Production d’hydrogène solide sous forme de films de taille micronique.

Abstract : The development of very high power lasers in the latest decade opened up new horizons in a various field, such as the production of accelerated ion beams. When a laser beam interacts with a target, the generated beam can contain energetic ions or electrons with a large energy spectrum (1–200 MeV). This energy distribution depends on the laser power and the nature of the target.Physicists studying the interaction between laser and materials are really interested in having very thin (10 µm) ribbons of solid hydrogen that could be used as a target. Indeed, during the interaction between a laser and such a target, a pure proton beam can be created. Protontherapy is one of the main potential applications which uses the special properties of accelerated protons to destroy cancerous tumor. This technique, lighter and cheaper, could replace in the next years huge particle accelerators situated underground the equipped hospitals. This PhD thesis was about developing a way to get and characterize such ribbons, using a new extrusion process.Extrusion of solid hydrogen requires a high pressure (10 MPa to 40 MPa) and a low temperature (below 13K). This is achieved by using the thermodynamic properties of the fluid. First, the cell is filled in with solid H2, then closed. Afterward, the upper part is heated to liquefy the solid. The expansion, resulting from the phase change creates a pressure on the solid hydrogen, located below the liquid. The extrusion is realized through a micron-sized hole at the bottom of the cell. The main difference with a classic extrusion process is the absence of moving parts.First solid hydrogen ribbons (1mm large and 100 microns of thickness) have been obtained in March 2014, leading to an article in a peer review (laser and particle beams (2014) 32,569-575, Continuous production of a thin ribbon of solid hydrogen). The use of a 50 micron nozzle was satisfying but it showed the limitation in the design of the cell, leading to an upgraded one, which will enable to extrude thinner ribbons.A cylindrical nozzle (140 microns diameter) has also been used to obtain long cylinders of solid hydrogen and to be able to understand the solid hydrogen flow in simple geometries. In parallel, several numerical simulations have been carried out to establish the flow behavior of solid hydrogen during the extrusion process. An “home made” model has been developed for which experimental results and numerical calculations fit quite well for different nozzles' geometries.Using small ribbon defaults as velocity tracers, cross-correlation algorithm has also been developed to measure the velocity during the extrusion process. The ribbon thickness is also extracted from image analysis. These results are also correlated by flowmeter measurements and appeared to be accurate.Several laser teams have shown a great interest for these results and a collaboration contract has been signed with the laser PALS team (Prague) to install an updated version of this cryostat, able to be plugged in their vacuum chamber. The team wants to shoot the solid hydrogen target to understand the laser/matter interaction and accelerate proton through the TNSA (Target Normal Sheath Acceleration) principle. It will be the first time such target will be shot. The installation of the cryostat is scheduled by the end of august and the first experiments are planned during november 2015. LULI's laser team at Palaiseau in France is also interested in using these targets and is planning to shoot them in January 2016. In parallel, CNRS physicists of the ILM (Institut Lumière Matière de Lyon) would like to use these targets to generate X-UV radiation.
Complete list of metadatas

Cited literature [48 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01288257
Contributor : Abes Star <>
Submitted on : Monday, March 14, 2016 - 5:47:42 PM
Last modification on : Wednesday, November 6, 2019 - 4:25:15 AM
Long-term archiving on: Wednesday, June 15, 2016 - 3:21:52 PM

File

GARCIA_2015_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01288257, version 1

Collections

Citation

Stéphane Garcia. Production d’hydrogène solide sous forme de films de taille micronique.. Physique des accélérateurs [physics.acc-ph]. Université Grenoble Alpes, 2015. Français. ⟨NNT : 2015GREAY050⟩. ⟨tel-01288257⟩

Share

Metrics

Record views

704

Files downloads

322