, vol.396, issue.1-2, pp.36-43, 2001.
DOI : 10.1016/S0040-6090(01)01185-3

A. Singh, J. Jayaram, M. Madou, and S. Akbar, Pyrolysis of Negative Photoresists to Fabricate Carbon Structures for Microelectromechanical Systems and Electrochemical Applications, Journal of The Electrochemical Society, vol.149, issue.3, p.78, 2002.
DOI : 10.1149/1.1436085

N. Hebert, B. Snyder, and R. Mccreery, Performance of Pyrolyzed Photoresist Carbon Films in a Microchip Capillary Electrophoresis Device with Sinusoidal Voltammetric Detection, Analytical Chemistry, vol.75, issue.16, 2003.
DOI : 10.1021/ac026425g

C. Fairman, S. S. Yu, G. Liu, A. J. Downard, D. B. Hibbert et al., Exploration of variables in the fabrication of pyrolysed photoresist, Journal of Solid State Electrochemistry, vol.37, issue.10, pp.1357-1365, 2008.
DOI : 10.1007/s10008-008-0577-4

S. Ranganathan and R. Mccreery, Photoresist-Derived Carbon for Microelectromechanical Systems and Electrochemical Applications, Journal of The Electrochemical Society, vol.147, issue.1, pp.277-282, 2000.
DOI : 10.1149/1.1393188

L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. Kim et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Physics Letters, vol.88, issue.16, p.163106, 2006.
DOI : 10.1063/1.2196057

J. C. Slonczewski and P. R. Weiss, Band Structure of Graphite, Physical Review, vol.109, issue.2, pp.272-279, 1958.
DOI : 10.1103/PhysRev.109.272

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. Khotkevich et al., Two-dimensional atomic crystals, Proc. Natl
DOI : 10.1073/pnas.0502848102

K. S. Novoselov, K. Geim, S. Morozov, D. Jiang, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.72, issue.7065, pp.197-200, 2005.
DOI : 10.1103/PhysRevLett.79.3728

K. S. Novoselov, V. I. Fal?ko, L. Colombo, P. R. Gellert, M. G. Schwab et al., A roadmap for graphene, Nature, vol.335, issue.7419, pp.192-200, 2012.
DOI : 10.1038/nature11458

H. C. Schniepp, J. L. Li, M. J. Mcallister, H. Sai, M. Herrera-alonson et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, Prud&apos;homme, R. Car, D. a. Seville, and I. a. Aksay
DOI : 10.1021/jp060936f

X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk et al., Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process, Nano Letters, vol.10, issue.11, p.13, 2010.
DOI : 10.1021/nl101629g

J. Ahn, supporting infro Wafer-Scale Synthesis and Transfer of graphene films, Nano Lett, vol.10, pp.490-493, 2010.

S. Hong and . Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol, vol.5, pp.574-578, 2010.

C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi et al., Ultrathin Epitaxial Graphite:&nbsp; 2D Electron Gas Properties and a Route toward Graphenebased Nanoelectronics, pp.19912-19916, 2004.

W. De-heer, C. Berger, M. Ruan, M. Sprinkle, X. Li et al., Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide, Proceedings of the National Academy of Sciences, vol.108, issue.41, 2011.
DOI : 10.1073/pnas.1105113108

URL : https://hal.archives-ouvertes.fr/hal-00911226

K. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature Materials, vol.600, issue.3, pp.203-210, 2009.
DOI : 10.1038/nmat2382

E. Rollings, G. Gweon, S. Y. Zhou, B. S. Mun, J. L. Mcchesney et al., Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, Journal of Physics and Chemistry of Solids, vol.67, issue.9-10, pp.9-10, 2006.
DOI : 10.1016/j.jpcs.2006.05.010

K. V. Emtsev, F. Speck, T. Seyller, and L. Ley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study, Physical Review B, vol.77, issue.15, p.155303, 2008.
DOI : 10.1103/PhysRevB.77.155303

W. De-heer, C. Berger, X. Wu, P. N. First, E. H. Conrad et al., Epitaxial graphene, Solid State Communications, vol.143, issue.1-2, pp.92-100, 2007.
DOI : 10.1016/j.ssc.2007.04.023

URL : https://hal.archives-ouvertes.fr/hal-00911214

J. Borysiuk, R. Bo?ek, W. Strupi?ski, and J. M. Baranowski, Graphene Growth on C and Si-Face of <i>4H</i>-SiC ??? TEM and AFM Studies, Materials Science Forum, vol.645, issue.648, pp.645-648, 2010.
DOI : 10.4028/www.scientific.net/MSF.645-648.577

N. Camara, G. Rius, J. Huntzinger, L. Tiberj, N. Magaud et al., Early stage formation of graphene on the C face of 6H-SiC, Applied Physics Letters, vol.93, issue.26, p.263102, 2008.
DOI : 10.1063/1.3056655

URL : https://hal.archives-ouvertes.fr/hal-00543850

O. J. Castaing, M. Guy, S. P. Lodzinski, and . Wilks, Investigation of Graphene Growth on 4H-SiC, Materials Science Forum, vol.615, issue.617, pp.615-617, 2009.
DOI : 10.4028/www.scientific.net/MSF.615-617.223

A. Ouerghi, M. G. Silly, M. Marangolo, C. Mathieu, and M. Eddrief, Large- Area and High-Quality Epitaxial Graphene on O ff -Axis SiC Wafers, 2012.

O. J. Guy, G. Burwell, Z. Tehrani, A. Castaing, K. A. Walker et al., Graphene Nano-Biosensors for Detection of Cancer Risk, Materials Science Forum, vol.711, pp.246-252, 2012.
DOI : 10.4028/www.scientific.net/MSF.711.246

O. J. Guy, A. Castaing, Z. Tehrani, and S. H. Doak, Fabrication of ultrasensitive graphene nanobiosensors, 2010 IEEE Sensors, pp.907-912, 2010.
DOI : 10.1109/ICSENS.2010.5690883

S. Teixeira, G. Burwell, A. Castaing, D. Gonzalez, R. S. Conlan et al., Epitaxial graphene immunosensor for human chorionic gonadotropin, Sensors and Actuators B: Chemical, vol.190, pp.723-729, 2014.
DOI : 10.1016/j.snb.2013.09.019

J. Park, W. C. Mitchel, L. Grazulis, H. E. Smith, K. G. Eyink et al., Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE), Advanced Materials, vol.92, issue.37, pp.4140-4145, 2010.
DOI : 10.1002/adma.201000756

S. Dhar, .. R. Barman, G. X. Ni, X. Wang, X. F. Xu et al., A new route to graphene layers by selective laser ablation, AIP Advances, vol.1, issue.2, pp.0-8, 2011.
DOI : 10.1063/1.3584204

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Letters, vol.11, issue.6, pp.2396-2399, 2011.
DOI : 10.1021/nl200758b

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, issue.5887, pp.385-388, 2008.
DOI : 10.1126/science.1157996

A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature Materials, vol.134, issue.2, pp.569-581, 2011.
DOI : 10.1038/nmat3064

J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van-der-zande, J. M. Parpia et al., Impermeable Atomic Membranes from Graphene Sheets, Nano Letters, vol.8, issue.8, pp.2458-2462, 2008.
DOI : 10.1021/nl801457b

J. Moser, Current-induced cleaning of graphene, Applied Physics Letters, vol.91, issue.16, pp.4-6, 2007.
DOI : 10.1063/1.2789673

A. Bianco, Graphene: Safe or Toxic? The Two Faces of the Medal, Angewandte Chemie International Edition, vol.4, issue.19, pp.4986-4997, 2013.
DOI : 10.1002/anie.201209099

J. C. Angus, Growth of Diamond Seed Crystals by Vapor Deposition, Journal of Applied Physics, vol.39, issue.6, p.2915, 1968.
DOI : 10.1063/1.1656693

B. V. Derjaguin and D. V. Fedoseev, Physico-chemical synthesis of diamond in metastable range, Progress in Surface Science, vol.45, issue.1-4, pp.71-80, 1994.
DOI : 10.1016/0079-6816(94)90035-3

M. K. Hassan, Plasma Enhanced Chemical Vapor Deposition and Electrical Characterization of Diamond-Like Carbon Thin Films, 2007.

E. Gheeraert, P. Gonon, L. Deneuville, G. Abello, and . Lucazeau, Effect of boron incorporation on the ???quality??? of MPCVD diamond films, Diamond and Related Materials, vol.2, issue.5-7, pp.5-7, 1993.
DOI : 10.1016/0925-9635(93)90215-N

C. Agnes, Le diamant dopé au bore pour la bioélectronique: Biocompatibilité et Fonctionnalisation, 2011.

K. Ushizawa, K. Watanabe, T. Ando, I. Sakaguchi, M. Nishitani-gamo et al., Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond, Diamond and Related Materials, vol.7, issue.11-12, pp.11-12, 1998.
DOI : 10.1016/S0925-9635(98)00296-9

H. Kawarada, Y. Yokota, Y. Mori, K. Nishimura, and . Hiraki, Cathodoluminescence and electroluminescence of undoped and boron???doped diamond formed by plasma chemical vapor deposition, Journal of Applied Physics, vol.67, issue.2, p.983, 1990.
DOI : 10.1063/1.345708

W. Gajewski, P. Achatz, O. Williams, K. Haenen, E. Bustarret et al., Electronic and optical properties of boron-doped nanocrystalline diamond films, Physical Review B, vol.79, issue.4, p.45206, 2009.
DOI : 10.1103/PhysRevB.79.045206

URL : https://hal.archives-ouvertes.fr/hal-00761410

C. Li, E. T. Thostenson, and T. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review, Composites Science and Technology, vol.68, issue.6, pp.1227-1249, 2008.
DOI : 10.1016/j.compscitech.2008.01.006

C. M. Calixto, R. K. Mendes, A. C. De-oliveira, L. A. Ramos, P. Cervini et al., Development of graphite-polymer composites as electrode materials, Materials Research, vol.10, issue.2, pp.109-114, 2007.
DOI : 10.1590/S1516-14392007000200003

X. Gong and W. Wen, Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication, Biomicrofluidics, vol.3, issue.1, pp.1-14, 2009.
DOI : 10.1063/1.3098963

V. J. Larmagnac-alexandre, E. Samuel, and H. Janossy, Stretchable electronics based on Ag-PDMS composites., " Sci Rep, pp.1-7, 2014.

S. Stankovich, D. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney et al., Graphene-based composite materials, Nature, vol.83, issue.7100, pp.282-288, 2006.
DOI : 10.1038/nature04969

M. M. Barsan, E. M. Pinto, M. Florescu, and C. M. Brett, Development and characterization of a new conducting carbon composite electrode Anal

F. Céspedes, New materials for electrochemical sensing II. Rigid carbon???polymer biocomposites, TrAC Trends in Analytical Chemistry, vol.19, issue.4, pp.276-285, 2000.
DOI : 10.1016/S0165-9936(99)00179-X

S. Ramirez-garcia, S. Alegret, F. Cespedes, and R. J. Forster, Carbon composite electrodes: surface and electrochemical properties, The Analyst, vol.97, issue.11, pp.1512-1519, 2002.
DOI : 10.1039/B206201A

S. Ramírez-garcía, F. Céspedes, and S. Alegret, Development of Conducting Composite Materials for Electrochemical Sensing in Organic Media, Electroanalysis, vol.67, issue.7, pp.529-535, 2001.
DOI : 10.1002/1521-4109(200105)13:7<529::AID-ELAN529>3.0.CO;2-I

C. Fu, W. Yang, X. Chen, and D. G. Evans, Direct electrochemistry of glucose oxidase on a graphite nanosheet???Nafion composite film modified electrode, Electrochemistry Communications, vol.11, issue.5, pp.997-1000, 2009.
DOI : 10.1016/j.elecom.2009.02.042

H. Wakiwaka, M. Kodani, M. Endo, and Y. Takahashi, Non-contact measurement of CNT compounding ratio in composite material by eddy current method, Sensors and Actuators A: Physical, vol.129, issue.1-2, pp.235-238, 2006.
DOI : 10.1016/j.sna.2005.09.052

M. Gerard, A. Chaubey, and B. D. Malhotra, Application of conducting polymers to biosensors, Biosensors and Bioelectronics, vol.17, issue.5, pp.345-59, 2002.
DOI : 10.1016/S0956-5663(01)00312-8

W. Lu, H. Lin, D. Wu, and G. Chen, Unsaturated polyester resin/graphite nanosheet conducting composites with a low percolation threshold, Polymer, vol.47, issue.12, pp.4440-4444, 2006.
DOI : 10.1016/j.polymer.2006.03.107

D. Bodas and C. Khan-malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment???An SEM investigation, Sensors and Actuators B: Chemical, vol.123, issue.1, pp.368-373, 2007.
DOI : 10.1016/j.snb.2006.08.037

N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink et al., Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material, Microelectronic Engineering, vol.84, issue.5-8, pp.904-908, 2007.
DOI : 10.1016/j.mee.2007.01.017

C. Li, E. T. Thostenson, and T. W. Chou, Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube???based composites, Applied Physics Letters, vol.91, issue.22, pp.7-10, 2007.
DOI : 10.1063/1.2819690

X. Niu, S. Peng, L. Liu, W. Wen, and P. Sheng, Characterizing and Patterning of PDMS-Based Conducting Composites, Advanced Materials, vol.280, issue.18, pp.2682-2686, 2007.
DOI : 10.1002/adma.200602515

M. Brun, J. F. Chateaux, A. L. Deman, P. Pittet, and R. Ferrigno, Nanocomposite Carbon-PDMS Material for Chip-Based Electrochemical Detection, Electroanalysis, vol.129, issue.2, pp.321-324, 2011.
DOI : 10.1002/elan.201000321

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-373, 2006.
DOI : 10.1038/nature05058

E. Oliviero, M. Lazar, H. Vang, C. Dubois, P. Cremillieu et al., Use of Graphite Cap to Reduce Unwanted Post- Implantation Annealing Effects in SiC, Mater. Sci. Forum, pp.556-557, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00368931

R. Issaoui, Elaboration de films épais de diamant monocristallin dopé au bore par MPACVD pour la réalisation de substrats de diamant p+, 2011.

P. Dhamelincourt, J. Barbillat, D. Bougeard, G. Buntinx, M. Delhaye et al., Spectrométrie Raman, Techniques de l'ingénieur CND : méthodes surfaciques, 2015.

F. Tuinstra, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, p.1126, 1970.
DOI : 10.1063/1.1674108

M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, R. Jorio et al., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., vol.2, issue.230, pp.1276-91, 2007.
DOI : 10.1039/B613962K

A. Das, B. K. Chakraborty, and . Sood, Raman spectroscopy of graphene on different substrates and influence of defects, Bulletin of Materials Science, vol.438, issue.3, pp.579-584, 2008.
DOI : 10.1007/s12034-008-0090-5

D. Ferrah, J. Penuelas, C. Bottela, G. Grenet, and A. Ouerghi, X-ray photoelectron spectroscopy (XPS) and diffraction (XPD) study of a few layers of graphene on 6H-SiC(0001), Surface Science, vol.615, 2013.
DOI : 10.1016/j.susc.2013.04.006

S. Montanari, Fabrication and characterization of planar Gunn diodes for Monolithic Microwave Integrated Circuits, 2004.

M. Lazar, Etude du Dopage par Implantation Ionique d'Aluminium dans le Carbure de Silicium pour la Réalisation de Composants de Puissance, 2002.

R. Murali, K. Brenner, Y. Yang, T. Beck, and J. D. , Resistivity of Graphene Nanoribbon Interconnects, IEEE Electron Device Letters, vol.30, issue.6, pp.611-613, 2009.
DOI : 10.1109/LED.2009.2020182

Y. M. Liu, C. Punckt, M. A. Pope, A. Gelperin, and I. Aksay, Electrochemical Sensing of Nitric Oxide with Functionalized Graphene Electrodes, ACS Applied Materials & Interfaces, vol.5, issue.23, pp.12624-12630, 2013.
DOI : 10.1021/am403983g

W. Lin, C. Liao, J. Jhang, and Y. Tsai, Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and ??-nicotinamide adenine dinucleotide, Electrochemistry Communications, vol.11, issue.11, pp.2153-2156, 2009.
DOI : 10.1016/j.elecom.2009.09.018

Y. S. Grewal, M. J. Shiddiky, S. Gray, K. M. Weigel, G. Cangelosi et al., Label-free electrochemical detection of an Entamoeba histolytica antigen using cell-free yeast-scFv probes, Chemical Communications, vol.44, issue.15, pp.1551-1554, 2013.
DOI : 10.1039/c2cc38882k

Z. Yu, T. E. Mcknight, M. N. Ericson, A. V. Melechko, M. L. Simpson et al., Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals from Hippocampal Slices, Nano Letters, vol.7, issue.8, pp.2188-2195, 2007.
DOI : 10.1021/nl070291a

J. B. Raoof, R. Ojani, D. Nematollahi, and A. Kiani, Digital simulation of the cyclic voltammetry study of the catechols electrooxidation in the presence of some nitrogen and carbon nucleophiles, Int. J. Electrochem. Sci, vol.4, issue.6, pp.810-819, 2009.

A. Bard and L. Faulkner, Electrochemical methods: fundamentals and applications, Electrochem. Methods, 1980.

A. Singh, J. Jayaram, M. Madou, and S. Akbar, Pyrolysis of Negative Photoresists to Fabricate Carbon Structures for Microelectromechanical Systems and Electrochemical Applications, Journal of The Electrochemical Society, vol.149, issue.3, p.78, 2002.
DOI : 10.1149/1.1436085

L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu et al., Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films, Advanced Functional Materials, vol.90, issue.620, pp.2782-2789, 2009.
DOI : 10.1002/adfm.200900377

A. T. Valota, I. Kinloch, K. S. Novoselov, C. Casiraghi, A. Eckmann et al., Electrochemical Behavior of Monolayer and Bilayer Graphene, ACS Nano, vol.5, issue.11, pp.8809-8815, 2011.
DOI : 10.1021/nn202878f

I. Duo, Control of Electron Transfer Kinetics at Boron-Doped Diamond Electrodes by Specific Surface Modification (These No 2732), 2003.

W. F. Regnault and G. L. Picciolo, Review of medical biosensors and associated materials problems, J. Biomed. Mater. Res, vol.21, issue.A2, pp.163-80, 1987.

J. Rosenbloom, D. M. Sipe, Y. Shishkin, Y. Ke, R. P. Devaty et al., Nanoporous SiC: A Candidate Semi-Permeable Material for Biomedical Applications, Biomedical Microdevices, vol.6, issue.4, pp.261-268, 2004.
DOI : 10.1023/B:BMMD.0000048558.91401.1d

O. Biosensors, . Around, and . World, OVERVIEW

A. Tuan, M. A. To, and H. A. Id, Development of electrochemical based tyrosinase biosensors for the detection of organic pollutants in water THESE EN CO-TUTELLE Présentée devant, 2004.

C. A. Huitle, Direct and indirect electrochemical oxidation of organic pollutants, pp.1-269, 2004.

N. Hu, Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants, Pure and Applied Chemistry, vol.73, issue.12, pp.1979-1991, 2001.
DOI : 10.1351/pac200173121979

M. Panizza, P. Michaud, G. Cerisola, and C. Comninellis, Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: Prediction of specific energy consumption and required electrode area, Electrochemistry Communications, vol.3, issue.7, pp.336-339, 2001.
DOI : 10.1016/S1388-2481(01)00166-7

X. Li, Z. Xie, H. Min, Y. Xian, and L. Jin, Amperometric Biosensor Based on Immobilization Acetylcholinesterase on Manganese Porphyrin Nanoparticles for Detection of Trichlorfon with Flow-Injection Analysis System, Electroanalysis, vol.58, issue.24, pp.2551-2557, 2007.
DOI : 10.1002/elan.200703965

D. Jun, K. Kuca, J. Cabal, L. Bartosova, G. Kunesova et al., (22) Comparison of ability of some oximes to reactivate sarin-inhibited brain acetylcholinesterase from different species, Chemico-Biological Interactions, vol.157, issue.158, pp.157-272, 2005.
DOI : 10.1016/j.cbi.2005.10.067

Y. Song, M. Zhang, L. Wang, L. Wan, X. Xiao et al., A novel biosensor based on acetylecholinesterase/prussian blue???chitosan modified electrode for detection of carbaryl pesticides, Electrochimica Acta, vol.56, issue.21, pp.7267-7271, 2011.
DOI : 10.1016/j.electacta.2011.06.054

D. Du, X. Huang, J. Cai, and A. Zhang, Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor, Biosensors and Bioelectronics, vol.23, issue.2, pp.285-289, 2007.
DOI : 10.1016/j.bios.2007.05.002

M. Khayyami, M. T. Pe, and N. Pen, Development of an amperometric biosensor based on acetylcholine esterase covalently bound to a new support material, Talanta, vol.45, issue.3, pp.557-563, 1998.
DOI : 10.1016/S0039-9140(97)00182-3

A. Komersová, K. Komers, and P. Zdra?ilová, (23) Kinetics of hydrolysis of acetylthiocholine and acetylcholine by cholinesterases, Chemico-Biological Interactions, vol.157, issue.158, pp.157-158, 2005.
DOI : 10.1016/j.cbi.2005.10.068

V. B. Kandimalla and H. Ju, Binding of Acetylcholinesterase to Multiwall Carbon Nanotube-Cross-Linked Chitosan Composite for Flow-Injection Amperometric Detection of an Organophosphorous Insecticide, Chemistry - A European Journal, vol.34, issue.4, pp.1074-1080, 2006.
DOI : 10.1002/chem.200500178

G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, vol.7, issue.2, pp.88-95, 1961.
DOI : 10.1016/0006-2952(61)90145-9

D. Du, X. Huang, J. Cai, A. Zhang, J. Ding et al., An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube???cross-linked chitosan composite, Analytical and Bioanalytical Chemistry, vol.20, issue.3, pp.1059-1065, 2007.
DOI : 10.1007/s00216-006-0972-6

D. M. Quinn, Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states, Chemical Reviews, vol.87, issue.5, pp.955-979, 1987.
DOI : 10.1021/cr00081a005

G. Bocquené, A. Roig, and D. Fournier, ), FEBS Letters, vol.1, issue.3, pp.261-266, 1997.
DOI : 10.1016/S0014-5793(97)00339-6

L. Rotariu, L. G. Zamfir, and C. Bala, Low potential thiocholine oxidation at carbon nanotube-ionic liquid gel sensor, Sensors and Actuators B: Chemical, vol.150, issue.1, pp.73-79, 2010.
DOI : 10.1016/j.snb.2010.07.040

M. J. Fischer, Amine Coupling Through EDC/NHS: A Practical Approach, Methods Mol. Biol, vol.627, pp.55-73, 2010.
DOI : 10.1007/978-1-60761-670-2_3

D. Du, J. Ding, J. Cai, and A. Zhang, Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan, Colloids and Surfaces B: Biointerfaces, vol.58, issue.2, pp.145-150, 2007.
DOI : 10.1016/j.colsurfb.2007.03.006

L. Gorton, Carbon paste electrodes modified with enzymes, tissues, and cells, Electroanalysis, vol.20, issue.14, 1994.
DOI : 10.1002/elan.1140070104

Á. J. Genzer, A. Á. , A. Á. Dus, W. H. Kobayashi, Á. K. Leibler et al., Advances in Polymer Science Editorial Board : Synthetic Biodegradable Polymers, p.360, 2012.

S. Bettuzzi, Diamond-based Biosensor, 2009.

H. Chen, X. Zuo, S. Su, Z. Tang, A. Wu et al., An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity, The Analyst, vol.89, issue.9, pp.1182-1186, 2008.
DOI : 10.1039/b805334k

H. Zhang, Z. F. Li, A. Snyder, J. Xie, and L. A. Stanciu, Functionalized graphene oxide for the fabrication of paraoxon biosensors, Analytica Chimica Acta, vol.827, pp.86-94, 2014.
DOI : 10.1016/j.aca.2014.04.014

J. Pezard, J. Lhuillier, Z. El-friach, V. Soulière, B. Vilquin et al., Realization and Characterization of Graphene on 4H-SiC for Tera-Hertz Transistors, Materials Science Forum, vol.821, issue.823, pp.821-823, 2015.
DOI : 10.4028/www.scientific.net/MSF.821-823.941

URL : https://hal.archives-ouvertes.fr/hal-01391855

S. G. Weber, Signal-to-noise ratio in microelectrode-array-based electrochemical detectors, Analytical Chemistry, vol.61, issue.4, pp.295-302, 1989.
DOI : 10.1021/ac00179a004

D. E. Weisshaar and D. E. Tallman, Chronoamperometric response at carbon-based composite electrodes, Analytical Chemistry, vol.55, issue.7, pp.1146-1151, 1983.
DOI : 10.1021/ac00258a038

J. Wang, Electrochemical glucose biosensors, Chem. Rev, 2008.

S. Kwakye and A. Baeumner, A microfluidic biosensor based on nucleic acid sequence recognition, Analytical and Bioanalytical Chemistry, vol.376, issue.7, pp.1062-1070, 2003.
DOI : 10.1007/s00216-003-2063-2

J. Wang, M. Pumera, M. Prakash-chatrathi, A. Rodriguez, S. Spillman et al., Thick-Film Electrochemical Detectors for Poly(dimethylsiloxane)-based Microchip Capillary Electrophoresis, Electroanalysis, vol.14, issue.18, pp.1251-1255, 2002.
DOI : 10.1002/1521-4109(200210)14:18<1251::AID-ELAN1251>3.0.CO;2-G

H. Cong and T. Pan, Photopatternable Conductive PDMS Materials for Microfabrication, Advanced Functional Materials, vol.122, issue.13, pp.1912-1921, 2008.
DOI : 10.1002/adfm.200701437

J. Wang, Y. L. Bunimovich, G. Sui, S. Savvas, J. Wang et al., Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system, Chemical Communications, vol.18, issue.29, pp.3075-3077, 2006.
DOI : 10.1039/b604426c

F. Carmona, Conducting filled polymers Physica A: Statistical Mechanics and its Applications, pp.461-469, 1989.

W. L. Caudill, A. G. Ewing, S. Jones, and R. M. Wightman, Liquid chromatography with rapid scanning electrochemical detection at carbon electrodes, Analytical Chemistry, vol.55, issue.12, pp.1877-1881, 1983.
DOI : 10.1021/ac00262a010

P. M. Kovach, W. L. Caudill, D. G. Peters, and R. M. Wightman, Faradaic electrochemistry at microcylinder, band, and tubular band electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.185, issue.2, pp.285-295, 1985.
DOI : 10.1016/0368-1874(85)80136-2

W. W. Kubiak and M. M. Strozik, Study of the flow dependence of microelectrode and semi-microelectrode voltammetric signals, Journal of Electroanalytical Chemistry, vol.417, issue.1-2, pp.95-103, 1996.
DOI : 10.1016/S0022-0728(96)04744-4

L. E. Fosdick, J. L. Anderson, T. A. Baginski, and R. C. Jaeger, Amperometric response of microlithographically fabricated microelectrode array flow sensors in a thin-layer channel, Analytical Chemistry, vol.58, issue.13, pp.2750-2756, 1986.
DOI : 10.1021/ac00126a037

D. O&apos-;-hare, J. V. Macpherson, and A. Willows, On the microelectrode behaviour of graphite???epoxy composite electrodes, Electrochemistry Communications, vol.4, issue.3, pp.245-250, 2002.
DOI : 10.1016/S1388-2481(02)00265-5

T. J. Davies, C. E. Banks, and R. G. Compton, Voltammetry at spatially heterogeneous electrodes, Journal of Solid State Electrochemistry, vol.20, issue.12, pp.797-808, 2005.
DOI : 10.1007/s10008-005-0699-x

M. H. Saleh and U. Sundararaj, Review of the mechanical properties of carbon nanofiber/polymer composites, Composites Part A: Applied Science and Manufacturing, vol.42, issue.12, pp.2126-2142, 2011.
DOI : 10.1016/j.compositesa.2011.08.005

S. Menad, A. El-gaddar, N. Haddour, S. Toru, M. Brun et al., From Bipolar to Quadrupolar Electrode Structures: An Application of Bond-Detach Lithography for Dielectrophoretic Particle Assembly, Langmuir, vol.30, issue.19, pp.5686-5693, 2014.
DOI : 10.1021/la5005193

URL : https://hal.archives-ouvertes.fr/hal-00988569

V. S. Tripathi, V. B. Kandimalla, and H. Ju, Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite, Biosensors and Bioelectronics, vol.21, issue.8, pp.1529-1535, 2006.
DOI : 10.1016/j.bios.2005.07.006

M. M. Barsan and C. M. Brett, A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose, Bioelectrochemistry, vol.76, issue.1-2, pp.135-140, 2009.
DOI : 10.1016/j.bioelechem.2009.03.004

M. E. Ghica and C. M. Brett, Development of a Carbon Film Electrode Ferrocene???Mediated Glucose Biosensor, Analytical Letters, vol.38, issue.6, pp.907-920, 2005.
DOI : 10.1016/S0925-4005(97)80245-6

M. B. Gholivand and M. Khodadadian, Simultaneous Voltammetric Determination of Captopril and Hydrochlorothiazide on a Graphene/Ferrocene Composite Carbon Paste Electrode, Electroanalysis, vol.41, issue.5, pp.1263-1270, 2013.
DOI : 10.1002/elan.201200665