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Doctoral Thesis

presented by

Alia DEHMAN

entitled

Spatial Clustering of Linkage Disequilibrium
blocks for Genome-Wide Association Studies

in fulfilment of the requirements

for the degree of Doctor

in Life sciences and health
(Doctoral School no577 )

Defended on December, 9th 2015 in front of

Reviewers David Causeur Agrocampus Ouest

Franck Picard UMR CNRS 5558

Examiners Maria Martinez INSERM U1043

Tristan Mary-Huard
AgroParisTech

INRA UMR de Génétique Végétale

Supervisors Christophe Ambroise Université d’Evry Val d’Essonne
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Chapter 1

Introduction

1.1 General background

It is now known that many diseases have a genetic component (Rousseau & Laflamme 2003).

A Desoxyribo Nucleic Acid (DNA) sequence may be represented as a sequence of letters {A,

T , G and C} called bases. In a given position on a chromosome or locus, we can find different

versions of the genetic text or alleles. In the simplest case, the change of one allele alone at

a given locus can be responsible for a disease: it is called monogenic disease; in a less trivial

situation, the disease called multifactorial or complex disease is the result of multiple genetic and

environmental components, which is the case with most cancers, psychiatric and autoimmune

diseases (Hunter 2005).

Single Nucleotide Polymorphisms (SNPs) are markers constituting a rich and abundant source

of genetic information. Defined as positions in the chromosome where the genetic text varies

by a single base from one individual to another, they constitute 90% of all human variation

(Crews et al. 2012). The decrease in both cost and time of SNP genotyping recently helped

to launch large-scale genetic association studies, also called Genome-Wide Association Studies

(GWAS), in order to explore a significant part of genetic polymorphisms that may be involved

in the biological mechanisms behind diseases (Risch 2000). One popular GWAS approach is to

collect, according to certain criteria, a sample of individuals suffering from the disease called

cases and non-affected individuals called controls and to determine the positions in the genome

where the genetic text differs significantly between cases and controls. This is called a case-

control association study.

1
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Despite having identified hundreds of genetic variants responsible for a variety of simple/com-

plex diseases and other phenotypic traits, more must be done to reach the goal of identifying

major disease risks and understanding disease mechanism. Indeed, the genetic variants identi-

fied to date have mostly weak effects on the disease risk and explain only a small proportion

(reaching 20% to 25% in some well-studied cases) of the total heritability (Lander 2011). Ge-

neticists define the proportion of heritability of a trait explained by a set of known genetic vari-

ants to be the proportion of the phenotypic variance explained by the additive effects of known

variants divided by he proportion of the phenotypic variance attributable to the additive effects

of all variants, including those not yet discovered (Zuk et al. 2012). The relatively poor perfor-

mance of GWAS in explaining heritability can be attributed to fundamental limitations in the

GWAS methodology. First, structural changes such as variations in copy number (CNV) or epi-

genetics (which are variations that are caused by external or environmental factors that control

genes) are not handled by the GWA strategy. Indeed, the technologies used in whole genome

(including sequencing) can not detect this type of variation. Techniques are being developed

to detect large-scale epigenetic variants through dedicated technologies, and Epigenome-Wide

Association Studies (EWAS) are being conducted (Rakyan et al. 2011). Second, the observed

missing heriability can be due to the fact that genetic markers do not act independently but rather

exhibit epistasis : a phenomenon in which the effect of a genetic variant can either be masked

or increased by one or more other markers. Detecting epistasis from GWAS is fundamentally

difficult because of the large number of SNPs and relatively small number of samples. And

computationally speaking, researchers have to face the high-dimensionality issue, whereas the

search space of the problem grows exponentially with the number of involved markers. Third,

rare variants of large effect can also play an important part in common diseases. Studying them

requires sequencing genomic regions to identify those in which the aggregate frequency of rare

variants is higher in cases than controls (Huang et al. 2015, Consortium et al. 2015). Further-

more, given the background rate of rare variants (around 1% per gene), many thousands of

samples will be needed to achieve statistical significance. Although the inferred effect sizes are

larger, the overall contribution to the heritability may still be small due to their low frequency

(Lander 2011). Finally, a part of the missing heritability may be due to an underutilisation of

the large amount of GWAS data, and the incorporation of biological information on genotypic

data may help explaining a part of the missing phenotypic variance. Thus, the development of

methods in statistical genetics which take into account biological infomation is very important

in order to improve these studies and provide a proper interpretation of their findings. Moreover,
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the need to furnish software and algorithmic tools that allow to apply such methods and that are

adapted to the high-dimensionality of GWAS data, has become stronger.

The work carried out in the framework of this thesis emerged from the will to enhance the

power of statistical methods routinely used in GWAS by incorporating linkage disequilibrium

information in the marker selection model.

Single-marker tests have been widely used in GWAS for detecting marker associations (Burton

et al. 2007, Sham & Purcell 2014). This approach assumes that SNPs are independent of one

another, ignoring the important correlation structure due to LD, and remains then unsatisfactory

for many reasons. From a biological point of view, it is possible that the observed data only con-

tain SNPs that are in LD with causal ones since the causal marker may not be genotyped. From

a statistical perspective, the distinction between SNP-level and LD block-level associations is

related to an identifiability issue: assuming that causal SNPs are observed, is their association

to the phenotype strong enough so that they can be distinguished from indirect associations

between SNPs in strong LD with causal ones?

In this manuscript, we propose an approach of marker selection that explicitly takes into ac-

count the block structure induced by LD among the genetic data in order to detect groups of

SNPs that are associated with the phenotype. In a second contribution, the proposed method is

scaled to high-dimensional data by means of an optimized implementation of one of its steps.

This work is also accompanied by an important software development with the provision of the

implementation to the scientific community.

1.2 Manuscript overview

This manuscript is organized in four main chapters. Each chapter ends with a summary and

discussion of the results presented in that chapter.

The first introductory chapter starts with the presentation of statistical and genetic notions that

are necessary for the proper understanding of the remainder of the manuscript. After an initiation

to hypothesis testing and multivariate linear models, several genetic precepts around the genome

and genotypes are introduced. We then introduce the linkage disequilibrium, its most popular

measures and two approaches to estimate it. Finally, within the framework of Genome-wide
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association studies, the concepts of epidemiology of complex diseases, high-throughput geno-

typing and single-marker analyses are presented. This first chapter ends with an introduction to

haplotype association analyses.

The second chapter of this manuscript focuses on the issue of detecting linkage disequilibrium

blocks. To this end, many block partitioning approaches have been proposed that differ ac-

cording to wether they use haplotypes or pairwise LD measures for defining the blocks. We

first introduce and discuss these methods and then present a novel approach that we developed

during this PhD. More specifically, we propose to infer the linkage disequilibrium structure by

means of an adjacency-constrained hierarchical clustering according to the Ward’s criterion and

using LD similarity, followed by the Gap statistic model selection approach in order to estimate

the optimal number of blocks.

The third chapter is dedicated to an application of the LD block partitioning approach for vari-

able selection in Genome-wide association studies. In order to improve the power of these

studies by detecting associated markers which may have been missed by the single-marker

analysis, we propose to take advantage of the strong dependency structure between nearby

SNPs, induced by LD, and to explicitly look for sets of LD blocks jointly associated to the

phenotype of interest. To this end, we present the Blockwise Approach using Linkage Dise-

quilibrium (BALD) which consists in inferring the LD blocks using the two steps described in

the previous chapter and then identifying associated groups of SNPs using the Group Lasso

regression model. The efficiency of this approach is then investigated by comparing it to

state-of-the-art regression methods on simulated, semi-simulated and real data. The R pack-

age BALD used to apply this approach is available at the website of the laboratory http:

//www.math-evry.cnrs.fr/logiciels/bald.

The fourth chapter of this manuscript focuses on the issue of scaling the BALD approach, and

more particularly its adjacency-constrained hierarchical clustering step, to high-dimensional

GWAS data. We then propose an efficient implementation of such an algorithm in the gen-

eral context of any similarity measure, not necessarily the LD similarity. This implementation

requires a user-defined parameter h which controls the maximum lag between items for sim-

ilarity calculations, resulting in a h-band similarity matrix. By means of a simple expression

of the Ward’s criterion and the usage of a min-heap structure, we reduce the time and space

complexities of the adjacency-constrained hierarchical clustering algorithm. The interest of this

http://www.math-evry.cnrs.fr/logiciels/bald
http://www.math-evry.cnrs.fr/logiciels/bald
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novel implementation is illustrated in GWAS applications, where h is several orders of mag-

nitude smaller than the number of SNPs to be clustered.This improved implementation is also

integrated to the R package BALD.

Finally, the last chapter corresponds to a conclusion of this manuscript. This chapter summarizes

all the contributions made in the framework of this research work but also opens on different

scientific perspectives related to possible improvements in these contributions.



Chapter 2

Context

2.1 Statistical precepts

2.1.1 Hypothesis testing

2.1.1.1 Simple hypothesis testing

Faced with complex and random events, decision making is difficult and the tools of the hypoth-

esis testing theory are intended to guide the choice between different alternatives where there is

not necessarily a “good answer”. The decision always includes an error probability and the goal

is then to minimize the number of errors. In general, it is to decide whether observed differences

between an existing model and observations are real or can be considered to be due to mere

chance of sampling. Such a decision may often be translated according to a parameter of the

distribution of the observed data: the null hypothesis H0 consists in assuming that this value is

true and the alternative hypothesis H1 is generally the complementary of H0.

Formally speaking, a testing procedure follows a defined sequence of steps that consist in:

i. Stating a null hypothesis (H0) and an alternative hypothesis (H1);

ii. Calculating a random variable of decision, the test statistic (S), which corresponds to a

function of the observations. It measures a distance between what we observe and what we

expect under the null hypothesis. The greater this distance, the less likely the null hypothesis

H0;

6
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iii. Computing the statistical confidence measure called p-value which corresponds to the prob-

ability to obtain an observed statistic (Sobs) higher/lower (depending on the form of the null

hypothesis) than the obtained value if H0 were true.

iv. Draw conclusions in function of the value of the p-value. A small p-value indicates that

there is a significant difference between the observed statistic Sobs and the expected one

under the null hypothesis, which suggests that the null hypothesis does not accurately de-

scribe the observed data. The null hypothesis is therefore rejected. Conversely, a high

p-value means that the observation is not sufficiently inconsistent with the null hypothesis

for it to be rejected.

In practice, making the decision of accepting or rejectingH0 requires comparing its correspond-

ing p-value to a confidence threshold termed level of the test, usually noted α.

Given a null hypothesisH0, four outcomes are possible depending on wether the null hypothesis

is true or false and wether the statistical test rejects or not the null hypothesis. The challenge is

therefore to know how to take the right decision by controlling a given risk of being wrong.

More precisely, there are two ways of taking a wrong decision and therefore two types of risks:

the statistical test can reject H0 where H0 is true. This type of error is called type-I error and

the associated risk the type-I error rate is noted α. If the procedure does not reject H0 when H1

is true, then it commits a type-II error with an type-II error rate noted β. The true state and the

possible decisions of the procedure are summarized in Table 2.1.

H0 is not rejected H0 is rejected
H0 is true true negative ; (1− α) false positive ; type-I error rate (α)
H0 is false false negative ; type-II error rate (β) true positive ; power (1− β)

TABLE 2.1: Outcomes of a statistical test and associated risks.

Defined as above, the confidence threshold α corresponds to the false positive rate:

α = P{ the test rejects H0 while H0 is true }.

2.1.1.2 Multiple hypothesis testing

A multiple hypothesis problem occurs when several (m > 1) tests are carried out simultane-

ously. m null hypotheses H1
0 , H2

0 , . . . , Hm
0 are then considered at the same time.
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When m statistical tests are performed simultaneously, depending on wether each hypothesis

tested is true or false and the statistical test accepts or rejects the null hypothesis, each of the

m results will fall in one of the four outcomes defined in Table 2.1. The equivalent Table 2.2,

corresponding to the multiple testing procedure, indicates the actual number of false positives

(FP ) and false negatives (FN ) instead of their respectives rates (α and β).

H0 is not rejected H0 is rejected Total
H0 is true true negatives (TN ) false positives (FP ) m0 = TN + FP

H0 is false false negatives (FN ) true positives (TP ) m1 = FN + TP

Total mU = TN + FN mR = FP + TP m

TABLE 2.2: Outcomes of m statistical tests.

The risk of making a type-I error increases with the number of hypotheses tested. For instance, if

we consider a simultaneous hypothesis testing procedure of m = 10000 hypotheses, by choos-

ing α = 0.05 for each test, we expect 500 hypotheses to be rejected by simple chance. This

may not be acceptable when one wishes to highlight a phenomenon involving some hundreds of

variables. Consequently, it is necessary to consider alternative confidence measures instead of

the false-positive rate. More relevant measures (Shaffer 1995, Dudoit et al. 2003, Hochberg &

Tamhane 2009) such as the Family-Wise Error Rate and the False Discovery Rate were devel-

oped for this purpose.

Family-Wise Error Rate The first alternative confidence measure proposed to handle the

multiple-testing issue is the Family-Wise Error Rate (FWER) criterion. It is defined as the

probability of falsely rejecting at least one null hypothesis among the family of hypotheses

considered:

FWER = P(FP ≥ 1).

Thus, controlling the FWER at a given level corresponds to the control of the probability of

having at least one false positive.

Several procedures have been developed in order to control the FWER (Bonferroni 1936, Šidák

1967). The simplest and most widely used approach is to apply the Bonferroni procedure (Bon-

ferroni 1936) which accounts for the number m of tests performed. If we note pi the p-value

of a test i ∈ {1 . . . ,m}, then the p-value obtained by the Bonferroni procedure equals to
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pBonf
i = mpi. Therefore, controlling the FWER at a level of 5% requires to apply a thresh-

old of 5% to the new pBonf
i p-values corresponding to the product of each p-value with the

number of tests m. For example, to ensure that the FWER is not greater than 5% when per-

forming m = 1000 tests, each test is considered as significant only if its p-value is less than

0.05/1000 = 5× 10−5.

Dealing with the multiple-testing issue by controlling the FWER is simple and straightforward

using the Bonferroni procedure, which is valid for any dependence structure of the hypotheses

tested. However, the control of the FWER in itself is not ideal when the number of tests if

very large. It leads to too stringent adjusted p-values and therefore many missed findings while

preventing against any single false-positive.

False Discovery Rate In order to overcome the FWER limitations, Benjamini & Hochberg

(1995) introduced the False Discovery Rate (FDR). The FDR approach focuses on the expected

proportion of true null hypotheses that are falsely rejected. More formally, using the notations

of Table 2.2, the FDR is defined as:

FWER =

 0 if mR = 0

E
[

FP
FP+TP

]
= E

[
FP
mR

]
otherwise.

In order to control the FDR at a level α, the Benjamini-Hochberg procedure consists in first

listing the p-values in increasing order p(1) ≤ p(2),≤ · · · ≤ p(m). Then, the number i? of the

test verifying:

i? = max
i

(
p(i) ≤

i

m
α

)

is determined. If i? does not exist then no hypothesis is rejected. Otherwise, all the hypotheses

Hj
0 with pj ≤ pi? are rejected (see Figure 2.1). We can show that this procedure is equivalent

to applying the threshold α to the p-values pBH
i = m×pi

mRi
with mRi the number of tests with

p-values smaller than pi.

Finally, the Benjamini-Hochberg procedure controls the FDR only in families with indepen-

dent or positively dependent test statistics (Benjamini & Hochberg 1995, Benjamini & Yekutieli

2001).
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FIGURE 2.1: Application of Benjamini & Hochberg (1995) procedure for FDR control. The
ranked p-values were simulated from an example with 100 tests of which 6 were true alternative

hypotheses. The significance threshold α was set to 0.25.

2.1.2 Multivariate linear models in high-dimension

Finding out relationships between explanatory variables (or predictors) and observation (or re-

sponse) is a major issue in many fields. When dealing with increasingly large amounts of data,

we are often seeking to determine a small subset of variables that explain the observation and

that also allow to predict it. In this manuscript, we will be considering the specific case of a

linear combination between the variables and the response using the multivariate linear model.

2.1.2.1 The multivariate linear model

The multivariate linear model is defined as:

yi = β0 +

p∑
j=1

Xijβj + εi, i = 1, . . . , n.

where yi is the response to be explained by the vector of variables Xi. = (Xi1,Xi2, . . . ,Xip).

The scalar β0, called intercept, and the coefficients (βj)j=1,...,p are the parameters of the model
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to be estimated. The quantities εi are random variables and correspond to the residuals of the

model that we assume to be gaussian, that is εi ∼ N (0, σ2).

If we note y the vector of n observations of the response and add a column of 1 at the left of the

matrix X, then the multivariate linear model can be written as follows:

y = Xβ + ε,

where β = t(β0, β1, . . . , βp) is the vector of parameters to be estimated and ε the vector of

residuals that we assume independent and identically distributed.

The classical estimator of a linear model is the Ordinary Least Squares (OLS) estimator which

is defined as the vector minimizing the Residual Sum of Squares (RSS):

β̂
OLS

= arg min
β∈Rp+1

RSS(β), with RSS(β) =
1

2
‖Xβ − y‖22.

‖.‖2 denotes the Euclidean norm.

When tXX is invertible, the solution β̂
OLS

is unique and is called the Markov-Gauss estimator:

β̂
OLS

= (tXX)−1tXy.

It is an unbiased estimator of β with a covariance matrix verifying:

V ar(β̂
OLS

) = σ2(tXX)−1.

2.1.2.2 The high-dimensionality issue

The OLS estimator presented above remains unsatisfactory for many reasons such as:

• the accuracy of the estimate: the least squares estimator is unbiased but still has a sub-

stantial variance. Thus, the prediction accuracy can be improved by reducing some coef-

ficients and setting to zero others in order to reduce the variance of the predicted values.
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• the interpretation of the model: we often need to select a subset of explanatory variables

in order to highlight the most important effects on the response. In other words, the aim

is an estimator which is parsimonious, that is with many coefficients exactly equal to 0

and therefore a subset of non-zero coefficients that is small in comparison with the initial

number of variables p.

• this estimator is only defined when the number of variables p is less than the number of

observations n. Indeed, otherwise, the matrix tXX is at most of rank n and is therefore

not invertible.

This last argument is particularly relevant as it reflects an issue facing various research fields

nowadays: high-dimensional data. High-dimensional data are data where the number of vari-

ables p is greater or even much greater than the number of observations n. Since high-dimensional

problems remain insoluble with the classical analyses such as the OLS estimator, alternative

models, such as penalized regression models, have been proposed in order to deal with these

issues.

2.1.2.3 Penalized regression models for high-dimensional data

Penalization can be seen as integrating a prior knowledge of the solution through a regularization

term or penalty. One possible approach of penalization is to estimate the vector of parameters β

using the criterion:

β̂
pen

= arg min
β

‖Xβ − y‖22 + λ‖β‖, (2.1)

where ‖β‖ denotes a norm of β and λ a regularization (or penalization) parameter. The optimal

value of λ is that which minimizes the prediction error of the estimator β̂
pen

and can be estimated

using algorithms such as cross-validation (Arlot et al. 2010).

Several penalized regression models, differing by the norm considered, have been proposed.

Below are the most commonly used regularized linear models as well as their advantages and

drawbacks.

Ridge. When the explanatory variables are highly correlated, the tXX matrix involved in the

calculation of the least squares estimator has one or more of its eigenvalues close to 0. As
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a result, the β̂
OLS

coefficients are likely to take disproportionately high values. In order to

overcome this limitation, the Ridge regression model has been proposed:

β̂
Ridge

= arg min
β

‖Xβ − y‖22 + λ‖β‖22. (2.2)

The analytical solution of this equation leads to the expression:

β̂
Ridge

= (tXX + λIp)
−1tXy,

where Ip is the p × p identity matrix. The set of eigenvalues of tXX, including the smaller

ones that reflect the correlations, are therefore offset by λ. Imposing such a constraint to the

eigenvalues of tXX allows to control the magnitude of the Ridge’s coefficients, and then to

reduce the variance of the estimator, which can improve its prediction performance.

Lasso. As λ increases, the Ridge’s coefficients approach but do not equal zero. Hence, no

variable is ever excluded from the model. In contrast, the use of an `1-penalty does reduce

terms to zero. This yields the Lasso model. Introduced by Tibshirani (1996), the Least Absolute

Shrinkage and Selection Operator (Lasso) estimator is written as follows:

β̂
Lasso

= arg min
β

‖Xβ − y‖22 + λ‖β‖1, (2.3)

with ‖β‖1 =

p∑
j=0

|βj |.

The Lasso therefore uses a penalty on the `1-norm of the estimator’s coefficients. The λ param-

eter controls the sparsity of the model, so that if λ → ∞, no predictor is selected. And for a

relatively small value of λ, all the variables are included in the model, that is they all have a

non-zero coefficient.

To better understand the role of the penalization and the functioning of the Lasso approach, let

us consider the case n > p. And let us look more closely at the form of the Lasso estimator in

the simple case where the variables are independent, that is if the matrix X is orthogonal. In that

case, the OLS estimator is well defined and for j ∈ [1, p], the Lasso estimator is of the form:
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β̂Lasso
j = sign(βOLS

j )(|βOLS
j | − λ)+.

This equation shows that the coefficients βOLS
j of the least squares estimator are thresholded.

They are shrunk by a factor λ if they are greater than λ and zeroed otherwise. Again, this

example illustrates the role of the parameter λ which determines somehow the sparsity of the

model: the greater the value of λ, the more zero coefficients in the Lasso estimator.

Adaptive Lasso. Introduced by Zou (2006), the Adaptive Lasso is a weighted version of the

Lasso estimator defined as:

β̂
AdapL

= arg min
β

‖Xβ − y‖22 + λ

p∑
j=1

ŵj |βj |,

where

wj =
1

|β̃j |γ
,

γ > 0 and β̃j is an initial non-zero
√
n-consistent estimate for βj , that is it converges in prob-

ability to the true vector of parameters with a convergence rate of
√
n. If the initial estimator

β̃ is zero-consistent in the sense that, as the sample size increases, estimators of zero coeffi-

cients converge to zero in probability and estimators of non-zero coefficients do not converge to

zero, then the adaptive weights for the zero coefficients converge to infinity, while the adaptive

weights for the non-zero coefficients are bounded. The adaptive Lasso allows then to obtain

unbiased (in asymptotic sense) estimates for significant coefficients and, at the same time, re-

duce to zero the estimates of nuisance variables. In addition, the adaptive Lasso still allows

continuous subset selection property of the Lasso.

2.1.2.4 Penalized regression models for structured data (with unknown groups)

The Lasso and Adaptive Lasso models do not incorporate any information on correlation struc-

ture between the explanatory variables. More specifically, the Lasso model tends to select at

random only one variable in each group of correlated variables. In order to overcome this limi-

tation, other methods have been proposed.
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Elastic-Net. Zou & Hastie (2005) propose the Elastic-Net estimator:

β̂
EN

= arg min
β∈Rp

‖y −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22 (2.4)

where λ1 and λ2 are two regularization parameters. Like the Lasso, the Elastic-Net simultane-

ously performs automatic variable selection and continuous shrinkage. Unlike the Lasso, the

Elastic-Net includes a ridge (`2) penalty which tends to select groups of correlated variables. It

also allows selecting more than n explanatory variables, while Lasso does not.

Fused Lasso. In some data sets, explanatory variables can have a natural order and the use

of such information can help to better interpret regression results. To this end, the Fused Lasso

model has been introduced by Tibshirani et al. (2005). It is written as follows:

β̂
FusedL

= arg min
β∈Rp

‖y −Xβ‖22 + λ1‖β‖1 + λ2‖Dβ‖1, (2.5)

where

D : Rp → Rp−1

t(β1, β2, . . . , βp) 7→ t([β2 − β1], . . . , [βp − βp−1])

and λ1 and λ2 are two regularization parameters. Like the Elastic-Net estimator, the Fused

Lasso model differs from the Lasso regression model by its second penalty term which allows

to select the relevant variables even when they are highly correlated. Indeed, this fusion term

(Land & Friedman 1996) is designed to make successive coefficients as close as possible to each

other. Unlike the Elastic-Net estimator, the Fused Lasso model is more efficient in situations

where the explanatory variables have a natural ordered correlation structure (grouping structure)

between them. Indeed, the first penalty term encourages sparsity in the estimated coefficients;

while the second constraint term encourages sparsity in their differences leading to a flatness

of the coefficients profiles as a function of j. The theoretical results of (Rinaldo et al. 2009)

relative to this estimator confirm the importance of the “ordered” correlation structure of the

relevant variables. One difficulty in using the Fused Lasso is computational speed. As shown

in Tibshirani et al. (2005), speed becomes a practical limitation for problems with dimensions

p > 2000 and N > 200.
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Smooth-Lasso. Introduced by Hebiri (2008), the Smooth-Lasso estimator is inspired by the

Fused Lasso model :

β̂
SmoothL

= arg min
β∈Rp

‖y −Xβ‖22 + λ1‖β‖1 + λ2

p∑
j=2

(βj − βj−1)2, (2.6)

where λ1 and λ2 are two regularization parameters. Indeed, both Smooth-Lasso and Fused Lasso

combine a `1 penalty with a fusion term. The main difference between the two models is that the

Smooth-Lasso uses the `2 distance between successives coefficients whereas the Fused Lasso

uses the `1 distance between them. The strict convexity of the `2 distance allows the Smooth-

Lasso model an easier estimation of the regression coefficients leading to a large reduction of

computational cost. At the same time, the sparsity of the resulting model is still ensured by the

`1 penalty. In practice, Hebiri (2008) shows that when the explanatory variables have a natural

ordered correlation structure (grouping structure) between them, the Smooth-Lasso then offers

better performance selection than the Fused Lasso and Elastic-Net models. This is particularly

true for variables located within groups, in terms of indices. However, the performance of the

Smooth-Lasso is slightly degraded when selecting variables located at the borders of blocks.

2.1.2.5 Penalized regression models for structured data (with known groups)

Some kinds of data have a known correlation structure among the explanatory variables and in

some cases, it is appropriate to select or drop a group of correlated variables simultaneously. In

the remainder of this section, we will suppose the p predictors are divided intoG groups of sizes

p1, . . . , pG.

Group Lasso. Yuan & Lin (2005) propose the Group Lasso model to handle groups of pre-

dictors. The Group Lasso estimator may then be written as:

β̂
GL

= arg min
β∈Rp

‖y −Xβ‖22 + λ
G∑
g=1

√
pg‖βg‖2, (2.7)

where βg denotes the pg-dimensional vector of regression coefficients corresponding to the gth

group, so that tβ = (tβ
1
, . . . , tβ

G
).
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The properties of the `1-norm are used to identify relevant groups and discarding others, while

the `2-norm involves all the variables of a relevant group uniformly. Hence, by construction, the

Group Lasso coefficients within a group tend to be either all zero or all nonzero.

Smoothed Group Lasso. A generalized version of the Group Lasso regression model has

been introduced by Liu et al. (2013). The smoothed Group Lasso estimator is defined as :

β̂
SmoothedGL

= arg min
β∈Rp

‖y−Xβ‖22+λ1
G∑
g=1

√
pg‖βg‖2+

λ2
2

max
g=1,...,G

pg

G−1∑
g=1

ζg

(
βg
√
pg
− βg+1

√
pg+1

)2

,

(2.8)

where λ1 and λ2 are two regularization parameters and ζg is the canonical correlation (Johnson

& Wichern 2002) between two jth and (j + 1)th groups.

Similarly to the Group Lasso model, the first part of the Smoothed Group Lasso penalty allows

automatic group selection while ensuring sparsity thanks to the `1 penalty. The second penalty

term allows to take into account possible correlations between adjacent groups. Indeed, when

ζg = 0 for all g ∈ [1, . . . , G], then this penalty reduces to zero and the Smoothed Group Lasso

estimator is equivalent to the Group Lasso model. Conversely, when there is ζg > 0, then the

two adjacent groups g and g + 1 are correlated and the smoothed Group Lasso tends to shrink

the corresponding regression coefficients similarly.

Sparse Group Lasso. In some cases, sparsity of groups and within each group are required.

Toward this end, the Sparse Group Lasso model has been introduced (Simon et al. 2013). It is

defined as:

β̂
SparseGL

= arg min
β∈Rp

‖y −Xβ‖22 + λ1‖β‖1 + λ2

G∑
g=1

√
pg‖βg‖2, (2.9)

The Sparse Group Lasso model combines then the two `1 and `2 penalties in order to enable

bi-level selection. Indeed, variable selection is carried out at the group level and at the level

of individual covariates, resulting in the selection of relevant groups as well as variables within

these groups.

To sum up, it has been demonstrated that extending the simple sparsity model to considering

more sophisticated structured sparsity models, which describe the interdependency between the

explanatory variables, increases the interpretability of the results and leads to better prediction
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and estimation performance when the prior knowledge matches data (Stojnic et al. 2009, Je-

natton et al. 2009, Huang et al. 2011). Moreover, the structured sparsity regression models

presented above have been extended to more general settings to encode prior knowledge on var-

ious sparsity patterns, where the key idea is to allow the groups to have an overlap. For instance,

the hierarchical selection method of Zhao et al. (2006) assumed that the input variables form a

tree structure, and designed groups so that the child nodes enter the set of relevant inputs only

if its parent node does. Situations with arbitrary overlapping groups (Jenatton et al. 2011) and

prior graph structure (Jacob et al. 2009) have also been studied.

Such sparse regularization models, capable of encoding sophisticated prior knowledge are used

in a wide variety of applications in scientific fields such as neuroimaging (Gramfort & Kowalski

2009), face recognition (Bach et al. 2012) or bioinformatics (Rapaport et al. 2008).

2.2 Genetic precepts

2.2.1 Genome and genetic diversity

The cell is the structural, functional and reproductive unit of all living beings (except for viruses).

Inside eukaryotic cells, the nucleus is the seat of a genetic heritage, the genome. The genome

influences the development of the living beings and their characteristics, also called traits or

phenotypes. For instance, external phenotypes include the size of an individual or the color of

his eyes and a physiological trait can be his blood pressure.

The genome consists of one or more elements called chromosomes. The number of chromo-

somes differs from one species to another. For example, bacteria have only one chromosome

while the human genome accounts 46 of them: 22 pairs of autosomes, and 2 sexual chromo-

somes. More specifically, each human being inherits one autosome from his father and the other

autosome from his mother. A chromosome is an oriented sequence of 4 different molecules

called nucleotides that are Adenine (A), Thymine (T), Cytosine (C) and Guanine (G). Such

sequence of nucleotides constitutes the Desoxyribo Nucleic Acid or DNA (see Figure 2.2). Ac-

cording to a now fully deciphered code, some DNA sequences of letters allow the cell producing

molecules participating in all mechanisms of life (breathing, eating...) : proteines. Such a DNA

sequence that codes for a protein is called a gene.
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FIGURE 2.2: From the chromosome to the DNA. This figure is the property of Diaphragmatic
Hernia Research and Exploration; Advancing Molecular Science

The size of the human genome is about 3.2 billion base pairs. As part of the Human Genome

Project, its complete sequencing revealed a number of genes between 20000 and 25000, which

represents about 5% of the genome. The remaining 95% contains a large amount of DNA whose

function is not fully understood yet.

Genetic diversity within a population is mainly due to two types of events: mutation and recom-

bination.

Mutation

A mutation is a random and spontaneous change in the sequence of the DNA which may affect

one or more nucleotides. It can for instance correspond to a deletion of a base or the insertion

of a novel base in a sequence (left panel of Figure 2.3). Depending on the affected base, this

mutation can be “silent”, that is with no effect on the resulting protein, or conversely have a

positive or negative effect on the corresponding protein and therefore on the individual.

Moreover, the mutations allow the genetic analysis: the variability introduced by those mutations

allows geneticists to identify and locate genetic factors involved in genetic diseases. Thus,

mutations such as those occurring at a single nucleotide (also termed SNP for Single Nucleotide

Polymorphism), can serve as “genetic markers”. This aspect will be detailed in a following

section.
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FIGURE 2.3: Schematics of mutation and recombination phenomena.

Recombination

Another source of genetic diversity is the phenomenon of recombination. Recombination takes

place during the formation of gametes1: the meiosis. The right panel of Figure 2.3 illustrates

the recombination between two homologous chromosomes. Suppose that one member of the

chromosome pair is painted black and the other member is painted white. Instead of inheriting

an all-black or an all-white parental chromosome, the offspring inherits a chromosome that

alternates between black and white. The point of exchange is called crossover.

2.2.2 Genotype and haplotype

FIGURE 2.4: Haplotype phasing from genotype.

In general, a string of consecutive alleles lying on the same chromosome constitutes a haplotype.

The alleles appearing in the haplotype are said to be in phase. In humans, for a given locus, one
1cells involved in reproduction
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allele is inherited from the mother and the other allele is passed down from the father. The com-

bination of two such alleles constitute a genotype. In order to illustrate the difference between

haplotype and genotype we will consider the following example presented in Figure 2.4. This

schematics shows 3 loci distributed in a chromosome. The observation of the genotypes Aa, Bb

and CC does not provide knowledge on the phase of these genotypes. In other words, a step of

haplotype inference is necessary in order to distinguish between the two possible combinations

of haplotype pairs: (ABC, abC) or (AbC, aBC).

FIGURE 2.5: Two ancestral chromosomes being reshuffled through recombination over many
generations to yield different descendant chromosomes.

Copyright http://www.hapmap.org/

Figure 2.5 shows how, over generations, new haplotypes appear from ancestral haplotypes

through mutations in DNA sequences and recombination between them. If a mutation A is

present on the ancestral haplotype 1 (red) and absent from the ancestral haplotype 2 (blue), then

some of the offsprings who have inherited that part of the ancestral chromosome will carry the

mutation. Furthermore, individuals with this mutation A have a high chance that the neigh-

boring region of A is identical to that corresponding to the ancestral chromosome 1. This is

explained by the fact that the probability that recombination events have occurred between the
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mutation and the neighborhood is very low. This observation illustrates the phenomenon of link-

age disequilibrium between close loci that are jointly transmitted over generations. This aspect

is described in more detail in Section 2.3.

2.2.3 Hardy-Weinberg equilibrium

The Hardy-Weinberg Equilibrium (HWE) law (Hardy 1908, Weinberg 1908) concerns the re-

lationship between allele frequencies and genotype frequencies in a population under certain

assumptions. Let us consider a locus with the two alleles A and a with frequencies pA and pa

respectively. The HWE law states that the frequencies of the genotypes AA, Aa and aa equal

to p2A, 2pApa and p2a respectively and the allele and genotype frequencies are constant over gen-

erations. The necessary assumptions to reach this equilibrium are (i) infinite population size,

(ii) random mating process and finally (iii) no natural selection, no mutations and no population

migration.

In real life, one or more of these assumptions can be violated, and a deviation from the Hardy-

Weinberg proportions can then be observed. Several statistical tests of the HWE consisting

in comparing the observed and expected genotype proportions have been proposed (Weir &

Cockerham 1996, Guo & Thompson 1992).

2.3 Linkage Disequilibrium

2.3.1 Definition

Linkage disequilibrium (LD) describes a dependence relationship between two alleles at two dif-

ferent loci. We say that two loci are in linkage disequilibrium if the probability of observing this

particular combination of alleles (or haplotype) does not equal the product of the probabilities

of observing each allele individually. As cited in Ardlie et al. (2002), many factors can increase

or decrease the LD. The most important factor is the genetic recombination which separates two

loci on the same chromosome and therefore breaks the statistical dependance between them.

Other factors can influence the LD such as the population structure or the natural selection.
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2.3.2 Pairwise measures of LD

A number of measures for the strength of LD have been proposed. They can be broadly differ-

entiated by their ability to consider exactly two loci or more than two loci at a time. There is a

vast amount of literature on the topic of LD measures (Lewontin 1988, Devlin & Risch 1995,

Jorde 2000, Agapow & Burt 2001, Rinaldo et al. 2005). However, the most commonly used

measures are limited to LD between two loci.

To formally introduce pairwise LD measures, let consider the distribution of alleles for n indi-

viduals across two bi-allelic loci 1 and 2 with the possible alleles a/A and b/B respectively. Let

us first assume that 1 and 2 are independent of one another. That is, the presence of an allele

at locus 1 does not influence the presence of a particular allele at locus 2. Furthermore, let pa,

pA, pb and pB denote the population frequencies for a, A, b and B alleles respectively. Since

each individual carries two homologous chromosomes, there are in total N = 2n observations

across the n individuals of our sample. The expected distribution of alleles under independence

between loci 1 and 2 are given in Table 2.3.

Locus 2
B b

Locus 1 A nAB = NpApB nAb = NpApb nA. = NpA
a naB = NpapB nab = Npapb na. = Npa

n.B = NpB n.b = Npb N = 2n

TABLE 2.3: Expected allele distribution under independence of the loci 1 and 2.

If now the loci 1 and 2 are in fact dependent, then the observed counts will deviate from the

numbers in Table 2.3. The amount of such deviation is represented by the scalar D in Table 2.4.

Locus 2
B b

Locus 1 A nAB = N(pApB +D) nAb = N(pApb −D) nA.
a naB = N(papB −D) nab = N(papb +D) na.

n.B n.b N = 2n

TABLE 2.4: Allele distribution under LD.

D is one of the earliest measures of linkage disequilibrium to have been proposed. It quantifies

the difference between the observed frequencies of a two-loci haplotype and the expected fre-

quencies if the alleles were sampled at random. According to Table 2.4, D can also be written

as follows:

D = pAB − pApB = pab − papb.
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Hence, the greater the value of D, the more the loci are in linkage disequilibrium. Nevertheless,

the range of D si highly dependent on the specific values of the allele frequencies, which makes

difficult the comparison of LD among many pairs of markers with diverse frequencies. For this

reason, several other measures have been advised and the two most common measures are D′

and r2.

Introduced by Lewontin (1964), D′ is a normalized form of D:

D′ = D
Dmax

with

Dmax =

 min(pApb; papB) if D > 0

min(papb; pApB) if D < 0.

D′ takes its values between −1 and 1 and its principal usage is in characterizing historical

patterns of recombination. A value of D′ = 1 indicates a complete LD, that is an absence of

recombination event. In this case, at most three out of the four possible two-loci haplotypes are

observed in the sample.

The r2 coefficient (Hill & Robertson 1968) is determined by dividing the square of D by the

product of the four allele frequencies:

r2 =
D2

papApbpB
.

Whereas many historical mutations in a recombination-free region have D′ = 1, both mutation

history and recombination drive r2 = 1.

To better understand the interest of the r2 measure, let us introduce the two random variables X

and Y relative to the loci 1 and 2. X will be defined as the indicator variable of the A-carrying

event and Y the indicator variable of the B-carrying event. Consequently, both X and Y follow

a Bernoulli distribution of parameters respectively pA and pB . Knowing that the expected value

of a Bernoulli random variable of parameter p is p and its variance equals to p(1−p), the squared

correlation between X and Y can be written as follows:
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Corr2(X,Y ) =
Cov2(X,Y )

Var(X)Var(Y )

=
(E[XY ]− E[X]E[Y ])2

Var(X)Var(Y )

=
(pAB − pApB)2

pA(1− pA)pB(1− pB)

=
D2

papApbpB

= r2.

Therefore, the LD measure r2 between two loci corresponds to the correlation between the

indicators of the presence of the major allele (or minor allele) at these two loci. Its values are

then between 0 and 1. A r2 of 1, called perfect LD, indicates that the two loci have not been

separated by recombination and have the same allele frequency. In this case, exactly two out

of the four possible haplotypes are observed in the sample and the two loci provide the same

information. A r2 of 0 indicates a perfect equilibrium between the two loci.

D′ is mainly used in linkage studies which focus on the transmission issue. Conversely, in

association studies, r2 is favored as there is a direct relationship between power to detect a

causal variant and the r2 measures between the causal and genotyped variants (Pritchard &

Przeworski 2001, Kruglyak 1999). The notions of linkage studies and association studies will

be presented in Section 2.4.

2.3.3 Estimating LD

In practice, in population-based investigations, the counts in the contingency Table 2.4 are not

observed. Only genotype counts as in Table 2.5 are known. Two main approaches have then

been developed to infer the haplotype frequencies paa, pAa, pbb and pBb from unphased genotype

data to be able to assess the amount of LD between the two loci.

Locus 2
BB Bb bb

Locus 1
AA n1 n2 n3
Aa n4 n5 n6
aa n7 n8 n9

TABLE 2.5: Genotype counts for 2 bi-allelic loci.
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An estimation of the amount of LD between two loci has been proposed by Clayton & Leung

(2007). The approach consists in inferring the haplotype counts nAA, nAa, nBB and nBb from

the genotype contingency Table 2.5. In particular, by assuming Hardy-Weinberg equilibrium in

the population, we notice that the pair of haplotypes of each genotype configuration in Table

2.5 can be inferred except for the double heterozygote: Aa in locus 1 and Bb in locus 2. For

example, the only possible pair of haplotypes for the n1 individuals with genotypes aa and bb

is (ab, ab). Conversely, for the n5 individuals carrying the genotypes aA and bB, two pairs

of haplotypes are plausible: (ab,AB) or (aB,Ab). Therefore, if we note p the proportion of

the doubly heterozygous subjects to carry the haplotypes (ab,AB) and thus (1 − p) to carry

(aB,Ab), four relationships between the genotype counts and the haplotype counts can be de-

duced:



nAB = 2n1 + n2 + n4 + pn5

nAb = 2n3 + n2 + n6 + (1− p)n5

naB = 2n7 + n8 + n4 + (1− p)n5

nab = 2n9 + n8 + n6 + pn5.

(2.10)

By adding the two equalities


pnaBnAb = (1− p)nABnab

nAB + nAb + naB + nab = 2n,

(2.11)

this leads to a cubic equation in p:

p(n2 + 2n3 + n5 − pn5 + n6)(n4 + n5 − pn5 + 2n7 + n8)

−(1− p)(2n1 + n2 + n4 + pn5)(2n9 + n8 + n6 + pn5) = 0.
(2.12)

Equation 2.12 has either one or three real solutions between 0 and 1 because it changes of sign

between p = 0 and p = 1. Nevertheless, as discussed in Gaunt et al. (2007), simulations suggest

that obtaining more than one biologically possible solution to the cubic equation occurs when

small sample size, sampling errors or non-random mating result in a distortion of sample HWE.

Otherwise, under perfect sample HWE, the cubic equation assumes a single real solution. Once
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this unique value of p assessed, the genotype frequencies and then the haplotype proportions

involved in the expression of the LD can be calculated using the system 2.10.

In the same spirit of this approach, a maximum likelihood method can be adopted for estimating

the LD between a pair of loci. More particularly, let p1, . . . , p9 be the genotype frequencies

corresponding to the n1, . . . n9 genotype counts. Therefore, the vector (n1, . . . , n9) follows a

multinomial distribution of parameters (p1, . . . , p9)

f(n1, . . . , n9|p1, . . . , p9) =
n!

n1! . . . n9!
pn1
1 . . . , pn9

9 ,

and the multinomial likelihood would be written:

L((pAB, pAb, paB, pab)|n1, . . . , n9) =
9∏
j=1

p
nj

j .

Locus 2
BB Bb bb

Locus 1
AA p1 = p2AB p2 = 2pABpAb p3 = p2Ab
Aa p4 = 2pABpaB p5 = 2pABpab + 2pAbpaB p6 = 2pAbpab
aa p7 = p2aB p8 = 2paBpab p9 = p2ab

TABLE 2.6: Relationships between genotype and haplotype frequencies.

Therefore, by exploiting the relationships between the genotype and haplotype frequencies in

Table 2.6, the log-likelihood would then give:

log(L) = 2n1 log(pAB) + n2 log(2pABpAb) + 2n3 log(pAb) + n4 log(2pABpaB)

+n5 log(2pABpab + 2pAbpaB)

+n6 log(2pAbpab) + 2n7 log(paB) + n8 log(2paBpab) + 2n9 log(pab).

Given that the solution must verify pAB + pAb + paB + pab = 1, we seek to maximize under

constraint the following quantity:

log(L)− λ
(

4∑
k=1

pk − 1

)
. (2.13)

Setting to zero the four partial derivatives of the expression 2.13 leads to the following equations:
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

2n1 + n2 + n4
pAB

+
n5pab

pABpab + pAbpaB
= λ, (2.14a)

2n3 + n2 + n6
pAb

+
n5paB

pABpab + pAbpaB
= λ, (2.14b)

2n7 + n4 + n8
paB

+
n5pAb

pABpab + pAbpaB
= λ, (2.14c)

2n9 + n6 + n8
pab

+
n5pAB

pABpab + pAbpaB
= λ, (2.14d)

pAB + pAb + paB + pab = 1. (2.14e)

On one hand, we can easily deduce the value of λ by summing the first four equations:

λ = 2
9∑
i=1

ni = 2n

On the other hand, we have:



pAB + pAb + paB + pab = 1,

pAB + pAb = 2(n1+n2+n3)+n4+n5+n6

2n , (pAB2.14a+ pAb2.14b)

pAB + paB = 2(n1+n4+n7)+n2+n5+n8

2n , (pAB2.14a+ paB2.14c)

paB + pab = 2(n7+n8+n9)+n4+n5+n6

2n , (paB2.14c+ pab2.14d)

pAb + pab = 2(n3+n6+n9)+n2+n5+n8

2n , (pAb2.14b+ pab2.14d).

(2.15)

Also, we can write the quantities pAb, paB and pab as functions of pAB , pA. and pB.:

pAb = pA. − pAB (2.16)

paB = pB. − pAB (2.17)

pab = 1− (pAB + pAb + paB) (2.18)

= 1 + pAB − pA. − pB..
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Finally, by writing that pA. = 2(n1+n2+n3)+n3+n4+n5

2n and pB. = 2(n1+n4+n7)+n2+n5+n8

2n , then

the only missing estimation is pAB to assess the LD. Thus, by using Equation 2.14a, we get:

α1(pABpab + pAbpaB) + n5pABpab − λpAB(pABpab + pAbpaB) = 0

(α1 − λpAB)(pABpab + pAbpaB) + n5pABpab = 0,

with α1 = 2n1 + n2 + n4.

We have then a cubic equation in pAB:

−2λp3AB + (2α1 + n5 − λ+ 2λ(pA. + pB.)) p
2
AB

+ (−λpA.pB. + α1 − (pA. + pB.)(2α1 + n5)) pAB + α1pA.pB. = 0
(2.19)

The relationships 2.16, 2.17 and 2.18 allow to assess the value of the LD.

In practice, the use of these two methods to assess the pairwise LD among a string of consecutive

loci can be fastidious as the number of haplotype frequencies to estimate becomes important.

Therefore, several haplotype reconstruction methods based on the expectation-maximization al-

gorithm (Dempster et al. 1977, Excoffier & Slatkin 1995, Lou et al. 2003) or on Hidden Markov

Models (HMM) (Stephens & Donnelly 2003, Delaneau et al. 2008) have been developed in or-

der to estimate these haplotype frequencies and therefore assess the LD measures introduced

above.

Ultimately, through characterizing regions of high LD, it was observed that the recombination

points in the human genome did not appear random, but rather seemed to cluster in specific re-

gions, subsequently creating a block-like structure on the genome (Gabriel et al. 2002). Several

methods have been proposed to determine the boundaries of such LD blocks or haplotype blocks.

Such methods will be reviewed in detail in the next chapter.

2.4 Genome-wide association studies

2.4.1 Epidemiology of complex diseases

Last et al. (2001) defines Epidemiology as “the study of the distribution and determinants of
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health-related states and events in populations”. This science aims at understanding and con-

trolling diseases, identifying therapeutic targets and defining public health policies.

Genetic Epidemiology combines Epidemiology and Genetics. It corresponds to the study of the

role of genetic factors in determining health and disease in families and in populations, and the

interaction of such genetic factors with environmental factors. A formal definition of Genetic

Epidemiology was proposed by Morton (1982): “a science which deals with the etiology, dis-

tribution and control of disease in groups of relatives and with inherited causes of disease in

populations.”

Different designs of genetic studies exist and can be classified according to the question they

aim to answer :

• Familial aggregation studies: is there a genetic component to the disease? What is the

relative contribution of the environment compared to genes?

• Segregation studies: seek to more precisely identify the factors responsible for familial

aggregation. Is the aggregation due to environmental, cultural or genetic factors?

• Linkage studies: on which part of the genome is the disease gene located?

• Association studies: which allele(s) of which gene(s) is associated with the disease? We

refer to such alleles as susceptibility alleles, disease susceptibility loci (DSL) or causal

loci.

Genetic diseases can have two types of etiologies (or causes): monogenic (also called single-

gene) or multifactorial (also called complex). Monogenic diseases result from modifications in

a single gene in the organism while complex diseases are caused by a combination of genetic,

environmental, and lifestyle factors. The vast majority of diseases fall into this category and their

study is a lot more complex due to the nature and the interplay between the factors concerned.

Examples of such diseases are Alzheimer’s disease, Type-1-Diabetes, Asthma, cancers, heart

diseases or autoimmune diseases.

Supported by the accumulation of a large amount of data, made possible by recent technological

development in the field of genotyping, Genetic Epidemiology met all the means necessary for

the elucidation of the genetic mechanisms of major multifactorial diseases.
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2.4.2 High-throughput genotyping

Advances in molecular biology over the last decade, and the development of novel technologies

to manipulate DNA have allowed the availability of whole genome sequences. And the advent

of rapid DNA sequencing methods, such as the Next-Generation Sequencing (NGS) technology

(Check Hayden 2009), has greatly accelerated biological and medical research. Indeed, infor-

mation obtained using sequencing allow researchers to identify changes in genes, associations

with diseases and phenotypes, and identify potential drug targets.

Within the framework of this thesis, we have rather worked on genotype data which hold in-

formation about several types of genetic markers based on the variation of the DNA sequence.

Examples of such markers are the Short Tandem Repeats (STR or microsatellites), Indels or

Single Nucleotide Polymorphisms (SNPs). Furthermore,

A Single Nucleotide Polymorphism corresponds to the variation of a single base pair in the DNA

sequence within a population. Most SNPs are bi-allelic, that is they involve two possible alleles.

Their frequency throughout the genome and simplicity to characterize experimentally make the

SNPs the markers of choice for investigators to establish a dense and precise mapping of the

genome. To date, more than 160 million of SNPs have been identified (according to 2dbSNP

database) and they represent more than 90% of the known human genetic diversity (Kruglyak &

Nickerson 2001). A SNP is characterized by its chromosomal location, its alleles and its Minor

Allele Frequency (MAF). The minor allele refers to the less common allele in a population (with

frequency less than 0.5).

When we seek to discover new biological mechanisms, it is important to start without genetic

hypothesis a priori on the studied traits. Advances in biochemistry allowed to cross this barrier

and genotype (that is characterize the genotype of a subject) the entire genome through geno-

typing chips. There are mainly two technologies currently providing genotyping microarrays

based on different approaches in selecting SNPs: Illumina and Affymetrix. These two technolo-

gies combine two different approaches of marker selection: (i) random selection and (ii) tagSNP

selection.

The random selection is usually used when no prior information is available about the disease

and the potential regions of the genome that could intervene in its mechanism. Such selection
2See Section A.1
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approach is nowadays possible on a large amount of markers with the development of high-

throughput genotyping technologies.

Conversely, a tagSNP selection is based on a certain type of SNPs. We have seen in Section 2.3

that the human genome is divided into LD blocks. A tagSNP is a SNP among a LD block that

captures the entirety of the genetic variability of this block by itself. Using the terminology in

Ding & Kullo (2007), there are two ways for choosing the optimal minimum subset of represen-

tative SNPs from a set of SNPs: the tagging SNPs method (tSNPs) and the haplotype tagging

SNPs approach (htSNPs). htSNPs are selected based on the haplotype-block model of LD pat-

tern in a region of interest and represent the common haplotypes inferred from the original set of

SNPs (Johnson et al. 2001, Patil et al. 2001, Zhang et al. 2002, 2003). For example, Patil et al.

(2001) proposed a computational framework with the aim to minimize the number of htSNPs

required to distinguish all common haplotypes within each block. On the other hand, tSNPs

are selected based on pairwise LD measures, such that a tSNP predicts partially or completely

the state of other SNPs (Weale et al. 2003, Halldorsson et al. 2004, Carlson et al. 2004). For in-

stance, Carlson et al. (2004) evaluates the r2 measures between all the markers and forms “bins”

of SNPs, each of which has an r2 greater than a user-defined threshold (r2 > 0.8 is proposed by

the authors) with one or more SNPs within that bin. Within each bin, tSNPs are SNPs which are

in linkage disequilibrium with all the other SNPs with more than the specified threshold of r2.

In practice, with both the random and tagSNP selection strategies, the causal locus can be missed

(not genotyped) and the genotyped SNPs that are in linkage disequilibrium with the disease

susceptibility locus are then in an indirect association with the disease (see Figure 2.6).

FIGURE 2.6: a) Direct association disease-observed marker. b) Indirect association disease-
observed marker.

The work carried out in this thesis falls within the framework of association studies and more

particularly those on mapping the complete genome, that is the genome-wide methods. Genome-

wide Association Studies (GWAS) aim to identify genetic markers that are associated with a
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(qualitative or quantitative) phenotype of interest in a given population, by comparing the DNA

of unrelated individuals within that population. GWAS are usually conducted on SNP markers.

In the case of a qualitative phenotype as a disease status, a sample of unrelated normal indi-

viduals (called controls) and unrelated individuals suffering from the disease (called cases) are

genotyped. GWAS assume that the discovery of disease susceptibility loci can be achieved by

comparing allele frequencies of the SNPs between cases and controls. When the allele of a SNP

is significantly more frequent in cases than in controls, then it can be deduced that this allele is

(directly or indirectly) associated with the disease. Unlike gene-candidate studies that target a

set of potential genes (Tabor et al. 2002), the GWAS approach is a non-directed and exploratory

strategy that investigates much of the hole genome without any a priori on the location of the

causal loci.

Selecting individuals participating to a GWA study that form a homogeneous cohort is very

important to avoid biased findings. More particularly, in a case-control design, the two groups

of individuals should be comparable. To this end, samples are included in a study according

to certain characteristics such as gender, age or ethnicity. Equivalently, certain features of the

markers have to be investigated in order to determine which SNPs can reasonably be included in

the GWA study without leading to incoherent results. These verifications include, for example,

the amount of missing data or the minor allele frequency for each marker. In this manuscript,

we will focus on common variants (with MAF> 5%). This choice will be discussed in the

conclusion section.

To date, thousands of GWA studies have been conducted in over 80 diseases and traits. A

continuously updated online catalog of the published studies is available at http://www.

genome.gov/gwastudies/ (Welter et al. 2014).

The standard analytical model and most widely used in GWAS is the single-marker analysis.

2.4.3 Single-marker analyses

In association studies, the single-locus, also called single-marker approach (SMA) consists in

analyzing individually the association of each marker to the phenotypic trait studied.

Given a genotype (or design) matrix X, when the phenotype studied is quantitative, for each

marker X.j , we fit a single-predictor equation y = β0 + βjX·j + ε. The significance of the

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
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estimated parameter βj is assessed by assuming that the errors are normally distributed, and then

deriving a p-value from a t-test against an intercept-only model:

H0 = {βj = 0}.

As a matter of fact, applying such a linear regression model requires making assumptions about

the genetic model, that is the mode of inheritance of the trait. The encoding of the genotype

matrix X will depend on the genetic model assumed.

The classical genetic models are the following:

• additive model: the relative risk of carrying two copies of the risk allele is the square of

the risk of carrying one copy, since “additive” refers to the log-scale.

• dominant model: the risk of carrying two copies of the risk allele is the same as carrying

one copy.

• recessive model: there is no increased risk associated with carrying one copy of the risk

allele, but there is an increased risk associated with carrying two copies.

When dealing with SNP genotypes AA/Aa/aa, these shall then be coded in 0/1/2, 0/1/1 or

0/0/1 according to wether the genetic model is assumed to be additive, dominant or recessive

respectively.

The mode of inheritance of the trait studied is generally unknown. The additive model is the

most commonly used to code the genotype matrix in GWAS.

Alternatively, when dealing with case-control studies, that is a disease status phenotype, the

association analysis of a SNP of interest can be carried out using a Pearson χ2 test of the status-

by-genotype (2 × 3 table) frequencies. As with any χ2 test based on a contingency table, all

cells ought to have an expected value > 5. However, for rare or highly polymorphic loci (e.g.

microsatellites), the probability of empty or poorly filled cells increases with the dimensions

of the table. In practice, rows or columns of the contingency table can be merged in order to

meet the requirements for the χ2 test. Alternatively, computationally intensive methods may be

considered such as parametric bootstrapping, or permutation testing such as Fisher’s exact test.

An alternative to the use of the χ2 test is to assess the association of a marker of interest with a

qualitative trait using the logistic regression model. By analogy to ordinary linear regression, in
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linear logistic regression the probability pi = P(yi = 1) of case i given the predictor vector X·j

is written as:

pi =
eβ0+βjX·j

1 + eβ0+βjX·j
,

or equivalently:

logit(pi) = log(
pi

1− pi
) = β0 + βjX·j .

The β0 and βj parameters can be estimated using a maximum likelihood method. The Wald

statistic:

Z =
β̂√

V ar(β̂)

can then be used to assess the significance of the regression coefficient estimated by the logistic

model. Z follows a standard normal distributionN (0, 1) under the null hypothesisH0 = {βj =

0}.

AA aA/Aa aa Total
Case D0 D1 D2 nD

Control H0 H1 H2 nH
Total nAA naA + nAa naa n

TABLE 2.7: Genotypic table representing the number of individuals for each genotype config-
uration and each disease status.

One particular case of the logistic regression model is the Armitage trend test (Cochran 1954,

Armitage 1955) which assumes the genotype variable X·j coded in 0, 1 or 2. This test aims to

find a linear trend between the probability of having the disease and the genotypes. The order

of genotypes assumes that there is a quantitative effect depending on the number of reference

allele in the genotype. Using the notations in Table 2.7, the Cochran-Armitage null hypothesis

is:

H0 : {pD0

p0
=
pD1

p1
=
pD2

p2
},
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where pi is the proportion of individuals with genotype i. According to Sasieni (1997), the test

statistic can be expressed as:

ST =
n[n(D1 + 2D2)− nD(naA + nAa + 2nAA)]2

NDNH [n(naA + nAa + 4naa)− (naA + nAa + 2naa)2]

This statistic follows a χ2 distribution with 1 degree of freedom under the null hypothesis.

2.4.4 Haplotype association analyses

Overall, single-locus tests of association are fast, efficient and reliable. They are easy to imple-

ment whether the trait is categorical or continuous. Nevertheless, from a biological viewpoint,

there is evidence that specific combinations of mutations may have a greater effect on pheno-

typic variation than any one of the individual causal variants alone. For this reason, multivariate

linear models (see Section 2.1.2) have been applied to GWAS by considering SNPs as explana-

tory variables and the disease of interest as the response. Moreover, the block-like structure

of common human genetic variation, due to linkage disequilibrium, is one of the key factors

motivating the use of haplotypes to identify sets of loci that are associated with complex traits.

Haplotypes play also an important role in the design and implementation of genetic studies of

complex diseases. Indeed, haplotypes can be used as variables of interest for detecting asso-

ciations between a chromosomal region and a complex trait. When phased haplotype data are

available, the goal of the haplotype analysis is to evaluate the relationship between a haplotype

H and a vector of phenotypes Y, adjusting for potential covariate effect E, using a generalized-

linear-model (GLM) regression framework (McCullagh et al. 1989). More precisely, the GLM

framework relates the mean µ = E[Y|H,E] to H and E as follows:

g(µ) = α+ XHβ + XEγ.

Here, XH denotes a design vector that models the effects of a subject’s haplotype pair H on

µ and β is the related vector of regression coefficients. Likewise, XE denotes a design vector

for modeling the subject’s environmental effects with respective coefficient vector γ. Finally, α

is a scalar intercept parameter. The form of the link function g depends on the distribution of

the phenotype Y. For a normally distributed outcome, the identity link g(µ) = µ is typically
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used, leading to a multiple linear regression. For a binary phenotype, we use the logistic link

g(µ) = log[µ/(1− µ)], corresponding to a logistic regression analysis.

The form of the haplotype design vector XH must be specified prior to the haplotype analysis.

As an example, suppose we were interested in assessing the effects of the haplotype h? and

define I(A) as the indicator function that takes the value 1 or 0 depending on whether the

event A is true or false, respectively. Then, for a subject with H = (hk, hk′), one can model

a recessive effect for h? using XH = I(hk = hk′ = h?), a dominant effect for h? using

XH = I(hk = h?) + I(hk′ = h?) − I(hk = hk′ = h?), or an additive effect for h? using

XH = I(hk = h?) + I(hk′ = h?). The regression coefficient β related to a specific h? is

then estimated and haplotype-phenotype association can be conducted using tests of the form

H0 : β = 0 vs. H1 : β 6= 0.

GLM-based score statistics for testing global and individual haplotype effects on the phenotype

of interest (using either asymptotic or permutation-based p-values) and adjusting for the effects

of covariates have also been developed (Schaid et al. 2002).

In presence of rare haplotypes which demonstrate large variability and then lead to invalid test

statistics, several methods of haplotype clustering have been suggested (Durrant et al. 2004,

Molitor et al. 2003, Seltman et al. 2003, Tzeng 2005). And Tzeng et al. (2006) proposed a

haplotype association method based on the GLM framework and using haplotype clusters.

Finally, the field of large-scale genetic studies and more specifically the GWAS has recently

boomed thanks to the development of computer tools increasingly sophisticated that allowed

cataloguing (through databases) and statistical analysis (through software) of the large amount

of data. Some of these bioinformatic resources are presented in Appendix A.
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2.5 Conclusion

The aim of the present chapter was to review various statistical and genetic background neces-

sary to conduct genome-wide association studies and haplotype analysis in the context of linkage

disequilibrium. LD appears clearly as a central parameter in these large-scale GWA studies for

many reasons. First, we have seen that the choice of the markers to genotype for a study depends

on the amount of LD in the population. Second, from a statistical point of view, if a simple as-

sociation test between each marker and the phenotype of interest is performed, then the power

of the test, that is its ability to detect a true association, will mainly depend on the amount of LD

between the tested marker and the causal loci. Finally, given the growing flow of genotype data,

incorporating the linkage disequilibrium information in GWAS should ensure an easier analysis

and interpretation of the results, for example by reducing the high-dimensionality of the data.



Chapter 3

Linkage disequilibrium block

partitioning

3.1 Existing definitions of linkage disequilibrium blocks

By studying the distribution of linkage disequilibrium across the genome, several authors ob-

served that LD is related to the distance between markers (Kruglyak 1999, Dunning et al. 2000,

Abecasis et al. 2001, Pritchard & Przeworski 2001, Reich et al. 2001). More specifically, Figure

3.1 illustrates the negative correlation between the intermarker physical (base-pair) distance and

the pairwise LD measures D′ and r2 for a set of 200 SNPs within chromosome 6 in a study on

605 HIV-infected patients (Dalmasso et al. 2008).

However, the rate of this decrease does not follow a regular pattern and is related to the particular

location of the markers in the human genome (Taillon-Miller et al. 2000). These observations

reflect the fact that the genome could be clustered into sets of high LD regions or blocks sepa-

rated by short discrete segments of very low LD called recombination hotspots (Daly et al. 2001,

Gabriel et al. 2002, Patil et al. 2001, Jeffreys et al. 2001). As described in Section 2.3.3, such

regions exhibit limited haplotype diversity, so that a small number of distinct haplotypes account

for most of the chromosomes in the population, and they are now termed haplotype blocks.

A range of methods have been proposed for defining haplotype blocks. Jeffreys et al. (2001) has

defined blocks through direct measurement and localization of recombination hotspots. Apart

from this approach, haplotype block definition methods can be classified into two main groups:

39
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FIGURE 3.1: Decay of pairwise linkage disequilibrium measures D′ (left panel) and r2 (right
panel) over physical distance for 200 SNPs of chromosome 6 in a study on 605 HIV-infected

patients (Dalmasso et al. 2008).

those that define blocks as regions with limited haplotype diversity and those that make use of

pairwise linkage disequilibrium measures to distinguish high LD regions from recombination

hotspots (Cardon & Abecasis 2003, Wall & Pritchard 2003). Some other approaches combine

these two strategies in modeling haplotype blocks. Existing LD block partitioning algorithms

are summarized in Table 3.1.

When pairwise LD measures are used, a block is defined whenever all pairwise coefficients

(adjacent and non-adjacent) within a region exceed some pre-defined threshold. Gabriel et al.

(2002) refined this basic definition by using confidence limits on the pairwise LD measures

|D′|. More specifically, values of |D′| are divided into three categories: strong LD (|D′| close

to 1), weak LD (|D′| significantly < 1) and intermediate/unknown LD. The haplotype blocks

are then defined as the sets of consecutive loci over which a small proportion (< 5%) show

strong evidence of historical recombination. Similarly, Wang et al. (2002) use the |D′| LD

measures to define haplotype blocks. More particularly, the four gamete rule define these blocks

as regions where all pairs of loci are in complete LD (|D′| = 1) or where at least one of the four

possible haplotypes has a frequency below 0.01. These two LD block partitioning strategies

are implemented in the software Haploview in addition to the Solid Spine method that was

internally developed in the software. This third approach searches for a “spine” that is a region

of strong LD where first and last loci of the block are in strong LD with all intermediate loci

but the intermediate loci are not necessarily in LD with each other. The threshold beyond which

the LD is considered as strong is fixed by the user. More recently, model-based approaches
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Algorithm Criterion htSNP
Pairwise LD Haplotypes Recombination

hotspots

Jeffreys et al. (2001) X
Daly et al. (2001) X X
Patil et al. (2001) X X
Gabriel et al. (2002) X
Wang et al. (2002) X
Dawson et al. (2002) X X
Zhang et al. (2002, 2003) X X
Zhu et al. (2003) X
Phillips et al. (2003) X
Twells et al. (2003) X
Shifman et al. (2003) X
Anderson & Novembre (2003) X X
Mannila et al. (2003) X
Koivisto et al. (2003) X
Greenspan & Geiger (2004) X
Pattaro et al. (2008) X
Tomita et al. (2008) X
Mourad et al. (2011) X

TABLE 3.1: Three criteria are used in existing block partitioning algorithms. Jeffreys et al.
(2001) has defined blocks through recombination hotspots. The remaining haplotype block
definition methods can be classified into two main groups: those that use the pairwise LD
measures and those that define the blocks as regions with limited haplotype diversity. The Patil
et al. (2001) and Zhang et al. (2002, 2003) approaches allow to identify haplotype tagging

SNPs.

using pairwise LD measures have been developed such as the MCMC Algorithm To Identify

blocks of Linkage DisEquilibrium (MATILDE) (Pattaro et al. 2008) and methods using forest

of hierarchical latent class models (Mourad et al. 2011) or the Echelon analysis (Tomita et al.

2008) to model LD.

Alternatively, when haplotypes are known, a haplotype block is usually defined when a small

number of haplotypes (for example 3 to 5) account for a high proportion of the observations

(75%–90%). For instance, Patil et al. (2001) required that in haplotype blocks, at least 80% of

the observed haplotypes should be observed two or more times. Moreover, they locate the blocks

boundaries so that the most common haplotypes within blocks can be identified using the small-

est number of SNPs, called following Johnson et al. (2001), haplotype tagging SNPs (htSNPs).

Zhang et al. (2002, 2003) formalized this approach by a dynamic programming algorithm.

Finally, Anderson & Novembre (2003) combine haplotype diversity within blocks and LD decay

between blocks to find the optimal partition, using the Minimum Description Length principle
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(MDL). This same principle is also used in Mannila et al. (2003), Koivisto et al. (2003) and

Greenspan & Geiger (2004).

When the only available data are diploid genotype data in which haplotype phase is unknown,

several haplotype inference approaches have been proposed to resolve haplotypes from un-

phased SNP data (Niu et al. 2002, Qin et al. 2002, Stephens & Donnelly 2003). Nevertheless,

most of these methods remain computationally intensive when dealing with a large number of

loci. Moreover, specific information about haplotypes are not necessarily needed when it comes

to define the boundaries of LD blocks. Thus, pairwise methods appear to be easier to apply to

genotype data. Nevertheless, in the most popular pairwise approaches, the thresholds of LD and

the confidence limits used to define blocks remain subjective and arbitrary. One of the contri-

butions of this thesis are, therefore, to propose an automated block partitioning approach using

pairwise LD measures between SNPs. This method consists in a Ward’s hierarchical cluster-

ing of SNPs with an adjacency constraint and using LD as a similarity measure. Then the Gap

statistic model selection approach is applied to the obtained hierarchy in order to define the LD

blocks. The remainder of this chapter will be dedicated to a review of cluster analysis and a

detailed description of the proposed LD block partitioning approach.

3.2 Background on cluster analysis

3.2.1 Typology of cluster analysis methods

Unsupervised classification or clustering (Gordon 1999, Jain et al. 1999, Berkhin 2004) is one

of the most important field in Data Mining. It consists in grouping together similar items while

dissimilar ones are asserted to different groups, without any a priori knowledge on the obtained

groups. Alternatively, when the prior knowledge on the data is present, the technique is called

supervised classification or discriminant analysis. These input groups of items then are used

for the classification of other sets of items. In both techniques, the groups of items are usually

called clusters or classes and are used to synthesize the information contained in the initial set.

The two common approaches in statistical clustering are partitioning clustering and hierarchical

clustering. In the partitioning clustering, one starts with the whole initial analyzed items in a

same cluster, which is then split into G clusters. Usually, the number G has to be specified

before the analysis. Model selection techniques can be used to determine the most appropriate
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values of G, based usually on the selection of the “optimal” partition for a range of values

of G. Partitioning methods usually produce clusters by optimizing a criterion function, and

due to the combinatorial number of possibilities, the algorithm is run repeatedly. Among the

most known partitioning methods, we cite the k-means (MacQueen et al. 1967), the dynamic

clustering (Diday 1973) or the minimum spanning trees (Graham & Hell 1985).

The purpose of hierarchical classification is to produce a tree whose nodes represent clusters of

the initial dataset. In particular, the initial set of items is the root of the tree while the leaves

represent the singletons (clusters with one element/item). This type of structure thus provides an

enhanced visual representation than the partitioning methods. The investigator can then select

the suitable partitioning from its point of view, by making a trade off between the number of

clusters and their homogeneity degree.

Different types of hierarchical clustering methods can be classified according to their initial

items/clusters and the steps of their algorithm:

• agglomerative hierarchical methods: starting from the initial singletons/items, the clus-

ters are successively merged into higher level clusters, until the entire set of items becomes

a cluster. These methods are also called Ascending Hierarchical Classification (AHC).

• hierarchical divisive methods: starting from a single cluster (of all items), successive

splits of clusters are performed to obtain smaller clusters (Rao 1971).

At the beginning of a clustering process, we have to select the appropriate items for clustering.

In some cases, this choice of the dataset E of items to be clustered is apparent from the nature

of the task at hand.

In many situations, the data is in the form of a table X of n individuals (in rows) described by p

variables (in columns):

X = (Xij)n×p =



1 . . . j . . . p

1 .
...

...

i . . . Xij ∈ R . . .
...

...

n .


.
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In that case, the clustering approach is generally applied to the individuals but can easily ex-

tended to the set of variables.

In this chapter, we will focus on the problem of clustering the setE of variables X.1,X.2, . . . ,X.p.

The next section will be devoted to AHC methods which have been studied extensively (Sokal

et al. 1963, Hartigan 1975) during the last decades and have a wide number of applications in

many different fields such as bioinformatics, signal processing or web mining.

3.2.2 Agglomerative hierarchical methods

3.2.2.1 Measure of similarity

Performing an agglomerative hierarchical clustering requires to define a measure of similarity

between the items to be clustered.

A similarity function measures the link between items of a set.

Definition 1. A similarity measure on a set E is a function:

Sim : E × E → R+

having the properties:

∀(x, y) ∈ E2 such that x 6= y,

• Sim(x, y) = Sim(y, x)

• Sim(x, x) = Sim(y, y) = Simmax ≥ Sim(x, y),

where Simmax is a positive scalar.

To each similarity measure Sim may be associated a dissimilarity measure Diss defined by

Diss(x, y) = Simmax−Sim(x, y). Diss will then have the property ∀x ∈ E, Diss(x, x) = 0. In

other words, the less the items x and y are alike, the higher is the value of the score Diss(x, y).

Definition 2. A distance function:

Dist : E × E → R+
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has the properties:

∀(x, y, z) ∈ E3,

• Dist(x, y) = 0 if and only if x = y

• Dist(x, y) = Dist(y, x)

• Dist(x, z) ≤ Dist(x, y) + Dist(y, z).

Ultimately, a distance is a dissimilarity since any distance satisfies the two properties of a dis-

similarity as well as triangular inequality.

Some commonly used dissimilarities are :

Euclidean distance ‖X.i −X.j‖2 =
√∑n

l=1(Xli −Xlj)2

Manhattan distance ‖X.i −X.j‖1 =
∑n

l=1 |Xli −Xlj |
Maximum distance ‖X.i −X.j‖∞ = maxl∈1,...,n |Xli −Xlj |.

For notation convenience, δ will denote a generic dissimilarity on the set E in the remainder of

the manuscript.

3.2.2.2 Linkage criteria

After having chosen the similarity measure between items, we need to decide which agglom-

erative algorithm to apply. There are several agglomerative procedures and they can be distin-

guished by the way they define the distance from a newly formed cluster to a certain item, or to

other clusters. Such a definition, termed linkage criterion, then specifies the distance between

clusters as a function of the pairwise dissimilarities between items in the clusters:

d : P(E)× P(E)→ [0,∞[.

The most popular linkage criteria are:

• single linkage, that is the shortest pairwise dissimilarity between items in two different

clusters:

dsl(A,B) = min{δ(X.i,X.j);X.i ∈ A,X.j ∈ B}.
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• complete linkage, that is the dissimilarity between the most distant pair of items coming

from each of the two clusters:

dcl(A,B) = max{δ(X.i,X.j);X.i ∈ A,X.j ∈ B}.

• average linkage, the average of the pairwise dissimilarities between all pairs of items

coming from each of the two clusters:

dal(A,B) =
δ(X.i,X.j)

pApB
;X.i ∈ A,X.j ∈ B.

with pA and pB the cardinals of A and B respectively.

• Ward’s criterion:

dwl(A,B) =
pA × pB
pA + pB

δ(gA,gB)2, (3.1)

with gA and gB the centers of the clusters A and B respectively.

Proposition 1. Ward’s linkage criterion can also be written as:

dwl(A,B) =
∑

i∈A∪B
δ(X.i,gA∪B)2 −

∑
i∈A

δ(X.i,gA)2 −
∑
i∈B

δ(X.i,gB)2. (3.2)

Indeed, when looked more closely, Ward’s criterion (Ward Jr 1963) defines the distance between

two clusters A and B as the increase of variability within groups (according to the dissimilarity

δ chosen) when we merge them. Proposition 1 with the Euclidean distance is demonstrated in

Appendix B.

For the previous four linkage criteria, there are relationships (Lance & Williams 1967) that sim-

plify the calculation of distances between classes which are essential for the practical implemen-

tation of the AHC algorithm. Indeed, the generic Lance-Williams formula allows deriving the

distance between a pair of clusters A ∪B and C from previously calculated distances d(A,C),

d(B,C) and d(A,B):

d(A ∪B,C) = α1d(A,C) + α2d(B,C) + βd(A,B) + γ|d(A,C)− d(B,C)|,

where the parameters α1, α2, β and γ are determined by the linkage criterion used. Table 3.2

summarizes the parameter values for the most common linkage functions.
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Coefficients
α1 α2 β γ

Linkage

Single 1
2

1
2 0 −1

2

Complete 1
2

1
2 0 1

2

Average pA
pA+pB

pB
pA+pB

0 0

Ward pA+pC
pA+pB+pC

pB+pC
pA+pB+pC

− pC
pA+pB+pC

0

TABLE 3.2: Coefficients in the Lance-Williams formula for different linkage criteria.

3.2.2.3 Graphical representation of a hierarchy

To sum up, the steps of an agglomerative hierarchical clustering procedure applied to the dataset

E can be described as follows:

1. Start with p clusters containing each one item. Define a p× p dissimilarity matrix D(i, j)

(initialized to 0p×p) between items X.i and X.j .

2. Find the most similar pair of clusters A and B in the sense of the linkage function chosen

and merge them into a single cluster A ∪B.

3. Update the dissimilarity matrix (reduce its order by one) by replacing the individual clus-

ters with the merged cluster.

4. Repeat steps 2. and 3. until a single cluster is obtained (that is p− 1 times).

Such AHC algorithm builds a hierarchy.

Definition 3. A hierarchy H of E is a set of non-empty classes that satisfy:

• E ∈ H

• For all X.i ∈ E, {X.i} ∈ H

• ∀(A,B) ∈ H2, A ∩B ∈ {A,B, ∅}

In other words, a hierarchy H of E contains E and all its items. Moreover, two classes of H are

either disjoint or one class contains the other.
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In order to be able to represent a hierarchy structure graphically, we need to assess its levels,

that is to assign them a height, by means of an index.

Definition 4. An indexed hierarchy is a pair (H, Ind) where H is a hierarchy and Ind is a

function:

Ind : H → R+

such that:

∀(A,B) ∈ H2, such that A 6= B,

• Ind(A) = 0⇔ A is a singleton

• A ⊂ B ⇒ Ind(A) < Ind(B).

An indexed hierarchy can be visualized using a graphic called classification tree or dendrogram

(see Figure 3.2).

FIGURE 3.2: A dendrogram. This figure is adapted from Fundamentals of Statistics (Lohninger
2010).

The relationship generally used to define the index Ind of a hierarchy H is:

∀(A,B) ∈ H2, Ind(A ∪B) = d(A,B),

that is the linkage criterion used to build the hierarchy. However, some linkage criteria do not

allow to build an indexed hierarchy because they do not grow increasingly with the level of

the hierarchy. For instance, the linkage measure defined by the Euclidean distance between the

centers of the classes does not verify the second condition in Definition 4. Consequently, the

dendrogram of the resulting hierarchy can present inversions (see Figure 3.3).
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6.4. LA CLASSIFICATION ASCENDANTE HIÉRARCHIQUE 53

– calcul des distances entre la nouvelle classe et les anciennes classes non
regroupées.

Il est facile de montrer que l’ensemble des classes définies au cours de cet
algorithme forme une hiérarchie sur W.

Construction de l’indice

Après avoir défini une hiérarchie, il est nécessaire de lui associer un indice.
Pour les classes du bas de la hiérarchie, c’est-à-dire les singletons, cet indice est
nécessairement la valeur 0. Pour les autres classes, cet indice est généralement
défini en associant à chacune des classes construites au cours de l’algorithme la
distance D qui séparaient les deux classes fusionnées pour former cette nouvelle
classe. Pour que cette définition conduise bien à un indice, il est nécessaire que
les indices obtenus soient strictement croissants avec le niveau de la hiérarchie.

Plusieurs difficultés peuvent apparaître :
Inversion Pour certain critère d’agrégation, l’indice ainsi défini n’est pas néces-

sairement croissant. On parle alors d’inversion. Par exemple, si les données
sont formées par trois points du plan situés au sommet d’un triangle équi-
latéral de côté 1 et si on prend comme distance D entre classes la distance
entre les centres de gravité, on obtient une inversion.

32

1

1 2 4
0

0.732

1
          {1,2}     3

{1,2}    0     

            0.732    0

      1    2    3

1    0

2    1    0

3    1    1    0

Avec les critères d’agrégation étudiés étudiés dans ce chapitre, il est pos-
sible de montrer que l’inversion est impossible.

Croissante non stricte Lorsqu’il y a égalité de l’indice pour plusieurs niveaux
emboîtés, il suffit de « filtrer » la hiérarchie, c’est-à-dire conserver une seule
classe qui regroupe toutes les classes emboîtées ayant le même indice. Dans
l’exemple suivant, la classe A∪B qui a le même indice que la classe A∪B∪C
peut être supprimée.

A         B           CA         B           C

Ce problème peut se produire avec les critères d’agrégation que nous allons
étudier et les algorithmes de mise en place de ces critères nécessiterons
donc de prévoir cette opération de filtrage.

6.4.2 Les critères d’agrégation
Il existe de nombreux critères d’agrégation, mais les plus utilisés sont les

suivants :
– critère du lien minimum (ou saut minimum ou single link)

D(A, B) = min{d(i, i′), i ∈ A et i′ ∈ B};

FIGURE 3.3: Example of an inversion in the dendrogram of a hierarchy.

It can be shown that the dendrograms of hierarchies built using the linkage criteria previously

presented in this section never present inversions.

3.2.3 Determining the number of clusters

In the general context of data clustering, a major challenge is how to select the right number of

clusters, also known as the model selection issue. Indeed, while in some situations the choice of

the number of classes may be motivated by prior knowledge of the user, it is in general unknown

and needs then to be estimated in a certain way.

Milligan & Cooper (1985) provide a comprehensive survey of 30 methods for estimating the

number of clusters, while Gordon (1999) compares the performances of the best five rules ex-

posed in Milligan & Cooper (1985). Gordon (1999) also divides these strategies of estimation

of the number of clusters into global methods and local methods. Local methods are intended

to test the hypothesis that a pair of clusters should be merged. While, with global approaches,

some measure over the entire dataset is evaluated and optimized as a function of the number of

clusters. More recently, Charrad et al. (2014) provide an implementation of an exhaustive list of

indices to estimate the number of clusters in a dataset in the R package NbClust.

Several model selection approaches use the within-group dispersion measure, generally noted

W , in order to estimate the number of clusters. Suppose the datasetE has already been clustered

into G groups C1, . . . , CG of sizes p1, . . . , pG, then the corresponding within-group dispersion

measure WG is defined as:

WG =
G∑
g=1

pg∑
i=1

δ(X.i,gCg)2. (3.3)
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So if the dissimilarity δ is the Euclidean distance, then WG corresponds to the pooled within-

cluster sum of squares around the cluster means.
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FIGURE 3.4: Observed within-group dispersion measuresWG versus the number of clustersG
for a set E of p = 200 items in R100 clustered in 10 groups of size 20. The dissimilarity used

is the Euclidean distance and the clustering method is the Ward’s criterion.

Figure 3.4 shows a typical plot of within-group dispersion measures WG, with the Euclidean

distance and at each step of a Ward’s clustering algorithm, as a function of the number of clusters

G within the data set. We can notice that WG decreases monotonically as the number of clusters

G increases. Indeed, splitting a class results in two clusters that are more homogeneous and thus

with lower dispersion. But this decrease gets slower from some G onward and the presence of

such an elbow corresponds exactly to the “true” number of clusters Ĝ to be estimated (Sugar

1998, Sugar et al. 1999).

Among the global methods using the WG measures and performing the best according to Milli-

gan & Cooper (1985) was the Calinski and Harabasz index (Caliński & Harabasz 1974)

CH(G) =
(p−G)

(G− 1)

BG
WG

.

BG =
∑G

g=1 δ(gCg ,gE)2 is the between-cluster dispersion measure with gE the center of grav-

ity of the dataset E. CH(G) is only defined for G greater than 1 and the optimal number of

clusters is Ĝ that maximizes CH(G).
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Hartigan (1975) proposed the following statistic:

H(G) =
1

p−G− 1

(
WG

WG+1
− 1

)
.

The idea is to start with G = 1 and to add a cluster if H(G + 1) is significantly large. The

decision rule suggested by Hartigan is to add a cluster if H(G) > 10. Hence, the cluster number

is best estimated as the smallest G such that H(G) ≤ 10. This estimate is defined for G = 1 and

can then be used for testing the presence of a cluster structure within the dataset.

Another approach for estimating the number of clusters using the WG measures is the proposal

of Krzanowski & Lai (1988) which defined:

DIFF(G) = (G− 1)2/pWG−1 −G2/pWG,

and chose Ĝ to maximize the quantity:

KL(G) =

∣∣∣∣ DIFF(G)

DIFF(G+ 1)

∣∣∣∣ .
More recently, Tibshirani et al. (2001) proposed an approach to estimate the number of clusters

in a dataset via the Gap statistic. This method is designed to be applicable to any clustering

strategy and dissimilarity measure. The idea is to compare the within-cluster dispersion measure

of the observed dataset to its expectation under an appropriate reference null distribution. To do

so, they define:

Gap(G) = E?p [log(WG)]− log(WG),

where E?p denotes the expectation under a sample of size p from the reference null distribution.

The optimal number of clusters Ĝ corresponds then to the value maximizing Gap(G).

The choice of an appropriate reference null distribution is important for applying the Gap statis-

tic method. Tibshirani et al. have chosen the uniformity hypothesis to create the reference null

distribution and considered two approaches to construct the support of such distribution. In the

first approach, each reference variable X.j , 1 ≤ j ≤ p is generated uniformly over the range of

the observed values for that variable. In the second approach, the variables are sampled from

a uniform distribution over a box aligned with the principal components of the centered design

matrix X. The uniformly generated design matrix is then back-transformed to obtain the refer-

ence dataset. In both strategies, the items of the reference dataset are generated independently.
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Whereas the first approach has the advantage of simplicity, the second strategy may be more

effective in recovering the underlying cluster structure since it takes into account the shape of

the data distribution.

More particularly, the computational steps of the Gap method are the following:

1. For each number of clusters G, 1 ≤ G ≤ Gmax, compute the within-cluster dispersion

measure WG.

2. GenerateB reference datasets in the way described above. Cluster each of theB reference

datasets and calculate W b
G for b ∈ {1, . . . , B} and G ∈ {1, . . . , Gmax}.

3. Compute the Gap statistic:

Gap(G) =
1

B

B∑
b=1

log(W b
G)− log(WG).

4. The optimum number of clusters is given by the smallest G such that:

Gap(G) ≥ Gap(G+ 1)− sdG+1.

where sdG is the normalized standard deviation of log(W b
G):

sdG =

√
1 +

1

B

 1

B

B∑
b=1

[
log(W b

G)− 1

B

B∑
b=1

log(WB
G )

]21/2

. (3.4)

3.3 The proposed LD block partitioning approach

3.3.1 The kernel trick

In machine learning, kernel methods are a class of algorithms for pattern analysis whose aim is

to find and study general types of relations in datasets. Support Vector Machines (SVMs) are

the most well known algorithms capable of operating with kernels (Schölkopf & Smola 2002).

Definition 5. A positive definite kernel (PDK) on the setE is a symmetric function K : E×E →
R:

∀(x, y) ∈ E2, K(x, y) = K(y, x)
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that satisfies, for all N ∈ N, (x1, x2, . . . , xN ) ∈ EN and (a1, a2, . . . , aN ) ∈ RN :

N∑
i=1

N∑
j=1

aiajK(xi, xj) ≥ 0.

This definition is equivalent to that the similarity matrix of the items of E and defined by K is

positive semi-definite.

Definition 6. If K is a positive definite kernel on a set E, then there is a Hilbert space H with

the dot-product 〈, 〉H and a function Φ : E → H such as:

∀(x, y) ∈ E2, K(x, y) = 〈Φ(x),Φ(y)〉H . (3.5)

The relationship 3.5, which allows to replace dot products by kernels’ evaluations, is often

called kernel trick. When looked more closely, Definition 6 implies that any algorithm which

involves vectors and that is only expressed in terms of dot-products between these vectors can

be performed implicitly in a Hilbert space by replacing each dot-product by an evaluation of

a positive definite kernel on another space. In practice, the function Φ does not need to be

specified and the main difficulty of the user is the choice of the kernel.

In the next two sections, we will show how the kernel trick can be used in the Ward’s hierarchical

clustering and the Gap statistic approaches. The steps of the proposed algorithm for inferring

the LD blocks will be detailed in the last section of this chapter.

3.3.2 Ward’s criterion using the LD kernel

Ward’s hierarchical clustering using the Euclidean distance algorithm applied to SNP data falls

within the framework of algorithms described above and the kernel trick can then be used.

Indeed, let us consider a genotype matrix of p SNPs observed on n individuals, then X ∈ Rn×p

with Xij ∈ {0, 1, 2}. Applying Ward’s hierarchical clustering using the Euclidean distance

to the columns X.j of the genotype matrix requires the minimization of Ward’s criterion (see

Equation 3.1):

dwl(A,B) =
pApB
pA + pB

‖gA − gB‖22.

As the main topic of the thesis is incorporating linkage disequilibrium information in GWA

studies, it seems natural to use as kernel the pairwise LD measure:
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K : E × E −→ R

(X.i,X.j) 7−→ ld(X.i,X.j)

The pairwise LD measure is indeed a PDK as it corresponds to the correlation between the

indicators of the presence of the major allele (or minor allele) at the two loci (see Section 2.3.2).

Using the pairwise LD kernel, Ward’s criterion can then be rewritten as follows:

dwl(A,B) =
pApB
pA + pB

‖gA − gB‖22

=
pApB
pA + pB

〈gA − gB,gA − gB〉H

=
pApB
pA + pB

(〈gA,gA〉H + 〈gB,gB〉H − 2 〈gA,gB〉H).

Moreover, we have:

〈gA,gB〉H =

〈
1

pA

∑
i∈A

Φ(X.i),
1

pB

∑
j∈B

Φ(X.j)

〉
H

=
1

pApB

∑
i∈A,j∈B

〈Φ(X.i),Φ(X.j)〉H

=
1

pApB

∑
i∈A,j∈B

K(X.i,X.j)

=
1

pApB

∑
i∈A,j∈B

ld(X.i,X.j).

The distance between the two classes can then be written as:

d(A,B) =
pApB
pA + pB

(
1

p2A
SA,A +

1

p2B
SB,B −

2

pApB
SA,B

)
, (3.6)

using the notation:

SA,B =
∑

i∈A,j∈B
ld(X.i,X.j).

Note that, in this case, the ld function can be any pairwise linkage disequilibrium measure such

as D, D′ or r2.
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3.3.3 The within-group dispersion measures using the LD kernel

Similarly to Ward’s criterion, the within-group dispersion measure W should be rewritten using

the LD kernel as it is the corner stone of the Gap statistic approach for model selection.

Assuming that the data has already been clustered into G classes C1, C2, . . . , CG of sizes

p1, p2, . . . , pG, then WG can be written as follows:

WG =
G∑
g=1

pg∑
j=1

‖X.j − gCg‖22

=

G∑
g=1

pg∑
j=1

〈
X.j − gCg ,X.j − gCg

〉
E

=
G∑
g=1

pg∑
j=1

〈X.j ,X.j〉E +
G∑
g=1

pg∑
j=1

〈
gCg ,gCg

〉
E
− 2

G∑
g=1

pg∑
j=1

〈
X.j ,gCg

〉
E

=

G∑
g=1

pg∑
j=1

〈Φ(X.j),Φ(X.j)〉
H

+

pg∑
g=1

pg

〈
1

pg

pg∑
l=1

Φ(X.l),
1

pg

pg∑
k=1

Φ(X.k)

〉
H

−2
G∑
g=1

pg∑
j=1

〈
Φ(X.j),

1

pg

pg∑
k=1

Φ(X.k)

〉
H

=

G∑
g=1

pg +

G∑
g=1

1

pg

pg∑
j=1

pg∑
k=1

ld(X.j ,X.k)− 2

G∑
g=1

1

pg

pg∑
j=1

pg∑
k=1

ld(X.j ,X.k).

Then:

WG = p−
G∑
g=1

1

pg
SCg ,Cg . (3.7)

Unlike the previous calculation of Ward’s criterion, the ld function for assessing theWG quantity

can only be D′ or r2. Indeed, the calculations in Equation 3.7 implicitly require the condition

ld(X.j ,X.j) = 1.

3.3.4 The algorithms

The first step of the proposed partitioning algorithm slightly differs from a classical hierarchical

clustering. Indeed, in our context, nearby SNPs (in the sense of the physical distance along the

genome) show relatively high LD between them (see Figure 3.1). For this reason, Ward’s hierar-

chical clustering used for grouping the markers should take into account this spatial constraint.

In other words, at each step of the clustering algorithm, only two contiguous SNPs/clusters of
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SNPs are allowed to be merged. The sketch of the Ward’s constrained hierarchical clustering

method is presented in Algorithm 1.

More formally, given a genotype matrix X and a LD similarity Sim, we begin with each of the

p SNPs in a separate cluster (line 2). The corresponding distances between these singletons are

the p− 1 dissimilarities between the SNPs (line 3). Then, the two closest adjacent clusters (in

the sense of the Ward’s linkage criterion) are repeatedly merged until all SNPs are members of

the same cluster. The main two steps in the algorithm are finding the best fusion corresponding

to the pair of clusters with the smallest distance (line 5) and assessing the 2 distances with

newly-formed cluster (lines 7 and 8). The objects returned by the cWard LD algorithm are

the classification tree T summarizing the clustering process and the within-group dispersion

measures Wvect at each step of the clustering. These last measures will be used as input at the

second step of the proposed approach for inferring the LD blocks : the Gap statistic.

Algorithm 1 The Ward’s constrained hierarchical clustering algorithm using the LD similarity

1: procedure CWARD LD(X ∈ {0, 1, 2}n×p, Sim)
2: C ← {Ci = {X.i}, i ∈ 1, . . . , p} . each SNP in separate cluster
3: D ← {1− Sim(X.i,X.(i+1)), i ∈ 1, . . . , p− 1} . the (p− 1) vector of dissimilarities

. between adjacent SNPs
4: for step = 1 to p− 1 do
5: i? ← arg mini∈{1,...,p−step}D(Ci, Ci+1) . find the closest pair of

. adjacent clusters
6: C ← C \ {Ci? , Ci?+1} ∪ {Ci? ∪ Ci?+1} . updating the clustering
7: d1 ← D(Ci?−1, Ci? ∪ Ci?+1) . using Equation 3.6
8: d2 ← D(Ci? ∪ Ci?+1, Ci?+2)
9: D ← D \ {D(Ci?−1, Ci?), D(Ci? , Ci?+1)} ∪ {d1, d2} . updating D

10: Wvect[step]←Wp−step . using Equation 3.7
11: end for
12: cW.T ← T . the clustering tree
13: cW.Wvect ←Wvect . the vector of within-group dispersion measures
14: return cW
15: end procedure

The Gap statistic approach starts by computing the within-group dispersion measures of the ob-

served genotype matrix (line 2) for each number of clustersGwithin the interval [minG,maxG],

and then compares it to its expectation under an appropriate null reference distribution obtained

by applying the cWard LD algorithm to uniformly simulated genotype matrices (line 6). After

assessing the quantity Gap(G) for each G ∈ [minG,maxG] (line 10), the GapStatistic

algorithm returns the optimal number of clusters Ĝ in the sense of the Gap statistic approach.
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Algorithm 2 The Gap statistic algorithm

1: procedure GAPSTATISTIC(X ∈ {0, 1, 2}n×p, Sim, minG, maxG, B)
2: Wobs ← cWard LD(X,Sim).Wvect[minG : maxG]
3: for G = minG to maxG do
4: for b = 1 to B do
5: generate uniformly Xsim ∈ Rn×p . each SNP independently
6: W b

G ← cWard LD(Xsim,Sim).Wvect[minG : maxG]
7: end for
8: Gap(G)← 1

B

∑B
b=1 log(W b

G)− log(WG)
9: end for

10: Choose Ĝ as the smallest G such as
Gap(G) ≥ Gap(G+ 1)− sdG+1 . using Equation 3.4

11: return Ĝ
12: end procedure
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3.4 Conclusions

The detection of linkage disequilibrium blocks in the human genome is a recent research field

and the methods for their definition are still under development. In this chapter, we have shown

how existing block partitioning algorithms are mainly based on two approaches: either the pair-

wise LD measures are used to detect regions of high or little historical recombination or blocks

are defined by employing a haplotypic diversity criterion, where a small number of haplotypes

account for a high proportion of the observations. The proposed block partitioning method con-

sists in (i) performing a spatially-constrained hierarchical clustering using the Ward’s linkage

criterion and the LD similarity (ii) applying the Gap statistic approach to the obtained hierarchy

to estimate the number of groups.

Applications of these haplotype blocks detection methods include at least three contexts differ-

ing in their objectives. First, the definition of htSNPs in haplotype blocks can reduce genotyping

efforts in GWA studies, while much of genetic variation within these blocks is summarized by

the htSNPs. Second, grouping markers on the basis of prior biological knowledge can improve

the interpretability of the results in medical studies. Third, incorporating the block structure

of the SNPs can improve the power of association studies by considering blocks of markers in

LD rather than a single SNP at a time. The next chapter falls in the latter category. Indeed,

it illustrates how the proposed LD block partitioning approach can be used to incorporate the

LD information for efficient marker selection in GWA studies. In chapter 5, a generalized and

efficient implementation of the cWard LD algorithm will be presented.



Chapter 4

Performance of a blockwise approach

in variable selection using linkage

disequilibrium information

4.1 Introduction

With recent advances in high-throughput genotyping technology, genome-wide association stud-

ies (GWAS) have become a tool of choice for identifying genetic markers underlying a variation

in a given phenotype – typically complex human diseases and traits. In GWAS, information

on genetic polymorphisms is collected across the genome and single nucleotide polymorphisms

(SNPs) are typically used due to their abundance in the genome. However, common genetic

variants identified by GWAS only account for a relatively small proportion of the heritability of

diseases (Manolio et al. 2009).

The most widely used approach for selecting causal SNPs is to perform univariate tests of asso-

ciation between the phenotype of interest and the genotype of each marker (Burton et al. 2007,

Sham & Purcell 2014). Following Yi et al. (2015), this type of approach will be referred to

as Single Marker Analysis (SMA). The results of SMA are often refined in two-ways. First,

due to linkage disequilibrium (LD) between SNPs, combining the p-values obtained by SMA

into gene-level statistics may yield more interpretable results (Li et al. 2011). Second, can-

didate markers selected by SMA may be incorporated into a multi-variable linear models of

59
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association. In the field of feature-subset selection, the sequential forward approach is a stan-

dard. Starting from an empty set, this greedy search algorithm sequentially adds features that

maximize a given objective function when combined with features that have already been se-

lected. This method remains however not widely used for identifying a set of associated genetic

markers. Conversely, recent studies suggest that penalized regression methods such as Lasso

(Tibshirani 1996) and Elastic-Net (Zou & Hastie 2005) may be appropriate to identify the addi-

tive effect of several genetic markers (Abraham et al. 2013, Waldmann et al. 2013, de Maturana

et al. 2014, Yi et al. 2015). Such methods allow multi-variable linear models to be estimated in

high-dimensional situations such as GWAS, where the number p of variables (i.e., SNP markers)

exceeds the number n of observations (i.e., individuals) by several orders of magnitude. In this

chapter, we propose a penalized regression approach tailored to the dependence between mark-

ers in GWAS induced by linkage disequilibrium (LD). Our goal is to identify common variants

which may have been missed by SMA because their individual effect size is not large enough to

pass genome-wide significance thresholds.

As a motivating example for our contribution, the LD (r2 coefficients, upper triangular part) and

the sample genotype correlations (lower triangular part) between the first 256 SNPs of chromo-

some 6 in a study on 605 HIV-infected patients are represented in Figure 4.1 (Dalmasso et al.

2008). A blockwise structure can be distinguished, where the average LD within blocks of 12

to 15 SNPs is approximately r2 = 0.2. The LD values are notably more contrasted than the

correlation values, as many r2 coefficients are very close to 0. In order to account for, and take

advantage of this strong dependency structure between adjacent or nearby SNPs, it makes sense

to focus on the scale of LD blocks, and to explicitly look for sets of LD blocks jointly associated

to the phenotype of interest.

In order to do so, we propose a three-step method which consists in (i) inferring groups of SNP –

that is, LD blocks– using a spatially-constrained hierarchical clustering algorithm, (ii) applying

a model selection approach to estimate the number of groups, and (iii) identifying associated

groups of SNPs using a Group Lasso regression model (Yuan & Lin 2005). This approach

is described in Section 4.2.1. Sections 4.2.2 to 4.2.4 cover a description of the competing

approaches the evaluation methods used for performance assessment. In Sections 4.3.1 and

4.3.2, the proposed method is compared to state-of-the-art competitors on simulated and semi-

simulated data. Section 4.3.3 describes the application of the proposed method on microarray

data from a specific GWA study on HIV.
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corr

LD

FIGURE 4.1: Blockwise dependency in real genotyping data: 256 SNPs spanning the first 1.45
Mb of Chromosome 6 in Dalmasso et al. (2008). The average distance between two successive
SNPs is approximately 5 kb. The upper triangular part of the matrix displays measures of
LD (r2 coefficients) between pairs of SNPs, while its lower triangular part displays absolute
sample correlations between pairs of SNP genotypes. Colors range linearly from 0 (white) to

0.4 (black).

4.2 Methods

4.2.1 A three-step method for GWAS

The problem of selecting causal SNPs can be cast as a problem of high-dimensional variable

selection. We consider the problem of predicting a continuous response y ∈ Rn from covariates

X ∈ Rn×p. For i ∈ {1, . . . , n}, Xi· is a p-dimensional vector of covariates for observation i

and for j ∈ {1, . . . , p}, X·j is a n-dimensional vector of observations for covariate j. In GWAS,

the covariates are ordinal and correspond to SNP genotypes: Xij ∈ {0, 1, 2} correspond to the

number of minor alleles at locus j for observation i. For each i ∈ {1, . . . , n}, we assume that

Xi· has a block structure with G non-overlapping blocks of sizes p1, . . . pG, with
∑G

g=1 pg = p.

Thus Xi· = (X1
i·, . . . ,X

G
i· ) with Xg

i· ∈ Rpg for g = 1, . . . , G.

We propose a three-step method consisting in (i) performing a spatially constrained hierarchical

clustering of the covariates X, (ii) estimating the number of groups using (a modified version
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of) the Gap statistic (Tibshirani et al. 2001), and (iii) performing a Group Lasso regression to

identify which of the inferred groups are associated with the response y.

4.2.1.1 Inference of LD blocks from genotypes

This first step has been presented in details in Section 3.3. It consists in inferring LD blocks

using a spatially constrained hierarchical clustering algorithm. Only the genotype data X are

used at this step.

The proposed clustering procedure is based on the one of the most widely used methods for

cluster analysis: Ward’s incremental sum of squares algorithm (Ward Jr 1963). Nevertheless,

it differs from it in two aspects. First, instead of the standard Euclidean distance, we use a

measure of the dissimilarity between two SNPs j and j′ based on LD: 1− r2(j, j′). Second, we

take advantage of the fact that the LD matrix can be modeled as block-diagonal (see Figure 4.1)

by only allowing groups of variables that are adjacent on the genome to be merged.

4.2.1.2 Estimation of the number of groups

This second step of applying the Gap statistic has been presented in details in Section 3.3.

We have chosen to use a modified version of the Gap statistic (Tibshirani et al. 2001) as a model

selection criterion. The Gap statistic compares WG to its expectation under an appropriate

reference null distribution of the data. For a clustering intoG groups, we calculate the following

quantity:

Gap?(G) =
1

B

B∑
b=1

(
W b
G −WG

)
, (4.1)

where for b = 1 . . . B, W b
G denotes the within-cluster dispersion of clustering the reference data

set b in G groups.

In the classical version of the Gap statistic (see Section 3.2.3), the logarithm of WG is used

instead ofWG, and several alternatives to this original definition have been investigated recently

(Mohajer et al. 2011). We decided to use the definition in Equation 4.1 as we noticed that it led

to better estimation of the number of groups in our simulation studies, which were performed
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under a variety of parameters and on several data sets. For the reference distribution, we fol-

lowed the initial strategy proposed in the original Gap statistic paper (Tibshirani et al. 2001)

and simulated each reference feature according to a uniform distribution over the discrete set

{0, 1, 2}. We chose to simulate B = 100 reference samples since we empirically observed that

it was sufficient to provide a stable estimation of the number of groups.

4.2.1.3 Selection of groups associated with the response

Once LD blocks have been identified, we use Group Lasso regression (Yuan & Lin 2005), pre-

sented in Section 2.1.2.3, to identify blocks associated with the phenotype. In the context of

GWAS, the explanatory variables are then the SNP markers and the response is the phenotype

of interest.

As discussed earlier, the Group Lasso is a group selection method: by construction, the estimated

coefficients within a group tend to be either all zero or all nonzero. In practice, the columns of

the design matrix X are scaled before performing Group Lasso regression.

4.2.2 Competing methods

Various approaches have been proposed to select causal SNPs from GWAS data. The method

described in Section 4.2.1 is compared to two groups of methods:

• three methods that do not explicitly take a block-structure information into account: SMA,

and two penalized regression approaches: Lasso (Tibshirani 1996) and Elastic-Net (Zou

& Hastie 2005).

• two methods that do explicitly take the block-structure information into account: the hap-

lotype association module of the PLINK genome association analysis tool (Purcell et al.

2007), and the Group Lasso applied to the true SNP groups. The latter approach cannot

be applied in practice, but is very useful to analyze the contribution of the different steps

of the proposed method. We will refer to this approach as the “oracle Group Lasso”.

Single Marker Analysis. In the standard SMA , for each variable X.j, we fit a single-predictor

equation y = β0 + βjX·j and a p-value from a t-test against an intercept-only model is calcu-

lated.
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Multi-variable approaches. The Lasso (Tibshirani 1996) and Elastic-Net (Zou & Hastie

2005) regression models (see Section 2.1.2.3) were compared to the proposed approach. As

seen previously, the Lasso encourages sparsity by setting many regression coefficients for ir-

relevant SNPs to exactly zero. However, this method tends to select only one variable in each

group of correlated variables. The estimator of Elastic-Net incorporates some prior information

regarding the block structure of the data. However, unlike the proposed method, it does not take

advantage of the fact that in the particular case of GWAS, LD blocks are adjacent along the

genome. In this chapter, we chose a large value for the ridge parameter (λ2 = 0.8) in order for

the Elastic-Net estimate to be substantially different from the Lasso estimate (which corresponds

to λ2 = 0).

Haplotype association. This competing grouping strategy includes 4 steps, the first 3 being

performed using the PLINK genome association analysis tool. The first step consists in inferring

the LD blocks following the confidence intervals procedure (Gabriel et al. 2002). Then within

each LD block, haplotypes are estimated using an accelerated EM algorithm similar to the par-

tition/ligation method (Qin et al. 2002). In the third step, haplotype-specific tests (with 1 degree

of freedom) for a quantitative trait are performed with PLINK using the option –hap-assoc. Fi-

nally, we define a block-adjusted p-value by performing a (Bonferroni) Family-Wise Error Rate

correction within each block. The p-value of a SNP is then defined as the adjusted p-value of

the block it belongs to.

4.2.3 Performance evaluation

Our performance assessment aims at evaluating the ability of our proposed method to retrieve

causal SNPs. Performance is evaluated using partial Areas Under the Curve (AUC) of the Re-

ceiver Operator Characteristics (ROC) curve. This measure will be denoted by pAUC. We first

evaluate, for each method, the True Positive Rate (TPR) and False Positive Rate (FPR) for a grid

of underlying regularization parameter values and for each simulation in order to obtain a ROC

curve. Then we calculate the pAUC in the range FPR ∈ [0, lim] for each ROC curve, where lim

is defined as the maximum value of FPR below which the ROC coordinates of all methods are

well defined.
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4.2.4 SNP and block-level evaluation

A SNP may be detected by a given method either because it is a causal SNP, that is truly associ-

ated with the phenotype, or because it is in LD with such a causal SNP. This issue is intrinsic to

the design of GWAS and thus requires adapted definitions of true and false positives. A relevant

recent contribution is the recently-introduced notion of “threshold-specific FDR” (tFDR) (Yi

et al. 2015). tFDR relies on an alternate definition of true positives that incorporates not only

“causal true positives” but also “linked true positives”. In a similar spirit, we consider two def-

initions of associated SNPs in our simulation setting. We define a causal SNP as a SNP that is

simulated with a non-zero regression parameter, and a block-associated SNP as a predictor that

is not a causal marker but simulated in the same LD block that a causal SNP. This is illustrated

by Figure 4.2. Importantly, and contrary to tFDR, our definition of a block-associated SNP does

not depend on a correlation threshold.

FIGURE 4.2: Schematics of covariance matrices for illustration of the proposed definition of
“causal SNPs” (red area in the left panel) and “block-associated SNPs” (red area in the right

panel) on a toy example with p = 12 SNPs in 3 blocks of size 4, 6, and 2, respectively.

Therefore, we consider two types of evaluation differing in their objective. In the SNP-level eval-

uation (left panel in Figure 4.2), the statistical unit considered is the SNP, and a true positive (in

red) is the discovery of a causal SNP; the discovery of any other SNP (in blue) is considered as a

false positive. In the block-level evaluation (right panel in Figure 4.2), the statistical unit consid-

ered is the LD block, and a true positive (in red) is the discovery of a block-associated SNP; the

discovery of any other SNP (in blue) is considered as a false positive. Given these definitions,

we expect better results from the three classical approaches (SMA, Lasso, and Elastic-Net) for

the SNP-level evaluation, and better results from the group-based methods for the block-level

evaluation.



A blockwise approach in variable selection using LD 66

4.2.5 Simulation settings

Our simulation setting is adapted from Wu et al. (2009). For all i ∈ {1, . . . , n},Xi· is gener-

ated from a p-dimensional multivariate normal distribution whose covariance matrix is block-

diagonal. If j 6= j′ are in the same group, cov(X·j ,X·j′) = ρ else cov(X·j ,X·j′) = 0 . Then,

we set Xij to 0, 1 or 2 according to whether Xij < −c, −c ≤ Xij ≤ c or Xij > c, where c is

a threshold determined for producing a given minor allele frequency. For example, choosing c

as the first quartile of a standard normal distribution corresponds to fixing the minor allele fre-

quency of the corresponding SNP to 0.5. The associated continuous phenotype vector is finally

generated according to the linear regression model:

y = Xβ + ε,

where ε ∈ Rn is a gaussian error term.

4.3 Results

4.3.1 Results on simulated data

We set n = 100 and p = 2, 048, with 192 groups of sizes 2, 2, 4, 8, 16, and 32, replicated

32 times. The ordering of the groups is drawn at random for each simulation. Figure 4.3

illustrates the type of dependency structure that is obtained in this setting, using the same type

of representation as in Figure 4.1.

In our simulation, the difficulty of the problem is calibrated according to the coefficient of de-

termination R2 of the model, that is, the ratio of the variance explained by the model to the total

variance. This coefficient quantifies the ability of a multi-variable model to explain the pheno-

type using the combined effect of all the relevant markers. It is also called the total heritability

h2 in the context of genetics (Yi et al. 2015). This coefficient is not to be mistaken with the

squared Pearson linear correlation coefficient r2 between the phenotype and the genotypes of a

single marker. Thus, in our simulation setting, the absolute value of the regression coefficients

of causal SNPs does not influence the performance of the methods. In the experiments reported

below, the regression coefficients of the causal SNPs were randomly set to 1 or −1, and to 0

for all other SNPs; R2 is set to 0.2, which appeared to be a realistic value for GWA studies in
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corr

LD

FIGURE 4.3: Blockwise dependency for a simulation run, with ρ = 0.4, using the same rep-
resentation and color scale as in Figure 4.1. The average r2 within LD block is approximately
0.2. Red dots correspond to causal SNPs. The blocks in which they are located are highlighted

by red squares.

comparison with the number of individuals n = 100. The other parameters of the simulation

are the within-LD-block correlation coefficient ρ, the number causalSNP of causal SNPs and

the size sigBlock of the associated block.

We have performed an extensive simulation study, where causalSNP ∈ {1, 2, 4, 6, 8} and

sigBlock ∈ {2, 4, 8, 16, 32}. We report average pAUC across 300 simulation runs. We

mainly focus on cases where the correlation coefficient ρ ∈ {0.2, 0.4} as these values yield an

average LD within a block that is consistent with what is typically observed in real data (see

Figure 4.1).

4.3.1.1 Block-level versus SNP-level evaluation

We consider a setting where a single SNP is truly associated with the phenotype. Figure 4.4

displays the pAUC versus the size sigBlock of the “associated block” (that is, the LD block
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FIGURE 4.4: The mean pAUC versus the size of the LD block containing a single causal SNP
sigBlock for the proposed method (“ld block-GL”, black solid lines), oracle Group Lasso
(dashed red lines), Lasso (dotted green lines), Elastic-Net (dash-dotted blue lines) and SMA
(“univ”, dashed light blue lines), for ρ = 0.4. Left: SNP-level evaluation. Right: block-level

evaluation.

containing the causal SNP) for both SNP- and block-level evaluations. With SNP-level evalu-

ation (left panel), group-based approaches are outperformed by the three competitors, and in-

creasingly so as the size of the associated block increases. This is mainly due to the high number

of false positive SNPs generated by the group selection. Indeed, selecting a group with only one

causal SNP causes all other SNPs of the group to be declared as false positives. Conversely,

with group-level evaluation (right panel of Figure 4.4), group-based methods show a clear su-

periority, showing that multi-variable SNP-based methods (Lasso or Elastic-Net) are generally

unable to select all of the causal SNPs due to the presence of correlation between the SNPs of the

block. The poor performance of Lasso under correlated designs is not new (Zou & Hastie 2005),

but Figure 4.4 suggests that the proposed approach even outperforms Elastic-Net. Although the

Elastic-Net has been designed specifically for correlated designs and has recently been shown to

have good performance in GWAS (Yi et al. 2015), it seems that it does not take full advantage

of the characteristic block structure of the predictors in GWAS.

As the size of the associated block increases, the performance of all methods decrease. Indeed,

for a given level of within-block correlation (here, ρ = 0.4), the larger the size of the block, the

more diluted the information about the causal SNP becomes. Thus, a larger LD block in our

simulation setting results in a more difficult problem. This increase in complexity explains the

general decrease in performance. This decrease in performance is more severe for the Group
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lasso. Indeed, it tends to select small groups of SNPs because its default penalty increases with

block size. The drop in performance of the proposed approach compared to that of the “oracle”

Group Lasso for sigBlock ∈ {2, 4} is discussed in the next subsection when assessing the

efficiency of the block inference step.

In the remainder of this section, we focus on SNP-level evaluation, which is a priori more favor-

able to SNP selection methods than to group selection methods. We are interested in comparing

the methods under this evaluation setting which is particularly challenging for the proposed

approach.

4.3.1.2 Efficiency of LD block inference

sigBlock = 4 sigBlock = 8
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FIGURE 4.5: Average pAUC versus correlation level ρ for the proposed method (“ld block-
GL”, black solid lines) and an oracle version where the LD blocks are assumed to be known

(dashed red lines), for sigBlock ∈ {4, 8}.

The goal of this section is to quantify the inference of the LD blocks (the first two steps in

Section 4.2.1) on the global performance of the proposed method. In order to do so, we com-

pare the performance of the proposed method to that of the “oracle” version where the Group

Lasso is applied to the true LD blocks, that is, those defined by the simulation settings. Figure

4.5 displays the mean pAUC versus the correlation level for both methods. When the level of

correlation is less than 0.4, we note that the proposed approach is outperformed by the “ora-

cle” Group Lasso. In fact, for low correlation levels, the block inference procedure tends to

under-estimate the number of blocks leading to an estimated group structure with big blocks

and thus a high number of false positives selected by the Group Lasso. However, the difference
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between the performance of the two group-based methods becomes insignificant when the level

of correlation is above 0.4 and when the size of the associated block is greater than 4. This

indicates that the proposed LD block inference method, which combines constrained clustering

and model selection, efficiently captures the underlying dependency structure in this case.

4.3.1.3 Influence of the number of causal SNPs per block

ρ = 0.4
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FIGURE 4.6: The mean pAUC as a function of the number of causal SNPs causalSNP
within a block of size 8, for the proposed method (“ld block-GL”, black solid lines), oracle
Group Lasso (dashed red lines), Lasso (dotted green lines), Elastic-Net (dash-dotted blue lines)

and SMA (“univ”, dashed light blue lines), for ρ = 0.4.

We investigate the robustness of the 5 approaches to the parameter causalSNP, that is, the

number of relevant variables within a block of size 8. Figure 4.6 displays the pAUC as a function

of causalSNP for ρ = 0.4.

These results illustrate the robustness of the proposed group approach to an increasing number

of causal SNPs, which is not the case of its 3 competitors. Indeed, the performance of the

group strategies remain constant when that of the classical approaches deteriorate significantly

as soon as the number of relevant SNP within the block exceeds 2. More specifically, the Group

Lasso selects the associated block of 8 SNPs for both correlation levels. On the contrary, the
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Lasso fails to recover the true relevant SNPs if there are correlations among the variables. As

expected, the Elastic-Net performs a little better than the Lasso when the correlation structure is

strong enough for the grouping effect of this model to be effective (ρ ≥ 0.4).

4.3.1.4 Influence of the Minor Allele Frequency distribution

Our simulation model adapted from Wu et al. (2009) allows to reproduce the group-structured

correlation that characterizes the GWAS data (see Figure 4.3). However, as noted by a reviewer,

fixing the cutoff parameter c at the first quantile of the standard normal distribution as in Wu et al.

(2009) generates unrealistic Minor Allele Frequency (MAF) distributions. To address this point,

we simulated genotype matrices where the MAF of the SNPs are uniformly sampled between

0.05 and 0.5. This roughly corresponds to the MAF distribution observed in a real GWA study

(Dalmasso et al. 2008), and MAF= 0.05 is a commonly-used threshold to partition variants into

rare and common.

We then performed the same simulation study presented above adapting the dimension param-

eters to the new range of MAF. Specifically, we used n = 1, 000 in order for variants with a

low MAF to be observed frequently enough. Accordingly, the R2 ratio was lowered to 0.01

in order for the difficulty of the problem to be similar. The number of markers was increased

to p = 4, 096 in order to maintain p � n. Finally, groups of sizes 2, 2, 4, 8, 16, and 32 were

replicated 64 times, yielding a total of 384 groups.

The results are shown in Figures 4.7 and 4.8 and conclusions are almost identical to those of the

previous subsections. Firstly, for the scenario with an isolated causal SNP as in Section 4.3.1.1

and for the scenario with an increasing number of causal markers as in Section 4.3.1.3, the

ordering of the performance of all the methods remained unchanged with a general increase for

all the approaches due to the less stringent high-dimensionality ratio n/p compared to the ratio

used in the previous subsections. Secondly, the first two steps of the proposed approach were

able to perfectly retrieve the underlying block structure, even with low values of the correlation.

In contrast, performance curves in scenario 4.3.1.2 were superimposed only for ρ ≥ 0.4. This

difference can be explained by the fact that increasing the number of individuals n led to a more

salient LD block structure.
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FIGURE 4.7: The mean pAUC versus the size of the LD block containing a single causal SNP
sigBlock for the proposed method (“ld block-GL”, black solid lines), oracle Group Lasso
(dashed red lines), Lasso (dotted green lines), Elastic-Net (dash-dotted blue lines) and SMA
(“univ”, dashed light blue lines), for ρ = 0.4. Left: SNP-level evaluation. Right: block-level

evaluation.
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FIGURE 4.8: The mean pAUC as a function of the number of causal SNPs causalSNP
within a block of size 8, for the proposed method (“ld block-GL”, black solid lines), oracle
Group Lasso (dashed red lines), Lasso (dotted green lines), Elastic-Net (dash-dotted blue lines)

and SMA (“univ”, dashed light blue lines), for ρ = 0.4.
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4.3.2 Results on semi-simulated data

In order to control the causal SNPs while considering a realistic dependance structure among the

SNPs, we used semi-simulated data, where the genotypes come from a real GWA study and the

phenotypes are simulated using the linear model presented in Section 4.2.5 with pre-determined

causal SNPs. This type of simulation allows to study a data set with a real linkage disequilibrium

structure while having a ground truth. The genotype data correspond to the first p = 2, 048 SNPs

of chromosome 22 for n = 100 individuals from a GWA study on HIV (Dalmasso et al. 2008).

This data set is described in more detail in Section 4.3.3. The LD block structure was firstly

inferred using the first steps of the two group-based approaches:

• CHC-Gap : the proposed constrained hierarchical clustering followed by the Gap statistic.

• CI : the default confidence intervals method used in PLINK.

The procedure CHC-Gap estimated 225 blocks and the procedure CI inferred 993 blocks includ-

ing 555 blocks of size 1 (single SNPs). Similar to the previous simulation study, 300 continuous

phenotypes were generated by increasing the number of relevant variables causalSNP within

a block of size 8. Figure 4.9 displays the pAUC as a function of causalSNP.

CHC-Gap CI
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FIGURE 4.9: The mean pAUC as a function of the number of causal SNPs causalSNPwithin
a block of size 8, for the haplotype association method (“plink”, black solid line), oracle Group
Lasso (dashed red lines), Lasso (dotted green lines), Elastic-Net (dash-dotted blue lines) and
SMA (“univ”, dashed light blue lines). Left: The LD blocks inferred using CHC-Gap. Right:

The LD blocks inferred using CI.
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Given the blocks estimated with CHC-Gap, we compared the performance of the proposed

method to that of the non-grouping approaches (left panel of Figure 4.9). As in Section 4.3.1.1,

for causalSNP ∈ {1, 2}, the proposed approach is outperformed by its competitors because

of the high number of false positives generated by the group selection. Conversely, the perfor-

mance of the competing methods deteriorate significantly as soon as causalSNP > 2 which

is not the case of the Group Lasso. This result is also consistent with those obtained in Section

4.3.1.3.

Similarly, given the block structure inferred with CI, we investigated the robustness of the oracle

Group Lasso, the haplotype association approach and the 3 non-grouping methods to the param-

eter causalSNP (right panel of Figure 4.9). Comparing haplotype association and Group

Lasso approaches, we observe a difference of performance when one unique causal SNP is in-

cluded in a block. The drop in performance of the Group Lasso is due to the difference in

the block structure: as explained in Section 4.3.1.1, the Group Lasso penalty increases with

block size, making it difficult for this method to select the correct block in presence of many

smaller blocks. In practice, this is not problematic as the block selection step in the proposed

approach yields larger blocks. On the contrary, the haplotype association method performs a

p-value correction that takes the block structure into account, but the p-value of the causal SNP

is so small that the adjustment hardly reduces the significance of the block. Furthermore, as in

Section 4.2.5, it is remarkable that Group Lasso outperforms competing approaches as soon as

causalSNP > 2 even for SNP-level evaluation.

The consistency between the results of Sections 4.3.1 and 4.3.2 suggests that the simulation

setting used in Section 4.3.1 efficiently mimics a realistic genotyping data set.

4.3.3 Analysis of HIV data

4.3.3.1 Data set

The HIV data set consists of p = 20, 811 SNPs genotyped for n = 605 Caucasian subjects and

the plasma HIV-RNA level as phenotype. It corresponds to the phenotype and the genotype data

related to the chromosome 6 of the GWA study conducted by Dalmasso et al. (2008). A small

number of SNPs were discarded from the study because they generated undefined values of LD.

The filtered data set thus contained 20, 756 SNPs. Missing values were imputed using the Bio-

conductor R package snpStats (Clayton 2013). For the proposed approach, this imputation
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was performed after the constrained clustering described in Sections 4.2.1.1 and 4.2.1.2, as the

proposed constrained clustering algorithm handles missing values. The same data set was used

to perform the haplotype association approach. Each of the compared models was adjusted for

the gender of the patient.

4.3.3.2 Block inference
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FIGURE 4.10: Histograms of the estimated block sizes of the HIV data. Left: the histogram of
the block sizes estimated by the first 2 steps of the proposed method. Right: the histogram of

the block sizes estimated by the first step of the haplotype association approach.

The first step of inferring the LD blocks applied to the HIV data estimated 1,756 blocks with

B = 500 null reference data sets generated in the Gap statistic algorithm. The distribution of

the sizes of the obtained blocks is represented in the histogram of Figure 4.10 (left panel). The

median block size is close to 10, and the size of the vast majority of blocks is less than 30. The

first step of the haplotype association method estimated 9,003 haplotype blocks including 4,699

single SNPs. The size distribution of the obtained blocks is represented in the histogram on

the right panel of Figure 4.10. Unlike the LD structure inferred by the proposed approach, the

haplotype blocks are much smaller with an average block size of 2.

4.3.3.3 Results on HIV data

We were able to reproduce the results of Dalmasso et al. (2008): the SNPs identified by SMA

correspond to the 15 SNPs selected by Dalmasso et al. (2008) at a target False Discovery Rate

(FDR) level of 25%. Most of these SNPs are located in the major histocompatibility complex
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FIGURE 4.11: A linkage disequilibrium (r2) plot with the inferred block structures (black and
red contour lines) for a set of 68 contiguous SNPs located on the MHC region. Left: within
the structure inferred by the proposed method, the blocks selected by the Group Lasso are
delimited with a red contour line. The SNPs selected by SMA are plotted with a red star (*),
and the SNPs missed by Lasso with a blue dash (-). Right: within the structure inferred by the
haplotype association method, the blocks selected by the competing method are delimited with

a red contour line.

(MHC) region 6p21. A linkage disequilibrium plot of a set of 68 contiguous SNPs within this

region is represented in Figure 4.11. The SNPs marked with a red star (*) are those selected by

SMA. The first 20 SNPs selected by the Lasso are the same as those selected by the univariate

model except for 3 SNPs; the names of these 3 SNPs are marked with blue dashes (-) in the left

panel of Figure 4.11.

The local block structures inferred by both the clustering and model selection steps of the pro-

posed method and the competing haplotype association method are also highlighted in this figure

(contour lines). The mean LD within the largest two blocks of the left panel is r2 = 0.41 and

r2 = 0.55, respectively. The Lasso was able to recover two of the four SNPs identified by Dal-

masso et al. (2008) in the first block, and two of the three SNPs identified by Dalmasso et al.

(2008) in the second block. This is consistent with the fact that the Lasso is not designed to

select correlated variables, as already discussed in Section 4.2.2.

Among the four blocks inferred by the proposed method in this region, the three blocks with

a red contour line are among the first 15 blocks selected by the Group Lasso. Almost all of

them are of size more than 10 SNPs, except for the two blocks containing 3 and 4 SNPs already

identified by Dalmasso et al. (2008), as displayed in Figure 4.11. Each of the 8 remaining SNPs

selected by SMA are located in a different LD block of average size around 18 SNPs. The fact
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that these SNPs have not been detected by the Group Lasso is consistent with the results of our

simulation data. Indeed, Figure 4.4 showed that the Group Lasso tends to select small groups of

SNPs because of its default penalty.

Contrary to the Lasso or the Elastic-Net, the proposed approach detected groups of SNPs that

had not been identified by Dalmasso et al. (2008). Some of these groups of SNPs may contain

interesting candidates, as further discussed below in the description of Figure 4.12.

Similarly to the proposed method, we focused on the first 15 blocks (including single SNPs)

selected by the haplotype association approach. The 5 blocks selected by the haplotype associ-

ation method in the same region represented in Figure 4.11 are represented with a red contour

line. The competing approach was able to recover all of the 7 SNPs identified by Dalmasso

et al. (2008) and located in this region. However, it detected one group of SNPs that had not

been identified in the previous study. This difference could be due to the strong LD (r2 = 0.81)

between the SNPs of this block and the SNPs of the block containing 4 markers previously iden-

tified as associated with the phenotype.
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FIGURE 4.12: A comparison between the results of Dalmasso et al. (2008) and the group-
ing methods on HIV data. The gray histogram represents the distribution of the (− log10-
transformed) SMA p-values obtained by Dalmasso et al. (2008). Each of the first 15 blocks
selected by the proposed approach (left panel) and the first 15 blocks selected by the haplotype
association method (right panel) are represented by a colored horizontal segment ranging from
the smallest to the largest SMA p-value of the block. Vertical black segments indicate SMA
p-values of each SNP in these LD blocks. Vertical lines highlight the significance threshold
used in Dalmasso et al. (2008) (dashed line) and the standard (non multiplicity-corrected) level

of 0.05 (dash-dotted line).
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Each of the first 15 LD blocks selected by the two grouping strategies are represented as a col-

ored horizontal segment in Figure 4.12, where the x axis corresponds to the (− log10-transformed)

SMA p-values obtained by Dalmasso et al. (2008).

For the haplotype association approach (right panel of Figure 4.12), 6 of the 15 blocks consist of

a single SNP, that had already been identified in Dalmasso et al. (2008). Moreover, for several

of the 15 LD blocks selected by the proposed approach (left panel of Figure 4.12), all of the

SMA p-values of the block are smaller than the (non multiplicity-corrected) 0.05 level (vertical

dash-dotted line at − log10(p) = 1.3). Therefore, although we do not claim that all of these

groups of SNPs are relevant to HIV, we believe that some of them might contain interesting

candidates. The dashed vertical line highlights the significance threshold used in Dalmasso

et al. (2008). Therefore, the 4th and 14th blocks which cross the vertical dotted line correspond

to the two largest blocks in the left panel of Figure 4.12, which respectively contain 4 and 3

SNPs previously identified by Dalmasso et al. (2008). We also believe that Figure 4.12 is an

interesting diagnostic plot to pinpoint candidate groups of SNPs associated with the disease.

Further replication or meta-analysis work would be required to confirm the association between

these novel candidates and the phenotype.
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4.4 Conclusions

In this chapter, we have proposed a three-step approach that takes into account the biological

information of the linkage disequilibrium between variables by firstly inferring LD blocks, then

estimating the number of such blocks, and finally performing Group Lasso regression on these

inferred groups. This method is implemented as an R package. Although we have used a con-

tinuous phenotype in our simulations and applications, the approach described in this chapter

can be extended to the study of categorical phenotypes, by using the logistic version of each

regression model.

We have demonstrated using simulations that the proposed approach efficiently retrieves the

underlying block structure for realistic levels of LD between SNPs. Moreover, state-of-the-

art SMA and penalized regression approaches Lasso and Elastic-Net are outperformed by our

proposed method for the purpose of identifying blocks containing causal SNPs. We have argued

that selecting blocks (rather than individual SNPs) associated with a phenotype is a sensible

goal in the GWAS context, where the proportion of heritability explained by individual SNPs is

generally low. Interestingly, although the proposed method can only select groups of SNPs and

not individual SNPs, our results on simulated data suggest that this approach performs better

than state-of-the-art approaches in terms of selection of causal SNPs as soon as the number of

associated SNPs within the same LD block exceeds 2.

We have also applied this method to semi-simulated data with a real genotype matrix and a

simulated phenotype. As soon as the number of causal markers within a block exceeds 2, the

proposed approach shows remarkable performance compared to non-grouping classical strate-

gies, and to an haplotype association method that explicitly takes the block structure information

into account. This result suggests that the proposed method is adapted to a real linkage disequi-

librium structure.

Finally, an application of this method to HIV data illustrates the ability of the method to (i) partly

recover the signal identified by single-locus methods, and (ii) pinpoint previously overlooked

associations. These results demonstrate the relevance of the approach, and thereby illustrate the

importance of tailored integration of biological knowledge in high-dimensional genomic studies

such as GWAS.

A limitation of our proposed method is that it does not provide a significance assessment for

the selected groups. Deriving reliable p-values for regression coefficients in high-dimensional,
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correlated settings is a challenging research area in the machine learning and statistics fields in

general (Bühlmann 2013, Chatterjee & Lahiri 2011). This issue is discussed in the conclusion

section of the manuscript.



Chapter 5

An efficient implementation of

adjacency-constrained hierarchical

clustering of a band similarity matrix

5.1 Algorithmic complexity

An algorithm is a procedure that solves a general, well-specified problem. An algorithmic

problem is specified by describing the set of inputs it must work on and of its outputs after

running the algorithm. An algorithm is then a set of rules that describes a finite sequence of

steps to transform these input values into the required output values.

Let us take a toy example of a simple algorithm in order to illustrate the link between problem

and algorithm. Algorithm 3 describes the steps for incrementing the elements of an array T of

n integers by a.

Algorithm 3
1: procedure INCREMTAB(An array T of size n, an integer a)
2: for i = 1 to n do
3: T [i]← T [i] + a
4: end for
5: return T
6: end procedure

It is indeed a finite sequence of operations, browsing the elements of the array T , incrementing

them by a and providing an output responsive to the problem, namely the array T with the new

81
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values. Note that an algorithm is not a computer program. The implementation of an algorithm

in a programming language produces a program.

An algorithm defined for a given problem is correct if it solves it. The efficiency of an algorithm

typically considers two criteria:

1. Its running time. The longer the algorithm takes to complete, the less efficient it is

considered.

2. The memory space it uses. The more memory the algorithm uses, the less efficient it is

considered.

The optimization of these two criteria is generally antagonistic. Indeed, it is common to increase

the memory space used by an algoritm in order to reduce its execution time, by storing a set of

previously calculated results for example. We will see later that this chapter illustrates well this

tradeoff.

In the previous example of algorithm for incrementing the values of an array, the time for execut-

ing Algorithm 3 for an array of n elements of course depends on the speed of increment of each

element of the array. But it depends primarily on the size n of the array. Thus, incrementing

the elements of an array of size 2n will take twice longer than incrementing the elements of an

array of n elements, and this regardless of the speed of the operation of increment. Therefore,

we seek to measure the efficiency of an algorithm, in terms of execution time, independently

of the processor speed and the programming language used to implement the algorithm. To do

so, we use the notion of complexity. The complexity is the number of elementary operations

(indivisible operations) necessary for the execution of the algorithm. This number is generally

expressed as a function of the size of the input. In the example of Algorithm 3, the operation of

increment must be performed n times, whatever the increment speed.

The exact number of elementary operations required to perform an algorithm is generally a nu-

merical function of the size of the input. This number of operations can vary according to certain

specific input values. It may also depend on implementation details, creating a constant number

of operations in addition to perform. For this reason, we are usually studying the asymptotic

efficiency of algorithms. That is, we are concerned with how the running time of an algorithm

increases as the size of the input increases. For instance, indicating that the complexity of an

algorithm is of T (n) = 1250n2 + 15n+ 830 log10(n) + 50 provides us little extra information
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than the observation that “the time grows quadratically with n”. It is then much easier to talk

in terms of simple upper bound of complexity functions using the Big-O (O) notation. The O
simplifies the complexity analysis by ignoring levels of detail that do not impact this complexity

as the size of the input grows. Mathematically speaking, for two functions f and g, f = O(g)

if there is a positive constant c such as f(n) ≤ cg(n) for n sufficiently large. In other words,

the notation f = O(g) expresses that f is smaller or equal to g if the constant factors (additive

and multiplicative) are ignored. For instance, if f(n) = 100n2 + 10n and g(n) = n2, then

f = O(g), that is f(n) = O(n2). More details and examples of algorithms and complexities

are provided in Skiena (1998) and in Sedgewick (1988).

In addition to its asymptotic complexity, the efficiency of an algorithm is also evaluated by

knowing how it works over all possible inputs. For this reason, we are generally interested in

the worst-case complexity of the algorithm, that is the function of n defined by the maximum

number of elementary operations required for any input of size n. All the complexities discussed

in this chapter are worst-case complexities.

The notion of space complexity also exists. It is the maximum amount of space used at any

step of the algorithm, ignoring the space used by the input. The notation for space complexity

is the same as the notation for time complexity: it is expressed as a function of the input size.

Thereafter, when the term complexity is used without any specification, it will refer to time

complexity, that is the number of elementary operations.

Some types of worst-case complexities are named as follows, where n is the size of the input:

• Sublinear algorithms:

– Algorithms in constant time have a complexity of T (n) = 1. The number of oper-

ations remains constant, regardless of the size of the input.

– Logarithmic algorithms have a complexity of T (n) = log(n). The complexity

increases slightly with n. This type of complexity is found in a loop where the input

size is divided at each iteration. As a matter of fact, the base of the logarithm is

usually ignored when analyzing algorithms because multiplicative terms are ignored

in the O notation.

• Linearithmic algorithms have a complexity of T (n) = n log(n). Such complexity

grows faster than a linear one but slower than any polynomial in n with exponent strictly

greater than 1.
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• Polynomial algorithms have a complexity of T (n) = nc, where c is a constant. Some

polynomial algorithms are named specifically:

– Linear algorithms have a complexity of T (n) = n. This is typically the com-

plexity of a loop performing n iterations, with a constant number operations at each

iteration, as for Algorithm 3.

– Quadratic algorithms have a complexity of T (n) = n2. It is the complexity of two

nested loops: a loop performing n times a loop performing n iterations.

• Exponential algorithms have a complexity of T (n) = cn , where c is a constant. For

example, listing all the subsets of the set {1, 2, . . . , n} is optimally performed in O(2n).

5.2 The adjacency-constrained hierarchical clustering algorithm

Now that we have introduced some concepts of algorithmics, let us study the complexity of the

basic algorithm of a hierarchical clustering with adjacency constraint using the similarity Sim,

applied to a set of p items X.1,X.2, . . . ,X.p.

5.2.1 Time and space complexities

Algorithm 4 presents the basic steps of an adjacency-constrained hierarchical clustering. It is

in fact a high-level description of the clustering algorithm, in the sense that it does not show all

the details of the clustering procedure such as the linkage criterion used. We will see later that

an implementation-level description of this algorithm is required to precisely determine its time

and space complexities.

In order to determine the complexity of the constrained hierarchical clustering algorithm, the

number of elementary operations required at each step of the clustering will be counted. Table

5.1 details the complexities of Algorithm 4 line by line. As regards lines 7 and 8, their complex-

ity depends on the implementation of the algorithm: if all distances between all possible pairs

of clusters have already been calculated and stored then lines 7 and 8 would have complexity

of O(1). And the number of elementary operations necessary to pre-calculate these distances

should be added to the complexity of the whole algorithm. Otherwise, lines 7 and 8 have a

worst-case complexity of O(p).
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Algorithm 4 The constrained hierarchical clustering algorithm

1: procedure CAHC(X ∈ Rn×p, Sim)
2: C ← {Ci = {X.i}, i ∈ 1, . . . , p} . each item in separate cluster
3: D ← {1− Sim(X.i,X.(i+1)), i ∈ 1, . . . , p− 1} . the (p− 1) vector of dissimilarities

. between adjacent items
4: for step = 1 to p− 1 do
5: {Ci? , Ci?+1} ← arg mini∈{1,...,p−step}D(Ci, Ci+1) . find the closest pair of

. adjacent clusters
6: C ← C \ {Ci? , Ci?+1} ∪ {Ci? ∪ Ci?+1} . updating the clustering
7: d1 ← D(Ci?−1, Ci? ∪ Ci?+1)
8: d2 ← D(Ci? ∪ Ci?+1, Ci?+2)
9: D ← D \ {D(Ci?−1, Ci?), D(Ci? , Ci?+1)} ∪ {d1, d2} . updating D

10: end for
11: return T
12: end procedure

Line number in Algorithm 4 Number of elementary operations
line 2 p
line 3 p− 1
line 5 p− step
line 6 p− step

line 7 (same for line 8) depends on the implementation
line 9 p− step

TABLE 5.1: Number of elementary operations required at each step of Algorithm 4.

Hence, given that the operations of lines 5 to 9 are executed within a loop of p − 1 steps then

the number of elementary operations necessary for the performance of Algorithm 4 is:

T4(p) = p︸︷︷︸
line 2

+ p− 1︸ ︷︷ ︸
line 3

+

p−1∑
step=1︸ ︷︷ ︸
the loop

(p− step)︸ ︷︷ ︸
line 5

+ (p− step)︸ ︷︷ ︸
line 6

+ 2(p− 1)︸ ︷︷ ︸
the worst-case complexity

of lines 7 and 8

+ (p− step)︸ ︷︷ ︸
line 9

 .

As seen in Section 5.1, the expression of T4 can be summarized by: the computation time of

the constrained hierarchical clustering algorithm increases quadratically with the number p of

items. In other words, the complexity of Algorithm 4 is in O(p2).

The space complexity of the high-level cAHC algorithm depends on its implementation. For

instance, if the p2 distances between all possible pairs of clusters are calculated and stored

beforehand then the space complexity of Algorithm 4 is in O(p2). Such an implementation is

used in the function chclust of the R package rioja. Conversely, if the p2 distances are
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calculated on the fly, only the size of internally created objects such as the vectors of distances

and clusters will count, resulting in a space complexity of O(p).

Note that Algorithm 1 is a particular case of Algorithm 4. More particularly, the cWard LD

algorithm uses ld(X.i,X.j) as a similarity between the items X.i and X.j (that are SNPs) and

the Ward’s criterion as a linkage function. Therefore, the cWard LD algorithm has the same

algorithmic properties as the cAHC algorithm, that is, it has a quadratic behavior in computation

time with the number p of SNPs (see Figure 5.1).

0 5000 10000 15000

0
50

10
0

15
0

20
0

p

t (
s)

p2
t_cWard_LD

FIGURE 5.1: Computation time (in seconds) of the cWard LD algorithm (in black) and theo-
retical time complexity (p2, in red) as functions of the number of markers p.

Concerning the implementation of Algorithm 1, a naive implementation would consist in (i)

calculating the p(p − 1)/2 LD measures for each pair of SNP and (ii) performing constrained

hierarchical clustering on the obtained similarity matrix. As p is typically of the order of 104

to 105 for a single chromosome in a standard GWAS, such an implementation with space com-

plexity of O(p2) is not appropriate. Indeed, for a single chromosome of length p = 105, this

algorithm would require storing of the order of 1010 numeric values of LD before applying the

clustering algorithm. To overcome this difficulty, our implementation of the constrained cluster-

ing takes as input the n×pmatrix of genotypes X, and calculates the LD measures incrementally

as they are required by the clustering. The LD measures are calculated directly from genotypes

using the Bioconductor R package snpStats (Clayton 2013, Clayton & Leung 2007), which

handles missing values.
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5.2.2 Scalability to high-dimensional data

The scalability of the adjacency-constrained hierarchical clustering algorithm to high-dimensional

data were evaluated on SNP data and using LD similarity.

By first applying the function chclust (R package rioja) to simulated genotype matrices

with an increasing number of SNPs, we noticed that this implementation could not handle more

than 8000 SNPs to be clustered because of memory issues.

We then run the cWard LD algorithm using the implementation described in Section 5.2.1.

Table 5.2 presents the computation times of this procedure applied to p SNPs genotyped in

100 individuals for different values of p. More particularly, we can notice that applying the

cWard LD algorithm to 32768 SNPs takes more than 22 minutes. Furthermore, it takes 4.5

hours (on a standard 2.2 Ghz single CPU) to analyze a whole genome of 500k simulated SNPs

(for Affymetrix 500k arrays) genotyped on 100 individuals, when the algorithm is applied chro-

mosome by chromosome since it uses the LD measure as a similarity.

Number of SNPs 256 1024 4096 16384 32768

Running time (min) 0.004 0.0278 0.3617 5.5168 22.067

TABLE 5.2: Running time of the cWard LD algorithm applied to p SNPs genotyped in 100
individuals.

These computation times of the cWard LD algorithm, and more generally the quadratic com-

plexity of the adjacency-constrained hierarchical clustering remain unsatisfactory for many rea-

sons such as:

• such complexity makes the BALD approach, presented in the preceding chapter, com-

putationally intensive. Indeed, B = 500 adjacency-constrained hierarchical clustering

procedures needed to be run within the Gap statistic approach for estimating the optimal

number of clusters.

• the number of SNPs clustered in 4.5 hours is very small compared to the 160 million

of SNPs that have been identified in humans and that could be genotyped using high-

throughput sequencing technologies.

• other potential applications, such as HiC data analysis, also require the use of algorithms

that are adapted to high-dimensional data.
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Therefore, the remainder of this chapter will be dedicated to the description of an optimized

implementation of the adjacency-constrained hierarchical clustering algorithm.

5.3 A generalized and efficient implementation of the adjacency-

constrained hierarchical algorithm

The proposed implementation of the cWard LD algorithm takes advantage of the fact that SNPs

which are far apart along a chromosome are not in linkage disequilibrium. Using this fea-

ture, it is possible to decrease the time complexity of the cWard LD algorithm from O(p2) to

O(p log(p) + ph) and maintain its space complexity linear in p, where h� p is a user-defined

parameter such that the LD between two SNPs distant from more than h can safely be set to 0.

As a matter of fact, the following improvements can be applied to any adjacency-constrained hi-

erarchical clustering algorithm that uses Ward’s criterion, regardless of the similarity (or dissim-

ilarity) chosen between the items. Consequently, we will be considering thereafter a similarity

matrix in general so the input variable Sim used in the generalized cWard algoritm (Algorithm

5) is not necessarily a LD similarity and the items {X.i, i = 1, . . . , p} we aim to cluster are

not necessarily SNPs. Note also that, unlike the cWard LD algorithm, the generalized cWard

algorithm takes as input the parameter h. This algorithm is, again, a high-level description of

the clustering procedure which explains the fact that h does not explicitly appear in the body of

the algorithm.

Algorithm 5 Ward’s constrained hierarchical clustering applied to a h-band similarity matrix

1: procedure CWARD(X ∈ Rn×p, Sim, h)
2: C ← {Ci = {X.i}, i ∈ 1, . . . , p} . each SNP in separate cluster
3: D ← {1− Sim(X.i,X.(i+1)), i ∈ 1, . . . , p− 1} . the (p− 1) vector of dissimilarities

. between adjacent SNPs
4: for step = 1 to p− 1 do
5: {Ci? , Ci?+1} ← arg mini∈{1,...,p−step}D(Ci, Ci+1) . find the closest pair of

. adjacent clusters
6: C ← C \ {Ci? , Ci?+1} ∪ {Ci? ∪ Ci?+1} . updating the clustering
7: d1 ← D(Ci?−1, Ci? ∪ Ci?+1) . using Equation 3.6
8: d2 ← D(Ci? ∪ Ci?+1, Ci?+2)
9: D ← D \ {D(Ci?−1, Ci?), D(Ci? , Ci?+1)} ∪ {d1, d2} . updating D

10: end for
11: return T
12: end procedure
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Unlike Algorithm 4, the introduction of the user-parameter h in Algorithm 5 incorporates a

biological constraint that allows to reduce the number of similarities to be calculated from p2 in

the cAHC algorithm to ph in the cWard procedure. Nevertheless, similarly to Algorithm 4, this

high-level description of Algorithm 5 still has a complexity of O(p2) since many steps within

its main loop (lines 4 to 10), and more specifically those at lines 5, 7 and 8, are linear in p. We

then need to make these steps sublinear in time (constant or logarithmic) in order to avoid the

quadratic growth of the clustering complexity with p.

To this end an implementation trick will be described, in Section 5.3.2, in order to reduce the

complexity of the operations in lines 7 and 8 of Algorithm 5. Then, Section 5.3.3 presents a

new data structure that is used to optimize the complexity of the line 5 step of Algorithm 5.

These improvements will result in an implementation-level description of the optimized cWard

algorithm in Section 5.3.4.

5.3.1 The h-band similarity matrix

The introduction of a parameter h aims to control the maximum lag between items X.i and X.j

for similarity calculations. Thus, the similarity measures are computed between these two items

only if i and j differ by no more than h. This lag of size h leads to a similarity matrix in band

with non zero coefficients within a band of width 2h. An example of such a h-band similarity

matrix is illustrated in Figure 5.2.

Recall that, by using the Ward’s criterion coupled with the LD kernel trick, the distance between

two clusters A and B equals to:

dwl(A,B) =
pApB
pA + pB

(
1

p2A
SA,A +

1

p2B
SB,B −

2

pApB
SA,B

)
, (5.1)

with

SA,B =
∑

i∈A,j∈B
ld(X.i,X.j).

A condition for using this formula with a similarity kernel other than the LD only requires that

the similarity between an item and itself equals to 1, which corresponds to diagonal elements of

the similarity matrix in Figure 5.2.
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heatmap.2(as.matrix(LD), Rowv=FALSE, notecol="black",
dendrogram="none", symm=TRUE,
cellnote=round(as.matrix(LD),3),
col=myPalette, density.info="none", trace="none")
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FIGURE 1 – A heatmap of the r2 LD measures with p = 10 and h = 3. The diagonal
terms of the matrix are 0 (by convention).

4

FIGURE 5.2: Heatmap of a similarity matrix with p = 10 and h = 3.

5.3.2 The pencils’ trick

The implementation trick described in this section ensures that the steps in lines 7 and 8 of

Algorithm 5 are each performed in constant time, that is the complexity of the calculation of the

new distances step is of O(1).

According to Equation 5.1, SAA corresponds to the sum of the similarity measures between the

items of cluster A. Similarly SBB equals to the sum of the similarity measures between the

items of clusterB and SAB is the sum of the similarity measures between items of clusterA and

those of cluster B (see Figure 5.3).

Therefore, as the distance dwl(A,B) between any pair of clustersA andB is fully known as soon

as the quantities SAA, SBB and SAB are calculated, the latter will be computed at the beginning

of the clustering algorithm, for all possible pairs of clusters A and B using pencil-shaped areas

that appear in the similarity matrix. More particularly, as displayed in Figure 5.4, SAA can be

calculated by adding the sum of the similarity measures contained in the red-outlined pencil-

shaped area (a right oriented pencil) to the sum of the similarity measures contained in the

green-outlined pencil-shaped area (a left oriented pencil) and deducting from the total the sum
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FIGURE 5.3: A schematics of the h-band similarity matrix for illustration of the quantities
SAA, SBB and SAB used in the calculation of dwl(A,B).

of the similarity measures contained in the full diagonal band of width 2(max(A) −min(A)).

max(A) (min(A)) denotes the maximum (minimum) of the positions (from 1 to p) of the items

contained in A.

The same calculation method can be applied to compute SBB . Once SAA and SBB calculated,

as shown in Figure 5.5, SAB corresponds to half of the sum of the similarity measures contained

in the blue-outlined pencil-shaped area (left oriented pencil) plus the sum of the similarity mea-

sures contained in the yellow-outlined pencil-shaped area (right oriented pencil) minus the sum

of the similarity measures on the full diagonal band of width 2h minus SAA minus SBB .

Finally, it appears that, at each step of the clustering, computing Ward’s criterion between any

two clusters requires only the calculation of sums of similarity measures within pencil-shaped

areas that can be fully defined by three parameters:

• their width: hLoc.

• their end-point: lim.

• their orientation: sense="right’’ or "left’’.

For example, the red-outlined pencil-shaped area presented in Figure 5.4 is well defined by

setting: hLoc = 2(max(A) − min(A)), lim = max(A) and sense ="right’’. Conse-

quently, the beginning of the clustering algorithm will consist in calculating the sums of all the
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FIGURE 5.4: A schematics of the pencil-shaped areas used for calculating SAA. SAA equals to
the sum of the similarity measures contained in the pencil-shaped red-outlined area to the sum
of the similarity measures contained in the pencil-shaped green-outlined area and deducting
from the total the sum of the similarity measures contained in the full diagonal band of width

2(max(A)−min(A)).

FIGURE 5.5: A schematics of the pencil-shaped areas used for calculating SAB . SAB equals
to half of the sum of the similarity measures contained in the pencil-shaped blue-outlined area
plus the sum of the similarity measures contained in the pencil-shaped yellow-outlined area
minus the sum of the similarity measures on the full diagonal band of width 2h minus SAA

minus SBB .

pencil-shaped areas of depth hLoc ∈ {1, . . . , h}, of end points lim ∈ {1, . . . , p} and of the

two possible orientations. These values are stored in two arrays of sizes p× h corresponding to

the right-oriented and left-oriented “pencils”. As a result, at each step of the clustering, assess-

ing the two distances with the newly-merged cluster (lines 7 and 8 of Algorithm 5) will consist

in a simple access to the adequate values in the two arrays of pencils sums.
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More details on calculating sums of similarities within pencil-shaped areas are described in

Appendix C.

Note that, the improvement suggested so far is not yet sufficient since the line 5 operation of

Algorithm 5 is still linear in time, resulting in a quadratic complexity of the whole algorithm.

5.3.3 Reducing the time complexity of finding the best fusion

The purpose of this section is to introduce the concept of binary heaps and describe the usage of

this data structure within the cWard algorithm in order to optimize the complexity of the line 5

step of Algorithm 5, that is finding the best fusion in the sense of the Ward’s criterion.

5.3.3.1 Binary heaps

Heaps are, after the search trees, the second most studied type of data structure (Brass 2008).

As abstract structures they are also called priority queues. The heap structure was originally in-

troduced by Williams (1964) for the very special application of sorting, although he did already

present it as a separate data structure with possibly further applications.

A binary heap is an array object that can be viewed as a partially ordered complete binary tree.

FIGURE 5.6: A min-heap viewed as a binary tree and an array. The min-heap has height 3.

It is a binary tree means that, it is a tree data structure in which each node has at most two

children, which are referred to as left child and right child. Then, when the heap is stored as an



An efficient implementation of adjacency-constrained hierarchical clustering 94

array A, the root of A is A[1], and given the index i of any node in A, the indices of its parent

and children can be determined as follows:

Parent(i) = bi/2c

Left(i) = 2i

Right(i) = 2i+ 1.

The height of a binary heap is defined as the number of edges of the longest simple path from

the root to a leaf. Since a heap of p elements is based on a complete binary tree, its height is

log2(p).

The binary heap is partially ordered means that there is a partial order relationship between the

value of a node and the values of its children. In a min-heap, as shown in Figure 5.6, the value

of a node is less than or equal to the values of its children. In a max-heap, the value of a node

is greater than or equal to the values of its children. Consequently, the smallest (largest) value

in a min-heap (max-heap) is at the heap’s root. In the rest on the manuscript, we will focus on

min-heaps.

Some basic procedures are applied to min-heap data structures such as:

• DeleteMin which consists in deleting the minimum element (which is the root) from

the min-heap and restoring its properties.

• InsertHeapwhich is the procedure for adding an element to a min-heap by maintaining

the min-heap properties.

• BuildHeap which produces a min-heap from an unordered input array.

The DeleteMin procedure: There is a conventional approach to delete the minimum el-

ement from a min-heap. As the root of the min-heap contains the minimum element, deletion

always happens from the root which is replaced by the last element of the min-heap. However, at

that root position the new element may violate the min-heap property if it is greater than one of

its children. In that case, an operation of percolation down must be applied to the newly-placed

element in order to maintain the min-heap property. The steps of this procedure are detailed in

Algorithm 6.
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Algorithm 6 Percolation down algorithm
1: procedure PERCDOWN(H , p, i)
2: l← Left(i)
3: r ← Right(i)
4: if l ≤ p and H[l] < H[i] then
5: min← l
6: else min← i
7: end if
8: if r ≤ p and H[r] < H[min] then
9: min← r

10: end if
11: if min 6= i then
12: aux← H[i]
13: H[i]← H[min]
14: H[min]← aux
15: PercDown(H, p,min)
16: end if
17: end procedure

Given a min-heap H of p elements and a position i ≤ p, at each step of the percolation down

procedure, the minimum of the elements H[i], H[Left(i)] and H[Right(i)] is determined. And

its index is stored in min (lines 2 to 10). If H[i] is the minimum, then the subtree rooted at node

i is already a min-heap and the procedure terminates. Otherwise, one of the two children has

the minimum element, and H[i] is swapped with H[min] (lines 12 to 14), which causes node i

and its children to satisfy the min-heap property. The node indexed by min, however, now has

the original value H[i], and thus the subtree rooted at min might violate the min-heap property.

Consequently, we call percDown recursively on that subtree (line 15).

The DeleteMin procedure applied to a heap of height 3 is illustrated in Figure 5.7. The root

of the min-heap, which contains the minimum element 2 (panel a), is first replaced by the last

element 14 of the min-heap (panels b and c). Given that the element 14 is greater than its two

children 3 and 4, it is then swapped with the smallest of its children 3 (panel d). Similarly, in

its new place, 14 is also greater than its two children 8 and 10, it is then swapped with 8 (panel

e). It is then in the right place since it has no more children. In this example, the operation of

percolation down was carried out in 2 steps of swaps within a heap of height 3. More generally,

at a percolation down algorithm are performed at most h = log2(p) swap operations for a

min-heap of p elements, resulting in a time complexity of O(log2(p)) = O(log(p)) for the

DeleteMin procedure.
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FIGURE 5.7: The procedure DeleteMin(H). The root of the tree 2 (a) is deleted and re-
placed by the last element of the tree (b and c). The min-heap property is restored by succes-

sively swapping 2 with the smallest of its children 3 (d) and 8 (e).

The InsertHeap procedure: To add a new element to a min-heap H of p elements, first a

new node is put at the right of the last leaf of the tree. Given that this insertion may break the

order property of the min-heap, it is then necessary to perform a percolation up operation, that is

the newly-added node is successively swapped with its parent, until the value of the parent node

is less than that of the inserted node. The percolation up operation applied to the new min-heap

of size p′ = p+ 1, at its last position p′, is described in Algorithm 7.

Algorithm 7 Percolation up algorithm

1: procedure PERCUP(H , p′)
2: pos← p′

3: parent← Parent(pos)
4: while pos > 1 do
5: if H[parent] > H[pos] then
6: aux← H[parent]
7: H[parent]← H[pos]
8: H[pos]← aux
9: else pos← 1

10: end if
11: pos← parent
12: parent← Parent(pos)
13: end while
14: end procedure

In the example of Figure 5.8, the element 2 put at the last position is less than its parent 5, it

is then exchanged with it (panel c). Similarly, 2 is less than its successive parents 4 and 3 so

it is successively swapped with them (panels d and e) and thus reaching the root of tree. For
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FIGURE 5.8: The procedure of InsertHeap(H, 2). The element 2 is inserted at the first free
node of the tree (b). The min-heap property is restored by successively exchanging 2 with its

parents 5 (c), 4 (d) and 3 (e).

the same reasons that for the DeleteMin algorithm, at most h = log2(p) swap operations are

performed at the percolation up for a min-heap of p elements, resulting in a time complexity of

the InsertHeap procedure of O(log2(p)) = O(log(p)).

The BuildHeap procedure: In order to convert an array A of p elements into a min-heap,

successive percolation down procedures must be performed in a bottom-up manner starting from

the middle of the tree as follows:

1: procedure BUILDHEAP(A, p)
2: for i = bp/2c down to 1 do
3: PercDown(A, p, i)
4: end for
5: end procedure

For instance, in the example of Figure 5.9, the 10-element array is first represented as a tree.

Then, starting from the position b10/2c = 5 of the array, corresponding to the node of the

element 2 (blue rectangle 1), down to the top of the tree (that is following the blue rectangles

2 to 5 of Figure 5.9), percolation down operations are successively performed. The proof of

obtaining a min-heap using this algorithm is detailed in Cormen (2009).

Each call of the percolation down procedure costs O(log(p)) in time and the BuildHeap

algorithm makes O(p) such calls. Thus, the running time of the BuildHeap procedure is in

O(p log(p)).
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FIGURE 5.9: The procedure of BuildHeap, showing the data structure before the successive
percolation down operations. The blue rectangles 1 to 5 refer to the steps of the building the

min-heap.

To sum up, Table 5.3 summarizes the complexities of the preceding elementary operations ap-

plied to min-heaps and unordered arrays of size p. These complexities justify the interest in

the min-heap structure. Indeed, when applied to min-heaps, these elementary operations are at

worst linearithmic when integrated within a loop of p operations.

findMin insert deleteMin
unordered array O(p) O(1) O(p)

min-heap O(1) O(log(p)) O(log(p))

TABLE 5.3: A comparison of time complexities of finding the minimum element, inserting
an element and deleting the minimum element operations applied to an unordered array and a

min-heap of size p.

5.3.3.2 Finding the best fusion using a min-heap

The first intuitive idea for using the min-heap structure in order to reduce the complexity of

the step at line 5 of Algorithm 5 consists in storing the vector of distances D in a min-heap

and update it (by deleting the minimal element and adding distances with the newly-formed

cluster) at each step of the clustering. Besides, at each step of the cWard algorithm, the relative

position (from 1 to p) of the pair of clusters corresponding to the minimal Ward’s distance has

to be known for the calculation of the two distances between the newly-formed cluster and its

adjacent clusters. Nevertheless, the simple implementation of D as a min-heap breaks the link
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between the distance between a pair of clusters and the relative position of these clusters among

other clusters. So, in order to maintain this connection, a structure of a “chained array” in

addition to the min-heap has been used. These structures and the relationship between them are

illustrated in Figure 5.10.

FIGURE 5.10: The data structures used in the cWard algorithm and the relationship between
them. The chained array contains information about the pairs of adjacent clusters which are
candidates to fusion (bottom panel): the Ward’s distance between them (“D”), the items con-
tained in the first cluster of the pair (“Cl1”), the items contained in the second cluster of the pair
(“Cl2”), the position of the left-neighbor of the pair (“posL”), the position of the right-neighbor
of the pair (“posR”), and the validity of the fusion (“valid”). The positions in the chained array
of these potential fusions are stored in a min-heap (top panel) according to their corresponding

distances.

More particularly, let consider 8 items {a, b, c, d, e, f, g, h} to be clustered using the cWard

algorithm. The proposed implementation of this algorithm starts by storing information about

the pairs of adjacent clusters which are candidates to fusion: the Ward’s distance between them

(first arrow of the array in Figure 5.10), the items contained in the first cluster of the pair (second

arrow), the items contained in the second cluster of the pair (third arrow), the position of the left-

neighbor of the pair (fourth arrow), the position of the right-neighbor of the pair (fifth arrow) and

finally the validity of the fusion (last arrow). This last logical parameter is initialized to TRUE,

which means that the fusion of the corresponding pair of clusters is still possible. In addition,

the positions in the chained array of the potential fusions {1, 2, . . . , 7} are stored in a min-heap

according to the corresponding distances of the fusions. For instance, in Figure 5.10, the node

of the position 4 has as children the positions 3 and 7 because the distance between the clusters
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d and e (at position 4 in the chained array) is less than or equal to each of the distances between

the clusters c and d (at position 3 in the chained array) and the clusters g and h (at position 7 in

the chained array).

Now suppose that, at the first step of Algorithm 5, the pair of clusters {b, c} (black-circled in

Figure 5.10) appears to be the best fusion in the sense of the Ward’s criterion. Then, (i) the

position in the chained array of this best fusion (2 in the example of Figure 5.10) is removed

from the min-heap (ii) the new two potential fusions a − (b − c) and (b − c) − d are added at

the end of the chained array with all information about these fusions (iii) the positions in the

chained array of these new two fusions are added to the min-heap (iv) the arrow “valid” of the

chained array corresponding to the fusions a − b, b − c and c − d are set to FALSE given that

the singletons b and c no longer exist and therefore these fusions are no longer possible.

5.3.4 Implementation and complexity of the cWard algorithm

Algorithm 8 The optimized algorithm of the Ward’s constrained hierarchical clustering applied
to a h-band similarity matrix

1: procedure CWARD(X ∈ Rn×p, Sim, h)
2: Calculate the two p× h arrays of pencils sums . O(ph)
3: Initialize the chained array Tab
4: heap← buildHeap(1 : (p− 1), D) . O(p log(p))
5: jj ← p
6: for step = 1 to p− 1 do
7: while (!Tab[valid, heap[1]]) do
8: heap← deleteMin(heap) . O(log(p))
9: end while

10: posMin← heap[1]
11: i? ← Tab[Cl1, posMin]
12: heap← deleteMin(heap) . O(log(p))
13: d1 ← D(Ci?−1, Ci? ∪ Ci?+1) . O(1)
14: d2 ← D(Ci? ∪ Ci?+1, Ci?+2)
15: Add the distances d1 and d2 to Tab
16: heap← insertHeap(heap, jj,D) . O(log(p))
17: heap← insertHeap(heap, jj + 1, D) . O(log(p))
18: Update the neighbors of Ci?−1 and Ci?+2 in Tab
19: Set Tab[valid, posMin], Tab[valid, posL]

and Tab[valid, posR] to FALSE
20: jj ← jj + 2
21: end for
22: end procedure

The detailed steps of the optimized cWard algorithm applied to a h-band similarity matrix are

presented in Algorithm 8. First, the sums of similarity measures within pencil-shaped areas are
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assessed and stored in two arrays of sizes p×h in order to be used later to calculate any distance

between any pair of clusters, as described in Section 5.3.2 (line 3). Then, as for a classical

adjacency-constrained hierarchical clustering algorithm, the optimized implementation of the

cWard algorithm starts with each of the p items in a separate cluster. Thus, the chained array

Tab is initialized with the first p − 1 potential fusions 1 − 2, 2 − 3, . . . , (p − 1) − p and the

corresponding information about it (line 4). For instance, the first column of Tab related to the

fusion 1 − 2 is initialized to the vector (1 − Sim(1, 2); 1; 2;−1; 2;TRUE). So, as the item 1

has not a left-neighbor, the arrow “posL” of the fusion 1 − 2 is set to −1. Besides, given that

potential fusions are successively added at each step of the classification, the size of the chained

array Tab is initialized to 6 × 3p. Third, the positions in the chained array of the potential

fusions are stored in a min-heap structure (line 5). Similarly to the chained array, the size of the

min-heap is initialized to 3p. The heap property of this latter is built according to the distance

between each pair of clusters (first arrow of Tab). Finally, the counter jj, which stores the

first empty column of the chained array Tab, is initialized to p and updated as the classification

progresses.

At each step of the clustering, the validity of the fusion located at the root of the min-heap is first

checked. If FALSE, that is the related fusion is not possible, then this position corresponding to

the minimal distance is removed from the min-heap and the validity of the new root is re-verified

(lines 8 to 10). If TRUE, then the merge is made effective by (i) the position of this fusion is

removed from the min-heap (line 13), (ii) the new 2 distances with the newly-formed cluster

are calculated using the 2 arrays of pencils sums (lines 14 and 15), (iii) these distances with the

related information are added to the chained array Tab at the positions jj and jj + 1 (line 16),

(iv) these positions are added to the min-heap (lines 17 and 18), (v) the rows “posL” and “posR”

of the neighbors of the newly-formed cluster are updated (line 19), (vi) the row “valid” of the

merged pair of clusters and its neighbors are set to FALSE (line 20), (vii) the position counter

jj is incremented by 2 (line 21).

Lastly, we can notice that the structure of chained array is essential for maintaining the con-

nection between the distance between a pair of clusters and its relative position among other

clusters. More particularly, the update of the rows “posL” and “posR” at each step of the clus-

tering allows the knowledge of the neighbors of all the pair of adjacent clusters through their

positions in the same array. Hence the naming chained array of such a structure.

The number of elementary operations necessary for the performance of Algorithm 8 equals to:
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T8(p, h) = 2ph︸︷︷︸
line 2

+ p− 1︸ ︷︷ ︸
line 3

+ p log(p)︸ ︷︷ ︸
line 4

+

p−1∑
step=1︸ ︷︷ ︸
the loop

 log(p)︸ ︷︷ ︸
lines 7 to 9

+ log(p)︸ ︷︷ ︸
line 12

+ log(p)︸ ︷︷ ︸
lines 16 and 17

 .

The theoretical complexity of the optimized implementation of the cWard algorithm is then in

O(p log(p) + ph).

Besides, the amount of space used by Algorithm 8, without counting the space used by the input,

equals to:

S8(p, h) = 2ph︸︷︷︸
line 2

+ 18p︸︷︷︸
line 3

+ 3p︸︷︷︸
line 4

.

Thus, the space complexity of the optimized implementation of the cWard algorithm is in

O(ph).

Firstly, Algorithm 8 was completely coded in R. Nevertheless, we noted that, in the R language,

the operation of accessing to a value of a vector is not executed in a constant time. More

importantly, this operation becomes quadratic in time when integrated within a for/while loop.

For these reasons, we chose to implement the main loop of the optimized algorithm in C (lines

6 to 21 of Algorithm 8) and to interface it with the remaining steps of the algorithm coded in R

using the function .Call.

.Call is a built in R function designed as a way to call external code precompiled such as C or

C++ into a shared object file from R. It is one of the most basic ways to call external functions

from R and comes with only the minimum amount of support. It can operate on the so-called

SEXP objects, which stands for pointers to S expression objects. More specifically, everything

inside R is represented as such a SEXP object, and by permitting exchange of these objects

between the C (or the C++) language and R, programmers have the ability to operate directly on

R objects. An example of the .Call function usage is presented in Appendix D.

5.3.5 Computation time of the optimized implementation of the cWard algorithm

The optimized implementation of the cWard algorithm described in the previous section is

compared to two implementations:
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XXXXXXXXXXXXXX
Implem.

p
64 128 256 512 1024 2048 4096

+pencils +heap 0.01 0.01 0.01 0.02 0.04 0.09 0.19
+pencils -heap 0.02 0.02 0.04 0.09 0.19 0.47 1.36
-pencils -heap 0.03 0.07 0.17 0.43 1.22 4.98 16.07

XXXXXXXXXXXXXX
Implem.

p
8192 16384 32768 65536 131072 262144 524288

+pencils +heap 0.38 0.70 1.27 2.48 5.15 10.09 23.04
+pencils -heap 4.12 14.50 59.37 263.79 1055.16 4220.64 16882.55
-pencils -heap 58.91 230.03 942.49 3769.97 15079.87 60319.48 241277.9

TABLE 5.4: Running times in seconds of the +pencils +heap, the +pencils -heap and the
-pencils -heap implementations applied to randomly simulated genotype matrices of 100 indi-
viduals and p SNPs. The parameter h was set to 30 and the computation times were averaged
across 20 simulation runs. The values shown in red correspond to computation times derived
from the theoretical complexity (quadratic in p) and the running times for p = 8192 SNPs of

the +pencils -heap and -pencils -heap implementations.

• -pencils -heap, which is described in Section 5.2.1. To this implementation was integrated

the user-parameter h. Thus the similarities calculated on the fly are computed only if the

lag between the two items does not exceed h.

• +pencils -heap, which uses the pencils’ trick but not the min-heap and the associated

chained array structures. To this implementation was also integrated the user-parameter

h. The pencils sums are then calculated on a h-band similarity matrix.

Using this notation, the optimized implementation described in Algorithm 8 can be referred to

as +pencils +heap.

In addition to the -pencils -heap implementation described in Section 5.2.1, the optimized im-

plementation of the cWard algorithm has been added to the R package BALD. A detailed de-

scription how to use the different functions of this package is available in Appendix E.

Note that running the three implementations on the same set of items and with the same value

of h leads to the same clustering tree.

The scalability for high-dimensional data of Algorithm 8 compared to the two other implemen-

tations can be assessed from Table 5.4, where we measure the computation time, averaged across

20 runs, of the +pencils +heap, +pencils -heap and -pencils -heap implementations applied to

randomly simulated genotype matrices of 100 individuals and p SNPs. The parameter h was
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set to 30. The computation times shown in red in Table 5.4 were derived from the theoretical

complexity of each implementation (quadratic in p for the +pencils -heap and the -pencils -

heap implementations) and using computation times for 8192 SNPs. Indeed, they correspond

to running times greater than 3 minutes and it would then take more than an hour to assess the

average computation time across the 20 simulated matrices for only one value of p.

The computation times from p = 64 to p = 16384 are illustrated in Figure 5.11.
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FIGURE 5.11: The running time (in seconds) as a function of the number of SNPs p, for each of
the three implementations applied to randomly simulated genotype matrices of 100 individuals
and p SNPs. The parameter h was fixed at 30. The running times were averaged across 20 runs.

Algorithmically speaking, the two implementations +pencils -heap and -pencils -heap are

quadratic in p but Figure 5.11 shows that the pencils’ trick used in the +pencils -heap im-

plementation makes the clustering algorithm much more efficient. Furthermore, Figure 5.11

shows the efficiency of the +pencils +heap implementation in terms of computation time com-

pared the two other implementations due to the improvement from a complexity of O(p2) to a

complexity of O(p log(p) + ph). This difference in running times is even more important for

high values of p (see Figure 5.12). For instance, it takes around 23 seconds for the optimized

+pencils +heap implementation to cluster 524288 SNPs while this running time is ∼ 150%

longer for the +pencils -heap implementation to classify only 32768 SNPs and for the -pencils

-heap implementation to analyze 8192 markers.
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FIGURE 5.12: Difference in computation times between the three implementations for high
values of p. The parameter h was fixed at 30. The running times were averaged across 20 runs.

To extend the comparison with the computation time cited in Section 5.2.2, the optimized im-

plementation +pencils +heap takes now 9.92 seconds and 38.8 seconds to cluster a whole

genome of 500k simulated SNPs genotyped on 100 individuals with h = 30 and h = 100

respectively. Consequently, unlike the quadratic complexity of the former implementations, the

time complexity of the optimized implementation presented in Algorithm 8 is adapted to high-

dimensional data.

The number of individuals genotyped n also influences the complexity of the adjacency-constrained

hierarchical clustering using LD similarity. Indeed, it is involved in the calculations of the two

arrays of pencils sums in the implementations +pencils +heap and +pencils -heap, and inter-

venes at each LD calculation within the main clustering loop in the implementation -pencils

-heap. Nevertheless, more generally, the impact of the number of individuals on the complexity

of the adjacency-constrained hierarchical clustering algorithm remains difficult to determine as

it is specific to the similarity used, and thus to the way in which is implemented such a similarity.

Concerning the LD similarity, our experiments show that, thanks to an optimized implementa-

tion of LD calculations in the snpStats package, the influence of n is less critical than that of

the number of SNPs p. Indeed, as shown in Table 5.5, increasing n by a factor of 10 increases

the total run time of the method by a factor of ∼ 3.5, implying a sublinear complexity of the

three implementations in n. The optimized implementation described in Algorithm 8 presents,
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XXXXXXXXXXXXXX
Implem.

p
64 128 256 512 1024 2048 4096

+pencils +heap 0.02 0.03 0.05 0.09 0.2 0.39 0.67
+pencils -heap 0.02 0.03 0.08 0.13 0.30 0.73 1.82
-pencils -heap 0.06 0.16 0.55 1.68 5.61 20.6 75.82

TABLE 5.5: Running times in seconds of the +pencils +heap, the +pencils -heap and the
-pencils -heap implementations applied to randomly simulated genotype matrices of 1000 in-
dividuals and p SNPs. The parameter h was set to 30 and the computation times were averaged

across 20 simulation runs.

nonetheless, the advantage of separating the operations of similarity calculations from the main

clustering loop. This allows to locate the influence of n wich intervenes only while running the

line 2 operation.

In order to evaluate the influence of the parameter h on the clustering results of Algorithm 8,

while considering a realistic dependance structure among the items, we used the p = 20756

SNPs of chromosome 6 for n = 605 individuals from the GWA study on HIV (Dalmasso et al.

2008). We first applied the cWard algorithm using LD similarity and with h = p, followed by

the Gap statistic approach. These two steps estimated a “true” block structure including 1756

blocks of SNPs with the following distribution of sizes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 7 11 11.82 16 51.

We then compared this block structure to that estimated by applying Algorithm 8 with h < p

followed by the Gap statistic approach, for different values of h. We noticed that the true block

structure and that inferred with h < p are identical as soon as h ≥ 45. These observations can

be explained by the fact that the lower value h0 of h leading to the same block structure as with

h = p is closely linked to the maximum size of the “true” blocks. This result is also consistent

with the assumption that h0 is several orders of magnitude smaller than the number of items to

be clustered.

Finally, this chapter illustrates well the tradeoff between minimizing the complexity in time and

space of an algorithm. Indeed, starting from an adjacency-constrained hierarchical clustering

algorithm quadratic in time and in O(p) in space (if the similarities are calculated on the fly),

we could obtain an implementation-level description of the same algorithm that has a complexity
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of O(p log(p) + ph) in time and of O(ph) in space. These improvements allow thus to be sub-

quadratic both in time and space, which was the main objective to enable the algorithm to scale

high-dimensional data.
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5.4 Conclusions

In this chapter, we have proposed an efficient implementation of the adjacency-constrained hi-

erarchical clustering algorithm according to Ward’s criterion and using a band similarity matrix.

This work is in fact an improvement of the approach proposed in the preceding chapter. Indeed,

an adjacency-constrained hierarchical clustering of the genetic markers have been performed as

a first step for inferring the LD blocks. However, given that such an algorithm is intrinsically

quadratic in time in the number of SNPs, it appeared to be not adapted to the high-dimensionality

of GWAS data.

An efficient implementation of such an algorithm has then been proposed in the general context

of any similarity measure. This implementation assumes that items which are far apart have

a null similarity between them. This property is reflected in a user-defined parameter h � p

such that the similarity between two items distant from more than h is set to 0, leading to a

h-band similarity matrix. By means of (i) a “simple” expression of the Ward’s criterion using

the kernel trick (ii) a pre-calculation of the distances between all pairs of clusters thanks to

the pencils’ trick and (iii) the min-heap structure, we could reduce the time complexity of the

adjacency-constrained hierarchical clustering algorithm to O(p log(p) + ph) while keeping its

space complexity linear in p.

The interest of the proposed implementation has been illustrated by applying it to simulated

genotype matrices with an increasing number of SNPs to be clustered. It indeed allows a dra-

matic reduction on the computation time of the adjacency-constrained hierarchical clustering

algorithm compared to two former implementations. Furthermore, the results demonstrate the

scalability of the proposed implementation to high-dimensional data.

A potential criticism of the implementation proposed in this chapter could be the “arbitrary”

choice of the parameter h. Generally speaking, h can be chosen according to the fact that this

parameter corresponds to the maximum size of the blocks the user would have in his data. More

specifically, when dealing with the linkage disequilibrium similarity, the user’s choice can be

guided by the lengths in kb of the LD blocks found out in previous studies (see references

cited in Table 3.1). Indeed the extent of the linkage disequilibrium varies from population to

population and from one chromosome to another. For instance, the sizes of the LD blocks

identified by Gabriel et al. (2002) varied from < 1kb to 173kb in European samples. With an

average density of 1 SNP each 2kb, an LD block then contains at most 86 SNPs.



Chapter 6

Conclusions and perspectives

The advent of high-throughput genotyping technologies, including SNP genotyping chips, was

a key turning point for the genetic analysis of multifactorial diseases. This analysis is a major

public health issue (diagnosis, prevention, therapy, . . . ). In this context, the Genome-wide as-

sociation studies (GWAS) have emerged as relevant approaches for the precise localization of

genetic markers involved in the mechanisms of these diseases. Unfortunately, the high complex-

ity of the data used, combined to their large volume are, among others, tricky issues that have

raised doubts about the relevance of these studies’ findings.

This PhD work focused on GWAS and their related problematics. It aimed to provide indications

and guidelines that answer to some questions raised by the analysis of complex genetic data and

to develop both statistical methods and software tools that allow to improve certain aspects of

GWAS.

This final chapter is dedicated to presenting the main points that we evoked in this manuscript

as well as the conclusions regarding the methodological and software developments that we

conducted.

6.1 General conclusions

The work carried out in this PhD is at the interplay of three main scientific fields: statistics,

genetics and computer science. Thus, in order to facilitate the understanding of the manuscript,

we paid particular attention to introduce the basic concepts of each area in accordance with the

topics tackled.
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We first introduced basic statistical concepts such as hypothesis testing and multivariate re-

gression models. Secondly, after a presentation of essential concepts of cellular biology and

fundamental notions of genetics, we could define the linkage disequilibrium, its most common

measures, two approaches to estimate it, and the group structure it induces in the human genome.

Thirdly, Genome-wide association studies have been introduced through the type of data and an-

alytical model used in these studies. Finally, through the presentation of haplotype association

studies, emphasis has been put on the importance of taking into account the block-like structure

of the human genome induced by linkage disequilibrium, in order to identify sets of loci that

are associated with complex traits. It was then concluded that LD constitutes a central param-

eter in both the design and the proper conduct of GWAS. More importantly, incorporating LD

information could improve the power of these studies.

Several LD block partitioning approaches have been proposed in order to infer the linkage dis-

equilibrium structure underlying the human genome. As a reminder, these methods can be

classified into two main groups: those that make use of pairwise LD measures to distinguish

high LD regions from recombination hotspots and those that define blocks as regions with lim-

ited haplotype diversity. A comprehensive list of existing definitions of LD blocks have been

presented with a detailed description of the most commonly used methods of both classes. The

absence of information about haplotypes from unphased GWAS data on one hand, and the sub-

jective and arbitrary choices usually made on the thresholds of pairwise LD approaches on the

other hand, led us to present the first contribution of this manuscript. An LD block partitioning

method which consists in: (i) performing a spatially-constrained hierarchical clustering using

Ward’s linkage criterion and LD similarity (ii) applying the Gap statistic approach to the ob-

tained hierarchy to estimate the number of groups. After an introduction to cluster analysis and

model selection approaches, a detailed description of the two steps of the proposed LD block

partitioning method have been presented. In conclusion, the choice of a statistical and auto-

mated approach for inferring LD blocks was motivated by the aim of improving the power of

GWA studies by incorporating the estimated block structure in a block-based regression model.

The remaining contributions of this manuscript can be divided in two phases. A first method-

ological phase focused on incorporating LD block information in GWAS, followed by a second

practical phase that improves the computational performances of the method proposed in the

first phase.

The methodological contribution was to propose an approach that selects sets of markers that
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are associated with a phenotype of interest. This method, called BALD, consists in inferring the

LD blocks using the two steps described earlier and then identifying associated groups of SNPs

using the Group Lasso regression model. The BALD approach is based on the idea of taking

advantage of the block structure induced by LD and select associated markers that could have

been missed by single-marker analysis by explicitly looking for sets of LD blocks jointly asso-

ciated with the phenotype of interest. We investigated the efficiency of the proposed approach

compared to state-of-the-art regression methods: three non grouping methods that select asso-

ciated SNPs –single-marker analysis, Lasso and Elastic-Net– and two grouping methods that

select sets of associated markers –the haplotype association module of PLINK and the Group

Lasso applied to the true SNP groups–. Our results on simulated data showed that BALD per-

forms better than state-of-the-art approaches as soon as the number of causal SNPs within an

LD block exceeds 2. Furthermore, our results on semi-simulated and real data illustrated the

robustness of the proposed method to a real LD structure. Thus, our three-step method reaches

satisfying performances both at the level of LD blocks by inferring well the underlying block

structure but also in terms of SNP selection. Furthermore, these results highlight the importance

of incorporating biological knowledge in high-dimensional genomic studies such as GWAS.

The practical contribution of this manuscript consisted in the design and the implementation of a

generalized and efficient spatially-constrained hierarchical clustering algorithm called cWard.

The idea of introducing such an algorithm arose from the observation that the computation times

of the adjacency-constrained hierarchical clustering procedure used in the BALD, and more gen-

erally its quadratic time complexity, were not adapted to GWAS data. The improvements made

to the cWard algorithm were nonetheless presented in the general context of any similarity mea-

sure, and not necessarily the LD similarity. A user-parameter h, which controls the maximum

lag between items for similarity calculations, was first introduced. By means of the pencils’

trick, we could make the complexity of calculating the distance between any pair of clusters

constant in time and obtain a space complexity in O(ph) of the cWard algorithm, where p is

the number of items to be clustered. Then, by using the min-heap structure, we could make the

operation of finding the best fusion sublinear (logarithmic) in time. These two improvements

resulted in a clustering algorithm with a time complexity ofO(p log(p) +ph). The efficiency of

this novel algorithm were investigated with applications to simulated SNP data, by comparing

its computation times to those of former algorithms that did not include some or all of the imple-

mentation improvements used in cWard. Our results showed that the sub-quadratic complexity

of the proposed implementation allowed a dramatic reduction on the computation times of the
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spatially-constrained hierarchical clustering algorithm, especially for high values of p. These

results also demonstrated the scalability of the cWard algorithm to high-dimensional data.

The work carried out in the framework of this PhD has been accompanied by the development

of the R package BALD, available at the webpage http://www.math-evry.cnrs.fr/

logiciels/bald. In addition to the application of the BALD method and the cWard al-

gorithm presented in this manuscript, this package allows generating structured GWAS data,

that is genotypes of SNPs with a group structure along the genome and continuous phenotypes

associated with these genotypes. It also provides functions for the use of several existing regres-

sion methods via a unified interface, the evaluation of their performances in terms of variable

selection using ROC curves and a graphical representation of the results. These software devel-

opments put the emphasis on the importance of furnishing software tools that allow to conduct

a GWA study and that are computationally adapted to the high-dimensionality of the data.

Eventually, the different results that we obtained allowed to draw some interesting conclusions

regarding certain aspects of the conduct of GWA studies that could be added to the many re-

search and discussions on the topic. In addition, we designed a novel clustering algorithm that

showed promising results and is susceptible to be further used to cluster either genetic or other

types of data.

6.2 Perspectives

The research work that we presented in this manuscript has led to several conclusions and also

pointed out some interesting research perspectives.

6.2.1 SNP/block-level p-values through hierarchical testing

The proposed BALD approach showed promising results in selecting sets of SNPs that are as-

sociated with the phenotype. Nevertheless, a limitation of this method is that it does not provide

a significance assessment for the selected groups. Deriving reliable p-values for regression co-

efficients in high-dimensional, correlated settings is a challenging research area in the machine

learning and statistics fields in general (Bühlmann 2013, Chatterjee & Lahiri 2011). However,

even if such p-values could be obtained for the groups inferred by the BALD method, we would

like to emphasize that providing an interpretable multiple testing risk assessment in GWAS

http://www.math-evry.cnrs.fr/logiciels/bald
http://www.math-evry.cnrs.fr/logiciels/bald
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would remain a difficult question. Although several multi-SNP tests have been proposed to

assess the significance of SNP groups (Kwee et al. 2008, Li et al. 2011), no fully satisfactory

strategy allows the control of standard multiple testing error rates such as the FWER or the FDR.

Indeed, the presence of correlation among explanatory variables makes causal SNPs indistin-

guishable from their “neighbors”. This issue is not specific to a particular inference method, but

intrinsic to the design of GWAS. Therefore, we believe that it should be addressed by adapting

the definitions of true and false positives. In Chapter 4, we have considered two types of risk

evaluation at different genomic scales: SNP-level and block-level evaluations. An alternative

strategy in a similar spirit was recently proposed (Yi et al. 2015). Both strategies rely on a prior

definition of the scale of the signal of interest. A future research topic then could be to develop

an evaluation strategy and an associated inference method that adapts to this scale. A possi-

ble direction is to adapt the notion of hierarchical testing of variable importance (Meinshausen

2008, Mandozzi & Bühlmann 2015) to the specific context of GWAS.

6.2.2 Model selection approach

Within the BALD method, we considered the Gap statistic approach to estimate the optimal

number of clusters as it provided the best empirical results. Nevertheless, despite the improve-

ments brought to the cWard algorithm, the Gap-step remains the computational bottleneck of

the proposed three-step approach. Thus, investigating other strategies to estimate the number of

clusters could lead to finding an approach that would faster the BALD method.

Inspired from Lévy-Leduc et al. (2014), a future research topic could be to take advantage of

the block-like structure of the similarity matrix of the data by considering its log-likelihood

at each step of the spatially-constrained clustering. Indeed, under certain assumptions on the

means and variances of the similarity measures within and outside the diagonal blocks, and by

considering the gain of log-likelihood as distance between two clusters, it can be observed that

the log-likelihood curve with respect to the number of blocks of the partition presents a change-

point which corresponds to the optimal number of clusters. Thus, by applying an adjacency-

constrained hierarchical clustering algorithm according to the log-likelihood criterion, the num-

ber of clusters could be estimated both with the clustering tree.
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6.2.3 Rare variants analysis

With the advent of new generation sequencing technologies, biologists are increasingly focus-

ing on rare variants that could be involved in the biological mechanisms of common diseases.

Since associations highlighted by Genome-wide association studies can account for only a small

fraction of the heritability of deseases, rare variants analysis could have the potential to explain

some of this missing heritability.

An important issue that raises with rare variants is finding out their associations with diseases.

Indeed, the low frequency of these variants renders standard methods used to test for associations

underpowered unless sample sizes or effect sizes are very large. Consequently, novel associa-

tion tests have been specifically designed to overcome this limitation (Morris & Zeggini 2010).

Furthermore, the issue of linkage disequilibrium may also be taken into account in a different

way. Some methods for rare variant analysis assume that rare variants are not in LD whereas

other methods relax this assumption, including methods designed to jointly assess common and

rare variants (Yuan et al. 2012).

6.2.4 The cWard algorithm

The algorithm that we presented in Chapter 5 has shown promising performances. We think that

it could be improved by continuing working on certain aspects.

The cWard algorithm can be made computationally even more efficient in two ways. First,

a recurrence relationship between the sum of similarities within pencils of parameters (hLoc,

lim, "right’’), (hLoc+1, lim, "right’’), (hLoc, lim+1, "right’’) and (hLoc+1,

lim+1, "right’’) can be highlighted. An equivalent recurrence relationship can be deducted

for "left’’ pencils. These relationships would allow to reduce the time complexity of the

proposed algorithm.

Besides, the pre-calculated sums of similarities within pencils areas are probably not all used

in the clustering process. A possible improvement is then to calculate the pencils sums needed

on the fly as the clustering progresses. This can reduce the space complexity of the cWard

algorithm.

Another perspective with the cWard algorithm is its application to other types of data. Indeed,

the current implementation of the cWard function is designed to be applied to SNP data as it
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takes as input a genotype matrix. Since the improvements presented in Chapter 5 do not depend

on the similarity considered, developing a generalized implementation cWard that takes as

input a similarity matrix could render the software suitable for other clustering applications and

not only for SNP clustering. One possible direction is to apply this implementation to Hi-C data

(Lieberman-Aiden et al. 2009).



Appendix A

Bioinformatic resources for GWAS and

haplotype analysis

A.1 Databases

dbSNP. The dbSNP database is a continuously updated public database that lists the genetic

variations found in different animal species including Homo sapiens. Despite its name, this

database lists not only the SNPs but also other genetic variants such as indels or micro-satellites.

A summary of all available data in dbSNP on the different species are available at the link

http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi.

1000genomes Project. The 1000genome project (http://www.1000genomes.org/)

(Consortium et al. 2010) was born in order to facilitate the analysis and research of low fre-

quency SNPs. This project was launched in 2008 with the goal of creating a public reference

database for DNA polymorphism by sequencing the entire genome of 2500 individuals from

28 different populations. These data are being produced and are expected to soon have a more

complete mapping of human variants at MAF 1% and below, their haplotypes and the linkage

disequilibrium between them.

International HapMap Project. The International Haplotype Map Project (HapMap: (http:

//hapmap.ncbi.nlm.nih.gov/) (Consortium et al. 2005), launched in 2002, aimed to

create a map of 1 million common SNPs (defined as those whose the MAF is at least 5%), with
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not only their genomic locations but also genotype frequencies and LD relationships among

each other, in three populations (Europeans, Africans and East Asians). In Phase I, the project

involved the genotyping of 1 million SNPs in 270 individuals (90 from each of the three pop-

ulations). In Phase 2, the HapMap had been extended to include over 3 million SNPs on the

same samples (Frazer et al. 2007). And those samples plus additional ones were later genotyped

using the latest SNP chip technology in Phase 3 of the project. The HapMap provides not only

a very high density of common SNPs which can be used as markers in association studies, but

also provides their location in the genome and how they are distributed within populations and

among populations in different parts of the world. The other goal of the HapMap project was to

describe the dependency relationships between SNPs using linkage disequilibrium information

and thus identify common haplotypes (with frequency > 5%).

A.2 Software

PLINK. PLINK is a free, open-source whole genome association analysis toolset, designed

to perform a range of basic, large-scale analyses in a computationally efficient manner (Purcell

et al. 2007). It can be downloaded for Linux, MS-DOS and Mac OS systems at the PLINK web-

page http://pngu.mgh.harvard.edu/˜purcell/plink/. PLINK provides func-

tions, among other tools, for genotype data management, simple marker association analysis,

LD calculations, multi-marker and haplotype association analysis.

Furthermore, PLINK can be used in combination with R to take advantage of an array of sta-

tistical tools such as the R package snpStats. Furthermore, the R packages SNPassoc

(González et al. 2007) and GenABEL (Aulchenko et al. 2007) are also designed specifically to

handle genome-wide association data.

snpStats. The R package snpStats (extending the snpMatrix package) (Clayton 2012),

which is a component of the BioConductor open-source software project, provides classes and

statistical methods for large SNP association studies, with the possibility of reading and creating

input and output PLINK files. More particularly, this package comprises efficient implementa-

tions for LD calculations and SNP data imputation.

http://pngu.mgh.harvard.edu/~purcell/plink/
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Haploview. Haploview (Barrett et al. 2005) is an open-source software package that pro-

vides computation of linkage disequilibrium statistics and population haplotype patterns from

primary genotype data in an interactive interface. Haploview can also perform association

studies and allows choosing tagSNPs and estimating haplotype frequencies. Finally, it pro-

vides a convenient viewer for PLINK results generated from genome-wide association studies.

It can be downloaded for Linux, MS-DOS and Mac OS systems at the Haploview webpage

http://www.broad.mit.edu/mpg/haploview/.

http://www.broad.mit.edu/mpg/haploview/
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Ward’s criterion

According to Equation 3.2, the Ward’s criterion using the Euclidean distance equals to:

dwl(A,B) =
∑

i∈A∪B
‖X.i,gA∪B‖22 −

∑
i∈A
‖X.i,gA‖22 −

∑
i∈B
‖X.i,gB‖22

=
∑

i∈A∪B

(
‖X.i‖22 − 2g>A∪BX.i + ‖gA∪B‖22

)
−
∑
i∈A

(
‖X.i‖22 − 2g>AX.i + ‖gA‖22

)
−
∑
i∈B

(
‖X.i‖22 − 2g>BX.i + ‖gB‖22

)
= 2

∑
i∈A

X>.i (gA − gA∪B) + 2
∑
i∈B

X>.i (gB − gA∪B)

−pA‖gA‖22 − pB‖gB‖22 + (pA + pB)‖gA∪B‖22
= 2(gA − gA∪B)>pAgA + 2(gB − gA∪B)>pBgB − pAg>AgA − pBg>BgB

+(pA + pB)‖gA∪B)‖22.

Using the relationship:

gA∪B =
pAgA + pBgB
pA + pB

,
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we obtain:

dwl(A,B) = 2
(pBgA − pBgB)>

pA + pB
pAgA + 2

(pAgB − pAgA)>

pA + pB
pBgB − pAg>AgA − pBg>BgB

+
p2A

pA + pB
‖gA‖22 +

p2B
pA + pB

‖gB‖22 + 2
pApB
pA + pB

g>AgB

= 2
pApB
pA + pB

(gA − gB)>gA + 2
pApB
pA + pB

(gB − gA)>gB − pA‖gA‖22 − pB‖gB‖22

+
p2A

pA + pB
‖gA‖22 +

p2B
pA + pB

‖gB‖22 + 2
pApB
pA + pB

g>AgB

= 2
pApB
pA + pB

‖gA − gB‖22 −
pApB
pA + pB

‖gA‖22 − ‖gB‖22 + 2
p2A

pA + pB
g>BgA

dwl(A,B) =
pApB
pA + pB

‖gA − gB‖22
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Sums of similarities within

pencil-shaped areas

Figure C.1 shows that the complementary of the half of a right-oriented (resp. left-oriented)

pencil-shaped area within a diagonal band of width hLoc is a rectangle-shaped area located

at the bottom (resp. top) of the h-band similarity matrix. The sum of similarity measures

within this type of shape can be more easily calculated than a within pencil-shaped areas by

using optimized R functions as rowCumsums and colCumsums which are included in the

package matrixStats. The R function rowCumsums (resp. colCumsums) calculates the

cumulative sums for each row (resp. column) of a given matrix.

FIGURE C.1: A schematics of the upper side of h-band similarity matrix. The complementary
of both right-oriented pencil-shaped area (left panel, in green) and left-oriented pencil-shaped

area (right panel, in green) are rectangle-shaped areas (in red).
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In order to optimize the computation of the sum of the similarity measures within rectangle-

shaped areas, two functions have been implemented (toMatLeft and toMatRight) which

convert the upper side of a h-band similarity matrix to a p × h matrix with zeros located on

the bottom right for top rectangle-shaped areas, and zeros located on the top left for bottom

rectangle-shaped areas. The outputs of these two functions are illustrated in Figure C.2.

Lastly, applying the R functions rowCumsums and colCumsums one after the other to the top

rectangle (resp. to a rotated bottom rectangle) allows to obtain the sum of the elements of all the

top rectangles (resp. bottom rectangles) of depth hLoc ∈ {1, . . . , h} and limit lim ∈ {1, . . . , p}.
For instance, given the p×h similarity matrixM with zeros located on the bottom right, the sum

of the similarity measures contained in the top rectangle of deph hLoc and limit lim correponds

to the element rowCumsums(colCumsums(M))[lim,hLoc].
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FIGURE C.2: The output rectangles of the functions toMatLeft (left panel) and
toMatRight (right panel).
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R’s C interface

Generally, calling a C function from R requires two pieces: a C function and an R wrapper

function that uses .Call.

Let take the example of the buildHeap function wich allows to build a min-heap starting from

an unordered vector of values (see Section 5.3.3). The wrapper R function is then buildHeap

which calls the percDown function coded in C.

// ------- In C --------

#include <stdio.h>

#include <R.h>

#include <Rinternals.h>

#include <Rmath.h>

SEXP percDown(SEXP Rpositions, SEXP Rdistances, SEXP Rl, SEXP Rpos){

int mc, right, left;

int *positions, *l, *pos;

double *distances, tmp, val;

Rpositions = PROTECT(coerceVector(Rpositions, INTSXP));

positions = INTEGER(Rpositions);

distances = REAL(Rdistances);

l = INTEGER(Rl);

pos = INTEGER(Rpos);

*pos = *pos - 1;
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val = distances[positions[*pos]-1];

while((2**pos+1) < *l) {

if ((2**pos+2) == *l){

left = 2**pos+1;

if (val > distances[positions[left]-1]) {

// swap positions

tmp = positions[*pos];

positions[*pos] = positions[left];

positions[left] = tmp;

// update pos

*pos = left;

}

else

*pos = *l;

}

else {

left = 2**pos+1;

right = 2**pos+2;

mc = right;

if (distances[positions[left]-1] < distances[positions[right]-1])

mc = left;

if (val > distances[positions[mc]-1]) {

// swap positions

tmp = positions[*pos];

positions[*pos] = positions[mc];

positions[mc] = tmp;

// update pos

*pos = mc;

}

else

*pos = *l;

}
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}

UNPROTECT (1) ;

return(Rpositions);

}

Note that, for any C function callable from R, all the arguments must be pointers. Also, to coerce

objects at the C level, we should use PROTECT(new = coerceVector(old, SEXPTYPE)).

If the created R objects are not protected, the garbage collector will consider them as un-

used and delete them. Finally, it must be ensured that every protected object is unprotected.

UNPROTECT() takes a single integer argument n and unprotects the last n objects that were

protected.

This C example code is then put in a file percDown.c and compiled using the command:

R CMD SHLIB percDown.c

Now the code can be dynamically loaded into R by doing:

dyn.load("percDown.so")

The following R script is the wrapper buildHeap function that uses .Call.

########## In R ##########

dyn.load("percDown.so")

buildHeap <- function(positions, distances, l){

for (ii in floor(l/2) : 1){

positions <- .Call("percDown", positions, distances,

as.integer(l), as.integer(ii))

}

return(positions)

}

Its use is fairly simple, requiring the name of the C function and all the arguments being passed

in. Nevertheless, it is up to the programmer to ensure that the correct arguments, with the correct

types, are provided.
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BALD Vignette

E.1 The BALD package

The BALD package (Blockwise Approach using Linkage Disequilibrium) arose out of the need

to provide friendly data generation functions and an efficient analysis method of whole genome

association studies in R.

With recent advances in high-throughput genotyping technology, genome-wide association stud-

ies (GWAS) have become a tool of choice for identifying genetic markers underlying a variation

in a given phenotype - typically complex human diseases and traits. Whole-genome single nu-

cleotide polymorphism (SNP) data are collected for many thousands of SNP markers, leading

to high-dimensional regression problems where the number of predictors greatly exceeds the

number of observations. Moreover, these predictors are statistically dependent, in particular due

to linkage disequilibrium (LD).

The main function of this package grplassoCWard implements a proposed three-step ap-

proach (Dehman et al. 2015) that explicitly takes advantage of the grouping structure induced

by LD: in the first step, LD blocks are inferred by performing a clustering of LD estimates with

an adjcency constraint (Ward Jr 1963). In the second step, the Gap statistic model selection ap-

proach (Tibshirani et al. 2001) is applied to estimate the number of groups and finally the Group

Lasso regression (Yuan & Lin 2005) is performed on the inferred LD blocks.
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E.2 Generating genotype and phenotype data

Let n be the number of individuals of our GWA study and p the number of variables (SNPs).

The BALD package allows to generate block-structured genotype data and associated continuous

phenotype according to the linear regression model:

y = Xβ + ε,

where y ∈ Rn is the phenotype vector, X ∈ {1, 2, 3}n×p the SNP genotypes matrix and ε ∈ Rn

a gaussian error term. The columns of X are assumed to be block-structured on nBlocks non-

overlapping blocks.

In order to simulate such GWAS data, we will use the two simulation functions simBeta and

simulation. We will first simulate the association vector β using the function simBeta as

follows:

set.seed(2)

blockSizes <- c(2,4,5,3,2,4)

p <- sum(blockSizes)

sig.blocks <- c(3,5)

nb.per.block <- c(2,3)

betas <- simBeta(blockSizes, sig.blocks, nb.per.block)

The first element of the output betas:

betas$blockSizes

## [1] 4 3 5 2 4 2

contains the effective block sizes used for the simulation of β. The second element of betas

str(betas$betaMat)

## num [1:20, 1:3] 0 0 0 0 1 -1 0 -1 -1 1 ...

## - attr(*, "dimnames")=List of 2

## ..$ : NULL

## ..$ : chr [1:3] "betaSNP" "betaBl" "groups"
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is a 20 × 3 numeric matrix. The first column of the matrix contains the regression vector for

the 20 predictors (SNPs) structured in length(blockSizes)=6 blocks. We can check that

only 5 SNPs were simulated as associated which are the first two (resp. three) SNPs contained

in the first block of size 3 (resp. 5).

The second column of betas$betaMat contains the “block regression vector”.

betas$betaMat[,"betaBl"]

## [1] 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

As we can see, all the coefficients of the predictors contained in sig.blocks have been sim-

ulated nonzero (TRUE).

Finally, the third column of betas$betaMat corresponds to the vector defining the grouping

of the variables effectively used for the simulation of the regression vector β.

Using the regression coefficients in betas, we can then simulate the genotype and phenotype

data. We begin by fixing the number of individuals of our study n, the level of correlation

between the SNPs of each block corr and the coefficient of determination of the problem r2:

n <- 50

corr <- 0.5

r2 <- 0.7

sim <- simulation(n, betas$betaMat[, "betaSNP"], betas$blockSizes,

corr, r2, minMAF=0.45)

X <- sim$X

str(X)

## num [1:50, 1:20] 3 1 3 1 2 1 2 1 3 1 ...

y <- sim$y

str(y)

## num [1:50, 1] 0.857 -1.339 -0.89 0.861 4.194 ...
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sim$r2 ## effective coefficient of determination

## [1] 0.7343056

The range of Minor Allele Frequencies (MAF) of the simulated SNP markers can be calibrated

using the options minMAF and maxMAF of the simulation function.

E.3 The three-step method

Now that we have generated our genotype and phenotype data, we can apply the proposed three-

step method in two different ways: (i) by applying sequentially three functions corresponding to

the three steps of the proposed approach or (ii) by using a generic function that comprises these

three steps.

Following the first option, we first begin by applying the adjacency-constrained hierarchical

clustering to the columns of the genotype matrix by running the cWard function:

cW <- cWard(X, h=p-1, sim=simR2, heaps=TRUE)

str(cW)

## List of 10

## $ traceW : num [1:19, 1:2] 1 2 3 4 5 6 7 8 9 10 ...

## $ gains : num [1:19] 0.648 0.653 0.67 0.716 0.729 ...

## $ merge : int [1:19, 1:2] -13 -6 -19 -5 -3 -17 -1 -8 -11 -15 ...

## $ height : num [1:19] 0.648 1.301 1.971 2.687 3.416 ...

## $ seqdist : num [1:19] 0.648 1.301 1.971 2.687 3.416 ...

## $ order : int [1:20] 1 2 3 4 5 6 7 8 9 10 ...

## $ labels : chr [1:20] " 1" " 2" " 3" " 4" ...

## $ method : chr "cWard"

## $ call : language .cWLD(simMat = LD, p = p, h = h, blMin = blMin, trace.time = trace.time)

## $ dist.method: NULL

## - attr(*, "class")= chr "hclust"
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As described in Chapter 5, the parameter h controls the maximum lag between the columns of

X considered. Thus, the LD measures are calculated between X[, i] and X[, j] only if i and j

differ by no more than h. sim=simR2 means that the LD similarity used is the r2. Finally, if

the parameter heaps is set to TRUE, then the implementation+pencils +heap detailed in Chap-

ter 5 will be used. Otherwise, the implementation -pencils -heap presented in Section 5.2.1 will

be run.

In addition to the tree structure produced by the clustering process, the cWard function returns

the within-group dispersion measures Wk at each step of the clustering.

Besides, the gapStatistic function allows to apply the hierarchical clustering algorithm

followed by the Gap statistic procedure:

gapS <- gapStatistic(X, min.nc=2, max.nc=p-1, B=50)

gapS$best.k

## [1] 6

## groups inferred using the first two steps of the proposed method

infGroups <- cutree(gapS$tree, gapS$best.k)

names(infGroups) <- NULL

infGroups

## [1] 1 1 1 1 2 2 2 3 3 3 3 3 4 4 5 5 5 5 6 6

The gapStatistic function returns the tree structure resulting from the clustering of the

genotype martix as well as the optimal number of clusters according to the Gap statistic proce-

dure.

Finally, the Group Lasso regression can be applied to the inferred groups by running the select

function as follows:
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nlambda <- 30

reg <- select("groupLasso", X, y, groups=infGroups, nlambda=nlambda)

str(reg)

## num [1:30, 1:20] 0 0 0 -0.0073 -0.00311 ...

## - attr(*, "groups")= num [1:20] 1 1 1 1 2 2 2 3 3 3 ...

The returned object is a nlambda × p matrix of the Group Lasso coefficients as well as the

group structure inferred by the first two steps of the proposed method as an attribute.

The second and easier option for applying the proposed three-step method consists in running

the grplassoCWard function using these command lines:

B <- 50

## assessing the within-cluster measures for the B reference datasets

traceWB <- lapply(1:B, FUN=function(ii){
getTraceW(n, p)

})
traceWB <- simplify2array(traceWB)

gl <- grplassoCWard(sim$X, sim$y, groups=NULL, nlambda=nlambda,

max.nc=p-1, min.nc=1, traceWB=traceWB, heaps=TRUE)

str(gl)

## List of 2

## $ coefs : num [1:30, 1:20] 0 0 0 -0.0073 -0.00311 ...

## $ groups: num [1:20] 1 1 1 1 2 2 2 3 3 3 ...

Through the default value NULL for the argument groups, the user indicates that the group

structure needs to be inferred using the constrained Ward’s incremental method and the Gap

statistic model selection approach. The inferred group structure is returned as a vector of integers

from 1 to nBlocks. SNPs sharing the same number belong to the same group. Therefore, we

can check if the two first steps of inferring groups have well estimated the block sizes:
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betas$blockSizes

## [1] 4 3 5 2 4 2

gl$groups

## [1] 1 1 1 1 2 2 2 3 3 3 3 3 4 4 5 5 5 5 6 6

tab <- table(gl$groups)

dimnames(tab) <- NULL

tab

## [1] 4 3 5 2 4 2

The block sizes were in effect well estimated but this is not always the case above all when the

correlation level is less that 0.4.

The second element of the output corresponds to the nlambda × p matrix of the Group Lasso

coefficients.

E.4 Compared to other approaches

The BALD package allows the application of several regression methods using the function

select:

coefsGL <- select("groupLasso", X, y, groups=NULL, nlambda=nlambda,

max.nc=p-1, min.nc=2, B=100)

coefsOGL <- select("groupLasso", X, y, groups=betas$groups,

nlambda=nlambda) ## Oracle Group Lasso !

coefsL <- select("lasso", X, y, nlambda=nlambda)

coefsEN <- select("elastic.net", X, y, lambda2=0.5, nlambda=nlambda)

pvalsUniv <- select("univ", X, y, nlambda=nlambda)

See vignette in the path :
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system.file("evaluation/evaluation.Rnw", package="BALD")

for an example of performance comparison of different methods.

E.5 Representations of the results

The BALD package allows two different representations of the results: the first plot function

plotHeatmap allows a Heatmap of the linkage disequilibrium blocks within a given region

(Shin et al. 2006) and possibly to highlight selected blocks/SNPs. The second plot function

plotGroupsGL provides a graphical display for interpreting selected blocks in function of

the univariate p-values of the SNPs contained in these blocks.

Based on the regression results of the models Group Lasso and Lasso on the previously simu-

lated data set, we can represent the first 3 blocks selected by the Group Lasso and the first SNPs

selected by the Lasso as follows:

## "true" beta

betas$betaMat[,"betaSNP"]

## [1] 0 0 0 0 1 -1 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0

groups <- gl$groups

coefsGL <- select("groupLasso", X, y, groups=groups, nlambda=nlambda)

selSNP <- as.matrix(t(coefsGL)!=0)

## blocks selected by GL at each level of regularization

selBl <- as.matrix(aggregate(selSNP, list(groups=groups), sum)[, -1])

str(selBl)

## int [1:6, 1:30] 0 0 0 0 0 0 0 3 5 0 ...

## - attr(*, "dimnames")=List of 2

## ..$ : NULL

## ..$ : chr [1:30] "V1" "V2" "V3" "V4" ...
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selBl[,1:4]

## V1 V2 V3 V4

## [1,] 0 0 0 4

## [2,] 0 3 3 3

## [3,] 0 5 5 5

## [4,] 0 0 0 0

## [5,] 0 0 0 4

## [6,] 0 0 0 0

## first 2 blocks selected by GL

firstBl <- which(selBl[,2]!=0)

## first 5 SNPs selected by the Lasso

coefsL <- select("lasso", X, y, nlambda=nlambda)

firstSNPs <- which(coefsL[4,]!=0)

## heatmap plot

blockSizes <- betas$blockSizes

plotHeatmap(X, blockSizes, selBlocks=firstBl, snpNames=as.character(1:p),

snpStar=as.character(firstSNPs))

Figure E.1 displays the linkage disequilibrium measures of the set of 20 contiguous markers.

The SNPs shown with a red star (*) correspond to the first markers (in the regularization path)

selected by the Lasso. The local block structure inferred by the clustering and model selection

steps of the proposed method is also highlighted and the first 3 blocks (in the regularization path)

selected by the Group Lasso are delimited by a red outline.

Finally, in order to have a more accurate idea about the relevance of the blocks selected by the

Group Lasso, we can display the univariate p-values of the SNPs within them. To do this, we

will use the function plotGroupsGL that takes as arguments regression coefficients matrix of
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FIGURE E.1: Heatmap plot of the LD blocks.

the Group Lasso, the number of groups to be displayed and the univariate p-values of the 20

markers:

## univariate p-values

pvals <- apply(X, 2, FUN=function(vect){
pv <- summary(lm(y ˜ vect))$coefficients[2,4]

})

## first 3 blocks displayed

plotGroupsGL(coefsGL, nbGroup=3, pvals)
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Each of the first 3 blocks selected by the Group Lasso is represented by a colored horizontal

segment ranging from the largest to the smallest univariate p-value of the block. The vertical

black segments indicate the univariate p-values of each SNP in these LD blocks and the vertical

line highlights the significance threshold (defaults to t=0.25).

E.6 Session information

sessionInfo()

## R version 3.1.0 (2014-04-10)

## Platform: x86_64-apple-darwin10.8.0 (64-bit)
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##

## locale:

## [1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

##

## attached base packages:

## [1] methods grid stats graphics grDevices utils datasets

## [8] base

##

## other attached packages:

## [1] BALD_0.2.1 knitr_1.10.5

##

## loaded via a namespace (and not attached):

## [1] BiocGenerics_0.12.1 colorspace_1.2-6 digest_0.6.8

## [4] evaluate_0.7 formatR_1.2 ggplot2_1.0.1

## [7] grplasso_0.4-5 gtable_0.1.2 highr_0.5

## [10] lattice_0.20-31 LDheatmap_0.99-1 magrittr_1.5

## [13] MASS_7.3-40 Matrix_1.2-0 matrixStats_0.14.0

## [16] munsell_0.4.2 parallel_3.1.0 plyr_1.8.2

## [19] proto_0.3-10 quadrupen_0.2-4 Rcpp_0.11.6

## [22] reshape2_1.4.1 ROC_1.42.0 scales_0.2.4

## [25] snpStats_1.16.0 splines_3.1.0 stringi_0.4-1

## [28] stringr_1.0.0 survival_2.38-1 tools_3.1.0

## [31] zlibbioc_1.12.0
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With recent development of high-throughput genotyping technologies, the usage of Genome-

Wide Association Studies (GWAS) has become widespread in genetic research. By screening

large portions of the genome, these studies aim to characterize genetic factors involved in the

development of complex genetic diseases.

GWAS are also based on the existence of statistical dependencies, called Linkage Disequilib-

rium (LD) usually observed between nearby loci on DNA. LD is defined as the non-random

association of alleles at different loci on the same chromosome or on different chromosomes in

a population. This biological feature is of fundamental importance in association studies as it

provides a fine location of unobserved causal mutations using adjacent genetic markers. Never-

theless, the complex block structure induced by LD as well as the large volume of genetic data

are key issues that have arisen with GWA studies.

The contributions presented in this manuscript are in twofold, both methodological and algo-

rithmic. On the methodological part, we propose a three-step approach that explicitly takes

advantage of the grouping structure induced by LD in order to identify common variants which

may have been missed by single marker analyses. In the first step, we perform a hierarchical

clustering of SNPs with an adjacency constraint using LD as a similarity measure. In the second

step, we apply a model selection approach to the obtained hierarchy in order to define LD blocks.

Finally, we perform Group Lasso regression on the inferred LD blocks. The efficiency of the

proposed approach is investigated compared to state-of-the art regression methods on simulated,

semi-simulated and real GWAS data.

On the algorithmic part, we focus on the spatially-constrained hierarchical clustering algorithm

whose quadratic time complexity is not adapted to the high-dimensionality of GWAS data. We

then present, in this manuscript, an efficient implementation of such an algorithm in the general

context of any similarity measure. By introducing a user-parameter h and using the min-heap

structure, we obtain a sub-quadratic time complexity of the adjacency-constrained hierarchical

clustering algorithm, as well as a linear space complexity in the number of items to be clustered.

The interest of this novel algorithm is illustrated in GWAS applications.

keywords: Genome-Wide Association Studies, Linkage Disequilibrium, Hierarchical cluster-

ing, Model selection, Gap statistic, Penalized regression, Group lasso
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Avec le développement récent des technologies de génotypage à haut débit, l’utilisation des

études d’association pangénomiques (GWAS) est devenue très répandue dans la recherche génétique.

Au moyen de criblage de grandes parties du génome, ces études visent à caractériser les facteurs

génétiques impliqués dans le développement de maladies génétiques complexes.

Les GWAS sont également basées sur l’existence de dépendances statistiques, appelées déséquilibre

de liaison (DL), habituellement observées entre des loci qui sont proches dans l’ADN. Le DL

est défini comme l’association non aléatoire d’allèles à des loci différents sur le même chromo-

some ou sur des chromosomes différents dans une population. Cette caractéristique biologique

est d’une importance fondamentale dans les études d’association car elle permet la localisation

précise des mutations causales en utilisant les marqueurs génétiques adjacents. Néanmoins, la

structure de blocs complexe induite par le DL ainsi que le grand volume de données génétiques

constituent les principaux enjeux soulevés par les études GWAS.

Les contributions présentées dans ce manuscrit comportent un double aspect, à la fois méthodologique

et algorithmique. Sur le plan méthodologie, nous proposons une approche en trois étapes qui

tire profit de la structure de groupes induite par le DL afin d’identifier des variants communs

qui pourraient avoir été manquées par l’analyse simple marqueur. Dans une première étape,

nous effectuons une classification hiérarchique des SNPs avec une contrainte d’adjacence et en

utilisant le DL comme mesure de similarité. Dans une seconde étape, nous appliquons une

approche de sélection de modèle à la hiérarchie obtenue afin de définir des blocs de DL. Enfin,

nous appliquons le modèle de régression Group Lasso sur les blocs de DL inférés. L’efficacité de

l’approche proposée est comparée à celle des approches de régression standards sur des données

simulées, semi-simulées et réelles de GWAS.

Sur le plan algorithmique, nous nous concentrons sur l’algorithme de classification hiérarchique

avec contrainte spatiale dont la complexité quadratique en temps n’est pas adaptée à la grande

dimension des données GWAS. Ainsi, nous présentons, dans ce manuscrit, une mise en œu-

vre efficace d’un tel algorithme dans le contexte général de n’importe quelle mesure de sim-

ilarité. En introduisant un paramètre h défini par l’utilisateur et en utilisant la structure de

tas-min, nous obtenons une complexité sous-quadratique en temps de l’algorithme de classifica-

tion hiérarchie avec contrainte d’adjacence, ainsi qu’une complexité linéaire en mémoire en le

nombre d’éléments à classer. L’intérêt de ce nouvel algorithme est illustré dans des applications

GWAS.
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