A. A. Anantharaman, R. Costaouec, C. Le-bris, F. Legoll, F. N. Thomines-]-s et al., Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, Multiscale modeling and analysis for materials simulation Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. MR 3164987 [ALB10] A. Anantharaman and C. Le Bris, Homogénéisation d'un matériau périodique faiblement perturbé aléatoirement, pp.197-272, 2010.

G. [. Abdulle and . Vilmart, A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems, Numerische Mathematik, vol.40, issue.213, pp.397-431, 2012.
DOI : 10.1007/s00211-011-0438-4

URL : https://hal.archives-ouvertes.fr/hal-00746826

M. John and . Ball, Convexity conditions and existence theorems in nonlinear elasticity , Archive for rational mechanics and, Analysis, vol.63, issue.4, pp.337-403, 1976.

]. X. Bclbl12a, R. Blanc, C. L. Costaouec, F. Bris, and . Legoll, Variance reduction in stochastic homogenization: the technique of antithetic variables, Numerical Analysis of Multiscale Computations, pp.47-70, 2012.

]. M. Bis11 and . Biskup, Recent progress on the random conductance model, Probab. Surv, vol.8, pp.294-373, 2011.

. [. Bibliography, W. B. Barrett, and . Liu, Finite element approximation of the p-Laplacian, Math. Comp, vol.6194, issue.204, pp.523-537, 1993.

J. [. Bensoussan, G. Lions, and . Papanicolaou, Asymptotic methods in periodic structures, Studies in Math. Appl, vol.5, 1978.

S. [. Bernardin and . Olla, Thermodynamics and non-equilibrium macroscopic dynamics of chains of anharmonic oscillators, Lecture Notes available at https, 2014.

A. [. Bourgeat and . Piatnitski, Approximations of effective coefficients in stochastic homogenization, Annales de l'Institut Henri Poincare (B) Probability and Statistics, pp.153-165, 2004.

P. [. Cioranescu and . Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol.17, p.176504735019, 1999.

]. Cho89 and . Chow, Finite element error estimates for nonlinear elliptic equations of monotone type, Numer. Math, vol.5490, issue.4, pp.373-393, 1989.

C. [. Costaouec, F. Bris, and . Legoll, Variance reduction in stochastic homogenization: proof of concept, using antithetic variables, SeMA Journal, vol.27, issue.4, pp.9-26, 2010.
DOI : 10.1007/BF03322539

URL : https://hal.archives-ouvertes.fr/inria-00457946

]. R. Cos12 and . Costaouec, Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings, Applied Mathematics Research, issue.1, pp.76-104, 2012.

]. G. Dmm86a, L. Dal-maso, and . Modica, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl, vol.488, issue.144, pp.347-389, 1986.

P. [. Engquist and . Souganidis, Asymptotic and numerical homogenization, Acta Numerica, vol.17, pp.147-190, 2008.
DOI : 10.1017/S0962492906360011

]. I. Fat56 and . Fatt, The network model of porous media, Petrol. Trans. AIME, vol.207, pp.144-159, 1956.

A. [. Glowinski and . Marroco, Sur l'approximation, par ??l??ments finis d'ordre un, et la r??solution, par p??nalisation-dualit?? d'une classe de probl??mes de Dirichlet non lin??aires, Revue fran??aise d'automatique, informatique, recherche op??rationnelle. Analyse num??rique, vol.9, issue.R2, pp.41-76, 1975.
DOI : 10.1051/m2an/197509R200411

S. [. Gloria and . Neukamm, Commutability of homogenization and linearization at identity in finite elasticity and applications, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.28, issue.6, pp.941-964, 2011.
DOI : 10.1016/j.anihpc.2011.07.002

URL : https://hal.archives-ouvertes.fr/inria-00540615

S. [. Gloria, F. Neukamm, and . Otto, An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.2, pp.325-346, 2014.
DOI : 10.1051/m2an/2013110

URL : https://hal.archives-ouvertes.fr/hal-00863488

S. [. Jikov and O. A. Kozlov, Ole? ?nik, Homogenization of differential operators and integral functionals, p.1329546, 1994.

. Kfg-+-03-]-t, S. Kanit, I. Forest, V. Galliet, D. Mounoury et al., Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of solids and structures, vol.40, issue.13, pp.3647-3679, 2003.

]. S. Koz79 and . Kozlov, Averaging of random operators, Matematicheskii Sbornik, vol.151, issue.2, pp.188-202, 1979.

]. R. Kün83 and . Künnemann, The diffusion limit for reversible jump processes onz d with ergodic random bond conductivities, Communications in Mathematical Physics, vol.90, issue.1, pp.27-68, 1983.

[. Bris, Some Numerical Approaches for Weakly Random Homogenization, Numerical Mathematics and Advanced Applications, pp.29-45, 2009.
DOI : 10.1007/978-3-642-11795-4_3

[. Bris, F. Legoll, and W. Minvielle, Abstract, Monte Carlo Methods and Applications, vol.22, issue.1
DOI : 10.1515/mcma-2016-0101

[. Bibliography, F. Bris, and . Thomines, A reduced basis approach for some weakly stochastic multiscale problems, Chinese Annals of Mathematics, Series B, vol.33, issue.5, pp.657-672, 2012.

]. J. Liu08 and . Liu, Monte Carlo strategies in scientific computing, 2008.

W. [. Legoll and . Minvielle, Variance reduction using antithetic variables for a nonlinear convex stochastic homogenization problem, arXiv preprint arXiv:1302, p.38, 2013.

[. Tallec, Numerical methods for nonlinear three-dimensional elasticity, Handbook of numerical analysis, Handb. Numer. Anal., III, vol.96, pp.465-622, 1994.

]. J. Nol14 and . Nolen, Normal approximation for a random elliptic equation, Probability Theory and Related Fields, pp.661-700, 2014.

G. [. Nolen, A. M. Pavliotis, and . Stuart, Multiscale modelling and inverse problems, Numerical Analysis of Multiscale Problems, pp.1-34, 2012.

S. [. Papanicolaou and . Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random fields, Colloq. Math. Soc. János Bolyai, pp.835-873, 1979.

]. L. Tar97 and . Tartar, Estimations of homogenized coefficients [ MR0540123 (80i:35010)], Topics in the mathematical modelling of composite materials, Progr. Nonlinear Differential Equations Appl Ergodic theorems for general dynamical systems, Trudy Moskov. Mat. Ob??, vol.31, pp.9-20, 1972.

]. V. Tho97 and . Thomée, Galerkin finite element methods for parabolic problems, p.147917065007, 1997.

]. J. Von-pezold, A. Dick, M. Friák, and J. Neugebauer, Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti, Physical Review B, vol.81, issue.9, p.94203, 2010.
DOI : 10.1103/PhysRevB.81.094203

[. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Electronic properties of random alloys: Special quasirandom structures, Physical Review B, vol.42, issue.15, pp.42-9622, 1990.
DOI : 10.1103/PhysRevB.42.9622

]. V. Yur86 and . Yurinskii, Averaging of symmetric diffusion in random medium, Siberian Mathematical Journal, vol.27, issue.4, pp.603-613, 1986.

S. [. Zunger, L. G. Wei, J. E. Ferreira, and . Bernard, Special quasirandom structures, Special quasirandom structures, p.353, 1990.
DOI : 10.1103/PhysRevLett.65.353