C. Generale and . Perspectives, Le but de ce travail de thèse a été d'élaborer et de tester une situation didactique implémentée sur une plateforme informatique (LabBook) qui permet d'étayer des activités d'apprentissage centrées sur la conception expérimentale

. Les-notions-d, allèle et de synthèse protéique sont centrales dans le problème posé aux élèves. Le choix des allèles proposés aux élèves est une variable didactique dont l'objectif était d'encourager les élèves qui auraient des difficultés avec les étapes de la synthèse protéique à changer de stratégie dans la formulation d

. Les-résultats-montrent and . Qu-', au niveau de la formulation des hypothèses, les interactions élève-enseignant portent sur des difficultés d'élèves en lien avec la notion d'allèle

. Effectivement, la mobilisation de la notion d'allèle joue un rôle primordial pour que les élèves soient capables de proposer des hypothèses pertinentes pour tous les allèles

J. Arce and R. Betancourt, Student-Designed Experiments in Scientific Lab Instruction, Journal of College Science Teaching, vol.27, issue.2, pp.114-132, 1997.

M. Artigue, Ingénierie didactique, Recherches en Didactique des Mathématiques, vol.9, issue.3, pp.281-308, 1988.

M. Bahar, A. (. Johnstone, and R. G. Sutcliffe, Investigation of students' cognitive structure in elementary genetics through word association tests, Journal of Biological Education, vol.1, issue.3, pp.134-141
DOI : 10.1111/j.1467-9450.1972.tb00043.x

A. M. Battro, Dictionnaire d'épistémologie génétique, avec préface de J, 1966.

P. Bell and E. A. Davis, Designing an activity in the Knowledge Integration Environment, 1996.

S. Bomchil and B. Darley, Lenseignement des sciences expérimentales est-il vraiment inductiviste ?, 1998.

G. Brousseau, Processus de mathématisation, La mathématique à l'école élémentaire, pp.428-442, 1972.

G. Brousseau, L'échec et le contrat, Recherches, vol.41, pp.177-182, 1980.

G. Brousseau, Fondements et méthodes de la didactique des mathématiques, Études en didactique des Mathématiques. Francia: IREM-BourdeauA, 1986.

G. Brousseau, Le contrat didactique : le milieu, Recherches en Didactique des Mathématiques, vol.9, issue.93, pp.309-336
URL : https://hal.archives-ouvertes.fr/hal-00686012

G. N. Brousseau, M. Balacheff, R. Cooper, V. Sutherland, and G. Warfield, Théorie des situations didactiques,[Textes rassemblés et préparés par, 1998.

G. Brousseau, Glossaire de quelques concepts de la théorie des situations didactiques en mathématiques, 2003.

A. L. Brown, D. Ash, M. Rutherford, K. Nakagawa, A. Gordon et al., Distributed Expertise in the Classroom, Distributed cognitions: psychological and educational considerations, 1993.

A. L. Brown and A. S. Palincsar, Reciprocal teaching of comprehension strategies: A natural history of one program for enhancing learning, Intelligence and exceptionality: New directions for theory, assessment, and instructional practices, pp.81-132, 1987.

J. Bruner, Vygotsky: A historical and conceptual perspective. Culture, communication, and cognition: Vygotskian perspectives, pp.21-34, 1985.

J. S. Bruner, From communication to language???a psychological perspective, 255? 287, pp.10-027790012, 1974.
DOI : 10.1016/0010-0277(74)90012-2

J. S. Bruner, M. Deleau, J. Michel, and J. Michel, Le développement de l'enfant: savoir faire, savoir dire, 1983.

B. Calmettes, Des références pour la démarche ddinvestigation Analyse de cas : séances de classe avec des professeurs stagiaires. Les Dossiers des sciences de l'éducation, pp.13-28

B. Calmettes, Milieu didactique et démarche dinvestigation en physique Analyses de pratiques ordinaires Consulté à ladresse https://hal.archives-ouvertes.fr/hal-00355735/document Calmettes, B. (201. Démarches ddinvestigation dans lenseignement des sciences et pragmatisme, Actes des journées scientifiques DIES

J. L. Cartier and J. Stewart, Teaching the Nature of Inquiry: Further Developments in a High School Genetics Curriculum, Science Education, vol.9, issue.3, pp.247-67, 2000.
DOI : 10.1023/A:1008779126718

J. L. Cartier, J. Stewart, and B. Zoellner, Modeling & Inquiry in a High School Genetics Class, The American Biology Teacher, vol.68, issue.6, pp.334-340, 2006.
DOI : 10.1662/0002-7685(2006)68[334:MIIAHS]2.0.CO;2

C. Cazden, Peekaboo as an Instructional Model: Discourse Development at Home and at School, 1979.
DOI : 10.1007/978-1-4899-1525-2_3

C. A. Chinn and W. F. Brewer, The Role of Anomalous Data in Knowledge Acquisition: A Theoretical Framework and Implications for Science Instruction, Review of Educational Research, vol.63, issue.1, pp.1-49, 1993.
DOI : 10.3102/00346543063001001

L. A. Clements and K. E. Jackson, Protein Synthesis: An Interactive Game. The American Biology Teacher, pp.427-429, 1998.

M. Coquide, Les pratiques exp??rimentales : Propos d'enseignants et conceptions officielles, Aster, issue.26, p.8694, 2042.
DOI : 10.4267/2042/8694

M. Coquidé, Le rapport expérimental au vivant (thesis) École normale supérieure de Cachan -ENS Cachan. Consulté à ladresse https, 2000.

N. R. Council, National science education standards, 1996.

D. Cross, Démarche ddinvestigation: Analyse de pratique de classe au collège en mathématiques, physique-chimie et sciences de la vie et de la terre, impliquées dans un travail collectif. Les enseignants de sciences face aux démarches d'investigation, Des formations et de pratiques de classe

B. Darley, Lenseignement de la démarche scientifique dans les travaux pratiques de biologie à luniversité: Analyses et propositions. (Doctoral dissertation

B. Darley, Exemple ddune transposition didactique de la démarche scientifique dans un TP de biologie en DEUG 2ème année. Didaskalia (Paris), pp.31-56, 1996.

B. Darley and P. Marzin, Productions graphiques chez des élèves de 1ère S. Apprendre à recueillir, traiter et interpréter des données expérimentales, 1998.

E. A. Davis, Scaffolding students' knowledge integration: prompts for reflection in KIE, International Journal of Science Education, vol.15, issue.3
DOI : 10.1207/s15327809jls0101_3

D. Jong, T. Lazonder, and A. W. , The Guided Discovery Principle in Multimedia Learning, The Cambridge handbook of multimedia learning, pp.371-390, 2014.
DOI : 10.1017/CBO9780511816819.015

URL : https://hal.archives-ouvertes.fr/hal-00990405

K. Dunbar, Concept Discovery in a Scientific Domain, Cognitive Science, vol.14, issue.3, pp.397-434, 1993.
DOI : 10.1207/s15516709cog1703_3

R. G. Duncan, The Role of Domain-Specific Knowledge in Generative Reasoning About Complicated Multileveled Phenomena, Cognition and Instruction, vol.25, issue.4, pp.271-336, 2007.
DOI : 10.1080/07370000701632355

R. G. Duncan, . B. Freidenreich, C. A. Chinn, and A. Bausch, Promoting Middle School Students??? Understandings of Molecular Genetics, Research in Science Education, vol.23, issue.5, pp.41-147
DOI : 10.1007/s11165-009-9150-0

R. G. Duncan and B. J. Reiser, Reasoning across ontologically distinct levels: Students' understandings of molecular genetics, Journal of Research in Science Teaching, vol.23, issue.7, pp.938-959, 2007.
DOI : 10.1002/tea.20186

R. G. Duncan and K. A. Tseng, Designing project-based instruction to foster generative and mechanistic understandings in genetics, Science Education, vol.8, issue.1&2, pp.21-56, 2011.
DOI : 10.1002/sce.20407

D. C. Edelson, D. N. Gordin, and R. D. Pea, Addressing the Challenges of Inquiry-Based Learning Through Technology and Curriculum Design, Journal of the Learning Sciences, vol.5, issue.4, pp.3-4, 1999.
DOI : 10.1145/174809.174813

URL : https://hal.archives-ouvertes.fr/hal-00190609

J. Eklund, A. Rogat, N. Alozie, and J. Krajcik, Promoting student scientific literacy of molecular genetics and genomics, Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, 2007.

K. M. Fisher, A misconception in biology: Amino acids and translation, Journal of Research in Science Teaching, vol.88, issue.1, pp.53-62, 1985.
DOI : 10.1002/tea.3660220105

K. M. Fisher, M. U. Smith, and P. E. Simmons, Improving high school genetics instruction, Teaching genetics: Recommendations and research proceedings of a national conference, pp.24-28, 1992.

Y. Flandé, P. M. Paaaaaaa-friedrichsen, and B. Stone, Protocoles expérimentaux, tests d'hypothèses et transfert, en sciences, à l'école primaire. Paris . Consulté à ladresse http Examining students conceptions of molecular genetics in an introductory biology course for non-science majors, Annual Meeting of the National Association for Research in Science Teaching, 2000.

M. Fuchs-gallezot, G. Dargent, O. Et, M. Dellangelo-sauvage, and B. Desbeaux-salviat, ADN, gène, protéine...quelles relations pour les élèves ? )n Le génomique, Entre science et éthique, de nouvelles perspectives à enseigner (Alain Prévot et Annie Audoux/ADAPT-SNES, p.111, 2011.

G. L. Garton, M. U. Smith, and P. E. Simmons, Teaching genetics in the high school classroom, Teaching genetics: Recommendations and research proceedings of a national conference, pp.20-23, 1992.

H. Gelbart and A. Yarden, Learning genetics through an authentic research simulation in bioinformatics, Journal of Biological Education, vol.279, issue.3, pp.107-112, 2006.
DOI : 10.1002/(SICI)1098-2736(200005)37:5<459::AID-TEA5>3.0.CO;2-C

C. Girault, . Dd, M. Ney, E. Sanchez, and C. Wajeman, Characterizing the Experimental Procedure in Science Laboratories: A preliminary step towards students experimental design, International Journal of Science Education, vol.11, issue.3, pp.34-825, 2012.
DOI : 10.1002/sce.1020

URL : https://hal.archives-ouvertes.fr/hal-00704668

M. Guzdial, Software???Realized Scaffolding to Facilitate Programming for Science Learning, 001? 044, 1994.
DOI : 10.1080/1049482940040101

D. Ham, La construction de protocole expérimental : objet et moyen ddapprentissage, Les Cahiers Pédagogiques, vol.469

M. Hersant and M. , Interactions didactiques et pratiques d'enseignement, le cas de la proportionnalité au collège Université Paris-Diderot -Paris V)) Consulté à ladresse http Caractérisation ddune pratique denseignement, le cours dialogué, pp.241-258, 2001.

M. Hersant and M. Perrin-glorian, Milieu et contrat didactique: outils pour lanalyse de séquences ordinaires, pp.217-275

C. E. Hmelo, D. L. Holton, and J. L. Kolodner, Designing to Learn About Complex Systems, Journal of the Learning Sciences, vol.28, issue.5, pp.247-298, 2000.
DOI : 10.1023/A:1009421303064

A. Hofstein and V. N. Lunetta, The laboratory in science education: Foundations for the twenty-first century, Science Education, vol.32, issue.1, pp.28-54, 2004.
DOI : 10.1002/sce.10106

P. Horwitz, E. Neumann, and J. Schwartz, Teaching science at multiple space time scales, Communications of the ACM, vol.39, issue.8, 1996.
DOI : 10.1145/232014.232042

S. L. Jackson, J. Krajcik, and E. Soloway, The design of guided learner-adaptable scaffolding in interactive learning environments, Proceedings of the SIGCHI conference on Human factors in computing systems, CHI '98, pp.187-194, 1998.
DOI : 10.1145/274644.274672

S. L. Jackson, S. J. Stratford, J. Krajcik, and E. Soloway, Making Dynamic Modeling Accessible to Precollege Science Students, Interactive Learning Environments, vol.5, issue.3, pp.233-257, 1994.
DOI : 10.1111/j.1469-7610.1976.tb00381.x

S. Johsua, Le rapport à lexpérimental dans la physique de lenseignement secondaire, , vol.8, pp.29-53, 1989.

S. Johsua and J. Dupin, Introduction à la didactique des sciences et des mathématiques, 1993.

A. Karelina and E. Etkina, Acting like a physicist: Student approach study to experimental design, Physical Review Special Topics - Physics Education Research, vol.3, issue.2, p.20106, 2007.
DOI : 10.1103/PhysRevSTPER.3.020106

A. Keselman, Supporting inquiry learning by promoting normative understanding of multivariable causality, Journal of Research in Science Teaching, vol.16, issue.9, pp.898-921, 2003.
DOI : 10.1002/tea.10115

A. C. Kindfield, Teaching genetics: Recommendations and research, Teaching genetics: Recommendations and research proceedings of a national conference, pp.39-43, 1992.

M. C. Knippels, Coping with the abstract and complex nature of genetics in biology education : The yo-yo learning and teaching strategy, 2002.

J. L. Kolodner, Educational implications of analogy: A view from case-based reasoning., American Psychologist, vol.52, issue.1, pp.57-66, 1997.
DOI : 10.1037/0003-066X.52.1.57

J. L. Kolodner, P. J. Camp, D. Crismond, B. Fasse, J. Gray et al., Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design(tm) Into Practice, Journal of the Learning Sciences, vol.2, issue.5, pp.495-547
DOI : 10.1006/drev.1999.0497

M. D. Koretsky, D. Amatore, C. Barnes, and S. Kimura, Enhancement of Student Learning in Experimental Design Using a Virtual Laboratory, IEEE Transactions on Education, vol.51, issue.1, pp.76-85, 2008.
DOI : 10.1109/TE.2007.906894

J. A. Langer and A. N. Applebee, Reading and Writing Instruction: Toward a Theory of Teaching and Learning, Review of Research in Education, vol.13, p.171, 1986.
DOI : 10.2307/1167222

A. Laugier and A. Dumon, RESOLUTION DE PROBLEME ET PRATIQUE EXPERIMENTALE : ANALYSE DU COMPORTEMENT DES ELEVES EN DEBUT DE SECONDE, Chem. Educ. Res. Pract., vol.4, issue.3, pp.335-352, 2003.
DOI : 10.1039/B3RP90019C

A. E. Lawson, What Does Galileoos Discovery of Jupiters Moons Tell Us About the Process of Scientific Discovery?, Science and Education, vol.11, issue.1, pp.1-24
DOI : 10.1023/A:1013048828150

J. Lewis and U. Kattmann, Traits, genes, particles and information: re???visiting students??? understandings of genetics, International Journal of Science Education, vol.26, issue.2, pp.195-206, 2004.
DOI : 10.1080/00219266.2000.9655732

J. Lewis, J. Leach, and C. Wood-robinson, All in the genes? ??? young people's understanding of the nature of genes, Journal of Biological Education, vol.24, issue.2, pp.74-79, 2000.
DOI : 10.1080/00219266.2000.9655689

J. Lewis and C. Wood-robinson, Genes, chromosomes, cell division and inheritance - do students see any relationship?, International Journal of Science Education, vol.1, issue.2, pp.177-195, 2000.
DOI : 10.1080/03057269408560038

Y. Lhoste and A. Roland, La transmission de linformation génétique en classe de troisième. Quels apprentissages ? Quels obstacles ? )n La génomique. Entre science et éthique, 2011.

C. Loisy, J. Trgalova, and R. Monod-ansaldi, Ressources et travail collectif dans la mise en place des démarches dinvestigation dans lenseignement des sciences, 2010.

G. M. Malacinski and P. W. Zell, Manipulating the "Invisible": Learning Molecular Biology Using Inexpensive Models, The American Biology Teacher, vol.58, issue.7, pp.58-428, 1996.
DOI : 10.2307/4450197

S. Manlove, A. W. Lazonder, and T. De-jong, Regulative support for collaborative scientific inquiry learning, Journal of Computer Assisted Learning, vol.20, issue.2, pp.87-98, 2006.
DOI : 10.1111/j.1365-2729.2006.00162.x

J. E. Many, An exhibition and analysis of verbal tapestries: Understanding how scaffolding is woven into the fabric of instructional conversations, 376? 407, 2002.
DOI : 10.1598/RRQ.37.4.3

G. Marbach-ad, Attempting to break the code in student comprehension of genetic concepts, Journal of Biological Education, vol.68, issue.4, 2001.
DOI : 10.1080/0950069900120509

G. Marbach-ad, Y. Rotbain, and R. Stavy, Using computer animation and illustration activities to improve high school students' achievement in molecular genetics, Journal of Research in Science Teaching, vol.38, issue.3, pp.45-273, 2008.
DOI : 10.1002/tea.20222

G. Marbach-ad and R. Stavy, Students' cellular and molecular explanations of genetic phenomena, Journal of Biological Education, vol.44, issue.4
DOI : 10.1002/sce.3730670408

C. Margolinas, La structuration du milieu et ses apports dans lanalyse a posteriori des situations
URL : https://hal.archives-ouvertes.fr/halshs-00418815

C. Margolinas, Situations, milieux, connaissances: analyse de lactivité du professeur, pp.141-156

P. Marzin, Comment donner du sens aux activités expérimentales ? Note de synthèse pour l(DR. Université Joseph-Fourier -Grenoble . Consulté à ladresse https, 2013.

P. Marzin and E. .. De-vries, How can we take into account student conceptions of the facial angle in a palaeontology laboratory work? (p. 43? 50), Présenté à Proceedings of the 8th international conference on International conference for the learning sciences - Society of the Learning Sciences. Consulté à ladresse http, 2008.

P. Marzin, I. Girault, C. Wajeman, C. Ham, E. Sanchez et al., L'utilisation d' un arbre des tâches pour concevoir et analyser des situations d " apprentissage: trois TP intégrant la conception d " un protocole expérimental par les élèves, en géologie, pp.257-264, 2007.

P. Marzin, . Girault, C. Wajeman, C. Dd, E. Sanchez et al., Lutilisation ddun arbre des tâches pour concevoir et analyser des situations dapprentissage : trois T.P. intégrant la conception ddun protocole expérimental par les élèves, en géologie, chimie et physique, Présenté à Journées de lARD)ST -Association pour la Recherche en Didactique des Sciences et des Techniques. Consulté à ladresse https

P. Marzin, C. D. Sanchez, and E. , How to scaffold the students to design experimental procedures? A situation experienced by 108 high-school students (p. 203) Présenté à ESERA, 2007.

P. Marzin, E. Triquet, and B. Combaz, Apprendre à reconnaître les arbres en CM : La situation de jeu « Florex » : compte rendu ddinnovation. Didaskalia (Paris), , vol.22, pp.117-136, 2003.

S. Mathe, M. Meheut, and C. De-hosson, Démarche dinvestigation au collège : quels enjeux ?

R. Millar, )nvestigations des élèves en science : une approche fondée sur la connaissance

A. Möller and J. Mayer, Defining levels of scientific inquiry skills in lower secondary biology education. Contemporary science education research: Learning and Assessment, 2009.

H. Neber and M. Anton, Promoting Pre???experimental Activities in High???school Chemistry: Focusing on the role of students??? epistemic questions, International Journal of Science Education, vol.7, issue.13, pp.30-1801, 2008.
DOI : 10.1007/s10763-004-6827-8

URL : https://hal.archives-ouvertes.fr/hal-00513357

M. Njoo and T. De-jong, Exploratory learning with a computer simulation for control theory: Learning processes and instructional support, Journal of Research in Science Teaching, vol.42, issue.8, pp.30-821, 1993.
DOI : 10.1002/tea.3660300803

M. Nott and J. Wellington, When the black box springs open: practical work in schools and the nature of science, International Journal of Science Education, vol.63, issue.7, pp.807-818, 1996.
DOI : 10.4324/9780203059876

É. Orlandi, Conceptions des enseignants sur la d??marche exp??rimentale. Analyse de quelques cas ?? propos de digestion en classe de troisi??me, Aster, vol.13, issue.13, p. 209, pp.111-132, 1991.
DOI : 10.4267/2042/9099

G. Ourisson, Désaffection des étudiants pour les études scientifiques, 2002.

A. S. Palincsar, ?-A Response to C. Addison Stones « The Metaphor of Scaffolding Its Utility for the Field of Learning Disabilities, Journal of Learning Disabilities, issue.4, pp.31-370, 1998.

A. S. Palinscar and A. L. Brown, Reciprocal Teaching of Comprehension-Fostering and Comprehension-Monitoring Activities, Cognition and Instruction, vol.66, issue.3, pp.117-175, 1984.
DOI : 10.1037//0033-295X.85.5.363

R. D. Pea, The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The journal of the learning sciences, pp.423-451, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00190619

M. J. Perrin-glorian, Analyse ddun problème de fonctions en termes de milieu, Analyse des pratiques enseignantes et didactique des mathématiques, pp.17-38, 1999.

S. Puntambekar and R. Hubscher, Tools for Scaffolding Students in a Complex Learning Environment: What Have We Gained and What Have We Missed?, Educational Psychologist, vol.17, issue.2, pp.1-12, 2005.
DOI : 10.1145/174809.174813

S. Puntambekar and J. L. Kolodner, Distributed Scaffolding: Helping Students Learn in a Learning by DesignEnvironment. sadhana, p.6269, 2004.

S. Puntambekar and J. L. Kolodner, Toward implementing distributed scaffolding: Helping students learn science from design, Journal of Research in Science Teaching, vol.17, issue.2, pp.185-217, 2005.
DOI : 10.1002/tea.20048

S. Puntambekar, K. Nagel, R. Hübscher, M. Guzdial, and J. L. Kolodner, Intra-group and intergroup, Proceedings of the 2nd international conference on Computer support for collaborative learning, CSCL '97, p.217, 1997.
DOI : 10.3115/1599773.1599799

C. Quintana, B. J. Reiser, E. A. Davis, J. Krajcik, E. Fretz et al., A Scaffolding Design Framework for Software to Support Science Inquiry, Journal of the Learning Sciences, vol.17, issue.5, pp.337-386
DOI : 10.1002/tea.1033

URL : https://hal.archives-ouvertes.fr/hal-00699773

D. K. Reid, Scaffolding: A Broader View, Journal of Learning Disabilities, vol.31, issue.4, pp.386-396, 1998.
DOI : 10.1177/002221949803100408

B. J. Reiser, Scaffolding Complex Learning: The Mechanisms of Structuring and Problematizing Student Work, Journal of the Learning Sciences, vol.17, issue.3, pp.273-304, 2004.
DOI : 10.1002/sce.10004

B. J. Reiser, I. Tabak, W. A. Sandoval, B. K. Smith, F. Steinmuller et al., BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. Cognition and instruction: Twenty-five years of progress, pp.263-305, 2001.

M. Rocard, P. Csermely, D. Jorde, D. Lenzen, H. Wallberg-henriksson et al., Science education now: a renewed pedagogy for the future of Europe, 2007.

L. R. Roehler and D. J. Cantlon, Scaffolding: A powerful tool in social constructivist classrooms. Scaffolding student learning: Instructional approaches and issues, 1997.

A. Rogat and J. S. Krajcik, Supporting students understanding of current genetics in high school, Annual Meeting of the National Association for Research in Science Teaching, 2006.

B. Rogoff, Apprenticeship in thinking, Cognitive development in social context, vol.xiv, 1990.

J. M. Rolland, Lenseignement des disciplines scientifiques dans le primaire et le secondaire, 2006.

A. Thélot and C. , Pour la réussite de tous les élèves: Rapport de la Commission du débat. Consulté à ladresse http, 2004.

Y. Rotbain, G. Marbach-ad, and R. Stavy, Effect of bead and illustrations models on high school students' achievement in molecular genetics, Journal of Research in Science Teaching, vol.24, issue.5, pp.500-529, 2006.
DOI : 10.1002/tea.20144

L. Schauble, R. Glaser, R. A. Duschl, S. Schulze, and J. John, Students' Understanding of the Objectives and Procedures of Experimentation in the Science Classroom, Journal of the Learning Sciences, vol.51, issue.2, pp.131-166
DOI : 10.1016/0022-0965(90)90048-D

P. Schneeberger and R. Rodriguez, Des lycéens face à une investigation à caractère expérimental: exemple en classe de première S. Aster, , vol.28, pp.79-105, 1999.

E. R. Silliman, R. Bahr, J. Beasman, and L. C. Wilkinson, Scaffolds for Learning to Read in an Inclusion Classroom, Language Speech and Hearing Services in Schools, vol.31, issue.3, pp.31-265, 2000.
DOI : 10.1044/0161-1461.3103.265

H. A. Simon, The Sciences of the Artificial, 1996.

S. J. Slack and J. Stewart, High school students' problem-solving performance on realistic genetics problems, Journal of Research in Science Teaching, vol.72, issue.1, pp.55-67
DOI : 10.1002/tea.3660270106

E. Soloway, M. Guzdial, and K. E. Hay, Learner-centered design: the challenge for HCI in the 21st century, interactions, vol.1, issue.2, pp.36-48, 1994.
DOI : 10.1145/174809.174813

J. L. Sprehn, Protein Building Blocks, Science Teacher, vol.60, issue.7, pp.22-25, 1993.

J. Stewart, J. L. Cartier, and C. M. Passmore, Developing understanding through model-based inquiry. How students learn, pp.515-565, 2005.

J. Stewart and J. L. Rudolph, Considering the nature of scientific problems when designing science curricula, Science Education, vol.24, issue.3, pp.207-229, 2001.
DOI : 10.1002/sce.1006

C. A. Stone, The Metaphor of Scaffolding: Its Utility for the Field of Learning Disabilities, Journal of Learning Disabilities, vol.31, issue.4, pp.344-364, 1998.
DOI : 10.1177/002221949803100404

I. Tabak and B. J. Reiser, Complementary roles of software-based scaffolding and teacher-student interactions in inquiry learning, Proceedings of the 2nd international conference on Computer support for collaborative learning, CSCL '97, pp.292-301, 1997.
DOI : 10.3115/1599773.1599809

R. G. Tharp and R. Gallimore, Rousing minds to life, 1988.
DOI : 10.1017/CBO9781139173698

A. Tiberghien, L. Veillard, L. Maréchal, J. Buty, C. Millar et al., An analysis of labwork tasks used in science teaching at upper secondary school and university levels in several European countries, Science Education, vol.7, issue.3, pp.483-508, 2001.
DOI : 10.1002/sce.1020

URL : https://hal.archives-ouvertes.fr/halshs-01503937

C. Tsui and D. Treagust, Evaluating Secondary Students??? Scientific Reasoning in Genetics Using a Two???Tier Diagnostic Instrument, International Journal of Science Education, vol.51, issue.8, pp.32-1073
DOI : 10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E

J. Van-de-pol, M. Volman, and J. Beishuizen, Scaffolding in Teacher???Student Interaction: A Decade of Research, Educational Psychology Review, vol.48, issue.3, pp.271-296, 2010.
DOI : 10.1007/s10648-010-9127-6

G. J. Venville and D. F. Treagust, Exploring conceptual change in genetics using a multidimensional interpretive framework, Journal of Research in Science Teaching, vol.35, issue.9, pp.1031-1055, 1998.
DOI : 10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E

E. Vries and . De, Les logiciels ddapprentissage : panoplie ou éventail ? Revue française de pédagogie, pp.105-116

L. S. Vygotsky, Mind in Society: The Development of Higher Psychological Processes, 1978.

J. V. Wertsch, Vygotsky and the Social Formation of Mind, 1985.

D. Wood, J. S. Bruner, and G. Ross, THE ROLE OF TUTORING IN PROBLEM SOLVING, Journal of Child Psychology and Psychiatry, vol.51, issue.1, pp.89-100, 1976.
DOI : 10.1037/h0033144

C. F. Wynne, J. Stewart, and C. Passmore, High school students' use of meiosis when solving genetics problems, International Journal of Science Education, vol.44, issue.5, pp.501-516
DOI : 10.1002/sce.3730780308