R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems (chapters 1-3) Springer Tracts in Modern Physics, 2003.

C. Kittel, Introduction to Solid State Physics, 1995.

C. Slater and G. F. Koster, Simplified LCAO Method for the Periodic Potential Problem, Physical Review, vol.94, issue.6, 1954.
DOI : 10.1103/PhysRev.94.1498

S. Zubko, M. Gariglio, P. Gabay, J. Ghosez, and . Triscone, Interface Physics in Complex Oxide Heterostructures, Annual Review of Condensed Matter Physics, vol.2, issue.1, pp.141-165, 2011.
DOI : 10.1146/annurev-conmatphys-062910-140445

C. Chopin-noguera, Physics and Chemistry at oxide Surfaces, 1996.

M. Silberberg, Principles of General Chemistry. McGraw-Hill Education, 2010.

S. Gabay, J. Gariglio, and A. F. Triscone, 2-Dimensional oxide electronic gases: Interfaces and surfaces, The European Physical Journal Special Topics, vol.106, issue.5, pp.1177-1183, 2013.
DOI : 10.1140/epjst/e2013-01913-1

URL : https://hal.archives-ouvertes.fr/in2p3-00852794

S. Reyren, A. D. Thiel, L. Caviglia, G. Fitting-kourkoutis, C. Hammerl et al., Superconducting Interfaces Between Insulating Oxides, Science, vol.317, issue.5842, p.11961199, 2007.
DOI : 10.1126/science.1146006

F. Herranz, N. Snchez, M. Dix, J. Scigaj, and . Fontcuberta, High mobility conduction at (110) and (111) LaAlO 3 /SrT iO 3 interfaces, Scientific Reports, vol.2, issue.110, p.758, 2012.

C. Rödel, C. Bareille, F. Fortuna, F. Bertran, P. Le-f-`-evre et al., (110) and (111) Surfaces, Physical Review Applied, vol.1, issue.5, p.51002, 2014.
DOI : 10.1103/PhysRevApplied.1.051002

S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Computational Materials Science, vol.29, issue.2, pp.165-178, 2004.
DOI : 10.1016/j.commatsci.2003.08.036

X. Fang, Phase Transitions in Strontium Titanate Term essays for Spring 2013 Phase Transitions and the Renormalization Group, Course Physics, vol.563

T. Bareille, F. Rödel, F. Fortuna, M. Bertran, M. Gabay et al., Santander-Syro. Topological two-dimensional electron gas with honeycomb electronic structure at the (111) surface of KT aO 3, Sci Rep, vol.4, p.3586, 2014.

F. Bareille, T. Fortuna, F. Rödel, M. Bertran, O. Gabay et al., Santander-Syro. Two-Dimensional electron gas with six-fold symmetry at the (111) surface of KT aO 3, Scientific Reports, vol.4, pp.3586-3596, 2014.

G. Khalsa and A. H. Macdonald, surface state two-dimensional electron gas, Physical Review B, vol.86, issue.12, p.125121, 2012.
DOI : 10.1103/PhysRevB.86.125121

Z. Zhong, Q. Zhang, and K. Held, Quantum confinement in perovskite oxide heterostructures: Tight binding instead of a nearly free electron picture, Physical Review B, vol.88, issue.12, p.125401, 2013.
DOI : 10.1103/PhysRevB.88.125401

M. Nagano, A. Kodama, T. Shishidou, and T. Oguchi, A first-principles study on the Rashba effect in surface systems, Journal of Physics: Condensed Matter, vol.21, issue.6, 2009.
DOI : 10.1088/0953-8984/21/6/064239

F. Santander-syro, F. Fortuna, C. Bareille, T. C. Rödel, G. Landolt et al., Giant spin splitting of the two-dimensional electron gas at the surface of SrT iO 3, Nature Materials, pp.10-1038, 2014.

F. Santander-syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès et al., Two-dimensional electron gas with universal subbands at the surface of SrT iO 3, Nature, vol.469, issue.13, p.189193, 2011.

G. Bihlmayer, Y. M. Koroteev, P. M. Echenique, E. V. Chulkov, and S. Blügel, The Rashba-effect at metallic surfaces, Surface Science, vol.600, issue.18, pp.3888-3891, 2006.
DOI : 10.1016/j.susc.2006.01.098

G. Bickel, K. Schmidt, K. Heinz, and . Müller, Ferroelectric Relaxation of the SrT iO 3 (100) Surface. PRL, 1989.

F. Lechermann, L. Boehnke, D. Grieger, and C. Piefke, interface: A DFT+DMFT investigation, Physical Review B, vol.90, issue.8, p.85125
DOI : 10.1103/PhysRevB.90.085125

Z. Wang, Z. Zhong, X. Hao, S. Gerhold, B. Stöger et al., Anisotropic two-dimensional electron gas at SrT iO 3 (110) protected by its native overlayer, Proc Natl Acad Sci, vol.111, issue.11, p.39333937, 2014.

P. 32-prabir-pal, . Kumar, V. Aswin, A. Dogra, and A. G. Joshi, Chemical potential shift and gap-state formation in SrT iO 3?? revealed by photoemission spectroscopy, J. Appl. Phys, vol.116, p.53704, 2014.

K. Van-benthem and C. Elsasser, Bulk electronic structure of SrT iO 3 : Experiment and theory, Journal of Applied Physics, vol.90, issue.15, 2001.

Z. Fang and K. Terakura, Spin and orbital polarizations around oxygen vacancies on the (001) surfaces of SrTiO3, Surface Science, vol.470, issue.1-2, pp.75-80, 2000.
DOI : 10.1016/S0039-6028(00)00914-6

G. Khalsa, B. Lee, and A. H. Macdonald, electron-gas Rashba interactions, Physical Review B, vol.88, issue.4, p.41302, 2013.
DOI : 10.1103/PhysRevB.88.041302

N. Pavlenko, T. Kopp, E. Y. Tsymbal, G. A. Sawatzky, and J. Mannhart, electrons, Physical Review B, vol.85, issue.2, p.20407, 2012.
DOI : 10.1103/PhysRevB.85.020407

H. Y. Ohtomo and . Hwang, A high-mobility electron gas at the LaAlO 3 /SrT iO 3 heterointerface, Nature Vol, vol.427, p.29, 2004.

K. Yoshimatsu, K. Horiba, H. Kumigashira, T. Yoshida, A. Fujimori et al., Metallic Quantum Well States in Artificial Structures of Strongly Correlated Oxide, Science, vol.333, issue.6040, pp.319-322, 2011.
DOI : 10.1126/science.1205771

L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO 3 /SrT iO 3 interfaces. Nature Physics. DOI: 10, p.2080, 1038.

M. Huijben, G. Rijnders, D. H. Blank, S. Bals, S. V. Aert et al., Electronically coupled complementary interfaces between perovskite band insulators, Nature Materials, vol.17, issue.7, p.556, 2006.
DOI : 10.1143/JJAP.43.L1032

G. Thiel, A. Hammerl, C. W. Schmehl, J. Schneider, and . Mannhart, Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures, Science, vol.313, issue.5795, pp.1942-1945, 2006.
DOI : 10.1126/science.1131091

M. Walker, A. De-la-torre, F. Y. Bruno, A. Tamai, T. K. Kim et al., by Atomic Oxygen, Physical Review Letters, vol.113, issue.17, p.177601, 2014.
DOI : 10.1103/PhysRevLett.113.177601

S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao et al., Correlation effects in (111) bilayers of perovskite transitionmetal oxides, Phys. Rev. B, vol.89, 2014.

M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C. Liu et al., The Quantum Spin Hall Effect: Theory and Experiment, Journal of the Physical Society of Japan, vol.77, issue.3, p.31007, 2008.
DOI : 10.1143/JPSJ.77.031007

M. König, Quantum Spin Hall Insulator State in HgT e Quantum Wells, Science, vol.318, issue.766, 2007.

X. Qi and S. Zhang, Topological insulators and superconductors, Reviews of Modern Physics, vol.83, issue.4, p.1057, 2011.
DOI : 10.1103/RevModPhys.83.1057

D. Janotti, C. G. Steiauf, and . Van-de-walle, : Toward high electron mobilities, Physical Review B, vol.84, issue.20, p.201304, 2011.
DOI : 10.1103/PhysRevB.84.201304

H. Cao, S. Tan, H. Xiang, and D. L. , Feng and Xin-Gao Gong. The interfacial effeccts on the spin density wave in F eSe/SrT iO 3 thin film, Phys. Rev. B, vol.89, 14501.

F. El-mellouhi, E. N. Brothers, M. J. Lucero, W. Ireneusz, G. E. Bulik et al., studied with a screened hybrid functional, Physical Review B, vol.87, issue.3, p.35107
DOI : 10.1103/PhysRevB.87.035107

W. Feng, J. Wen, J. Zhou, D. Xiao, and Y. Yao, Firt-principles calculation of topological invariants Z 2 within the FP-LAPW formalism, Computer Physics Communications, vol.183, issue.9, 2012.

J. David and . Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, 1998.

R. Bistritzer, G. Khalsa, and A. H. Macdonald, perovskite semiconductors, Physical Review B, vol.83, issue.11, p.115114, 2011.
DOI : 10.1103/PhysRevB.83.115114

N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nature Materials, vol.64, issue.3, pp.204-209, 2006.
DOI : 10.1038/nmat1569

M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C. Liu et al., The Quantum Spin Hall Effect: Theory and Experiment, Journal of the Physical Society of Japan, vol.77, issue.3, p.31007, 2008.
DOI : 10.1143/JPSJ.77.031007

T. Thonhauser and D. Vanderbilt, Insulator/Chern-insulator transition in the Haldane model, Physical Review B, vol.74, issue.23, p.235111, 2006.
DOI : 10.1103/PhysRevB.74.235111

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nature Communications, vol.109
DOI : 10.1038/ncomms1602

L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Physical Review B, vol.76, issue.4, p.45302, 2007.
DOI : 10.1103/PhysRevB.76.045302

J. Fuchs, Dirac fermions in graphene and analogues: magnetic field and topological properties. Chapters 1,3, 2013.

E. Won-joon-son, B. Cho, J. Lee, S. Lee, and . Han, Density and spatial distribution of charge carriers in the intrinsic n-type LaAlO 3 ? SrT iO 3 interface, Physical Review B, vol.79, p.245411, 2009.

N. Ganguli and P. J. Kelly, Tuning Ferromagnetism at Interfaces between Insulating Perovskite Oxides, Physical Review Letters, vol.113, issue.12, 127201.
DOI : 10.1103/PhysRevLett.113.127201

M. Gabay and J. Triscone, Oxide heterostructures: Hund rules with a twist, Nature Physics, vol.9, issue.10, p.610, 2013.
DOI : 10.1103/PhysRevB.79.245411

H. O. Jeschke, J. Shen, and R. Valentí, Localized versus itinerant states created by multiple Oxygen vacancies in SrT iO 3, New J. Phys, pp.17-023034, 2015.

J. Shen, H. Lee, R. Valentí, and H. O. Jeschke, Ab initio study of the two-dimensional metallic state at the surface of SrT iO 3 : importance of Oxygen vacancies, Phys. Rev. B, vol.86, 2012.

C. Noguera and J. Goniakowski, Polarity in Oxide Nano-objects, Chemical Reviews, vol.113, issue.6, pp.4073-4105, 2013.
DOI : 10.1021/cr3003032

URL : https://hal.archives-ouvertes.fr/hal-01243110

C. Goniakowski and . Noguera, The concept of weak polarity: an application to the SrTiO3(001) surface, Surface Science, vol.365, issue.2, p.657, 1996.
DOI : 10.1016/0039-6028(96)00853-9

F. Pojani, C. Finocchi, and . Noguera, Polarity on the SrTiO3 (111) and (110) surfaces, Surface Science, vol.442, issue.2, pp.179-198, 1999.
DOI : 10.1016/S0039-6028(99)00911-5

F. Bottin, C. Finocchi, and . Noguera, polar surfaces by first-principles calculations, Physical Review B, vol.68, issue.3, p.35418, 2003.
DOI : 10.1103/PhysRevB.68.035418

URL : https://hal.archives-ouvertes.fr/hal-00000295

M. Pesquera, P. Scigaj, A. Gargiani, J. Barla, E. Herrero-martín et al., Interfaces: Orbital Symmetry and Hierarchy Engineered by Crystal Orientation, Dimensional Electron Gases at LaAlO 3 /SrT iO 3 Interfaces: Orbital Symmetry and Hierarchy Engineered by Crystal Orientation, p.156802, 2014.
DOI : 10.1103/PhysRevLett.113.156802

M. Scigaj, J. Gázquez, M. Varela, J. Fontcuberta, G. Herranz et al., Conducting interfaces between amorphous oxide layers and SrT iO 3 (110) and SrT iO 3 (111) Solid State Ionics, 2015.

M. Altmeyer, H. O. Jeschke, O. Hijano-cubelos, C. Martins, F. Lechermann et al., Magnetism, spin texture and ingap states: Atomic specialization at the surface of oxygen-deficient SrTiO3
URL : https://hal.archives-ouvertes.fr/in2p3-01312785

C. T. Rödel, F. Bareille, F. Fortuna, P. Bertran, M. Le-f-`-evre et al., Orientational tuning of the Fermi sea of confined electrons at the SrT iO 3 (110) and (111) surfaces

A. Ohtomo and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, vol.427, issue.6973, p.423, 2004.
DOI : 10.1038/nature02308

S. Okamoto and A. J. Millis, Electronic reconstruction at an interface between a Mott insulator and a band insulator, Nature, vol.428, issue.6983, p.630, 2004.
DOI : 10.1038/nature02450

N. Reyren, Superconducting Interfaces Between Insulating Oxides, Science, vol.317, issue.5842, pp.1196-1199, 2007.
DOI : 10.1126/science.1146006

A. Brinkman, Magnetic effects at the interface between non-magnetic oxides, Nature Materials, vol.399, issue.7, pp.493-496, 2007.
DOI : 10.1038/nmat1931

K. Ueno, Electric-field-induced superconductivity in an insulator, Nature Materials, vol.73, issue.11, pp.855-858, 2008.
DOI : 10.1038/nmat2298

A. D. Caviglia, Tunable Rashba Spin-Orbit Interaction at Oxide Interfaces, Physical Review Letters, vol.104, issue.12, p.126803, 2010.
DOI : 10.1103/PhysRevLett.104.126803

B. Shalom, M. Sachs, M. Rakhmilevitch, D. Palevski, A. Dagan et al., Interface: A Magnetotransport Study, Physical Review Letters, vol.104, issue.12, p.126802, 2010.
DOI : 10.1103/PhysRevLett.104.126802

L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at??LaAlO3/SrTiO3 interfaces, Nature Physics, vol.80, issue.10, pp.762-766, 2011.
DOI : 10.1103/PhysRevLett.107.056802

J. A. Bert, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO 3 /SrTiO 3, Nature Phys, vol.7, p.767771, 2011.

A. F. Santander-syro, Two-dimensional electron gas with universal subbands at the surface of SrTiO3, Nature, vol.10, issue.7329, p.189, 2011.
DOI : 10.1038/nature09720

URL : https://hal.archives-ouvertes.fr/in2p3-00771655

W. Meevasana, Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface, Nature Materials, vol.10, issue.2, p.114, 2011.
DOI : 10.1103/PhysRevLett.97.237601

F. D. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly", Physical Review Letters, vol.61, issue.18, pp.2015-2018, 1988.
DOI : 10.1103/PhysRevLett.61.2015

C. L. Kane and E. J. Mele, Topological Order and the Quantum Spin Hall Effect, Physical Review Letters, vol.95, issue.14, p.146802, 2005.
DOI : 10.1103/PhysRevLett.95.146802

M. König, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science, vol.318, issue.5851, pp.766-770, 2007.
DOI : 10.1126/science.1148047

D. Hsieh, A topological Dirac insulator in a quantum spin Hall phase, Nature, vol.70, issue.7190, pp.970-974, 2008.
DOI : 10.1038/nature06843

M. Z. Hasan and C. L. Kane, : Topological insulators, Reviews of Modern Physics, vol.82, issue.4, pp.3045-3067, 2010.
DOI : 10.1103/RevModPhys.82.3045

X. Qi and S. Zhang, Topological insulators and superconductors, Reviews of Modern Physics, vol.83, issue.4, pp.1057-1110, 2011.
DOI : 10.1103/RevModPhys.83.1057

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nature Communications, vol.109, pp.10-1038, 2011.
DOI : 10.1038/ncomms1602

P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, and F. Mila, Spin-Orbital Quantum Liquid on the Honeycomb Lattice, Physical Review X, vol.2, issue.4, pp.1207-6029, 2012.
DOI : 10.1103/PhysRevX.2.041013

S. Kourtis, J. W. Venderbos, and M. Daghofer, Fractional Chern insulator on a triangular lattice of strongly correlated t2g electrons. ArXiv:1208, p.3481, 2012.

A. Rüegg, C. Mitra, A. A. Demkov, and G. A. Fiete, heterostructures grown along [111], Physical Review B, vol.85, issue.24, p.245131, 2012.
DOI : 10.1103/PhysRevB.85.245131

G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta, High mobility conduction at (110) and (111) LaAlO 3 /SrTiO 3 interfaces. Sci. Rep. 2, 758; DOI:10, p.758, 1038.

A. Annadi, Anisotropic two-dimensional electron gas at the LaAlO 3 /SrTiO 3 (110) interface, Nature Communications, vol.4, pp.10-1038, 1838.

L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Physical Review B, vol.76, issue.4, p.45302, 2007.
DOI : 10.1103/PhysRevB.76.045302

S. Hüfner, Photoelectron spectroscopy: principles and applications, 2003.

K. Sugawara, T. Sato, S. Souma, T. Takahashi, M. Arai et al., Fermi Surface and Anisotropic Spin-Orbit Coupling of Sb(111) Studied by Angle-Resolved Photoemission Spectroscopy, Physical Review Letters, vol.96, issue.4, p.46411, 2006.
DOI : 10.1103/PhysRevLett.96.046411

A. F. Santander-syro, Two-dimensional electron gas with universal subbands at the surface of SrTiO3, Nature, vol.10, issue.7329, p.189, 2011.
DOI : 10.1038/nature09720

URL : https://hal.archives-ouvertes.fr/in2p3-00771655

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nature Communications, vol.109, pp.596-606, 2011.
DOI : 10.1038/ncomms1602

J. C. Slater and G. F. Koster, Simplified LCAO Method for the Periodic Potential Problem, Physical Review, vol.94, issue.6, p.1498, 1954.
DOI : 10.1103/PhysRev.94.1498

W. A. Harrison, Electronic structure and the properties of Solids: the physics of the chemical bond, 1989.

L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Physical Review B, vol.76, issue.4, p.45302, 2007.
DOI : 10.1103/PhysRevB.76.045302

H. Takagi and H. Y. Hwang, An Emergent Change of Phase for Electronics, Science, vol.327, issue.5973, p.1601, 2010.
DOI : 10.1126/science.1182541

J. Mannhart and D. G. Schlom, Oxide Interfaces--An Opportunity for Electronics, Science, vol.327, issue.5973, p.1607, 2010.
DOI : 10.1126/science.1181862

S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures, Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures, p.1942, 2006.
DOI : 10.1126/science.1131091

A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider et al., Electric field control of the LaAlO3/SrTiO3 interface ground state, Electric field control of the LaAlO3/SrTiO3 interface ground state, p.624, 2008.
DOI : 10.1038/nature07576

A. Brinkman, M. Huijben, M. Van-zalk, J. Huijben, U. Zeitler et al., Magnetic effects at the interface between non-magnetic oxides, Nature Materials, vol.399, issue.7, p.493, 2007.
DOI : 10.1038/nmat1931

M. Salluzzo, S. Gariglio, X. Torrelles, Z. Ristic, R. Di-capua et al., Interface, Structural and Electronic Reconstructions at the LaAlO3/SrTiO3 Interface, p.2333, 2013.
DOI : 10.1002/adma.201204555

A. Annadi, Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface, Nature Communications, vol.50, p.1838, 2013.
DOI : 10.1038/ncomms2804

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nature Communications, vol.109, p.596, 2011.
DOI : 10.1038/ncomms1602

A. Rüegg and G. A. Fiete, Topological insulators from complex orbital order in transition-metal oxides heterostructures, Physical Review B, vol.84, issue.20, p.201103, 2011.
DOI : 10.1103/PhysRevB.84.201103

D. Doennig, W. E. Pickett, and R. Pentcheva, Massive Symmetry Breaking in LaAlO3 Quantum Wells: A Three-Orbital Strongly Correlated Generalization of Graphene, Phys. Rev. Lett, vol.3, issue.111, p.126804, 2013.

A. F. Santander-syro, Two-dimensional electron gas with universal subbands at the surface of SrTiO3, Nature, vol.10, issue.7329, p.189, 2011.
DOI : 10.1038/nature09720

URL : https://hal.archives-ouvertes.fr/in2p3-00771655

W. Meevasana, P. D. King, R. H. He, S. Mo, M. Hashimoto et al., Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface, Nature Materials, vol.10, issue.2, p.114, 2011.
DOI : 10.1103/PhysRevLett.97.237601

N. C. Plumb, Mixed dimensionality of confined conducting electrons tied to ferroelectric surface distortion on an oxide, 2013.

P. D. King, Subband Structure of a Two- Dimensional Electron Gas Formed at the Polar Surface of the Strong Spin-Orbit Perovskite KTaO3, Phys. Rev
DOI : 10.2172/1035804

C. Bareille, Two-dimensional electron gas with sixfold symmetry at the (111) surface of KTaO3, Sci. Rep, vol.4, p.3586, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00939913

I. K. Jung, R. Yang, Y. H. Ramesh, and . Jeong, Universal Tirich termination of atomically flat SrTiO3, 110), and (111) surfaces, p.51904, 2011.

J. Chang, Y. Park, and S. Kim, Atomically flat single-terminated SrTiO3 (111) surface, Applied Physics Letters, vol.92, issue.15, p.152910, 2008.
DOI : 10.1063/1.2913005

G. Khalsa and A. H. Macdonald, surface state two-dimensional electron gas, Physical Review B, vol.86, issue.12, p.125121, 2012.
DOI : 10.1103/PhysRevB.86.125121

Z. Wang, Z. Zhong, X. Hao, S. Gerhold, B. Stoger et al., Anisotropic two-dimensional electron gas at SrTiO3(110), Diebold, Anisotropic two-dimensional electron gas at SrTiO3(110), p.3933, 2014.
DOI : 10.1073/pnas.1318304111

A. Mugarza, J. Ortega, A. Mascaraque, E. Michel, K. Altmann et al., Periodicity and thickness effects in the cross section of quantum well states, Physical Review B, vol.62, issue.19, p.12672, 2000.
DOI : 10.1103/PhysRevB.62.12672

E. D. Hansen, T. Miller, and T. C. Chiang, Quantum-well or bulklike behaviour of Cu layers on Co, Journal of Physics: Condensed Matter, vol.9, issue.32, p.435, 1997.
DOI : 10.1088/0953-8984/9/32/001

Y. Z. Wu, C. Y. Won, E. Rotenberg, H. W. Zhao, F. Toyoma et al., Dispersion of quantum well states in Cu/Co/Cu(001), Dispersion of quantum well states in Cu/Co, p.245418, 2002.
DOI : 10.1103/PhysRevB.66.245418

K. Yoshimatsu, K. Horiba, H. Kumigashira, T. Yoshida, A. Fujimori et al., Metallic Quantum Well States in Artificial Structures of Strongly Correlated Oxide, Metallic Quantum Well States in Artificial Structures of Strongly Correlated Oxide, p.319, 2011.
DOI : 10.1126/science.1205771

A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, vol.427, issue.6973, pp.423-426, 2004.
DOI : 10.1038/nature02308

S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures, Science, vol.313, issue.5795, p.1942, 2006.
DOI : 10.1126/science.1131091

J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita et al., Direct imaging of the coexistence of ferromagnetism and superconductivity at??the??LaAlO3/SrTiO3 interface, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface, p.767, 2011.
DOI : 10.1063/1.1406931

J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, Nanoscale Phenomena in Oxide Heterostructures, Annual Review of Materials Research, vol.44, issue.1, p.117, 2014.
DOI : 10.1146/annurev-matsci-070813-113437

G. Berner, A. Müller, F. Pfaff, J. Walde, C. Richter et al., oxide heterostructures inferred from hard x-ray photoelectron spectroscopy, Physical Review B, vol.88, issue.11, p.115111, 2013.
DOI : 10.1103/PhysRevB.88.115111

J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrTiO3, Nature, vol.469, p.189, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00771655

W. Meevasana, P. D. King, R. H. He, S. Mo, M. Hashimoto et al., Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface, Nature Materials, vol.10, issue.2, p.114, 2011.
DOI : 10.1103/PhysRevLett.97.237601

S. Mckeown-walker, A. De-la-torre, F. Y. Bruno, A. Tamai, T. K. Kim et al., by Atomic Oxygen, Control of a twodimensional electron gas on SrTiO3 (111) by atomic oxygen, p.177601, 2014.
DOI : 10.1103/PhysRevLett.113.177601

A. F. Santander-syro, F. Fortuna, C. Bareille, T. C. Roedel, G. Landolt et al., Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3, Nature Materials, vol.124, issue.12, p.1085, 2014.
DOI : 10.1038/nmat4107

URL : https://hal.archives-ouvertes.fr/in2p3-01101282

D. D. Cuong, B. Lee, K. M. Choi, H. Ahn, S. Han et al., Study, Physical Review Letters, vol.98, issue.11, p.115503, 2007.
DOI : 10.1103/PhysRevLett.98.115503

URL : https://hal.archives-ouvertes.fr/hal-00431481

Z. Hou and K. Terakura, : First-Principles Calculations, Journal of the Physical Society of Japan, vol.79, issue.11, p.114704, 2010.
DOI : 10.1143/JPSJ.79.114704

J. Shen, H. Lee, R. Valenti, and H. O. Jeschke, : Importance of oxygen vacancies, Physical Review B, vol.86, issue.19, p.195119, 2012.
DOI : 10.1103/PhysRevB.86.195119

J. C. Li, J. I. Beltrán, and M. C. , ferromagnetic sheet, Physical Review B, vol.87, issue.7, p.75411, 2013.
DOI : 10.1103/PhysRevB.87.075411

Z. Zhong, A. Tóth, and K. Held, surfaces, Physical Review B, vol.87, issue.16, p.161102, 2013.
DOI : 10.1103/PhysRevB.87.161102

G. Khalsa, B. Lee, and A. H. Macdonald, electron-gas Rashba interactions, Physical Review B, vol.88, issue.4, p.41302, 2013.
DOI : 10.1103/PhysRevB.88.041302

Y. Aiura, I. Hase, H. Bando, T. Yasue, T. Saitoh et al., Photoemission study of the metallic state of lightly electron-doped SrTiO3, Surface Science, vol.515, issue.1, p.61, 2002.
DOI : 10.1016/S0039-6028(02)01784-3

R. Courths, Ultraviolet Photoelectron Spectroscopy (UPS) and LEED Studies of BaTiO3 (001) and SrTiO3 (100) Surfaces, physica status solidi (b), vol.21, issue.1, p.135, 1980.
DOI : 10.1002/pssb.2221000114

Y. S. Kim, J. Kim, S. J. Moon, W. S. Choi, Y. J. Chang et al., Localized electronic states induced by defects and possible origin of ferroelectricity in strontium titanate thin films, Applied Physics Letters, vol.94, issue.20, p.202906, 2009.
DOI : 10.1063/1.3139767

P. E. Blöchl, Projector augmented-wave method, Physical Review B, vol.50, issue.24, p.17953, 1994.
DOI : 10.1103/PhysRevB.50.17953

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol.6, issue.1, p.15, 1996.
DOI : 10.1016/0927-0256(96)00008-0

J. Hafner, simulations of materials using VASP: Density-functional theory and beyond, Journal of Computational Chemistry, vol.111, issue.13, p.2044, 2008.
DOI : 10.1002/jcc.21057

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/PhysRevLett.77.3865

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide:??????An LSDA+U study, Physical Review B, vol.57, issue.3, p.1505, 1998.
DOI : 10.1103/PhysRevB.57.1505

K. Koepernik and H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme, Physical Review B, vol.59, issue.3, p.1743, 1999.
DOI : 10.1103/PhysRevB.59.1743

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Physical Review B, vol.52, issue.8, p.5467, 1995.
DOI : 10.1103/PhysRevB.52.R5467

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Techn, 2001.

S. Okamoto, A. J. Millis, and N. A. Spaldin, Superlattices, Physical Review Letters, vol.97, issue.5, p.56802, 2006.
DOI : 10.1103/PhysRevLett.97.056802

P. D. King, S. Mckeown-walker, A. Tamai, A. De-la-torre, T. Eknapakul et al., Quasiparticle dynamics and spinorbital texture of the SrTiO3 two-dimensional electron gas, Nat. Commun, vol.5, p.3414, 2014.

S. E. Barnes, J. Ieda, and S. Maekawa, Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism, Scientific Reports, vol.10, p.4105, 2014.
DOI : 10.1038/srep04105