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GENERAL INTRODUCTION




Innovation in its whole definition is a way for industrial groups to preserve and create
value over competitors on the market. Mainly technologic, innovation is also of use, a new
way of using a product or service to answer market or user requirements. This work is an
innovation for component design in power electronic systems, both in tools and user customs.

Power electronic is subject to same research goals as any modern system, i.e. cost and time to
market reduction, efficiency increase in the global energy save world concern and modularity
of solution to answer maximum customer needs. The last decades have seen amounts of
innovation in structure, component and computer methods. Solutions for a converter designer
in power electronic are numerous and complexes. One can choose to use new semi-conductor
technologies, e.g. SiC or GaN switches, leading to higher frequency reducing filtering need
but creating new issues over regulation or high frequency effects in components. The choice
could also be done on new multi-legs and multi-levels voltage topology balancing efficiency
and cost between passive and active components. Facing the multitude of design solutions,
power electronic converter development has become a real headache and actual process does
not guarantee the achievement of the best and most competitive industrial product. Thus, the
need of new tools to help designers in their choice is clearly identified.

PFC/ Charger/
Booster Booster Inverter

Figure 1: UPS topology example, connection between grid and data-center with battery storage

This work presents new processes to achieve passive component design in power electronics
converter subject to high current density. It has been realized for Schneider Electric company
and applied on uninterruptible power systems. Introduced in the 60s, to secure sensitive load
from electricity hazards, UPS must deliver harmonic-free electricity when perturbations occur
on the grid. The load is usually coupled to an alternative energy source, most of the time
hydrocarbon one, which is slow to deliver its full capacity, up to several minutes. The goal of
UPS is thus to guarantee the transition between grid and the second power source, implying
energy storage up to megawatts, and transit it in few microseconds with total harmonic
distortion reduction and perturbation cancellation. The UPS delivers energy during several
minutes. Thus, storage is achieved with batteries. Converter topologies are fitted to this
constraint, switching from alternative electricity to continuous current for battery and
conversely, (Figure 1). UPS is a static converter; electric waves are changed without any
motion of any component. In input several voltage potentials are connected alternatively to a



common point with a modulated time for this connection in order to produce a mean
continuous value from a sinusoid at modulation frequency or reversely to switch from
continuous to sinus in output. But switched waveforms contain harmonics whose must be
filtered. The number of voltage potential available on the common point defines the converter
capability to reduce harmonic content at high frequencies, reducing size of filter, (Figure 2).
Capability to switch from one potential to another is done by semi-conductors. Increasing
number of potential leads to increase number of semi-conductors, i.e. their cost and losses, but
reduces the size of passive components. Study of two topologies of 500 kVA UPS is
presented in (Figure 3). UPS topology is a balanced choice between passive and active
components weight in price, efficiency, footprint, temperature, volume, etc. The designer
faces a multi-topologies and linked multi-components problem with goals and constraints
defined in so called specifications.

i
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Figure 2: Harmonic spectrum for 3 UPS voltage levels

At the present time, the time to market for an UPS from definition of specifications to release
on the market is several years. Any implementation of innovative technology increases
dramatically this time because of prototyping and understanding of this innovation. Different
points explain the time of new product development. As written previously, the large amount
of possibilities to design an UPS and the choice of topology is a long process. The time of
implementation of new topology in simulation tools and the accuracy of those tools don’t
make it possible to prototype directly a good and definitive solution. Several prototypes are
required and upgrades of those prototypes. It takes many months between each prototype. For
every prototype, long discussions with furnishers are needed about specifications and
measurements requirement. Validation process are achieved on each component and then on
their assembly. Optimization is also done by prototyping several solutions and choosing the
best one, which is not the appropriate method. Finally, the prototype is validated regarding
standards and not necessarily all working case the UPS will be faced to.

To answer these issues of picking the best solution fitting specifications in the lowest possible
time, this work has associated mathematical simulation and optimization methods to the
strong industrial knowledge of Schneider Electric in the field of power converters.
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Figure 3: Comparison between 2 level UPS and 3 level UPS

A typical UPS operates in the range of hundreds of volts, 230 V ~ 800 V, high current, from a
few amperes up to thousands 10 A ~ 3000 A, and delivers grid compatible electricity, so 50
Hz or 60 Hz sine wave, with 3 kHz to 25 kHz switching frequency. The emergence of new
semi-conductor technologies, SiC or GaN, will lead to higher switching frequencies. This
work is bound by these values.

In the first part of this manuscript, algorithm optimization is introduced and advantages of the
method and its application to industrial design explained. Optimization strategies are
presented, and the Schneider Electric knowledge on power converters leads to a specific
choice among the different possibilities. Specifications for sizing of passive components are
detailed. Algorithms are explained and illustrated on study cases, advantages and drawbacks
in converter applications are highlighted. Finally, the optimization software is presented.

Optimization and strategy being defined, the second part of the manuscript develops the
passive component modeling with optimization requirements impact on those models. Focus
is on magnetics, for both their huge effect on the final converter efficiency and price but also
of their high numbers of sizing parameters. Accurate models are presented and technologic
innovations proposed. Validation of modeling is achieved with both simulation and
measurements on prototypes.

The third part focuses on the converter definition and how component models are linked to
simulate any topology of converter. All conversion used in UPS are presented AC/DC,
DC/DC and DC/AC. New coupled filter solutions are also investigated.

Finally, the manuscript presents the applications of all developed simulation and optimization
tools on industrial UPS projects. Three converters have benefited of this work, and validation
is done by measurement and gains are demonstrated. Extension for active components is
explained.
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CHAPTER | - OPTIMIZATION




1.1 INTRODUCTION

Many projects in industry benefit from so-called optimized solutions. Most of the time
several prototypes are realized based on the experience of the designer and the best of so
many investigated solutions is selected. In the work of an expert designer, a local variation of
parameters is achieved to find local optimum. However, this is not optimization in the
mathematical world, and it does not make it possible to find the global optimum of the
designed object addressing all constraints and goals.

The design of a component is the action of finding a set of the adjustable parameters in order
to respect at minima the specifications, technical, geometrical and financial. The design of a
component using an optimization process is to find the best set of parameters respecting the
specifications but also providing the global optimum of goals. The choice of an appropriate
set of parameters addressing a set of objectives is the definition of algorithmic optimization.

This approach of optimal sizing is now compulsory in industrial projects as explained in
general introduction. In this PhD the optimal sizing of passive components in power
converters is investigated. This design cannot be done regarding the component alone and
manually. The converter topology and its electric waveforms, the standards applied to the
whole structure, the other components, all have an influence on the global optimum of the
solution for the converter. Thus, the number of possible solutions even in the simplest
topology of converter is too great for a human mind to solve, or for a computer to test all
possibilities. Taking the example of an inductor, general inputs are the coil, with the number
of turns, the number of strands per turns, the strand diameter, material of the coil. The core
can have different sizes also and different materials. Let’s be generous and take only ten
possible values of six inputs, we consider a real fast simulation of the inductor ~1 s. To verify
all solutions will take a million seconds, more than eleven days. This cannot be used in the
design of a whole converter. Thus optimization methods and algorithms are presented in this
chapter to look on their impact on models and design strategies.

First the specifications that limited the project are defined to serve as main guideline in choice
of algorithms or methods. Then the algorithms are presented in two families. Facing the
multitude of existing algorithms only few are introduced but the aim is to familiarize the
reader with possibilities and main ideas developed in optimization, in order to explain the
choices we made and the other ways that could have been investigated. The selected strategy
of sizing Schneider Electric components applying discrete methods and genetic algorithms is
last presented. A fast review of the software integrated in sizing process concludes the
chapter.
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1.2 SPECIFICATIONS

1.2.1 Introduction:

The choice of an optimization algorithm has a huge impact on the model requirements and the
optimization results. But in order to choose the fittest algorithm and the right strategy, it is
essential to define the problem. Schneider Electric has a century long knowledge on power
converter, and defined ideas of their needs. This paragraph introduces all the requirements
established with Schneider and the boundaries of this PhD project.

1.2.2 Scales:

The optimization is achieved on passive component used in power converter implemented in
UPS. The UPS is built from several power bricks, usually an AC/DC converter switching
electricity from power grid to UPS, a DC/DC buck boost for batteries supply and finally a
DC/AC inverter to deliver the power to the load. The model must be valid for the whole
working scale of UPS. l.e.:

Current: from 1 Ato 1 kA
Voltage: from 1V to 1 kV
Frequency: from 50 Hz to 50 kHz
Component: from1 mmto 1 m

So component models have to be coherent on the whole scale whatever the working power.

1.2.3 Converter environment:

Schneider Electric ITB is in charge of developing a new range of products, but also to
upgrade old version of UPS or modify part of the UPS for customer special need. Thus, the
modeling has to enable the optimization of the whole converter or only part of it with the rest
of the structure unchanged. Every UPS has a different topology and power scale. Furthermore
in the development of a product, several topologies are compared. So the optimization and the
modeling must be flexible enough to consider all topologies without changing the model or
the algorithms.
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1.2.4 Magnetics:

With a wealth of experience in the design and manufacturing of power converters, Schneider
Electric and G2Elab identified the magnetics as a key in the design of the whole UPS. The
repartition of price and efficiency of the converter presented in general introduction, drive the
focus on these components and the semi-conductors. Schneider Electric does not have huge
leverage and possibilities on the manufacturing of the semi-conductors. They are treated as a
library of components from suppliers’ catalogs. Conversely, the magnetics have several
adjustable parameters. Magnetics are not acquired on datasheets. This makes the magnetics
particularly adapted to design by optimization approach. They will be widely investigated in
this manuscript.

1.2.5 Products for industrialized application:

One of the major key requirements of this project is to reduce drastically the cost and the time
of product development. l.e. this is not a pre-sizing process, but the optimization has to
converge toward components directly implemented in industrialized converter. That means
working on catalogs and supplier size of sub-components and library of materials. The
optimization has to deal with discrete values, libraries and the model must be really accurate
to give results close enough from final product behavior.

1.2.6 Engineer tool:

The optimization must be carried out by engineer accustomed to optimization but not expert
in this domain. The optimization must be robust and without bug requiring expert analysis
after each run. Users must be able to implement new material or component in library used in
optimization. The deployment of models and algorithms must be easy and without high cost,
multi-software platform is not recommended.

1.2.7 Conclusion:

This PhD has been achieved in strong collaboration with Schneider Electric ITB. The main
goal was to apply scientific innovation and research on an industrial project. The
specifications presented in this paragraph have been the guiding line of the work and research
achieved during the PhD. Models, tools and optimizations are matching all the requirements
established by Schneider and sometime exceed them.
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1.3 ALGORITHMS

1.3.1 Introduction:

The choice of optimization algorithm according to specifications of the problem and goals of
the optimization is as important as the model of the problem. Problems are distinct by their
nature and their purpose. The choice of the algorithm matching the requirement implies the
knowledge of these algorithms and their behavior, as well as the model behavior when used in
these algorithms, since both cannot be decoupled. In this part some generalities on
optimization methods are explained and few algorithms detailed. Among the multitude of
techniques available for optimization it would be presumptuous to present all of them, so only
relevant methods are explained.

Two approaches are distinct from each other by the origin of their outputs with the same
specified inputs.

e The direct method uses directly the system to be optimized or its multi-physic
accurate modeling. Simplest and faster this method uses real outputs.

e The indirect method takes its values form a surrogate model elaborate from the
multi-physic modeling. It requires the elaboration of a new model but can be really
useful when the system is too complex or the accurate model too expensive in time
calculation.

Goals are to be clarified also. For each optimization problem, several optima can exist, local
or global. In the case of amelioration, local optimum can be sufficient. But when searching
the best solution, only the global optimum is satisfying. In other cases, the optimum can be
dual, meaning that two objectives are in competition, in this case a tradeoff must be found.
For each specification of the optimization goal, some algorithms are better fitted than other.
Algorithms are usually classified into two families: if it is not based on any random
mechanism, algorithm is classified deterministic. The convergence is determined by fixed
mechanisms and will always converge to the same results for the same inputs. However, if
random mechanisms are used, the algorithm is stochastic. The result will not necessarily be
the same. The use of random method (e.g. Monte Carlo or Mutation in Genetic Algorithms) is
supposed to widen the search domain and guaranteed the convergence to the global optimum,
without trapping the optimization with knowledge of the user. New algorithms emerge to
answer the need of coupling both methods; they are call hybrid and are a sequential use of
stochastic and determinist algorithms.

Whatever the algorithm, it is classified by order:

e Method of 0" order: only the outputs are used.
e Method of 1% order: outputs and their derivatives are used.
e Method of 2" order: outputs, derivatives and second derivatives are used.
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The appropriateness of the optimization method to the problem is an issue with no general
solution.

In the following, algorithms are presented and tested on two problems.

1.3.1.1 Belledonne
The first problem is the Belledonne multi-optimum problem with the objective of minimizing

D).

fy1,y2) = b—yf]cos(S.yl) + bZ—y%]ms(m) with 0<y; <2 and 0<y, <2 1
This surface has one global minimum f(1.36864;0.01548), and 3 local minimums
1(0.56434;0.01548), f(1.36864;0.86648) and f(0.56434;0.86648). It is really interesting for
testing the capability of algorithms convergence toward local or global optimum. The surface
from (1) is shown in (Figure 4), global optimum is highlighted in red and local optima in
green.

Figure 4: Belledonne problem surface with local optimum in green and global optimum in red

Figure 5: Belledonne surface, initial point convergence area
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On the Belledonne case, the gradient algorithm convergence depends on the first set of
parameters. Four quadrants can be found, for red, green and blue ones; the optimum will be
one of the local optima. Only an initial set of parameters resulting in a value of (1) situated on
the yellow area will converge toward the global optimum (Figure 5). The point of the surface
chosen as initial point for optimization is situated at the intersection of the four areas.

1.3.1.2 Bi-sphere

The second problem is the Bi-sphere, multi-objectives of minimizing (2) and (3). Both
optimums f1(1;0) and f2(0;1) cannot be reached at the same time; a compromise is
compulsory. In multi-objectives problem, the goals are weighted to set a ranking. The choice
here is to give same importance to both goals. The surfaces are illustrated in (Figure 6);
optimums are highlighted in green.

fl(X 1,%p) = (X; -1)° + X3 2

D(X1,Xp) = (X -1)% + X 3

Figure 6: Bi-sphere surface with optimums in green

1.3.2 Pareto-Front

The optimal Pareto-front is an important tool for industrial designer. It allows selecting the
best optimal solution regarding the tradeoff the designer want to make between several
objectives. A Pareto-front can be built with many algorithms, determinist or stochastic.
However, results and convergence have not the same relevance and easiness.
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1.3.2.1 Single optimum algorithms

In presented algorithms only a few allow to find many optimums in a single run. The strategy
for the others consists in several run with a fixed value of one of the objective. The value of
the objective is fixed but all the other parameters and objective stay unchanged. It forces to
repeat the optimization for several fixed values of the objective but also repeat the pattern for
the other objectives.

This approach presents several drawbacks. For more than two objectives, the number of
optimization can become important. With the risk that optimization may be not robust and
with issues to converge, the Pareto-front becomes tricky to obtain. Another issue is the
number of fixed points on the Pareto; for a smooth front this is not an issue, but for Pareto
with several bindings, the number of values is essential to find good results (Figure 7).

F
Obj1

Ob;2

Figure 7: Pareto built from single optimum algorithm

1.3.2.2 Elitist Multi-Objective Evolutionary Algorithm

The EMOEA algorithms introduced in [1.3.5.3] and [1.3.5.4] are shaped to find optimal
Pareto-fronts for multi-objectives problems. Unlike other algorithms, they require only a
single run. The single run can be more expensive than several runs of other algorithm, but for
numerous objectives or when Pareto-front is not smooth, they prevailed. Their mechanism of
population selection on the front guarantees the search of the whole Pareto.

1.3.3 Constraints

Most of designs are realized with constraints from various origins, geometrical, electrical,
financial etc. The constraints are an issue for the good convergence of the algorithms. Indeed
they complicate the form of the domain of solution reducing the chance to find the optimum.
But constraints also introduce a discontinuity in the problem, i.e. the model can be impossible
to compute when constraints are not respected and thus the set of input creates an unfeasible
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solution leading to the stop of the optimization. If the optimum is near the boundaries defined
by the constraints the convergence can be dramatically slowed down because the refine of the
solution will be more difficult. The main methods to deal with constraints are presented
below.

1.3.3.1 Suppression of constraints

The best solution to prevent issues from a constraint is to suppress it. It relaxes the weight of
optimization by diminishing the number of check and prevents the stop of convergence. The
method is generally applied in the definition of inputs or in the model.

E.g. the definition of inputs binr<x;<bsy, and Cinr<x<Csyp With the constraints x;<x, can be
rewrite replacing one of the input by another. x; = X1+Xs With dinr<xz<dsyp. Thus the constraint
is suppressed.

This approach places the effort on the designer and liberates the optimization process. A
careful attention has been paid to this in the model presented in chapter II.

1.3.3.2 Penalties

When the design does not allows the suppression of constraints, those ones can be integrated
in the objectives function by the penalties method. This method adds a handicap on the set of
inputs violating the constraints. Two approaches are possible.

The method of external penalties replaces the objective function by a summation of problems
without constraints degrading the solutions violating the constraints: minfx) +> o;.g(x). @ IS
i

suite of scalar tending toward the infinite. Illustration is presented in (Figure 8) for objective
function f with constraint that x<1.

The other method is the interior penalties. Instead of penalizing solution violating the
constraints, the method penalizes the admissible solutions close to the constraints (Figure 9).
This method is particularly fitted to problem where solution cannot be computed when
constraints is not respected.

1.3.3.1 Lagrangian

The last solution for constraints is the Lagrangian function. The Lagrangian is a function that
summarizes the dynamic of a system. In the case of optimization it unifies the objective
function with the constraints of equality and inequality in a same function. The Lagrangian
uses the same pattern than external penalties but with the multiplier are computed at each
iteration.

L(x, f,2) = F(x)+ D (4.9(x, FOQ) + D (2j.h(x) 4
i i

M and Aj are the Lagrange multiplier. Moreover, the Lagrangian does not impose the respect
of constraints during the optimization, except at the end. So the convergence can be prevented
when constraints must be satisfied at each computation of the objective function.
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Figure 8: Method of external penalties to prevent solution x>1
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Figure 9: Method of interior penalties to prevent solution x>1

1.3.4 Deterministic Algorithms:

Deterministic algorithms search for the optimal solution with the fastest and most efficient
convergence. This is also a drawback because the optimum is generally local and not global.
They are fitted for large number of parameters and large number of goals and constraints.

1.3.4.1 Surface Mapping Method

The Surface Mapping Method (SMM) is widely used in optimization. It build surrogate model
of the objective function to reduce the complexity of the problem and enhance the time of
optimization. It is an indirect optimization; the surrogate model prevents direct
communication between the algorithm and the initial model. The surrogate function can be
computed at the beginning of the optimization and stay the same or it can be rebuilt locally at
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each iteration [2]. With the local approach, at each iteration the surrogate function is more
accurate than the previous one, derivative can be deduced from variation of the surrogates if
the behavior is monotonous and finally preferred directions are computed. The SMM can be
of 0™, 1% or 2" order regarding the approximation used. In the local approach three main
methods are used in SMM and define strategy of optimization.

Sliding approach

The first map is constructed in a part defined by the user. This first map gives the preferred
direction for convergence and the size of the map stay unchanged after. This information
coupled with the previous maps lead to the next map. This is an iterative process, the
optimum are locals because they rely on the first map (Figure 10).

Figure 10: SMM sliding approach on Belledonne problem

Zoom approach

The previous strategy is local, only a slight part of the objective domain is searched. A better
approach is to map the whole domain and zoom on the area giving the best convergence. The
fastest process is to reduce consequently the map at each iteration, but this can lead to focus
on a local optimum rather than the global optimum. To guarantee the convergence, a good
balance must be found between speed (few zoom iterations) and precision (size of the zoomed
map) (Figure 11).

Figure 11: SMM zoom approach on Belledonne problem

Comprehensive approach

To guarantee the global optimum convergence, the SMM is used to model the variations of
the whole domain. Each iteration, a polynomial function is surrogated to the objective
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function to map it. Considering the limitation of modeling induced by polynomial function,
the objective function is approached by piece map. The whole domain is divided in sub-
domains; in each a map is computed. The continuity between sub-domains is not guaranteed
(Figure 12).

Figure 12: SMM comprehensive approach on Belledonne problem

The three approaches for SMM have not the same pattern; their use will depend on the
problem. Sliding requires little iteration so it is fast but not accurate. This algorithm chained
with a local search algorithm on the model proves efficient on complicated objective function.
It is still a local optimum search.

The zoom SMM allows the search of the global optimum with a longer time of calculation.
The convergence on the global optimum is not sure in every case.

The comprehensive approach increases the probability to find the global optimum by
subdividing the domain. It is the most expensive of the three but makes it possible to compute
accurate surrogate to the objective function.

However, SMM in general deals badly with constraints that prevent calculation. The maps are
predefined and do not consider constraints. So if a model cannot be computed if the constraint
is not respected the surrogate point is unfeasible. The choice of surrogate points is then
difficult so the surrogate maps will be tougher to build.

1.3.4.2 The 0" order

The direct search methods do not require derivatives. They only use direct value of the
objective function. They can explore non continuous function and are not really sensitive to
numerical noise.

1.3.4.2.1 The grid search

The grid search is the basest principle. Every input parameter is discretized between lower
and upper bound. The whole combination of values of the k inputs parameters defines a k
dimension grid mapping the objective function. The grid search consists in computing each
node of the grid. The finest the grid is, the closest the solution is to global optimum. This
method is expensive in computation time and increase dramatically with the number of
parameters and the discretization of the grid. It is a determinist algorithm thus it delivers one
optimum.
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For the Belledonne case, the solution is close to the global optimum, only the accuracy of the
grid will enhance the precision. But the algorithm is not trapped by local optimum. For the Bi-
sphere, the algorithm always converges to the lowest point of the crossing of both spheres
because goals have the same weight so crossing is the best tradeoff between both.

1.3.4.2.2 The simplex method
The simplex method is a local iterative optimization, with a spatial propagation form the
previous point to the next, which means like many determinist algorithm, the initialization set
of parameters will decide of the convergence toward a local or the global optimum. A k
simplex is the generalization of a 2D triangle to a k dimension space. Its process is easy:

Initialization

Computation of the summit of the triangle

Classification of summits regarding objective function

Computation of new summits considering worst and best previous ones

Usually the summits are classified as Best point, Worst point W and N the second best point
for convergence. The most known method is the Nelder and Mead [1] with the introduction of
adjustable step. When a direction is favorable, biggest step are taken. Reversely, in the
direction of the worst solution, steps are reduced. These notations are referred as expansion
and contraction of the simplex. Relations to compute simplex are:

e Reflection R=C+ a(C-W) a~1
e Expansion E =C +y(C-W) v>1
e Contractionto R CR=C+ B(C-W) 0<B<1
e ContractiontoW  CW =C-p(C-W) 0<p<1

C represents the barycenter of the k best points of the previous simplex. The principle is
shown in (Figure 13).

Figure 13: Simplex method

The simplex method is the most efficient of 0" order approach. The mechanisms are easy and
it does not require much time to converge toward the optimum. However the simplex needs
many iterations to converge to the optimum when close of this one, because of the iterative
reduction of the simplex. But coupled with another method, it can be really fast. Attention
must be paid to the case of constrained optimization because a false value is imposed on the
objective function when a constraint is violated. This trick to stay in the search domain leads
to wrong information on the convergence of the algorithm.
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On Belledonne problem, the simplex converged in 37 iterations. Its convergence is illustrated
in (Figure 14). Only a local optimum is reached and the path followed by the algorithm is not
the fastest one.

Figure 14: Simplex Nelder&Mead convergence for Belledonne problem

On the bi-sphere problem, the simplex converged in 32 iterations toward the minimum of
mono-objective computed from f1 and f2. The optimal point found by simplex is the exact
balance between both objectives. It comes from weighting on goals. An unequal balancing
would have leaded the algorithm toward one or the other goal.

1.3.4.3 The 1% order

The 1% order algorithm use first derivative of outputs according to inputs. This is the jacobian
matrix build from gradient. It is an approach reducing the time to converge and the good
direction taken between two iterations. Indeed, for a function f of C* category (differentiable
with continuous derivative), the gradient of this function at the point x is the direction of the
greatest increase of f. So it gives the best direction to search for reduction or increase of the
function.

1.3.4.3.1 The Steepest slope
The Steepest Slope Method is one of the easiest gradient methods. The gradient giving the
greatest increase, to minimize f, a step is taken in the opposite direction, which is the steepest
slope. The direction for vector of inputs X is:

dx) =V f 5
So, knowing vector of inputs x;, the next set xj.1 is defined by:
Xiu1 =Xi+(1.d(Xi)=Xi—(1.VXif 6

a defines the length of the step to xi.;. A line search procedure based on residues is applied to
find the best value of o (Appendix A). (Figure 15) illustrates on the search line that a best
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value of a can be found to choose x;+1. Indeed if « is not correctly set the next step contains
part of the previous direction, which leads to lose time and efficiency. So for each set of
inputs the gradient is used to find the best direction for the next step and a line search
procedure is used to choose the length of the step. X; is a vector of inputs, the gradient is
unequal for each line of x; meaning for each input parameter so is the value of a. The length is
not necessarily the same for all input parameters

Figure 15: Steepest slope path from one point to the next

Figure 16: Convergence of SSM

The steepest slope method is known for slow convergence because the same direction can be
taken many times (Figure 16). This default is corrected by the conjugate gradient method
using the hessian. However, the SSM is easy enough to understand gradient convergence
mechanisms.

1.3.4.4 The 2" order

To correct the drawback of not taking into account the variation of the objective function, the
2" order method use the hessian, the second derivative of the function considering local
variations of the function.

27



1.3.4.4.1 The Conjugate Gradient

The purpose of the CG method is to keep the SSM principles and speed up the convergence.
In the SSM same axes of research can be taken many times. It would be faster to impose that
each step must be orthogonal to all previous directions. So an A-orthogonal family of vector
is built for direction search d(x). l.e. each new direction d is orthogonal to all previous
directions. To find new orthogonal directions the local variations of the objective function f
are considered using the hessian matrix. The hessian matrix is used to ensure the A-
orthogonality of each new direction so it is not necessary to store old search vectors. This is
what makes CG an important algorithm.

CG proves really effective on Belledonne problem. It took 7 iterations to converge toward the
global optimum. The starting point was the same as the simplex but CG started in the good
direction (Figure 18). We change the initial point of the optimization near the global
optimum, to force CG to depart in the other directions. It took only two iterations each time
for CG to reach the other optimums and finally converge on the best of the 3 local optimums
(Figure 17).

On the bi-sphere problem, CG is much more efficient and the same optimum as simplex is
reached in one iteration only.

Figure 17: Convergence of CG algorithm on local optimums
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Figure 18: Zoom on Belledonne surface; Convergence of CG toward global optimum

1.3.4.4.2 The Quasi-Newton/ BFGS algorithm
The 2™ order algorithms like CG use the hessian matrix of a function, which is not always
calculated analytically for speed up reason. The Quasi Newton method (QN) is based on the
Newton approach to compute approximation of the second derivative of a function around a
specified point. The development to second order of a function near xo is:

f0x1) =16 0) + Vo, f o061 ~X0) 43661 ~X0) T-Aly o) 7

So the purpose of the method is to find the value of x that minimizes the second order
approximation.

Vy f=0=Vy f+A (X —X0) 8
The next iteration point is easily deduced:
Xip1 =X~ (Axi )_1-inf 9

In this equation the inverse of the hessian matrix is needed, which lead to important
calculation and time processing. A convergent iterative process is substituted to the inversion
of the hessian by computing approximation of the inverse at each iteration. They are the QN
approaches. The pattern of CG method is reused.

Xi+1=Xi—(li.$.VXif 10

a is still the minimum along the direction imposed by the opposite of S; and the gradient (line
search in an orthogonal base). S; is the matrix approximation of the hessian A, built from the
previous calculations, Si+; = S; + C;. Cj is a correction matrix based on the condition of
Newton. The best calculation of C; matrix has been introduced by Broyden-Fletcher-
Goldfarb-Shanno (BFGS method) [3]-[6].
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The iterative and numeric approach of the hessian matrix impose the objective function to be
continuous and with low level of numerical noise.

On the Belledonne problem, BFGS converged in 4 iterations towards the global optimum
(Figure 19). However, unlike the CG, it took only 2 iterations to reach the good area, and the
local search takes 2 iterations to refine the result.

Figure 19: BFGS algorithm convergence on Belledonne surface

On the bi-sphere problem BFGS acts like CG.

1.3.4.4.3 The SQP
The Sequential Quadratic Programming method is based on the computation of the
Lagrangian function. It is a nonlinear optimization innately taking into account constraints.
This method is a strategy for finding the local maximum and minimum of a function subject
to constraints. The purpose is to minimize this Lagrangian function, using a QN (Quasi
Newton) approach to solve the quadratic problem of the second derivative minimization. The
BFGS method is generally used sequentially until no better solution can be found.

The SQP algorithm is one of the best nonlinear constrained methods. However like the BFGS
it is sensitive to numeric noise because of the local approximation of both gradient and
hessian.

1.3.5 Stochastic algorithms

Unlike deterministic algorithms, stochastic algorithms are based on random approach. Two
launches of the algorithm from the same starting point won’t follow the same path. They are
generally used for problem with discrete parameters or when several local optimums exist to
find the global optimum. Stochastic approach are often based on observation of mechanisms
of the nature, ant population, energy evolution of a cooling mass in fusion (simulated
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annealing), or Darwin evolution theory. The genetic algorithms are of this last family. This
manuscript focuses on the genetic algorithm because they are widely used in our
optimizations.

1.3.5.1 The Genetic Algorithm (GA)

The GA is based on the genetic analysis of the human nature. The most performing
individuals of a population have higher probabilities for their genetic material to be used in
the next generation. Then every new generation must be better than the previous one. The
creation of new individuals is achieved by elitism, combination of the best individuals but
also by random mutation of the genes. This approach is easily translated to optimization.

An individual is a set of adjustable parameters. To match genetic, parameters are generally
described as binary string of 0 and 1. A population is made from several individuals. Each
individual is noted according to its performing in satisfying the objective function. The
optimization finds the best individuals by amelioration of a fixed population at every step.

1.3.5.1.1 Selection

During each successive generation, a proportion of the existing population is selected to breed
a new generation. The creation of a new generation of population is done using three
operations. The elitism consists as keeping the n better individuals to carry over to the next
generation, unaltered. It guarantees that the solution quality obtained by the GA will not
decrease from one generation to the next. The tournament is the random selection of two
individuals and only the better one is keep as a parent for the next generation individuals. This
process is repeated until enough parents are selected to brew next generation. The roulette
wheel selection or fitness proportionate selection is used to illustrate the performing
proportion of an individual compared with the performing of the population. A wheel is
created with segment for every individual. The segment size is proportional to the individual
performing. Then a random selection is made similar to how the roulette wheel is rotated.
Thus, best individuals have higher chance to be picked up but not necessarily.

Once the parents are selected, a new generation is created by their crossover.

1.3.5.1.2 Crossover
The one-point crossover, both parents binary strings are cut at the same length, and then the
second parts of the data are swapped between them to create children.

The two-point crossover, both parents binary strings are cut two times at the same length and
the middle parts are swapped.

The cut and slice crossover, both parents binary strings are cut at unequal length and
swapped. This results in the change of size for children.

The uniform crossover uses a fixed ration of genes of the parents to be swapped.

The genes of parents and children match one input parameter. The crossover between a
temperature input and an electric input would be incoherent.
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1.3.5.1.3 Mutation

The mutation is an operation that changes gene values randomly. Its role is crucial in the
convergence of a genetic algorithm because with selection and elitism the genetic algorithm
tends towards a homogenization of the population. Mutation creates brand new individual and
brings new area of research. Where selection and crossover lead to converge to accurate
solutions, mutation extends the search to the whole domain. Several processes of mutation are
used. The bit mutation is the flip of a random gene from 0 to 1 or inversely. Flip bit changes
the genes value of the whole string. Many other mutation operators exist and are not listed
here.

GA uses partial random set of adjustable parameters which guarantee a better exploration of
the solution domain with simultaneous points of convergence. The chance of finding the
global optimum is huge and new unanticipated solution can be found.

On Belledonne problem, GA reaches the global optimum in 42 generations of 50 individuals.
Only the global optimum is delivered by the algorithm.

2
1,8
1,6
1,4
1,2

1
1st to 41th generation

41th generation

Figure 20: GA convergence on Belledonne problem

1.3.5.2 The Niching

GA is suitable for locating the optimum of unimodal functions as it converges to a single
solution of the search space. Industrial optimization problems often lead to multimodal
domains and so require the identification of multiple optimums, either global or local. For this
purpose niching methods extend simple GA’s by promoting the formation of stable
subpopulations in the neighborhood of optimal solutions, the niches. Several niching methods
exist [7].

1.3.5.2.1 The Fitness Sharing (FS)
The fitness is a representation of the performance of an individual. The purpose of the FS is to
reduce the density of populated regions. It lowers each niche’s individual fitness by an
amount of the number of similar individuals in the niche population. For an element i, who
shares a fitness f; with m; individuals the new fitness is:
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fr =— 11

The goal is to reduce the attraction of equivalent individuals and highlight unique individual.
Actually, the more elements are sharing the same fitness, the more the equivalent fitness of
those individuals will be reduced and thus also their chance to be selected for brewing new
generation.

The niche count m; is done by summing a sharing function over all the members of a
generation population.

mi = > _sh(dj) 12
j

Where dij represents the distance between i and j and sh the sharing function that measures
the similarity between two elements. It returns one if the elements are identical and zero if
their distance is higher than a threshold dissimilarity, the niche radius.

sh(dij)z

Sharing tends to encourage search in unexplored regions of the space and favors the formation
of stable subpopulations. However setting threshold « requires the knowledge of the distance
to the optimum which is not the case so setting the same o for all individuals can lead to
privilege optimum rather than other.

1ifd<ao 13

0 otherwise

1.3.5.2.2 Clearing
The clearing method is similar to fitness sharing, but instead of sharing the fitness with all
individuals, only the least good individuals share fitness. So in a niche the best individuals’
fitness is preserved and the others are reduced. As in the sharing method, individuals belong
to the same niche (or subpopulation) if their distance in the search space is less than a
dissimilarity threshold.

1.3.5.2.3 Crowding
Crowding method inserts new elements in the population by replacing similar individuals.

In standard crowding [9], an offspring replaces the most similar individual (in terms of
genotypic comparison) taken from a randomly drawn subpopulation of size of a crowding
factor from the global population.

In deterministic crowding [8], standard crowding is improved by introducing tournament
competition between parents and children in a same niche when crowding with offspring.

The Restricted Tournament Selection [10] is a last improvement of the crowding method.
RTS initially selects two elements from the population to undergo crossover and mutation.
After recombination, a random sample of individuals is taken from the population as in
standard crowding. Each offspring competes with the closest sample element. The winners are
inserted in the population.
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Conversely to all previous algorithms, Niching provides multi-optimum result (Figure 21).
The optimums are less accurate than CG or BFGS, but all local optima plus the global
optimum are found in 49 generations of 50 individuals.

On the bi-sphere problem, several optimums are given (Figure 22). The classic optimum
provided by all previous algorithm plus other optima. These ones, not necessarily interesting,
result only of the need for the algorithm to keep several niches along the optimization.

i — -
: :
4
3 :
2
| 1
* * ¢ ¢ ‘
0
5 3 1 ) 1 3 3
-2
3 =
— 4
,‘47 - -
=

Figure 22: Niching solutions on Bi-sphere surface

1.3.5.3 Non Sorting Genetic Algorithm 11

The NSGA-II [11] is an evolution of the NSGA [12] Elitist Multi-Objective Evolutionary
Algorithm. As indicated by its name, this algorithm is part of the genetic algorithm build to
find the Pareto-optimal front of a multi-objective problem in a single run. In the modern
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application problem it is impossible to find a single optimal solution that optimizes all
objectives. An algorithm that gives a large number of alternative solutions lying on the
Pareto-optimal front is of great practical use for a designer in the industrial world.

NSGA has many faults: a high computational complexity of non-dominated sorting, a lack of
elitism and the need for specifying a sharing parameter as in Niching fitness sharing. To
address all these issues NSGA Il was proposed and is now the most used multi-objectives
algorithm.

First an initial population is created, then the population is sorted based on the non-
domination. The goal is to sort all individuals in several Pareto-fronts, the 1% being the best
and the n™ the worst. In the NSGA approach all N individuals are compared with all N
individuals for m objectives, mxN° calculation at max. The fast non-domination use in NSGA
Il is a process to reduce the number of computation to mxN? at max:

For each individual p in main population P :
- Initialize Sp = [0]. This set would contain all the individuals that are being dominated by p.
- Initialize np = 0. This would be the number of individuals that dominate p.
- foreachindividual gin P
e if pdominated q then add g to the set Sp i.e. Sp = Sp U {q}
e else if g dominates p then increment the domination counter forpi.e.np=np +1
- if np = 0 i.e. no individuals dominate p then p belongs to the first front; Set rank of individual
p to one i.e prank = 1. Update the first front set by adding p to front one i.e F1 = F1 U {p}
This is carried out for all the individuals in main population P.
- Initialize the front counter to one. i =1
Following is carried out while the i"" front is nonempty i.e. Fi # @
- Q=. The set for storing the individuals for (i + 1)™ front.
- for each individual p in front Fi
e foreach individual q in Sp (Sp is the set of individuals dominated by p)
ng = ng-1, decrement the domination count for individual g.
if ng = 0 then none of the individuals in the subsequent fronts would dominate g. Hence
set Qrank = | + 1. Update the set Q with individual gi.e. Q =Q U {q}.
- Increment the front counter by one.
- Now the set Q is the next front and hence Fi = Q.

This algorithm is better than the original NSGA since it utilizes the information about the set
that an individual dominate (Sp) and the number of individuals that dominate the individual
(np). It is then faster and with less calculation to find all the fronts.

Then to get an estimate of the density of solutions surrounding a particular point in the
population, the average distance is taken between the two points on either side of this point
along each of the objectives.

Once all the individuals are sorted, the best individuals are taken, i.e. the individuals in the
lowest ranked Pareto (the best Paretos) and with the higher density distance (isolated
individuals, same principle as niche). Classical genetic tournament selection, crossover and
mutation are done. Then the new population created with the best previous individuals
(elitism) and the children is non-dominated sorted to create the next generation. Since all the
previous and current best individuals are added in the population, elitism is ensured.

To sum up, a first population is created and sorted. Then each optimization iteration, the best
individuals are used for genetic breeding. Fast non-domination sorting and density estimation
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are used and a new population is selected from Pareto-front ranking and crowding
comparison.

NSGA-I1I addresses multi-objective problems to find the optimal Pareto-front in a single run.
It is often better than its competitors [13] [14] and [15].

1.3.5.4 Grid Multi-objectives Genetic Algorithm

Like NSGA II, GMGA is an algorithm to find the optimal Pareto-front of multi-objective
problems. GMGA is perfect for industrial applications. It is based on the discretization of
adjustable parameters to form a grid. Each parameter’s grid step is chosen independently, for
geometric parameter e.g. it could be really interesting to choose micrometers for wire or
millimeters for magnetic core. This is also useful to set a grid step to one for library use,
where each number represents a component or material.

The first step defines the grid setting bounds for the parameters and their grid step.

Then the first population is generated using the Latin Hypercube Sampling [16]. A LHS
selects points on a grid in order to make certain that the n possible levels of parameters are
tested one time (Figure 23). The points are uniformly distributed on the axes of the domain. It
does not ensure the uniformity of resulting solution on the domain.
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Figure 23: Grid selection, left standard sampling, right Hypercube Latin

For the next generation, the process is similar to NSGA I1l. Elitism is used to select the
parents. Every point on the grid close to the best solution is explored. Then selection,
crossover and mutation are used. The Pareto-front is improved using vicinity mutation.

The domination sorting is not the same as for NSGA 1. Cells (i.e. the sizes of the grid step)
are built for each parameter. Only one individual is authorized per cell. If the number of
children after this sorting is higher than the required population, the cell size is increased. The
best individual per cell is kept. The new population is built.
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On Belledonne problem, for GMGA the goal is set inferior to -10 optimal solutions are
returned (Figure 24). The optimums are distributed on grid points of the surface lower than
10.
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Figure 25: GMGA results on Bi-Sphere surface

On the Bi-sphere problem, GMGA gives all the optimums between both sphere minimums
(Figure 25). This algorithm allows the perfect tradeoff between both goals unlike previous
algorithms that gave only one. GMGA is particularly adapted for multi-objectives problem.

1.3.6 Conclusions

Two main families of algorithms have been presented. Determinist and stochastic most
employed algorithms have been introduced in order to understand their mechanisms. The
knowledge of algorithm convergence and capacities is essential to use them properly and in
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the good application. Since many issues in optimization come from the wrong association of a
model and an algorithm, this association is part of the strategy chosen for the optimization.
The model can be imposed, but when no model exists it appears easier and better for
convergence to build a model fitting algorithm capacities. This will be investigated in the
following section.
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1.4 STRATEGIES

1.4.1 Introduction:

The choice of algorithms for optimization cannot be done without according it to the strategy
chosen for optimization. The strategy is the decision of which algorithm applied on which
model for which purpose. Two main types of strategies can be separated, pre-sizing and
sizing.

Pre-sizing is particularly fitted for heavy time computing model with lots of parameters and
constraints. The complexity of the system to be sized compels to build a simplified modeling.
Most of the time, this approach is associated to indirect methods. The goal is to find quickly
an approximate optimized solution for the problem. However, the use of a surrogate model
(e.g. linearized model), prevents directly obtaining a solution for industrialized production.
Discrete values must be linearized. This approach is using determinist algorithms, what is
better with lot of parameters. A second study is achieved after optimization around the
optimal solution, e.g. discrete parameters are fixed to the closest discrete value from the
continuous one. It can lead to the need for several prototypes. Furthermore, the use of
determinist algorithm often leads to local optimum. Better solutions of pre-sizing are found
using hybrid approach of coupling stochastic search of the domain and local focus with
determinist algorithm. When searching discrete library of material e.g., strategy of
linearization of this library are computed.

The pre-sizing context is then to be preferred with a large number of parameters and
continuous problems with no library.

The sizing approach is really interesting in an industrial problem with library of components
and discrete sizes of parameters. The optimal solution is then directly used for prototyping
and reduces drastically the time to market of the product. However, discrete values and
libraries prevent 1% and 2" order determinist algorithms. Stochastic algorithms like genetic
ones are fitted for this approach but the number of parameters, goals and constraints cannot be
numerous because of the nature of those algorithms.

Sizing context is chosen for discrete problem with few parameters; it can be seen as a smart
choosing method among too numerous market solutions.

More than these two definitions of approach, strategy of optimization also deals with the
choice of modeling development platform. The sizing of a power converter is a multi-physics
problem with many interactions. Nowadays, designers use multi-software: Finite Element
Analysis for magnetic components or thermal simulation, circuit simulation for topology
electric behavior, control software for regulation of the converter, etc. The emergence of
multi-physic software like Comsol®, Moose® or Ansys® shows the need of this kind of
approach.
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The goal of optimization is important too. The approach is not the same if the purpose is to
find an improved solution or to find the best possible solution or to provide Pareto-front
solutions for designer help.

There are as many strategies as problems. The specifications defined by Schneider Electric
and their manufacturer experience have influenced the strategy of this project presented in this
paragraph.

1.4.2 Schneider Electric Experience:

Power converters are multi-physic and multi-interaction objects. Their multi-physic
simulation is extremely complex and heavy time consuming, without simplifications. A strong
aspect of this PhD is that several assumptions and problem reductions have been done based
on Schneider Electric experience. Focus to be done on a given physical phenomenon, strong
or weak interaction in the converter and industrial context are highlighted based on this
experience.

14.2.1 Components

Power converters are built with passive components (resistance, capacitor and magnetics) and
active components, mainly semi-conductors. For passive components, capacitors and resistors
are picked from catalogs and don’t benefit from adjustable parameters other than their electric
value R,C. Magnetics for high power converters on the other hand are not available as catalog
products. They are entirely designed by Schneider Electric. So the number of their adjustable
parameters and their impact on efficiency and cost of the whole converter make them the
principal case of study for optimization. Regarding efficiency and cost, the other focus must
be on semi-conductors. However, the amount of leverage on semi-conductor manufacturing is
low for Schneider Electric, semi-conductors are treated as library components, and only their
modeling must be accurate because their losses are important and the optimization must find a
good balance between filter and semi-conductors. l.e. the increase of legs and voltage level
decrease the need of filter but increase the need of actives components. Thus for an optimal
solution of efficiency increase losses must be correctly calculated for chokes and
semiconductors.

1.4.2.2 Strong and weak Interactions

What makes the simulation of a power converter tricky is the multi-interaction between
components’ behavior and regulation. E.g. for an inverter, the DC source is switched between
voltage levels in order to deliver an equivalent mean sinus voltage at the output. To do it,
switch cells are assembled regarding the multi-leg multi-level topology and are controlled at
high frequencies ~kHz to connect alternatively to a common point the DC voltage potentials
with a modulated time for this connection in order to produce a mean sinus value at 50 Hz or
60 Hz. Switched waveforms contain harmonics thus passive RLC components are added to
filter the HF harmonics. The HF switching command of the semi-conductors is done
regarding the output waveforms. However, the filter components are not linear; their values L
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and C depend on the level of current they are subject to, so they impact the high frequency
current and voltage at each switch and consequently the low frequency required waveforms.
Output waveforms must be sampled with frequency higher than HF switches and time of
connection of semi-conductors readapted to guarantee output values. This is an iterative
process with lots of sampling points and multi-component simultaneous simulation.

Schneider Electric experience reveals that some interactions can be ignored when looking at
components separately and others cannot. The design must be achieved regarding electrical
waveforms of the converter and not using the conventional filter approach with RLC values
and simple cut-off frequency or attenuation requirement filter template.

The LF waveforms must be guaranteed at any time because they are the aim of UPS. This is
the role of the regulation of the converter. LF waveforms represent a strong interaction inside
the converter; they cannot be abided. To design the components of the converter, we assume
that regulation will be correctly done to insure LF waveforms. However, the HF
waveforms are weak interactions between components, they can be studied separately.
Indeed, the good sizing of filter components with perfect regulation providing LF waveforms
will guarantee that HF spectrum slight changes caused by HF modulation of switches with
real regulation, will not impact the design.

This is a strong assumption validated by Schneider Electric experience. It allows designing
converter directly in steady state, without regulation iterations. It reduces consequently the
time of calculation. Another strong advantage of this approach is that passive components can
be optimized without active components if needed. Whatever the semi-conductors, the voltage
at the output of the inverter can be defined from the number of voltage level and the number
of legs and the switching frequency. Constraints must be added to the optimization of passive
components to prevent malfunctioning of active components, e.g. maximum current.
Illustration of these assumptions and validations are presented in chapter three.

1.4.2.3 Sampling

In the power converter, LF and HF effects must be studied. Local maximum of HF waveforms
are reached at each switching event. Experience shows that considering only these moments
for simulation without regarding non-linear evolution of value between two switches is
accurate enough. Note those maxima are computed considering non linearity of components.
The sampling is consequently reduced.

This assumption is stronger with higher frequencies and magnetic powder core. When using
FeSi steel transformer, non-linear evolution between two switches impacts the core losses
calculation. So this assumption must be verified depending on the materials.

Schneider Electric experience makes it possible to simulate and size separately the passive
components. The simulation time is drastically reduced and waveforms approach allows a
flexibility of modeling.
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1.4.3 Analytical Modeling:

Several demands from Schneider lead to develop an analytical model. One major goal of the
PhD is to focus on magnetics but current models do not match required accuracy or are not
fitted for power inductors. Thus new models are developed and implemented. The easiest way
is building our own analytical code to implemented easily new models or improvements.
Secondly, an analytical model is most of the time faster than Finite Element Analysis or other
numerical methods. For optimization process the computation time is dominant. Finally, the
resulting optimization software built in the PhD has to be deployed for every designer. Once
again an analytical model is easier to spread than a multi-software platform with its cost and
its support.

1.4.4 Discrete Values and Libraries:

One main goal of this project is to deliver optimized industrial products for market. In the
industry, all values are discrete; the sizes of the components are imposed by supplier
capability, e.g. magnetic powder core sizes are limited by press force, strand diameters for
coils are defined by AWG table or other ones but are imposed. When designing inductors,
many different magnetic materials must be investigated. Their physical parameters depend on
the material (Fe powder, steel sheet, amorphous alloys). No universal model for magnetics
exists; they must be handled as a library of parameters. The caps and the semi-conductors are
also treated as libraries.

So the optimization must work with discrete values and libraries. Strategies to build a linear
and differentiable model could be found in order to use 1% and 2™ order algorithms for fast
computation. However, genetic algorithms are perfect for working with discrete values. The
possibility of analytical modeling with considering previous assumptions [1.4.2] enables the
conception of a very fast simulation model. The number of adjustable parameters for
converter optimization does not exceed few dozens. Thus, genetic algorithm use coupled with
fast modeling seems the easier strategy for our optimization. Furthermore the convergence
toward best solution is more likely.

1.4.5 Industrial Project:

The genetic algorithm delivers only one optimum [1.3.5.1], but the R&D engineers face in
project development many tradeoffs between price, volume, weight, efficiency or footprint.
The optimization presents a bigger interest if it provides decision tools to help engineers in
their choice. The elitist multi-objective evolutionary algorithm [1.3.5.3] and [1.3.5.4] are
coded for finding Pareto-front tradeoff between multi-objectives. Pareto front can be found
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using several convergences of determinist or genetic algorithms but it proves less efficient
[1.3.2].

1.4.6 Conclusions:

The strategy has been chosen to match project requirements and many others could be found
for other projects. However, generalities presented previously can be applied in design
strategy choice for industrial designers.

Schneider Electric experience simplified the modeling by introducing assumption of strong
and weak interaction between components and commands. This aspect is characteristic to
power converters. The reduction of time computation makes it possible to consider more
expensive algorithm like GA or EMOEA.

The industrial context makes discrete values and library management a mandatory
requirement. Once again GA, Niching or EMOEA are particularly adapted to it. The use of
discrete parameters rather than linearize the model simplifies modeling.

The models developed in this PhD are fitted to EMOEA algorithms; they are fast and
accurate, dealing with discrete parameters and using libraries. The models are built to allow
separate optimization of component or to be connected for global converter optimization.
Optimizations are achieved to find Pareto tradeoff between multi-objectives and not local
optimum.
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15 GoT
The platform used in this project is Genuine Optimization Tool developed by Professor Jean-
Louis Coulomb in G2ELab [17]. The platform is a java toolbox for:

e Software connection for external calculation (Document, Tabulator, Java, Python,
Matlab, etc.)

e Parameter and function definition of a problem

e Screening

e Optimization i.e. definition of mono-objective or multi-objective problem

e Algorithms (possibility of building algorithm from elementary brick like mutation,
elitism, etc.)

e Analysis (robustness, sensibility, plotting).

GOT is based on a grid discretization of parameters and function, particularly fitted to our
strategy of optimization. The possibility of testing quickly new models with software
connection is advantageous. Toolbox to deal with libraries defined in tabulator or text files is
implemented.

GOT disposes of a user friendly interface in order to help with:

e Continuous or discrete parameters definition
e Mono or Multi objectives

e Problem unconstraint or with constraint

e Experience mapping

e Optimization direct or indirect

e Algorithms determinist or stochastic

e Post processing

e Software external calculation
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Figure 26: FGoT interface
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1.6 CONCLUSIONS

The goal of this PhD is to deliver models and optimization tools for power converter optimal
sizing. Many strategies and possibilities exist and selection has been done. The specificity of
this project is the industrial impact of Schneider Electric. Innovation and research are applied
to the industrial world. This chapter comes first to explain how the specifications by
Schneider Electric shaped the strategy of the project and the modeling that derives from it.

The most interesting part of the scientific research is when it is associated to an industrial
innovation. Schneider Electric has always designed its converter, but never using optimization
methods. The gains they want to reach with this project have been established as
specifications discussion. The specifications are explained and classified in order to feel their
impact on the optimization and which boundaries they impose to the project.

Converter design is nothing new, but optimization changes dramatically the usual approach
designers have. The innovation is the introduction of optimization algorithm in the sizing
process. Many algorithms have been proposed in the literature. It would be impossible to
present all of them. However it is essential to understand the major mechanisms to use them
properly in the design of power converter. They are presented here in this chapter, because no
models satisfied Schneider Electric requirements. The experience of optimization acquired
previously shows that it is much easier to build a model fitting algorithm requirement rather
than adapting the whole optimization strategy and algorithm to a fixed model. Two main
families of algorithms are presented and few algorithms are detailed in both of them. Some
algorithms are not adapted to the goals fixed by specifications, e.g. discrete values and
libraries management, 1% order and 2" order algorithms are thus dismissed. Another goal of
the project is to deliver a decision tool to designers, EMOEA providing optimal Pareto-front
answer this issue. They also manage discrete value and libraries. One issue is that model
associated to these algorithms must be fast or computation time will increase hugely. One
other is that experience shows these algorithms work well only with few numbers of
parameters and objective functions.

Schneider Electric and G2Elab experiences fixe these issues. Indeed, simplifications of
modeling and validated assumptions are presented based on several year of converter
manufacturing experience. Thus, we have on one hand EMOEA algorithms that seem
perfectly adapted to specifications and on the other hand a capacity of building models that fit
these algorithms requirements. The strategy that ensues from it is obvious.

Several optimization softwares were tested. GOT has been chosen for its programming based
on grid discretization of parameters and functions, which is close to the industrial design
world that deals only with discrete values. Moreover, GOT is a java library of optimization
tools dedicated to research and really flexible in the context of developing new approaches.
Unlike commercial software, GOT can be used to develop designer own methods of
optimization and implementation of innovating method is easy.

In this chapter specifications and strategies of the PhD project are presented. Models
presented in chapter two have been shaped to answer all requirements established in this
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chapter. Chapter three is the application of association strategy of algorithms presented here
and models from chapter two. The validation of this strategy is done in chapter four with
industrial product applications.
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2 CHAPTER Il — PASSIVE COMPONENTS
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2.1 INTRODUCTION

Power converter modern design focus on efficiency increase and cost reduction of product
development. Semi-conductors usually benefit of the most privileged attention for their losses
and thermal issues. However, Schneider Electric experience has highlighted the weight of
magnetics in efficiency and cost for UPS but also in terms of constraints for electric design.
Moreover, in our optimization process, IGBT are treated as library whereas magnetics present
lots of adjustable geometric and material parameters. The optimization process is suitable for
inductors because both core and coil sizing could not be separated and are in competition for
the optimal design of the other.

Chapter one introduced the algorithms and the strategy for optimization. The need for fast
calculation comes from genetic algorithm use. Indeed, by their mechanism these algorithms
calculate lots of possible sets of input parameters. GA and Elitist Multi-Objective
Evolutionary Algorithm have the capacity to deal with few constraints, goals and only dozens
of inputs. Considerations of these issues have been done in the capacitor and magnetic
modeling. This strategy of adjusting model with algorithm requirement is a strong choice of
this PhD and proved efficient in time of development and in term of optimization good
convergence and robustness.

According to this strategy, the models of passive component presented in the second chapter
are developed to be fast and using discrete values of both geometric parameters and materials.
Accuracy of models is a major requirement from the choice of direct component sizing,
meaning solutions found by optimization must be close enough to real components to
decrease the need for prototyping thus development time and cost reduction. The trickiest part
is to build a model that is complex but not complicated. l.e. the model must be accurate to
provide enough information to the algorithm for good convergence but it must not become too
complicated and thus speeding down the convergence and losing the algorithm.

Magnetics are widely investigated in this chapter in term of pertinent modeling and
component definition with regard to the rest of the converter. The magnetics are presented in
two parts, first the magnetic core and then the coil. The core is magnetic material so magnetic
models from Steinmetz basic to new proposition are studied. Compatibility with discrete
optimization and strategy of material modeling for library implementation are considered. The
core like the coil is subject to high-frequencies effects, models must take into account the HF
modeling. The coil is modeled as a frequency variable resistance. Already known model are
implemented but technologic innovation leads to computation of brand new conductive
material modeling. The capacitors are presented but they are less important in efficiency
increase and optimization leverage. The caps do not have many adjustable parameters other
than their electrical value. They are treated as linearization of a library. Finally, discussion is
done on component definition. l.e. how the magnetics geometry is defined, which parameters
are taken as inputs and the impact on optimization.
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2.2 CHOKE CORE
2.2.1 Introduction:

Magnetic material is the most complex system to simulate in passive components. Under
electric excitations the material has a non-linear hysteresis behavior impacted by material
magnetic background. Moreover in power converters the magnetic is under low frequency
and High Frequency stimulations; thus both static and dynamic phenomena have to be
simulated. In filtering applications many different materials are used, from silicon-iron steel
sheets to iron powder alloy through amorphous or nanocrystalline thin ribbons. The literature
on models of magnetic material behavior is significant [18]-[24] and involves both physical
and pragmatic means to model phenomena from microscopic to macroscopic scales. It results
that none is able to predict theoretically the hysteresis behavior.

Thus models based on measurements must be implemented to compensate information not
accessible theoretically. Facing the multitude of material behaviors, a modeling globalizing
main characteristics is searched to prevent a multi-model implementation. Furthermore, in the
discrete optimization resulting in specifications directly good for supplier we want to achieve,
a general model based on suppliers’ datasheets would be preferred.

2.2.2 Magnetic basics:
Magnetic materials are as numerous as they differ from each other in matter behavior.

Numbers of books deal with it. So only a fast and exhaustive presentation is done here. The
purpose is to understand the basics of magnetic material behavior and to present what they
have in common we can assimilate in a model.

At the nanoscale, from hundreds of angstroms (10°m) to thousands, the material is an
agglomeration of isotropic magnetized oriented domains. They are the Weiss domains, they
come from material fabrication. Crystalline properties, methods of structures tailored by
magnetic processing or other recrystallization annealing methods can impact the orientation
of the domains and their numbers. Between the homogenous magnetic oriented Weiss
domain, Bloch walls are thin areas where the magnetization changes directions (Figure 27).
So at the macroscale the magnetization of a magnetic material is seen as the mean value of the
magnetization over the Weiss domains.

When the material is subject to an outside magnetic field, energy is given to magnetization
domains that try to align with this magnetic field. Many phenomena occur, e.g. at low
magnetic field the domains with the same magnetizations that the external fields are preferred
and walls move creating flux density variation. Then for higher field, near saturation, the
magnetization rotations create the flux variation. Inside the material imperfection exist,
carbide, nitride, etc. which act as anchors for walls. These phenomena of magnetization
variation and wall movement are viscous flow so with the general idea that it depends on flux
variation and its velocity [25]. Both flux density and its time variation are the main
parameters.
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Figure 28 : Walls movement and reorientation under external field excitation

In the literature the losses are divided in three contributions. The quasi-static losses do not
rely on the flux density variation; only really low frequency effects ~1 Hz. Then for higher
frequency excitation the hysteresis is larger and losses more important caused by eddy
currents. Finally the measured losses are generally larger than both previous contributions so
exceed losses are added and can be explained by real microscopic dissipative magnetization
processes [25].

These phenomena being analytically different at the microscopic scale for the several
considered materials, global assumption are done at the macroscopic scale and presented in
the following sections.

2.2.3 Classical Macro Models based on Steinmetz:

The computation of magnetic losses is essential for converter efficiency evaluation and
optimization minimization goal. The most used macroscopic behavior law for magnetics is
Steinmetz formula [23]. This proposition is based on measures achieved by Steinmetz with
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sinus excitations. The dependency on flux density variation is integrated with the
consideration of the frequency as an extension of [23].

P, =k f*.BP 14

The frequency is directly associated to converter switch HF and k, o and p coefficients are
empirical. Steinmetz approach is still use as reference since 1892, (Figure 29) shows the
datasheet provided in every magnetic manufacturer catalogs, Steinmetz equation from sinus
induction excitation. Generalization of this formula for other waveforms has been proposed.
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Figure 29 : CoreLoss curves from suppliers’ datasheets

The modified steinmetz equation, MSE [28], the generalized steinmetz equation, GSE [29]
and improved GSE, iGSE [30] have been proposed to consider that hysteresis losses depend
on flux density variation speed dB/dt and not directly on the frequency to implement complex
waveforms.

MSE has the formula:
P, =k*1.BP f 15

The flux density variation is integrated in an equivalent frequency f. calculate from the
equality between flux variation rms value and sinus at f, for a peak to peak flux 4B.

T, .2
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One disadvantage of this formulation is that, although the dependence of loss on dB/dt is
included, MSE implicitly assumes loss proportional to 2, while at the same time assuming
loss proportional to f* leading to anomalies in loss prediction.

GSE overcomes this issue by suppressing the dependency on f, and associating loss with flux
density and its variation:
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The k; coefficient is deduced for consistence with Steinmetz equation in sinus case. So losses
depend on flux density and its variation at every moment. Real waveforms are normally
addressed. However this model is instantaneous; the magnetization historical of the material
is not taken into account, and dynamics are the same for minor and major loops in case of
converter waveforms. For material with large hysteresis major and minor loops, the error is
consequent.

IGSE is an upgrade of GSE by replacing instantaneous value of flux density by its peak to
peak value 4B. The total loss for complex waveforms is computed from the summation of all
minor loops:

3 =Z{(Pv>i.TT—i} 9

This method is particularly fit to be used with constructors’ datasheet and power converter
waveforms. But two main source of error can be identified.

First experience shows these models deal badly with large frequency spectrum waveforms
and with addition of LF modulation. It can easily be seen with command of converter by
voltage, a same impulse at same frequency so same flux ripple and variation speed but with
unequal LF polarization will not be addressed by iGSE because the formulation will stay the
same. More complex phenomena cannot be addressed with this approach, relaxation or
dynamic evolving with polarization of the material (Figure 30). The other error comes from
datasheet [2.2.4.5].
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Figure 30 : Measurements, evolution of minor loops losses for same AB with several B, polarizations done on toroid FeSiAl alloy
core @ 3 kHz

New improvements are still being proposed, like i*GSE [31], and the last proposition is the
addition of dynamic of material measurements. Yet several lacks are still present in Steinmetz
approach so another approach is studied in next section.
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2.2.4 The Loss Surface:
New models are evolving toward model already existing like the Loss Surface model [19] to

address dynamic non-linear effects but also the quasi static contribution not considered in
several models based on Steinmetz approach. The LS is a macroscale dynamic hysteresis
modeling based on series of measurements, both static and dynamic. Its purpose is to rebuild
the whole hysteresis of a magnetic material whatever the waveform and its harmonic
spectrum. First developed for SiFe steel sheet, it has been extended to nanocrystalline
material [32] and is presented for magnetic powder core later in this paragraph. It requires for
the moment more measurements than Steinmetz. But the excitations are compatible with
power electronic environment because excitations are square voltage waveform which is an
advantage.

2.2.4.1 Static Model

To address quasi static contribution in hysteresis behavior of magnetic material, several static
models are presented in literature. Like Jiles-Atherton [33] with optimization process for
coefficient approximation. Another well-known model is Preisach [34] developed from
bipolar magnetic switch with rectangular behavior. It often requires lots of measurements.
The Raleigh model is basically achieved on small centered excitation. Most of static models
have in common the decomposition between reversible part (the ability of the domains to take
back their initial position) and the irreversible part (when deformation of the walls and
domains prevent material to be in its initial magnetization state).

The static model of the LS is based on the same principle that Jiles-Atherton, without
coefficients approximation. It represents the static magnetization built from reversible and
irreversible contribution, M = My, + Mj;r. The model takes the flux density B as input. So the
reversible part is associated to the anhysteretic curve of the material Hann(B). The irreversible
magnetic field is computed from an easy algorithm presented in (Appendix B).

This static model requires two measurements, the anhysteretic curve and a LF hysteresis
~1Hz from lower saturation to upper saturation (Figure 31).
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Figure 31 : Measurements, static hysteresis @1Hz for nanocrystallin p=1700

2.2.4.2 Dynamic Model

The real improvement achieve by the LS compare with other dynamic model is the dynamic
part. The idea is to create a behavior map of the material which can be used in any situation to
retrace the path created by an external excitation. This approach is less mathematical and
physical but more based on experience. It also includes in a same measure both classical
dynamic hysteresis and exceeding dynamic part.

The 3D magnetization table is built from measurement. The flux density is the input of the
model and like presented in other modeling, the hysteresis depends on the flux variation also.
The model gives H(B(t), dB(t)/dt) (Figure 32). Note that static model consider historic of the
material whereas dynamic part is not impacted by it. Measurement of magnetic field
regarding B and dB/dt is done in order to simplify the mathematical computation of the map.
B is imposed to be triangular excitation, thus dB/dt is rectangular (Figure 32). We have a
whole evolution of H(B(t)) at dB/dt fixed. The excitation is done from —Bgy t0 +Bsy SO the
map is for the whole functioning area of the material. The measures are generally with noise
and 3D interpolation of the map in an algorithm is heavy time consuming. So the map is
represented by polynomials (Figure 33). The polynomial H(dB/dt) is bijective but not the
coeff(B) so the model cannot be inverted. However in power converter the commands
generally impose the voltage, e.g. inverter, so B(t) is the perfect input. The resulting hysteresis
for a filter choke made in nanocrystallin Kmu 1700 placed at the output of a 2 level inverter is
illustrated in (Figure 34).
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Figure 33 : Polynomial fitting of the LS dynamic map, left several dB/dt excitations, right corresponding evolution
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Figure 34 : Measurements, choke filter of nanocrystallin Kmu1700 waveforms and resulting dynamic hysteresis

2.2.4.3 Extension to Powder Core

What makes the LS model really interesting in our application is the fact it is built from
measurements. So in the idea of developing a homogenous library of magnetic material for
optimization, the LS map seems globalizable. Same measurement can be achieved on all
materials and mathematical implementation stays the same.
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But the Fe alloy powder cores with low permeability from 10 up to 100 have an oversized
magnetic field for easy measurement. Several challenges must be answer before adapting the
LS to powder core. First, coercive magnetic field for Fe powder core are around dozens of
A/m but saturation field are greater than hundreds of KA/m. So acquisition material must be
precise enough to sample signal from very different scales. Although Schneider Electric owns
top quality equipment, the dynamic of the measure leads to an inaccurate result (Figure 35),
the noise is as large as the coercive field thus no difference can be found between 2 kHz and 6
kHz. Another effect is the time laps between voltage measure (B) and current measure (H)
[35]. Coercive field of low permeability powder core is so thin than a slight delay between the
two acquisitions leads to important error on resulting hysteresis.

Even if all these issues where addressed, for all material the impact of the shaping of the final
piece on losses must be investigated. Indeed, nanocrystallin and steel sheet are manufactured
as sheets. The final inductor is made by assembling those sheets and put them in the required
form. If it is done without changing the internal structure of the material (e.g. mechanical
stress, cutting) the characterization of non-assembled sheet is still valid for the final piece. But
for powder core, the final piece is pressed. And the shape as a huge impact on the material
behavior [2.2.4.7], thus a LS map must be built for all size of cores. The measurement
campaign will be too important even for Schneider Electric, without talking about integration
of new material every year.
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Figure 35 : Hysteresis for FeSiAl powder core p = 26, measurement noise @ 2 kHz, 4 kHz and 6 kHz
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Figure 36 : Dynamic hysteresis for FeSiAl powder, RL load with 12 kHz ML

In conclusion the LS model needs several changes to fit with powder core. However as
presented in following paragraphs, such a complex model with measures issues is not
necessary accurate for Fe alloy. Hysteresis models are difficult to implement for powder.
Measurements and polynomials approximation generate too much cost and time. This
spending is not justified by the obtained result. These models are based on the construction of
the dynamic hysteresis of the material yet the thickness of the hysteresis for powder core and
all the incertitude brought by measurements do not guarantee better losses computation than
other models (Figure 36). Two minor loops are highlighted in red, the thinness of the loops do
not guarantee good computation of losses unlike nanocrystallin hysteresis from (Figure 34).

Moreover, the main idea of this PhD is to be able to optimize passive component with
suppliers ’datasheets. And suppliers will not comply to provide such difficult and expensive
measurements.

2.2.4.4 Loss Map Model

Magnetic material suppliers provide datasheet with losses curves ideal for Steinmetz approach
but not enough for non-linear evolution of dynamic losses with polarization effect (Figure
30). On more the necessity of a dynamic hysteresis model is proved useless (Figure 36) for
thin hysteres