H. Akaike, A new look at the statistical model identification. Automatic Control, IEEE Transactions on, vol.19, issue.6, pp.716-723, 1974.

A. S. Soliman and A. M. , Electric Load Modeling -Modeling and Model Construction, 2010.

A. Antoniadis, X. Brossat, J. Cugliari, and J. Poggi, Prévision d'un processusàprocessusà valeurs fonctionnelles en présence de non stationnarités ApplicationàApplicationà la consommation d'´ electricité, Journal de la Société Française de Statistique, pp.52-78, 2012.

A. Antoniadis, X. Brossat, J. Cugliari, and J. Poggi, CLUSTERING FUNCTIONAL DATA USING WAVELETS, International Journal of Wavelets, Multiresolution and Information Processing, vol.11, issue.01, p.1350003, 2013.
DOI : 10.1142/S0219691313500033

URL : https://hal.archives-ouvertes.fr/inria-00559115

A. Antoniadis, X. Brossat, J. Cugliari, and J. Poggi, Une approche fonctionnelle pour la prévision non-paramétrique de la consommation d'´ electricité, Journal de la Société Fran¸ caise de Statistique, pp.202-219, 2014.

A. Antoniadis, X. Brossat, Y. Goude, J. Poggi, and V. Thouvenot, Automatic Component Selection in Additive Modeling of French National Electricity Load Forecasting, 2015.
DOI : 10.1007/978-3-319-41582-6_14

A. Antoniadis and J. Fan, Regularization of Wavelet Approximations, Journal of the American Statistical Association, vol.96, issue.455, pp.939-967, 2001.
DOI : 10.1198/016214501753208942

A. Antoniadis, I. Gijbels, and S. Lambert-lacroix, Penalized estimation in additive varying coefficient models using grouped regularization, Statistical Papers, vol.38, issue.3, pp.727-750, 2014.
DOI : 10.1007/s00362-013-0522-1

A. Antoniadis, I. Gijbels, and A. Verhasselt, Variable Selection in Additive Models Using P-Splines, Technometrics, vol.101, issue.4, pp.425-438, 2012.
DOI : 10.1080/00401706.2012.726000

URL : https://hal.archives-ouvertes.fr/hal-00851194

A. Antoniadis, Y. Goude, J. Poggi, and V. Thouvenot, Sélection de variables dans les modèles additifs avec des estimateurs en plusieursétapesplusieursétapes, 2015.

A. Antoniadis, E. Paparoditis, and T. Sapatinas, A functional wavelet?kernel approach for time series prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.42, issue.5, pp.837-857, 2006.
DOI : 10.1073/pnas.42.1.43

A. Ba, M. Sinn, Y. Goude, and P. Pompey, Adaptive learning of smoothing functions : application to electricity load forecasting, Advances in neural information processing systems, pp.2510-2518, 2012.

F. R. Bach, Consistency of the group lasso and multiple kernel learning, J. Mach. Learn. Res, vol.9, pp.1179-1225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00164735

I. Barrio, I. Arostegui, J. Quintana, and I. Group, Use of generalised additive models to categorise continuous variables in clinical prediction, BMC Medical Research Methodology, vol.28, issue.1, p.83, 2013.
DOI : 10.1016/S0167-9473(98)00033-4

G. A. Begg and G. Marteinsdottir, Environmental and stock effects on spatial distribution and abundance of mature cod Gadus morhua, Marine Ecology Progress Series, vol.229, pp.245-262, 2002.
DOI : 10.3354/meps229245

A. Belloni and V. Chernozhukov, Least squares after model selection in high-dimensional sparse models, Bernoulli, vol.19, issue.2, pp.521-547, 2013.
DOI : 10.3150/11-BEJ410SUPP

S. , B. Taieb, and R. J. Hyndman, A gradient boosting approach to the kaggle load forecasting competition, International Journal of Forecasting, vol.30, issue.2, pp.382-394, 2014.

A. Berard and G. Hebrail, Searching time series with Hadoop in an electric power company, Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining Algorithms, Systems, Programming Models and Applications, BigMine '13, pp.15-22
DOI : 10.1145/2501221.2501224

P. Breheny and J. Huang, Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors, Statistics and Computing, vol.36, issue.2, pp.1-15, 2013.
DOI : 10.1007/s11222-013-9424-2

L. Breiman, Better Subset Regression Using the Nonnegative Garrote, Technometrics, vol.37, issue.4, pp.373-384, 1995.
DOI : 10.1080/01621459.1980.10477428

E. Bruhns, G. Deurveilher, and J. Roy, A non-linear regression model for mid-term load forecasting and improvements in seasonality. The 15th Power Systems Computation Conference, 2005.

D. W. Bunn and E. D. Farmer, Comparative Models for Electrical Load Forecasting, 1985.

K. P. Burnham and D. R. Anderson, Model selection and multimodel inference : a practical information-theoretic approach, 2002.
DOI : 10.1007/b97636

R. Campo and P. Ruiz, Adaptive weather-sensitive short-term load forecasting, IEEE Transactions on Power Systems, vol.3, pp.592-600, 1987.

E. Cantoni, J. M. Flemming, and E. Ronchetti, Variable selection in additive models by non-negative garrote, Statistical Modelling, vol.11, issue.3, pp.237-252, 2006.
DOI : 10.1177/1471082X1001100304

B. J. Chen, M. W. Chang, and C. Lin, Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001, IEEE Transactions on Power Systems, vol.19, issue.4, pp.1821-1830, 2001.
DOI : 10.1109/TPWRS.2004.835679

H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li et al., Progress in electrical energy storage system: A critical review, Progress in Natural Science, vol.19, issue.3, pp.291-312, 2009.
DOI : 10.1016/j.pnsc.2008.07.014

H. Cho, Y. Goude, X. Brossat, and Q. Yao, Modelling and Forecasting Daily Electricity Load via Curve Linear Regression, Modeling and Stochastic Learning for Forecasting in High Dimensions, pp.35-54, 2015.
DOI : 10.1007/978-3-319-18732-7_3

H. Cho, Y. Goude, Q. Yao, and X. Brossat, Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach, Journal of the American Statistical Association, vol.73, issue.501, pp.7-21, 2013.
DOI : 10.1198/016214504000001745

G. Claeskens, T. Krivobokova, and J. D. Opsomer, Asymptotic properties of penalized spline estimators, Biometrika, vol.96, issue.3, pp.529-544, 2009.
DOI : 10.1093/biomet/asp035

J. Cugliari, A. Et-poggi, and J. , Prévision non paramétrique de processusàprocessusà valeurs fonctionnelles : applicationà applicationà la consommation d'´ electricité, 2011.

C. and D. Boor, A practical guide to splines, 1978.

A. D. Moliner, Estimation de synchrones de consommationsélectriquesconsommationsélectriques avec calage dynamique sur des données de relevés d'index asynchrones, Journal de la Société Française de Statistique, pp.1-10, 2015.

M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, Forecasting electricity consumption by aggregating specialized experts -a review of the sequential aggregation of specialized experts, with an application to slovakian and french country-wide one-day-ahead (half-) hourly predictions, Machine Learning, pp.90231-260, 2013.

F. Dominici, A. Mcdermott, S. L. Zeger, and J. M. Samet, On the Use of Generalized Additive Models in Time-Series Studies of Air Pollution and Health, American Journal of Epidemiology, vol.156, issue.3, pp.193-203, 2002.
DOI : 10.1093/aje/kwf062

V. Dordonnat-koopman, S. J. Et-ooms, and M. , State-space Modelling for High Frequency Data : Three Applications to French National Electricity Load, 2009.

V. Dordonnat, S. J. Koopman, M. Ooms, A. Dessertaine, and J. Collet, An hourly periodic state space model for modelling French national electricity load, International Journal of Forecasting, vol.24, issue.4, pp.566-587, 2008.
DOI : 10.1016/j.ijforecast.2008.08.010

V. Dordonnat, A. Pichavant, and A. Pierrot, GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models, International Journal of Forecasting, vol.32, issue.3, 2015.
DOI : 10.1016/j.ijforecast.2015.11.010

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression. The Annals of Statistics, pp.407-499, 2004.

M. A. Efroymson, Multiple Regression Analysis Mathematical Methods for Digital Computers, 1960.

P. H. Eilers and B. D. Marx, Flexible smoothing with B -splines and penalties, Statistical Science, vol.11, issue.2, pp.89-121, 1996.
DOI : 10.1214/ss/1038425655

M. Anbari and A. Mkhadri, Penalized regression combining the L1 norm and a correlation based penalty, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00343635

J. Fan and J. Jiang, Nonparametric Inferences for Additive Models, Journal of the American Statistical Association, vol.100, issue.471, pp.890-907, 2005.
DOI : 10.1198/016214504000001439

S. Fan and L. Chen, Short-Term Load Forecasting Based on an Adaptive Hybrid Method, IEEE Transactions on Power Systems, vol.21, issue.1, pp.395-401, 2006.
DOI : 10.1109/TPWRS.2005.860944

S. Fan and R. J. Hyndman, Short-term load forecasting based on a semi-parametric additive model. Power Systems, IEEE Transactions on, vol.27, issue.1, pp.134-141, 2012.

I. E. Frank and J. H. Friedman, A Statistical View of Some Chemometrics Regression Tools, Technometrics, vol.5, issue.2, pp.109-148, 1993.
DOI : 10.1080/00401706.1993.10485033

G. M. Furnival, R. W. Wilson, and J. , Regressions by Leaps and Bounds, Technometrics, vol.60, issue.1, pp.69-79, 2000.
DOI : 10.2307/1267353

P. Gaillard, ContributionsàContributionsà l'agrégation séquentielle robuste d'experts : travaux sur l'erreur d'approximation et la prévision en loi ApplicationsàApplicationsà la prévision pour les marchés de l'´ energie, Thèse de doctorat de Mathématiques dirigée par Stoltz G, 2015.

P. Gaillard and Y. Goude, Forecasting Electricity Consumption by Aggregating Experts; How to Design a Good Set of Experts, Modeling and Stochastic Learning for Forecasting in High Dimensions, pp.95-115, 2015.
DOI : 10.1007/978-3-319-18732-7_6

P. Gaillard, Y. Goude, and R. Nedellec, Semi-parametric models for gefcom2014 probabilistic electric load and electricity price forecasting, 2015.

D. Gervini, Free-knot spline smoothing for functional data, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.53, issue.4, pp.671-687, 2006.
DOI : 10.1214/aos/1024691356

Y. Goude, Mixing Individual Predictors when Breaks Occur : A Risk Approach, 2006.

Y. Goude, Mélange de prédicteurs : applicationàapplicationà la prévision de consommation d'´ electricité, Thèse de doctorat de Mathématiques dirigée par, 2008.

Y. Goude, R. Nedellec, and N. Kong, Local short and middle term electricity load forecasting with semi-parametric additive models. Smart Grid, IEEE Transactions on, vol.5, issue.1, pp.440-446, 2014.

H. Hahn, S. Meyer-nieberg, and S. Pickl, Electric load forecasting methods: Tools for decision making, European Journal of Operational Research, vol.199, issue.3, pp.902-907, 2009.
DOI : 10.1016/j.ejor.2009.01.062

T. J. Hastie and R. J. Tibshirani, Generalized additive models, 1990.

T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The elements of statistical learning : data mining, inference, and prediction. Springer series in statistics, Autres impressions, pp.2011-2013, 2009.

L. Hatton, P. Charpentier, and E. Matzner-løber, Statistical Estimation of the Residential Baseline, IEEE Transactions on Power Systems, vol.31, issue.3, 2015.
DOI : 10.1109/TPWRS.2015.2453889

A. Hinojosa and V. H. Hoese, Short-Term Load Forecasting Using Fuzzy Inductive Reasoning and Evolutionary Algorithms, IEEE Transactions on Power Systems, vol.25, issue.1, pp.565-574, 2010.
DOI : 10.1109/TPWRS.2009.2036821

R. R. Hocking, A Biometrics Invited Paper. The Analysis and Selection of Variables in Linear Regression, Biometrics, vol.32, issue.1, pp.1-49, 1976.
DOI : 10.2307/2529336

A. E. Hoerl and R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

T. Hong, P. Pinson, and S. Fan, Global Energy Forecasting Competition 2012, International Journal of Forecasting, vol.30, issue.2, pp.357-363, 2014.
DOI : 10.1016/j.ijforecast.2013.07.001

T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli et al., Probabilistic energy forecasting : State-of-the-art 2015, 2015.

T. Hong, P. Wang, and L. White, Weather station selection for electric load forecasting, International Journal of Forecasting, vol.31, issue.2, pp.286-295, 2015.
DOI : 10.1016/j.ijforecast.2014.07.001

J. Huang, P. Breheny, and S. Ma, A Selective Review of Group Selection in High-Dimensional Models, Statistical Science, vol.27, issue.4, pp.481-499
DOI : 10.1214/12-STS392

J. Huang, J. L. Horowitz, and F. Wei, Variable selection in nonparametric additive models. The Annals of Statistics, pp.2282-2313, 2010.

S. J. Huang and K. R. Shih, Short-term load forecasting via ARMA model identification including non-gaussian process considerations, IEEE Transactions on Power Systems, vol.18, issue.2, pp.673-679, 2003.
DOI : 10.1109/TPWRS.2003.811010

R. J. Hyndman and S. Fan, Density forecasting for long-term peak electricity demand. Power Systems, IEEE Transactions on, vol.25, issue.2, pp.1142-1153, 2010.

F. X. Jollois, J. Poggi, and B. Portier, Three non-linear statistical methods for analyzing PM10 pollution in Rouen area, CSBIGS, vol.3, pp.1-17, 2009.

K. Kato, Group Lasso for high dimensional sparse quantile regression models ArXiv e-prints, 2011.

K. Kato, Two-step estimation of high dimensional additive models, 2012.

A. Khotanzad, R. Afkhami-rohani, and D. Maratukulam, ANNSTLF-Artificial Neural Network Short-Term Load Forecaster- generation three, IEEE Transactions on Power Systems, vol.13, issue.4, pp.1413-1422, 1998.
DOI : 10.1109/59.736285

R. Koenker and G. Bassett-jr, Regression quantiles, Econometrica : Journal of the Econometric Society, pp.33-50, 1978.

A. N. Kolmogorov, On tables of random numbers, Theoretical Computer Science, vol.207, issue.2, pp.387-395, 1998.
DOI : 10.1016/S0304-3975(98)00075-9

S. Kullback, R. A. Leibler, and T. Launay, On Information and Sufficiency, The Annals of Mathematical Statistics, vol.22, issue.1, pp.79-86, 2012.
DOI : 10.1214/aoms/1177729694

T. Launay, A. Philippe, and S. Lamarche, Construction of an informative hierarchical prior distribution. Application to electricity load forecasting, 2011.

T. Launay, A. Philippe, and S. Lamarche, On particle filters applied to electricity load forecasting, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737555

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems 13, pp.556-562, 2001.

H. Leeb and B. M. Potscher, Can one estimate the conditional distribution of post-modelselection estimators ? The Annals of Statistics, pp.2554-2591, 2006.

V. Lefieux, Modèles semi-paramétriques appliquéesappliquéesà la prévision des séries temporelles Cas de la consommation d'´ electricité, Thèse de doctorat de Mathématiques dirigée par Carbon, M. et Delecroix, M., Rennes, 2007.

Y. Lin and H. H. Zhang, Component selection and smoothing in multivariate nonparametric regression. The Annals of Statistics, pp.2272-2297, 2006.

J. R. Lloyd, GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes, International Journal of Forecasting, vol.30, issue.2, pp.369-374, 2014.
DOI : 10.1016/j.ijforecast.2013.07.002

C. L. Mallows, Some comments on Cp, Technometrics, vol.15, pp.661-675, 1973.

G. Marra and S. Wood, Practical variable selection for generalized additive models, Computational Statistics & Data Analysis, vol.55, issue.7, pp.2372-2387, 2011.
DOI : 10.1016/j.csda.2011.02.004

P. Mathis, LesénergiesLesénergies : comprendre les enjeux, Quae, 2011.

L. Meier, S. Van-de-geer, and P. Bühlmann, The group lasso for logistic regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.68, issue.1, pp.53-71, 2008.
DOI : 10.1111/j.1467-9868.2007.00627.x

L. Meier, S. Van-de-geer, and P. Bühlmann, High-dimensional additive modeling. The Annals of Statistics, pp.3779-3821, 2009.

N. Molinari, J. Durand, and R. Sabatier, Bounded optimal knots for regression splines, Computational Statistics & Data Analysis, vol.45, issue.2, pp.159-178, 2004.
DOI : 10.1016/S0167-9473(02)00343-2

R. Nedellec, J. Cugliari, and Y. Goude, GEFCom2012: Electric load forecasting and backcasting with semi-parametric models, International Journal of Forecasting, vol.30, issue.2, pp.375-381, 2014.
DOI : 10.1016/j.ijforecast.2013.07.004

J. Nowicka-zagrajeka and R. Weron, Modeling electricity loads in California: ARMA models with hyperbolic noise, Signal Processing, vol.82, issue.12, pp.1903-1915, 2002.
DOI : 10.1016/S0165-1684(02)00318-3

L. O-'brien and P. Rago, An application of the generalized additive model to groundfish survey data with atlantic cod off the northeast coast of the united states as an example, NAFO Sci. Coun. Studies, vol.28, pp.79-95, 1996.

A. Pierrot and Y. Goude, Short-term electricity load forecasting with generalized additive models, Proceedings of ISAP power, pp.593-600, 2011.

J. M. Poggi, Prévision non paramétrique de la consommationélectriqueconsommationélectrique, pp.83-98, 1994.

P. Pompey, A. Bondu, Y. Goude, and M. Sinn, Massive-Scale Simulation of Electrical Load in Smart Grids Using Generalized Additive Models, Modeling and Stochastic Learning for Forecasting in High Dimensions, pp.193-212, 2015.
DOI : 10.1007/978-3-319-18732-7_11

Z. Qin, K. Scheinberg, and D. Goldfarb, Efficient block-coordinate descent algorithms for the Group Lasso, Mathematical Programming Computation, vol.67, issue.2, pp.143-169, 2013.
DOI : 10.1007/s12532-013-0051-x

R. Ramanathan, R. Engle, C. W. Granger, F. Vahid-araghi, and C. Brace, Short-Run Forecasts of Electricity Loads and Peaks, International Journal of Forecasting, vol.13, pp.161-174, 1997.
DOI : 10.1017/CBO9780511753961.027

J. Rissanen, Modeling by shortest data description, Automatica, vol.14, issue.5, pp.465-471, 1978.
DOI : 10.1016/0005-1098(78)90005-5

D. Ruppert, Selecting the Number of Knots for Penalized Splines, Journal of Computational and Graphical Statistics, vol.11, issue.4, pp.735-757, 2002.
DOI : 10.1198/106186002853

C. Scherrer, T. Ambuj, M. Halappanavar, and D. Haglin, Feature clustering for accelerating parallel coordinate descent, Advances in Neural Information Processing Systems 25, pp.28-36, 2012.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

R. Shibata, Statistical Aspects of Model Selection, 1989.
DOI : 10.1007/978-3-642-75007-6_5

C. Singleton and N. Charlton, A refined parametric model for short term load forecasting, International Journal of Forecasting, vol.30, issue.2, pp.364-368, 2014.

C. J. Stone, Additive regression and other nonparametric models. The Annals of Statistics, pp.689-705, 1985.
DOI : 10.1214/aos/1176349548

URL : http://projecteuclid.org/download/pdf_1/euclid.aos/1176349548

G. Swartzman, C. Huang, and S. Kaluzny, Spatial Analysis of Bering Sea Groundfish Survey Data Using Generalized Additive Models, Canadian Journal of Fisheries and Aquatic Sciences, vol.49, issue.7, pp.1366-1378, 1992.
DOI : 10.1139/f92-152

J. W. Taylor, Triple seasonal methods for short-term electricity demand forecasting, European Journal of Operational Research, vol.204, issue.1, pp.139-152, 2010.
DOI : 10.1016/j.ejor.2009.10.003

J. W. Taylor, Short-Term Load Forecasting With Exponentially Weighted Methods, IEEE Transactions on Power Systems, vol.27, issue.1, pp.458-464, 2012.
DOI : 10.1109/TPWRS.2011.2161780

R. Thorndike, Who belongs in the family ? Psychometrika, pp.267-276, 1953.

V. Thouvenot, A. Pichavant, Y. Goude, A. Antoniadis, and J. Poggi, Electricity Forecasting Using Multi-Stage Estimators of Nonlinear Additive Models, IEEE Transactions on Power Systems, vol.31, issue.5, 2015.
DOI : 10.1109/TPWRS.2015.2504921

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, vol.58, pp.267-288, 1994.

P. Tseng, Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, Journal of Optimization Theory and Applications, vol.109, issue.3, pp.475-494, 2001.
DOI : 10.1023/A:1017501703105

J. Ulbricht115-]-g, P. Wahba, and . Craven, Variable Selection in Generalized Linear Models Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation, Verlag Dr. Hut Numerische Mathematik, vol.31, pp.377-404, 1978.

H. Wang, B. Li, and C. Leng, Shrinkage tuning parameter selection with a diverging number of parameters, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.36, issue.3, pp.671-683, 2009.
DOI : 10.1111/j.1467-9868.2008.00693.x

H. Wang and A. Banerjee, Randomized Block Coordinate for Online and Stochastic Optimization ArXiv e-prints, 2014.

L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics), 2006.

S. Wood, Generalized Additive Models : An Introduction with R. Chapman and Hall/CRC, 2006.

S. Wood, Y. Goude, and S. Shaw, Generalized additive models for large data sets, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.73, issue.1, pp.139-155, 2015.
DOI : 10.1111/rssc.12068

C. Xia, J. Wang, and K. Mcmenemy, Short, medium and long term load forecasting model and virtual load forecaster based on radial basis function neural networks, International Journal of Electrical Power & Energy Systems, vol.32, issue.7, pp.743-750, 2010.
DOI : 10.1016/j.ijepes.2010.01.009

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

S. Zhou, Restricted eigenvalue conditions on subgaussian random matrices, p.4045, 2009.

S. Zhou and X. Shen, Spatially Adaptive Regression Splines and Accurate Knot Selection Schemes, Journal of the American Statistical Association, vol.96, issue.453, pp.247-259, 2001.
DOI : 10.1198/016214501750332820

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998