Skip to Main content Skip to Navigation
Theses

Sélection de modèles pour la classification supervisée avec des SVM (Séparateurs à Vaste Marge). Application en traitement et analyse d'images.

Gilles Lebrun 1
1 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : The objective of this thesis is to define learning systems based on SVM with good performance. These systems should take into account that the problems related to image processing and analysis may enter into conflict with the operational difficulties of SVM. Many of these issues are part of the broader framework of data mining, the definition of decision-making in real-time optimization of difficult problems and combination of sets of decision functions. The approaches proposed in this thesis to solve problems of various kinds can be used in other areas where the same problems are encountered.
Keywords : SVM optimization
Document type :
Theses
Complete list of metadatas

Cited literature [58 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01282893
Contributor : Olivier Lezoray <>
Submitted on : Monday, March 7, 2016 - 7:23:51 PM
Last modification on : Tuesday, February 5, 2019 - 12:12:45 PM
Long-term archiving on: : Sunday, November 13, 2016 - 7:17:38 AM

Identifiers

  • HAL Id : tel-01282893, version 1

Citation

Gilles Lebrun. Sélection de modèles pour la classification supervisée avec des SVM (Séparateurs à Vaste Marge). Application en traitement et analyse d'images.. Traitement des images [eess.IV]. Université de Caen Basse-Normandie, 2006. Français. ⟨tel-01282893⟩

Share

Metrics

Record views

374

Files downloads

8715