J. H. Knox and M. Saleem, Kinetic Conditions for Optimum Speed and Resolution in Column Chromatography, Journal of Chromatographic Science, vol.7, issue.10, pp.614-622, 1969.
DOI : 10.1093/chromsci/7.10.614

J. H. Knox, Practical Aspects of LC Theory, Journal of Chromatographic Science, vol.15, issue.9, pp.352-364, 1977.
DOI : 10.1093/chromsci/15.9.352

G. Desmet, D. Clicq, and P. Gzil, Geometry-Independent Plate Height Representation Methods for the Direct Comparison of the Kinetic Performance of LC Supports with a Different Size or Morphology, Analytical Chemistry, vol.77, issue.13, pp.77-4058, 2005.
DOI : 10.1021/ac050160z

D. T. Nguyen, Chromatographic behaviour and comparison of column packed with sub-2 ?m stationary phases in liquid chromatography, Journal of Chromatography A, pp.1128-1129, 2006.

D. Cabooter, Kinetic plot and particle size distribution analysis to discuss the performance limits of sub-2 ?m and supra-2 ?m particle columns, Journal of Chromatography A, issue.1, pp.1204-1205, 2008.

D. Orazio, G. , A. Rocco, and S. Fanali, Fast-liquid chromatography using columns of different internal diameters packed with sub-2 ?m silica particles, Journal of Chromatography A, pp.213-220, 1228.

Y. Wang, Sub-2 ?m porous silica materials for enhanced separation performance in liquid chromatography, Journal of Chromatography A, pp.99-109, 1228.

M. W. Dong, Modern HPLC for Practicing Scientists, 2006.
DOI : 10.1002/0471973106

D. T. Nguyen, Fast analysis in liquid chromatography using small particle size and high pressure, Journal of Separation Science, vol.78, issue.12, pp.29-1836, 2006.
DOI : 10.1002/jssc.200600189

I. Gusev, X. Huang, and C. Horváth, Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography, Journal of Chromatography A, vol.855, issue.1, pp.273-290, 1999.
DOI : 10.1016/S0021-9673(99)00697-4

H. Li, J. D. Lin-12, K. F. Harrison, and K. Seiler, Applications of microfluidic systems in environmental analysis, Analytical and Bioanalytical Chemistry, vol.1181, issue.9, pp.555-567, 1993.
DOI : 10.1007/s00216-008-2439-4

M. Blas, N. D. , and J. L. Rocca, Microsystèmes lab-on-chip et séparations de type chromatographique, pp.17-28, 2005.

C. Li, Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method, ELECTROPHORESIS, vol.72, issue.9, pp.1800-1806, 2005.
DOI : 10.1002/elps.200410309

T. Rohr, Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting, Advanced Functional Materials, vol.106, issue.4, 2003.
DOI : 10.1002/adfm.200304229

D. Wu, J. Qin, and B. Lin, Electrophoretic separations on microfluidic chips, Journal of Chromatography A, vol.1184, issue.1-2, pp.542-559, 2008.
DOI : 10.1016/j.chroma.2007.11.119

V. Dolnik and S. Liu, Applications of capillary electrophoresis on microchip, Journal of Separation Science, vol.95, issue.15, pp.1994-2009, 2005.
DOI : 10.1002/jssc.200500243

T. D. Wheeler, Microchip Zone Electrophoresis for High-Throughput Analysis of Monoclonal Antibody Charge Variants, Analytical Chemistry, vol.86, issue.11, pp.5416-5424, 2014.
DOI : 10.1021/ac500497n

J. Gubi?, J. T. , A. Torbica, T. T. Mirela-ili?i?, L. ?ari? et al., Characterization of several milk proteins in domestic balkan donkey breed during lactation, using lab-on-a-chip capillary electrophoresis. Chemical Industry and Chemical Engineering Quarterly 2016 OnLine-First Issue DOI:10 Développement de microsystèmes séparatifs: mise en place de techniques séparatives électrocinétiques et applications au domaine de la santé, Thèse Micellar electrokinetic chromatography on microchips, Detection of Cardiac Biomarkers Using Micellar Electrokinetic Chromatography and a Cleavable Tag Immunoassay, pp.31-794, 2006.

C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, Microchip Devices for High- Efficiency Separations, Analytical Chemistry, issue.23, pp.72-5814, 2000.

J. D. Ramsey, High-Efficiency, Two-Dimensional Separations of Protein Digests on Microfluidic Devices, Analytical Chemistry, vol.75, issue.15, pp.75-3758, 2003.
DOI : 10.1021/ac0264574

J. W. Jorgenson and K. D. Lukacs, High-resolution separations based on electrophoresis and electroosmosis, Journal of Chromatography A, vol.218, pp.209-216, 1981.
DOI : 10.1016/S0021-9673(00)82057-9

J. H. Knox and I. H. Grant, Miniaturisation in pressure and electroendosmotically driven liquid chromatography: Some theoretical considerations, Chromatographia, vol.55, issue.1, pp.135-143, 1987.
DOI : 10.1007/BF02688476

M. Kato, Femto Liquid Chromatography with Attoliter Sample Separation in the Extended Nanospace Channel, Analytical Chemistry, vol.82, issue.2, pp.543-547, 2010.
DOI : 10.1021/ac9017605

B. He and F. Regnier, Microfabricated liquid chromatography columns based on collocated monolith support structures, Journal of Pharmaceutical and Biomedical Analysis, vol.17, pp.6-7, 1998.

B. He, N. Tait, and F. Regnier, Fabrication of Nanocolumns for Liquid Chromatography, Analytical Chemistry, vol.70, issue.18, pp.3790-3797, 1998.
DOI : 10.1021/ac980028h

O. Gustafsson, K. B. Mogensen, and J. P. Kutter, Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography, ELECTROPHORESIS, vol.72, issue.15, pp.29-3145, 2008.
DOI : 10.1002/elps.200800131

X. Illa, Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode, Journal of Separation Science, vol.49, issue.21, pp.33-3313, 2010.
DOI : 10.1002/jssc.201000360

K. Jain, J. Klier, and A. B. Scranton, Photopolymerization of butyl acrylate-inwater microemulsions: Polymer molecular weight and end-groups. Polymer, pp.46-11273, 2005.

N. Anton and T. Vandamme, Nano-emulsions and Micro-emulsions: Clarifications of the Critical Differences, Pharmaceutical Research, vol.34, issue.109, pp.978-985, 2011.
DOI : 10.1007/s11095-010-0309-1

K. Fontenot and F. J. Schork, Batch polymerization of methyl methacrylate in mini/macroemulsions, Journal of Applied Polymer Science, vol.49, issue.4, pp.633-655, 1993.
DOI : 10.1002/app.1993.070490410

K. Landfester, Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles, Angewandte Chemie International Edition, vol.16, issue.25, pp.48-4488, 2009.
DOI : 10.1002/anie.200900723

M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Progress in Polymer Science, pp.689-757, 2002.
DOI : 10.1016/S0079-6700(01)00051-X

L. L. Hecht, Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization, Langmuir, vol.27, issue.6, pp.27-2279, 2011.
DOI : 10.1021/la104480s

F. J. Schork, Miniemulsion Polymerization Photoinduced miniemulsion polymerization, Colloid and Polymer Science, vol.70, issue.5, pp.129-255, 2005.

P. A. Hoijemberg, A. Chemtob, and C. Croutxé-barghorn, Two Routes Towards Photoinitiator-Free Photopolymerization in Miniemulsion: Acrylate Self-Initiation and Photoactive Surfactant, Macromolecular Chemistry and Physics, vol.61, issue.22, pp.212-2417, 2011.
DOI : 10.1002/macp.201100343

K. Landfester, Formulation and Stability Mechanisms of Polymerizable Miniemulsions, Macromolecules, vol.32, issue.16, pp.5222-5228, 1999.
DOI : 10.1021/ma990299+

K. Landfester, D. C. Nguyen, and T. F. Tadros, Recent developments in miniemulsions??? formation and stability mechanisms, Thèse Preparation of microlatex dispersions using oil-inwater microemulsions. Colloid and Polymer Science, pp.171-178, 1991.
DOI : 10.1002/1521-3900(200002)150:1<171::AID-MASY171>3.0.CO;2-D

I. Capek, Microemulsion Polymerization of Butyl Acrylate under Ultrasound Irradiation, Polymer Journal, vol.2, issue.3, pp.264-276, 2006.
DOI : 10.1016/j.polymer.2004.03.084

W. Ming, F. N. Jones, and S. Fu, Synthesis of nanosize poly(methyl methacrylate) microlatexes with high polymer content by a modified microemulsion polymerization, Polymer Bulletin, vol.40, issue.6, pp.40-749, 1998.
DOI : 10.1007/s002890050318

I. Katime, Synthesis and characterization of poly(n-hexyl methacrylate) in three-component microemulsions Synthesis of poly(methyl methacrylate) nanoparticles initiated by azobisisobutyronitrile using a differential microemulsion Références bibliographiques 1 Production of nanoparticles of methyl methacrylate and butyl methacrylate copolymers by microemulsion polymerization in the presence of maleic acid terminated poly(N-acetylethylenimine) macromonomers as cosurfactant, European Polymer Journal European Polymer Journal, issue.118, pp.37-2273, 2001.

K. Landfester, Formulation and Stability Mechanisms of Polymerizable Miniemulsions, Macromolecules, vol.32, issue.16, pp.5222-5228, 1999.
DOI : 10.1021/ma990299+

K. Landfester, Recent developments in miniemulsions??? formation and stability mechanisms, Macromolecular Symposia, pp.171-178, 2000.
DOI : 10.1002/1521-3900(200002)150:1<171::AID-MASY171>3.0.CO;2-D

I. Capek, Microemulsion Radical Polymerization of Alkyl Acrylates, Polymer International, vol.43, issue.1, pp.1-7, 1997.
DOI : 10.1002/(SICI)1097-0126(199705)43:1<1::AID-PI751>3.0.CO;2-I

W. Ming, Formation of Irreversible Nearly Transparent Physical Polymeric Hydrogels during a Modified Microemulsion Polymerization, Macromolecules, vol.32, issue.2, pp.528-530, 1999.
DOI : 10.1021/ma9813486

D. Bandilla and C. D. Skinner, Protein separation by monolithic capillary electrochromatography, Journal of Chromatography A, vol.1004, issue.1-2, pp.167-179, 2003.
DOI : 10.1016/S0021-9673(03)00450-3

M. Bedair and R. D. Oleschuk, Lectin affinity chromatography using porous polymer monolith assisted nanoelectrospray MS/MS, The Analyst, vol.261, issue.12, pp.1316-1321, 2006.
DOI : 10.1039/b607359j

Y. Ladner, New ???one-step??? method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels, Lab on a Chip, vol.26, issue.9, pp.1680-1685, 2012.
DOI : 10.1039/c2lc21211k

URL : https://hal.archives-ouvertes.fr/hal-00799836

W. Yang and B. Rånby, Radical Living Graft Polymerization on the Surface of Polymeric Materials, Macromolecules, vol.29, issue.9, pp.3308-3310, 1996.
DOI : 10.1021/ma9515543

Y. Ma, L. Liu, and W. Yang, Photo-induced living/controlled surface radical grafting polymerization and its application in fabricating 3-D microarchitectures on the surface of flat/particulate organic substrates, Polymer, pp.52-4159, 2011.

H. Ma, R. H. Davis, and C. N. Bowman, A Novel Sequential Photoinduced Living Graft Polymerization, Macromolecules, vol.33, issue.2, pp.331-335, 1999.
DOI : 10.1021/ma990821s

T. Rohr, Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting, Advanced Functional Materials, vol.106, issue.4, pp.264-270, 2003.
DOI : 10.1002/adfm.200304229

C. Zhao, Z. Zhang, and W. Yang, A remote photochemical reaction for surface modification of polymeric substrate, Journal of Polymer Science Part A: Polymer Chemistry, vol.34, issue.18, pp.50-3698, 2012.
DOI : 10.1002/pola.26179

M. H. Schneider, Y. Tran, and P. Tabeling, Benzophenone Absorption and Diffusion in Poly(dimethylsiloxane) and Its Role in Graft Photo-polymerization for Surface Modification, Langmuir, vol.27, issue.3, pp.1232-1240, 2011.
DOI : 10.1021/la103345k

Y. Wang, Directly Fabricating Monolayer Nanoparticles on a Polymer Surface by UV-Induced MMA/DVB Microemulsion Graft Polymerization, Macromolecular Rapid Communications, vol.33, issue.2, pp.87-92, 2005.
DOI : 10.1002/marc.200400488

Y. Wang and W. Yang, MMA/DVB Emulsion Surface Graft Polymerization Initiated by UV Light, Langmuir, vol.20, issue.15, pp.6225-6231, 2004.
DOI : 10.1021/la0493924

D. Qi, Z. Cao, and U. Ziener, Recent advances in the preparation of hybrid nanoparticles in miniemulsions, Advances in Colloid and Interface Science, vol.211, issue.0, pp.211-258, 2014.
DOI : 10.1016/j.cis.2014.06.001

A. Ishimaru and Y. Kuga, Attenuation constant of a coherent field in a dense distribution of particles, Journal of the Optical Society of America, issue.10, pp.72-1317, 1982.

P. Snabre, O. Mengual, and G. Meunier, Rheology of concentrated suspensions of viscoelastic particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.152, issue.1-2, p.79, 1999.
DOI : 10.1016/S0927-7757(98)00619-0

A. Chemtob, Photoinduced miniemulsion polymerization. Colloid and Polymer Science, pp.579-587, 2010.

P. A. Hoijemberg, A. Chemtob, and C. Croutxé-barghorn, Two Routes Towards Photoinitiator-Free Photopolymerization in Miniemulsion: Acrylate Self-Initiation and Photoactive Surfactant, Macromolecular Chemistry and Physics, vol.61, issue.22, pp.212-2417, 2011.
DOI : 10.1002/macp.201100343

K. Landfester, Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles, Angewandte Chemie International Edition, vol.16, issue.25
DOI : 10.1002/anie.200900723

F. Jahanzad, Hybrid polymer particles by miniemulsion polymerisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.1-3, 2007.

N. Anton and T. Vandamme, Nano-emulsions and Micro-emulsions: Clarifications of the Critical Differences, Pharmaceutical Research, vol.34, issue.109, pp.978-985, 2011.
DOI : 10.1007/s11095-010-0309-1

F. J. Schork, Miniemulsion Polymerization, pp.129-255, 2005.

X. Xu, Microemulsion polymerization of methyl methacrylate initiated with BPO, European Polymer Journal, vol.35, issue.11, pp.1975-1978, 1999.
DOI : 10.1016/S0014-3057(98)00291-2

J. Chen and Z. Zhang, Radiation-induced polymerization of methyl methacrylate in microemulsion with high monomer content, European Polymer Journal, vol.43, issue.4, pp.1188-1194, 2007.
DOI : 10.1016/j.eurpolymj.2007.01.049

I. Capek, Photopolymerization of alkyl(meth)acrylates and polyoxyethylene macromonomers in fine emulsions, European Polymer Journal, vol.36, issue.2, pp.255-263, 2000.
DOI : 10.1016/S0014-3057(99)00126-3

I. Capek and J. P. Fouassier, Kinetics of photopolymerization of butyl acrylate in direct micelles, European Polymer Journal, vol.33, issue.2, pp.173-181, 1997.
DOI : 10.1016/S0014-3057(97)80013-4

C. Peinado, Photoinitiated polymerization in bicontinuous microemulsions: Fluorescence monitoring, Journal of Polymer Science Part A: Polymer Chemistry, vol.274, issue.18, pp.44-5291, 2006.
DOI : 10.1002/pola.21649

G. David, Microemulsion photopolymerization of methacrylates stabilized with sodium dodecyl sulfate and poly(N-acetylethylenimine) macromonomers, European Polymer Journal, vol.38, issue.1, pp.73-78, 2002.
DOI : 10.1016/S0014-3057(01)00162-8

J. Dou, Magnetic nanoparticles encapsulated latexes prepared with photo-initiated miniemulsion polymerization. Colloid and Polymer Science, pp.288-1751, 2010.

P. Roose, UV-nanoparticles: Photopolymerized polymer colloids from aqueous dispersions of acrylated oligomers, Progress in Organic Coatings, vol.77, issue.10, pp.77-1569, 2014.
DOI : 10.1016/j.porgcoat.2013.11.031

L. L. Hecht, Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization, Langmuir, vol.27, issue.6, pp.27-2279, 2011.
DOI : 10.1021/la104480s

. Références-bibliographiques-1, S. Roy, and C. Y. Yue, Surface Modification of COC Microfluidic Devices: A Comparative Study of Nitrogen Plasma Treatment and its Advantages Over Argon and Oxygen Plasma Treatments, Plasma Processes and Polymers, vol.8, issue.5, pp.432-443, 2011.

C. W. Tsao, Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment, Lab on a Chip, vol.27, issue.102, pp.499-505, 2007.
DOI : 10.1039/b618901f

J. Zhang, C. Das, and Z. H. Fan, Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices, Microfluidics and Nanofluidics, vol.27, issue.3, pp.327-335, 2008.
DOI : 10.1007/s10404-007-0253-5

F. Brisset, Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method, Applied Surface Science, vol.329, issue.0, pp.329-337, 2015.
DOI : 10.1016/j.apsusc.2014.12.060

URL : https://hal.archives-ouvertes.fr/hal-01140348

C. Li, Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method, ELECTROPHORESIS, vol.72, issue.9, pp.1800-1806, 2005.
DOI : 10.1002/elps.200410309

T. B. Stachowiak, Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting, Journal of Separation Science, vol.260, issue.7, pp.1088-93, 2007.
DOI : 10.1002/jssc.200600515

J. Deng, Developments and new applications of UV-induced surface graft polymerizations, Progress in Polymer Science, pp.156-193, 2009.
DOI : 10.1016/j.progpolymsci.2008.06.002

T. Rohr, Photografting and the Control of Surface Chemistry in Three-Dimensional Porous Polymer Monoliths, Macromolecules, vol.36, issue.5, pp.1677-1684, 2003.
DOI : 10.1021/ma021351w

T. B. Stachowiak, F. Svec, and J. M. Fréchet, Patternable Protein Resistant Surfaces for Multifunctional Microfluidic Devices via Surface Hydrophilization of Porous Polymer Monoliths Using Photografting, Chemistry of Materials, vol.18, issue.25, pp.18-5950, 2006.
DOI : 10.1021/cm0617034

J. A. Deverell, UV initiated formation of polymer monoliths in glass and polymer microreactors Surface Modification of Microfluidic Devices, Using Light to Covalently Immobilize and Pattern Nanoparticles onto Surfaces. Langmuir, pp.388-396, 2007.

Y. Feng, Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility, Journal of Materials Science: Materials in Medicine, vol.21, issue.8, pp.61-70, 2013.
DOI : 10.1007/s10856-012-4685-4

Z. Almutairi, C. L. Ren, and L. Simon, Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.415, issue.0, pp.415-406, 2012.
DOI : 10.1016/j.colsurfa.2012.10.008

J. M. Burke and E. Smela, A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane), in Biomicrofluidics. 2012: United States, pp.16506-1650610

S. Hu, Surface-Directed, Graft Polymerization within Microfluidic Channels, Analytical Chemistry, vol.76, issue.7, pp.1865-1870, 2004.
DOI : 10.1021/ac049937z

G. Li, Surface photografting initiated by benzophenone in water and mixed solvents containing water and ethanol, Journal of Applied Polymer Science, vol.40, issue.4, pp.1951-1959, 2012.
DOI : 10.1002/app.34683

C. Zhao, Z. Zhang, and W. Yang, A remote photochemical reaction for surface modification of polymeric substrate, Journal of Polymer Science Part A: Polymer Chemistry, vol.34, issue.18, pp.50-3698, 2012.
DOI : 10.1002/pola.26179

H. Wang and H. R. Brown, Ultraviolet grafting of methacrylic acid and acrylic acid on high-density polyethylene in different solvents and the wettability of grafted high-density polyethylene. I. Grafting, Journal of Polymer Science Part A: Polymer Chemistry, vol.19, issue.2, pp.42-253, 2004.
DOI : 10.1002/pola.11022

O. E. Kholdi, Modification of adhesive properties of a polyethylene film by photografting, Journal of Applied Polymer Science, vol.55, issue.5, pp.92-2803, 2004.
DOI : 10.1002/app.20320

W. Yang and B. Rånby, Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting, Journal of Applied Polymer Science, vol.62, issue.3, pp.545-555, 1996.
DOI : 10.1002/(SICI)1097-4628(19961017)62:3<545::AID-APP12>3.0.CO;2-Y

D. He and M. Ulbricht, Surface-selective photo-grafting on porous polymer membranes via a synergist immobilization method, Journal of Materials Chemistry, vol.15, issue.19, pp.16-1860, 2006.
DOI : 10.1039/b601546h

C. Decker and K. Zahouily, Surface modification of polyolefins by photografting of acrylic monomers, Macromolecular Symposia, pp.99-108, 1998.
DOI : 10.1002/masy.19981290109

Y. Wang, Facile Surface Superhydrophilic Modification: NVP/MBA Inverse Microemulsion Surface-Grafting Polymerization Initiated by UV Light, Macromolecular Rapid Communications, vol.20, issue.22, pp.26-1788, 2005.
DOI : 10.1002/marc.200500444

J. Balart, Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability, Journal of Materials Science, vol.66, issue.4???5, pp.47-2375, 2012.
DOI : 10.1007/s10853-011-6056-9

H. Ma, R. H. Davis, and C. N. Bowman, Principal factors affecting sequential photoinduced graft polymerization, Polymer, vol.42, issue.20, pp.42-8333, 2001.
DOI : 10.1016/S0032-3861(01)00328-7

Y. Ladner, New ???one-step??? method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels, Lab on a Chip, vol.26, issue.9, pp.1680-1685, 2012.
DOI : 10.1039/c2lc21211k

URL : https://hal.archives-ouvertes.fr/hal-00799836

T. B. Stachowiak, Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices, ELECTROPHORESIS, vol.24, issue.21, pp.24-3689, 2003.
DOI : 10.1002/elps.200305536

R. K. Jena, C. Y. Yue, and L. Anand, Improvement of thermal bond strength and surface properties of Cyclic Olefin Copolymer (COC) based microfluidic device using the photo-grafting technique, Sensors and Actuators B: Chemical, vol.157, issue.2, pp.518-526, 2011.
DOI : 10.1016/j.snb.2011.05.012

S. Roy, Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces, Journal of Materials Chemistry, vol.28, issue.38, pp.15031-15040, 2011.
DOI : 10.1039/c1jm11750e

T. Rohr, Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting, Advanced Functional Materials, vol.106, issue.4, pp.264-270, 2003.
DOI : 10.1002/adfm.200304229

S. Roy, Fabrication of smart COC chips: Advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers, Sensors and Actuators B: Chemical, vol.178, issue.0, pp.178-86, 2013.
DOI : 10.1016/j.snb.2012.12.058

G. Du, In-channel tuning of hydrophilicity and surface charge of cyclic olefin copolymer microchips by UV-induced graft polymerization and its application in lab-on-a-chip devices, Chemical Engineering Journal, vol.195, issue.196, pp.195-196, 2012.
DOI : 10.1016/j.cej.2012.04.082

X. Peng, Charge Tunable Zwitterionic Polyampholyte Layers Formed in Cyclic Olefin Copolymer Microchannels through Photochemical Graft Polymerization, ACS Applied Materials & Interfaces, vol.5, issue.3, pp.1017-1023, 2013.
DOI : 10.1021/am3027019

Y. Ladner, Développement de microsystèmes électrochromatographiques en copolymère d'oléfine cyclique, Thèse. 2012

J. Asua, Miniemulsion polymerization, Progress in Polymer Science, vol.27, issue.7, pp.1283-1346, 2002.
DOI : 10.1016/S0079-6700(02)00010-2

C. Larpent and T. Tadros, Preparation of microlatex dispersions using oil-in-water microemulsions, Colloid & Polymer Science, vol.84, issue.11, pp.1171-1183, 1991.
DOI : 10.1007/BF00654125

I. Capek, On the role of oil-soluble initiators in the radical polymerization of micellar systems, Advances in Colloid and Interface Science, vol.91, issue.2, pp.295-334, 2001.
DOI : 10.1016/S0001-8686(99)00036-6

M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Progress in Polymer Science, vol.27, issue.4, pp.689-757, 2002.
DOI : 10.1016/S0079-6700(01)00051-X

T. Li, Study of emulsion polymerization stabilized by amphiphilic polymer nanoparticles, Colloid and Polymer Science, vol.42, issue.14, pp.1543-1551, 2011.
DOI : 10.1007/s00396-011-2477-x

D. Qi, Z. Cao, and U. Ziener, Recent advances in the preparation of hybrid nanoparticles in miniemulsions, Advances in Colloid and Interface Science, vol.211, pp.47-62, 2014.
DOI : 10.1016/j.cis.2014.06.001

P. Kundu, Stability of oil-in-water macro-emulsion with anionic surfactant: Effect of electrolytes and temperature, Chemical Engineering Science, vol.102, pp.176-185, 2013.
DOI : 10.1016/j.ces.2013.07.050

F. Jahanzad, Hybrid polymer particles by miniemulsion polymerisation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.302, issue.1-3, pp.1-3, 2007.
DOI : 10.1016/j.colsurfa.2007.03.005

C. Babaç, Production of nanoparticles of methyl methacrylate and butyl methacrylate copolymers by microemulsion polymerization in the presence of maleic acid terminated poly(N-acetylethylenimine) macromonomers as cosurfactant, European Polymer Journal, vol.40, issue.8, pp.1947-1952, 2004.
DOI : 10.1016/j.eurpolymj.2004.03.004

N. Anton and T. Vandamme, Nano-emulsions and Micro-emulsions: Clarifications of the Critical Differences, Pharmaceutical Research, vol.34, issue.109, pp.978-985, 2011.
DOI : 10.1007/s11095-010-0309-1

F. Schork, Miniemulsion Polymerization, Adv Polym Sci, vol.175, pp.129-255, 2005.
DOI : 10.1007/b100115

K. Fontenot and F. Schork, Batch polymerization of methyl methacrylate in mini/macroemulsions, Journal of Applied Polymer Science, vol.49, issue.4, pp.633-655, 1993.
DOI : 10.1002/app.1993.070490410

K. Landfester, Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles, Angewandte Chemie International Edition, vol.16, issue.25, pp.4488-4507, 2009.
DOI : 10.1002/anie.200900723

K. Landfester, Formulation and Stability Mechanisms of Polymerizable Miniemulsions, Macromolecules, vol.32, issue.16, pp.5222-5228, 1999.
DOI : 10.1021/ma990299+

L. Hecht, Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization, Langmuir, vol.27, issue.6, pp.2279-2285, 2011.
DOI : 10.1021/la104480s

X. Xu, Microemulsion polymerization of methyl methacrylate initiated with BPO, European Polymer Journal, vol.35, issue.11, pp.1975-1978, 1999.
DOI : 10.1016/S0014-3057(98)00291-2

J. Chen and Z. Zhang, Radiation-induced polymerization of methyl methacrylate in microemulsion with high monomer content, European Polymer Journal, vol.43, issue.4, pp.1188-1194, 2007.
DOI : 10.1016/j.eurpolymj.2007.01.049

I. Capek, Photopolymerization of alkyl(meth)acrylates and polyoxyethylene macromonomers in fine emulsions, European Polymer Journal, vol.36, issue.2, pp.255-263, 2000.
DOI : 10.1016/S0014-3057(99)00126-3

I. Capek and J. Fouassier, Kinetics of photopolymerization of butyl acrylate in direct micelles, European Polymer Journal, vol.33, issue.2, pp.173-181, 1997.
DOI : 10.1016/S0014-3057(97)80013-4

C. Peinado, Photoinitiated polymerization in bicontinuous microemulsions: Fluorescence monitoring, Journal of Polymer Science Part A: Polymer Chemistry, vol.274, issue.18, pp.5291-5303, 2006.
DOI : 10.1002/pola.21649

G. David, Microemulsion photopolymerization of methacrylates stabilized with sodium dodecyl sulfate and poly(N-acetylethylenimine) macromonomers, European Polymer Journal, vol.38, issue.1, pp.73-78, 2002.
DOI : 10.1016/S0014-3057(01)00162-8

J. Dou, Magnetic nanoparticles encapsulated latexes prepared with photo-initiated miniemulsion polymerization, Colloid and Polymer Science, vol.27, issue.18, pp.1751-1756, 2010.
DOI : 10.1007/s00396-010-2310-y

P. Roose, UV-nanoparticles: Photopolymerized polymer colloids from aqueous dispersions of acrylated oligomers, Progress in Organic Coatings, vol.77, issue.10, pp.1569-1576, 2014.
DOI : 10.1016/j.porgcoat.2013.11.031

A. Chemtob, Photoinduced miniemulsion polymerization, Colloid and Polymer Science, vol.84, issue.5, pp.579-587, 2010.
DOI : 10.1007/s00396-010-2190-1

P. Hoijemberg, A. Chemtob, and C. Croutxé-barghorn, Two Routes Towards Photoinitiator-Free Photopolymerization in Miniemulsion: Acrylate Self-Initiation and Photoactive Surfactant, Macromolecular Chemistry and Physics, vol.61, issue.22, pp.2417-2422, 2011.
DOI : 10.1002/macp.201100343

Y. Wang and Y. W. , MMA/DVB Emulsion Surface Graft Polymerization Initiated by UV Light, Langmuir, vol.20, issue.15, pp.6225-6231, 2004.
DOI : 10.1021/la0493924

Y. Wang, Directly Fabricating Monolayer Nanoparticles on a Polymer Surface by UV-Induced MMA/DVB Microemulsion Graft Polymerization, Macromolecular Rapid Communications, vol.33, issue.2, pp.87-92, 2005.
DOI : 10.1002/marc.200400488

Y. Ladner, New ???one-step??? method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels, Lab on a Chip, vol.26, issue.9, pp.1680-1685, 2012.
DOI : 10.1039/c2lc21211k

URL : https://hal.archives-ouvertes.fr/hal-00799836

Y. Ladner, G. Crétier, and K. Faure, Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: A cost-effective and easy-to-use technology, ELECTROPHORESIS, vol.79, issue.19-20, pp.19-203087, 2012.
DOI : 10.1002/elps.201200238

URL : https://hal.archives-ouvertes.fr/hal-00799854