P. Achermann and H. Kunz, Modeling Circadian Rhythm Generation in the Suprachiasmatic Nucleus with Locally Coupled Self-Sustained Oscillators: Phase Shifts and Phase Response Curves, Journal of Biological Rhythms, vol.16, issue.2
DOI : 10.1177/074873099129001028

M. Akashi, A. Okamoto, Y. Tsuchiya, T. Todo, E. Nishida et al., A Positive Role for PERIOD in Mammalian Circadian Gene Expression, Cell Reports, vol.7, issue.4, 2014.
DOI : 10.1016/j.celrep.2014.03.072

A. Altinok, D. Gonze, A. Lévi, and . Goldbeter, An automaton model for the cell cycle, Interface Focus, vol.47, issue.3, pp.36-47, 2011.
DOI : 10.1006/jtbi.2001.2474

J. Aschoff, Zeitgeber der tierischen Tagesperiodik, Die Naturwissenschaften, vol.30, issue.3, pp.49-56, 1954.
DOI : 10.1007/BF00634164

J. Aschoff, Tagesperiodik bei M???usest???mmen unter konstanten Umgebungsbedingungen, Pfl???gers Archiv f???r die Gesamte Physiologie des Menschen und der Tiere, vol.260, issue.1, pp.51-59, 1955.
DOI : 10.1007/BF00369733

J. Aschoff, Circadian control of body temperature, Journal of Thermal Biology, vol.8, issue.1-2, pp.143-147, 1983.
DOI : 10.1016/0306-4565(83)90094-3

J. Aschoff and J. Meyer-lohmann, Angeborene 24-Stunden-Periodik beim K??cken, Pfl??gers Archiv - European Journal of Physiology, vol.11, issue.2, pp.170-176, 1954.
DOI : 10.1007/BF00363827

A. Balsalobre, F. Damiola, and U. Schibler, A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells, Cell, vol.93, issue.6, pp.929-937, 1998.
DOI : 10.1016/S0092-8674(00)81199-X

S. Becker-weimann, J. Wolf, H. Herzel, and A. Kramer, Modeling Feedback Loops of the Mammalian Circadian Oscillator, Biophysical Journal, vol.87, issue.5, pp.3023-3034, 2004.
DOI : 10.1529/biophysj.104.040824

J. Benito, C. Martín-castellanos, and S. Moreno, Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor, The EMBO Journal, vol.17, issue.2, pp.482-497, 1998.
DOI : 10.1093/emboj/17.2.482

S. Bernard, How to Build a Multiscale Model in Biology, Acta Biotheoretica, vol.58, issue.4, pp.291-303, 2013.
DOI : 10.1007/s10441-013-9199-z

URL : https://hal.archives-ouvertes.fr/hal-00867564

S. Bernard, B. C. Bernad, F. Lévi, and H. Herzel, Tumor Growth Rate Determines the Timing of Optimal Chronomodulated Treatment Schedules, PLoS Computational Biology, vol.350, issue.3, p.1000712, 2010.
DOI : 10.1371/journal.pcbi.1000712.s004

URL : https://hal.archives-ouvertes.fr/hal-00470302

S. Bernard, D. Gonze, B. Cajavec, H. Herzel, and A. Kramer, Synchronization-Induced Rhythmicity of Circadian Oscillators in the Suprachiasmatic Nucleus, PLoS Computational Biology, vol.101, issue.4, p.68, 2007.
DOI : 10.1371/journal.pcbi.0030068.sv003

URL : https://hal.archives-ouvertes.fr/hal-00371737

S. Bernard and H. Herzel, Why do cells cycle with a 24 hour period?, Gen. Info, vol.17, issue.1, pp.72-79, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00371755

M. Bossy and D. Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation, Mathematics of Computation, vol.66, issue.217, pp.157-192, 1997.
DOI : 10.1090/S0025-5718-97-00776-X

F. B. Brikci, J. Clairambault, and B. Perthame, Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle, Mathematical and Computer Modelling, vol.47, issue.7-8, pp.699-713, 2008.
DOI : 10.1016/j.mcm.2007.06.008

F. B. Brikci, J. Clairambault, B. Ribba, and B. Perthame, An age-and-cyclin-structured cell population model for healthy and tumoral tissues, Journal of Mathematical Biology, vol.16, issue.6, pp.91-110, 2007.
DOI : 10.1007/s00285-007-0147-x

URL : https://hal.archives-ouvertes.fr/inria-00081301

S. A. Brown and A. Azzi, Peripheral Circadian Oscillators in Mammals, Circadian Clocks, pp.45-66, 2013.
DOI : 10.1007/978-3-642-25950-0_3

E. D. Buhr and J. S. Takahashi, Molecular Components of the Mammalian Circadian Clock, Circadian Clocks, pp.3-27, 2013.
DOI : 10.1007/978-3-642-25950-0_1

E. Bünning and K. Stern, ¨ Uber die tagesperiodischen Bewegungen der Primarblatter von Phaseolus multiflorus. II. Die Bewegungen bei Thermokonstanz, Berichte der Deutschen Botanischen Gesellschaft, vol.48, issue.7, pp.227-252, 1930.

F. Camacho, M. Cilio, Y. Guo, D. M. Virshup, K. Patel et al., Human casein kinase I?? phosphorylation of human circadian clock proteins period 1 and 2, FEBS Letters, vol.389, issue.2-3, pp.159-165, 2001.
DOI : 10.1016/S0014-5793(00)02434-0

A. Chauhan, S. Lorenzen, H. Herzel, and S. Bernard, Regulation of mammalian cell cycle progression in the regenerating liver, Journal of Theoretical Biology, vol.283, issue.1, pp.103-112, 2011.
DOI : 10.1016/j.jtbi.2011.05.026

URL : https://hal.archives-ouvertes.fr/hal-00649211

Z. Chen and S. L. Mcknight, A Conserved DNA Damage Response Pathway Responsible for Coupling the Cell Division Cycle to the Circadian and Metabolic Cycles, Cell Cycle, vol.6, issue.23, pp.2906-2912, 2007.
DOI : 10.4161/cc.6.23.5041

A. Chertock and A. Kurganov, On a practical implementation of particle methods, Applied Numerical Mathematics, vol.56, issue.10-11, pp.1418-1431, 2006.
DOI : 10.1016/j.apnum.2006.03.024

H. Cho, X. Zhao, M. Hatori, R. T. Yu, G. D. Barish et al., Regulation of circadian behaviour and metabolism by REV-ERB-?? and REV-ERB-??, Nature, vol.6, issue.7396, pp.123-127, 2012.
DOI : 10.1038/nature11048

J. Clairambault, S. Gaubert, and T. Lepoutre, Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.183-209, 2009.
DOI : 10.1051/mmnp/20094308

URL : https://hal.archives-ouvertes.fr/hal-00344039

J. Clairambault, S. Gaubert, and T. Lepoutre, Circadian rhythm and cell population growth, Mathematical and Computer Modelling, vol.53, issue.7-8, pp.1558-1567, 2011.
DOI : 10.1016/j.mcm.2010.05.034

URL : https://hal.archives-ouvertes.fr/hal-00492983

J. Clairambault, P. Michel, and B. Perthame, Circadian rhythm and tumor growth, C. R

T. R. Coleman and W. Dunphy, Cdc2 regulatory factors, Current Opinion in Cell Biology, vol.6, issue.6, pp.877-882, 1994.
DOI : 10.1016/0955-0674(94)90060-4

G. Cottet and P. D. Koumoutsakos, Vortex methods: theory and practice, 2000.
DOI : 10.1017/CBO9780511526442

S. Daan, Colin Pittendrigh, J??rgen Aschoff, and the Natural Entrainment of Circadian Systems, Journal of Biological Rhythms, vol.38, issue.3, pp.195-207, 2000.
DOI : 10.1177/074873040001500301

S. Daan, A History of Chronobiological Concepts Protein Reviews, pp.1-35, 2010.

M. D. Mairan, Observation botanique. Hist. de l'Acad, Royal Sciences, pp.1-1729

J. P. Debruyne, A Clock Shock: Mouse CLOCK Is Not Required for Circadian Oscillator Function, Neuron, vol.50, issue.3, pp.465-477, 2006.
DOI : 10.1016/j.neuron.2006.03.041

J. P. Debruyne, D. R. Weaver, and R. S. , Peripheral circadian oscillators require CLOCK, Current Biology, vol.17, issue.14, pp.538-539, 2007.
DOI : 10.1016/j.cub.2007.05.067

J. D. Donovan, J. H. Toyn, A. L. Johnson, and L. H. Johnston, P40SDB25, a putative CDK inhibitor, has a role in the M/G1 transition in Saccharomyces cerevisiae., Genes & Development, vol.8, issue.14, pp.1640-1653, 1994.
DOI : 10.1101/gad.8.14.1640

M. Doumic, Analysis of a Population Model Structured by the Cells Molecular Content, Mathematical Modelling of Natural Phenomena, vol.2, issue.3, pp.121-152, 2007.
DOI : 10.1051/mmnp:2007006

URL : https://hal.archives-ouvertes.fr/hal-00327131

H. L. Duhamel and . Monceau, La physique des arbres, p.1758

D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, 1999.
DOI : 10.1007/978-1-4757-3081-4

L. N. Edmunds and J. , Cellular and molecular bases of biological clocks. Models and mechanisms for circadian timekeeping, 1988.

R. Cheikh, S. Bernard, and N. Khatib, Modeling circadian clock???cell cycle interaction effects on cell population growth rates, Journal of Theoretical Biology, vol.363, issue.0, pp.318-331, 2014.
DOI : 10.1016/j.jtbi.2014.08.008

URL : https://hal.archives-ouvertes.fr/hal-01055081

R. Cheikh, T. Lepoutre, and S. Bernard, Modeling Biological Rhythms in Cell Populations, Mathematical Modelling of Natural Phenomena, vol.7, issue.6, pp.107-125
DOI : 10.1051/mmnp/20127606

URL : https://hal.archives-ouvertes.fr/hal-00847008

B. Engquist, P. Lötstedt, and B. Sjögreen, Nonlinear filters for efficient shock computation, Mathematics of Computation, vol.52, issue.186, pp.509-537, 1989.
DOI : 10.1090/S0025-5718-1989-0955750-9

J. Enright, Temporal precision in circadian systems: a reliable neuronal clock from unreliable components?, Science, vol.209, issue.4464, p.1542, 1980.
DOI : 10.1126/science.7433976

E. Falvey, F. Fleury-olela, and U. Schibler, The rat hepatic leukemia factor (HLF) gene encodes two transcriptional activators with distinct circadian rhythms, tissue distributions and target preferences, EMBO J, vol.14, issue.17, pp.4307-4317, 1995.

J. E. Ferrell, T. Y. Tsai, and Q. Yang, Modeling the Cell Cycle: Why Do Certain Circuits Oscillate?, Cell, vol.144, issue.6, pp.874-885, 2011.
DOI : 10.1016/j.cell.2011.03.006

E. Filipski, F. Delaunay, V. M. King, M. Wu, B. Claustrat et al., Effects of Chronic Jet Lag on Tumor Progression in Mice, Cancer Research, vol.64, issue.21, pp.7879-7885, 2004.
DOI : 10.1158/0008-5472.CAN-04-0674

F. Hastings and . Lévi, Host circadian clock as a control point in tumor progression, J. Natl. Cancer. Inst, vol.94, pp.690-697, 2002.

E. Filipski, P. Subramanian, J. Carriére, C. Guettier, H. Barbason et al., Circadian disruption accelerates liver carcinogenesis in mice, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.680, issue.1-2, pp.95-105, 2009.
DOI : 10.1016/j.mrgentox.2009.10.002

C. Focan, Circadian rhythms and cancer chemotherapy, Pharmacology & Therapeutics, vol.67, issue.1, pp.1-52, 1995.
DOI : 10.1016/0163-7258(95)00009-6

C. Focan, F. Kreutz, D. Focan-henrard, and N. Moeneclaey, Chronotherapy with 5-fluorouracil, folinic acid and carboplatin for metastatic colorectal cancer; an interesting therapeutic index in a phase II trial, European Journal of Cancer, vol.36, issue.3, pp.341-347, 2000.
DOI : 10.1016/S0959-8049(99)00282-8

C. Focan, F. Lévi, and F. Kreutz, Continuous delivery of venous 5-fluorpuracil and arterial 5-fluorodeoxyuridine for hepatic metastases from colorectal cancer, Anti-Cancer Drugs, vol.10, issue.4, pp.385-392, 1999.
DOI : 10.1097/00001813-199904000-00006

D. B. Forger, M. E. Jewett, and R. E. Kronauer, A Simpler Model of the Human Circadian Pacemaker, Journal of Biological Rhythms, vol.36, issue.6, pp.533-538, 1999.
DOI : 10.1177/074873099129000867

D. B. Forger and R. E. Kronauer, Reconciling Mathematical Models of Biological Clocks by Averaging on Approximate Manifolds, SIAM Journal on Applied Mathematics, vol.62, issue.4, pp.1281-1296, 2002.
DOI : 10.1137/S0036139900373587

D. B. Forger and C. S. Peskin, A detailed predictive model of the mammalian circadian clock, Proceedings of the National Academy of Sciences, vol.100, issue.25, pp.14806-14811, 2003.
DOI : 10.1073/pnas.2036281100

L. Fu, H. Pelicano, J. Liu, P. Huang, and C. Lee, The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo, Cell, vol.11, pp.41-50, 2002.

F. W. Gamble and F. Keeble, Hippolyte varians: A study in colour change, Quart. Journ. Microsc. Sci, vol.43, pp.589-698, 1900.

C. Gérard and A. Goldbeter, Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms, PLoS Computational Biology, vol.3, issue.5, p.1002516, 2012.
DOI : 10.1371/journal.pcbi.1002516.g015

S. Gery, N. Komatsu, L. Baldjyan, A. Yu, D. Koo et al., The Circadian Gene Per1 Plays an Important Role in Cell Growth and DNA Damage Control in Human Cancer Cells, Molecular Cell, vol.22, issue.3
DOI : 10.1016/j.molcel.2006.03.038

R. Glassey, The Cauchy Problem in Kinetic Theory, SIAM, 1996.
DOI : 10.1137/1.9781611971477

A. Goldbeter, A Model for Circadian Oscillations in the Drosophila Period Protein (PER), Proceedings of the Royal Society B: Biological Sciences, vol.261, issue.1362
DOI : 10.1098/rspb.1995.0153

A. Goldbeter, D. E. Koshland, and J. , An amplified sensitivity arising from covalent modification in biological systems., Proc. Natl. Acad. Sci, pp.6840-6844, 1981.
DOI : 10.1073/pnas.78.11.6840

A. Goldbeter, D. E. Koshland, and J. , A minimal cascade model for the mitotic oscillator involving cyclin, Proc. Natl. Acad. Sci, pp.9107-9111, 1991.

D. Gonze, Abstract, Open Life Sciences, vol.6, issue.5, pp.699-711, 2011.
DOI : 10.2478/s11535-011-0061-5

D. Gonze, Modeling the effect of cell division on genetic oscillators, Journal of Theoretical Biology, vol.325, issue.0, pp.22-33, 2013.
DOI : 10.1016/j.jtbi.2013.02.001

D. Gonze and W. Abou-jaoudé, The Goodwin Model: Behind the Hill Function, PLoS ONE, vol.21, issue.8, pp.69573-2013
DOI : 10.1371/journal.pone.0069573.s005

B. C. Goodwin, Temporal Organization in Cells. A Dynamic Theory of Cellular Control, 1963.
DOI : 10.5962/bhl.title.6268

B. C. Goodwin, Oscillatory behavior in enzymatic control processes, Advances in Enzyme Regulation, vol.3, pp.425-437, 1965.
DOI : 10.1016/0065-2571(65)90067-1

S. Gottlieb, C. Shu, and E. Tadmor, Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review, vol.43, issue.1, pp.89-112, 2001.
DOI : 10.1137/S003614450036757X

A. Grèchez-cassiau, B. Rayet, F. Guillaumond, M. Teboul, and F. Delaunay, The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation, Journal of Biological Chemistry, vol.283, issue.8, pp.4535-4542, 2008.
DOI : 10.1074/jbc.M705576200

C. B. Green, J. S. Takahashi, and J. Bass, The Meter of Metabolism, Cell, vol.134, issue.5, pp.728-742, 2008.
DOI : 10.1016/j.cell.2008.08.022

E. A. Griffin, D. Staknis, and C. J. Weitz, Light-Independent Role of CRY1 and CRY2 in the Mammalian Circadian Clock, Science, vol.286, issue.5440, pp.286768-771, 1999.
DOI : 10.1126/science.286.5440.768

G. A. Groos and R. Mason, The visual properties of rat and cat suprachiasmatic neurones, Journal of Comparative Physiology ? A, vol.3, issue.4
DOI : 10.1007/BF00657651

F. Guillaumond, V. Dardente, H. Gigù, and N. Cermakian, Differential Control of Bmal1 Circadian Transcription by REV-ERB and ROR Nuclear Receptors, Journal of Biological Rhythms, vol.101, issue.5, pp.391-403, 2005.
DOI : 10.1177/0748730405277232

F. Halberg, Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. Photoperiodism and related phenomena in plants and animals, 1959.

P. E. Hardin, J. Hall, and M. Rosbash, Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels, Nature, vol.343, issue.6258, pp.536-540, 1990.
DOI : 10.1038/343536a0

P. E. Hardin, J. C. Hall, and M. Rosbash, Circadian oscillations in period gene mRNA levels are transcriptionally regulated., Proc. Natl. Acad. of Sci, pp.11711-11715, 1992.
DOI : 10.1073/pnas.89.24.11711

F. H. Harlow, The Particle-in-Cell Method for Fluid Dynamics, volume 3 of Methods in Computational Physics, 1964.

W. J. Hrushesky and G. A. Bjarnason, The application of circadian chronobiology to cancer chemotherapy, Cancer, pp.2666-2686, 1993.

T. Hunt and P. Sassone-corsi, Riding Tandem: Circadian Clocks and the Cell Cycle, Cell, vol.129, issue.3, pp.461-464, 2007.
DOI : 10.1016/j.cell.2007.04.015

C. H. Johnson, Circadian clocks and cell division. What's the pacemaker? Cell cycle, pp.3864-3873, 2010.
DOI : 10.4161/cc.9.19.13205

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047750

J. F. Kingman, A CONVEXITY PROPERTY OF POSITIVE MATRICES, The Quarterly Journal of Mathematics, vol.12, issue.1, pp.283-284, 1961.
DOI : 10.1093/qmath/12.1.283

]. A. Kleinhoonte, ¨ Uber die durch das Licht regulierten autonomen Bewegungen der Canavaliablätter, Arch. Neerl. Sci. Exactes, vol.5, pp.1-110, 1929.

R. J. Konopka and S. Benzer, Clock Mutants of Drosophila melanogaster, Proc. Natl. Acad. Sci, pp.2112-2116, 1971.
DOI : 10.1073/pnas.68.9.2112

T. Kubo, K. Ozasa, K. Mikami, K. Wakai, Y. Fujino et al., Prospective Cohort Study of the Risk of Prostate Cancer among Rotating-Shift Workers: Findings from the Japan Collaborative Cohort Study, American Journal of Epidemiology, vol.164, issue.6, pp.549-555, 2006.
DOI : 10.1093/aje/kwj232

H. Kunz and P. Achermann, Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators, Journal of Theoretical Biology, vol.224, issue.1, pp.63-78, 2003.
DOI : 10.1016/S0022-5193(03)00141-3

A. K. Laird, Dynamics of Tumor Growth, British Journal of Cancer, vol.18, issue.3, pp.490-502, 1964.
DOI : 10.1038/bjc.1964.55

S. Langmesser, T. Tallone, A. Bordon, S. Rusconi, and U. Albrecht, Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK, BMC Molecular Biology, vol.9, issue.1, pp.41-57, 2008.
DOI : 10.1186/1471-2199-9-41

S. Legewie, N. Blüthgen, and H. Herzel, Mathematical Modeling Identifies Inhibitors of Apoptosis as Mediators of Positive Feedback and Bistability, PLoS Computational Biology, vol.22, issue.9, p.120, 2006.
DOI : 10.1371/journal.pcbi.0020120.sd007

J. Leloup and A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock, Proc. Natl. Acad. Sci, pp.7051-7056, 2003.
DOI : 10.1073/pnas.1132112100

J. Leloup and A. Goldbeter, Modeling the mammalian circadian clock: Sensitivity analysis and multiplicity of oscillatory mechanisms, Journal of Theoretical Biology, vol.230, issue.4, pp.541-562, 2004.
DOI : 10.1016/j.jtbi.2004.04.040

A. Leonard, Vortex methods for flow simulation, Journal of Computational Physics, vol.37, issue.3, pp.289-335, 1980.
DOI : 10.1016/0021-9991(80)90040-6

A. Leonard, Computing Three-Dimensional Incompressible Flows with Vortex Elements, Annual Review of Fluid Mechanics, vol.17, issue.1, pp.523-559, 1985.
DOI : 10.1146/annurev.fl.17.010185.002515

T. Lepoutre, Analysis and modelling of growth and motion phenomenon from biology, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00457561

R. J. Leveque, High-Resolution Conservative Algorithms for Advection in Incompressible Flow, SIAM Journal on Numerical Analysis, vol.33, issue.2
DOI : 10.1137/0733033

F. Lévi, Therapeutic Implications of Circadian Rhythms in Cancer Patients, Novartis Found. Symp, vol.227, pp.136-178, 2000.
DOI : 10.1002/0470870796.ch8

A. C. Liu, H. G. Tran, E. E. Zhang, A. A. Priest, D. K. Welsh et al., Redundant Function of REV-ERB?? and ?? and Non-Essential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms, PLoS Genetics, vol.4, issue.2, p.1000023, 2008.
DOI : 10.1371/journal.pgen.1000023.s002

A. C. Liu, D. K. Welsh, C. H. Ko, H. G. Tran, E. E. Zhang et al., Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network, Cell, vol.129, issue.3, pp.129605-616, 2007.
DOI : 10.1016/j.cell.2007.02.047

L. Lopez-molina, F. Conquet, M. Dubois-dauphin, and U. Schibler, The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior, The EMBO Journal, vol.16, issue.22, pp.6762-6771, 1997.
DOI : 10.1093/emboj/16.22.6762

P. L. Lowrey, Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau, Science, vol.288, issue.5465, pp.483-491, 2000.
DOI : 10.1126/science.288.5465.483

M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, vol.51, issue.5, pp.941-956, 1978.

T. Matsuo, S. Yamaguchi, S. Mitsui, A. Emi, F. Shimoda et al., Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo, Science, vol.302, issue.5643, pp.255-259, 2003.
DOI : 10.1126/science.1086271

E. S. Maywood, Synchronization and Maintenance of Timekeeping in Suprachiasmatic Circadian Clock Cells by Neuropeptidergic Signaling, Current Biology, vol.16, issue.6, pp.599-605, 2006.
DOI : 10.1016/j.cub.2006.02.023

H. P. Mirsky, A. C. Liu, D. K. Welsh, S. A. Kay, and F. J. Doyle, A model of the cell-autonomous mammalian circadian clock, Proceedings of the National Academy of Sciences, vol.106, issue.27, pp.11107-11112, 2009.
DOI : 10.1073/pnas.0904837106

S. Mitsui, S. Yamaguchi, T. Matsuo, Y. Ishida, and H. Okamura, Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism, Genes & Development, vol.15, issue.8, pp.995-1006, 2001.
DOI : 10.1101/gad.873501

R. Y. Moore and V. B. Eichler, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Research, vol.42, issue.1, pp.201-206, 1972.
DOI : 10.1016/0006-8993(72)90054-6

S. Moreno and P. Nurse, Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene, Trends in Genetics, vol.10, issue.5, pp.236-242, 1994.
DOI : 10.1016/0168-9525(94)90083-3

D. O. Morgan, Principles of CDK regulation, Nature, vol.374, issue.6518, pp.131-134, 1995.
DOI : 10.1038/374131a0

D. B. Murray, M. Beckmann, and H. Kitano, Regulation of yeast oscillatory dynamics, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2241-2246, 2007.
DOI : 10.1073/pnas.0606677104

E. Nagoshi, C. Saini, C. Bauer, T. Laroche, F. Naef et al., Circadian Gene Expression in Individual Fibroblasts, Cell, vol.119, issue.5, pp.693-705, 2004.
DOI : 10.1016/j.cell.2004.11.015

M. Nakamura, F. Roser, J. Michel, C. Jacobs, and M. Samii, The Natural History of Incidental Meningiomas, Neurosurgery, vol.53, issue.1, pp.62-70, 2003.
DOI : 10.1227/01.NEU.0000068730.76856.58

J. Nishiitsutsuji-uwo and C. S. Pittendrigh, Central nervous system control of circadian rhythmicity in the cockroach, Zeitschrift f???r Vergleichende Physiologie, vol.148, issue.No. 69, pp.1-13, 1968.
DOI : 10.1007/BF00302433

B. Novak, Z. Pataki, A. Ciliberto, and J. J. Tyson, Mathematical model of the cell division cycle of fission yeast, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.11, issue.1, pp.277-286, 2001.
DOI : 10.1063/1.1345725

B. Novak and J. J. Tyson, A model for restriction point control of the mammalian cell cycle, Journal of Theoretical Biology, vol.230, issue.4
DOI : 10.1016/j.jtbi.2004.04.039

H. Oster, A. Yasui, G. T. Van-der-horst, and U. Albrecht, Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice, Genes & Development, vol.16, issue.20, pp.2633-2638, 2002.
DOI : 10.1101/gad.233702

B. F. Pando and A. Van-oudenaarden, Coupling cellular oscillators???circadian and cell division cycles in cyanobacteria, Current Opinion in Genetics & Development, vol.20, issue.6, pp.613-618, 2010.
DOI : 10.1016/j.gde.2010.09.001

B. Perthame, Transport equations in biology, Birkhäuser, 2007.

J. M. Peters, The anaphase promoting complex/cyclosome: a machine designed to destroy, Nature Reviews Molecular Cell Biology, vol.4, issue.9
DOI : 10.1126/science.274.5290.1201

W. Pfeffer, Die Periodischen Bewegungen der Blattorgane, p.1875

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00349214

C. S. Pittendrigh, Circadian Systems: Entrainment, Handbook Behavioral Neurobiology, pp.94-124, 1981.
DOI : 10.1007/978-1-4615-6552-9_7

S. B. Pope, PDF methods for turbulent reactive flows, Progress in Energy and Combustion Science, vol.11, issue.2, pp.119-192, 1985.
DOI : 10.1016/0360-1285(85)90002-4

S. B. Pope, Lagrangian PDF Methods for Turbulent Flows, Annual Review of Fluid Mechanics, vol.26, issue.1, pp.23-63, 1994.
DOI : 10.1146/annurev.fl.26.010194.000323

N. Preitner, D. Francesca, L. L. Molina, J. Zakany, D. Duboule et al., The Orphan Nuclear Receptor REV-ERB?? Controls Circadian Transcription within the Positive Limb of the Mammalian Circadian Oscillator, Cell, vol.110, issue.2, pp.251-260, 2002.
DOI : 10.1016/S0092-8674(02)00825-5

S. A. Prokopiou, L. Barbarroux, S. Bernard, J. Mafille, Y. Leverrier et al., Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study, Computation, vol.2, issue.4, pp.159-181, 2014.
DOI : 10.3390/computation2040159

URL : https://hal.archives-ouvertes.fr/hal-01074736

I. Provencio, I. R. Rodriguez, G. Jiang, W. P. Hayes, E. F. Moreira et al., A novel human opsin in the inner retina, The Journal of Neuroscience, vol.20, issue.2, pp.600-605, 2000.

M. R. Ralph, R. G. Foster, F. C. Davis, and M. Menaker, Transplanted suprachiasmatic nucleus determines circadian period, Science, vol.247, issue.4945, pp.975-978, 1990.
DOI : 10.1126/science.2305266

M. R. Ralph and M. Menaker, A mutation of the circadian system in golden hamsters, Science, vol.241, issue.4870, pp.1225-1227, 1998.
DOI : 10.1126/science.3413487

P. A. Raviart, An analysis of particle methods, Numerical Methods in Fluid Dynamics, pp.243-324, 1985.
DOI : 10.1007/BFb0074532

B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer, and its use in analysing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.1, p.7, 2006.
DOI : 10.1186/1742-4682-3-7

C. P. Richter, Sleep and activity: Their relation to the 24-hour clock, Res. Publ. Assoc. Res. Nerv. Ment. Dis, vol.45, pp.8-29, 1967.

C. P. Richter, A behavioristic study of the activity of the rat, Comparative Psychology Monographs, vol.1, pp.1-56, 1992.

T. Roenneber, Z. Dragovic, and M. Merrow, Demasking biological oscillators: Properties and principles of entrainment exemplified by the neurospora circadian clock, Proc. Natl. Acad

J. Rougemont and F. Naef, Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies, Physical Review E, vol.73, issue.1, p.11104, 2006.
DOI : 10.1103/PhysRevE.73.011104

P. Ruoff, S. Mohsenzadeh, and L. Rensing, Circadian rhythms and protein turnover: The effect of temperature on the period lengths of clock mutants simulated by the Goodwin oscillator, Naturwissenschaften, vol.13, issue.4, pp.83514-517, 1996.
DOI : 10.1007/BF01141953

O. Sandler, S. P. Mizrahi, N. Weiss, O. Agam, I. Simon et al., Lineage correlations of single cell division time as a probe of cell-cycle dynamics, Nature, vol.105, issue.7544, pp.468-471, 2015.
DOI : 10.1038/nature14318

T. K. Sato, S. Panda, L. J. Miraglia, T. M. Reyes, R. D. Rudic et al., A Functional Genomics Strategy Reveals Rora as a Component of the Mammalian Circadian Clock, Neuron, vol.43, issue.4, pp.527-537, 2004.
DOI : 10.1016/j.neuron.2004.07.018

T. K. Sato, R. G. Yamada, H. Ukai, J. E. Baggs, L. J. Miraglia et al., Feedback repression is required for mammalian circadian clock function, Nature Genetics, vol.41, issue.3, pp.212-219, 2006.
DOI : 10.1038/ng1745

C. Savvidis and M. Koutsilieris, Circadian rhythm disruption in cancer biology, Mol. Med, vol.18, issue.1, pp.1249-1260, 2012.

E. Schwob, T. Böhm, M. D. Mendenhall, and K. Nasmyth, The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae, Cell, vol.79, issue.2, pp.233-244, 1994.
DOI : 10.1016/0092-8674(94)90193-7

T. J. Lee, M. H. Van-der-horst, S. M. Hastings, and . Reppert, Interacting molecular loops in the mammalian circadian clock, Science, vol.288, pp.1013-1019, 2000.

V. Sheeba, V. K. Sharma, M. K. Chandrashekaran, and A. Joshi, Persistence of Eclosion Rhythm in Drosophila melanogaster After 600 Generations in an Aperiodic Environment, Naturwissenschaften, vol.86, issue.9, pp.448-449, 1999.
DOI : 10.1007/s001140050651

E. Slat, G. M. Freeman-jr, and E. D. Herzog, The Clock in the Brain: Neurons, Glia, and Networks in Daily Rhythms, Circadian Clocks, pp.105-123, 2013.
DOI : 10.1007/978-3-642-25950-0_5

F. K. Stephan and I. Zucker, Circadian Rhythms in Drinking Behavior and Locomotor Activity of Rats Are Eliminated by Hypothalamic Lesions, Proc. Natl. Acad. Sci, pp.1583-1586, 1972.
DOI : 10.1073/pnas.69.6.1583

G. Tosini and M. Menaker, Circadian Rhythms in Cultured Mammalian Retina, Science, vol.272, issue.5260, pp.419-421, 1996.
DOI : 10.1126/science.272.5260.419

B. P. Tu, A. Kudlicki, M. Rowicka, and S. L. Mcknight, Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes, Science, vol.310, issue.5751, pp.1152-1158, 2005.
DOI : 10.1126/science.1120499

J. J. Tyson, K. C. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Current Opinion in Cell Biology, vol.15, issue.2, pp.221-231, 2003.
DOI : 10.1016/S0955-0674(03)00017-6

J. J. Tyson, L. Glass, T. Arthur, and . Winfree, Arthur T. Winfree (1942???2002), Journal of Theoretical Biology, vol.230, issue.4, pp.433-439, 1942.
DOI : 10.1016/j.jtbi.2004.04.042

J. J. Tyson and B. Novak, Temporal Organization of the Cell Cycle, Current Biology, vol.18, issue.17, pp.759-768, 2008.
DOI : 10.1016/j.cub.2008.07.001

B. Van, A theory of the amplitude of free and forced triode vibrations, Radio Review, vol.1, pp.701-710, 1920.

K. Vanselow, J. T. Vanselow, P. O. Westermark, S. Reischl, B. Maier et al., Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS), Genes & Development, vol.20, issue.19, pp.2660-2672, 2006.
DOI : 10.1101/gad.397006

R. Verma, R. S. Annan, M. J. Huddleston, S. A. Carr, G. Reynard et al., Phosphorylation of Sic1p by G1 Cdk Required for Its Degradation and Entry into S Phase, Science, vol.278, issue.5337, pp.278455-460, 1997.
DOI : 10.1126/science.278.5337.455

M. H. Vitaterna, D. P. King, A. M. Chang, J. M. Kornhauser, P. L. Lowrey et al., Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior, Science, vol.264, issue.5159, pp.719-725, 1994.
DOI : 10.1126/science.8171325

A. B. Webb, N. Angelo, J. E. Huettner, and E. D. Herzog, Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons, Proc. Natl. Acad. Sci, pp.16493-16498, 2009.
DOI : 10.1073/pnas.0902768106

D. K. Welsh, J. S. Takahashi, and S. A. Kay, Suprachiasmatic Nucleus: Cell Autonomy and Network Properties, Annual Review of Physiology, vol.72, issue.1, pp.551-577, 2010.
DOI : 10.1146/annurev-physiol-021909-135919

P. O. Westermark, D. K. Welsh, H. Okamura, and H. Herzel, Quantification of Circadian Rhythms in Single Cells, PLoS Computational Biology, vol.9, issue.11, p.1000580, 2009.
DOI : 10.1371/journal.pcbi.1000580.s003

R. Wever, Zum Mechanismus der biologischen 24-Stunden-Periodik, Kybernetik, vol.25, issue.3, pp.127-144, 1964.
DOI : 10.1007/BF00306797

R. Wever, Ein mathematisches Modell für die circadiane Periodik, Z. Angew. Math. Mech. Sonderheft (GAMM-Tagung), vol.46, pp.148-157, 1966.

T. Arthur and . Winfree, Biological rhythms and the behavior of populations of coupled oscillators

T. Arthur and . Winfree, Integrated view of resetting a circadian clock, J. Theor. Biol, vol.28, issue.3, pp.327-374, 1970.

P. A. Wood, J. Du-quiton, S. You, and W. J. Hrushesky, Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index, Molecular Cancer Therapeutics, vol.5, issue.8
DOI : 10.1158/1535-7163.MCT-06-0177

S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita et al., Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus, Science, vol.302, issue.5649, pp.3021408-1412, 2003.
DOI : 10.1126/science.1089287

C. Yang, F. P. Bernardo, G. Dong, S. S. Golden, and A. Van-oudenaarden, Circadian Gating of the Cell Cycle Revealed in Single Cyanobacterial Cells, Science, vol.327, issue.5972, pp.1522-1526, 2010.
DOI : 10.1126/science.1181759

W. Yu, M. Nomura, and M. Ikeda, Interacting feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2, Biochem

J. Zamborszky, A. Csikasz-nagy, and C. I. Hong, Computational Analysis of Mammalian Cell Division Gated by a Circadian Clock: Quantized Cell Cycles and Cell Size Control, Journal of Biological Rhythms, vol.302, issue.6, pp.542-553, 2007.
DOI : 10.1177/0748730407307225

H. Zeng, P. E. Hardin, and M. Rosbash, Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling, EMBO J, vol.13, issue.15, pp.3590-3598, 1994.