
HAL Id: tel-01280455
https://theses.hal.science/tel-01280455

Submitted on 29 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthodes Formelles pour la vérification fonctionnelle
des systèmes sur puce cache cohérent

Abderahman Kriouile

To cite this version:
Abderahman Kriouile. Méthodes Formelles pour la vérification fonctionnelle des systèmes sur puce
cache cohérent. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2015. En-
glish. �NNT : 2015GREAM041�. �tel-01280455�

https://theses.hal.science/tel-01280455
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Abderahman KRIOUILE

Thèse dirigée par Radu Mateescu
et codirigée par Wendelin Serwe

préparée au sein d’ Inria Grenoble Rhône-Alpes, du laboratoire LIG
et de l’Ecole Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Formal Methods
for Functional Verification of
Cache-Coherent Systems-on-Chip

Thèse soutenue publiquement le 17 septembre 2015,

devant le jury composé de :

Emmanuelle Encrenaz
Maître de conférences, LIP6, Université Pierre et Marie Curie, Rapporteur

Franz Wotawa
Professeur, IST, Graz University of Technology, Rapporteur

Ghassan Chehaibar
Docteur-Ingénieur expert, Bull, Examinateur

Thierry Jéron
Directeur de recherche, Inria Rennes, Examinateur

Guilhem Barthes
Ingénieur expert, STMicroelectronics, Encadrant Industriel

Massimo Zendri
Docteur-Ingénieur expert, STMicroelectronics, Encadrant Industriel

Radu Mateescu
Directeur de recherche, Inria Grenoble, Directeur de thèse

Wendelin Serwe
Chargé de recherche, Inria Grenoble, Co-directeur de thèse

Abstract

State-of-the-art System-on-Chip (SoC) architectures integrate many different components,
such as processors, accelerators, memories, and I/O blocks. Some of those components
but not all may have caches. Because the effort of validation with simulation-based
techniques, as currently used in industry, grows exponentially with the complexity of
the SoC, this thesis investigates the use of formal verification techniques in this context.
More precisely, we use the CADP toolbox to develop and validate a generic formal model
of an SoC compliant with the recent ACE specification proposed by ARM to implement
system-level cache coherency. We use a constraint-oriented specification style to model
the general requirements of the specification. We verify system properties on both the
constrained and unconstrained model to detect the cache coherency corner cases. We
take advantage of the parametrization of the proposed model to produce a comprehensive
set of counterexamples of non-satisfied properties in the unconstrained model.
The results of formal verification are then used to improve the industrial simulation-
based verification techniques in two aspects. On the one hand, in order to generate
clever semi-directed test cases from temporal logic properties, we propose a two-step
approach. One step consists in generating system-level abstract test cases using model-
based testing tools of the CADP toolbox. The other step consists in refining those
tests into interface-level concrete test cases that can be executed at RTL level with a
commercial Coverage-Directed Test Generation tool. On the other hand, we suggest to
use the formal model to assess the sanity of an interface verification unit.
We found that our approach helps in the transition between interface-level and system-
level verification, facilitates the validation of system-level properties, and enables early
detection of bugs in both the SoC and the commercial test-bench.

Key words: System-Level Cache Coherency, Functional Verification, System-on-Chip,
System-Level Validation, CADP, Explicit-State Model Checking, Equivalence Checking,
Model-Based Testing, Test Coverage, Test Generation

i

Contents

Abstract (English/Français) i

Contents iii

List of figures ix

List of tables xi

1 Introduction 1

1.1 Contributions . 4
1.2 Outline . 5

I Background and State of the Art 7

2 Background Concepts 9

2.1 Labeled Transition Systems . 9
2.2 Process Calculi . 10
2.3 Equivalence Checking . 11
2.4 Model checking . 12

2.4.1 Temporal Logic Languages . 13
2.4.2 Propositional Mu-Calculus . 15
2.4.3 Symbolic Model Checking . 16
2.4.4 Explicit-State Model Checking . 18

2.5 Model-Based Testing . 19
2.5.1 Definition of ioco Relation for IOTS 20
2.5.2 Test Generation and Test Execution for LTSs 20
2.5.3 Test Selection in Model-Based Testing 21

2.6 CADP Toolbox . 22
2.6.1 Representing LTSs in CADP . 22
2.6.2 Modeling Language LNT . 22
2.6.3 Temporal Logic Language MCL . 23
2.6.4 Script Verification Language (SVL) 25

iii

Contents

3 State of the Art: Formal Validation of Hardware 27

3.1 Use of Formal Verification . 28
3.1.1 Formal Verification using Model Checking 29
3.1.2 Formal Verification using Equivalence Checking 30
3.1.3 Formal Verification using Theorem Proving 30

3.2 Semi-Formal Verification and Assertions 31
3.3 System-Level Approaches . 32

3.3.1 SystemC Transaction Level Models 32
3.3.2 High-Level Formal Models and Abstractions 33

3.4 Test Generation strategies . 34
3.4.1 Coverage-Directed Test Generation 35
3.4.2 Faults-Based Test Generation . 35
3.4.3 Combining Model-Based and Coverage-Directed Testing 36

3.5 Applications of Formal Verification to Hardware Cache Coherency 36
3.6 Applications of CADP to Hardware Validation 37

3.6.1 Formal Modeling . 37
3.6.2 Functional Verification . 38
3.6.3 Model-Based Testing . 39
3.6.4 Performance Evaluation . 40

II Formal Modeling of a System-Level Cache Coherent SoC 43

4 System Level Cache Coherency with AMBA 4 ACE 45

4.1 Introduction . 45
4.2 System-Level Cache Coherency . 45
4.3 AMBA 4 ACE protocol . 47
4.4 ACE States . 48
4.5 ACE Ports and Channels . 48
4.6 ACE Transactions . 49
4.7 Requirements on the Global Ordering of Transactions 52
4.8 Discussion . 53

5 Formally Modeling an ACE-based SoC using LNT 55

5.1 Introduction . 55
5.2 General Description of the Formal Model 55

5.2.1 Types and Data Structures . 56
5.2.2 Channels . 57
5.2.3 Channel Structures . 58
5.2.4 AXI Slave: Shareable Memory . 61
5.2.5 ACE Masters . 63
5.2.6 ACE-Lite Masters . 63
5.2.7 Cache Coherent Interconnect (CCI) 64

iv

Contents

5.3 Modeling Global Ordering Requirements 64
5.4 State Space Generation . 64

5.4.1 Shareable Focused Model . 65
5.4.2 Optimized Model . 66

5.5 Model Validation . 66
5.5.1 Absence of Deadlocks . 68
5.5.2 Absence of Livelocks . 68
5.5.3 Complete Execution of Transactions 68

5.6 First Industrial Results . 69
5.7 Discussion . 69

III Model Exploitation 71

6 Model Checking System-Level Properties 73

6.1 Introduction . 73
6.2 System-Level Cache Coherency Analysis 73

6.2.1 Cache Line States Coherency Requirements 74
6.2.2 Data Integrity Requirements . 74
6.2.3 Messaging Consistency Requirements 75

6.3 System-Level Properties . 75
6.3.1 Cache States Coherency . 76
6.3.2 Data Integrity . 77
6.3.3 Consistency of Coherency Parameters 80

6.4 Model-Checking Results . 83
6.4.1 Cache State Coherency Results . 83
6.4.2 Data Integrity Results . 84
6.4.3 Consistency of Coherency Parameters Results 85
6.4.4 Example of a Non Satisfied Property 85
6.4.5 Reproduction of a Previously Fixed Bug 86

6.5 Conclusion . 87

7 From Temporal Logic Properties to Clever Test Cases 89

7.1 Introduction . 89
7.2 Computation of Interesting Configurations Containing Faults 90
7.3 Model Checking Based Test Generation 91

7.3.1 Unique Dirty Cache State Coherency Test Purpose 91
7.3.2 Unique Clean Cache State Coherency Test Purpose 92
7.3.3 Shareable Memory Data Integrity Test Purpose 94
7.3.4 Model-Based Test Generation Process 94

7.4 Industrial Results and Impact . 95
7.4.1 IVK Dynamic Test Benches . 96
7.4.2 Making the Test Bench Ready for System-Level Verification 98

v

Contents

7.4.3 Industrial Results . 99

8 Sanity of a Formal Check List 101

8.1 Modeling Formal Checks in LNT . 101
8.1.1 C1: No Overlapping Read Write Transactions 102
8.1.2 C2: No Maintenance Transaction while Pending Shareable Trans-

action . 103
8.1.3 C3: No Shareable Read Transaction while Pending Maintenance

Transaction . 104
8.1.4 C4: No WriteBack or WriteClean while WriteUnique or WriteLine-

Unique . 106
8.1.5 C5: No Shareable write Transaction while Maintenance Transaction107
8.1.6 C6: Snoop Response when Memory Update in Progress 108
8.1.7 C7: Order between Channels AC and CD 110
8.1.8 C8: Order between Channels AC and CR 111
8.1.9 C9: PassDirty and IsShared Check 112

8.2 Local Sanity of Each Check . 113
8.3 Global Sanity of the List of Checks . 114
8.4 Improvement of System Coverage Infrastructure 115
8.5 Industrial Results . 116

9 Conclusion 119

9.1 Summary of Contributions . 119
9.2 Research Perspectives . 121
9.3 Scientific Publications and Communications 122

9.3.1 Scientific Publications . 122
9.3.2 Scientific Communications . 123

IV Appendix 125

A Model Checking Properties 127

A.1 Unique dirty coherency . 127
A.2 Unique clean coherency . 128
A.3 Shared dirty coherency . 128
A.4 Shared clean coherency . 129
A.5 Unique clean data integrity . 129
A.6 Shared dirty data integrity . 131
A.7 Shared clean data integrity . 132
A.8 Shareable memory data integrity . 134
A.9 Read response no PassDirty property . 134
A.10 Read response no IsShared property . 135
A.11 Read response no IsSharedDirty property 136

vi

Contents

A.12 Coherency response PassDirty property 136
A.13 Coherency response no PassDirty property 137
A.14 Coherency response IsShared property . 138
A.15 Coherency response no IsShared property 138

Bibliography 150

Glossary 151

vii

List of Figures

2.1 LTS example . 10
2.2 LTL operators . 13
2.3 CTL operators . 14
2.4 Coffee machine example . 15
2.5 Impact of variable ordering on BDD size 17
2.6 LNT module example . 24

4.1 Example of a heterogeneous SoC using System-Level Cache Coherency . . 46
4.2 ACE: AXI Coherency Extension . 47
4.3 ACE states of a cache line . 48
4.4 Structures of ACE, ACE-Lite, AXI ports 49
4.5 Execution scenario of a ReadOnce transaction 50

5.1 Model architecture . 56
5.2 LNT process representing the shareable memory 62

6.1 State-based and action-based view of a cache line 76
6.2 Data integrity counterexample . 86
6.3 Fixed data integrity counterexample . 87

7.1 Model-based test generation flow . 90
7.2 Function CIC to compute a set of interesting configurations containing faults 90
7.3 IVK generation flow . 97
7.4 IVK cci400_r1p2 test bench architecture 98

ix

List of Tables

3.1 CADP: formal modeling effort in past projects 38
3.2 CADP: functional verification results . 39
3.3 CADP: Model-based testing results . 40

4.1 Snoop transactions and their original transactions 52

5.1 Experimental results: state space generation of shareable focused model
configurations . 65

5.2 Experimental results: state space generation of optimized model configu-
rations . 67

6.1 Cache coherency requirements analysis . 74
6.2 Model checking results: cache state coherency 83
6.3 Model checking results: : data integrity 84
6.4 Model checking results: coherency parameters 85

7.1 Experimental test case extraction results 95
7.2 Industrial results: bugs report . 99

xi

Chapter 1

Introduction

The integration of ever more functionalities in set-top boxes or mobile appliances such as
smart-phones increases the complexity of both the embedded software and the hardware
architecture. The design and validation of embedded applications address both the
software and the hardware aspects of the system. In our study we are interested in the
hardware part of embedded applications. The latter is usually a complex System-on-Chip
(SoC), featuring a significant number of heterogeneous components. Indeed, a typical
SoC includes nowadays not only processors and memory, but also dedicated hardware
accelerators and (analog) I/O blocks. Integrating caches into some of these components
(in particular, into processors and hardware accelerators) can increase performance
and reduce power consumption, for instance by avoiding accesses to (possibly off-chip)
memory.

In the past, prevalence of fast processors encouraged designers to manage cache coherency
in software, taking advantage of the flexibility of software solutions. However, due to
increased software complexity, a recent trend [MHS12, Tho12] is to introduce hardware
support for cache coherency, lightening the load on the processors, thus improving
performance and lowering power consumption. In this vein, ARM proposed AMBA 4
ACE (AXI Coherency Extensions) [ARM13], which is becoming a de facto industrial
standard for system-level cache coherence in heterogeneous SoCs (ACE explicitly includes
operations, called ACE-Lite operations, for components without cache). ACE is required
by the ARM R© big.LITTLETM solution [PG11], which takes advantage of two processors
(i.e., a “big” and a “LITTLE” one) for low-power SoCs. Also, STMicroelectronics is about
to integrate system level cache coherency (based on ACE) in its upcoming heterogeneous
SoCs for a family of commercial set-top-boxes supporting multiple Ultra HD flows on a
single chip.

Cache coherence protocols are known to be complex and difficult to validate. Therefore,
assuring system-level cache coherency is one of the major challenges faced by architects

1

Chapter 1. Introduction

of current SoC designs. In fact, functional verification continues to be one of the
most expensive and time-consuming steps in a typical SoC design flow. Validating a
concurrent system has always been a major issue for systems designers. In practice, most
widely used techniques are based on extensive simulation due to the related flexibility.
Given that the related validation effort grows exponentially with the complexity of
hardware architectures, we study the application of formal verification techniques (rooted
in concurrency theory), where the human modeling effort increases linearly with the
complexity of architectures. Thus, the exponential complexity is handled by automated
verification tools.

In computer science, concurrency is a characteristic of systems in which several com-
putations are executed simultaneously, potentially interacting with each other. This
notion is intended to cover a wide range of system architectures, from tightly coupled,
mostly synchronous parallel systems, to loosely coupled, largely asynchronous distributed
systems. We refer to systems exhibiting concurrency as concurrent systems, and we
call computer programs written for concurrent systems concurrent programs [CS96].
Concurrency theory [AFV01] is an active field of research in theoretical computer science,
which proposes a variety of formalisms for modeling and reasoning about concurrent
systems.

The validation of concurrent systems is composed of two different branches: functional
verification and performance evaluation. The former consists of verifying the correctness
of the system, i.e., verifying that the system respects the specified functional requirements.
The latter focuses on the qualitative aspects. Besides, performance evaluation focuses
on quantitative aspects such as measuring the response time of the system and the
end-to-end communication delay.

In this thesis, we are interested in functional verification. We aim at validating the
correctness of the behavior of a hardware concurrent system. In order to functionally
verify a hardware design, the following formal methods are often used: elaborating a
mathematical correctness proof or checking all possible conditions. The first method is
implemented by theorem provers, which are based on automated deduction, a subfield
of automated reasoning and mathematical logic dealing with proving mathematical
theorems by computer programs. The second method verifies if a formal model satisfies
the properties of the system. The properties can be expressed with the same formalism as
the model. In this case we talk about equivalence checking. Otherwise, if the properties
are expressed in a different formalism than the model, then we talk about model checking.

Model checking has several industrial successes due to its powerful debugging capabilities
and its easier integration within the industrial development cycle compared to theorem
proving. The most critical issues of formal verification are the state explosion problem
and the fact that it is hard to deal with parameterized systems. The application of basic

2

formal methods at the RTL1 level are limited to designs of up to 500 flip-flops [Kyu03].
To overcome those limitations, several approaches are proposed in the literature using
techniques based on reachability analysis [VGS12], design state abstraction [CTVW04],
design decomposition [JOS+01], or state projection [McM00].

Concretely, we use the CADP toolbox [GLMS13] for the analysis of system-level cache
coherency in a heterogeneous SoC. We are interested in applying and illustrating the
feasibility of the following formal methods on an industrial case study: process calculi (in
particular the modeling language LNT [CCG+14]), explicit-state model checking (with a
value-passing extension of modal µ-calculus), equivalence checking (based on bisimulation
and simulation preorder relations), and test case generation based on a sound theory
(namely, model-based testing and input-output conformance).

As a first step, we develop a generic formal LNT model of an SoC, including an ACE-
based cache coherent interconnect and abstractions of master and slave components
(e.g., processors and shared memory). This model is a system-level representation of the
specified behavior, in the sense that the model focuses on the interactions between the
components of the system, preserving their order. Our model considers a communication
on a hardware interface channel to be atomic. This model can be considered as a
high-level formal specification of the ACE protocol. The model is parametric and can
be instantiated with different configurations (number of masters, number of cache lines,
and number of memory lines) and different sets of supported ACE transactions. We use
a constraint-oriented specification style to model the global requirements of the ACE
specification, which must be guaranteed by any implementation. The LNT model enables
STMicroelectronics architects to interactively simulate a coherent SoC at system level.
We also express several correctness properties in the MCL language [MT08] and check
them on the LNT model using the EVALUATOR 4.0 model checker.

To benefit from the formal verification of the model of the ACE-based SoC (i.e., modeling
the behavior allowed by the specification) in a concrete industrial case study, we explore
the generation of tests in a semi-formal test bench. A semi-formal test bench is a
simulation test bench enhanced by assertions expressed by formal checks. These assertions
monitor the behavior of the system triggered by tests. However, the success of semi-formal
verification, both in terms of total effort spent and final verification coverage achieved,
depends heavily on the quality of the tests executed during simulation. Effective tests
can achieve higher verification coverage in shorter time, saving engineering resources and
improving confidence in the quality of the Design Under Verification (DUV).

Automatic test generation using model checking is one of the most promising approaches
for high-quality test generation. However, for large designs, model checking rapidly
faces state explosion when considering hardware protocols in all their details. We
propose to generate directed “abstract” tests from our formal model, using a test

1Register Transfer Level

3

Chapter 1. Introduction

generator implementing model-based testing techniques issued from the test conformance

theory [Tre92]. We take advantage of the counterexamples extracted by model checking

from the formal model to generate interesting configurations of the model. Those
configurations are used for automatic generation of abstract test cases. Then, the
abstract test cases are refined (by introducing randomization) to “concrete” tests, which
can be run on an RTL level test bench, taking advantage of an industrial coverage-directed

test generation (CDTG) solver.

Furthermore, we apply cross-checking techniques to validate and complete an interface

verification unit (IV unit) consisting in a formal checks list (used for formal coverage).
We apply equivalence checking techniques to compare our formal model and a parallel
composition of the formal checks.

Notice that the hardware design community has its proper terminology. In hardware
design, the term verification denotes a large set of techniques (including emulation,
simulation, rapid prototyping, and testing) to detect design mistakes; these techniques
are not necessarily formal, and one must use the term formal verification when referring
to mathematically based techniques [Gar13]. The verified system is generally called
Design Under Test (DUT): the system in this case is a design. The expression “test” is
used due to the large use of testing techniques in the hardware verification context. With
the generalization of verification approaches in hardware context, the terminology Design

Under Verification (DUV) is increasingly used. In other contexts, different terminologies
are used to name the verified system. For the Model-Based Testing (MBT) community,
it is named the System Under Test (SUT). In fact, the system can be either a software
program or a hardware design, and the activity in MBT is restricted to testing. In formal
verification we speak about the system under verification (SUV), which is more general
because it includes software and hardware, as well as all verification activities. In order
to avoid confusion, we will use the expression Design Under Verification (DUV) in all
parts of the thesis, because, we are interested in different verification activities, including,
but not restricted to, testing, applied to a hardware design.

1.1 Contributions

The principal contributions of this thesis are the following.

1. Producing a parametric formal model of an industrial case study [KS13], applying
relevant abstractions to balance between automatic extraction of relevant verification
reports and state space explosion problems. A large Petri net derived from our
LNT model was provided as Model Checking Contest 2014 benchmark2.

2. Using the parametrization of our formal model in order to produce a comprehensive

2http://mcc.lip6.fr/pdf/ARMCacheCoherence-form.pdf

4

1.2. Outline

set of counterexamples of a property rather than a unique counterexample. As a
result, it becomes possible to provide all the scenarios triggering a violation of the
property [KS15].

3. Proposing a two-step approach to use model-based testing in order to generate
clever semi-directed system level test cases from temporal logic properties. We
use CADP to generate directed “abstract” system-level test cases, which are then
refined with a commercial CDTG solver into interface-level “concrete” test cases
that can be executed at RTL level [KS15].

4. We also propose the notion of a system verification unit (SV unit) to measure
the coverage and verdicts of system-level properties. The SV unit is added to the
semi-formal test bench and it is connected to all interfaces of the system. This
SV unit is implemented by Property Specification Language (PSL) [oEE10] formal
checks [KS15].

5. Proposing a way to assess the sanity of an industrial interface verification unit (IV
unit), consisting of a set of behaviors to cover. In our study, we focus on the complex
behaviors expressed by so-called checks of a commercial IV unit. Our solution
enabled us to discover a missing check in a widespread commercial verification
unit [KS15].

An interesting industrial contribution consists in finding a major limitation twenty months
before it is confirmed by other approaches. In addition, our other contributions allow us
to produce the list of all scenarios triggering this limitation and to propose a possible
solution for each scenario.

1.2 Outline

This thesis is organized as follows. The first part presents a general background and
the state of the art. Chapter 2 presents the background concepts used in this thesis.
Chapter 3 surveys the state of the art of the formal verification applications in hardware
design.

The second part of the thesis presents the formal modeling of a system-level cache
coherent SoC. Chapter 4 introduces the s [AFV01]ystem-level cache coherency as well as
its recent standard AMBA 4 ACE specification. Chapter 5 presents our first contribution
consisting in a formal model of an AMBA 4 ACE-based SoC.

The third part of the thesis displays the different exploitations of the formal model.
Chapter 6 presents the verification of global properties of the system using explicit-state
model checking. Chapter 7 exhibits our test generation methodology based on model
checking counterexamples (i.e., contributions 2, 3, and 4). Chapter 8 describes the

5

Chapter 1. Introduction

validation and completion of an industrial IV unit using equivalence checking. Besides,
we present the experimental results and the industrial impact of our work as a section at
the end of each Chapter.

6

Background and State of the Art

7

Chapter 2

Background Concepts

In this chapter we present the background concepts of our thesis. We start by presenting
the underlying LTS (Labeled Transition System) model as well as the process calculus
formalism used to describe LTSs. After that, we explore the principal concepts needed
to understand the different formal techniques used in the scope of this thesis, namely
model checking, equivalence checking, and model-based testing. Finally, we introduce the
CADP toolbox, which offers an implementation for several formal methods techniques.

2.1 Labeled Transition Systems

Intuitively, a Labeled Transition System (LTS) is a state/transition graph, in which
the states do not provide information except the indication of the initial state. The
information is represented in the labels or actions related to transitions. Figure 2.1 shows
some examples of LTSs.

Formally, an LTS is a formalism used as the basis for describing the behavior of processes
such as specifications, implementations, and tests.

Definition 2.1.1. An LTS is a quadruple M = (Q,A,T,q0) where:

• Q is a the set of states;

• A the set of actions (transition labels); the set A contains the invisible action τ ,

which denotes internal (unobservable) activity.

• T ⊆ Q × A × Q is the transition relation;

• q0 ∈ Q is the initial state.

A transition (p, a, q) in T (also noted p
a−→ q) means that the system can evolve from

9

Chapter 2. Background Concepts

Figure 2.1 – LTS example

state p to state q by performing action a. If W is a language included in A*, then p W−→q
denotes a transition sequence p a1−→ q2

a2−→... an−→q such that the word a1a2...an belongs to
W . All states q of Q are assumed to be reachable from the initial state q0 via sequences
of transitions in T (i.e., q0

A∗−→ q). In the sequel, visible actions of A are denoted by a,
and (both visible and invisible) actions of A are denoted by b.

An LTS with the distinction between input and output actions is called an Input-Output

Transition System (IOTS). Input actions are actions from user to machine. Output
actions are actions from machine to user. IOTS have the property that any input action
is always enabled in any state. IOTS(Li, Lu) is the class of input-output transition
systems with inputs in Li and outputs in Lu. (Li,Lu) is a partition of the set of labels L

of IOTS(Li, Lu), i.e., Li ∩ Lu = ∅ and Li ∪ Lu = L [Tre99].

For large systems, it is impractical to describe explicitly the LTS of the system. Thus,
we use higher level formalisms, such as process calculi issued from concurrency theory, in
order to describe LTSs.

2.2 Process Calculi

Process Calculi (also called process algebras [AFV01]) represent a family of formalisms
proposed by concurrency theory.

The word process refers to a behavior of a system, for instance the execution of a software
system, the actions of a machine or even the actions of a human being. Behavior is
the set of events or actions that a system can perform, the order in which they can be
executed and maybe other aspects of this execution such as timing or probabilities. In
general, we describe only certain aspects of the behavior, disregarding other aspects: we
are considering an abstraction or idealization of the “real” behavior. We can say that we

10

2.3. Equivalence Checking

have an observation of the behavior. We call action the chosen unit of observation.

Process calculi provide means for a high-level description of interactions, communications,
and synchronizations between a set of independent components of a concurrent system.
They also provide laws to describe, manipulate, and analyze processes.

Process calculi are characterized by the following main features:

• Representing interactions between independent processes as communication
(message-passing on communication gates), and not the modification of shared
variables. This corresponds to a black box view of the system. In fact, the system
can be analyzed by observing the communications between the components of the
system instead of the state of the internal variables of the system (used in a white

box view).

• Describing processes and systems using a small set of primitives and operators in
order to combine those primitives. (Primitives and operators are defined in the
grammar of each process calculus language).

• Using interleaving semantics for compositions of processes. If two processes A

and B execute respectively an action a and b in parallel, then the global behavior
(represented by an LTS) will have two possible paths: a then b and b then a. Two
actions never occur at the same time (i.e., asynchronous semantics).

2.3 Equivalence Checking

The equivalence checking compares two graphs (e.g., LTSs) modulo an equivalence
relation. In this thesis, we compare LTSs modulo0 several bisimulation relations. A
bisimulation is a binary relation between states, associating states that behave in the
same way.

Two LTSs M1 = (Q1, A, T1, q01) and M2 = (Q2, A, T2, q02) are related modulo an
equivalence relation R (noted M1 R M2) if and only if their initial states are related
modulo R (noted q01 R q02).

For each equivalence Requ, the corresponding preorder relation Iequ, which indicates
whether a state p is “simulated” by a state q (resp. q is “simulated” by p) is obtained by
keeping only condition 1 (resp. 2) in the definition of Requ.

• strong bisimulation [Par81]: two states p and q are related modulo strong equivalence
(p Rstr q) if and only if:

1. for each transition p
b−→ p′ in T1

11

Chapter 2. Background Concepts

there is a transition q
b−→ q′ in T2

such that p′ Rstr q′

2. for each transition q
b−→ q′ in T2

there is a transition p
b−→ p′ in T1

such that p′ Rstr q′

• branching bisimulation [vGW89]: two states p and q are are related modulo branch-
ing equivalence (p Rbra q) if and only if:

1. for each transition p
b−→ p′ in T1

(a) either b = τ and p′ Rbra q, or

(b) there is a sequence q
τ∗−→ q′ b−→ q′′ in T2∗

such that p Rbra = q′ and p′ Rbra q′′

2. for each transition q
b−→ q′ in T2

(a) either b = τ and p Rbra q′, or

(b) there is a sequence p
τ∗−→ p′ b−→ p′′ in T1∗

such that p′ Rbra q and p′′ Rbra q′

• divergence-sensitive branching bisimulation (divbranching) [VGW96] differs from
branching bisimulation only in the way cycles of internal transitions τ (also called
divergences) are treated. It is known that all states present on a cycle of internal
transitions belong to the same branching equivalence class. While divergences are
eliminated in the LTS obtained by reduction modulo ordinary branching bisimu-
lation, a self-looping internal transition is kept in each such equivalence class in
the LTS obtained by divergence-sensitive branching bisimulation. Unlike branching
bisimulation, divergence-sensitive branching bisimulation preserves inevitability
properties.

Various algorithms are implemented to perform comparison of graphs or to minimize
graphs according to a specific bisimulation.

2.4 Model checking

The model checking [CGP00, BK+08] verifies that a model satisfies a property expressed
in a different formalism. In model checking, the system is described by a finite state
model (e.g., an LTS) and the properties are expressed in temporal logic. Model checking
verifies formally whether the model satisfies a property by automatic exhaustive search
over the state space.

A model checker is a software tool that, given a description of a model M and a property
ϕ, decides whether M satisfies ϕ. The model checker returns True if the property is

12

2.4. Model checking

Figure 2.2 – LTL operators

satisfied, otherwise it returns False, and provides a counterexample. It can also provide
a witness when the property is satisfied.

2.4.1 Temporal Logic Languages

A Temporal Logic is a system of rules and symbols for representing, and reasoning about,
propositions qualified in terms of time. In a temporal logic we can express statements
like “an event A is always possible”, “an event A will eventually happen”, or “an event A
is always possible until an event B happens”. Numerous temporal logics were proposed
in the literature. Two principal families of temporal logics are linear time logics [Pnu77]
and branching time logics [BAPM83].

• The Linear time temporal logic (LTL1) is a modal temporal logic with modalities
referring to discrete time (natural numbers). LTL operators are evaluated over sets
of paths, i.e., over infinite, linear sequences of states: “s[0] -> s[1] -> ... -> s[t] ->
s[t + 1] -> ...”, where s[t] expresses the tth state of a sequence. LTL provides the
following temporal operators (illustrated graphically in Fig. 2.2):

– “Finally” (or “future”): “F p” is true in s[t] if and only if p is true in some
s[t’] with t’ ≥ t.

– “Globally” (or “always”): “G p” is true in s[t] if and only if p is true in all
s[t’] with t’ ≥ t.

– “Next”: “X p” is true in s[t] if and only if p is true in s[t + 1].

– “Until”: “p U q” is true in s[t] if and only if q is true in some state s[t’] with
t’ ≥ t and p is true in all states s[t”] with t ≤ t” < t’.

1Linear Temporal Logic

13

Chapter 2. Background Concepts

Figure 2.3 – CTL operators

• Branching time temporal logic (CTL2 and its variants) considers a tree-like struc-
tured model of time, in which the future is not determined; there are different
paths in the future, any one of which might be an actual path that is realized.
CTL operators (illustrated graphically in Fig. 2.3) are evaluated over trees. Every
temporal operator (F; G; X; U) is preceded by a path quantifier (A or E), where
A expresses universal modalities (or necessity) (AF; AG; AX; AU): the temporal
formula is true in all paths starting in the current state; and E expresses existential
modalities (or possibility) (EF; EG; EX; EU): the temporal formula is true in some
paths starting in the current state.

In this thesis, we use a branching time temporal logic. To explain the interest of this
temporal logic in comparison with the widely used linear logic, we present the classical
example of the coffee machine.

Example 1 Figure 2.4 shows the LTSs of two coffee machines (a) and (b). The machine
(a) works properly: once the 30cts is supplied, the machine is in a state in which one
can choose Coffee or Tea. For the machine (b), when the sum of 30cts is supplied,
the machine passes non-deterministically to one of the two states: a state in which
the machine can only provide Coffee and another state in which the machine can only
provide Tea. The branching time logic can detect that there is a state in which machine
(b) cannot provide Tea and another in which it cannot provide Coffee. In linear time

2Computation Tree Logic

14

2.4. Model checking

Figure 2.4 – Coffee machine example

logic, the two machines (a) and (b) have equivalent traces: {30cts, Coffee} and {30cts,
Tea}. In this logic, we can never detect that the machine (b) contains a state in which
we can never have Coffee and another state in which we can never have Tea.

2.4.2 Propositional Mu-Calculus

The µ-calculus [Koz83] has generated much interest among researchers in computer-
aided verification. This interest stems from the fact that many temporal and program
logics can be encoded into the µ-calculus. Another source of interest in the µ-calculus
came from the existence of efficient model checking algorithms for this formalism. As
a consequence, verification procedures for many temporal and modal logics can be
described by translation into µ-calculus. A considerable amount of research has focused
on finding techniques for evaluating such formulæ efficiently, and many algorithms have
been proposed for this purpose.

The propositional µ-calculus is a powerful language for expressing properties of transition
systems. The letter µ reminds that the µ-calculus is a logic capable of expressing least
and greatest solutions of fixpoint equations X = f(X), where f is a monotone function
mapping some powerset into itself. The µ and ν operators are used to express least and
greatest fixpoints, respectively. Precisely, the notation µX.f(X) is used for the least
fixpoint of the function f, and the notation νX.f(X) is used for the greatest fixpoint of
f [Len05].

Variables in the µ-calculus can be either free or bound by fixpoint operators. Closed
formulæ are the formulæ without free variables. The intuitive meaning of the formula
<a> f is “it is possible to make an a-transition to a state where f holds”. Similarly, [a]

f means that “f holds in all states reachable (in one step) by making an a-transition.
The empty set of states is denoted by False, and the set of all states S is denoted by
True [?].

15

Chapter 2. Background Concepts

2.4.3 Symbolic Model Checking

Symbolic model checking is a technique to fight the problem of state explosion. Instead
of enumerating reachable states one at a time, the state space can sometimes be traversed
much more efficiently by considering large numbers of states at a single step. In symbolic
model checking the states are manipulated as sets and the transition relations are
expressed as formulæ. The two principal symbolic model checking techniques are Binary

Decision Diagrams (BDD) and Propositional Satisfiability Checkers (SAT solvers).

Binary Decision Diagrams (BDD)

BDDs enabled handling much larger concurrent systems (usually, an order of magnitude
increase in the hardware case) [BCM+90, McM93]. In popular usage, the term BDD
almost always refers to Reduced Ordered Binary Decision Diagram (ROBDD), which are
used when the ordering and reduction aspects need to be emphasized. The advantage of
an ROBDD is that it is canonical (unique) for a particular function and variable order.
A variety of properties characterized by least and greatest fixed points can be verified
purely by manipulations of these formulæ using ROBDD [McM93].

Example 2 Consider building a BDD for the function f defined by the equation:

f(a1, a2, b1, b2, c1, c2) = (a1 ⊕ a2) and (b1 ⊕ b2) and (c1 ⊕ c2)

first with variable ordering (A) a1 < a2 < b1 < b2 < c1 < c2 and then with (B)
a1 < b1 < c1 < a2 < b2 < c2. The BDD with the first ordering is in Fig. 2.5(A)
and the one with the second ordering is in Fig. 2.5(B). The size ratio of the second BDD
to the first BDD is 23:11, more than a 100% increase.

In the first ordering, (A) a1 < a2 < b1 < b2 < c1 < c2, when a1 = a2, the
function value is completely determined to be 0 regardless of the values of the other
variables. Therefore, two paths have only two variable nodes, a1 and a2. Similarly,
b1 = b2 or c1 = c2 completely determine the value of the function. Thus, we observe
that when the variables are ordered together early that completely determine the value
of the function, fewer nodes appear on the paths from BDD root to constant roots, and
hence a simpler BDD results. Thus, we observe that when the veriables are ordered in
a clever order, the value of the function is completely determined earlier, fewer nodes
appear on the paths from BDD root to constant roots, and hence a simpler BDD results.

If a1 and a2 are not equal, then the function is determined solely by the remaining
variables without retaining any knowledge of the specific values that a1 and a2 have taken.
In other words, b1 = b2 or c1 = c2 alone determines the value of the function for all
unequal values of a1 and a2. Therefore, we see that variables b1 and c1 are being shared

16

2.4. Model checking

0

1
1 0

a1

a2 a2

b1

b2 b2

c1

c2 c2

a1

b1 b1

c1 c1 c1 c1

a2 a2 a2 a2 a2 a2 a2 a2

b2 b2
b2 b2

c2 c2

(B)(A)

Figure 2.5 – Impact of variable ordering on BDD size

by the two paths that represent a1 = 1, a2 = 0 and a1 = 0, a2 = 1. We observe
that the less knowledge about previous variable assignment is required to determine the
function value the more nodes are shared. More sharing gives smaller BDDs.

In the second ordering, (B) a1 < b1 < c1 < a2 < b2 < c2, the earliest time the
function value is decided is when four variables are assigned values, which is worse than
the situation from the first ordering. If the values assigned to the first four variables do
not determine the function value, some already assigned values need to be remembered
to assign values to the remaining variables. Therefore, this ordering produces a larger
BDD size.

SAT solving

SAT-based techniques [SLM+92, GW95] are widely used in the hardware community.
These techniques concern the problem of determining if the variables of a given Boolean
formula can be consistently replaced by the values True or False in such a way that the
formula evaluates to True. If this is the case, the formula is called satisfiable. Otherwise,
if no such assignment exists, the function expressed by the formula is equivalent to False

17

Chapter 2. Background Concepts

for all possible variable assignments and the formula is unsatisfiable. For example, the
formula "a and not b" is satisfiable because one can find the values a = True and b =

False, which make (a and not b) = True. In contrast, "a and not a" is unsatisfiable.
Despite the fact that no algorithms are known that solve SAT efficiently, correctly, and for
all possible input instances, many instances of SAT that occur in practice, especially in
circuit design, can actually be solved rather efficiently using heuristic SAT-solvers. Such
algorithms are not believed to be efficient on all SAT instances, but experimentally these
algorithms tend to work well for many practical applications and specially in hardware
applications.

Bounded Model Checking

The main idea of Bounded Model Checking [BCC+03] technique is to look for coun-
terexample paths of increasing length k, in order to guide the model checking to find
bugs. For each k, a boolean formula is built, which is satisfiable if and only if there is a
counterexample of length k. The satisfiability of the boolean formulæ is checked using a
SAT procedure. This technique can manage complex formulæ on hundreds of thousands
of variables and returns a satisfying assignment (i.e., a counterexample).

Different model checking algorithms are proposed in the literature for symbolic model
checking: fix-point model checking (historically, for CTL), bounded model checking
(historically, for LTL), invariant checking, etc.

2.4.4 Explicit-State Model Checking

After around three decades of symbolic model checking, the explicit-state model checking
still proposes solutions for complex systems with the ability to use compositional verifi-
cation and on-the-fly verification. Our thesis is based on this branch of model checking
techniques.

Compositional verification

Compositional verification is a way to avoid state explosion for the explicit-state verifica-
tion of complex concurrent systems. This approach assumes that the concurrent system
under study can be expressed as a collection of communicating sequential processes.
Process calculi (such as LNT) are suitable for compositional verification, because of their
appropriate parallel composition operators and concurrency semantics. Compositional
verification consists in replacing each sequential process by an equivalent one, smaller
than the original process but still preserving the properties to be verified on the whole
system. Quite often, this is done by minimizing the process LTS modulo an appropriate
equivalence relation (e.g., a bisimulation relation, such as strong or branching equiva-

18

2.5. Model-Based Testing

lence). If the system has a hierarchical structure, minimization can also be applied at
every intermediate level in the hierarchy. Clearly, this approach is only possible if the
equivalence relation considered is a congruence with the parallel composition operator.
It may be counter-productive in some other cases: generating the LTS of each process
separately may lead to state explosion, whereas the generation of the whole system of
concurrent processes might succeed if processes constrain each other when composed in
parallel [KM97].

On-the-fly verification

On-the-fly verification consists in analyzing the correctness of a concurrent system by
constructing and exploring its state space incrementally. This provides a way to fight
against state explosion, enabling the detection of errors in systems with large state
spaces [Mat03]. In on-the-fly verification, the state space is constructed in a demand-
driven way, therefore enabling the detection of errors in large systems. The efficiency
of on-the-fly verification depends on the used property and the model maturity. In
fact, on-the-fly verification is more interesting in the debug phase, enabling to detect
counterexamples without generating the global state space. When the property is satisfied,
the (compositional) generation of the state space and the verification of the generated
LTS can be more practical than on-the-fly verification.

2.5 Model-Based Testing

When we achieve a good confidence on the formal model of the specification, one can
consider to check the conformance of the DUV (i.e., implementation) against the formal
model. This can be carried out by generating tests from the model. This activity is
called Model-Based Testing (MBT). It is important to recall that the purpose of such
test suites is to check the DUV, not the specification model itself, which is assumed to
be correct.

Some MBT techniques use the theory of conformance testing [Tre92]. According to
this theory, the DUV is conform to the model if and only if the DUV passes all tests
generated from the model. In our context, we are interested in MBT using LTSs and
the input/output conformance (ioco) relation proposed by the conformance testing theory.
If the DUV ioco the LTS model then the DUV passes the generated tests. Thus, the
ioco relation is sound. If the DUV passes all the generated tests then the DUV ioco the
LTS model. Thus, the ioco relation is exhaustive. Although in practice, it is infeasible to
generate all the tests. The DUV behaves as input-enabled LTS (i.e., IOTS).

19

Chapter 2. Background Concepts

2.5.1 Definition of ioco Relation for IOTS

Intuitively, i ioco-conforms to s, if and only if:

• if i produces output x after trace σ, then s can produce x after σ.

• if i cannot produce any output after trace σ, then s cannot produce any output
after σ (quiescence δ expresses the absence of output).

Definition 2.5.1. [dVT01] The ioco relation is a relation relating an IOTS to an LTS:

ioco ⊂ IOTS(Li, Lu) × LTS(Li ∪ Lu)

Observing with environment outputs, and vice versa, the ioco relation is defined as follows:

i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊂ out(s after σ)

where:

• Straces(s) = {σ ∈ (L ∪ {δ})∗|s σ
=⇒}

• p after σ = {p′|p σ
=⇒ p′}

• out(P) = {x ∈ Lu | p
x−→, p ∈ P} ∪ {δ | p

δ−→ p, p ∈ P}

• p
δ−→ p ≡ ∀ x ∈ Lu ∪ {τ}.p

x

Ó−→

A test suite is valid if this test suite detects the non conformity:

i not ioco s ⇔ ∃t i fails t

where i represents the implementation (i.e., DUV), s the specification (i.e., model), and
t a test.

2.5.2 Test Generation and Test Execution for LTSs

For LTS models, a test case is a transition system with labels in L ∪ {θ}. The ’quiescence’
label θ expresses the timeout and is a translation of the absence of output (δ) in the
IOTS [Tre96]. The test case transition system is tree-structured, finite, and deterministic.
It contains sink states, which are PASS and FAIL states. From each state we have either
one input !α and all outputs ?x or all outputs ?x and θ.

Several algorithms have been proposed to generate tests [Tre99, FJJV96, JJ05]. A typical
algorithm generates a test by a finite number of recursive applications of one of the
three following non-deterministic choices. The first choice consists in terminating the
test by selecting a PASS state. The second choice consists in giving a next input α to

20

2.5. Model-Based Testing

the implementation and applies recursively the algorithm. The third choice consists
in selecting non-deterministically one among all the outputs and the timeout θ label
(absence of output). If the selected output or θ is allowed at the current state, then the
test recalls the algorithm recursively. If the selected output or θ is not allowed at the
current state, then the test goes to the FAIL state.

To cope with non deterministic behavior, tests are not linear traces, but trees. Further-
more, in order to execute tests, we have to deal with all possible parallel executions (test
runs) of test t with implementation i going to state PASS or FAIL.

2.5.3 Test Selection in Model-Based Testing

In practice, exhaustiveness is never achieved. We have to select a subset of “comprehensive”
test suites to achieve confidence in the quality of the tested product (DUV in our case).
We want to select the best test cases capable of detecting failures and to measure to
what extent testing was exhaustive (i.e., coverage). This leads us to an optimization
problem: we seek the best possible testing, but within cost/time constraints. In order
to tackle this issue, different test selection approaches were proposed in the literature:
random test selection, coverage-oriented selection, or domain specific selection using test

purposes [dVT01].

Conventional testing tools often have problems in handling nondeterminism and only
explore a small subset of feasible paths. Model checkers do not have this problem, as they
are designed to systematically explore all reachable states of the system. It is therefore
tempting to enhance testing with the capabilities of model checking, an idea expressed
in [JW96]. In the literature, dedicated test generation tools have been developed using
exhaustive state-space exploration of the model to produce test cases. The exploration
capabilities are derived from model checking algorithms (e.g., TGV [FJJV96, JJ05]).
Some of these test generation techniques use the notion of a test purpose, which is
specified as traces or automata (e.g., LTS) derived from high-level requirements.

A test purpose guides the exploration of the specification model to have more focused
test cases. Intuitively, it is a means to characterize those states (called ACCEPT states)
of the specification that should be reached during test execution. To prune the search
space for test cases, the test purpose can also contain so-called REFUSE states: if such a
state is reached while testing the DUV, the test is stopped and declared inconclusive.
Technically, a test purpose is provided as an LTS.

21

Chapter 2. Background Concepts

2.6 CADP Toolbox

CADP (Construction and Analysis of Distributed Processes)3 [GLMS13] is a widespread
toolbox for the design and verification of asynchronous concurrent systems. CADP
supports, among others, the process calculus LNT for specification, and offers various
tools for simulation and formal verification, including equivalence checkers (bisimulations)
and model checkers (temporal logics and modal µ-calculus).

CADP is designed in a modular way and puts the emphasis on intermediate formats and
programming interfaces (such as the BCG and OPEN/CAESAR software environments),
enabling to combine CADP tools with other tools and adapting to various specification
languages. CADP implements a large spectrum of research results of concurrency theory,
focusing on process calculus languages, namely LOTOS and the recent LNT language.

CADP is developed by the CONVECS team of Inria (until January 2012, by the VASY
team). It is maintained, regularly improved, and used in many industrial projects. Today,
CADP contains around fifty tools and more than a dozen libraries.

2.6.1 Representing LTSs in CADP

CADP provides two different representations of an LTS:

• An explicit LTS is an enumerative representation of states, transitions, and labels.
CADP provides the BCG (Binary Coded Graphs)4 format and libraries. The BCG
format is an optimized storage format for storing large LTSs (up to 244 states).
CADP provides a set of tools and libraries to manipulate BCG files.

• An implicit LTS is defined in comprehension by giving its initial state and a function
“post” to calculate its successors. This allows to verify a specification on-the-fly
without generating the LTS explicitly. CADP provides the Open/Caesar API for
manipulating implicit LTSs, which is independent of the language in which the
implicit LTS is expressed.

2.6.2 Modeling Language LNT

LNT [CCG+14] (a shorthand for “LOTOS New Technology”) is a modern formal specifi-
cation language that has been designed and implemented in the CADP toolbox since
2005. LNT is intended to be concise, expressive, easily readable, and user-friendly. LNT
combines the best features of process calculi, functional programming languages, and
imperative programming languages. The semantics of an LNT model is defined as an

3http://cadp.inria.fr/
4The acronym BCG refers both to a format and a software environment.

22

2.6. CADP Toolbox

LTS, following a black box view of the system. The LNT.OPEN tool translates an LNT
model into an LTS suitable for (on-the-fly) verification. At present, LNT is implemented
by translation to LOTOS [ISO89, BB88].

Example 3 Figure 2.6 presents an example of an LNT module cpu, which contains an
example of an LNT process cpu_read. This process can send an address read request
and can receive read data responses. The process waits the read data response before
resending another address read request. This process communicates on two LNT gates
AR (i.e., Address Read) and R (i.e., Read data). The gates are typed by LNT channels
(respectively, AW_CHANNEL and W_CHANNEL). An LNT channel defines the number and
types of parameters of the gate. A gate can be defined without a specific channel (i.e.,
the channel is set to any) or a channel without parameters (i.e., the channel is set to
none). The cpu_read process has one value parameter port used to identify the cpu.

The process defines three local variables, memory_line referring to the index of the mem-
ory line, data corresponding to the data contained in the memory line, and the boolean
read_in_progress expressing if a read transaction is in progress or not. When start-
ing, the process cpu_read initializes the variables memory_line and read_in_progress.
The remaining behavior of the process consists in an infinite loop containing a non-
deterministic choice between two branches, which is expressed by the select construct.

In the first branch of the select can be chosen only if the no read is in progress. In
this case, the process can communicate on the gate AR, fixinng the value for the three
parameters: the transaction type is a ReadOnce5, the port of the cpu is port, and the
memory line to read is memory_line. After achieving the communication on the gate AR,
the read_in_progress variable is set to true.

In the second branch of the select, the process can communicate on the gate R and
fixes two parameters: the transaction type is a ReadOnce and the port of the cpu is
port. The parameters beginning by “?” are not fixed to a value: ?memory_line accepts
any INDEX_MEM and sets the variable memory_line to this value, and ?data accepts any
DATA_T and sets the variable data to this value. After achieving the communication on
the gate R, the read_in_progress is set to false.

2.6.3 Temporal Logic Language MCL

The Model Checking Language (MCL) [MT08] is an extension of the modal µ-calculus
with high-level operators aiming at improving expressiveness and conciseness of formulæ.
The main ingredients of MCL are: parameterized fixed points, action patterns enabling
to extract data values from LTS transition labels, modalities on transition sequences

5ReadOnce: is a transaction defined by ACE protocol and means that the cpu wants to read the data
without keeping a copy of it.

23

Chapter 2. Background Concepts

module cpu (types) is

process cpu_read [AR : AR_CHANNEL , R : R_CHANNEL]

(port : INDEX_CPU)

is

var memory_line : INDEX_MEM ,

data : DATA_T ,

read_in_progress : bool

in

memory_line := INDEX_MEM (1);

read_in_progress := false ;

loop

select

only if not (read_in_progress) then

AR(ReadOnce , port , memory_line);

read_in_progress := true

end if

[]

R(ReadOnce , port , memory_line , ?data);

read_in_progress := false

end select

end loop

end var

end process

end module

Figure 2.6 – LNT module example

described using extended regular expressions and programming language constructs, and
an infinite looping operator specifying fairness. The EVALUATOR 4.0 model checker of
CADP can verify MCL properties on the fly, based on the local resolution of Boolean
equation systems, and has a linear-time complexity for (data-less) alternation-free and
fairness formulæ.

We can write (parameterized) macros to simplify the formulæ.

The MCL formulæ used in this thesis specify either liveness or safety properties. A
liveness property expresses that something good eventually happens. A safety property
expresses that something bad never happens. We present an example of each.

Example 4 The following MCL formula encodes a liveness property, that expresses
inevitability, using the minimal fixed point operator (mu), which acts as binder for the
propositional variable X. This formula states that all transition sequences starting after
an action AR eventually lead to an action R after a finite number of steps.

[true * . {AR}]

mu X . (< true > true and [not {R}] X)

24

2.6. CADP Toolbox

Example 5 The following MCL formula encodes a safety property, which expresses
that if an action R happens, then while there is no action AR, no other action R may
happen.

[true * .

{R} .

(not {AR}) * .

{R}

] false

2.6.4 Script Verification Language (SVL)

Verification scenarios can be complex, repetitive, and require the use of several tools
and techniques provided by CADP. In this respect, CADP proposes a Script Verification

Language (SVL) [GL01] dedicated to the description of verification scenarios. SVL
launches automatically the needed tools of CADP and includes Shell commands, that
are preceded by “%”.

25

Chapter 3

State of the Art: Formal

Validation of Hardware

The correct design of complex hardware poses serious challenges. Economic pressures
in rapidly evolving markets demand short design cycles while increasing complexity of
designs makes simulation coverage less and less complete. Bugs in a design that are
not discovered in early design stages can be costly, and bugs that remain undetected
until after a product is shipped can be extremely expensive. The most widely used
techniques in hardware verification are based on simulation. To improve verification of
complex hardware designs, two principal axes are explored: on one side, methodologies
proposed to enable a faster simulation speed, e.g., hardware-accelerated simulation and
emulation; on the other side, methodologies proposed to enable a bigger coverage than
simulation. These methodologies introduce formal and semi-formal verification based on
formal methods.

(Software) simulation is a dynamic verification method. The bugs are found by running
the design implementation. Thoroughness of the simulation depends on the tests in use.
Some parts are tested repeatedly while other parts are not even tested. There is a speed
gap between the speed of software simulation and real silicon vastness:

Simulation speed = C * speed of the simulation engine / size of circuit simulated
where C is a constant

A track that has been explored is to improve the speed of the simulation. For this
purpose, hardware-accelerated simulation is often used, by moving the time-consuming
part of the design to hardware. Usually, the software simulation communicates with an

27

Chapter 3. State of the Art: Formal Validation of Hardware

FPGA-based1 hardware accelerator. The limitation of this solution is the dependency on
the speed of the communication between simulator and hardware. To accelerate more
and more (i.e., up to 1000 times faster than simulation), Emulation is used; imitating the
function of another system to achieve the same results as the imitated system. Usually,
the emulation hardware comprises an array of FPGA’s and an interconnection scheme
among them.

Example 6 A formal specification can be useful in emulation. In the context of the
Polykid project2 [GVZ01], a missing hardware component (precisely, an ASIC3) was
replaced by a software program generated from a formal LOTOS model, running on a
PowerPC microprocessor.

It was recognized that conventional simulation does not provide sufficient quality assurance
and must be supplemented by formal methods [Fou88]. In fact, approaches combining
formal and simulation techniques are required. Since then, formal verification tools are
more and more introduced in the hardware design flow due to their capability to detect
errors earlier than other techniques. Two formal techniques are often used in hardware
validation: theorem provers which use a deductive approach based on rules of inference
and model checking which uses an algorithmic approach based on exhaustive exploration
of the behavior of the system. In addition to that, model-based testing can be used as a
bridge connecting the formal verification of the specification and the simulation-based
verification of the implementation.

3.1 Use of Formal Verification

Hardware design typically starts with a high-level informal specification (i.e., block
diagrams, tables, and English text) expressing the desired functionalities. The formal
verification of hardware requires the existence of formal descriptions for both design
and specification. These methods assure 100% coverage, but in practice, work only for
small-size finite state systems.

The time required for formal verification must be considered when applying these
techniques to a real project. There are highly automated formal methods comparable to
traditional simulation. Although formal verification methods are employed in the design
of several state-of-the-art microprocessors and other complicated chips, we are not aware
of a complete top-to-bottom verification for such a design. The cost of such verification
still appears to be prohibitive. Formal methods can be beneficial even if a complete
top-to-bottom verification is not carried out: the exercise of formalizing the requirements

1Field-Programmable Gate Array
2Polykid was a Bull project concerning a multiprocessor architecture based on PowerPC, using

CC-NUMA memory model and two cache coherency levels.
3Application Specific Integrated Circuit

28

3.1. Use of Formal Verification

or a high-level specification can be useful in itself because it tends to clarify many aspects.
It is noticed that hardware engineers acquire a deeper understanding of the design when
formal methods are used. In fact in this case, a greater effort of abstraction is needed, a
more precise specification of the environment assumptions is required, and a description
of the properties relating inputs and outputs is intended [Gar13]. To achieve successful
integration, formal methods must be applied in a way that ensures that they can keep up
with the design flow [BCL+94]. If this is the case, formal methods can benefit from the
design process significantly, as they allow conceptual errors in the design to be discovered
early in the design process by verifying the high-level design against a set of requirements.

High-level descriptions can often be made concise enough to be tractable by automatic
verification methods [BCL+94]. Finally, the cost of verification might be considered
worthwhile for certain subsystems that are particularly difficult to design, while other
“straightforward” modules can be treated with traditional methods [KG99].

3.1.1 Formal Verification using Model Checking

In the following, we present some examples of model checking tools used in the hardware
field.

• SMV [McM99] is a widely used symbolic model checker, in which system de-
scriptions are given in terms of a set of equations that determine the next-state
relation; programs may be structured into parameterized modules. SMV model
checks specifications given in CTL and CTLF. SMV uses hybrid decision diagrams
(HDDs) [CFZ95] as the underlying data structure, which permits model checking of
properties involving words, i.e., bit vectors interpreted as integers. The SMV model
checker is used by Cadence R© to validate hardware protocols [KNS01, RMK03].

• SPIN [Hol97] is a model checker targeted at the high-level verification of distributed
systems. SPIN accepts model descriptions in the specification language PROMELA,
which provides high-level constructs such as communication channels. Specifications
are given in LTL and verified by an on-the-fly model-checking algorithm. For
example, the SPIN model checker is used in the literature to validate hardware
protocols [BED03].

• Murφ [Dil96] is both a formal description language and an explicit state model-
checking system. Specifications in Murφ are given as simple safety properties,
which are verified by explicit state space exploration. Murφ uses a white box view
of the system. In a white box view, the states of all variables are visible during the
verification. In contrast, our approach based on LTSs uses a black box view, in
which only the events are visible. Murφ is based on a set of commands that are
executed repeatedly in an infinite loop. The Murφ is used in the literature to verify
cache coherence protocols in a multiprocessor system design. [Che04].

29

Chapter 3. State of the Art: Formal Validation of Hardware

Model checking the requirements, specified as temporal properties, requires that the
model is small enough in order to be verified in the available CPU and memory resources.
To this end, the design must be modeled and verified at a relatively abstract level.
Otherwise, the design has to be divided to relatively small subsystems, where each of
which is verified separately.

Example 7 At gate level, formal verification techniques are helpful to gain confidence
in asynchronous circuits. Those circuits are complex to validate using conventional
simulation. That is why formal methods are used to address their validation, in order to
detect concurrency issues and to establish the correctness, if possible [SSTV07].

3.1.2 Formal Verification using Equivalence Checking

The equivalence checkers are often used in hardware design to compare a (golden)
model4 with a refined model. Functional representations are extracted from the designs
and compared mathematically. In the hardware community, tools such as Formality

(SynopsysTM) [Sut06] and FormalPro (Mentor GraphicsTM) [Pra08] support equivalence
checking. The equivalence checking can be applied in inter-levels cross verification
performing a logical comparison of two hardware models.

Example 8 This technique is used to compare an RTL description with the correspond-
ing gate-level synthesis in order to prove the absence of synthesis errors. Equivalence
checking has progressively replaced gate-level simulation.

3.1.3 Formal Verification using Theorem Proving

A theorem prover is based on libraries of axioms and hypotheses. It uses a set of inference
rules to prove the formal description of the behavior of the system by simplifying it until
reaching known axioms. Specifications and verification conditions can be expressed in
general-purpose logic. Verifying that an implementation meets its specification in such a
framework is equivalent to proving a theorem in the underlying logic. In principle, this
proof could be carried out manually. However, proofs of such theorems are often long
and rather tedious in practice, making it likely that they contain errors.

Using a mechanized theorem-proving system can ensure soundness and reduce toughness
by automating parts of the proof. Proof discovery in many theorem provers is guided by
the user through the application of proof strategies or tactics. Standard tactics operate
at a level of detail such as quantifier instantiation or rewrite with respect to a set of
equalities. Hardware proofs in a particular application domain often follow common

4A model assumed to be correct.

30

3.2. Semi-Formal Verification and Assertions

general patterns, which suggests the development of proof strategies that automatically
discharge more complex obligations.

In the literature, various logics have been used to implement theorem proving with various
levels of automation, and many have been used for hardware verification, including the
followings ones:

• ACL2 tool5 [KM96] uses a first order logic without quantifiers with induction.

• HOL system6 [Gor01] and PVS system7 [ORS92] use higher order logic.

• Coq formal proof management system8 [DFH+91] uses calculus of inductive con-
structions.

• Isabelle9 [Pau94] uses a general-purpose logic.

It should be noticed that in the hardware verification framework, higher order logic is
less crucial than in other applications [Mel09, Pie14].

3.2 Semi-Formal Verification and Assertions

To take advantage of formal verification in the context of industrial sized case studies,
semi-formal approaches were proposed combining simulation and formal assertions. An
assertion (called also check) is a statement on the intended behavior of a design. The
purpose of assertions is to ensure consistency between the designer intention and the
implementation. This verification approach is called Assertion-based verification (ABV).
The key features of ABV are that, if an assertion violation is detected by the simulator,
the related signals are identified, and the source of error is reported to the user.

The assertions are expressed as a native assertion construct, e.g., SystemVerilog Assertions

(SVA) [oEE09] or as temporal logic formulæ, e.g., using Property Specification Language

(PSL) [oEE10]. The PSL is defined as a standard for RTL level assertions. This gives
the design architect a standard means of specifying design properties using a concise
syntax with clearly defined formal semantics and enables the RTL implementer to capture
design intent in a verifiable form, while enabling verification engineer to validate that
the implementation satisfies its specification.

ABV can be integrated to static and dynamic test benches.

5http://www.cs.utexas.edu/ moore/acl2/
6http://www.cl.cam.ac.uk/research/hvg/HOL/
7http://pvs.csl.sri.com/
8http://coq.inria.fr/
9http://www.cl.cam.ac.uk/research/hvg/Isabelle/

31

Chapter 3. State of the Art: Formal Validation of Hardware

• A static test bench is a “pure” formal test bench in which the DUV is connected
to assertion-based formal unit. Those units analyze the hardware description of
the system (e.g., VHDL or Verilog RTL design) without running any simulation.
Although model checking a property (expressed through an assertion) at the
hardware description level is intractable, because of the state space explosion
problem, model checking can be carried out by applying several limitations to
the explored state space. The assertions are used to restrain the DUV explored
behavior and to extract a model checking assignment.

• A dynamic test bench is a simulation test bench, in which (dynamic) verification IPs
are connected to the DUV. The verification IPs initiate tests, respond to the DUV
requests, and monitor the DUV activities. The assertion-based unit are connected
to the dynamic test bench, in order to monitor the DUV events triggered by ran
tests and check that those events respect the properties (expressed by assertions).
In this case, we speak about semi-formal verification.

3.3 System-Level Approaches

In the SoC context, different complexity aspects are introduced to the verification activity.
A first aspect consists in the combination of software and hardware platforms. Precisely,
the hardware DUV cooperate with processor model such as BFM (bus functional model).
A second aspect consists in the use of pre-verified and unverified components, e.g., the
use of legacy IPs already verified. A third aspect of complexity resides on the presence of
different languages and different abstraction levels providing common interface structure
between SoC components. To deal with this specific complexity introduced in SoC
verification context, several approaches have been explored.

3.3.1 SystemC Transaction Level Models

A significant amount of system-level approaches in hardware design rely on Sys-

temC [LMSG02], which is a modeling platform consisting of a set of C++ class libraries,
including a simulation kernel that supports hardware modeling concepts at the system
level, behavioral level, and RTL level. SystemC allows to create an executable specifi-
cation of the system and can be used either in cycle level or transaction level. While
the cycle-level platform has to synchronize with the DUV at every clock cycle, the
transaction-level platform has just to synchronize at the end of each transaction. The
Transaction-Level Modeling (TLM) [G+05] has no notion of exact time, but preserves
transactions order. The TLM model is used as the fastest reference by each block designer.
Such a model can be also used to have a rough estimation on performance.

The SystemC/TLM uses software function calls to model the communication between
blocks in a system. This is in contrast to hardware RTL, and gate level models, which

32

3.3. System-Level Approaches

use signals to model the communication between system blocks. TLM models have been
used in various forms for many years. The emergence of widely used standard modeling
languages such as SystemC/TLM, enables model interoperability and exchange within
companies and between companies. This is crucial since modern SoCs rely heavily on IP
reuse [Swa06].

It was proposed in the literature to combine system-level modeling with assertion-based
verification [DGG+05], using a platform called FoCs (“Formal Checkers”) [ABG+00]
based on both SystemC/TLM and PSL. In fact, formal methods enhance the capabilities
of SystemC/TLM languages initially intended for simulation and hardware-software
co-simulation purposes. SystemC models can be verified using model checking, which
improves simulation speed and coverage [BKS08]. In addition to that, complex designs
involving asynchronous concurrency may also be specified using dedicated languages
specifically designed and optimized.

3.3.2 High-Level Formal Models and Abstractions

An alternative style of specification uses a high-level formal model to stipulate the
allowed behaviors of a system. In this framework, verification entails reasoning about
the relationship between the high-level model, also referred to as the specification, and a
lower-level model, the implementation [KG99].

Central to this approach is the notion of abstraction, which permits unnecessary detail
to be hidden from the high-level model. Furthermore, specifications may be given in
an hierarchical fashion; starting from a very abstract model at the highest level, one
proceeds through a series of abstractions to a detailed description of the implementation.
The design at some level k assumes the role of the implementation with respect to the
specification at level k-1, and the role of the specification for level k+1.

Different abstraction mechanisms are explored in the literature. We present here four
identified types of abstraction prevalent in hardware verification [JOS+01].

• Structural abstraction suppresses details about the implementation internal struc-
ture in the specification. The specification gives a black-box view of the design
that reflects the externally observable system behavior without constraining its
internal design.

• Behavioral abstraction suppresses details about what the component does under
operating conditions that should never occur. Behavioral abstraction may also
indicate “do not care” conditions. This gives the designer greater flexibility to
optimize the implementation. The specification is more abstract, in the sense that
its behaviors are a superset of the implementation behaviors.

33

Chapter 3. State of the Art: Formal Validation of Hardware

• Data abstraction substitutes concrete data by a simpler one. Data abstraction
requires a mapping that determines how the states or signals (representing data)
of the implementation are to be interpreted in the specification semantic domain.

• Temporal abstraction relates time steps of the implementation to time steps of the
specification. Frequently, specifications of a microprocessor use the execution of a
single instruction as the basic unit of time. An implementation, however, would
base its notion of time on the execution of a microcode instruction, a clock cycle, or
a clock phase. Temporal abstraction requires that corresponding execution states
at the two time scales be identified. This is complicated by the possibility that one
specification time-unit does not always necessarily correspond to the same number
of implementation steps.

In practice, the abstractions used in modeling depend on the application domain, the
design size, and the targeted exploitation of the model (e.g., the kind of properties to be
verified on the model).

3.4 Test Generation strategies

Generating tests to achieve high coverage for complex designs has always been a chal-
lenging problem. In general, more constrained and less random tests reduce the overall
validation effort, because the same verification coverage can be achieved with fewer and
shorter tests [MC09]. We distinguish three types of test generation techniques with
decreasing degree of randomness: fully random, constrained-random [YPAA03], and fully
specified tests, hereafter called directed tests, i.e., without randomization.

Fully random tests are the easiest to automate, but require long simulation runs to obtain
a reasonable coverage. In many situations, directed tests are the only tests that can
thoroughly verify corner cases and important features of a design [BGH+99, KMBA06].
However, because directed tests are mostly written manually, it is impractical to generate
a comprehensive set of directed tests to achieve a coverage goal [MC09].

Constrained-random testing uses constraint solvers to select tests satisfying a specified
set of constraints; non-specified details are then filled in by randomization. Manually
writing directed tests has been a dominant test development methodology even with the
emergence of constrained-random test generation, which alleviates part of the problem
by producing a large number of guided random tests, so that many verification targets
can be fortuitously covered.

In the following, we explore additional strategies used to generate more directed and
more automated tests.

34

3.4. Test Generation strategies

3.4.1 Coverage-Directed Test Generation

The automation of the feedback from coverage analysis to constrained-random test
generation led to coverage-directed test generation (CDTG) [SWC+08], which dynamically
analyzes coverage results and automatically adapts the randomized test generation
process to improve the coverage. The Coverage Driven Verification (CDV) and Metric

Driven Verification (MDV) are different instances of the CDTG. The CDV proposes to
automatically generate tests targeting the non covered behaviors, without any organization
of the coverage metric. As designs increase in size, coverage metrics are exploding, making
the shear magnitude unmanageable without automation. Metric automation has become
an imperative. The MDV improves the CDV by organizing the coverage by types of
coverage behavior and also by components, which is very useful to define the portion of
the design that has been verified. Today, the metric methodology is emerging, reducing
the number of manual decisions necessary for claiming verification success. MDV provides
the automation and prescriptive approach to reduce the decision churn.

The challenges of CDTG techniques are that it is sometimes difficult to guide the direction
of test generation to increase the coverage of the design, and the need of more efficient
coverage metrics to represent the behavior of the design including corner cases. For
instance, CDTG succeeds to achieve coverage goals for interface hardware protocols, but
reaches its limits for complex system-level protocols, such as system-level cache coherency.
Achieving good coverage for these recent protocols is a new challenge in the development
of industrial test benches and calls for more directed and less random tests.

The semi-formal verification allows the designer to measure the coverage of the test
environment as the formal assertions are checked during simulation, but the simulation
speed is degraded as the assertions are checked during simulation.

Our thesis is part of the current works trying to resolve the different challenges of
semi-formal verification.

3.4.2 Faults-Based Test Generation

To avoid writing directed tests manually, several approaches to generate a comprehensive
set of high-quality directed tests are explored. Some techniques of directed test generation
propose to generate tests from potential faults of the system [MSK+07, WAW09]. For
system-level protocols, in the SoC context, it is more difficult to examine potential faults
of the DUV. Solutions based on model checking techniques are promising for functional
verification and test generation for reasonably complex systems [GH99]. Hence, we
suggest the use of the model checking of the main system properties, by prohibiting some
protections to generate counterexamples. However, it is unrealistic to assume that a
complete detailed model of a large SoC is tractable by a model checker. We address this
issue by relying on a system-level model, abstracting from all irrelevant details. In this

35

Chapter 3. State of the Art: Formal Validation of Hardware

way, we succeed to model a complex industrial SoC and to extract relevant scenarios by
model checking.

Some approaches [GH99, QM11] transform counterexamples produced by the model
checker into test cases. In our approach, we use the counterexamples to produce smaller
interesting configurations of the model that still do not satisfy a given property. We
generate test cases from these smaller models, thus avoiding combinatorial explosion in
many cases.

3.4.3 Combining Model-Based and Coverage-Directed Testing

In the literature, it has already been proposed to mix model-based techniques and
coverage-directed techniques. Coverage-directed techniques were used in property learn-
ing [CM11] (“reuse learned knowledge from one core to another”), which we do not use,
and that relies on SAT-based BMC (whereas CADP implements totally different verifi-
cation techniques). Some of those techniques [QM11] focus on homogeneous multicore
architectures (exploiting symmetry between processors to reduce verification complexity),
and only suggest how this could be extended to heterogeneous architectures (by grouping
IPs into homogeneous groups to be studied separately). On the contrary, our approach
was designed for heterogeneous SoCs and makes no symmetry assumption. Also, most
of those techniques [CM11, CQKM13, QM11] remain at system level (SystemC/TLM),
whereas our approach starts from system level and goes down to RTL level.

3.5 Applications of Formal Verification to Hardware Cache

Coherency

Formal verification techniques such as (symbolic) model checking and theorem proving,
have been often applied to the verification of hardware designs of cache coherence
protocols, using various modeling languages, temporal logics, and verification tools [PD97,
KG99]. Most works [Che04, CYGC10, CGH+95, EM95, KKVD13, MS91, PNAD95,
SDSH11, SD95] concern elaborated protocols using more complex topologies than the
fully connected snoop topology used in our case. The principal differences with our
work are that we focus on a generic interconnect that includes the behavior of all
correct implementations and that we study a heterogeneous SoC, rather than verifying a
particular coherency protocol for a homogeneous system.

It was recently reported [DCF+14] that formal verification has to be considered for hot
spots at the SoC level and specially for the integration of system-level cache coherency.
In fact, efficiency can be improved using formal techniques on the infrastructure that is
managing various levels of cache and memory subsystem. More and more interconnect
fabrics embark cache coherency mechanisms that require dedicated and tricky verification.

36

3.6. Applications of CADP to Hardware Validation

3.6 Applications of CADP to Hardware Validation

Over the last 20 years, the CADP toolbox has been used for verifying numerous complex
hardware designs, including Bull supercomputers, STMicroelectronics multiprocessor
architectures, several Networks on Chip (e.g., CEA/Leti and University of Utah), and
various asynchronous circuits.

In order to apply formal methods to a hardware design, different aspects can be explored:
the formal modeling, the functional verification, the model-based testing, and/or the
performance evaluation. In this thesis, we present an application of the latest languages
and tools of CADP, using the new generation formal language LNT [CCG+14] to describe
the system and also the test purposes, which greatly facilitates the testing of complex
behaviors. In parallel with this thesis, the CONVECS team has developed new prototype
tools to support these new functionalities.

The remainder of this section gives an overview of previous hardware related case studies
using CADP.

3.6.1 Formal Modeling

Several guidelines must be followed when developing formal models. For example, we
have to focus on the complex parts of the system (e.g., parallelism, concurrency, etc.).
Other parts are less important and can introduce irrelevant complexity in the model.
Also, we can use abstractions to hide irrelevant details.

The formal modeling is useful to detect ambiguities of the initial specification. This
one is usually not formal. That is why many problems are discovered just by formally
modeling, before running any tool. Formal specification triggers discussions with hardware
architects, which is interesting in order to have a deep understanding of the complex
parts of the system. After that, the model has to be debugged. In fact, several errors are
just introduced during modeling and the debugging aims to remove them. The hardware
architects are not interested in those errors, called false negatives.

In the CADP context, the modeling languages used are LOTOS (before 2008-2009)
and LNT (since then). LOTOS and LNT are both formal languages to describe
asynchronously-concurrent systems. LNT (see Sec. 2.6.2) is more convenient for human
users, because it is closer to programming languages and hardware languages (such as
VHDL). In general, the starting point for producing formal models in hardware context
are natural language descriptions of the specification of the system (English text, tables,
diagrams), but in some cases, we extract the formal model from a semi-formal program
written in other hardware languages (e.g., CHP10, SystemC/TLM, etc.). To remove

10Communicating Hardware Processes

37

Chapter 3. State of the Art: Formal Validation of Hardware

Table 3.1 – CADP: formal modeling effort in past projects

Case study Company Level Modeling size
Powerscale Bull system 720 lines of LOTOS

Polykid Bull system 4000 lines of LOTOS (model)
2000 lines of LOTOS (rules)
3400 lines of LOTOS
7000 lines of C (emulation)

SCSI-2 Bull system 220 lines of LOTOS
FAME1/CCS Bull system 1200 lines of LOTOS
FAME1/NCS Bull system 1200 lines of LOTOS

FAME1/B-SPS/FSS Bull system 5000 lines of LOTOS
FAME1/ILU Bull unit 8900 lines of LOTOS

3400 lines of C
FAME1/PRR Bull block 7500 lines of LOTOS

200 lines of C
CC-NUMA Bull system 1800 lines of LOTOS

1000 lines of Murφ
DES CEA-Leti/TIMA unit 3800 lines of LOTOS

1700 lines of CHP
FAME2/PAB Bull block 3977 lines of LNT

FAUST/MAGALI CEA-Leti system 1200 lines of CHP
xStream STMicroelectronics unit 6800 lines of LOTOS

Blitter Display STMicroelectronics block 920 lines of LOTOS
5550 lines of SystemC/TLM
2250 lines of C

Platform2012/HWS STMicroelectronics unit 300 lines of LNT
Platform2012/DTD STMicroelectronics block 1200 lines of LNT

Utah NoC Univ. of Utah system 1350 lines of LNT

introduced errors during modeling, different techniques are used. First of all, by compiling
with CADP tools, several errors can be removed. Then, the OCIS interactive step-by-step
simulator with backtracking of CADP is found useful for exhibiting other behavioral
errors. For more confidence on the formal model, we can use CADP model checkers to
verify simple properties (e.g., absence of deadlocks, etc.).

In Table 3.1, we present some figures about the modeling effort in previous hardware
case studies with CADP.

3.6.2 Functional Verification

Functional verification looks for “real” bugs in the specification (and not in the model).
We need to formalize the properties that we want to verify. The formalization of the
properties is a new source of bugs, that is why we have to debug properties.

38

3.6. Applications of CADP to Hardware Validation

Table 3.2 – CADP: functional verification results

Case study Functional verification results
Powerscale Hidden bug found in a few minutes [CGM+96]

Polykid Phase 1: 55 questions
Phase 2: 20 questions, 7 serious issues
Phase 3: 13 serious issues [KVZ98]

SCSI-2 SCSI-2 bus arbiter starvation problem confirmed
(avoided in SCSI-3 standard)

FAME Critical parts of FAME design verified using CADP
10 issues raised, 2 ambiguities pointed out

STBus SoC Error in the design discovered [WCB+03]
FAME2/MPI Formally verified

FAUST/MAGALI Routing problem detected in the CHP description [SSTV07]
xStream Two design issues detected very early

Blitter Display Avoids complete translation of SystemC/TLM to LOTOS:
- reduced translation effort
- better integration of formal verification in the design flow

[GHPS09]
Platform2012/DTD Problematic configurations with livelocks found

Further investigation by co-simulation [LS11]
Utah NoC Found flaws in the original arbiter design [ZSW+14]

At some point, a good confidence is reached in both the formal model and properties.
Then, if a verification reports an error, it can be either an error in the verification tool
(which is rare, and has to be fixed by tool developers) or a “real” bug in the specification
is detected.

In Table 3.2, we summarize the principal functional verification results of the past
hardware case studies carried out using CADP.

3.6.3 Model-Based Testing

In the CADP context, MBT can be handled by an off-line approach or an on-line one.
Off-line approach means that in a first step, test cases are generated, then in a second
step test cases are run on the implementation. On-line approach consists in doing a
co-simulation of the specification and the implementation. Test cases are generated and
ran in the same time. The result of ran test cases can be used to generate the subsequent
ones.

The former MBT case studies of CADP are based on TGV [FJJV96, JM99, JJ05], which
uses LOTOS to present the specification and a textual .aut expression of the test
purpose.

39

Chapter 3. State of the Art: Formal Validation of Hardware

Table 3.3 – CADP: Model-based testing results

Case study Model-based testing results
Polykid/Test generation 5 new bugs descovered in VHDL design [KVZ98]

Polykid/Emulation Replacement of a missing ASIC by a software emulation
[GVZ01]

FAME/CCS Directed test generation using TGV: 21 base tests
50 collision tests, 1 generalized test

FAME/NCS Directed test generation using TGV: 50 base tests
FAME/PRR Random test generation using Executor

Detection of a non-conformity between
LOTOS and Verilog codes for PRR v1
(not detected using commercial tools)

FAME/ILU Co-simulation using Exec/Caesar
FAME/B-SPS/FSS Trace validation with coverage

Major bug found (ambiguity in informal specification)
Insufficient coverage found (3 missing tests added) [GM04]

FAUST/MAGALI Co-simulation: LOTOS-SystemC / VHDL netlist
Detection of spurious inputs generated by LOTOS model:
Constraints added to generate only valid inputs

Platform2012/DTD Co-simulation: C++ / LNT
Found C++ incorrect for some particular scenarios [LS14]

In Table 3.3, we summarize the principal MBT results of the past hardware case studies
of CADP.

3.6.4 Performance Evaluation

The high degree of concurrency may introduce communication latencies. The time
constraints have to be respected. The performance evaluation is interested in quantitative
issues occurring with a high degree of concurrency.

The principle advantage of CADP is that both qualitative and quantitative aspects can be
studied on the same formal model [GH02]. CADP expresses the performance information
using the following formalisms: the Continuous-Time Markov Chains (CTMCs) [And91],
the Interactive Markov Chains (IMCs) [Her02] and the Interactive Probabilistic Chains

(IPCs) [CHLS09].

• The CTMCs formalism was applied to a 5×5 2D mesh NoC of CEA-Leti to predict
the mean latency of the end-to-end communication. The results were close (<5%)
to SystemC simulation [FTHJ10].

• The IMCs formalism was applied to SCSI-2 bus arbitration protocol of Bull, based
on fixed priorities in order to do a steady-state analysis, to suggest strategies to

40

3.6. Applications of CADP to Hardware Validation

avoid starvation and increase throughput [GH02]. This formalism was also applied
to FAME/MPI case study of Bull in order to have an estimation of the number of
cache misses and to select the most efficient configuration of the system [CZM09].

• The IPCs formalism was applied to the xStream architecture of STMicroelectronics
in order to predict latencies, throughputs, and queue occupancy [CHLS09].

41

Formal Modeling of a System-Level

Cache Coherent SoC

43

Chapter 4

System Level Cache Coherency

with AMBA 4 ACE

4.1 Introduction

In this chapter, we define system-level cache coherency in the case of heterogeneous
System-on-Chip (SoC). Then, we present the AMBA 4 ACE protocol specification and
describe the main elements introduced by this specification to support cache coherency
in heterogeneous SoCs.

4.2 System-Level Cache Coherency

In general, an SoC is composed of different hardware blocks such as generic or specialized
processors, memories, interconnects, dedicated Intellectual Properties (IPs), or input/out-
put components. These heterogeneous components usually access a shareable memory

consisting of several memory lines. In order to increase data access performance and
reduce power consumption, some components may use a cache, containing local copies of
memory lines. The use of local copies in the caches decreases the number of accesses to
global memory. The use of multiple caches in the system and the allowance of multiple
users of a cache results in the problem of System-Level Cache Coherency (see Fig. 4.1),
which is currently one of the main concerns of the digital hardware industry.

An SoC is cache coherent if write operations to the same memory line by two components
are observable in the same order by all components of the system. Heterogeneity of an
SoC stems from not making any constraint on the nature of the components. The only
segregation we consider is considering components with caches and without caches. The
components are considered with caches if their neighbors are allowed to use data copies
present in their caches, unless they are considered without caches. All components can

45

Chapter 4. System Level Cache Coherency with AMBA 4 ACE

Figure 4.1 – Example of a heterogeneous SoC using System-Level Cache Coherency

read their neighbor’s caches instead of reading the global memory, unlike conventional
multiprocessor systems, on which the cache coherency is only considered between similar
processors.

One may distinguish shareable and non-shareable memory lines. For example, the graphics
memory of an SoC might be dedicated to image processing and exclusively used by the
Graphical Processing Unit (GPU), whereas the remaining memory might be used either
by the generic processors (Central Processing Units, CPUs) or by the GPU. In this case,
the graphics memory is non-shareable, and the remaining memory is shareable.

The components of an SoC can be grouped into master components (such as CPUs) and
slave components (such as memories). Components communicate via an interconnection
medium, called the interconnect. In the case of a cache coherent system, the interconnect
is also called a Cache Coherent Interconnect (CCI). Each component communicates with
the interconnect via a communication port, which consists of several channels. Operations
performed on ports are called transactions.

Snoop transactions are used for master-to-master accesses. Thank to snoop transactions

46

4.3. AMBA 4 ACE protocol

System level requirements

on transaction ordering

+ Coherency

 Channels

AXI Domain

+ Coherency parameters

Figure 4.2 – ACE: AXI Coherency Extension

a master has a consistent view of the transactions of other masters. Previously, in
bus-based systems all components are connected to the bus and “snoop” the bus traffic
to guarantee the consistency of the system. In the context of CCI, the interconnect
initiates snoop transactions to simulate the bus snoop.

4.3 AMBA 4 ACE protocol

The recent AMBA 4 ACE (AXI Coherency Extension) protocol [ARM13, Ste11], proposed
by ARM, extends the AMBA 3 AXI1 protocol in order to support system-level cache
coherency in SoCs. AXI defines communication at interface level between a pair of
master/slave ports. AXI specifies several read and write channels (AR, R, AW, W, B) and
determines the structure of each channel: parameters specifying length and composition
of control, data, and response channels, as well as the different acknowledgments used.
As shown in Figure 4.2, the ACE extension introduces system-level requirements on
transaction ordering, adds new channels to send coherency request, enriches existing
channels with new coherency parameters expressing details related to the coherency, and
defines cache line states and a set of transactions.

ACE is designed to maintain coherency when sharing data across caches of an SoC, to
enable interactions between heterogeneous components, and to ensure maximal reuse of
cached data. ACE also supports a flexible framework for system level coherency: the
system designer can determine the ranges of memory lines that are coherent, the system
components that implement the coherency extension, and the communication policies.

The ACE specification defines an interface protocol (between each component and the
interconnect), the expected behavior of the components, and the responsibilities of the
interconnect. ACE admits different policies of cache coherency, known as directory based,
snoop filter, or fully connected (no snoop filter) policies.

ACE introduces heterogeneity by defining two types of coherent masters: those with
a cache are called ACE masters, and those without caches (but with the ability to
access caches of other masters) are called ACE-Lite masters. The components not using

1AMBA: Advanced Micro-controller Bus Architecture / AXI: Advanced eXtensible Interface

47

Chapter 4. System Level Cache Coherency with AMBA 4 ACE

coherency transactions are AXI masters and AXI slaves, which use the former AXI
protocol.

In the remaining, we consider an SoC with two ACE masters, a CCI, and an ACE-Lite
master.

4.4 ACE States

ACE_I

Invalid Valid

ACE_SD

ACE_UD

Dirty Clean

ACE_UC

ACE_SC Shared

Unique

Figure 4.3 – ACE states of a cache line

ACE distinguishes five states (shown in Figure 4.3) of a cache line.

A cache line is invalid if it does not contain a copy of any memory line. A cache line
is unique if all other copies of the same memory line are invalid. A cache line is shared

if all other copies of the same memory line are shared or invalid. A cache line is dirty

(respectively clean) if the master is responsible (respectively not responsible) of writing
the data back to the shareable memory.

4.5 ACE Ports and Channels

The ACE specification distinguishes three kinds of ports (shown in Fig. 4.4) to connect a
component to an interconnect. (a) An ACE port is used for components having a cache
memory. (b) An ACE-Lite port is used for components without a cache. (c) An AXI

port is used for components that do not use coherency.

The interconnect uses an ACE slave port (respectively, ACE_Lite slave port) to be
connected to an ACE master and an AXI master port to be connected to the memory
(AXI slave). Globally, the interconnect is the slave for master components and the master
for slave components.

Each port consists of several channels. ACE distinguishes three types of channels: read

channels, write channels, and snoop channels. Read (respectively, write) channels are used
to read (respectively, write) data; these channels extend AXI channels with coherency
related parameters (namely the parameters PassDirty and IsShared). Read channels
are address read channel (called AR, used to send read requests) and data read channel
(called R, used to send the data back). Write channels are address write channel (called

48

4.6. ACE Transactions

R AW W BAR R AW W BARAR R AW W CR CDACB

ACE master port

ACE slave port

(a) (c)(b)

ACE−Lite slave port

ACE−Lite master port

AXI slave port

AXI master port

Figure 4.4 – Structures of ACE, ACE-Lite, AXI ports

AW, used to send write requests), data write channel (called W, used to send the data to
be written), and write response channel (called B, used to signal completion of a write).

Snoop channels are used for snoop requests issued by the interconnect to masters with
a cache. Snoop channels are address coherency channel (called AC, used to send snoop
requests), coherency response channel (called CR, used to answer snoop requests, indicating
whether a data transfer will follow), and coherency data channel (called CD, used to send
data to the interconnect).

4.6 ACE Transactions

The ACE specification defines several types of transactions. In the sequel, we focus on a
significant subset of transactions related to cache coherency. The remaining transactions
are not related to the cache coherency aspects (e.g., the distributed virtual memory)
and not activated in our industrial application. Other transactions introduced by ACE
specification are not used in the fully connected topology that we use (e.g., Evict
transaction used to modify the snoop filter, if any).

For each ACE transaction, we present the expected order of operations on the channels.
A master initiating a transaction is called initiator. A master with a cache receiving a
snoop from the CCI is called a snooped master.

Non-snooping transactions are used to access non-shareable memory lines which
must not be in the caches of other master components. We consider two non-snooping
transactions: ReadNoSnoop and WriteNoSnoop.2

Coherent transactions are used by an ACE or ACE-Lite master to access shareable
memory lines, which might be in the caches of other components. A coherent transaction
is initiated by a master through a request on the AR channel. The interconnect initiates
corresponding snoop transactions to all other masters with a cache and, if necessary, reads
the data from the shareable memory. Finally, the interconnect sends a reply transaction
to the initiator on the R channel, indicating whether the data is shared and whether

2Those transactions are equivalent to the AXI Read and AXI Write transactions.

49

Chapter 4. System Level Cache Coherency with AMBA 4 ACE

ACE master 1 CCIACE master 2

AC (ReadOnce, M1)

AC (ReadOnce, M1)

CD (ReadOnce, M1, data)

CR (ReadOnce, M1, false)

CR (ReadOnce, M1, true)

R (ReadOnce, M1, data)

AR (ReadOnce, M1)

ACE−Lite master

Figure 4.5 – Execution scenario of a ReadOnce transaction

the responsibility to write the data to memory is passed to the initiator. The ACE
specification defines the following coherent transactions:

• A ReadClean transaction obtains a copy of the memory line and ensures that the
copy is clean.

• A ReadNotSharedDirty transaction obtains a copy of the memory line and ensures
that the copy is not SharedDirty.

• A ReadShared transaction obtains a copy of the memory line without any constraint
on the resulting state of the cache line.

• A ReadUnique transaction obtains a copy of the memory line and ensures that the
copy is unique (i.e., no other copies exist).

• A CleanUnique transaction obtains a copy of the memory line and ensures that the
copy is unique (i.e., no other copies exist). If another copy of the memory line is
dirty, this transaction ensures that the dirty cache line is written to main memory.

• A MakeUnique transaction invalidates all other copies of the memory line.

• A ReadOnce transaction obtains the current contents of a memory line, which may
not be copied into the cache. If a snooped master passes the responsibility to write
the data to the memory, the interconnect must write the data to memory before
responding to the initiator.

• A WriteUnique transaction removes all copies of a cache line before issuing a write
of a partial cache line. A CleanInvalid snoop transaction is triggered. If a dirty
data exists in another cache, this data is used to complete the written memory line.

• A WriteLineUnique transaction removes all copies of a cache line before issuing a
write of a complete cache line. A MakeInvalid snoop transaction is triggered.

50

4.6. ACE Transactions

Example 9 Figure 4.5 shows the execution of a ReadOnce transaction (for memory
line M1) initiated by the ACE-Lite master. The CCI snoops both ACE masters, which
answer with a Boolean indicating whether the data is in their cache. The cache of ACE
master 2 contains the data, hence this master also sends the data, which the CCI forwards
to the ACE-Lite master to complete the transaction.

Memory update transactions are used to update shareable memory lines. These
transactions are initiated by a master on the AW channel; the data to write is sent by the
master on the W channel. The interconnect writes the data to the memory and returns
an acknowledgement on the B channel. The ACE specification defines three different
memory update transactions:

• A WriteBack transaction is used to write back a dirty line to shareable memory,
freeing a cache line that can then be used for a different memory line. No copy of
the cache line is retained.

• A WriteClean transaction is used to write a dirty line to the shareable memory,
while permitting to retain a clean copy of the memory line.

• A WriteEvict transaction is used to evict a clean cache line.

Cache maintenance transactions are used by master components to access and
impact the caches of other components. In particular, cache maintenance transactions
enable a master to observe the effect of load and store operations on caches of other
masters (which cannot otherwise be accessed). The ACE specification distinguishes three
cache maintenance transactions: CleanShared, CleanInvalid, and MakeInvalid. These
transactions are initiated by sending a request on the AR channel. The interconnect
initiates corresponding snoop transactions to all other masters with a cache. For a
CleanShared transaction, a snooped master may retain its local copy of the memory line,
but for a CleanInvalid or MakeInvalid transaction, a snooped master must invalidate its
local copy. For a CleanShared or CleanInvalid transaction, a snooped master must also
provide the data if the corresponding cache line is dirty. After all snooped masters have
answered, the interconnect returns an acknowledgment to the initiator on the R channel.
If the responsibility of writing back the data to memory is passed, the interconnect has
to write the data to the memory.

Snoop transactions are initiated by the interconnect to access the cache of an ACE
master while handling coherent transactions and cache maintenance transactions (see
below) initiated by another ACE or ACE-Lite master. The interconnect initiates a snoop
request on the AC channel. The snooped master responds on the CR channel indicating if
a data transfer is needed. If so, the data is transferred on the CD channel indicating also

51

Chapter 4. System Level Cache Coherency with AMBA 4 ACE

Table 4.1 – Snoop transactions and their original transactions

Snoop transaction Triggered by
ReadOnce ReadOnce
ReadClean ReadClean
ReadNotSharedDirty ReadNotSharedDirty
ReadShared ReadShared
ReadUnique ReadUnique
CleanInvalid CleanUnique

CleanInvalid
WriteUnique

MakeInvalid MakeUnique
MakeInvalid
WriteLineUnique

CleanShared CleanShared

whether the data is shared and whether the snooped master keeps the responsibility to
write the data to memory.

Snoop transactions and their possible original transactions are shown on Table 4.1.

ACE-Lite transactions are a subset of ACE transactions, namely: ReadNoSnoop,
ReadOnce, CleanShared, CleanInvalid, MakeInvalid, WriteNoSnoop, WriteUnique, and
WriteLineUnique.

4.7 Requirements on the Global Ordering of Transactions

The AMBA 4 ACE specification contains some global requirements. Indeed, the ACE
protocol does not guarantee system level cache coherency but just provides a support
for it; coherency has to be ensured by proprietary additional mechanisms on each
implementation of a CCI.

There are two kinds of global requirements:

• Coherency between caches (called horizontal coherency) [ARM13, section C4.10]:
When two masters attempt to write to the same memory line simultaneously (i.e.,
the second transaction begins before the end of the first transaction), then the
interconnect must ensure a strict order of transactions.

• Coherency between the memory and caches (called vertical coherency) [ARM13,
section C6.5.3]: Data received from caches must be written to the memory in the
correct order.

52

4.8. Discussion

4.8 Discussion

The AMBA 4 ACE protocol has become a standard of System-Level Cache Coherency,
more than ten big semiconductors companies are using this protocol in their chips.
Formally validating such a protocol is very interesting. Before starting any validation
work, we must express formally the protocol and in order to avoid intractable complexity
we have to focus on the new aspects introduced by ACE. In the following chapter we
describe the formal modeling of a generic SoC based on this hardware protocol.

53

Chapter 5

Formally Modeling an ACE-based

SoC using LNT

5.1 Introduction

In this chapter, we discuss the development and the validation of a formal model of an
AMBA 4 ACE-based SoC. We start by giving the main aspects of the formal model. After
that, we present the state space generation of several configurations of the model. Then,
we discuss the validation of the formal model mainly using model checking techniques.
Finally, we show the industrial impact of the formal modeling.

5.2 General Description of the Formal Model

We model the coherent part of an SoC in development at STMicroelectronics. The formal
model consists of a cache coherent interconnect (CCI) connected to a non-cache-coherent
Network-on-Chip (NoC), using the LNT language [CCG+14], supported by the CADP
toolbox [GLMS13].

The formal model (about 3,400 lines of LNT code1) focuses on the cache-coherent part of
the SoC and system-level behavior (i.e., interactions between components), considering a
transfer on a channel to be atomic. Hence, parameters about transfer types, identification
of the sender and receiver, and coherency information are modeled, whereas other AXI
parameters concerning channel transfer structure are omitted. Our model is useful for
studying the message ordering in the cache-coherent part of the SoC.

A crucial feature of our formal model is that it is parameterized, in particular by the

1A large Petri net derived from our LNT model is available as Model Checking Contest 2014 benchmark
(http://mcc.lip6.fr/pdf/ARMCacheCoherence-form.pdf).

55

Chapter 5. Formally Modeling an ACE-based SoC using LNT

AR R AW W CR CDAC AR R AW W CR CDAC

ACE master 1 (big)

Line_1_1 Line_1_2 Line_2_1 Line_2_2

AR R AW WB B B

ACE port 1 ACE−Lite portACE port 2

AXI port

AR R AW W B

(cache−coherent interconnect)

AXI slave
(non−cache−coherent NoC/memory)

0

CCI

1 32ACE master 2 (LITTLE)

(GPU)

ACE−Lite master

Figure 5.1 – Model architecture

set of forbidden ACE transactions, the number of ACE masters, ACE-Lite masters,
and cache lines per ACE master. The model is generic in the sense that it includes all
the behaviors permitted by the ACE specification for any correct implementation. The
masters are non-deterministic agents, which may initiate all the transactions described
in Chapter 4.

Example 10 In the following, we use the configuration with two ACE masters and
one ACE-Lite master corresponding to the industrial use of the protocol (shown in
Fig. 5.1), which uses the ARM R© big.LITTLETM solution [PG11]: The two ACE masters
correspond to one big (powerful) and one little (lower-power) processor, enabling to
dynamically adapt to changing computation load. The ACE-Lite master represents a
Graphical Processing Unit (GPU) that can access the caches of both processors. All three
masters access the main memory through a non-cache-coherent NoC. The component
index is 0 for the AXI slave (shareable memory), 1 and 2 for the ACE masters, and 3 for
the ACE-Lite master. Among the three masters, at most two initiate transactions at
the same time. We vary essentially one parameter, which is the set of forbidden ACE
transactions; we refer to the model as Model(F), where F is the set of forbidden ACE
transactions; Model(∅) corresponds to the complete model.

Due to the industrial choice of STMicroelectronics, we opted for modeling a fully connected

snoop topology, i.e., all coherent transactions lead to snoop transactions for all masters
with caches. Note that the first industrial implementation [ARM12] of the ACE protocol
also has a fully connected snoop topology.

5.2.1 Types and Data Structures

Our model abstracted the ACE specification by applying data independence considera-
tions; we replace the 128-bit memory line data by a data type Data_t consisting on a
limited range of Nat. At our abstraction level, we only need to know whether two data

56

5.2. General Description of the Formal Model

are equal or different2. This reduces the potential state space produced by the range of
data (i.e., we use D==7 to differentiate the data in each master cache and the shareable
memory and the data after a new master write on the owned or modified cache line).

type Data_t is range 1 .. D of Nat with "==","<>" end type

Each memory line is characterized by two parameters: an index (of range type Index_Mem,
where N is the number of memory lines) and a data. The shareable memory can be
represented by an array of values of type Data_t, indexed by the range of Index_Mem.
ACE states are represented by an enumerated type called ACE_state.

type Index_Mem is range 1 .. N of Nat end type

type Mem_Lines is array [1 .. N] of Data_t end type

type ACE_state is ACE_I, ACE_UC, ACE_UD, ACE_SC, ACE_SD end type

Similarly, we define an index for system components (Index_Component) and an index
for cache lines of a master with cache (Index_Cache). ACE transactions are modeled by
an enumerated type ACE_Trans.

type Cache_Line is

LINE_C (indC: Index_Cache, S: ACE_state, indM: Index_Mem, data: Data_t)

end type

We introduce an abstract transaction A that simulates an arbitrary ACE transaction by
executing the classical steps of an ACE transaction without changing the ACE states
of cache lines. The considered steps are: initiating the transaction on an address read
channel (AR), sending the corresponding snoop transaction on the address coherency
channel (AC), receiving a coherency response channel (CR), and issuing the corresponding
response request in the read response channel (R).

5.2.2 Channels

Each operation on an ACE channel is modeled by an LNT rendezvous3 on a gate of the
same name as the channel. The LNT gates are typed. The types of LNT gates (called

2"==" corresponds to equality function and "<>" corresponds to difference function
3The semantics of an LNT rendezvous avoids the need to model the acknowledgment signals at the

level of channel transmission. However, the acknowledgment operation for a non-atomic transaction (e.g.,
the operation on the B channel for Write transactions) is represented by an independent LNT rendezvous
(on gate B).

57

Chapter 5. Formally Modeling an ACE-based SoC using LNT

LNT channels) specify the number and types of the parameters (called offers), i.e., the
values exchanged during a rendezvous. All gates have an offer to represent the ongoing
ACE transaction, an offer to represent the initiator of the current transaction, and an
offer to designate the concerned memory line. Snooping gates (AC and CR) have also an
offer to represent the snooped master. Gates which transfer data (R, W, and CD) have
also an offer for the data. The gates R (read data channel) and CD (snoop data channel)
have also three Boolean offers. DataStatus indicates whether the data is valid, PassDirty

indicates whether the responsibility of writing data to memory is passed, and IsShared

indicates whether the data is shared. The gate CR has a Boolean offer DataTransfer to
indicate if a data transfer will be followed on the CD gate. The gate B has a Boolean offer
indicating if the write has completed correctly.

For verification purposes, we add an offer representing the ACE state of the cache line
to all gates going out from an ACE master (i.e., AR, AW, and CR). Similarly, the gates
between the CCI and a slave have an additional offer corresponding to the initiator.

5.2.3 Channel Structures

Each LNT gate is related to an LNT channel, which defines the different parameters
involved: their number, their order, and the type of each one of them.

Applying several abstractions, the structure of the channels consists of a subset of the
original parameters defined by the ACE specification, since we hide irrelevant parameters
for the system-level view. In this section, we present the structure of each ACE channel
in the model.

• The structure of the address read channel AR is as follows: the first parameter is
the ACE transaction ACE_OP, the second one is the index of the communicating
component Index_Component, the third parameter is the index of the memory line
concerned by the read transaction Index_Mem, and the last one corresponds to the
ACE state of the line initiating the read request ACE_state_t (this parameter does
not exist in the ACE specification and was added for verification reasons).

channel AR_CHANNEL is

(ACE_OP, Index_Component, Index_Mem, ACE_state_t)

end channel

For AXI ports (no coherency), the address read channel AR has not an ACE state
parameters, and has an additional Index_Component parameter, which corresponds
to the component at the origin of the transaction.

channel AR_CHANNEL_AXI is

58

5.2. General Description of the Formal Model

(ACE_OP, Index_Component, Index_Mem, Index_Component)

end channel

• The structure of the read data channel R is as follows: the first parameter is
the ACE transaction ACE_OP, the second one is the index of the communicating
component Index_Component, the third parameter is the index of the memory
line concerned by the read transaction Index_Mem, the fourth one is the data to
transfer DATA_T, the fifth one is a boolean indicating whether the response data is
relevant result, the sixth parameter is a boolean indicating whether the data of
the memory line is dirty PassDirty (has to be written back to the memory), and
the seventh parameter is a boolean indicating whether the memory line is shared
IsShared.

channel R_CHANNEL is

(ACE_OP, Index_Component, Index_Mem, DATA_T, (*result*) bool,

(*PassDirty*) bool, (*IsShared*) bool)

end channel

For AXI ports (no coherency), the read data channel R has not the three boolean
result, PassDirty, and IsShared. The latter are introduced for coherency reasons.
Instead, channel R has an additional Index_Component parameter corresponding
to the component at the origin of the transaction.

channel R_CHANNEL_AXI is

(ACE_OP, Index_Component, Index_Mem, DATA_T, Index_Component)

end channel

• The structure of the address write channel AW is as follows: the first parameter is
the ACE transaction ACE_OP, the second one is the index of the communicating
component Index_Component, the third parameter is the index of the memory
line concerned by the write transaction Index_Mem, and the last one corresponds
to the ACE state of the line initiating the write request ACE_state_t (added for
verification reasons).

channel AW_CHANNEL is

(ACE_OP, Index_Component, Index_Mem, ACE_state_t)

end channel

For AXI ports, the address write channel AW has not an ACE state parameter,
but has an additional Index_Component parameter, which corresponds to the
component at the origin of the transaction.

59

Chapter 5. Formally Modeling an ACE-based SoC using LNT

channel AW_CHANNEL_AXI is

(ACE_OP, Index_Component, Index_Mem, Index_Component)

end channel

• The structure of the write data channel W is as follows: the first parameter is
the ACE transaction ACE_OP, the second one is the index of the communicating
component Index_Component, the third parameter is the index of the memory line
concerned by the read transaction Index_Mem, the fourth one is the data to transfer
DATA_T, and the last one corresponds to the ACE state of the line initiating the
write request ACE_state_t (added for verification reasons).

channel W_CHANNEL is

(ACE_OP, Index_Component, Index_Mem, DATA_T, ACE_state_t)

end channel

For AXI ports, the write data channel W has not an ACE state parameter, but has
an additional Index_Component parameter, which corresponds to the component
at the origin of the transaction.

channel W_CHANNEL_AXI is

(ACE_OP, Index_Component, Index_Mem, DATA_T, Index_Component)

end channel

• The structure of the write response channel B is as follows: the first parameter is
the ACE transaction ACE_OP, the second one is the index of the communicating
component Index_Component, the third parameter is the index of the memory line
concerned by the read transaction Index_Mem, the fourth one is the acknowledgment
boolean.

channel B_CHANNEL is

(ACE_OP, Index_Component, Index_Mem, (*ACK*) bool)

end channel

For AXI ports, the write response channel B has an additional Index_Component

parameter, which corresponds to the component at the origin of the transaction.

channel B_CHANNEL_AXI is

(ACE_OP, Index_Component, Index_Mem, (*ACK*) bool, Index_Component)

end channel

• The structure of the address coherency channel AC is as follows: the first param-
eter is the ACE transaction ACE_OP, the second one is the index of the initiat-
ing master Index_Component, the third one is the index of the snooped master
Index_Component, and the fourth parameter is the index of the memory line
concerned by the read transaction Index_Mem.

60

5.2. General Description of the Formal Model

channel AC_CHANNEL is

(ACE_OP, (*initiator*) Index_Component,

(*snooped*) Index_Component, Index_Mem)

end channel

• The structure of a coherent response channel CR is as follows: the first param-
eter is the ACE transaction ACE_OP, the second one is the index of the initiat-
ing master Index_Component, the third one is the index of the snooped master
Index_Component, the fourth parameter is the index of the memory line concerned
by the read transaction Index_Mem, the fifth one is a boolean indicating if their
is a corresponding data transfer DatatTansfer, the sixth parameter is a boolean
indicating whether the data of the memory line is dirty PassDirty, the seventh
parameter is a boolean indicating whether the memory line is shared IsShared, and
the last one corresponds to the ACE state of the line initiating the write request
ACE_state_t (added for verification reasons).

channel CR_CHANNEL is

(ACE_OP, (*initiator*) Index_Component,

(*snooped*) Index_Component, Index_Mem,

(*DatatTansfer*) bool, (*PassDirty*) bool, (*IsShared*) bool,

ACE_state_t)

end channel

• The structure of the coherency data channel CD is as follows: the first param-
eter is the ACE transaction ACE_OP, the second one is the index of the initiat-
ing master Index_Component, the third one is the index of the snooped master
Index_Component, the fourth parameter is the index of the memory line concerned
by the read transaction Index_Mem, the fifth one is the data to transfer DATA_T,
and the sixth one is a boolean indicating whether the response data is relevant
result.

channel CD_CHANNEL is

(ACE_OP, (*initiator*) Index_Component,

(*snooped*) Index_Component,

Index_Mem, DATA_T, (*result*) bool)

end channel

5.2.4 AXI Slave: Shareable Memory

The shareable memory is modeled by the LNT process shown in Figure 5.2. The five gates
AR, R, AW, W, and B correspond to the AXI channels. We use the Boolean pending_read

to indicate if a read operation is in progress. The behavior of the memory process is a

61

Chapter 5. Formally Modeling an ACE-based SoC using LNT

process memory [AR: CHANNEL_AXI_AR, R: CHANNEL_AXI_R,

AW: CHANNEL_AXI_AW, W: CHANNEL_AXI_W, B: CHANNEL_AXI_B]

(idMEM: Index_Component)

is

var LINES: Mem_Lines, pending_read: Bool, transR, transW: ACE_Trans,

ind_R, ind_W: Index_Mem, CPU_R, CPU_W: Index_Component, data: Nat

in

-- initializations (not included)

loop select

when pending_read == false then

AR (?transR, idMEM, ?indM_R, ?CPU_R);

pending_read := true

end when

[]

when pending_read == true then

R (transR, idMEM, LINES[Nat(indM_R)], CPU_R);

pending_read := false

end when

[]

AW (?transW, idMEM, ?ind_W, ?CPU_W);

W (transW, idMEM, ind_W, ?data, CPU_W);

LINES[Nat(ind_W)] := data;

B (transW, idMEM, indM_W, true, CPU_W)

end select end loop

end var end process

Figure 5.2 – LNT process representing the shareable memory

non-terminating loop, the body of which is a non-deterministic choice (select4) between
three possibilities:5

• Receiving a read request on the AR gate, which is only possible if no read operation
is in progress (pending_read == false),

• Sending back a read data on the R gate, which is only possible if a previous read
request was received (pending_read == true),

• Receiving a write request.

In our model, a write operation cannot be interrupted by a read operation.

4The LNT construction “select A [] B [] C end select” expresses a non-deterministic choice
between A, B, and C.

5In an LNT rendezvous, an offer “?x” accepts any value of the same type as variable x, and the
received value is stored in variable x.

62

5.2. General Description of the Formal Model

5.2.5 ACE Masters

The cache lines of a master are essentially independent from each other, i.e., transactions
on different cache lines can freely interleave.6 Hence we choose to model each master
by a parallel composition of cache lines. Each cache line is modeled by five mutually
recursive LNT processes: (1) process cpu initializes the cache line; (2) process cpu_ready

represents a cache line that is ready to initiate an ACE transaction or to receive a snoop
request from the CCI; (3) process cpu_reply represents a cache line that has previously
initiated an ACE transaction and waits for the reply from the CCI (the cache line is
also ready to receive any snoop request from the CCI); (4) process cpu_snoop represents
a cache line that has previously received a snoop request from the CCI and can either
reply to this request or initiate a new ACE transaction; (5) process cpu_reply_snoop

represents a cache line that has previously initiated an ACE transaction and has also
received a snoop request from CCI: thus, it is both waiting for the reply of the ACE
transaction and ready to reply to the snoop request. Each of these processes behaves as a
large non-deterministic choice between all possible rendezvous. Each branch consists of a
guard, a rendezvous with parameters to handle the ongoing transaction, and a recursive
call corresponding to the new state of the cache line. For example:

if (((LineCache.S==ACE_I) or (LineCache.S==ACE_SC)

or (LineCache.S==ACE_SD)) and IS_ALLOWED_OP(MakeUnique)

and ((opfixe==ICN_MakeUnique) or (opfixe==ICN_ALL)))

then

AR(MakeUnique, idCPU, LineCache.indM, LineCache.S)

else stop end if;

cpu_reply_1 [AR, R, AW, W, B, AC, CR, CD]

(idCPU, LineCache, res, IsShared,PassDirty,

WriteBackInProgress, WriteUniqueInProgress)

5.2.6 ACE-Lite Masters

The LNT model of an ACE-Lite master is obtained from the model of a cache line
of an ACE master by removing the handling of snoop requests. Thus, an ACE-Lite
master is modeled by three mutually recursive LNT processes: a process to initialize
the ACE-Lite master, a process lite_ready, which can initiate any of the ACE-Lite
transactions presented in Section 4.6, and a process lite_reply, which waits for a reply
from the CCI.

For the transaction on outgoing ACE gates the ACE state is fixed to ACE_I (this state is
not used inside the ACE-Lite master).

6Actually, the only constraint is to store the same memory line in at most one cache line of a same
master.

63

Chapter 5. Formally Modeling an ACE-based SoC using LNT

5.2.7 Cache Coherent Interconnect (CCI)

To ease the modeling of all interleavings between the ports of the CCI, we employ two
techniques. First, we model the CCI by a parallel composition of as many processes as
there are ports; each port is always ready to receive a request from both the corresponding
component and other ports. Second, all received requests are stored in a set and are
handled in any order.7

The ports of the CCI communicate internally via dedicated gates, which are not part of
the ACE specification and can be hidden (in the LTS and in counterexamples), but are
useful in the debug phase of the model.

Example 11 The CCI of Figure 5.1 contains four ports: two ACE ports, each com-
municating with an ACE master, one ACE-Lite port communicating with an ACE-Lite
master, and one AXI port communicating with the shareable memory through the
non-cache-coherent NoC.

5.3 Modeling Global Ordering Requirements

Following a constraint-oriented specification style, our LNT model integrates these
global requirements as observer processes (one process per requirement and memory
line), composed in parallel with the remainder of the model. Hence, those observers
monitor the system and have a global view of all transactions. For horizontal coherency,
while handling a snoop transaction, the observer process ensures that a subset of snoop
transactions (relative to the same memory line) is not handled before the end of the first
transaction. For vertical coherency, the observer process monitors write transactions,
prohibiting that an old data overwrites a more recent one.

We call the model containing the observer processes the constrained model. By omitting
those observers, we obtain an unconstrained model, for which the global requirements are
not necessarily satisfied.

5.4 State Space Generation

In this section, we present two different configurations of the model, both corresponding
to the architecture proposed on Figure 5.1. For each configuration, we present statistics
on generated LTS for different sub-configurations (varying the allowed/forbidden sets of
transactions).

7Because the numbers of masters and cache lines are fixed and each master can issue at most one
request per cache line at the same time, the number of requests in a set is bounded by construction.

64

5.4. State Space Generation

Table 5.1 – Experimental results: state space generation of shareable focused model
configurations

allowed transactions global LTS size
m1 m2 lite constraints states transitions

(1) S0 {A} S0 yes 93,481,270 308,087,560
(2) S0 {A} S0 no 105,376,971 351,344,207
(3) S0 ∅ S0 yes 7,518,552 21,227,610
(4) S1 ∅ S1 yes 3,685,311 10,649,422
(5) S1 ∅ S1 no 3,127,707 9,121,134
(6) S2 S2 ∅ yes 3,545,801 11,122,536
(7) S2 S2 ∅ no 2,819,505 9,095,620
(8) S3 ∅ S′

3 yes 1,834,195 5,170,829
(9) S3 ∅ S′

3 no 1,437,412 4,547,398
(10) S4 S4 ∅ yes 560,299 1,669,886
(11) S4 S4 ∅ no 599,971 1,780,634
(12) S5 S5 ∅ yes 40,983 63,922
(13) S5 S5 ∅ no 55,439 98,688
(14) S6 S6 ∅ yes 25,760 71,121
(15) S6 S6 ∅ no 25,760 71,121

In this table, we use those sets of allowed transactions:
S0 = { CleanInvalid, CleanShared, MakeInvalid, MakeUnique, ReadOnce,

ReadShared, ReadUnique, WriteBack }
{A} = the abstract transaction singleton
S1 = { MakeUnique, ReadOnce, ReadUnique, WriteBack }
S2 = { MakeInvalid, MakeUnique, ReadShared, ReadUnique, WriteBack }
S3 = { MakeUnique, WriteBack}, S′

3 = {ReadOnce }
S4 = { CleanInvalid, CleanShared, ReadUnique, WriteBack }
S5 = { MakeInvalid, MakeUnique, WriteBack }
S6 = { CleanInvalid, CleanShared, MakeInvalid }

5.4.1 Shareable Focused Model

For our analysis, we consider several configurations of our formal model, each consisting
of a shareable memory (consisting of three memory lines), one ACE-Lite master, and
two ACE masters, with two cache lines each. To focus on coherency issues, the first
cache lines of each ACE master execute transactions concerning the same shareable
memory line (this is suitable according to [DDHY92]). Each master initiates at most
one transaction (chosen from a set of allowed transactions); thus, the second cache line
of each ACE master never initiates a transaction (but answers snoop requests). We
generate several partial configurations of the ACE specification (i.e., up to eight ACE
transactions among fifteen ACE transactions allowed in a shareable region of the memory,
this limitation being caused by the state space explosion problem). We selected subsets
of transactions that could create problems for properties to verify.

65

Chapter 5. Formally Modeling an ACE-based SoC using LNT

Example 12 For each considered configuration, Table 5.1 gives the size of the corre-
sponding LTS. Column one (respectively, two, or three) gives the set of transactions that
master 1 (respectively, master 2, or the ACE-Lite master) is allowed to initiate. Column
four tells whether the model includes the observer processes enforcing the global ordering
requirements; we generate LTSs for unconstrained models to study the impact of the
observers on the properties of the system. The LTS of each constrained model is included
in the corresponding unconstrained model with respect to strong bisimulation (i.e., the
constraints only remove unsuitable behaviors), but the state space may be larger because
a state now also integrates the current state of the observer processes.

5.4.2 Optimized Model

The optimized model introduces the following limitations to the shareable focused
configuration: We consider that the shareable memory contains only one line and that
each ACE master contains only one cache line. All transactions issued by the three
masters concern the same memory line. Each master initiates at most one transaction
(chosen from a set of allowed transactions), except for memory update transactions, for
which the master can initiate transactions as long as the ACE state allows.

This optimized model is used to generate complete and partial configurations of the ACE
specification (i.e., all the fifteen ACE transactions can be activated).

Example 13 For each considered configuration of the optimized model, Table 5.2 gives
the size of the corresponding LTS. We have the same configurations as the Table 5.1
with the new statistics and additional configurations that were previously difficult to
generate.

5.5 Model Validation

Modeling is a manual activity, and errors might be introduced during this activity. The
formal model must be corrected and validated to have more confidence in it before
exploiting the formal model in the validation of the modeled system. Compiling the LNT
model with CADP tools was useful to detect (via the error and warning messages raised
by the LNT compiler) several introduced problems. After that, we used the backtracking
OCIS simulator of CADP to simulate step by step the model to see that the modeled
behavior corresponds to the expected behavior.

In the reminder of this section, we aim to automatically verify the conformity of the LNT
model with respect to the specification. To this purpose, we write several properties
expressed in MCL [MT08]. We start by verifying the absence of deadlocks and livelocks in
the model, then we validate the complete and correct execution of separate transactions.

66

5.5. Model Validation

Table 5.2 – Experimental results: state space generation of optimized model configurations

allowed transactions global LTS size
m1 m2 lite constraints states transitions

(1) ALL ∅ ALL yes 2,895,388 7,951,583
(2) ALL ∅ ALL no 1,466,479 3,772,056
(3) ALL ALL ∅ yes 1,302,386 2,854,974
(4) ALL ALL ∅ no 668,318 1,320,481
(5) S1 ∅ S1 yes 221,754 608,247
(6) S1 ∅ S1 no 88,760 231,369
(7) S1 S1 ∅ yes 28,381 52,430
(8) S1 S1 ∅ no 21,231 37,644
(9) S2 ∅ S2 yes 26,336 53,410
(10) S2 ∅ S2 no 16,260 32,635
(11) S2 S2 ∅ yes 40,099 76,324
(12) S2 S2 ∅ no 24,594 42,748
(13) S3 ∅ S′

3 yes 196,105 542,049
(14) S3 ∅ S′

3 no 71,850 189,728
(15) S4 ∅ S4 yes 50,882 107,100
(16) S4 ∅ S4 no 44,464 94,685
(17) S4 S4 ∅ yes 11,125 18,199
(18) S4 S4 ∅ no 9,660 16,258
(19) S5 ∅ S5 yes 16,421 33,549
(20) S5 ∅ S5 no 6,869 13,673
(21) S5 S5 ∅ yes 6,004 9,971
(22) S5 S5 ∅ no 4,399 7,375
(23) S6 ∅ S6 yes 41,585 86,977
(24) S6 ∅ S6 no 35,665 76,282
(25) S6 S6 ∅ yes 5,102 8,150
(26) S6 S6 ∅ no 4,335 7,241

In this table, we use those sets of allowed transactions:
ALL = set of all ACE (respectively ACE-Lite) transactions
{A} = the abstract transaction singleton
S1 = { MakeUnique, ReadOnce, ReadUnique, WriteBack }
S2 = { MakeInvalid, MakeUnique, ReadShared, ReadUnique, WriteBack }
S3 = { MakeUnique, WriteBack}, S′

3 = {ReadOnce }
S4 = { CleanInvalid, CleanShared, ReadUnique, WriteBack }
S5 = { MakeInvalid, MakeUnique, WriteBack }
S6 = { CleanInvalid, CleanShared, MakeInvalid }

Some of the following MCL formulæ use the macro inevitable (L), which expresses
that a transition labeled with L will eventually occur. This macro can be defined as
follows:

macro inevitable (L) =

67

Chapter 5. Formally Modeling an ACE-based SoC using LNT

mu X . (< true > true and [not L] X)

end_macro

This macro expresses inevitability using the minimal fixed point operator (mu), which
acts as binder for the propositional variable X. This macro states that all transition
sequences starting at the current state lead to L actions after a finite number of steps.

5.5.1 Absence of Deadlocks

To check the absence of deadlock (ϕ1), we insert a special TERMINATION transition. This
enables to distinguish deadlock from normal termination, when all system components
have normally terminated and have nothing more to do.

The following MCL formula expresses this property: each sequence not containing a
TERMINATION label does lead to state with at least one successor:

[(not TERMINATION)*] <true> true

5.5.2 Absence of Livelocks

To verify the absence of livelocks (ϕ2), we check that we reach eventually the TERMINATION

label.

inevitable (TERMINATION)

5.5.3 Complete Execution of Transactions

To verify that every transaction inevitably finishes, we use the following two liveness
formulæ (ϕ3 and ϕ4):

[true * .

{ AR ?op:String ?n:Nat ?l:Nat ... }

] inevitable ({ R !op !n !l })

The first formula ϕ3 requires that each action AR is eventually followed by a corresponding
action R. Note the capture of the exchanged values into the variables op, n, and l in the
first action predicate (using the LNT-like syntax “?variable:Type”, where Type is one of
the predefined types of MCL) and the use of the captured values in the second action
predicate.

68

5.6. First Industrial Results

[true * .

{ AW ?op:String ?n:Nat ?l:Nat ... }

] inevitable ({ B !op !n !l })

The second formula ϕ4 requires that each action AW is eventually followed by a corre-
sponding action B.

5.6 First Industrial Results

The formal model is used inside STMicroelectronics as a reference in discussions with
verification engineers and interconnect architects. It helps to understand the new aspects
introduced by ACE and to define the verification strategy. In this context, the OCIS
interactive step-by-step simulator with backtracking of CADP is found useful.

Modeling the ACE-based SoC helps STMicroelectronics engineers to understand the
subtleties of the ACE specification, because the initial specification is not formal. Many
problems are discovered just by modeling, before running any tool.

5.7 Discussion

We observe that the properties used to validate the model are liveness properties because
they express that “something good eventually happens”. Classically, the absence of
deadlocks and livelocks properties are safety properties expressing that never a deadlock
happens or never a livelock happens, but in our case, due to state space generation
problem, the model initiates transactions a limited number of times. The model is not
completely cyclic.

In the remaining, we present the different exploitations of this formal model. In fact, the
formal model is used to validate global properties of the system (Chapter 6), to generate
"clever" test cases using model checking results (Chapter 7), and to study the sanity
of an interface verification unit (Chapter 8). Those activities are detailed in the three
following chapters.

69

Model Exploitation

71

Chapter 6

Model Checking System-Level

Properties

6.1 Introduction

In this chapter we aim at validating the global coherency of the ACE specification by
verifying several system-level properties on our formal model of a generic ACE-based SoC
(described in Chapter 5). We notice that the ACE masters and ACE-Lite masters include
all the allowed behaviors of the ACE specification. First, we analyze the coherency
aspects of the protocol in order to exhibit the coherency requirements of the system.
Then, we present the different properties triggered by those requirements. The properties
are expressed in MCL (Model Checking Language) [MT08]. Finally, we show the model
checking results.

6.2 System-Level Cache Coherency Analysis

The modeled system, described in Section 5.2, presents three aspects of coherency: First,
the coherency between the ACE states of the different caches containing the same memory
line, which we call cache line states coherency. Second, the coherency of the data in
different caches or between the caches and the memory, which we call data integrity.
Third, the coherency of the coherent parameters of ACE transactions regarding the
ACE state of the cache line before and after sending the transactions, which we call
messaging consistency. In this section, we explore the requirements regarding each of
these coherency aspects.

73

Chapter 6. Model Checking System-Level Properties

Table 6.1 – Cache coherency requirements analysis

ACE states Requirement concerning
states of other caches cache line data

(1) ACE_UD ACE_I nothing
(2) ACE_UC ACE_I equal to memory data
(3) ACE_SD ACE_I/ACE_SC equal to data of ACE_SC, if any
(4) ACE_SC ACE_I/ACE_SC/ACE_SD equal to data of ACE_SD/ACE_SC, if any
(5) ACE_I nothing nothing

6.2.1 Cache Line States Coherency Requirements

ACE specification defines five cache line states (presented on Section 4.4). For each state
we deduce requirements concerning the ACE state of any cache line of another master
containing the same memory line.

Column two of Table 6.1 presents the requirements for ACE state of other caches for
each cache line state (column one).

For a cache line in a unique state (ACE_UD or ACE_UC), the other copies of the same
memory line must be invalid (ACE_I). For a cache line in a shared dirty state (ACE_SD),
the other copies of the same memory line must be invalid (ACE_I) or in a shared clean
state (ACE_SC). For a cache line in a shared clean state (ACE_SC), the other copies of the
same memory line must be either invalid or shared. Besides, if the cache line is in an
invalid state (ACE_I), their is no requirement for the other cache lines containing the
same memory line.

6.2.2 Data Integrity Requirements

Data integrity of the system consists in two different aspects:

• First, the cache line data has to respect the cache line states as presented in the
third column of Table 6.1: If the cache line is in a unique clean state (ACE_UC), the
data has to be equal to the data stored in the shareable memory. If the cache line
is shared (ACE_SD or ACE_SC), the data of any other copy of the same memory line
has to be equal to the data in the cache line.

• Second, the data integrity of the shareable memory should be maintained. We
have to monitor the order of write operations to the shareable memory. We have
to check that an old data never erases a newer one.

74

6.3. System-Level Properties

6.2.3 Messaging Consistency Requirements

Messaging consistency deals with the coherency parameters, namely, the PassDirty and
IsShard parameters present both in the read response channel R and the coherency
response channel CR.

For the read response channel R, the consistency encompasses three different requirements:

• For a subset of ACE transactions, the initiating master (called also Initiator within
STMicroelectronics) cannot accept to get the responsibility of writing back the data
on the shareable memory, i.e., the PassDirty parameter must never be asserted
(i.e., PassDirty==False).

• For another subset of ACE transactions, the initiator must have the memory
line in a unique state, i.e., the IsShared parameter must never be asserted (i.e.,
IsShared==False).

• For the ReadNotSharedDirty transaction, the initiator must never have the memory
line in a shared dirty state, i.e., the PassDirty and the IsShared parameters
cannot be asserted at the same time.

For the coherency response channel CR, the parameters depend on the snooped master
cache line state before and after the CR request. In fact, the PassDirty parameter is
asserted if and only if the cache line state before the request is dirty and the cache line
state after the request is clean or invalid. The IsShared parameter is asserted if the
cache line after the request is in a valid state (ACE_UD, ACE_UC, ACE_SD, or ACE_SC) and
deserted if the cache line after the request is invalid.

6.3 System-Level Properties

Each requirement leads to one or more system-level properties to be checked on the model.
Some properties can be expressed by a state-based view, e.g., properties concerning an
ACE state of a cache line. Those properties are translated to an equivalent action-based
view handling only actions expressed by the transitions of the LTS (see Fig. 6.1).

In practice, when formalizing properties, we can introduce a false positive error: the
property does not really check the behavior and the result is TRUE (e.g., a syntax error in
the property action with regard to the corresponding model transitions). So we suggest
to change slightly the sense of the property to have an evident error and if the check is
not failed the property has to be corrected.

In this section, we present a selection of representative examples of the MCL formulæ
expressed in order to check the requirements corresponding to the different coherency

75

Chapter 6. Model Checking System-Level Properties

Figure 6.1 – State-based and action-based view of a cache line

aspects. The exhaustive description of the MCL formulæ written in the scope of this
thesis to verify the ACE specification is presented in Appendix A.

6.3.1 Cache States Coherency

To verify the coherency of the ACE states of all the caches of the system, we have to
translate the state-based properties to action-based properties, using information about
the ACE state added to transactions issued by cache lines (see Section 5.2.2).

The cache states coherency requirements lead to four safety formulæ, each of which
corresponds to a valid cache line state (ACE_UD, ACE_UC, ACE_SD, and ACE_SC).

Those formulæ use the macro ace_state (s), which is a predicate that holds if and
only if the string s is an ACE state. This macro is defined as follows:

macro ace_state (s) =

((s="ACE_I")or(s="ACE_UD")or(s="ACE_SD")or(s="ACE_UC")or(s="ACE_SC"))

end_macro

Cache states coherency renaming

To simplify the form of the MCL formulæ corresponding to the cache state coherency
properties and to improve the performance of the model checker, we use an SVL script
(shown below) to apply a renaming of all the labels of the model. For each label, we only
keep the ACE channel gate and four parameters. Those parameters are (1) the ACE
transaction, (2) the initiator master, (3) the memory line, and (4) the ACE state. The
internal gates (starting by FW) are replaced by internal LNT gates i. The branching
reduction is applied on the renamed model: some interleavings of internal gates are
removed.

76

6.3. System-Level Properties

"renameCacheStateCoherency.bcg" =

branching reduction of

total rename

"\([A-Z]* ![A-Z]* ![0-9] ![0-9]\) ![0-9] \(![A-Z]*_[A-Z]*\)"

-> "\1 \2",

"\([A-Z]* ![A-Z]*\) ![0-9] \(![0-9] ![0-9]\) ![A-Z]* ![A-Z]* ![A-Z]* \(![A-Z]*_[A-Z]*\)"

-> "\1 \2 \3",

"\([A-Z]* ![A-Z]*\) ![0-9] \(![0-9] ![0-9]\) ![0-9] ![A-Z]* \(![A-Z]*_[A-Z]*\)"

-> "\1 \2 \3",

"FW_[A-Z]* [A-Za-z0-9_ !]*" -> "i"

in "model.bcg";

Unique dirty coherency

As a sample, we present the cache state coherency formula concerning the unique dirty
state (ϕ5). The latter requires that if a cache line (master m1, memory line l) is in the
state ACE_UD (the cache line is unique and modified), then as long as the line does not
change its status, all cache lines of other masters (m2 Ó= m1) containing the same memory
line (l) must be in the state ACE_I (the cache line is invalid). This is a state-based
property. The corresponding action-based property expresses that if an action {?Ch m1

l ACE_UD} happens then while there is no action {?Ch m1 l s1 where s1 Ó= ACE_UD},
we check whether an action {?Ch m2 l s2 where m2 Ó= m1 and s1 Ó= ACE_I} happens.
If this is the case, then the property is not satisfied (false).

The MCL formula expressing this action-based property is the following:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UD"} .

(not ({?Ch:String ?op:String !m1 !l ?s1:String

where ace_state (s1) and (s1<>"ACE_UD")})) * .

{?Ch:String ?op:String ?m2:Nat !l ?s2:String

where (m2<>m1) and ace_state (s2)

and (s2<>"ACE_I")}

] false

Notice that the unique clean coherency (ϕ6), the shared dirty coherency (ϕ7), and the
shared clean coherency (ϕ8) formulæ are described in Appendix A.

6.3.2 Data Integrity

To verify the data integrity, we have to check four different properties, one concerning the
write ordering on the shareable memory and three others concerning the data integrity
corresponding to some cache line states (namely, ACE_UC, ACE_SD, and ACE_SC). The

77

Chapter 6. Model Checking System-Level Properties

other cache lines do not lead to data integrity issues.

Data integrity renaming

To simplify the form of the MCL formulæ corresponding to the data integrity properties
and to improve the performance of the model checker, we use an SVL script (shown
bellow) to apply a renaming of all the labels of the model. For each label, we only keep
the ACE channel gate and up to five parameters. Those parameters are (1) the ACE
transaction, (2) the initiator master, (3) the memory line, (4) the memory data (if any),
and (5) the ACE state. The internal gates (starting by FW), are replaced by internal LNT
gates i. Then, the branching reduction is applied on the renamed model: the interleaving
of internal gates is removed.

In the remaining, transactions have two possible structures: transactions with data (an
LNT gate with five parameters) and transactions without data (an LNT gate with four
parameters).

renameDataIntegrity.bcg" =

branching reduction of

total rename

"\([A-Z]* ![A-Z]*\) ![0-9] \(![0-9] ![0-9]\) ![A-Z]* ![A-Z]* ![A-Z]* \(![A-Z]*_[A-Z]*\)"

-> "\1 \2 \3",

"\([A-Z]* ![A-Z]*\) ![0-9] \(![0-9] ![0-9] ![0-9]\) ![A-Z]* \(![A-Z]*_[A-Z]*\)"

-> "\1 \2 \3",

"FW_[A-Z]* [A-Za-z0-9_ !]*" -> "i"

in "model.bcg";

Unique clean data integrity

The unique clean state requires that the data in the cache line (data1) must be equal
to the data in the shareable memory (data2). Once we detect an ACE_UC state and as
long as the line does not change its status, we require that data2 (data in the shareable
memory) is equal to data1.

In the action-based view, an action containing an ACE_UC state can be a data transfer
action (action with data) or a control action (action without data). Each case corresponds
to a different MCL formula (two formulæ are expressed).

The first formula (ϕ9) concerns a data transfer action with an ACE_UC. In this case, when
we observe an action {?Ch !m1 !l !data1 !ACE_UC}, then as long as there is neither
an action {?Ch !m1 !l !s1 where s1<>ACE_UC} (action without data) nor an action
{?Ch !m1 !l !data !s1 where s1<>ACE_UC} (action with data), we check whether an
action {R !0 !l !data2 where data2<>data1} happens. In fact, the read response R

from the shareable memory 0 is the only outgoing data transfer transaction from the

78

6.3. System-Level Properties

memory. If such a response occurs, the property is not satisfied (false).

The formula ϕ9 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat !"ACE_UC"} .

(

not ({?Ch:String ?op:String !m1 !l ?any of Nat ?s:String

where ace_state (s) and (s<>"ACE_UC")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_UC")})

)* .

{R ?op:string !"0" !l ?data2:Nat ?m2:Nat

where (data2<>data1)}

] false

The second formula (ϕ10) concerns a control action with an ACE_UC state. The data
transfer containing the data happens in a different action. In the beginning, we save
the data present in an action with a different cache state than ACE_UC {?Ch !m1 !l

!data !s1 where s1<>ACE_UC}, then we note an action {?Ch !m1 !l !ACE_UC}. As
long as there is neither an action {?Ch !m1 !l !s1 where s1<>ACE_UC} (action without
data) nor an action {?Ch !m1 !l !data !s1 where s1<>ACE_UC} (action with data),
we check whether an action {R !0 !l !data2 where data2<>data1} happens. If such
a response occurs, the property is not satisfied (false).

The formula ϕ10 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat ?s:String

where ace_state (s) and (s<>"ACE_UC")} .

(not {?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UC"})* .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UC"} .

(

not ({?Ch:String ?op:String !m1 !l ?h:Nat ?s:String

where ace_state (s) and (s<>"ACE_UC")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_UC")})

)* .

{R ?op:string !"0" !l ?data2:Nat ?m2:Nat

where (data2<>data1)}

79

Chapter 6. Model Checking System-Level Properties

] false

Notice that the shared dirty data integrity (ϕ11, ϕ12) and the shared clean data integrity

(ϕ13,ϕ14) formulæ are described in Appendix A.

Shareable memory data integrity

The following formula (ϕ15) requires correct order of write operations to the shareable
memory:

[true * .

{W !"WRITEBACK" ?m:Nat ?l:Nat ?d:Nat}.

(not{W !"WRITEBACK" !0 !l !d !m})*.

{W !"WRITEBACK" !0 !l !d !m}.

((not{AC ... !m ?any of Nat !l}) and

(not{W ?any of String !0 !l ?any of Nat ...}))*.

{W ?any of String !0 !l ?h:Nat ... where h<>d}

] false

Once a master m initiates a memory update (WriteBack transaction: first action on gate
W) of a memory line l and a data d, and this update is actually written to memory
(second action on gate W, with port number 0, i.e., the memory) as second offer, the
property forbids a data h different from d to be written to the same memory line l

without previously receiving a snoop request (gate AC) concerning line l1.

6.3.3 Consistency of Coherency Parameters

First, we start by three consistency properties corresponding to the coherency parameters
of the read response channel R, then we present properties relative to the coherency
response channel CR.

Read response no PassDirty property

According to the ACE specification [ARM13], for several transactions (i.e., ReadOnce,
ReadClean, CleanUnique, MakeUnique, CleanShared), the master initiating the transaction
cannot take the responsibility to write the data on the memory, so the PassDirty

parameter of the read response channel R has to be deserted (false).

1The number of parameters differs for the rendezvous on gate W between the CCI and the memory
and those between a master and the CCI: for the former, the fifth parameter corresponds to index of the
initiator.

80

6.3. System-Level Properties

As described in Section 5.2.3, the sixth parameter of a read response channel R is a
boolean corresponding the PassDirty parameter and the seventh parameter is a boolean
corresponding to the IsShared parameter.

We add the following formula (ϕ16), which checks the correct positioning of the PassDirty

parameter:

[

true * .

{AR ?"READONCE"|"READCLEAN"|"CLEANUNIQUE"|"MAKEUNIQUE"|"CLEANSHARED"

?m:Nat ?l:Nat ?any of String}.

(

not({R !op !m !l ?any of Nat ?any of bool ?any of bool ?any of bool})

)*.

{R !op !m !l ?any of Nat ?any of bool !"TRUE" ?any of bool}

] false

The formula ϕ16 concerns read address AR actions containing one of the following
transactions: ReadOnce, ReadClean, CleanUnique, MakeUnique, or CleanShared. In fact,
the corresponding read response R action (same transaction op) must have the PassDirty

parameter deserted. If this is not the case (i.e., PassDirty==TRUE), the property is not
satisfied (false).

Notice that the read response no IsShared (ϕ17) and the read response no IsSharedDirty

(ϕ18) formulæ are described in Appendix A.

Coherency response renaming

To simplify the form of the MCL formulæ corresponding to the coherency response
parameters properties and to improve the performance of the model checker, we use an
SVL script (shown below) to apply a renaming of all the labels of the model except CR

gates: for each label, we only keep the ACE channel gate and four parameters which are
the ACE transaction, the initiator master, the memory line, and the ACE states. For
the coherency response CR actions, we preserve all the parameters. The internal gates
(starting by FW) are replaced by internal LNT gates i. Then the branching reduction is
applied on the renamed model: the interleaving of internal gates is removed.

"renameCoherencyResponse.bcg" =

branching reduction of

total rename

"\([A-Z][^R]* ![A-Z]* ![0-9] ![0-9]\) ![0-9] \(![A-Z]*_[A-Z]*\)"

-> "\1 \2",

81

Chapter 6. Model Checking System-Level Properties

"\([A-Z][^R]* ![A-Z]*\) ![0-9] \(![0-9] ![0-9]\) ![A-Z]* ![A-Z]* ![A-Z]*

\(![A-Z]*_[A-Z]*\)" -> "\1 \2 \3",

"\([A-Z][^R]* ![A-Z]*\) ![0-9] \(![0-9] ![0-9]\) ![0-9] ![A-Z][A-Z]*

\(![A-Z][A-Z]*_[A-Z]*\)" -> "\1 \2 \3",

"CR \(![A-Z]* ![0-9] ![0-9] ![0-9] ![A-Z]* ![A-Z]* ![A-Z]* ![A-Z]*\)

-> "CR \1",

"FW_[A-Z]* [A-Za-z0-9_ !]*" -> "i"

in "model.bcg";

Coherency response PassDirty property

The PassDirty parameter of the coherency response channel CR has to be asserted (true)
if and only if the ACE state before the CR request is either ACE_UD or ACE_SD and the
ACE state after the CR request is either ACE_UC, ACE_SC, or ACE_I.

As described in Section 5.2.3, the sixth parameter of a coherent response channel CR is
a boolean corresponding to the PassDirty parameter and the seventh parameter is a
boolean corresponding to the IsShared parameter.

The corresponding formula (ϕ19) expresses that if the ACE state switches from a dirty
state to a clean or invalid state during a coherent response CR action, the PassDirty

must be asserted. If it is not the case, the property is not satisfied (false).

The formula ϕ19 is expressed as follows:

[

true * .

{?Ch:String ?op:String ?m:Nat ?l:Nat ?"ACE_UD"|"ACE_SD"} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...))*.

)*.

{CR ?op:String !m !l ?any of Nat ?any of bool !"FALSE" ?any of bool} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...})

)*.

{?Ch:String ?op:String !m !l ?"ACE_UC"|"ACE_SC"|"ACE_I"}

] false

Notice that the coherency response no PassDirty (ϕ20,ϕ21), the coherency response

IsShared (ϕ22) and the coherency response no IsShared (ϕ18) formulæ are described in
Appendix A.

82

6.4. Model-Checking Results

Table 6.2 – Model checking results: cache state coherency

allowed transactions properties
m1 m2 lite ϕ5 ϕ6 ϕ7 ϕ8

(1) S0 S0 ∅ × × √ ×
(2) S0 ∅ S0 × × √ ×
(3) S1 S1 ∅ × √ √ √

(4) S1 ∅ S1

√ √ √ √

(5) S2 S2 ∅ × × √ √

(6) S3 ∅ S′

3 × √ √ √

(7) S4 S4 ∅ × √ √ √

(8) S5 S5 ∅ √ × √ √

(9) S6 S6 ∅ √ √ √ √

In Table 6.2, Table 6.3, and Table 6.4, those sets of allowed transactions
are used:
S0 = set of all ACE (respectively ACE-Lite) transactions
{A} = Onlytheabstracttransaction

S1 = { MakeUnique, ReadOnce, ReadUnique, WriteBack }
S2 = { MakeInvalid, MakeUnique, ReadShared, ReadUnique, WriteBack }
S3 = { MakeUnique, WriteBack}, S′

3 = {ReadOnce }
S4 = { CleanInvalid, CleanShared, ReadUnique, WriteBack }
S5 = { MakeInvalid, MakeUnique, WriteBack }
S6 = { CleanInvalid, CleanShared, MakeInvalid }

6.4 Model-Checking Results

In this section we report the results of the automatic model checking for each kind of
properties on the different configurations presented in Section 5.4.2.

We start by checking the properties on the biggest configurations (all the ACE transac-
tions allowed in two among three masters), corresponding to the largest LTSs that we
can generate, i.e., (1) (S0,S0,∅) and (2) (S0,∅,S0) either with or without global ordering
constraints. When a property is satisfied for a configuration, then all smaller configura-
tions will satisfy this property. We only present results for unconstrained configurations
because the constrained configurations satisfy all the properties.

6.4.1 Cache State Coherency Results

The model checking results of the properties (ϕ5), (ϕ6), (ϕ7), and (ϕ8) (see Sec. 6.3.1)
are given in columns five to eight of Table 6.2.

For the unconstrained configurations, unique dirty coherency (ϕ5) and unique clean
coherency (ϕ6) formulæ may not be satisfied (×). In this case, EVALUATOR 4.0
generates minimal counterexample sequences, which correspond to scenarios to be tested

83

Chapter 6. Model Checking System-Level Properties

Table 6.3 – Model checking results: : data integrity

allowed transactions properties
m1 m2 lite ϕ9 ϕ10 ϕ11 ϕ12 ϕ13 ϕ14 ϕ15

(1) S0 S0 ∅ × √ √ √ √ √ ×
(1) S0 ∅ S0 × × × × × √ ×
(2) S1 ∅ S1

√ √ √ √ √ √ ×
(3) S2 S2 ∅ √ √ √ √ √ √ √

(4) S3 ∅ S′

3

√ √ √ √ √ √ ×
(5) S4 S4 ∅ √ √ √ √ √ √ √

(6) S5 S5 ∅ √ √ √ √ √ √ √

(7) S6 S6 ∅ √ √ √ √ √ √ √

on any implementation of the ACE specification in order to verify the implementation
mechanisms in charge to guarantee the cache coherency.

The shared dirty coherency (ϕ7) and unique clean coherency (ϕ8) are satisfied on the
largest configurations (accordingly, in all configurations). There is no need for additional
mechanisms in the implementation to guarantee the coherency. Then, no specific tests
have to be added.

Some unconstrained configurations can satisfy all properties because the subset of ACE
transactions activated do not present any violation of the properties, e.g., the configuration
(S6,S6,∅).

All the configurations containing only one active ACE master and one active ACE-Lite
master satisfy the cache state coherency properties because of the presence of at most
one cache line per memory line.

6.4.2 Data Integrity Results

The verification results of the properties (ϕ9), (ϕ10), (ϕ11), (ϕ12), (ϕ13), (ϕ14), and (ϕ15)
(see Sect. 6.3.2) are given in columns five to eleven of Table 6.3.

For unconstrained configurations, data integrity of the shareable memory property
(ϕ15) may not be satisfied (×). In this case, EVALUATOR 4.0 generates minimal
counterexample sequences.

The data integrity properties corresponding to cache line states (ϕ9, ϕ10, ϕ11, ϕ12, ϕ13,
and ϕ14) are satisfied on the largest configurations (accordingly, in all the configurations).
There is no need for additional mechanisms in the implementation to guarantee coherency.
Then, no specific tests must be added for the data integrity against the cache line states.

84

6.4. Model-Checking Results

Table 6.4 – Model checking results: coherency parameters

allowed transactions properties
m1 m2 lite ϕ16 ϕ17 ϕ18 ϕ19 ϕ20 ϕ21 ϕ22 ϕ23

(1) S0 {A} S0

√ √ √ √ √ √ √ √

(2) S1 ∅ S1

√ √ √ √ √ √ √ √

(3) S2 S2 ∅ √ √ √ √ √ √ √ √

(4) S3 ∅ S′

3

√ √ √ √ √ √ √ √

(5) S4 S4 ∅ √ √ √ √ √ √ √ √

(6) S5 S5 ∅ √ √ √ √ √ √ √ √

(7) S6 S6 ∅ √ √ √ √ √ √ √ √

6.4.3 Consistency of Coherency Parameters Results

The verification results of the properties (ϕ16, ϕ17, ϕ18, ϕ19, ϕ20, ϕ21, ϕ22, and ϕ23)
presented in Section 6.3.3 over the LTSs of Section 5.4.2 are given in columns five to
twelve of Table 6.4.

All the properties corresponding to the consistency of the coherency parameters are
satisfied on the largest configurations (accordingly, in all the configurations). There is no
need for additional mechanisms in the implementation to guarantee the coherency. Then,
no specific tests must be added for this category of properties.

6.4.4 Example of a Non Satisfied Property

The model checking of the property corresponding to the data integrity of shareable
memory (ϕ15) over the configuration (S0,∅,S0) produces the counterexample presented
in Figure 6.2.

We generate a minimal configuration of the formal model activating only the ACE
transactions present on the counterexample (S3,∅,S′

3). This configuration, without the
global ordering constraints, produces the same counterexample. This configuration
introduces only three ACE transactions and it is sufficient to violate the data integrity
property.

The data integrity property is violated because of the concurrency between two write
operations on the shareable memory. The first one is initiated by the ACE master
(WriteBack transaction), and the second one is initiated by the CCI. In fact, the CCI has
to respond to a ReadOnce transaction and has to take the responsibility to write back
the data in the memory (PassDirty=true), because the master initiating the ReadOnce

cannot take this responsibility: recall that ReadOnce is a “non-cachable” read. It means
that the memory line is not stored on the master cache if the cache exists. In this case,
the master is an ACE-Lite master, their is no cache to store the memory line.

85

Chapter 6. Model Checking System-Level Properties

Figure 6.2 – Data integrity counterexample

To verify the existence of additional scenarios, on the model, leading to this data integrity
violation, we deactivate one of the transactions participating on the first counter-example.
EVALUATOR 4.0 model checker will produce another counterexample (if any), otherwise
the property is satisfied in the new configuration. This approach will be explored in the
Chapter 7 within the model-based test generation activity.

6.4.5 Reproduction of a Previously Fixed Bug

In a previous version of the ACE specification, a data integrity bug was detected (by Jasper
in 2011 using white-box verification techniques using the Murφ model checker [Dil96]).
To validate our model and our methodology based on black box verification techniques,
we try to reproduce this bug.

ARM fixed the bug by changing the ACE specification. The new version forbids the
transition from an ACE_UD cache line state to an ACE_UC cache line state, after the
reception of a ReadOnce snoop transaction.

We re-allow this transition and we check the data integrity of the shareable memory
property (ϕ15). The EVALUATOR 4.0 model checker produces the counterexample
presented on the Fig. 6.3.

Indeed, we have reproduced automatically the same counterexample using our methodol-

86

6.5. Conclusion

Figure 6.3 – Fixed data integrity counterexample

ogy. In addition to that, we can also catch more depth counterexamples in the current
version of ACE specification, e.g., the scenario presented in Figure 6.2.

6.5 Conclusion

The properties presented in this chapter are expressed as safety properties (i.e., they
express that “nothing bad happens”). Thus, we verified that incorrect behavior does not
occur in the model.

Some properties are not satisfied by the unconstrained model, it means that the ACE spec-
ification expresses global requirements that must be guaranteed by any implementation
of the ACE protocol with specific mechanisms.

In the remaining, we aim at verifying the correct implementation of those global require-
ments on the industrial implementation of the ACE protocol by generating tests from
the model focusing on those detected corner cases.

87

Chapter 7

From Temporal Logic Properties

to Clever Test Cases

7.1 Introduction

An interesting idea for the generation of directed tests is to focus on and derive tests
from potential faults of the DUV [MSK+07, WAW09]. For system-level protocols, in
order to obtain a description of potential faults corresponding to the global requirements
of the SoC, we suggest to use system-level properties together with a model containing
faults. In our case, we use the unconstrained model (see Sec. 5.3). Applying the theory
of conformance testing [Tre92], we generate abstract test cases, which then have to be
translated to the input language of a commercial CDTG solver to randomly complete
interface-level details and finally to run the tests on the RTL test bench.

Because we found the generation of abstract test cases directly from the complete
model to be impractical, we suggest to use information contained in counterexamples to
select interesting configurations of the formal model, which still contain violations of the
global requirements, and to extract abstract test cases from the selected configurations.

In this chapter, we present our approach to generate abstract test cases from the formal
model. Figure 7.1 gives an overview of our test generation approach. First, we present
an algorithm to compute a comprehensive set of interesting configurations, which contain
faults. Second, we present a counterexample-based test-generation flow and its benefits
for test generation. Then, we show the impact of our approach on the improvement of
test benches and the corresponding industrial results.

89

Chapter 7. From Temporal Logic Properties to Clever Test Cases

interesting

test generation

test purposes

CDTG solver

abstract

RTL tests

configurations

concrete

test cases
formal
model

system
properties

function CIC

unconstrained
model

model checking

counter−
examples

Figure 7.1 – Model-based test generation flow

function CIC (ϕ: Property, F : Set of Transaction): Set of (Set of Transaction) is
if Model(F) |= ϕ then

return ∅
else

let ∆ be a minimal-depth counterexample ;
result := ∅ ;
for each transaction T occuring in ∆ do

result := result ∪ CIC (ϕ, F ∪ {T})
end for ;
if result = ∅ then result := { F } end if ;
return result

end if
end function

Figure 7.2 – Function CIC to compute a set of interesting configurations containing faults

7.2 Computation of Interesting Configurations Containing

Faults

Among the properties we considered (see Chapter 6), only three properties do not hold
for the unconstrained model, namely unique dirty coherency (ϕ5), unique clean coherency
(ϕ6) and shareable memory data integrity (ϕ15).

Counterexamples of a desired property provide interesting scenarios to test corner cases.
To improve test coverage, it is interesting to have as many different counterexamples
as possible. However, on-the-fly model checking provides at most one counterexample
for each property ϕ and configuration of the model, because the model checker stops
as soon as it detects a violation of the property. Therefore, we take advantage of the
parametrization of our formal model, by varying the set F of forbidden ACE transactions,
to compute with the recursive function CIC (compute interesting configurations) shown
in Fig. 7.2 a comprehensive set of interesting configurations of the Model(F) containing
faults.

90

7.3. Model Checking Based Test Generation

Initially, all fifteen ACE transactions are allowed, i.e., we call CIC(ϕ,∅). Function CIC

proceeds as follows. First, we configure the model to exclude the transactions in F , and
model check property ϕ. If ϕ is not satisfied, the model checker produces a counterex-
ample ∆. We use the breadth-first search algorithm of EVALUATOR 4.0 to produce a
counterexample of minimal depth, and avoid spurious actions in the counterexample. For
each transaction T occurring in ∆, we call CIC recursively, deactivating T in addition to
F . Function CIC terminates, because the parameter F has an upper bound (the set of
all transactions) and it strictly increases for each recursive call.

The set of interesting configurations {Model(F1),...,Model(Fn)} corresponding to the
set {F1, ..., Fn} computed by CIC has the following property: a configuration Model(F ′)

does not satisfy the property ϕ if and only if F ′ is included in or equal to at least one
combination Fi.

We applied CIC to the three properties that were invalid on the unconstrained model
(see Sec. 6.4). Altogether, Shareable Memory Data Integrity yields 21 interesting configu-
rations (14 from an architecture with two ACE masters initiating transactions, and 7
from an architecture with one ACE-Lite master and one ACE master initiating transac-
tions), Unique Dirty Coherency yields 18 interesting configurations from an architecture
with two ACE masters initiating transactions (with only one ACE master, i.e., a single
cache, Unique Dirty Coherency holds trivially) and Unique Clean Coherency yields
*34 interesting configurations from an architecture with two ACE masters initiating
transactions.

7.3 Model Checking Based Test Generation

We aim at generating as many tests as possible leading to invalidation of the property
for each interesting configuration. We call those tests negative tests, because if a test
succeeds, we detect a failure of the system; but if the system is correct, all tests will fail.

Our test generation approach is based on the theory of conformance testing [Tre92], i.e.,
we compute from a specification of a system and a test purpose [JJ05] (see the Sec. 2.5.3)
a set of abstract test cases. Thus, we express the negation of each property as a test
purpose in LNT.

7.3.1 Unique Dirty Cache State Coherency Test Purpose

The LNT code for the test purpose corresponding to the Unique Dirty Cache Coherency
is shown below. After an outgoing action (gates AR, AW, W, CR and CD) from an ACE
master cpu1 with a cache state ACE_UD (Unique Dirty), it monitors all outgoing actions
of all ACE masters. If a different ACE master cpu2 has the corresponding cache line in
a valid state (not ACE_I), we ACCEPT the test (a coherency error has been detected). If

91

Chapter 7. From Temporal Logic Properties to Clever Test Cases

cpu1 performs another action with a state other than ACE_UD, we REFUSE the test (the
test is inconclusive).

The unique dirty coherency test purpose is modeled as follows:

module obj_UD (types) is

process main [AR: AR_CHANNEL , AW: AW_CHANNEL , CR: CR_CHANNEL ,

ACCEPT , REFUSE : none] is

var cpu1 , cpu2: INDEX_CPU , state : ACE_state_t in

select

AR (?any , ?cpu1 , 1, ACE_UD)

[] AW (? any , ?cpu1 , 1, ACE_UD)

[] W (? any , ?cpu1 , 1, ?any , ACE_UD)

[] CR (? any , ?any , ?cpu1 , 1, ?any , ?any , ?any , ?any , ACE_UD)

[] CD (? any , ?cpu1 , 1, ?any , ACE_UD)

end select ;

select

select

AR (?any , ?cpu2 , 1, ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] AW (? any , ?cpu2 , 1, ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] W (? any , ?cpu2 , 1, ?any , ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] CR (? any , ?any , ?cpu2 , 1, ?any , ?any , ?any , ?any , ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] CD (? any , ?cpu2 , 1, ?any , ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

end select ;

ACCEPT

[]

select

AR (?any , cpu1 , 1, ? state)

where (state <> ACE_UD)

[] AW (? any , cpu1 , 1, ? state)

where (state <> ACE_UD)

[] W (? any , cpu1 , 1, ?any , ? state)

where (state <> ACE_UD)

[] CR (? any , ?any , cpu1 , 1, ?any , ?any , ?any , ?any , ? state)

where (state <> ACE_UD)

[] CD (? any , cpu1 , 1, ?any , ? state)

where (state <> ACE_UD)

end select ;

REFUSE

end select ;

stop

end var

end process

end module

7.3.2 Unique Clean Cache State Coherency Test Purpose

The LNT code for the test purpose corresponding to the Unique Clean Cache Coherency
is shown below. After an outgoing action (gates AR, AW, W, CR and CD) from an ACE

92

7.3. Model Checking Based Test Generation

master cpu1 with a cache state ACE_UC (Unique Clean), it monitors all outgoing actions
of all ACE masters. If a different ACE master cpu2 has the corresponding cache line in
a valid state (not ACE_I) we ACCEPT the test (a coherency error has been detected). If
cpu1 performs another action with a state other than ACE_UC, we REFUSE the test (the
test is inconclusive).

The unique clean coherency test purpose is modeled as follows:

module obj_UC (types) is

process main [AR: AR_CHANNEL , AW: AW_CHANNEL , CR: CR_CHANNEL ,

ACCEPT , REFUSE : none] is

var cpu1 , cpu2: INDEX_CPU , state : ACE_state_t in

select

AR (?any , ?cpu1 , 1, ACE_UC)

[] AW (? any , ?cpu1 , 1, ACE_UC)

[] W (? any , ?cpu1 , 1, ?any , ACE_UC)

[] CR (? any , ?any , ?cpu1 , 1, ?any , ?any , ?any , ?any , ACE_UC)

[] CD (? any , ?cpu1 , 1, ?any , ACE_UC)

end select ;

select

select

AR (?any , ?cpu2 , 1, ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] AW (? any , ?cpu2 , 1, ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] W (? any , ?cpu2 , 1, ?any , ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] CR (? any , ?any , ?cpu2 , 1, ?any , ?any , ?any , ?any , ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

[] CD (? any , ?cpu2 , 1, ?any , ? state)

where ((state <> ACE_I) and (cpu2 <>cpu1))

end select ;

ACCEPT

[]

select

AR (?any , cpu1 , 1, ? state)

where (state <> ACE_UC)

[] AW (? any , cpu1 , 1, ? state)

where (state <> ACE_UC)

[] W (? any , cpu1 , 1, ?any , ? state)

where (state <> ACE_UC)

[] CR (? any , ?any , cpu1 , 1, ?any , ?any , ?any , ?any , ? state)

where (state <> ACE_UC)

[] CD (? any , cpu1 , 1, ?any , ? state)

where (state <> ACE_UC)

end select ;

REFUSE

end select ;

stop

end var

end process

end module

93

Chapter 7. From Temporal Logic Properties to Clever Test Cases

7.3.3 Shareable Memory Data Integrity Test Purpose

If a memory update with a data d is achieved, and as long as no snoop request is initiated,
the property forbids any data h different from d to be written in the memory line.

The LNT code for the test purpose corresponding to the data integrity test purpose is
shown below. First, a memory update action W is proceeded from an ACE master m1, a
memory line l, and a data d1. Second, this update is actually written to the shareable
memory (port number 0). After that, if a memory update action of the some memory
line (l), with a different data d2, coming from an another master m2, the process reaches
the ACCEPT state. The presence of the AC snoop channel as communication port of this
process, expresses that during the previous steps nothing is sent on snoop channel to
inform masters of the change in data. The data d2 that has just been written is older
than the first data d1 written. So we were able to create a data integrity violation.

The shareable memory data integrity test purpose is modeled as follows:

module obj_di (types) is

process main [W: W_CHANNEL , AC: AC_CHANNEL , ACCEPT : any]

is

var m1 , m2: INDEX_CPU ,

l: INDEX_MEM ,

d1 , d2: DATA_T ,

any : ACE_OP

in

l := INDEX_MEM (1);

W (WriteBack , ?m1 , l, ?d1);

W (WriteBack , INDEX_CPU (0) , l, ?d1 , m1);

W (?any , INDEX_CPU (0) , l, ?d2 , ?m2)

where ((any <> WriteBack) and

(d2 <> d1) and (m2 <> m1));

ACCEPT ;

stop

end var

end process

end module

7.3.4 Model-Based Test Generation Process

We use two newly developed prototype tools for test generation. A first tool takes as
input a model and a test purpose (both in LNT), and produces a Complete Test Graph

(CTG), i.e., an intermediate LTS containing all information to extract (all) abstract test
cases. We use a second tool to extract a set of abstract test cases from the CTG. These
test cases are abstract in the sense that they are system-level automata generated from
the model.

Contrary to the batch approach often used in hardware testing (in which the DUV
receives all its stimuli first, the DUV reaction being analyzed afterwards), the test cases

94

7.4. Industrial Results and Impact

Table 7.1 – Experimental test case extraction results

global CTG extr. nb. of largest CTG smallest CTG extr.
prop. masters

states trans. time CTGs states trans. states trans. time

ϕ5 2ACE 6,402 14,323 >1/2 y 18 903 1,957 274 543 ≃7h

ϕ15

2ACE 23,032 48,543 >1/2 y 14 462 888 59 107 <1h
1ACE/1Lite 2,815 7,071 >1/2 y 7 193 394 59 107 <1h

generated by our tools are reactive, in the sense that the stimuli sent by the tester may
depend on the reactions of the DUV observed in response to previous stimuli. Reactive
testing increases the quality and coverage of tests, as more behaviors of the DUV can be
tested [GVZ00].

Thus, those abstract test cases have to be translated to the input language of the
commercial coverage-based solver to randomly complete the interface-level details and to
run the tests on the RTL test bench.

By extracting all test cases from each CTG and running each test case on the industrial
test bench, we obtain a locally intensive test around corner cases specified by the global
system-level properties.

Table 7.1 summarizes the results of our generation of abstract test cases for a test purpose
encoding the negation of a property ϕ. The first two columns describe the property
and the architecture. Columns 3 to 5 report the size of the global CTG (produced from
the unconstrained model) and the time to extract test cases. The remaining columns
give information about our approach based on individual CTGs (produced from the
interesting configurations): column 6 presents the number of CTGs, each of which is
extracted from an interesting configuration, columns 7 to 10 report the size of the largest
and the smallest CTG, and the last column gives the time to extract test cases from all
the individual CTGs. We see that the approach based on individual CTGs is much more
efficient than the extraction of test cases directly from the global CTG, for which the
extraction of test cases does not finish in half a year. Also, our approach reduces the
size of the largest CTG by a factor of 7 for ϕ5 (Unique Dirty Coherency), a factor of 14
for ϕ15 (Data Integrity) in the case of the architecture with one ACE master and one
ACE-Lite master initiating transactions, and a factor of 49 for ϕ15 in the case of the
architecture with two ACE masters.

7.4 Industrial Results and Impact

Our formal model is used inside STMicroelectronics as a reference in discussions with
verification engineers and interconnect architects. It helps to understand the new

95

Chapter 7. From Temporal Logic Properties to Clever Test Cases

aspects introduced by ACE and to define the verification strategy. In this context, the
OCIS interactive step-by-step simulator with backtracking of CADP is found useful for
exhibiting execution scenarios of interest.

We also used OCIS to extract the list of possible transaction initiations for each correct
initial state of the system. A correct initial state of the system is a correct combination
of initial ACE states of the caches. For example, if a memory line exists initially in two
different caches, the state of these caches cannot be ACE_UD for both caches. So doing,
we produce in less than one day 296 simple protocol tests, each of which consists of one
single ACE transaction, from request to response, including all triggered snoop requests,
if any.

Using some of the counterexamples generated during the computation of the interesting
configurations (cf. Sec. 7.2), we produced also ten complex protocol tests containing
concurrency between different ACE transactions.

7.4.1 IVK Dynamic Test Benches

An interconnect is a hardware component connecting several components (or several
blocks of components) of an SoC. A simple example of an interconnect is a bus. Over
time, more and more features have continuously been added to interconnects, including
routing features for Networks-on-Chip or hardware support for cache coherency protocols.

STMicroelectronics has capitalized more than 10 years of expertise in interconnects verifi-
cation in a tool called Interconnect Verification Kit (IVK). The principle of IVK is shown
in Figure 7.3. IVK generates a full verification environment, including sequences and
coverage models, using as input the architectural textual description, called TDL (Target
Description Language) [Käs03]. The TDL can be either generated from interconnect
designers GUI1 or through a flow based on spreadsheet describing the elements of the
architecture. The industrial test benches used in the scope of this thesis are generated
by IVK.

We use IVK to generate a simulation test bench of the ARM PL35 cci400 DUV (called
in the following cci400), which is a Verilog RTL IP provided by ARMTM to implement a
fully connected cache coherent interconnect based on the AMBA 4 ACE specification.
The verification infrastructure consists on dynamic verification units (called Verification

Intellectual Properties (VIP)), tests both in functional verification language e [oEE11],
IV units in SVA [oEE09], and an SV unit in PSL [oEE10]. This infrastructure is used
to generate several test benches through an IVK flow. IVK uses the FTL technique to
generate tests, this technique consists on writing generic tests that are then instantiated
depending on the types of the components present on the TDL file. For example, an

1graphical user interfaces

96

7.4. Industrial Results and Impact

Figure 7.3 – IVK generation flow

ACE test will be generated for any ACE master, an ACE-Lite test will be generated for
any ACE-Lite master, and an ACE/ACE-Lite test will be generated for each ACE and
ACE-Lite master.

The following test benches are used in this thesis:

• cci400_r0p2: a cci400 stand-alone test bench using the complete configuration
of the cci400 interconnect consisting on two ACE masters (2 ACE VIPs), three
ACE-Lite masters (3 ACE-Lite VIPs) and three ACE-Lite slaves (3 ACE-Lite slave
VIPs).

• cci400_r1p2: a cci400 stand-alone test bench (see Figure 7.4) using the STMicro-
electronics configuration of the cci400 interconnect consisting on two ACE masters
(2 ACE VIPs), one ACE-Lite master (1 ACE-Lite VIP), and ACE-Lite slaves (this
configuration corresponds to the configuration of the proposed formal model).

• ORLY_3: a test bench of an industrial SoC produced and sold by STMicroelectronics
designing a new generation Ultra-HD server used by commercial set-top-boxes.
This SoC is the first industrial product of STMicroelectronics integrating the
ARM R© big.LITTLETM solution and the cci400 interconnect, which is in the
cci400_r1p2 configuration and connected to the STNoC Network-on-Chip intercon-
nect via the ACE-Lite slave port used as an AXI slave port.

• BARCELONA: a test bench of a multimedia gateway network processor,
which is a second industrial product of STMicroelectronics integrating the
ARM R© big.LITTLETM solution and the cci400 interconnect.

A semi-random based testing is used. By default, tests are completely random. By
specifying constraints expressed in the e language, the behavior is restricted in order to
have a more significant test. At the beginning, IVK generates components of the system.
After that IVK adds general restrictions common to all tests. Then, IVK adds specific

97

Chapter 7. From Temporal Logic Properties to Clever Test Cases

Figure 7.4 – IVK cci400_r1p2 test bench architecture

restrictions to the test to run. The commercial CDTG solver chooses randomly one of
the solutions of the specified set of constraints, if any. If no solution exist, a contradiction
is detected. The test has to be corrected. The performed test is characterized by a seed,
which specifies the random choices done by the solvers. Rerunning the test with the same
seed means running exactly the same values of the variables of the system. Rerunning
the test with a new seed means making other random choices of the possible values of
the variables of the system. The e description of the test is an underspecification of a
behavior of the system.

7.4.2 Making the Test Bench Ready for System-Level Verification

The original test libraries developed by the verification engineers are interface tests. With
a not so good coverage of system, new tests describing system scenarios are necessary.
Because system requirements cannot be verified on a single IV unit separately, the verifi-
cation infrastructure is completed by introducing the notion of a system verification unit

(SV unit) connected to all IV units, enabling to combine behaviors of different interfaces
in order to validate system-level requirements. For the considered SoC, we defined an SV
unit consisting of 56 PSL sequences, 56 PSL basic cover points, and 36 PSL checks. This
enables to verify on the RTL test bench that each coherent transaction produces the
corresponding snoop transactions, and that each snoop transaction eventually receives a
response from the snooped master.

98

7.4. Industrial Results and Impact

Table 7.2 – Industrial results: bugs report

VIP Bugs detected CAD Fixed Open
ACE dynamic VIP 5 3 2

ACE IV unit 5 4 1

Further modifications of the test bench are required to enable the execution of the
concrete test cases derived from our abstract test cases. In particular, it is necessary
to control the order of events. First, we added more synchronizations between different
Verification Intellectual Property (VIP) events to enforce the desired order of the events.
Second, we added speed-up randomization: by default the speed of a master for each
of its channels is completely random. To express that a master is faster than another
one or to enforce an order between two concurrent actions of a same master, we specify
speed-up ranges (e.g., fast, slow, or very slow). So doing, the speed-up remains random,
but in a limited range, ensuring the desired order.

7.4.3 Industrial Results

During the implementation of our abstract test cases on top of commercial VIPs, we
detected ten bugs in those VIPs (the bug report is presented in Table 7.2). This enabled
the CAD supplier to correct the bugs before the use of these VIPs became critical in the
development path of STMicroelectronics.

Because the VIPs and the coverage lists are provided by the same CAD supplier, some
verification gaps may not be detected. In fact, the same misinterpretation of the ACE
specification may find its way into both the VIPs and the coverage lists. Working with a
different approach led us to validate the industrial checks (provided in the IV units), and
thanks to our directed tests we detected unverified behaviors.

In October 2014, STMicroelectronics architects detected a limitation in the IP implemen-
tation of the CCI. This limitation manifests in a subset of the counterexamples for the
data integrity property we verified 20 months before. Precisely, when the CCI initiates a
memory update, some parameters of this update are set to fixed values possibly loosing
some important information, and disturbing the ACE-Lite flow in the non-coherent part
of the SoC. This limitation corresponds to a gap that we have detected on the commercial
VIPs one year before, when we started experimenting with the translation of abstract
to concrete test cases. Our method for computing interesting faulty configurations (see
Sec. 7.2) enabled us to provide all the scenarios triggering this limitation. Precisely,
those scenarios are a subset of the shareable memory data integrity counterexamples (21
distinct cases, 14 for each pair of ACE masters and 7 for each pair of an ACE master
and an ACE-Lite master).

99

Chapter 7. From Temporal Logic Properties to Clever Test Cases

The shareable memory data integrity counterexamples are caused by different aspects: 10
among the 21 counterexamples are caused by a memory update transaction initiated by
the cci400. This memory update is related to a coherency response (CR) with an asserted
PassDirty==True for an ACE transaction not accepting a read response (R) with an
asserted PassDirty==True.

Each of the 10 counterexamples corresponds to one of three cases:

• The first case consists of a cache maintenance transaction (namely CleanInvalid

or CleanShared transaction). In this case, STMicroelectronics architects decide
to deactivate those transactions for the ACE-Lite masters: this decision has an
impact on the performance of the SoC but it is still feasible.

• The second case consists on the ReadOnce transaction, if a unique dirty cache line
(ACE_UD) receives a ReadOnce snoop transaction and the master decides to switch
to a shared clean (ACE_SC) or invalid (ACE_I) state. In this case, the PassDirty pa-
rameter of the coherent response CR is asserted. For this reason, STMicroelectronics
architects decide to deactivate this case on the ACE masters and require that a
cache line in a unique dirty state receiving a ReadOnce snoop transaction must stay
in a dirty state (ACE_UD or ACE_SD). In this case, the PassDirty parameter of the
coherent response CR is deserted and no memory update transaction is produced
by the cci400.

• The third case consists on the WriteUnique transaction, this shareable write trans-
action is the only way for an ACE-Lite master to write a data in a shareable region
of the memory. Deactivating this transaction is infeasible because it relates a
functional issue and not only a performance issue. We recommend to STMicro-
electronics architects to work with this limitation and to address this issue in the
non-coherent part of the SoC.

In addition, we wrote new PSL checks to detect those corner cases. We should notice
that our 306 extracted tests trigger those checks 16 times, whereas the other tests of the
STMicroelectronics test library never trigger these checks.

Our generated tests have direct impact on the development flow of an industrial SoC
of STMicroelectronics. We observe that the coverage of the verification plan increased
significantly2 and that the coverage of the SV unit part of the verification plan is complete
(100%), i.e., all the aspects corresponding to system-level behaviors are tested.

2The coverage of the verification plan increased from 30% to 68%. Notice that 100% coverage is not
achievable for the considered SoC, because the verification plan, as defined by the VIPs, includes some
features of ACE (e.g., distributed virtual memory), which are handled by the VIPs, but are not used by
the considered SoC.

100

Chapter 8

Sanity of a Formal Check List

Industrial CDTG test benches are based on a so-called verification plan, i.e., a list of all
behaviors to be covered by tests on the Design Under Verification (DUV). The coverage
of the verification plan is collected to measure test progression.1 In our work, we focus
on the formal checks, which are grouped in so-called interface verification units (IV
unit). Each check is an event sequence, e.g., expressed in Property Specification Language

(PSL) [oEE10]. Covering a check consists in activating the check and finishing correctly
the specified sequence. Activating a check means to detect the first event of the sequence.
It is a failure if a check is activated and not correctly finished.

In this chapter, we report about the use of our formal model to validate a commercial IV
unit. To this end, we encode each check of the IV unit as a Labeled Transition System

(LTS) (by means of an LNT model) and use equivalence checking techniques (hiding,
minimization, and comparison operations on LTSs).

At the beginning, we model each check as an LNT process. Then, we verify that each
check is an overapproximation of the model behavior. Last, we study if the list of checks
covers all behaviors of the model.

8.1 Modeling Formal Checks in LNT

We start our study by identifying a subset of nine industrial formal checks (called C1
... C9), which have a level of abstraction corresponding to our formal model. On one
hand, we model each selected check as an LNT model. On the other hand, we derive
an interface LTS from our LNT model of the system by hiding all behaviors not related
to the selected interface. Each check introduces only a subset of ACE channels (AR, R,

1There are two types of behaviors in a verification plan: simple behaviors, called cover points and
complex behaviors, called (formal) checks.

101

Chapter 8. Sanity of a Formal Check List

AW, W, B, AC, CR, CD). Not used channels are represented by internal actions (i).

8.1.1 C1: No Overlapping Read Write Transactions

The check C1 requires that:

The current read address request (AR) should not overlap with any of the
outstanding (and possibly current) write requests: each write (on AW channel)
is supposed to be acknowledged (on B channel).

We model the check C1 by a loop, consisting of four phases (see the code below). The
PHASE 1 is a loop preceding the write request: in this loop we can send a read request,
receive a write response, do an intern rendezvous (i) or break the inner loop. In the
PHASE 2 a write request is sent. The PHASE 3 is a loop (the write request is in progress).
In this loop we can send another write request, do an intern rendezvous (i) or break the
inner loop. In the PHASE 4 the write response is received. After that, we return to the
PHASE 1.

module prop_ar_aw_no_overlapping (types) is

process MAIN [AR: AR_OCHANNEL , AW: AW_OCHANNEL , B: B_CHANNEL]

is

var cpu: INDEX_CPU , mem: INDEX_MEM , READOP , WRITEOP , WRITEOP1 : ACE_OP

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e the i n i t i a l i z a t i o n o f the w r i t e r eq u e s t −−−−−−−−

−−−

loop BE in

select

AR (? READOP , cpu , mem)

where member (READOP ,{ ReadOnce , ReadShared , ReadClean , ReadUnique ,

ReadNotSharedDirty , MakeUnique , CleanUnique ,

CleanShared , CleanInvalid , MakeInvalid })

[] B (? WRITEOP , cpu , mem , TRUE)

[] i

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: i n i t i a l i z a t i o n o f the w r i t e r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

AW (? WRITEOP , cpu , mem)

where member (WRITEOP ,{ WriteUnique , WriteLineUnique ,

WriteBack , WriteClean , WriteEvict });

−−−

−−− PHASE 3: second loop a f t e r the i n i t i a l i z a t i o n o f the wr i t e r eq u e s t −−−−−−−−

−−−

loop NO in

select

102

8.1. Modeling Formal Checks in LNT

AW (? WRITEOP1 , cpu , mem)

where member (WRITEOP1 ,{ WriteUnique , WriteLineUnique ,

WriteBack , WriteClean , WriteEvict })

[] i

[] break NO

end select

end loop ;

−−−

−−− PHASE 4: response o f the wr i t e r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

B (WRITEOP , cpu , mem , TRUE)

end loop

end var

end process

end module

8.1.2 C2: No Maintenance Transaction while Pending Shareable Trans-

action

The check C2 requires that:

The master must complete any outstanding shareable transactions to the
cache line before issuing a cache maintenance transaction corresponding to
the same cache line.

We model the check C2 by a loop, consisting of four phases (see the code below). The
PHASE 1 is a loop preceding the shareable write or read request: in this loop we can send
write and read requests while those requests are not shareable, receive write and read
responses, do an intern rendezvous (i) or break the inner loop. In PHASE 2 a shareable
write or read request is sent. The PHASE 3 is a loop (a shareable write or read request is
in progress). In this loop we can send a read request while this read is neither shareable
nor maintenance, receive a response for a read or write different from the shareable write
or read of the PHASE 2, do an intern rendezvous (i) or break the inner loop. In PHASE 4

the shareable write or read response is received. After that, we return to the PHASE 1.

module prop_ar_aw_no_maintenance (types) is

process MAIN [AR: AR_OCHANNEL , AW: AW_OCHANNEL , R: R_CHANNEL , B: B_CHANNEL]

is

var cpu: INDEX_CPU , mem: INDEX_MEM , ACEOP , SHAREABLE , NOTMAINT :ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e the s h a r e a b l e r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

loop BE in

select

103

Chapter 8. Sanity of a Formal Check List

AR (? ACEOP , cpu , mem)

where not (member (ACEOP ,{ ReadShared , ReadClean , ReadNotSharedDirty ,

MakeUnique , ReadUnique , CleanUnique }))

[] AW (? ACEOP , cpu , mem)

where not (member (ACEOP ,{ WriteUnique , WriteLineUnique }))

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

[] B (? ACEOP , cpu , mem , TRUE)

[] i

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: i n i t i a l i z a t i o n o f the s h a r e a b l e r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

select

AR (? SHAREABLE , cpu , mem)

where member (SHAREABLE , {ReadOnce , ReadShared , ReadClean ,

ReadNotSharedDirty ,

MakeUnique , ReadUnique , CleanUnique })

[] AW (? SHAREABLE , cpu , mem)

where member (SHAREABLE , { WriteUnique , WriteLineUnique })

end select ;

−−−

−−− PHASE 3: second loop a f t e r the i n i t i a l i z a t i o n o f the s h a r e a b l e r e q u e s t −−−−

−−−

loop NO in

select

AR (? ACEOP , cpu , mem) −− ni maintenance ni s h a r e a b l e

where not (member (ACEOP , { CleanShared , CleanInvalid , MakeInvalid ,

ReadOnce , ReadShared , ReadClean , ReadNotSharedDirty ,

MakeUnique , ReadUnique , CleanUnique }))

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

where (ACEOP <> SHAREABLE)

[] B (? ACEOP , cpu , mem , TRUE)

where (ACEOP <> SHAREABLE)

[] i

[] break NO

end select

end loop ;

−−−

−−− PHASE 4: response o f the s h a r e a b l e r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

select

R(SHAREABLE , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

[] B (SHAREABLE , cpu , mem , TRUE)

end select

end loop

end var

end process

end module

8.1.3 C3: No Shareable Read Transaction while Pending Maintenance

Transaction

The check C3 requires that:

104

8.1. Modeling Formal Checks in LNT

The master must not issue any further shareable transactions to the same
cache line until the cache maintenance transaction is complete.

We model the check C3 by a loop, consisting of four phases (see the code below). The
PHASE 1 is a loop preceding the maintenance read request: in this loop we can send
non-maintenance read requests, receive read responses, do an intern rendezvous (i) or
break the inner loop. In the PHASE 2 a maintenance read request is sent. The PHASE 3

is a loop(a maintenance read request is in progress). In this loop we can send a read
request while this read is neither shareable nor maintenance, receive a non-maintenance
read response, do an intern rendezvous (i) or break the inner loop. In the PHASE 4 the
maintenance read response is received. After that, we return to the PHASE 1.

module prop_no_shareable_read (types) is

process MAIN [AR: AR_OCHANNEL , R: R_CHANNEL]

is

var cpu: INDEX_CPU , mem: INDEX_MEM , ACEOP , MAINTENANCE , NOTMAINT :ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e the i n i t i a l i z a t i o n o f the maintenance r e q u e s t −−

−−−

loop BE in

select

AR (? ACEOP , cpu , mem)

where not (member (ACEOP ,{ CleanShared , CleanInvalid , MakeInvalid }))

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

[] i

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: i n i t i a l i z a t i o n o f the maintenance r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−

−−−

AR (? MAINTENANCE , cpu , mem)

where member (MAINTENANCE , { CleanShared , CleanInvalid , MakeInvalid });

−−−

−−− PHASE 3: second loop a f t e r the i n i t i a l i z a t i o n o f the maintenance r e q u e s t −−

−−−

loop NO in

select

AR (? ACEOP , cpu , mem) −− ni maintenance ni s h a r e a b l e

where not (member (ACEOP , { CleanShared , CleanInvalid , MakeInvalid ,

ReadOnce , ReadShared , ReadClean , ReadNotSharedDirty ,

MakeUnique , ReadUnique , CleanUnique }))

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

where (ACEOP <> MAINTENANCE)

[] i

[] break NO

end select

end loop ;

−−−

−−− PHASE 4: response o f the maintenance r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105

Chapter 8. Sanity of a Formal Check List

−−−

R(MAINTENANCE , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

end loop

end var

end process

end module

8.1.4 C4: No WriteBack or WriteClean while WriteUnique or Write-

LineUnique

The check C4 expresses that:

No additional WriteBack or WriteClean transactions can be issued until all
outstanding WriteUnique or WriteLineUnique transactions are completed.

We model the check C4 by a loop, consisting of four phases. The PHASE 1 is a loop
preceding the WriteUnique or WriteLineUnique write request. In this loop we can
send write requests while they are neither WriteUnique nor WriteLineUnique, receive
write responses, do an intern rendezvous (i) or break the inner loop. In the PHASE 2

a WriteUnique or WriteLineUnique write request is sent. The PHASE 3 is a loop (a
WriteUnique or WriteLineUnique write request is in progress). In this loop we can send
a write request while this write is neither WriteUnique/WriteLineUnique nor WriteBack-
/WriteClean, receive a write response different from the WriteUnique/WriteLineUnique
pending transaction, do an intern rendezvous (i) or break the inner loop. In the PHASE 4

write response corresponding to the WriteUnique/WriteLineUnique pending transaction
is received. After that, we return to the PHASE 1.

module prop_no_wb_wc_while_wu_wlu (types) is

process MAIN [AW: AW_OCHANNEL , B: B_CHANNEL]

is

var cpu: INDEX_CPU , mem: INDEX_MEM , ACEOP , PEND , NOTMAINT :ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e the i n i t i a l i z a t i o n o f the pending r e q u e s t −−−−−−

−−−

loop BE in

select

AW (? ACEOP , cpu , mem)

where not (member (ACEOP ,{ WriteUnique , WriteLineUnique }))

[] B (? ACEOP , cpu , mem , TRUE)

[] i

[] break BE

end select

end loop ;

−−−

106

8.1. Modeling Formal Checks in LNT

−−− PHASE 2: i n i t i a l i z a t i o n o f the pending r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

AW (? PEND , cpu , mem)

where member (PEND , { WriteUnique , WriteLineUnique });

−−−

−−− PHASE 3: second loop a f t e r the i n i t i a l i z a t i o n o f the pending r e q u e s t −−−−−−

−−−

loop NO in

select

AW (? ACEOP , cpu , mem) −− ni PEND ni INTERD

where not (member (ACEOP , { WriteUnique , WriteLineUnique ,

WriteBack , WriteClean }))

[] B (? ACEOP , cpu , mem , TRUE)

where (ACEOP <>PEND)

[] i

[] break NO

end select

end loop ;

−−−

−−− PHASE 4: response o f the pending r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

B(PEND , cpu , mem , TRUE)

end loop

end var

end process

end module

8.1.5 C5: No Shareable write Transaction while Maintenance Trans-

action

The check C5 requires that:

The master must not issue any further shareable transactions to the same
cache line until the cache maintenance transaction is complete.

We model the check C5 by a loop, consisting of four phases. The PHASE 1 is a loop
preceding the maintenance read request. In this loop we can send write and non-
maintenance read requests, receive write and read responses, do an intern rendezvous (i)
or break the inner loop. In the PHASE 2 a maintenance read request is sent. The PHASE

3 is a loop (a maintenance read request is in progress). In this loop we can send a
read request while this read is neither shareable nor maintenance, receive a response
for a write or read different from the maintenance read of the PHASE 2, do an intern
rendezvous (i) or break the inner loop. In the PHASE 4 the maintenance read response
is received. After that, we return to the PHASE 1.

module prop_no_shareable_write (types) is

process MAIN [AR: AR_OCHANNEL , R: R_CHANNEL , AW: AW_OCHANNEL , B: B_CHANNEL]

is

var cpu: INDEX_CPU , mem: INDEX_MEM , ACEOP , MAINTENANCE , NOTMAINT :ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

107

Chapter 8. Sanity of a Formal Check List

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e the i n i t i a l i z a t i o n o f the maintenance r e q u e s t −−

−−−

loop BE in

select

AR (? ACEOP , cpu , mem)

where not (member (ACEOP ,{ CleanShared , CleanInvalid , MakeInvalid }))

[] AW (? ACEOP , cpu , mem)

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

[] B (? ACEOP , cpu , mem , TRUE)

[] i

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: i n i t i a l i z a t i o n o f the maintenance r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−

−−−

AR (? MAINTENANCE , cpu , mem)

where member (MAINTENANCE , { CleanShared , CleanInvalid , MakeInvalid });

−−−

−−− PHASE 3: second loop a f t e r the i n i t i a l i z a t i o n o f the maintenance r e q u e s t −−

−−−

loop NO in

select

AR (? ACEOP , cpu , mem) −− ni maintenance ni s h a r e a b l e

where not (member (ACEOP , { CleanShared , CleanInvalid , MakeInvalid ,

ReadOnce , ReadShared , ReadClean , ReadNotSharedDirty ,

MakeUnique , ReadUnique , CleanUnique }))

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

where (ACEOP <> MAINTENANCE)

[] B (? ACEOP , cpu , mem , TRUE)

[] i

[] break NO

end select

end loop ;

−−−

−−− PHASE 4: response o f the maintenance r e q u e s t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

R(MAINTENANCE , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

end loop

end var

end process

end module

8.1.6 C6: Snoop Response when Memory Update in Progress

The check C6 requires that:

If a snooped master has a memory update in progress, using either a WriteBack

or WriteClean transaction, then once it receives a snoop transaction to the
same line, the snooped master must ensure that no other master can perform a

108

8.1. Modeling Formal Checks in LNT

memory update at the same time. This is done by giving a snoop response with
PassDirty parameter de-asserted and IsShared parameter asserted, which does
not pass the permission to store to the line and does not pass responsibility
for updating memory.

We model the check C6 by a loop, consisting of four phases. The PHASE 1 is a loop
preceding the memory update. In this loop we can send write requests while the write is
not a memory update, receive write responses, send snoop data responses (CD channel),
do an intern rendezvous (i) or break the inner loop. In the PHASE 2 a WriteBack or
WriteClean memory update request is sent. The PHASE 3 is a loop (a memory update is
in progress): in this loop we can send snoop data responses while PassDirty parameter
is de-asserted (i.e., PassDirty=false) and the IsShared parameter is asserted (i.e.,
IsShared=true), do an intern rendezvous (i) or break the inner loop. In the PHASE 4

the memory update write response (B channel) is received. After that, we return to the
PHASE 1.

module prop_aw_b_cd_wbwc_resp (types) is

! nat_bits 5

process MAIN [AW: AW_OCHANNEL , B: B_CHANNEL , CD: CD_CHANNEL]

is

var cpu , cpu0: INDEX_CPU , mem: INDEX_MEM , X1 , X2 :ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e the memory update −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

loop BE in

select

i

[] B (?X2 , cpu , mem , TRUE)

[] CD (?X2 , ?cpu0 , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

[] AW (?X2 , cpu , mem) where not ((X2 == WriteBack) or (X2 == WriteClean))

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: i n i t i a l i z a t i o n o f the memory update −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

AW (?X1 , cpu , mem) where ((X1 == WriteBack) or (X1 == WriteClean));

−−−

−−− PHASE 3: second loop a f t e r the i n i t i a l i z a t i o n o f the memory update −−−−−−−−

−−−

loop NO in

select

i

[] CD (?X2 , ?cpu0 , cpu , mem , ?d, ?b1 , (∗PD∗) ?b2 , (∗ IsSh ∗) ?b3)

where (b2 == FALSE) and (b3 == TRUE)

[] break NO

end select

end loop ;

109

Chapter 8. Sanity of a Formal Check List

−−−

−−− PHASE 4: response o f the memory update −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

B (X1 , cpu , mem , TRUE)

end loop

end var

end process

end module

8.1.7 C7: Order between Channels AC and CD

The check C7 requires that:

The master must wait the end of AC transfer before issuing the corresponding
CD transfer.

We model the check C7 by a loop, consisting of four phases. The PHASE 1 is a loop
preceding the AC transfer. In this loop we do not have to send a CD transfer. We can
just do an intern rendezvous (i) or break the inner loop. In the PHASE 2 an AC transfer
is sent. The PHASE 3 is a sequence of arbitrary operations (i). In the PHASE 4 the
corresponding CD transfer is sent. After that, we return to the PHASE 1.

module prop_ac_cd_order (types) is

! nat_bits 5

process MAIN [AC: AC_CHANNEL , CD: CD_CHANNEL]

is

var cpu , cpu0: INDEX_CPU , mem: INDEX_MEM , X1 , X2:ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e AC t r a n s f e r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

loop BE in

select

i

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: AC t r a n s f e r −−−

−−−

AC (?X1 , ?cpu0 , cpu , mem);

−−−

−−− PHASE 3: second loop between AC t r a n s f e r and CD t r a n s f e r −−−−−−−−−−−−−−−−

−−−

loop EB in

select

i

[] break EB

110

8.1. Modeling Formal Checks in LNT

end select

end loop ;

−−−

−−− PHASE 4: CD t r a n s f e r −−−

−−−

CD (X1 , cpu0 , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

end loop

end var

end process

end module

8.1.8 C8: Order between Channels AC and CR

The check C8 requires that:

The master must wait the end of AC interface transfer (i.e., rendezvous in
system-level view) before issuing the corresponding CR transfer.

We model the check C8 by a loop, consisting of four phases. The PHASE 1 is a loop
preceding the AC transfer. In this loop we have not to send a CR transfer. We can just do
an internal rendezvous (i) or break the inner loop. In the PHASE 2 an AC transfer is sent.
The PHASE 3 is a sequence of arbitrary operations (i). In the PHASE 4 the corresponding
CR transfer is sent. After that, we return to the PHASE 1.

module prop_ac_cr_order (types) is

process MAIN [AC: AC_CHANNEL , CR: CR_OCHANNEL]

is

var cpu , cpu0: INDEX_CPU , mem: INDEX_MEM , X1 , X2:ACE_OP ,

d: DATA_T , b1 , b2 , b3: bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

−−−

−−− PHASE 1: f i r s t loop b e f o r e AC t r a n s f e r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−

loop BE in

select

i

[] break BE

end select

end loop ;

−−−

−−− PHASE 2: AC t r a n s f e r −−−

−−−

AC (?X1 , ?cpu0 , cpu , mem);

−−−

−−− PHASE 3: second loop between AC t r a n s f e r and CR t r a n s f e r −−−−−−−−−−−−−−−−

−−−

loop EB in

select

i

111

Chapter 8. Sanity of a Formal Check List

[] break EB

end select

end loop ;

−−−

−−− PHASE 4: CR t r a n s f e r −−−

−−−

CR (X1 , cpu0 , cpu , mem)

end loop

end var

end process

end module

8.1.9 C9: PassDirty and IsShared Check

The check C9 requires that:

ReadNoSnoop, ReadUnique, CleanUnique, MakeUnique, CleanInvalid, and
MakeInvalid transactions must have a response with IsShared parameter
de-asserted (i.e., 7th offer =false).

ReadNoSnoop, ReadOnce, ReadClean, CleanUnique, MakeUnique, Clean-

Shared, CleanInvalid, and MakeInvalid transactions must have a response
with PassDirty parameter de-asserted (i.e., 6th offer =false).

A ReadNotSharedDirty transaction response must not have both IsShared
and PassDirty parameters asserted in the same time (i.e., both 6th and 7th

offer =true).

We model the check C9 by a loop of non-deterministic choice between different allowed read
responses (allowed combination of ACE transaction, PassDirty and IsShared parameters)
and intern rendezvous (i) representing arbitrary operations. This loop can be broken in
any cycle.

module prop_asser_no_passdirty_isshared (types) is

process MAIN [R: R_CHANNEL , sync: any]

is

var cpu: INDEX_CPU , mem: INDEX_MEM , ACEOP , SELECTED :ACE_OP ,

d: DATA_T , b1 , b2 , b3 , arret : bool

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

arret := false ;

loop AE in

select

R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , FALSE)

where member (ACEOP ,{ ReadUnique });

arret := true

[] R (? ACEOP , cpu , mem , ?d, ?b1 , FALSE , ?b3)

where member (ACEOP ,{ ReadOnce , ReadClean , CleanShared });

arret := true

[] R (? ACEOP , cpu , mem , ?d, ?b1 , FALSE , FALSE)

where member (ACEOP ,{ CleanUnique , MakeUnique , CleanInvalid , MakeInvalid });

112

8.2. Local Sanity of Each Check

arret := true

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

where (ACEOP == ReadNotSharedDirty) and not ((b2 == TRUE) and (b3 ==

TRUE));

arret := true

[] R (? ACEOP , cpu , mem , ?d, ?b1 , ?b2 , ?b3)

where not (member (ACEOP , { ReadUnique , CleanUnique , MakeUnique , CleanInvalid

,

MakeInvalid ,ReadOnce , ReadClean , CleanShared }));

arret := true

[] i

end select

end loop

end var

end process

end module

8.2 Local Sanity of Each Check

In fact, the IV unit considers only a single interface (i.e., a single master/slave pair),
whereas the formal model describes the complete SoC. To obtain the LTS of the interface
between ACE master 1 (big) and the CCI (upper left part of Fig. 5.1), we hide in
the LTS of the whole system all labels except those of the selected interface and then
minimize the resulting LTS according to divergence-sensitive branching bisimulation

(divbranching) [VGW96], which preserves the branching structure and the livelocks
(cycles of internal τ -transitions). Applying those steps reduces the LTS as generated
from the model (498,197 states, 1,343,799 transitions) by two orders of magnitude (3,653
states, 8,924 transitions). We store the reduced LTS in a file named interface.bcg,
where the extension .bcg stands for Binary Coded Graph, the compact binary format
used to store LTSs in CADP.

We aim at verifying that each check is well specified. Because each check uses only a
subset of interface channels, we generate a corresponding sub-interface by hiding all
channels except those occurring in the check, and apply again divbranching reduction.

Example 14 Check C1 (presented in Section 8.1) uses only three channels: address
read (AR), address write (AW), and write response (B). Thus we obtain the corresponding
sub-interface LTS (105 states, 474 transitions). by the following SVL (Script Verification
Language) [GL01] script:

"interface_ar_aw_b.bcg" = divbranching reduction of

gate hide all but AR, AW, B in "interface.bcg";

We verify that each sub-interface LTS is included in the corresponding check LTS modulo
the preorder of the divbranching bisimulation. We conclude that the check is a correct

113

Chapter 8. Sanity of a Formal Check List

overapproximation of the behavior of the subset of ACE channels.

8.3 Global Sanity of the List of Checks

To verify that the list of checks covers all the behaviors of the interface model, we compare
the parallel composition of all the nine checks with the interface LTS. We use smart
reduction [CL11] to automatically optimize the order of composing and minimizing the
checks in the parallel composition: the complete composition process takes approximately
five minutes. We express the parallel composition in SVL with an LNT-style parallel
composition operation: each check is required to synchronize on all the gates (channels)
it uses; synchronization is n-ary, i.e., all checks that have a given channel (e.g., AR) in
their synchronization set (on the left of ->) synchronize on the channel (e.g., C1, C2, C3,
C5 all together synchronize on AR).

"all_checks.bcg" =

smart divbranching reduction of

par AR, AW, B -> "C1.lnt"

|| AR, AW, R, B -> "C2.lnt"

|| AR, R -> "C3.lnt"

|| AW, B -> "C4.lnt"

|| AR, AW, R, B -> "C5.lnt"

|| AW, B, CD -> "C6.lnt"

|| AC, CD -> "C7.lnt"

|| AC, CR -> "C8.lnt"

|| R -> "C9.lnt"

end par;

We compare the interface LTS and the checks LTS all_checks.bcg (11,773 states,
8,171,497 transitions) to verify if the interface LTS is included in the LTS all_checks.bcg

modulo the preorder corresponding to the divbranching bisimulation. This verification
fails, i.e., we detect a missing check; the counterexample (provided by CADP) shows a W

label following an AW label.

According to the ACE specification, there must be the same number of W’s and AW’s.
We express this constraint by a new check (C10), avoiding the use of counters, using
asynchronous parallel composition (AW || W):

module prop_aw_w (types) is

process MAIN [AW: AW_oCHANNEL , W: W_CHANNEL] is

var cpu: INDEX_CPU , mem: INDEX_MEM ,

ACEOP : ACE_OP , d: DATA_T

in

mem := INDEX_MEM (1); cpu := INDEX_CPU (1);

i;

loop

114

8.4. Improvement of System Coverage Infrastructure

par

AW (? ACEOP , cpu , mem)

|| W (ACEOP , cpu , mem , ?d)

end par

end loop

end var

end process

end module

Adding C10 to the parallel composition of the checks, yields a new LTS
all_checks_bis.bcg (38,793 states, 27,200,587 transitions).

We compare all_checks_bis.bcg and interface.bcg and observe now that
interface.bcg is included in all_checks_bis.bcg for divbranching bisimulation.
Hence, the check list is now complete with respect to our formal model. Although
the missing check could also be found manually by inspecting the list of channels in
the checks (all channels but W are present), our approach has the additional benefits
of illustrating the missing behavior and enabling to formally, and semi-automatically,
establish the completeness of the check list.

8.4 Improvement of System Coverage Infrastructure

However, system requirements cannot be verified on a single IV unit separately. We
complete the verification infrastructure by introducing the notion of a system verification

unit (SV unit) connected to all IV units, so as to combine behaviors of different interfaces
in order to validate system-level requirements.

For the considered SoC, we define an SV unit consisting of 56 PSL (Property Specification
Language) [oEE10] sequences, 56 PSL basic cover points, and 36 PSL checks. This enables
to verify on the RTL test bench that each coherent transaction produces the corresponding
snoop transaction, and that each snoop transaction eventually receives a response from
the snooped master.

Example 15 We present below an example of two PSL sequences. The first one
presents a ReadOnce transfer in the address read channel AR for an ACE-Lite master S0

(for the simulation test benches the masters are considered as slaves S? and the slaves are
considered as masters M?). This transfer is observed if the transfer is valid (i.e., ARVALIDS0

parameter==1), the transaction is not a barrier transaction (i.e., ARBARS0[0]==0), we are
in a shareable domain of the memory (i.e., ARDOMAINS0==01 or 10), and the transaction
is a ReadOnce (i.e., ARSNOOPS0==0000 in a shareable domain). The second PSL sequence
presents a ReadOnce transfer on the address coherency channel AC for an ACE master S3.
This transfer is observed if the transfer is valid (i.e., ACVALIDS3==1) and the transaction
is a ReadOnce (i.e., ACSNOOPS0==0000 in a shareable domain).

115

Chapter 8. Sanity of a Formal Check List

//------ AR ReadOnce transaction ACE-Lite S0 ------

sequence AR_ReadOnce_s0 = {{ARVALIDS0==1’b1} & {ARBARS0[0]==1’b0}

& {{ARDOMAINS0==2’b01} | {ARDOMAINS0==2’b10}} & {ARSNOOPS0==4’b0000}};

//------ AC ReadOnce transaction ACE S3 ------

sequence AC_ReadOnce_s3 = {{ACVALIDS3==1’b1} & {ACSNOOPS3==4’b0000}};

Example 16 After that, we present an example of a PSL basic cover point and a PSL
check. The basic cover point represents an action ReadOnce that occurred on the address
read channel AR. We present that by the defined sequence AR_ReadOnce_s0. The check
represents that a ReadOnce transfer in the address read channel AR of the ACE-Lite
master S0 is always followed, after a finite number of clock edges, by a ReadOnce transfer
in the address coherency channel AC. The defined sequences are useful to abstract the
parameters level, when defining cover points and checks.

//------ Cover AR ReadOnce transaction ACE-Lite S0 ------

cover_aread_ReadOnce_s0: cover {AR_ReadOnce_s0}

report "ReadOnce ACE Lite Master 0 transaction occurred";

//------ Assert Transaction AR S0 => AC S3 ------

assert_ReadOnce_S0_AR_S3_AC:

assert (always {AR_ReadOnce_s0} |=> {[*];AC_ReadOnce_s3});

8.5 Industrial Results

Our methodology was used by STMicroelectronics verification solution team to validate
IV unit provided by a major CAD supplier. We focused in our study on the system-level
checks.

The checks of the IV unit are expressed in System Verilog Assertion (SVA). Some checks
concern the behavior of the DUV (i.e., cache coherent interconnect), and are called
assertions. Other checks concern the behavior of the verification IP (i.e., IV unit), and
are called constraints.

The IV unit is used both in static and dynamic verification test benches. In the dynamic
test benches we connect the IV unit as a monitor to verify if the cover points and checks
are activated by the tests runned by a dynamic Verification IP (VIP), provided by the
same CAD supplier, and verify if the activated checks pass or fail. In the static test
benches we connect the IV unit to the RTL of the DUV. We use constraints as inputs of

116

8.5. Industrial Results

the DUV and the assertions as checks to verify the outputs of the DUV.

In our study presented above, we use the LNT model to replace the DUV and we validate
the list of checks. Our LNT model combines both the behavior of the cache coherent
interconnect and the behavior of the connected masters/slaves. As a result, either
constraints (C1 to C8) and assertions (C9) of the IV unit are considered as constraints
against the LNT model of the ACE-based SoC.

Giving that the VIPs and the coverage lists were provided by the same CAD supplier,
some verification gaps may not be detected. In fact, the same misinterpretation of the
ACE specification can be reproduced. Working with a different approach led us to
validate the industrial checks, and thanks to our directed tests we could detect gaps in
the industrial VIPs.

The test bench is now ready to check that the coherency mechanisms work well.

117

Chapter 9

Conclusion

There is nothing more practical than a good theory, and there is nothing more interesting
than linking the good theory to a real case study and to prove concretely the relevance
of the theory. Applying formal methods, developed by the concurrency theory research
community, to improve the functional verification of hardware designs is an important
focus in the current works aiming to introduce formal methods in the hardware design
flow. The main purpose of this work is to prove the suitability and the efficiency of this
approach in an industrial context. To this end, a high-level formal model is used to
improve the functional verification of a cache coherent SoC. This SoC provides hardware
support for system-level cache coherency, via the state-of-the-art AMBA 4 ACE protocol,
which supports cache coherency in heterogeneous SoCs. A family of those SoCs is
currently under development at STMicroelectronics.

This thesis starts by formally modeling a generic cache coherent SoC based on the
ACE specification. Then this model is exploited in different ways: model checking the
system properties on the formal model, extracting relevant test cases to be run on the
implementation, and validating an industrial verification unit with respect to the formal
model.

In the sequel, we present a summary of the principal contributions of this thesis. Then
we propose some research and engineering perspectives to explore in order to capitalize
on the results of this thesis.

9.1 Summary of Contributions

A generic formal LNT model of the recent ACE specification [ARM13] is produced. The
proposed model includes all the behaviors allowed by the specification. Our model is
parametric in the sense that a subset of ACE transactions can be activated and the

119

Chapter 9. Conclusion

number of ACE and ACE-Lite masters can be chosen, as well as those that are activated
or not. The constraint-oriented specification style is helpful in the modeling of general
requirements expressed in natural language. Our model is found to be valuable by
STMicroelectronics architects, because it enables (using the OCIS simulator) interactive
and backtrackable step-by-step system-level simulation of all ACE-compliant behaviors.

Formal modeling of hardware specifications requires expertise and can be time-consuming.
Often, the first model is not the best, and several iterations are required in order to
obtain a mature model. When formally modeling a hardware system, it is indispensable
to focus on the most complex parts, and to use appropriate abstractions. That is why,
knowledge and experience must be capitalized. Besides, once the model exists, it can be
profitably exploited in multiple ways. Some of them are presented in the following.

Correctness properties are expressed as temporal logic formulæ (in MCL) and verified
automatically (using the EVALUATOR 4.0 tool). Hence, formal verification techniques
are found to be useful for the analysis of heterogeneous coherent SoCs. We take advantage
of the parametrization of our model by proposing an approach producing a comprehensive
set of counterexamples for each non-satisfied property. The classical on-the-fly model
checking approach, on its side, typically produces at most one counterexample.

The formal verification can require the use of clever verification strategies, such as
compositional verification and on-the-fly verification. We notice that the use of explicit-
state model checking based on enumerative techniques is not equivalent to a pure
brute force technique. In fact, clever techniques are used in the different phases of the
verification flow to address the challenges of industrial sized systems. The non-trivial
issues detected, e.g., high-quality1 bugs or limitations, prove the effectiveness of formal
techniques introduced in the hardware functional verification flow.

Using only CDTG to generate tests in a one-step approach did not reach a satisfying
coverage due to the complexity of system-level cache-coherency protocols. That is why
this thesis proposes to enhance the CDTG industrial test bench by introducing model-
based test generation of abstract test cases, using the results of the model checking.
Those abstract test cases are then refined with the CDTG solver into RTL concrete test
cases.

Prior approaches [GH99, QM11] transform counterexamples produced by the model
checker into test cases. In this thesis, the counterexamples are used to produce smaller
(interesting) configurations of the model which still contain violation of a given property,
thus abstracting away irrelevant details. The abstract tests are generated from these
interesting configurations. Those tests concern system-level properties in the sense that
several interfaces are activated.

1A high-quality bug is an error that would go undetected by the established validation process of
some product.

120

9.2. Research Perspectives

The proposed approach capitalizes on existing environments while solving their limitations
for system-level protocols. This has an impact on a family of industrial SoCs in production
at STMicroelectronics: it helps to improve the test bench and to increase test coverage.
In addition, this approach contributes to the maturation of commercial VIPs. The
effectiveness of the proposed approach is illustrated by finding a major limitation twenty
months before it is found by other classical approaches.

Finally, to check the sanity of an IV unit (i.e., a list of formal checks) used to monitor
the behavior of an interface of the DUV, a cross-checking approach is used, comparing
an interface LTS extracted from the proposed formal model with the IV unit. Formal
checks are expressed in LNT. Smart-composition and the divbranching bisimulation are
used to compose an LTS representing all the checks. After that, equivalence checking is
used to validate the sanity of the formal checks list. This comparison enables to find a
missing check.

The formal verification is classically used by hardware engineers on low levels. The
semi-formal verification, combining simulation and formal checks, releases the formal
verification techniques in different ways. It is a solution for the limitations in scalability
of the formal verification due to the state-explosion problem and a way to confirm issues
detected by the formal verification of a high-level model in the concrete test bench of
the design under verification. This thesis improves the state of the art of semi-formal
verification test benches by extracting results from high-level formal modeling and
verification of the specification in order to extend the capabilities of the semi-formal test
bench.

9.2 Research Perspectives

A first perspective concerns the introduction of more automation to strengthen the
integration of the proposed approach in the industrial flow. Some manual parts have
to be automated, in particular the translation of abstract test cases into inputs of a
CDTG solver. The automation of this part enables also further development of on-line
model-based testing approach by co-simulating the formal model and the DUV.

A second perspective concerns extending the proposed formal model to expand the scope
of applications. In particular, the LNT model could be extended to take into account so-
called snoop filters, which enable a coherent interconnect to implement a directory-based
model, as required for an SoC with a larger number of coherent components. Hence, such
an extension would cover also recently announced interconnects such as ARM’s CCN-504.
Furthermore, the LNT model could be annotated with quantitative information (e.g.,
operation latencies) using the framework of Interactive Markov Chains [Her02], so as to
enable performance evaluation, capitalizing on the modeling effort done in this thesis.

121

Chapter 9. Conclusion

Given the success of our approach, it seems also interesting to apply this approach to the
system-level protocols in the next generation of SoCs. The proposed approach to assess
the sanity of a check list (i.e., IV unit) against a formal model is akin to crosschecking,
a technique widely used in the hardware community in order to improve confidence on
the verification components. To apply our test generation approach, the formal model
must be configurable, so as to violate a property. These preconditions seem acceptable,
as modifying parts of the model (e.g., some data types) is found feasible using simple
scripts, and the literature presents several techniques to automate the production of
faulty models.

9.3 Scientific Publications and Communications

This thesis led to several publications and communications to the scientific and industrial
community.

9.3.1 Scientific Publications

International conference proceedings:

• A. Kriouile and W. Serwe. Using a Formal Model to Improve Verification of a
Cache-Coherent System-on-Chip. In TACAS, LNCS 9035, pp. 708–722. Springer,
April 2015.

• A. Kriouile and W. Serwe. Formal Analysis of the ACE Specification for Cache
Coherent Systems-on-Chip. In FMICS, LNCS 8187, pp. 108–122. Springer,
September 2013.

Other international publications:

• A. Kriouile and W. Serwe. ARMCacheCoherency Model, benchmark model In
Model Checking Contest @ Petri Nets. June 2013.
http://mcc.lip6.fr/2014/pdf/ARMCacheCoherenceform.pdf

National proceedings:

• A. Kriouile and W. Serwe. Analyse formelle du protocole ACE : cohérence de
caches des systèmes sur puce In ETR, pp. 130- 133. August 2013.

122

9.3. Scientific Publications and Communications

9.3.2 Scientific Communications

Invited talk:

• A. Kriouile and W. Serwe. Using a Formal Model to Improve Verification of a
Cache-Coherent System-on-Chip. In Cadence Club Formal, France. March 19th

2015.

Presentations in international conferences:

• A. Kriouile and W. Serwe. Using a Formal Model to Improve Verification of a
Cache-Coherent System-on-Chip. In TACAS, part of ETAPS 2015, Queen Mary
University in London, UK. April 17th 2015.

• A. Kriouile and M. Zendri. 20 years of Hardware Verification with CADP. In
Formal Methods Forum, LAAS laboratory in Toulouse, France. October 16th 2014.

• A. Kriouile and W. Serwe. Formal Analysis of the ACE Specification for Cache
Coherent Systems-on-Chip. In FMICS, University Complutense of Madrid, Spain.
September 24th 2013.

Presentations in national seminars:

• A. Kriouile and M. Zendri. Model based test generation for cache coherent Systems-
on-Chips. In Formal Methods Forum, LAAS laboratory in Toulouse, France. Juin
16th 2015.

• A. Kriouile. Formal Methods for Functional Verification of Cache-Coherent SoCs.
In CONVECS’2015, Cheravines, Isére, France. May 2015.

• A. Kriouile. Model-Based Testing of SoCs: from Theory to Practice. In CON-

VECS’2014, Herbelon, Isére, France. June 2014.

• A. Kriouile. Introduction of Formal High Level Modeling into SoC Validation:
Illustration on ACE compliant Cache Coherence. In CONVECS’2013, Col de Porte,
Isére, France. November 2013.

• A. Kriouile. Formal Modeling and Verification of an ACE Compliant Cache Coher-
ent Interconnect. In CONVECS’2012, Pont-en-Royans, Isére, France. November
2012.

Posters:

123

Chapter 9. Conclusion

• A. Kriouile (joint work with W. Serwe). Formal Analysis of the ACE specification
for Cache Coherent Systems-on-Chip (SoC). In ETR’2013.

• A. Kriouile. Validation of Distributed Systems on-Chip. In LIG’2013.

124

Appendix

125

Appendix A

Model Checking Properties

This appendix describes exhaustively the MCL formulæ used to validate the coherency
aspects of the ACE specification.

A.1 Unique dirty coherency

The first cache state coherency formula (ϕ5)1 requires that if a cache line (master m1,
memory line l) is in the state ACE_UD (the cache line is unique and modified), then as
long as the line does not change its status, all cache lines of other masters (m2 Ó= m1)
containing the same memory line (l) must be in the state ACE_I (the cache line is invalid).
This is a state-based property. The corresponding action-based property expresses that
if an action {?Ch m1 l ACE_UD} happens then while there is no action {?Ch m1 l s1

where s1 Ó= ACE_UD}, we check whether an action {?Ch m2 l s2 where m2 Ó= m1 and

s1 Ó= ACE_I} happens. If this is the case, then the property is not satisfied (false).

The MCL formula expressing this action-based property is the following:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UD"} .

(not ({?Ch:String ?op:String !m1 !l ?s1:String

where ace_state (s1) and (s1<>"ACE_UD")})) * .

{?Ch:String ?op:String ?m2:Nat !l ?s2:String

where (m2<>m1) and ace_state (s2)

and (s2<>"ACE_I")}

] false

1The ϕ1 to ϕ4 refer to the MCL formulæ written to validate the model (and not the ACE specification)
described in the Sec. 5.5

127

Appendix A. Model Checking Properties

A.2 Unique clean coherency

The second cache state coherency formula (ϕ6) is similar to ϕ5 and requires that if a
cache line (master m1, memory line l) is in the state ACE_UC (the cache line is unique
and not modified), then as long as the line does not change its status, all cache lines
of other masters (m2 Ó= m1) containing the same memory line (l) must be in the state
ACE_I (the cache line is invalid).

The corresponding action-based property expresses that if an action {?Ch m1 l ACE_UC}
happens, then while there is no action {?Ch m1 l s1 where s1 Ó= ACE_UC}, we check
whether an action {?Ch m2 l s2 where m2 Ó= m1 and s1 Ó= ACE_I} happens. If this is
the case, the property is not satisfied (false).

This action-based property is expressed by the following MCL formula:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UC"} .

(not ({?Ch:String ?op:String !m1 !l ?s1:String

where ace_state (s1) and (s1<>"ACE_UC")})) * .

{?Ch:String ?op:String ?m2:Nat !l ?s2:String

where (m2<>m1) and ace_state (s2)

and (s2<>"ACE_I")}

] false

A.3 Shared dirty coherency

The third cache state coherency formula (ϕ7) requires that if a cache line (master m1,
memory line l) is in the state ACE_SD (the cache line is shared and modified), then as
long as the line does not change its status, all cache lines of other masters (m2 Ó= m1)
containing the same memory line (l) must be either in the state ACE_SC (the cache line
is shared and not modified) or in the state ACE_I (the cache line is invalid).

The corresponding action-based property expresses that if an action {?Ch m1 l ACE_SD}
happens, then while there is no action {?Ch m1 l s1 where s1 Ó= ACE_SD}, we check
whether an action {?Ch m2 l s2 where m2 Ó= m1 and s1 Ó= ACE_I and s1 Ó= ACE_SC}
happens. If this is the case, the property is not satisfied (false).

This action-based property is expressed by the following MCL formula:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_SD"} .

(not ({?Ch:String ?op:String !m1 !l ?s1:String

128

A.4. Shared clean coherency

where ace_state (s1) and (s1<>"ACE_SD")})) * .

{?Ch:String ?op:String ?m2:Nat !l ?s2:String

where (m2<>m1) and ace_state(s2)

and (s2<>"ACE_I") and (s2<>"ACE_SC")}

] false

A.4 Shared clean coherency

The fourth cache state coherency formula (ϕ8) requires that if a cache line (master m1,
memory line l) is in the state ACE_SC (the cache line is shared and not modified), then
as long as the line does not change its status, all cache lines of other masters (m2 Ó=
m1) containing the same memory line (l) must be either in a shared state (ACE_SD or
ACE_SC) or an invalid state (ACE_I).

The corresponding action-based property expresses that if an action {?Ch m1 l ACE_SC}
happens then while there is no action {?Ch m1 l s1 where s1 Ó= ACE_SC}, we check
whether an action {?Ch m2 l s2 where m2 Ó= m1 and s1 Ó= ACE_I and s1 Ó= ACE_SC

and s1 Ó= ACE_SD} happens. If this is the case, the property is not satisfied (false).

This action-based property is expressed by the following MCL formula:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_SC"} .

(not ({?Ch:String ?op:String !m1 !l ?s1:String

where ace_state (s1) and (s1<>"ACE_SC")})) * .

{?Ch:String ?op:String ?m2:Nat !l ?s2:String

where (m2<>m1) and ace_state(s2) and (s2<>"ACE_I")

and (s2<>"ACE_SC") and (s2<>"ACE_SD")}

] false

A.5 Unique clean data integrity

The unique clean state requires that the data in the cache line (data1) must be equal
to the data in the shareable memory (data2). Once we detect an ACE_UC state and as
long as the line does not change its status, we require that data2 (data in the shareable
memory) is equal to data1.

In the action-based view, an action containing an ACE_UC state can be a data transfer
action (action with data) or a control action (action without data). Each case corresponds
to a different MCL formula (two formulæ are expressed).

The first formula (ϕ9) concerns a data transfer action with an ACE_UC. In this case when

129

Appendix A. Model Checking Properties

we observe an action {?Ch !m1 !l !data1 !ACE_UC}, then as long as there is neither an
action {?Ch !m1 !l !s1 where s1<>ACE_UC} (action without data) nor an action {?Ch

m1 l data s1 where s1<>ACE_UC} (action with data). We check whether an action {R

!0 !l !data2 where data2<>data1} happens. In fact, the read response R from the
shareable memory 0 is the only outgoing data transfer transaction from the memory. If
such a response occurs, the property is not satisfied (false).

The formula ϕ9 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat !"ACE_UC"} .

(

not ({?Ch:String ?op:String !m1 !l ?h:Nat ?s:String

where ace_state (s) and (s<>"ACE_UC")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_UC")})

)* .

{R ?op:string !"0" !l ?data2:Nat ?m2:Nat

where (data2<>data1)}

] false

The second formula (ϕ10) concerns a control action with an ACE_UC state. The data
transfer containing the data happens in a different action. In the beginning, we save the
data present in an action with a different cache state than ACE_UC {?Ch !m1 !l !data

!s1 where s1<>ACE_UC}, then we note an action {?Ch !m1 !l !ACE_UC}. As long as
there is neither an action {?Ch !m1 !l !s1 where s1<>ACE_UC} (action without data)
nor an action {?Ch !m1 !l !data !s1 where s1<>ACE_UC} (action with data). We
check whether an action {R !0 !l !data2 where data2<>data1} happens. If such a
response occurs, the property is not satisfied (false).

The formula ϕ10 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat ?s:String

where ace_state (s) and (s<>"ACE_UC")} .

(not {?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UC"})* .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_UC"} .

(

not ({?Ch:String ?op:String !m1 !l ?h:Nat ?s:String

where ace_state (s) and (s<>"ACE_UC")})

and

130

A.6. Shared dirty data integrity

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_UC")})

)* .

{R ?op:string !"0" !l ?data2:Nat ?m2:Nat

where (data2<>data1)}

] false

A.6 Shared dirty data integrity

The shared dirty state requires that the data1 located in the cache line (master m1,
memory line l) must be equal to the data2 in any valid cache line of an other master
(m2 Ó= m1) containing the same memory line (l) (Particularly, the cache state of this one
is shared clean).

In the action-based view, an action containing an ACE_SD state can have data or not.
Each case corresponds to a different MCL formula (two formulæ are expressed).

The first formula (ϕ11) concerns a data transfer action with an ACE_SD state. In this
case we note an action {?Ch !m1 !l !data1 !ACE_SD}, then as long as there is neither
an action {?Ch !m1 !l !s1 where s1<>ACE_SD} (action without data) nor an action
{?Ch !m1 !l !data !s1 where s1<>ACE_SD} (action with data). We check whether
an action {?Ch !m2 !l !data2 !s where data2<>data1 and s==ACE_SC} happens. If
such a response occurs, the property is not satisfied (false).

The formula ϕ11 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat !"ACE_SD"} .

(

not ({?Ch:String ?op:String !m1 !l ?h:Nat ?s:String

where ace_state (s) and (s<>"ACE_SD")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_SD")})

)* .

{?Ch:String ?op:String ?m2:Nat !l ?data2:Nat ?"ACE_SC"

where (m2<>m1) and (data2<>data1)}

] false

The second formula (ϕ12) concerns a control action with an ACE_SD state. The data
transfer containing the data happens in a different action. In the beginning, we save
the data present in an action with a different cache state than ACE_SD {?Ch !m1 !l

131

Appendix A. Model Checking Properties

!data !s1 where s1<>ACE_SD}, then we note an action {?Ch !m1 !l !ACE_SD}. As
long as there is neither an action {?Ch !m1 !l !s1 where s1<>ACE_SD} (action with-
out data) nor an action {?Ch !m1 !l !data !s1 where s1<>ACE_SD} (action with
data). We check whether an action {?Ch !m2 !l !data2 !s where data2<>data1 and

s==ACE_SC} happens. If such a response occurs, the property is not satisfied (false).

The formula ϕ12 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat ?s:String

where ace_state (s) and (s<>"ACE_SD")} .

(not {?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_SD"})* .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_SD"} .

(

not ({?Ch:String ?op:String !m1 !l ?h:Nat ?s:String

where ace_state (s) and (s<>"ACE_SD")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_SD")})

)* .

{?Ch:String ?op:String ?m2:Nat !l ?data2:Nat ?"ACE_SC"

where (m2<>m1) and (data2<>data1)}

] false

A.7 Shared clean data integrity

The shared clean state requires that the data (data1) in the cache line (master m1,
memory line l) must be equal to the data (data2) in any cache line of an other master
(m2 Ó= m1) containing the same memory line (l).

In the action-based view, an action containing an ACE_SC state can be with data or
without data. Each case corresponds to a different MCL formula. Two formulæ are
expressed.

The first formula (ϕ13) concerns a data transfer action with an ACE_SC

state. In this case we note an action {?Ch m1 l data1 ACE_SC}, then as
long as there is neither an action {?Ch m1 l s1 where s1 Ó= ACE_SC} (ac-
tion without data) nor an action {?Ch m1 l data s1 where s1 Ó= ACE_SC} (ac-
tion with data). We check whether an action {?Ch m2 l data2 s where data2

(m2<>m1) and ((s="ACE_SC" or s="ACE_SD")) and (data2<>data1)} happens. In
this case, the property is not satisfied (false).

132

A.7. Shared clean data integrity

The formula ϕ13 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat !"ACE_SC"} .

(

not ({?Ch:String ?op:String !m1 !l ?any of Nat ?s:String

where ace_state (s) and (s<>"ACE_SC")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_SC")})

)* .

{?Ch:String ?op:String ?m2:Nat !l ?data2:Nat ?"ACE_SC"|"ACE_SD"

where (m2<>m1) and (data2<>data1)}

] false

The second formula (ϕ14) concerns a control action with an ACE_SC sstate. The data
transfer containing the data happens in a different action. In the beginning, we save the
data present in an action with a different cache state than ACE_SC {?Ch m1 l data s1

where s1 Ó= ACE_SC}, then we note an action {?Ch m1 l ACE_SC}. As long as there is nei-
ther an action {?Ch m1 l s1 where s1 Ó= ACE_SC} (action without data) nor an action
{?Ch m1 l data s1 where s1 Ó= ACE_SC} (action with data). We check whether an ac-
tion {?Ch m2 l data2 s where data2 (m2<>m1) and ((s="ACE_SC" or s="ACE_SD"))

and (data2<>data1)} happens. In this case, the property is not satisfied (false):

The formula ϕ14 is expressed as follows:

[true * .

{?Ch:String ?op:String ?m1:Nat ?l:Nat ?data1:Nat ?s:String

where ace_state (s) and (s<>"ACE_SC")} .

(not {?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_SC"})* .

{?Ch:String ?op:String ?m1:Nat ?l:Nat !"ACE_SC"} .

(

not ({?Ch:String ?op:String !m1 !l ?h:Nat ?s:String

where ace_state (s) and s<>("ACE_SC")})

and

not ({?Ch:String ?op:String !m1 !l ?s:String

where ace_state (s) and (s<>"ACE_SC")})

)* .

{?Ch:String ?op:String ?m2:Nat !l ?data2:Nat ?"ACE_SC"|"ACE_SD"

133

Appendix A. Model Checking Properties

where (m2<>m1) and (data2<>data1)}

] false

A.8 Shareable memory data integrity

The following formula (ϕ15), requires correct order of write operations to the shareable
memory:

[true * .

{W !"WRITEBACK" ?m:Nat ?l:Nat ?d:Nat}.

(not{W !"WRITEBACK" !0 !l !d !m})*.

{W !"WRITEBACK" !0 !l !d !m}.

((not{AC ... !m ?any of Nat !l}) and

(not{W ?any of String !0 !l ?any of Nat ...}))*.

{W ?any of String !0 !l ?h:Nat ... where h<>d}

] false

Once a master m initiates a memory update (WriteBack transaction: first action on gate
W) of a memory line l and a data d, and this update is actually written to memory
(second action on gate W, with port number 0, i.e., the memory) as second offer, the
property forbids a data h different from d to be written to the same memory line l

without previously receiving a snoop request (gate AC) concerning line l2.

A.9 Read response no PassDirty property

According to the ACE specification [ARM13], for several transactions (i.e., ReadOnce,
ReadClean, CleanUnique, MakeUnique, CleanShared) the master initiating the transaction
cannot take the responsibility to write the data on the memory, so the PassDirty

parameter of the read response channel R has to be deserted (false).

As described in Section 5.2.3, the sixth parameter of a read response channel R is a
boolean corresponding the PassDirty parameter and the seventh parameter is a boolean
corresponding to the IsShared parameter.

We add the following formula (ϕ16), which checks the correct positioning of the PassDirty

parameter:

[

2The number of parameters differs for the rendezvous on gate W between the CCI and the memory
and those between a master and the CCI: for the former, the fifth parameter corresponds to the index of
the initiator.

134

A.10. Read response no IsShared property

true * .

{AR ?op:String ?m:Nat ?l:Nat ?any of String

where (op="READONCE") or (op="READCLEAN") or (op="CLEANUNIQUE")

or (op="MAKEUNIQUE") or (op="CLEANSHARED")}.

(

not({R !op !m !l ?any of Nat ?any of bool ?any of bool ?any of bool})

)*.

{R !op !m !l ?any of Nat ?any of bool !"TRUE" ?any of bool}

] false

The formula ϕ16 concerns read address AR actions containing one of the following
transactions: ReadOnce, ReadClean, CleanUnique, MakeUnique, or CleanShared. In fact,
the corresponding read response R action (same transaction op) must have the PassDirty

parameter de-asserted. If this is not the case (i.e., PassDirty==TRUE), the property is
not satisfied (false).

A.10 Read response no IsShared property

Several ACE transactions must lead to a unique state (i.e., ReadNoSnoop, ReadUnique,
CleanUnique, MakeUnique, CleanInvalid, MakeInvalid). The IsShared parameter of the
read response channel R has to be de-asserted (false). i.e., the cache line is unique.

We add the following formula (ϕ17), which checks the correct positioning of the IsShared

parameter.

[

true * .

{AR ?op:String ?m:Nat ?l:Nat ?any of String

where ((op="READNOSNOOP") or (op="READUNIQUE") or (op="CLEANUNIQUE")

or (op="MAKEUNIQUE") or (op="CLEANINVALID"))}.

(

not({R !op !m !l ?any of Nat ?any of bool ?any of bool ?any of bool})

)*.

{R !op !m !l ?any of Nat ?any of bool ?any of bool !"TRUE"}

] false

The formula ϕ17 concerns read address AR actions containing one of the following
transactions: ReadNoSnoop, ReadUnique, CleanUnique, MakeUnique, or CleanInvalid.
In fact, the corresponding read response R action must have the IsShared parameter
de-asserted. If it is not the case (i.e., IsShared==TRUE), the property is not satisfied
(false).

135

Appendix A. Model Checking Properties

A.11 Read response no IsSharedDirty property

The formula (ϕ18) corresponds to the ReadNotSharedDirty transaction which must not
lead to a shared dirty state (ACE_SD). The PassDirty and IsShared parameters of read
response channel R must never be both asserted (true).

[

true * .

{AR ?op:String ?m:Nat ?l:Nat ?any of String

where (op="READNOTSHAREDDIRTY")}.

(

not({R !op !m !l ?any of Nat ?any of bool ?any of bool ?any of bool})

)*.

{R !op !m !l ?any of Nat ?any of bool !"TRUE" !"TRUE"}

] false

A.12 Coherency response PassDirty property

The PassDirty parameter of the coherency response channel CR has to be asserted (true)
if and only if the ACE state before the CR request is either ACE_UD or ACE_SD and the
ACE state after the CR request is either ACE_UC, ACE_SC, or ACE_I.

As described in Section 5.2.3, the sixth parameter of a coherent response channel CR is
a boolean corresponding to the PassDirty parameter and the seventh parameter is a
boolean corresponding to the IsShared parameter.

The corresponding formula (ϕ19) expresses that if the ACE state switch from a dirty
state to a clean or invalid state during a coherent response CR action, the PassDirty

must be asserted. If this is not the case, the property is not satisfied (false).

The formula (ϕ19) is expressed as follows:

[

true * .

{?Ch:String ?op:String ?m:Nat ?l:Nat ?"ACE_UD"|"ACE_SD"} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...})

)*.

{CR ?op:String !m !l ?any of Nat ?any of bool !"FALSE" ?any of bool} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

136

A.13. Coherency response no PassDirty property

and (not{CR ?op:String !m !l ...})

)*.

{?Ch:String ?op:String !m !l ?"ACE_UC"|"ACE_SC"|"ACE_I"}

] false

A.13 Coherency response no PassDirty property

The PassDirty parameter of the coherency response channel CR must be deserted
(PassDirty=FALSE) in two cases: firstly, when a dirty state remains dirty, and secondly,
when an ACE state was clean or invalid before the CR action.

This property is expressed by two formulæ. The first formula (ϕ20) checks if a PassDirty

is asserted just after an action with a clean or invalid state. In this case, the property is
not satisfied (false).

The formula ϕ20 is expressed as follows:

[

true * .

{?Ch:String ?op:String ?m:Nat ?l:Nat ?s:String

where ace_state (s) and ((s<>"ACE_UD") and (s<>"ACE_SD"))} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...})

)*.

{CR ?op:String !m !l ?any of Nat ?any of bool !"TRUE" ?any of bool}

] false

The second formula (ϕ21) checks if a PassDirty is asserted just before an action with a
dirty state. In this case the property is not satisfied (false).

The formula ϕ21 is expressed as follows:

[

true * .

{CR ?op:String !m !l ?any of Nat ?any of bool !"TRUE" ?any of bool} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...})

)*.

137

Appendix A. Model Checking Properties

{?Ch:String ?op:String !m !l ?"ACE_UD"|"ACE_SD"}

] false

A.14 Coherency response IsShared property

The IsShared parameter of the coherency response channel CR has to be asserted
(IsShared=true) if and only if the ACE state after the CR request is a valid state
(ACE_UC, ACE_SC, ACE_UD, or ACE_SD).

The formula ϕ22 expresses this property as follows:

[

true * .

{CR ?op:String !m !l ?any of Nat ?any of bool ?any of bool !"FALSE"} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...})

)*.

{?Ch:String ?op:String !m !l ?"ACE_UD"|"ACE_SD"|"ACE_UC"|"ACE_SC"}

] false

A.15 Coherency response no IsShared property

The IsShared parameter of the coherency response channel CR has to be de-asserted
(IsShared=false) if and only if the ACE state after the CR request is the invalid state.

The formula (ϕ23) expresses that the IsShared cannot be asserted just before an action
from the same master (m) and memory line (l) with an invalid state (ACE_I):

[

true * .

{CR ?op:String !m !l ?any of Nat ?any of bool ?any of bool !"TRUE"} .

(

(not({?Ch:String ?op:String !m !l ?s:String})

and (not{CR ?op:String !m !l ...})

)*.

{?Ch:String ?op:String !m !l ?"ACE_I"}

] false

138

Bibliography

[ABG+00] Yael Abarbanel, Ilan Beer, Leonid Gluhovsky, Sharon Keidar, and Yaron
Wolfsthal. Focs–automatic generation of simulation checkers from formal
specifications. In Computer Aided Verification, pages 538–542. Springer,
2000.

[AFV01] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural Operational Se-

mantics, chapter 3, pages 197–292. 2001.

[And91] David F Anderson. Continuous-time markov chains. 1991.

[ARM12] ARM. CoreLink CCI-400 Cache Coherent Interconnect: Tech-

nical Reference Manual, November 2012. revision r1p1,
http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0470g/DDI0470G_cci400_r1p1_trm.pdf.

[ARM13] ARM. AMBA AXI and ACE Protocol Specifica-

tion, February 2013. version ARM IHI 0022E,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022e.

[BAPM83] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic of
branching time. Acta informatica, 20(3):207–226, 1983.

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the iso specification
language lotos. Computer Networks and ISDN Systems, 14(1):25–59, January
1988.

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded model checking. Advances in computers, 58:117–148,
2003.

[BCL+94] J. BURCH, E. Clarke, D. Long, K. McMillan, and D. Dill. Symbolic model
checking for sequential circuit verification. IEEE Trans. Computer-Aided

Design Integration of Circuits, 13:401–424, April 1994.

[BCM+90] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and
Lain-Jinn Hwang. Symbolic model checking: 10 20 states and beyond. In

139

Bibliography

Logic in Computer Science, 1990. LICS’90, Proceedings., Fifth Annual IEEE

Symposium on e, pages 428–439. IEEE, 1990.

[BED03] Vincent Beaudenon, Emmanuelle Encrenaz, and J-L Desbarbieux. Design
validation of zcsp with spin. In Application of Concurrency to System Design,

2003. Proceedings. Third International Conference on, pages 102–110. IEEE,
2003.

[BGH+99] Mike Benjamin, Daniel Geist, Alan Hartman, Gerard Mas, and Ralph Smeets.
A Study in Coverage-Driven Test Generation. In Proceedings of the 36th

Design Automation Conference, pages 970–975. IEEE, June 1999.

[BK+08] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking,
volume 26202649. MIT press Cambridge, 2008.

[BKS08] Nicolas Blanc, Daniel Kroening, and Natasha Sharygina. Scoot: A tool for
the analysis of systemc models. In Tools and Algorithms for the Construction

and Analysis of Systems, pages 467–470. Springer, 2008.

[CCG+14] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine
McKinty, Vincent Powazny, Frédéric Lang, Wendelin Serwe, and Gideon
Smeding. Reference manual of the LNT to LOTOS translator (version 6.0).
INRIA/VASY - INRIA/CONVECS, 125 pages, 2014.

[CFZ95] E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision diagrams. In Interna-

tional Conference on Computer-Aided Design, ICCAD-95. 1995 IEEE/ACM

International Conference on, pages 159–163. IEEE, 1995.

[CGH+95] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E.
Long, Kenneth L. McMillan, and Linda A. Ness. Verification of the Fu-
turebus+ cache coherence protocol. Formal Methods in System Design,
6(2):217–232, March 1995.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and
Ferruccio Zulian. Specification and verification of the powerscale bus arbitra-
tion protocol: An industrial experiment with lotos. In Reinhard Gotzhein and
Jan Bredereke, editors, Proceedings of the Joint International Conference on

Formal Description Techniques for Distributed Systems and Communication

Protocols, and Protocol Specification, Testing, and Verification FORTE/P-

STV’96 (Kaiserslautern, Germany), pages 435–450. IFIP, 1996.

[CGP00] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
press, 2000.

[Che04] Ghassan Chehaibar. Integrating formal verification with Murφ of distributed
cache coherence protocols in FAME multiprocessor system design. In David

140

Bibliography

de Frutos-Escrig and Manuel Núñez, editors, Proceedings of the 24th IFIP

WG 6.1 International Conference on Formal Techniques for Networked and

Distributed Systems FORTE 2004 (Madrid, Spain), volume 3235 of Lecture

Notes in Computer Science, pages 243–258. Springer, September 2004.

[CHLS09] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin Serwe.
Towards performance prediction of compositional models in industrial gals
designs. In Ahmed Bouajjani and Oded Maler, editors, Proceedings of the

21th International Conference on Computer Aided Verification CAV’2009

(Grenoble, France), volume 5643, pages 204–218, July 2009.

[CL11] Pepijn Crouzen and Frédéric Lang. Smart reduction. In Dimitra Gian-
nakopoulou and Fernando Orejas, editors, Proceedings of Fundamental Ap-

proaches to Software Engineering FASE’2011 (Saarbrücken, Germany), vol-
ume 6603, pages 111–126, March 2011.

[CM11] Mingsong Chen and Prabhat Mishra. Property learning techniques for efficient
generation of directed tests. IEEE Transactions on Computers, 60(6):852–864,
2011.

[CQKM13] Mingsong Chen, Xiaoke Qin, Heon-Mo Koo, and Prabhat Mishra. System-

Level Validation: High-Level Modeling and Directed Test Generation Tech-

niques. Springer, 2013.

[CS96] Rance Cleaveland and Scott A. Smolka. Strategic directions in concurrency
research. ACM Comput. Surv., 28(4):607–625, December 1996.

[CTVW04] Edmund Clarke, Muralidhar Talupur, Helmut Veith, and Dong Wang. Sat
based predicate abstraction for hardware verification. In Theory and Appli-

cations of Satisfiability Testing, pages 78–92. Springer, 2004.

[CYGC10] Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou.
Efficient methods for formally verifying safety properties of hierarchical
cache coherence protocols. Formal Methods in System Design, 36(1):37–64,
February 2010.

[CZM09] Ghassan Chehaibar, Meriem Zidouni, and Radu Mateescu. Modeling multipro-
cessor cache protocol impact on mpi performance. In Advanced Information

Networking and Applications Workshops, 2009. WAINA’09. International

Conference on, pages 1073–1078. IEEE, 2009.

[DCF+14] Rolf Drechsler, Christophe Chevallaz, Franco Fummi, Alan J Hu, Ronny
Morad, Frank Schirrmeister, and Alex Goryachev. Future soc verification
methodology: Uvm evolution or revolution? In Proceedings of the conference

on Design, Automation & Test in Europe, page 372. European Design and
Automation Association, 2014.

141

Bibliography

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol
verification as a hardware design aid. In Proceedings of the International Con-

ference on Computer Design: VLSI in Computers and Processors ICCD’92,
pages 522–525. IEEE, October 1992.

[DFH+91] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Benjamin Werner,
Christine Paulin-Mohring, et al. The coq proof assistant user’s guide: Version
5.6, 1991.

[DGG+05] Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir,
Yaron Wolfsthal, Lyes Benalycherif, R Kamidem, and Younes Lahbib. Com-
bining system level modeling with assertion based verification. In Quality of

Electronic Design, 2005. ISQED 2005. Sixth International Symposium on,
pages 310–315. IEEE, 2005.

[Dil96] D. Dill. The murϕ verification system. In R. Alur and T. Henzinger,
editors, Proceedings of the 8th International Conference on Computer-Aided

Verification CAV’96, 1996.

[dVT01] René G. de Vries and Jan Tretmans. Towards formal test purposes. In Formal

Approaches to Testing of Software FATES’01, pages 61–76. BRICS Notes
Series, 2001.

[EM95] Ásgeir Th. Eiríksson and Kennth L. McMillan. Using Formal Verification/-
Analysis Methods on the Critical Path in System Design: A Case Study. In
Pierre Wolper, editor, Proceedings of the 7th International Conference on

Computer Aided Verification CAV (Liège, Belgium), volume 939 of Lecture

Notes in Computer Science, pages 367–380. Springer, July 1995.

[FJJV96] Jean-Claude Fernandez, Claude Jard, Thierry Jéron, and César Viho. Using
on-the-fly verification techniques for the generation of test suites. In Computer

Aided Verification, pages 348–359. Springer, 1996.

[Fou88] National Science Foundation, editor. Final Report: NSF Workshop on Billion-

Transistor Systems. NSF, 1988.

[FTHJ10] Sahar Foroutan, Yvain Thonnart, Richard Hersemeule, and Ahmed Jerraya.
A markov chain based method for noc end-to-end latency evaluation. In IEEE

International Symposium on Parallel and Distributed Processing, Workshops

and Phd Forum (IPDPSW), (Atlanta, Georgia, USA), pages 1–8. IEEE, April
2010.

[G+05] Frank Ghenassia et al. Transaction-level modeling with SystemC. Springer,
2005.

142

Bibliography

[Gar13] Hubert Garavel, editor. Formal Methods for Safe and Secure Computers

Systems, volume BSI Study 875 of Federal Office for Information Security.
Bundesamt fÃ1

4
r Sicherheit in der Informationstechnik (BSI), 2013.

[GH99] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from
requirements specifications. ACM SIGSOFT Software Engineering Notes,
24:146–162, 1999.

[GH02] Hubert Garavel and Holger Hermanns. On combining functional verification
and performance evaluation using cadp. In Lars-Henrik Eriksson and Peter A.
Lindsay, editors, Proceedings of the 11th International Symposium of Formal

Methods Europe FME’2002 (Copenhagen, Denmark), volume 2391, pages
410–429, 2002.

[GHPS09] Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin Serwe.
Verification of an industrial systemc/tlm model using lotos and cadp. In Pro-

ceedings of the 7th ACM-IEEE International Conference on Formal Methods

and Models for Codesign MEMOCODE’2009 (Cambridge, MA, USA), 2009.

[GL01] Hubert Garavel and Frédéric Lang. Svl: a scripting language for compositional
verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and
Danhyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 International

Conference on Formal Techniques for Networked and Distributed Systems

FORTE’2001 (Cheju Island, Korea), pages 377–392. IFIP, Kluwer Academic
Publishers, August 2001. Full version available as INRIA Research Report RR-
4223.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp
2011: A toolbox for the construction and analysis of distributed processes.
Software Tools for Technology Transfer, 15(2):89–107, April 2013.

[GM04] Hubert Garavel and Radu Mateescu. Seq.open: A tool for efficient trace-
based verification. In Susanne Graf and Laurent Mounier, editors, Proceedings

of the 11th International SPIN Workshop on Model Checking of Software

SPIN’2004 (Barcelona, Spain), volume 2989, pages 150–155, April 2004.

[Gor01] Mike Gordon. HOL-a machine oriented formulation of higher order logic.
Citeseer, 2001.

[GVZ00] Hubert Garavel, César Viho, and Massimo Zendri. System design of a cc-numa
multiprocessor architecture using formal specification, model-checking, co-
simulation, and test generation. Research Report RR-4041, INRIA, November
2000.

[GVZ01] Hubert Garavel, César Viho, and Massimo Zendri. System design of a cc-
numa multiprocessor architecture using formal specification, model-checking,

143

Bibliography

co-simulation, and test generation. International Journal on Software Tools

for Technology Transfer, 3(3):314–331, 2001.

[GW95] Michel X Goemans and David P Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[Her02] Holger Hermanns. Interactive Markov chains: and the quest for quantified

quality. Springer-Verlag, 2002.

[Hol97] Gerard J. Holzmann. State compression in spin: Recursive indexing and
compression training runs. In Proceedings of SPIN97 the 3rd SPIN Workshop

(Twente University, Enschede, The Netherlands), 1997.

[ISO89] ISOIS ISO. Osi 8807-lotos: a formal description technique based on the
temporal ordering of observational behaviour. International standard, ISO,
1989.

[JJ05] Claude Jard and Thierry Jéron. Tgv: theory, principles and algorithms.
International Journal on Software Tools for Technology Transfer, 7(4):297–
315, 2005.

[JM99] T. Jéron and P. Morel. Test generation derived from model-checking. In
N. Halbwachs and D. Peled, editors, Proceedings of the Conference on

Computer-Aided Verification CAV’99 (Trento, Italy), volume 1633, pages
108–122, July 1999.

[JOS+01] Robert B Jones, John W O’Leary, Carl-Johan H Seger, Mark D Aagaard, and
Thomas F Melham. Practical formal verification in microprocessor design.
IEEE Design & Test of Computers, 18(4):16–25, 2001.

[JW96] Daniel Jackson and Jeannette Wing. Lightweight formal methods. IEEE

Computer, 29(1):21–22, 1996.

[Käs03] Daniel Kästner. Tdl: a hardware description language for retargetable post-
pass optimizations and analyses. In Generative Programming and Component

Engineering, pages 18–36. Springer, 2003.

[KG99] Christoph Kern and Mark R. Greenstreet. Formal Verification in Hardware
Design: A Survey. ACM Transactions on Design Automation of Electronic

Systems, 4(2):123–193, April 1999.

[KKVD13] Hemangee K. Kapoor, Praveen Kanakala, Malti Verma, and Shirshendu Das.
Design and formal verification of a hierarchical cache coherence protocol for
NoC based multiprocessors. The Journal of Supercomputing, 2013.

144

Bibliography

[KM96] Matt Kaufmann and J Strother Moore. Acl2: An industrial strength version
of nqthm. In Computer Assurance, 1996. COMPASS’96, Systems Integrity.

Software Safety. Process Security. Proceedings of the Eleventh Annual Con-

ference on, pages 23–34. IEEE, 1996.

[KM97] Jean-Pierre Krimm and Laurent Mounier. Compositional state space genera-
tion from lotos programs. In Tools and Algorithms for the Construction and

Analysis of Systems TACAS’1997, pages 239–258. Springer, 1997.

[KMBA06] Heon-Mo Koo, Prabhat Mishra, Jayanta Bhadra, and Magdy Abadir. Di-
rected micro-architectural test generation for an industrial processor: A case
study. In Microprocessor Test and Verification, 2006. MTV’06. Seventh

International Workshop on, pages 33–36. IEEE, 2006.

[KNS01] Marta Kwiatkowska, Gethin Norman, and Roberto Segala. Automated
verification of a randomized distributed consensus protocol using cadence
smv and prism? In Computer Aided Verification, pages 194–206. Springer,
2001.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical computer

science, 27(3):333–354, 1983.

[KS13] Abderahman Kriouile and Wendelin Serwe. Formal analysis of the ace
specification for cache coherent systems-on-chip. In Charles Pecheur and
Michael Dierkes, editors, Proceedings of the 18th International Workshop

on Formal Methods for Industrial Critical Systems FMICS’2013 (Madrid,

Spain), volume 8187 of Lecture Notes in Computer Science, pages 108–122.
Springer, September 2013.

[KS15] Abderahman Kriouile and Wendelin Serwe. Using a formal model to improve
verification of a cache-coherent system-on-chip. In C. Baier and C. Tinelli,
editors, 21th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems TACAS 2015 (London, UK), volume
9035 of Lecture Notes in Computer Science, pages 708–722. Springer, April
2015.

[KVZ98] Hakim Kahlouche, Cesar Viho, and Massimo Zendri. An industrial experiment
in automatic generation of executable test suites for a cache coherency
protocol. In Testing of Communicating Systems, pages 211–226. Springer,
1998.

[Kyu03] Chong-Min Kyung. Current status and challenges of soc verification for
embedded systems market. In IEEE International SOC Conferenceg. IEEE,
2003.

145

Bibliography

[Len05] Giacomo Lenzi. The modal mu-calculus: a survey. Technical Report 9(3),
TASK Quarterly, 2005.

[LMSG02] Stan Liao, Grant Martin, Stuart Swan, and Thorsten Grötker. System Design

with SystemC. Springer Science & Business Media, 2002.

[LS11] Etienne Lantreibecq and Wendelin Serwe. Model checking and co-simulation
of a dynamic task dispatcher circuit using CADP. In Gwen Salaün and
Bernhard Schätz, editors, Proceedings of the 16th International Workshop on

Formal Methods for Industrial Critical Systems FMICS 2011 (Trento, Italy),
volume 6959, pages 180–195, August 2011.

[LS14] Etienne Lantreibecq and Wendelin Serwe. Formal analysis of a hardware
dynamic task dispatcher with cadp. Science of Computer Programming,
80:130–149, 2014.

[Mat03] Radu Mateescu. On-the-fly verification using cadp. In Thomas Arts and Wan
Fokkink, editors, Proceedings of the 8th International Workshop on Formal

Methods for Industrial Critical Systems FMICS’2003 (Trondheim, Norway),
volume 80 of Electronic Notes in Theoretical Computer Science. Elsevier,
2003.

[MC09] Prabhat Mishra and Mingsong Chen. Efficient techniques for directed test gen-
eration using incremental satisfiability. In Proceedings of 22th International

Conference on VLSI Design, pages 65–70. IEEE, 2009.

[McM93] Kenneth L McMillan. Symbolic model checking. Springer, 1993.

[McM99] Kenneth L. McMillan. The SMV language. Technical report, Cadence
Berkeley Labs, March 1999.

[McM00] Kenneth L. McMillan. A methodology for hardware verification using compo-
sitional model checking. Science of Computer Programming, 37(1):279–309,
2000.

[Mel09] Tom F Melham. Higher order logic and hardware verification, volume 31.
Cambridge University Press, 2009.

[MHS12] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why On-Chip Cache
Coherence Is Here to Stay. Communications of the ACM, 55(7):78–89, July
2012.

[MS91] Kenneth L. McMillan and Schwalbe. Formal Verification of the Encore
Gigamax cache consistency protocol. In Proceedings of the International

Symposium on Shared Memory Multiprocessors, pages 242–251, 1991.

146

Bibliography

[MSK+07] Deepak A Mathaikutty, Sandeep K Shukla, Sreekumar V Kodakara, David
Lilja, and Ajit Dingankar. Design fault directed test generation for micropro-
cessor validation. In Design, Automation & Test in Europe Conference &

Exhibition, 2007. DATE’07, pages 1–6. IEEE, 2007.

[MT08] Radu Mateescu and Damien Thivolle. A model checking language for concur-
rent value-passing systems. In Jorge Cuellar, Tom Maibaum, and Kaisa Sere,
editors, Proceedings of the 15th International Symposium on Formal Methods

FM’08 (Turku, Finland), volume 5014 of Lecture Notes in Computer Science,
pages 148–164. Springer, May 2008.

[oEE09] IEEE (Institute of Electrical and Electronics Engineers). Ieee
standard for systemverilog - unified hardware design, specification,
and verification language. IEEE Std 1800-2009, December 2009.
http://standards.ieee.org/findstds/standard/1850-2010.html.

[oEE10] IEEE (Institute of Electrical and Electronics Engineers). Ieee standard for
property specification language (psl). IEEE Std 1850-2010, pages i –188,
2010. http://standards.ieee.org/findstds/standard/1850-2010.html.

[oEE11] IEEE (Institute of Electrical and Electronics Engineers). Ieee standard
for the functional verification language e. IEEE Std 1647-2011, 2011.
http://standards.ieee.org/findstds/standard/1647-2011.html.

[ORS92] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype veri-
fication system. In Automated Deduction-CADE-11, pages 748–752. Springer,
1992.

[Par81] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science, 1981.

[Pau94] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828.
Springer, 1994.

[PD97] Fong Pong and Michel Dubois. Verification Techniques for Cache Coherence
Protocols. ACM Computing Surveys, 29(1):82–126, March 1997.

[PG11] ARM Peter Greenhalgh. Big. little processing with arm cortexTM-a15 &
cortex-a7, 2011.

[Pie14] Laurence Pierre. Outils de démonstration automatique et preuve de circuits
électroniques. Forum Méthodes Formelles: Preuve de modèle, Preuve de

programme, 2014.

[PNAD95] Fong Pong, Andreas Nowatzyk, Gunes Aybay, and Michel Dubois. Verifying
Distributed Directory-based Cache Coherence Protocols: S3.mp, a Case Study.
In Seif Haridi, Khayri A. M. Ali, and Peter Magnusson, editors, Proceedings

147

Bibliography

of the 1st International Conference on Parallel Processing EURO-PAR’95

(Stockholm, Sweden), volume 966 of Lecture Notes in Computer Science,
pages 287–300. Springer, August 1995.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Computer

Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[Pra08] Dhiraj K Pradhan. Application of galois fields to logic synthesis. In Industrial

and Information Systems, 2008. ICIIS 2008. IEEE Region 10 and the Third

international Conference on, pages 1–1. IEEE, 2008.

[QM11] Xiaoke Qin and Prabhat Mishra. Efficient directed test generation for
validation of multicore architectures. In Proceedings of 12th Int’l Symposium

on Quality Electronic Design, pages 276–283. IEEE, 2011.

[RMK03] Abhik Roychoudhury, Tulika Mitra, and SR Karri. Using formal techniques
to debug the amba system-on-chip bus protocol. In Design, Automation and

Test in Europe Conference and Exhibition, 2003, pages 828–833. IEEE, 2003.

[SD95] Ulrich Stern and David L. Dill. Automatic Verification of the SCI Cache
Coherence Protocol. In Correct Hardware Design and Verification Methods,
volume 987 of Lecture Notes in Computer Science, pages 21–34. Springer,
1995.

[SDSH11] Anna Slobodová, Jared Davis, Sol Swords, and Warren Hunt, Jr. A Flexible
Formal Verification Framework for Industrial Scale Verification. In Proceedings

of the 9th IEEE/ACM International Conference on Formal Methods and

Models for Codesign MEMOCODE 2011 (Cambridge, UK), pages 89–97.
IEEE Computer Science Press, July 2011.

[SLM+92] Bart Selman, Hector J Levesque, David G Mitchell, et al. A new method
for solving hard satisfiability problems. In AAAI, volume 92, pages 440–446,
1992.

[SSTV07] Gwen Salaun, Wendelin Serwe, Yvain Thonnart, and Pascal Vivet. Formal
verification of chp specifications with cadp illustration on an asynchronous
network-on-chip. In Asynchronous Circuits and Systems, 2007. ASYNC 2007.

13th IEEE International Symposium on, pages 73–82. IEEE, 2007.

[Ste11] Ashley Stevens. Introduction to AMBA 4 ACE. ARM whitepaper, June
2011.

[Sut06] Stuart Sutherland. Modeling with systemverilog in a synopsys synthesis
design flow using leda, vcs, design compiler and formality. SNUG Europe,
2006.

148

Bibliography

[Swa06] Stuart Swan. Systemc transaction level models and rtl verification. In
Proceedings of the 43rd annual Design Automation Conference, pages 90–92.
ACM, 2006.

[SWC+08] Haihua Shen, Wenli Wei, Yunji Chen, Bowen Chen, and Qi Guo. Coverage
directed test generation: Godson experience. In Asian Test Symposium, 2008.

ATS’08. 17th, pages 321–326. IEEE, 2008.

[Tho12] Chris Thompson. Verifying Cache Coherency Protocols with Verification IP.
Synopsis, October 2012.

[Tre92] Gerrit Jan Tretmans. A formal approach to conformance testing. Twente
University Press, 1992.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, (TR-CTIT-96-26), 1996.

[Tre99] Jan Tretmans. Testing concurrent systems: A formal approach. In CON-

CUR’99 Concurrency Theory, pages 46–65. Springer, 1999.

[VGS12] Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and
sat-based reachability in hardware model checking. In Formal Methods in

Computer-Aided Design (FMCAD), 2012, pages 173–181. IEEE, 2012.

[vGW89] Robert Jan van Glabbeek and Willem Pieter Weijland. Refinement in

branching time semantics. Centrum voor Wiskunde en Informatica, Computer
science, 1989.

[VGW96] Rob J Van Glabbeek and W Peter Weijland. Branching time and abstraction
in bisimulation semantics. Journal of the ACM (JACM), 43(3):555–600, 1996.

[WAW09] Martin Weiglhofer, Bernhard K Aichernig, and Franz Wotawa. Fault-based
conformance testing in practice. Int. J. Software and Informatics, 3(2-3):375–
411, 2009.

[WCB+03] Pierre Wodey, Geoffrey Camarroque, Fabrice Baray, Richard Hersemeule,
and Jean-Philippe Cousin. Lotos code generation for model checking of
stbus based soc: The stbus interconnect. In Rajesh K. Gupta, Sandeep
Shukla, and Jean-Pierre Talpin, editors, Proceedings of the 1st ACM and

IEEE International Conference on Formal Methods and Models for Codesign

MEMOCODE’03 (Mont Saint-Michel, France), 2003.

[YPAA03] J. Yuan, C. Pixley, A. Aziz, and K. Albin. A framework for constrained
functional verification. In International Conference on Computer Aided

Design, pages 142–145. IEEE, November 2003.

149

Bibliography

[ZSW+14] Zhen Zhang, Wendelin Serwe, Jian Wu, Tomohiro Yoneda, Hao Zheng,
and Chris Myers. Formal analysis of a fault-tolerant routing algorithm
for a network-on-chip. In Frédéric Lang and Francesco Flammini, editors,
Proceedings of the 18th International Workshop on Formal Methods for

Industrial Critical Systems FMICS’2014 (Florence, Italy), volume 8718 of
Lecture Notes in Computer Science, pages 48–62. Springer, September 2014.

150

Glossary

ABV Assertion-based verification

ACE AXI Coherency Extensions

ASIC Application Specific Integrated Circuit

AMBA Advanced Microcontroller Bus Architecture

AXI Advanced eXtensible Interface

BCG Binary Coded Graphs

BDD Binary Decision Diagrams

BFM Bus Functional Model

CADP Construction and Analysis of Distributed Processes

CCI Cache Coherent Interconnect

CC-NUMA Cache-Coherent - Non Uniform Memory Access computer memory design

CDTG Coverage-Directed Test Generation

CDV Coverage Driven Verification

CHP Communicating Hardware Processes

CIC Computation of Interesting Configurations

CONVECS Construction of Verified Concurrent Systems (Inria research team)

CPU Central Processing Unit

CTG Complete Test Graph

CTL Computation Tree Logic

CTMC Continuous-Time Markov Chains

151

Appendix A. Glossary

DUT Design Under Test

DUV Design Under Verification

GPU Graphical Processing Unit

FPGA Field-Programmable Gate Array

IMC Interactive Markov Chains

IOTS Input Output Transition System

IPC Interactive Probabilistic Chains

IVK Interconnect Verification Kit

IV unit Interface Verification unit

IP Intellectual Property, refer in SoC context for component designs from a lisensor like
ARM

LNT LOTOS New Technology

LOTOS Language Of Temporal Ordering Specification

LTL Linear Temporal Logic

LTS Labeled Transition System

MBT Model-Based Testing

MCL Model Checking Language

MDV Metric Driven Verification

NoC Network on Chip

OCIS Open/Caesar Interactive Simulator

PSL Property Specification Language

ROBDD Reduced Ordered Binary Decision Diagram

RTL Register Transfer Level

SoC System on Chip

SUT System Under Test

SUV System Under Verification

SVA SystemVerilog Assertions

152

SVL Script Verification Language

SV unit System Verification unit

TGV Test Generation from transitions systems using Verification techniques

TLM Transaction-Level Modeling

VASY VAlidation of SYstems (Inria research team)

VHDL VHSIC Hardware Description Language

VIP Verification Intellectual Property

153

