D. G. Blair, The Detection of Gravitational Waves isbn, p.9780521021029, 1991.

D. G. Blair, Advanced Gravitational Wave Detectors isbn, p.9780521874298, 2012.

R. A. Hulse, The Discovery of The Binary Pulsar Accessed: 2015-03-10, 1993.

J. H. Taylor and J. , Binary Pulsars and Relativistic Gravity Accessed: 2015- 03-10, 1993.

E. M. Jones, Apollo 15 Lunar Surface Journal: The Hammer and the Feather Accessed: 2015-03-10, 1996.

J. Lequeux, The Discovery of Neptune (1845-1846) in Le Verrier?Magnificent and Detestable Astronomer http : / / www . springer . com / cda, pp.9781461455646-1

J. Wheeler, K. Ford, and . Geons, Black Holes, and Quantum Foam: A Life in Physics isbn, pp.9780393079487-160, 2010.

S. Carlip, Does Gravity Travel at the Speed of Light? Accessed: 2015-03-10, 2011.

J. H. Taylor and J. M. Weisberg, A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16, The Astrophysical Journal, vol.253, 1982.
DOI : 10.1086/159690

J. M. Weisberg and J. H. Taylor, Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis version 1. arXiv: astro-ph/0407149v1 [astro-ph, gr-qc], 2004.

A. Einstein, The Experimental Confirmation of the General Theory of Relativity in Relativity : the Special and General Theory trans, pp.5001-5003, 1920.

N. Ashby, Relativity in the Global Positioning System Living Reviews in Relativity 6. doi:10.12942/lrr, 2003.

C. M. Will, The Confrontation between General Relativity and Experiment. Living Reviews in Relativity 9. doi:10.12942/lrr, 2006.

B. Sathyaprakash, B. F. Schutz, and . Physics, Astrophysics and Cosmology with Gravitational Waves, Living Reviews in Relativity, vol.12, p.161, 2009.

M. Pitkin, S. Reid, S. Rowan, and J. Hough, Gravitational Wave Detection by Interferometry (Ground and Space) Living Reviews in Relativity 14. doi:10, 2011.

D. G. Blair, Sources of gravitational waves in The detection of gravitational waves, pp.16-42, 1991.

C. J. Moore, R. H. Cole, and C. P. Berry, Gravitational-wave sensitivity curves, Classical and Quantum Gravity, vol.32, issue.1, p.4, 2015.
DOI : 10.1088/0264-9381/32/1/015014

A. Giazotto, Status of gravitational wave detection Journal of Physics: Conference Series 120, 032002, p.32002, 2008.

R. L. Forward, Wideband laser-interferometer graviational-radiation experiment, Physical Review D, vol.17, issue.2, 1978.
DOI : 10.1103/PhysRevD.17.379

A. A. Michelson and E. W. Morley, On the Relative Motion of the Earth and of the Luminiferous Ether, Sidereal Messenger, vol.6, issue.161, pp.306-310, 1887.

G. Hobbs, The International Pulsar Timing Array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity 27, 084013, pp.84013-84017, 2010.

U. Seljak and M. Zaldarriaga, Signature of Gravity Waves in the Polarization of the Microwave Background, Physical Review Letters, vol.78, issue.11, pp.2054-2057, 1997.
DOI : 10.1103/PhysRevLett.78.2054

T. Accadia, Virgo: a laser interferometer to detect gravitational waves, Journal of Instrumentation, vol.7, issue.03, pp.161-162, 2012.
DOI : 10.1088/1748-0221/7/03/P03012

URL : https://hal.archives-ouvertes.fr/in2p3-00689749

S. Mei, The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and the Three???dimensional Structure of the Virgo Cluster, The Astrophysical Journal, vol.655, issue.1, pp.144-149, 2007.
DOI : 10.1086/509598

J. Abadie, Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors, Classical and Quantum Gravity, vol.27, issue.17, pp.173001-173006, 2010.
DOI : 10.1088/0264-9381/27/17/173001

URL : https://hal.archives-ouvertes.fr/in2p3-00465032

F. Acernese, Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity 32, 024001, p.162, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01056608

T. Corbitt and N. Mavalvala, Review: Quantum noise in gravitational-wave interferometers, Journal of Optics B: Quantum and Semiclassical Optics, vol.6, issue.8, pp.140-162, 2004.
DOI : 10.1088/1464-4266/6/8/008

P. Kwee, Stabilized high-power laser system for the gravitational wave detector advanced LIGO, Optics Express, vol.20, issue.10, p.162, 2012.
DOI : 10.1364/OE.20.010617

K. Takeno, T. Ozeki, S. Moriwaki, and . Mio, 100 W, single-frequency operation of an injection-locked Nd:YAG laser, Optics Letters, vol.30, issue.16, pp.2110-2112, 2005.
DOI : 10.1364/OL.30.002110

D. J. Richardson, J. Nilsson, and W. A. Clarkson, High power fiber lasers: current status and future perspectives [Invited], Journal of the Optical Society of America B, vol.27, issue.11, p.162, 2010.
DOI : 10.1364/JOSAB.27.000B63

E. D. Black and R. N. Gutenkunst, An introduction to signal extraction in interferometric gravitational wave detectors, American Journal of Physics, vol.71, issue.4, pp.365-378, 2003.
DOI : 10.1119/1.1531578

. The and . Ligo-scientific-collaboration, Advanced LIGO. Classical and Quantum Gravity 32, 074001, 2015.

K. Somiya, Detector configuration of KAGRA-the Japanese cryogenic gravitationalwave detector, Classical and Quantum Gravity, vol.2929, pp.12-124007, 124007.

C. M. Caves, Quantum-mechanical noise in an interferometer, Physical Review D, vol.23, issue.8, pp.1693-1708, 1981.
DOI : 10.1103/PhysRevD.23.1693

C. M. Caves, Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer, Physical Review Letters, vol.45, issue.2, pp.75-79, 1980.
DOI : 10.1103/PhysRevLett.45.75

C. Affeldt, Advanced techniques in GEO 600 Classical and Quantum Gravity 31, 224002, pp.163-169, 2014.

R. W. Drever, Fabry-Perot cavity gravity-wave detectors in The detection of gravitational waves, pp.306-328, 1991.

S. Sato, High-gain power recycling of a Fabry?Perot Michelson interferometer for agravitational-wave antenna, Applied Optics, vol.39, issue.163, p.9, 2000.

M. Punturo, Advanced Virgo Sensitivity Curve: a possible scenario VIR-NOT- PER-1390-283 (The Virgo Collaboration, 2004). <https://tds.ego-gw, p.1509

G. Losurdo, Advanced Virgo sensitivity curve: cavity finesse and signal recycling tuning VIR-0024A-07 (The Virgo Collaboration, 2007). <https://tds. ego-gw.it, p.1871

N. V. Kravtsov and O. E. Nani?-i, High-stability single-frequency solid-state lasers, Quantum Electronics, vol.23, issue.4, p.3, 1993.
DOI : 10.1070/QE1993v023n04ABEH002992

A. Tunnermann, H. Zellmer, W. Schone, A. Giesen, and K. Contag, New Concepts for Diode-Pumped Solid-State Lasers, pp.369-408, 2000.
DOI : 10.1007/3-540-47852-3_10

T. J. Kane and R. L. Byer, Monolithic, unidirectional single-mode Nd:YAG ring laser, Optics Letters, vol.10, issue.2, pp.65-67, 1985.
DOI : 10.1364/OL.10.000065

P. Kwee and B. Willke, Automatic laser beam characterization of monolithic Nd:YAG nonplanar ring lasers, Applied Optics, vol.47, issue.32, p.11, 2008.
DOI : 10.1364/AO.47.006022

K. Numata, Characteristics of the single-longitudinal-mode planarwaveguide external cavity diode laser at 1064 nm, Optics Letters, vol.39, issue.13, p.11, 2014.

K. Numata and J. Camp, Precision laser development for interferometric space missions NGO, SGO, and GRACE Follow-On, Journal of Physics: Conference Series, vol.363, issue.13, p.11, 2012.
DOI : 10.1088/1742-6596/363/1/012054

T. Fan and A. Sanchez, Pump source requirements for end-pumped lasers, IEEE Journal of Quantum Electronics, vol.26, issue.2, pp.311-316, 1990.
DOI : 10.1109/3.44963

I. Freitag, A. Tunnermann, and H. Welling, Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts, Optics Communications, vol.115, issue.5-6, pp.511-515, 1995.
DOI : 10.1016/0030-4018(95)00020-9

A. Liem, J. Limpert, H. Zellmer, and . Tünnermann, 100-W single-frequency master-oscillator fiber power amplifier, Optics Letters, vol.28, issue.17, pp.1537-1539, 2003.
DOI : 10.1364/OL.28.001537

A. D. Farinas, E. K. Gustafson, and R. L. Byer, Frequency and intensity noise in an injection-locked, solid-state laser, Journal of the Optical Society of America B, vol.12, issue.2, 1995.
DOI : 10.1364/JOSAB.12.000328

A. E. Siegman, Laser Injection Locking in Lasers, pp.1129-1170, 1986.

O. Cregut, 18 W single-frequency operation of an injection-locked, CW, Nd:YAG laser, Physics Letters A, vol.14089, pp.294-298, 1989.

I. Freitag, Amplitude and frequency stability of a diode-pumped Nd:YAG laser operating at a single-frequency continuous-wave output power of 20 W, Optics Letters, vol.20, issue.5, pp.462-464, 1995.
DOI : 10.1364/OL.20.000462

I. Zawischa, The GEO 600 laser system, Classical and Quantum Gravity, vol.19, issue.7, p.374, 1775.
DOI : 10.1088/0264-9381/19/7/374

K. Takeno, T. Ozeki, S. Moriwaki, and N. Mio, Development of a 100-W, single-frequency Nd:YAG laser for large-scale cryogenic gravitational wave telescope, Journal of Physics: Conference Series, vol.32, issue.276, p.41, 2006.
DOI : 10.1088/1742-6596/32/1/041

M. Frede, Fundamental mode, single-frequency laser amplifier for gravitational wave detectors, Optics Express, vol.15, issue.2, pp.459-465, 2007.
DOI : 10.1364/OE.15.000459

N. Man, Virgo+ laser system: specifications VIR-0028A-14 (The Virgo Collaboration , 2014). <https://tds.ego-gw, p.10005

A. Giesen, Scalable concept for diode-pumped high-power solid-state lasers, Applied Physics B, vol.23, issue.5, pp.365-372, 1994.
DOI : 10.1007/BF01081875

M. Karszewski, 100 W TEM 00 Operation of Yb:YAG Thin Disc Laser with High Efficiency in Advanced Solid State Lasers, HP1. doi:10.1364/ASSL, p.1, 1998.

M. Ganija, D. Ottaway, P. Veitch, and J. Munch, Cryogenic, high power, near diffraction limited, Yb:YAG slab laser, Optics Express, vol.21, issue.6, pp.6973-6978, 2013.
DOI : 10.1364/OE.21.006973

J. Kafka, Laser diode pumped fiber lasers with pump cavity US Patent 4,829,529; see also: http://ao.osa.org/abstract.cfm?URI=ao-30-15-1864, p.4829529, 1989.

E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. Mccollum, Double Clad, Offset Core Nd Fiber Laser in Optical Fiber Sensors, p.5, 1988.

I. Zawischa, All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 55??W of radiation at 1064??nm, Optics Letters, vol.24, issue.7, pp.469-471, 1999.
DOI : 10.1364/OL.24.000469

S. Höfer, Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power, Optics Letters, vol.26, issue.17, p.15, 2001.

Y. Jeong, Power Scaling of Single-Frequency Ytterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to 500 W, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, issue.3, pp.546-551, 2007.
DOI : 10.1109/JSTQE.2007.896639

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power, IEEE Photonics Technology Letters, vol.24, issue.20, pp.1864-1867, 2012.
DOI : 10.1109/LPT.2012.2217487

G. P. Agrawal, Nonlinear Fiber Optics Fourth Edition. isbn: 9780123695161. doi:10, 2006.

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, Stimulated Brillouin Scattering and Coherent Generation of Intense Hypersonic Waves, Physical Review Letters, vol.12, issue.21, pp.592-595, 1964.
DOI : 10.1103/PhysRevLett.12.592

G. P. Agrawal, Stimulated Brillouin Scattering in Nonlinear Fiber Optics Fourth Edition, pp.329-367, 2006.

E. Ippen and R. Stolen, Stimulated Brillouin scattering in optical fibers, Applied Physics Letters, vol.21, issue.11, 1972.
DOI : 10.1063/1.1654249

R. G. Smith, Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering, Applied Optics, vol.11, issue.11, 1972.
DOI : 10.1364/AO.11.002489

D. Cotter, Stimulated Brillouin Scattering in Monomode Optical Fiber, Journal of Optical Communications, vol.4, issue.1, p.10, 1983.
DOI : 10.1515/JOC.1983.4.1.10

A. Kobyakov, M. Sauer, and D. Chowdhury, Stimulated Brillouin scattering in optical fibers, Advances in Optics and Photonics, vol.2, issue.1, 2010.
DOI : 10.1364/AOP.2.000001

D. Gloge, Weakly Guiding Fibers, Applied Optics, vol.10, issue.10, pp.2252-2258, 1971.
DOI : 10.1364/AO.10.002252

D. Marcuse, Gaussian approximation of the fundamental modes of gradedindex fibers, Journal of the Optical Society of America, vol.68, issue.57, pp.16-58, 1978.

D. Marcuse, Loss analysis of single-mode fiber splices. The Bell System Technical Journal 56, pp.703-718, 1977.

J. C. Knight, Photonic crystal fibres, Nature, vol.424, issue.6950, pp.847-851, 2003.
DOI : 10.1038/nature01940

URL : https://hal.archives-ouvertes.fr/hal-00717395

B. Pulford, 400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier, Optics Letters, vol.40, issue.10, 2015.
DOI : 10.1364/OL.40.002297.m001

K. Shiraki, M. Ohashi, and M. Tateda, Suppression of stimulated Brillouin scattering in a fibre by changing the core radius, Electronics Letters, vol.31, issue.8, pp.668-669, 1995.
DOI : 10.1049/el:19950418

K. Shiraki, M. Ohashi, and M. Tateda, SBS threshold of a fiber with a Brillouin frequency shift distribution, Journal of Lightwave Technology, vol.14, issue.1, pp.50-57, 1996.
DOI : 10.1109/50.476136

N. Yoshizawa and T. Imai, Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling, Journal of Lightwave Technology, vol.11, issue.10, 1993.
DOI : 10.1109/50.249889

J. M. Boggio, J. D. Marconi, and H. L. Fragnito, Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions, Journal of Lightwave Technology, vol.23, issue.11, 2005.
DOI : 10.1109/JLT.2005.856226

L. Zhang, S. Cui, C. Liu, J. Zhou, and . Feng, 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier, Optics Express, vol.21, issue.5, pp.5456-5462, 2013.
DOI : 10.1364/OE.21.005456

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution, Journal of Lightwave Technology, vol.19, issue.11, 1691.
DOI : 10.1109/50.964069

C. A. Robin, Novel approaches to power scaling of single-frequency photonic crystal fiber amplifiers PhD thesis, p.13126, 1928.

V. I. Kovalev and R. G. Harrison, Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers, Optics Letters, vol.31, issue.2, pp.161-163, 2006.
DOI : 10.1364/OL.31.000161

R. Paschotta, Encyclopedia of Laser Physics and Technology: Amplified Spontaneous Emission Accessed: 2015-09-10

A. Kobyakov, Design concept for optical fibers with enhanced SBS threshold, Optics Express, vol.13, issue.14, pp.5338-5346, 2005.
DOI : 10.1364/OPEX.13.005338

M. Li, Al/Ge co-doped large mode area fiber with high SBS threshold, Optics Express, vol.15, issue.13, 2007.
DOI : 10.1364/OE.15.008290

P. Jahn, H. Tünnermann, O. Puncken, V. Quetschke, and P. Weßels, Suppression of stimulated Brillion scattering with moduation/demodulation techniques Talk given by V. Quetschke during the LSC-VIRGO Collaboration Meeting in Nice on Mar, p.2014

S. Gray, 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier, Optics Express, vol.15, issue.25, 2007.
DOI : 10.1364/OE.15.017044

J. W. Dawson, Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power, Optics Express, vol.16, issue.17, p.18, 2008.
DOI : 10.1364/OE.16.013240

T. Eidam, Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers, Optics Express, vol.19, issue.14, 2011.
DOI : 10.1364/OE.19.013218.m001

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, Impact of photodarkening on the mode instability threshold, Optics Express, vol.23, issue.12, pp.15265-15277, 2015.
DOI : 10.1364/OE.23.015265

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, The impact of modal interference on the beam quality of high-power fiber amplifiers, Optics Express, vol.19, issue.4, pp.3258-3271, 2011.
DOI : 10.1364/OE.19.003258

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, Theoretical analysis of mode instability in high-power fiber amplifiers, Optics Express, vol.21, issue.2, 1944.
DOI : 10.1364/OE.21.001944

C. Ye, L. Petit, J. Koponen, I. Hu, and A. Galvanauskas, Short-Term and Long-Term Stability in Ytterbium-Doped High-Power Fiber Lasers and Amplifiers, IEEE Journal of Selected Topics in Quantum Electronics, vol.20, issue.93, p.18, 2014.

R. Paschotta, Lifetime quenching in Yb-doped fibres, Optics Communications, vol.136, issue.5-6, pp.375-378, 1997.
DOI : 10.1016/S0030-4018(96)00720-1

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, Measuring photodarkening from single-mode ytterbium doped silica fibers, Optics Express, vol.14, issue.24, pp.11539-11544, 2006.
DOI : 10.1364/OE.14.011539

R. Piccoli, D. Mechin, T. Robin, and S. Taccheo, Lifetime reduction due to photodarkening phenomenon in ytterbium-doped fibers and rate equation term, Optics Letters, vol.38, issue.21, pp.4370-4373, 2013.
DOI : 10.1364/OL.38.004370

I. Manek-hönninger, Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber, Optics Express, vol.15, issue.4, pp.1606-1611, 2007.
DOI : 10.1364/OE.15.001606

J. Koponen, M. Soderlund, H. J. Hoffman, D. Kliner, and J. Koplow, Photodarkening measurements in large mode area fibers, Fiber Lasers IV: Technology, Systems, and Applications, pp.10-1117, 2007.
DOI : 10.1117/12.712545

D. Digiovanni and A. Stentz, Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices US Patent 5, p.5864644, 1999.

T. Fan, Laser beam combining for high-power, high-radiance sources, IEEE Journal of Selected Topics in Quantum Electronics, vol.11, issue.3, p.167, 2005.
DOI : 10.1109/JSTQE.2005.850241

S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, Beam combining of ytterbium fiber amplifiers (Invited), Journal of the Optical Society of America B, vol.24, issue.8, pp.1707-1715, 2007.
DOI : 10.1364/JOSAB.24.001707

H. Tünnermann, Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers, Optics Express, vol.19, issue.20, 2011.
DOI : 10.1364/OE.19.019600

P. Kwee, B. Willke, and K. Danzmann, New concepts and results in laser power stabilization, Applied Physics B, vol.47, issue.3, pp.515-522, 2011.
DOI : 10.1007/s00340-011-4399-1

E. D. Black, An introduction to Pound???Drever???Hall laser frequency stabilization, American Journal of Physics, vol.69, issue.1, pp.79-87, 2001.
DOI : 10.1119/1.1286663

P. Kwee, B. Willke, and K. Danzmann, Optical ac coupling to overcome limitations in the detection of optical power fluctuations, Optics Letters, vol.33, issue.13, p.20, 2008.
DOI : 10.1364/OL.33.001509

P. Kwee, B. Willke, and K. Danzmann, Shot-noise-limited laser power stabilization with a high-power photodiode array, Optics Letters, vol.34, issue.19, pp.2912-2914, 2009.
DOI : 10.1364/OL.34.002912

F. Cleva, J. P. Coulon, and M. Merzougui, Pstab Boxes Status for PSL VIR- 0140A-13 (The Virgo Collaboration, 2013). <https://tds.ego-gw, pp.9486-9506

R. Drever, Laser phase and frequency stabilization using an optical resonator, Applied Physics B Photophysics and Laser Chemistry, vol.17, issue.2, pp.97-105, 1983.
DOI : 10.1007/BF00702605

E. Calloni and G. Vajente, Conceptual design of the second stage of frequency stabilization for Advanced Virgo VIR-0013C-12 (The Virgo Collaboration, 2012). <https : / / tds . ego -gw, pp.8815-8844

B. Canuel, E. Genin, J. Marque, and P. Benoit, Reference Cavity characterization VIR-0231A-13 (The Virgo Collaboration, 2013). <https://tds.egogw .it, p.9577

A. Rudiger, A Mode Selector to Suppress Fluctuations in Laser Beam Geometry, Optica Acta: International Journal of Optics, vol.3, issue.5, pp.641-658, 1981.
DOI : 10.1080/713820609

B. Willke, Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry???Perot ring-cavity premode cleaner, Optics Letters, vol.23, issue.21, pp.1704-1706, 1998.
DOI : 10.1364/OL.23.001704

M. Born and E. Wolf, Elements of the Theory of Interference and Interferometers in Principles of Optics Sixth Edition, pp.256-369, 1980.

P. Barriga, Optical Cavity Designs for Interferometric Gravitational Wave Detectors Accessed: 2015-10-16, 2009.

A. Chiummo, Requirements for technical noise with ITF asymmetries VIR- 0517A-11 (The Virgo Collaboration, 2011). <https://tds.ego-gw.it/ql, pp.8573-8595

R. Gouaty, Laser RIN specifications at Advanced Virgo modulation frequencies VIR-0328A-13 (The Virgo Collaboration, 2013). <https://tds.ego-gw, pp.9681-9703

T. C. Zhu, Absolute calibration of optical power for PDT, p.4813897, 2013.

G. E. Obarski and J. D. Splett, Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm, Journal of the Optical Society of America B, vol.18, issue.6, pp.750-761, 2001.
DOI : 10.1364/JOSAB.18.000750

D. W. Allan and C. C. Ashby, The Science of Timekeeping Application Note 1289, p.43, 1997.

A. E. Siegman, Linear Pulse Propagation in Lasers, pp.331-361, 1986.

T. Hansch and B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Optics Communications, vol.35, issue.3, pp.441-44490069, 1980.
DOI : 10.1016/0030-4018(80)90069-3

D. A. Shaddock, M. B. Gray, and D. E. Mcclelland, Frequency locking a laser to an optical cavity by use of spatial mode interference, Optics Letters, vol.24, issue.21, pp.1499-1501, 1999.
DOI : 10.1364/OL.24.001499

B. J. Cusack, Double pass locking and spatial mode locking for gravitational wave detectors, Classical and Quantum Gravity, vol.19, issue.7, p.379, 1819.
DOI : 10.1088/0264-9381/19/7/379

J. Miller and M. Evans, Length control of an optical resonator using secondorder transverse modes, Optics Letters, vol.39, 2014.

B. Saleh and M. Teich, Wave Optics in Fundamentals of Photonics, pp.41-79, 2001.

S. J. Augst, T. Y. Fan, and A. Sanchez, Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers, Optics Letters, vol.29, issue.5, pp.474-476, 2004.
DOI : 10.1364/OL.29.000474

R. Takahashi, J. Mizuno, S. Miyoki, and N. Kawashima, Control of a 10 m delay-line laser interferometer using the pre-modulation method, Physics Letters A, vol.187, issue.2, pp.157-162, 1994.
DOI : 10.1016/0375-9601(94)90054-X

Y. Panduputra, T. W. Ng, A. Neild, and M. Robinson, Intensity influence on Gaussian beam laser based measurements using quadrant photodiodes, Applied Optics, vol.49, issue.19, pp.3669-3675, 2010.
DOI : 10.1364/AO.49.003669

D. Z. Anderson, Alignment of resonant optical cavities, Applied Optics, vol.23, issue.17, pp.2944-2949, 1984.
DOI : 10.1364/AO.23.002944

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, Laser beam quality and pointing measurement with an optical resonator, Review of Scientific Instruments, vol.78, issue.7, p.54, 2007.
DOI : 10.1063/1.2754400

P. Kwee, Laser Characterization and Stabilization for Precision Interferometry PhD thesis isbn: 9783868442908. <https://gwic.ligo.org/thesisprize, p.54, 2010.

H. Kogelnik and T. Li, Laser Beams and Resonators, Applied Optics, vol.5, issue.10, pp.1550-1567, 1966.
DOI : 10.1364/AO.5.001550

E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, Automatic alignment of optical interferometers, Applied Optics, vol.33, issue.22, pp.56-128, 1994.
DOI : 10.1364/AO.33.005041

F. Mitschke, Treatment with Wave Optics in Fiber Optics: Physics and Technology, pp.25-45, 2010.

I. H. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica*,???, Journal of the Optical Society of America, vol.55, issue.10, pp.1205-1208, 1965.
DOI : 10.1364/JOSA.55.001205

M. Trobs and G. Heinzel, Improved spectrum estimation from digitized time series on a logarithmic frequency axis, Measurement, vol.39, issue.2, 2006.
DOI : 10.1016/j.measurement.2005.10.010

M. Trobs and G. Heinzel, Improved spectrum estimation from digitized time series on a logarithmic frequency axis, Measurement, vol.39, issue.2, pp.120-129004, 2006.
DOI : 10.1016/j.measurement.2005.10.010

G. D. Goodno, C. Shih, and J. Rothenberg, Perturbative analysis of coherent combining efficiency with mismatched lasers: errata, Optics Express, vol.20, issue.21, pp.79-123, 2012.
DOI : 10.1364/OE.20.023587

G. D. Goodno, C. Shih, and J. Rothenberg, Perturbative analysis of coherent combining efficiency with mismatched lasers, Optics Express, vol.18, issue.24, p.79, 2010.
DOI : 10.1364/OE.18.025403

F. Cleva and L. Wei, Nufern 50W fiber amplifier test -first part VIR- 0102B-13 (The Virgo Collaboration, 2013). <https://tds.ego-gw, p.9447

J. Koponen, Photodarkening rate in Yb-doped silica fibers, Applied Optics, vol.47, issue.9, pp.1247-1256, 2008.
DOI : 10.1364/AO.47.001247

S. Novak and A. Moesle, Analytic model for gain modulation in EDFAs, Journal of Lightwave Technology, vol.20, issue.6, pp.20-26, 2002.
DOI : 10.1109/JLT.2002.1018809

H. Tünnermann, Fiber Amplifiers for Gravitational Wave Detectors: Temporal Dynamics and Coherent Beam Combining PhD thesis, p.1037456440, 2013.

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach, Optics Express, vol.20, issue.12, 2012.
DOI : 10.1364/OE.20.013539

H. Tünnermann, Beam quality and noise properties of coherently combined ytterbium doped single frequency fiber amplifiers, Optics Express, vol.19, issue.20, pp.115-167, 2011.
DOI : 10.1364/OE.19.019600

C. N. Man and A. Brillet, Injection locking of argon-ion lasers, Optics Letters, vol.9, issue.8, pp.333-334, 1984.
DOI : 10.1364/OL.9.000333

C. Man, D. Shoemaker, M. P. Tu, and D. Dewey, External modulation technique for sensitive interferometric detection of displacements, Physics Letters A, vol.148, issue.1-2, pp.8-16, 1990.
DOI : 10.1016/0375-9601(90)90565-6

S. Hild, DC-readout of a signal-recycled gravitational wave detector. Classical and Quantum Gravity 26, 055012, p.55012, 2009.

H. Tünnermann, Y. Feng, J. Neumann, D. Kracht, and P. Weßels, All-fiber coherent beam combining with phase stabilization via differential pump power control, Optics Letters, vol.37, issue.7, pp.1202-1204, 2012.
DOI : 10.1364/OL.37.001202

J. E. Vornehm, A. Schweinsberg, Z. Shi, D. J. Gauthier, and R. W. Boyd, Phase locking of multiple optical fiber channels for a slow-light-enabled laser radar system, Optics Express, vol.21, issue.11, 2013.
DOI : 10.1364/OE.21.013094.m001

R. Uberna, A. Bratcher, and B. G. Tiemann, Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination, Applied Optics, vol.49, issue.35, pp.6762-6765, 2010.
DOI : 10.1364/AO.49.006762

E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, Residual amplitude modulation in laser electro-optic phase modulation, Journal of the Optical Society of America B, vol.2, issue.8, pp.1320-1326, 1985.
DOI : 10.1364/JOSAB.2.001320

N. C. Wong and J. L. Hall, Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection, Journal of the Optical Society of America B, vol.2, issue.9, pp.1527-1533, 1985.
DOI : 10.1364/JOSAB.2.001527

A. Foltynowicz, I. Silander, and O. Axner, Reduction of background signals in fiber-based NICE-OHMS, Journal of the Optical Society of America B, vol.28, issue.11, pp.2797-2805, 2011.
DOI : 10.1364/JOSAB.28.002797

I. Silander, P. Ehlers, J. Wang, and O. Axner, Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk, Journal of the Optical Society of America B, vol.29, issue.5, 2012.
DOI : 10.1364/JOSAB.29.000916

K. Kokeyama, Residual amplitude modulation in interferometric gravitational wave detectors, Journal of the Optical Society of America A, vol.31, issue.1, 2014.
DOI : 10.1364/JOSAA.31.000081

R. Piccoli, T. Robin, T. Brand, U. Klotzbach, and S. Taccheo, Effective photodarkening suppression in Yb-doped fiber lasers by visible light injection, Optics Express, vol.22, issue.7, pp.7638-7643, 2014.
DOI : 10.1364/OE.22.007638

S. Taccheo, Photodarkening: Investigation, Measurement and Standards in Advanced Photonics, p.139, 2014.

V. Braginsky, S. Strigin, and S. Vyatchanin, Parametric oscillatory instability in Fabry???Perot interferometer, Physics Letters A, vol.287, issue.5-6, pp.331-33800510, 2001.
DOI : 10.1016/S0375-9601(01)00510-2

V. Braginsky, S. Strigin, and S. Vyatchanin, Analysis of parametric oscillatory instability in power recycled LIGO interferometer, Physics Letters A, vol.305, issue.3-4, pp.111-124, 2002.
DOI : 10.1016/S0375-9601(02)01357-9

C. Zhao, L. Ju, J. Degallaix, S. Gras, and D. G. Blair, Parametric Instabilities and Their Control in Advanced Interferometer Gravitational-Wave Detectors, Physical Review Letters, vol.94, issue.12, p.140, 2005.
DOI : 10.1103/PhysRevLett.94.121102

L. Ju, Strategies for the control of parametric instability in advanced gravitational wave detectors, Classical and Quantum Gravity, vol.26, issue.1, p.140, 2009.
DOI : 10.1088/0264-9381/26/1/015002

M. Evans, Observation of Parametric Instability in Advanced LIGO, Physical Review Letters, vol.114, issue.16, p.140, 2015.
DOI : 10.1103/PhysRevLett.114.161102

A. Khalaidovski, Status of the GEO 600 squeezed-light laser Journal of Physics: Conference Series 363, 012013, p.140, 2012.

E. Oelker, L. Barsotti, S. Dwyer, D. Sigg, and N. Mavalvala, Squeezed light for advanced gravitational wave detectors and beyond, Optics Express, vol.22, issue.17, pp.21106-21121, 2014.
DOI : 10.1364/OE.22.021106

C. Gräf, Design of a speed meter interferometer proof-of-principle experiment . Classical and Quantum Gravity 31, p.141, 2014.

S. Dwyer, Gravitational wave detector with cosmological reach, Physical Review D, vol.91, issue.8, p.141, 2015.
DOI : 10.1103/PhysRevD.91.082001

J. Miller, Prospects for doubling the range of Advanced LIGO, Physical Review D, vol.91, issue.6, p.141, 2015.
DOI : 10.1103/PhysRevD.91.062005

. Et-science and . Team, Einstein gravitational wave Telescope Conceptual Design Study ET-0106C-10 (2011). <https://tds.ego-gw.it/ql, pp.7954-141

M. M. Je-souhaite-aussi-remercier and . Lintz, avec qui Frédéric et moi partagent le bureau, pour ses réponses rapides et inspirantesàinspirantes`inspirantesà mes questions pop-up. Les trois ans icì a l'Observatoire de la Côte d'Azur ontétésontétés très agréables. Merci beaucoup auxcolì egues qui soutient cette infrastructure géniale, Ce travail de thèse est dans le cadre du projet Advanced Virgo, et est co-financé par l'European Gravitational Observatory et la Région Provence-Alpes-Côte d'Azur

C. Vitae-li-wei and W. , Taiwan B.Sc. in Photonics Fabrication and characterization of polarized polymer light-emitting diodes Material and Plasmas Institut d'Optique Graduate School, Poland Finite difference methods in frequency domain (FDFD) Light propagation in photonic liquid crystal fibers 2012, 1985.

A. Joined, UMR 7250 CNRS?OCA?UNS) at the Observatoire de la Côte d'Azur as part of the Pre-Stabilized Laser group of the Virgo collaboration