. B. Ch, Bubbles' shape B.3. Decompression of gas bubbles Ch. C. Other geometries & scale-up C.2. Parallelization 234

. E. Ch and . Quennouz, Script for destabilization of bubble production Bibliography Microfluidic Study of Foams Flow for Enhanced Oil Recovery (EOR) " . OGST 69, pp.457-466, 2014.

L. Ducloué, Comportement rhéologique des fluides à seuil aérés, pp.53-183

P. Coussot, Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment, pp.9780471720560-48, 2005.
DOI : 10.1002/0471720577

G. A. Van-aken, Aeration of emulsions by whipping, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.190, issue.3, pp.333-354, 2001.
DOI : 10.1016/S0927-7757(01)00709-9

P. Oswald and M. Saint-jean, Rhéophysique: ou comment coule la matière, Belin, vol.27, issue.53, pp.9782701139692-42, 2005.

P. Coussot, Rhéophysique la matière dans tous ses Etats, EDP Sciences, vol.27, issue.42, pp.44-73, 2012.

J. Goyon, Shear Induced Drainage in Foamy Yield-Stress Fluids, Physical Review Letters, vol.104, issue.12, p.128301, 2010.
DOI : 10.1103/PhysRevLett.104.128301

URL : https://hal.archives-ouvertes.fr/hal-00467198

L. Ducloué, Coupling of elasticity to capillarity in soft aerated materials, Soft Matter, vol.29, issue.28, pp.5093-5098, 2014.
DOI : 10.1039/c4sm00200h

A. Salonen, Dual gas and oil dispersions in water: production and stability of foamulsion, Soft Matter, vol.277, issue.6, pp.699-706, 2012.
DOI : 10.1039/C1SM06537H

URL : https://hal.archives-ouvertes.fr/hal-00974346

W. L. Olbricht, Pore-Scale Prototypes of Multiphase Flow in Porous Media, Annual Review of Fluid Mechanics, vol.28, issue.1, pp.187-213, 1996.
DOI : 10.1146/annurev.fl.28.010196.001155

P. S. Hammond, Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe, Journal of Fluid Mechanics, vol.34, issue.-1, pp.363-384, 1983.
DOI : 10.1063/1.1693422

P. Gauglitz and C. J. Radke, The dynamics of liquid film breakup in constricted cylindrical capillaries, Journal of Colloid and Interface Science, vol.134, issue.1, pp.14-40, 1990.
DOI : 10.1016/0021-9797(90)90248-M

P. A. Gauglitz, Foam generation in homogeneous porous media, Chemical Engineering Science, vol.57, issue.19, pp.4037-4052, 2002.
DOI : 10.1016/S0009-2509(02)00340-8

T. Chevalier, Ecoulements de fluides a seuil en milieux confines, p.28
URL : https://hal.archives-ouvertes.fr/tel-00903850

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab on a Chip, vol.9, issue.9, pp.2032-2045, 2010.
DOI : 10.1039/c001191f

URL : https://hal.archives-ouvertes.fr/hal-01020657

A. Huerre, V. Miralles, and M. Jullien, Bubbles and foams in microfluidics, Soft Matter, vol.413, issue.36, pp.6888-6902, 2014.
DOI : 10.1103/PhysRevLett.112.238302

R. Seemann, Droplet based microfluidics, Reports on Progress in Physics, vol.75, issue.1, pp.16601-76, 2012.
DOI : 10.1088/0034-4885/75/1/016601

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.9, issue.7491, pp.181-189, 2014.
DOI : 10.1021/ac301512f

S. Teh, Droplet microfluidics, Lab on a Chip, vol.7, issue.328, pp.198-220, 2008.
DOI : 10.2310/7290.2007.00034

D. Mark, Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev, vol.393, pp.1153-1182, 2010.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-373, 2006.
DOI : 10.1038/nature05058

D. Bartolo and D. G. Aarts, Microfluidics and soft matter: small is useful, Soft Matter, vol.85, issue.41, pp.10530-10535, 2012.
DOI : 10.1039/c2sm26157j

T. Nisisako, T. Torii, and T. Higuchi, Droplet formation in a microchannel network, Lab Chip, vol.74, issue.3, pp.24-26, 2002.
DOI : 10.1039/B108740C

M. D. Menech, Transition from squeezing to dripping in a microfluidic T-shaped junction, Journal of Fluid Mechanics, vol.68, pp.141-161, 2008.
DOI : 10.1146/annurev.fluid.30.1.139

P. Garstecki, Formation of droplets and bubbles in a microfluidic T-junction???scaling and mechanism of break-up, Lab on a Chip, vol.12, issue.3, pp.437-446, 2006.
DOI : 10.1039/b510841a

M. Jullien, Droplet breakup in microfluidic T-junctions at small capillary numbers, Physics of Fluids, vol.21, issue.7, pp.72001-72029, 2009.
DOI : 10.1063/1.3170983

URL : https://hal.archives-ouvertes.fr/hal-00991895

S. L. Anna, N. Bontoux, and H. A. Stone, Formation of dispersions using ???flow focusing??? in microchannels, Applied Physics Letters, vol.82, issue.3, pp.364-366, 2003.
DOI : 10.1063/1.1537519

A. G. Marin, F. Campo-cortes, and J. M. Gordillo, Generation of micron-sized drops and bubbles through viscous coflows, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.344, issue.1-3, pp.2-7, 2009.
DOI : 10.1016/j.colsurfa.2008.09.033

Z. Nie, Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids, Microfluidics and Nanofluidics, vol.125, issue.5, pp.585-594, 2008.
DOI : 10.1007/s10404-008-0271-y

P. Garstecki, H. A. Stone, and G. M. Whitesides, Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions, Physical Review Letters, vol.94, issue.16, pp.164501-164531, 2005.
DOI : 10.1103/PhysRevLett.94.164501

B. Dollet, Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices, Physical Review Letters, vol.100, issue.3, pp.34504-125, 2008.
DOI : 10.1103/PhysRevLett.100.034504

URL : https://hal.archives-ouvertes.fr/hal-00674374

W. Van-hoeve, Microbubble formation and pinch-off scaling exponent in flow-focusing devices, Physics of Fluids, vol.23, issue.9, pp.92001-92029, 2011.
DOI : 10.1063/1.3631323

URL : https://hal.archives-ouvertes.fr/hal-00714102

R. Suryo, A. Osman, and . Basaran, Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid, Physics of Fluids, vol.18, issue.8, pp.82102-125, 2006.
DOI : 10.1063/1.2335621

S. Sugiura, Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array, Langmuir, vol.17, issue.18, pp.5562-5566, 2001.
DOI : 10.1021/la010342y

R. Dangla, The physical mechanisms of step emulsification, Journal of Physics D: Applied Physics, vol.46, issue.11, pp.114003-125, 2013.
DOI : 10.1088/0022-3727/46/11/114003

URL : https://hal.archives-ouvertes.fr/hal-00996486

R. Dangla, S. C. Kayi, and C. N. Baroud, Droplet microfluidics driven by gradients of confinement, Proc. Natl. Acad. Sci. USA, pp.853-858, 2013.
DOI : 10.1073/pnas.1209186110

URL : https://hal.archives-ouvertes.fr/hal-00995145

M. Stoffel, Bubble Production Mechanism in a Microfluidic Foam Generator, Physical Review Letters, vol.108, issue.19, pp.198302-125, 2012.
DOI : 10.1103/PhysRevLett.108.198302

URL : https://hal.archives-ouvertes.fr/hal-00785723

B. Chen, Three-Dimensional Simulation of Bubble Formation Through a Microchannel T-Junction, Chemical Engineering & Technology, vol.59, issue.15, pp.2087-2100, 2013.
DOI : 10.1002/ceat.201300169

A. Duboin, Cusps, spouts and microfiber synthesis with microfluidics, Soft Matter, vol.43, issue.11, pp.3041-3049, 2013.
DOI : 10.1039/c2sm27142g

T. Fu, Breakup dynamics of slender bubbles in non-newtonian fluids in microfluidic flow-focusing devices, AIChE Journal, vol.166, issue.11, pp.3560-3567, 2012.
DOI : 10.1002/aic.13723

URL : https://hal.archives-ouvertes.fr/hal-00778191

T. Fu, Gas???liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices, Microfluidics and Nanofluidics, vol.442, issue.5, pp.1135-1140, 2011.
DOI : 10.1007/s10404-010-0741-x

URL : https://hal.archives-ouvertes.fr/hal-00606319

T. Fu, Bubble formation in non-Newtonian fluids in a microfluidic T-junction, Chemical Engineering and Processing: Process Intensification, vol.50, issue.4, pp.438-442, 2011.
DOI : 10.1016/j.cep.2011.03.002

URL : https://hal.archives-ouvertes.fr/hal-00606316

. Ph and . Nghe, Microfluidics and complex fluids, Lab Chip, vol.11, issue.28, pp.788-794, 2011.

O. E. Yildirim and O. A. Basaran, Dynamics of formation and dripping of drops of deformationrate-thinning and -thickening liquids from capillary tubes, J. NN Fluid Mech, vol.1361, issue.28, pp.17-37, 2006.

L. Derzsi, Flow focusing with viscoelastic liquids, Physics of Fluids, vol.25, issue.9, 2013.
DOI : 10.1063/1.4817995.1

Y. Xia and G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci, vol.281, issue.28, pp.153-184, 1998.

J. C. Mcdonald, Fabrication of microfluidic systems in poly (dimethylsiloxane, Electrophoresis, vol.211, issue.28, pp.27-40, 2000.

S. Takeuchi, An Axisymmetric Flow-Focusing Microfluidic Device Advanced materials 17, pp.1067-1072, 2005.

P. F. Jacobs, Rapid prototyping & manufacturing: fundamentals of stereolithography, Society of Manufacturing Engineers, vol.62, p.29, 1992.

F. P. Melchels, J. Feijen, and D. W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomaterials, vol.31, issue.24, pp.6121-6130, 2010.
DOI : 10.1016/j.biomaterials.2010.04.050

L. D. Landau, Theory of Elasticity (cit

L. D. Landau and E. M. Lifshits, Fluid Mechanics. Teoreticheskaia fizika, p.41, 1959.

E. Guyon, J. P. Hulin, and L. Petit, Hydrodynamique physique, EDP Sciences, pp.51-52, 2001.

P. G. De-gennes, F. Brochard-wyart, and D. Quéré, Gouttes, bulles, perles et ondes, Belin, vol.44, issue.116, pp.9782701130248-40, 2002.

A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, Journal of The Electrochemical Society, vol.124, issue.5, pp.44-70, 1967.
DOI : 10.1149/1.2133374

V. G. Levich, Physicochemical hydrodynamics, 1962.

F. Mahaut, Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids, Journal of Rheology, vol.52, issue.1, pp.44-47, 2008.
DOI : 10.1122/1.2798234

URL : https://hal.archives-ouvertes.fr/hal-00331837

T. G. Mason, J. Bibette, and D. A. Weitz, Yielding and Flow of Monodisperse Emulsions, Journal of Colloid and Interface Science, vol.179, issue.2, pp.439-448, 1996.
DOI : 10.1006/jcis.1996.0235

P. Coussot, Macroscopic vs. local rheology of yield stress fluids, Journal of Non-Newtonian Fluid Mechanics, vol.158, issue.1-3, pp.85-90, 2009.
DOI : 10.1016/j.jnnfm.2008.08.003

URL : https://hal.archives-ouvertes.fr/hal-01172607

J. M. Piau, Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws, J. NN Fluid Mech, vol.144, pp.1-29, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00352873

P. Moller, An attempt to categorize yield stress fluid behaviour, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.89, issue.6, pp.5139-5155, 2009.
DOI : 10.1103/PhysRevLett.89.065701

H. M. Princen, Rheology of foams and highly concentrated emulsions, Journal of Colloid and Interface Science, vol.91, issue.1, pp.160-175, 1983.
DOI : 10.1016/0021-9797(83)90323-5

M. P. Aronson, The role of free surfactant in destabilizing oil-in-water emulsions, Langmuir, vol.5, issue.2, pp.494-501, 1989.
DOI : 10.1021/la00086a036

I. Cantat, Foams: Structure and Dynamics, p.219
DOI : 10.1093/acprof:oso/9780199662890.001.0001

G. I. Taylor, The Formation of Emulsions in Definable Fields of Flow, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.146, issue.858, pp.501-523, 1934.
DOI : 10.1098/rspa.1934.0169

G. I. Taylor, The Viscosity of a Fluid Containing Small Drops of Another Fluid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.138, issue.834, pp.41-48, 1932.
DOI : 10.1098/rspa.1932.0169

DOI : 10.1002/aic.690150512

J. M. Bibette and T. Mason, Emulsion manufacturing process. EP Patent App, EP19, vol.970920773, 1998.

C. Mabille, Rheological and Shearing Conditions for the Preparation of Monodisperse Emulsions, Langmuir, vol.16, issue.2, pp.422-429, 2000.
DOI : 10.1021/la990850w

L. Bécu, Complex fluids under shear: local rheology, inhomogeneous flows ans spatio-temporal dynamics, 2005.

J. Goyon, Materiaux amorphes : des solides qui coulent de facon collective, pp.66-69
URL : https://hal.archives-ouvertes.fr/tel-00360121

R. J. Jr, R. K. Ketz, W. W. Prud-'homme, and . Graessley, Rheology of concentrated microgel solutions, Rheol. Acta, vol.27, pp.531-539, 1988.

R. T. Bonnecaze and M. Cloitre, Micromechanics of soft particle glasses " . High Solid Dispersions, pp.117-161, 2010.

J. Boujlel and P. Coussot, Measuring the surface tension of yield stress fluids, Soft Matter, vol.57, issue.25, pp.5898-5908, 2013.
DOI : 10.1039/c3sm50551k

URL : https://hal.archives-ouvertes.fr/hal-00946108

P. Coussot, Yield stress fluid flows: A review of experimental data, Journal of Non-Newtonian Fluid Mechanics, vol.211, pp.31-49, 2014.
DOI : 10.1016/j.jnnfm.2014.05.006

B. Geraud, Capillary rise of yield-stress fluids, EPL (Europhysics Letters), vol.107, issue.5, pp.58002-58050, 2014.
DOI : 10.1209/0295-5075/107/58002

URL : https://hal.archives-ouvertes.fr/hal-01059035

C. Gutfinger and J. A. Tallmadge, Films of non-Newtonian fluids adhering to flat plates, AIChE Journal, vol.11, issue.3, pp.403-413, 1965.
DOI : 10.1002/aic.690110308

C. W. Macosko, Rheology: principles, measurements, and applications, pp.49-51, 1994.

]. B. Geraud, L. Bocquet, and C. Barentin, Confined flows of a polymer microgel, The European Physical Journal E, vol.48, issue.3, pp.51-69, 2013.
DOI : 10.1140/epje/i2013-13030-3

L. Luu and Y. Forterre, Drop impact of yield-stress fluids, Journal of Fluid Mechanics, vol.73, pp.301-327, 2009.
DOI : 10.1140/epje/i2007-10284-2

URL : https://hal.archives-ouvertes.fr/hal-01432118

I. Cheddadi, Numerical modelling of foam Couette flows, The European Physical Journal E, vol.27, issue.2, pp.123-133, 2008.
DOI : 10.1140/epje/i2008-10358-7

URL : https://hal.archives-ouvertes.fr/hal-00317915

J. R. Seth, A micromechanical model to predict the flow of soft particle glasses, Nature Materials, vol.29, issue.11, pp.838-843, 2011.
DOI : 10.1038/nmat3119

URL : https://hal.archives-ouvertes.fr/hal-00641346

R. G. Larson, The elastic stress in ???film fluids???, Journal of Rheology, vol.41, issue.2, pp.365-372, 1997.
DOI : 10.1122/1.550857

R. Larson, The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering), 1998.

J. Ashmore, Coating flows of non-Newtonian fluids: weakly and strongly elastic limits, Journal of Engineering Mathematics, vol.206, issue.11, pp.17-41, 2008.
DOI : 10.1007/s10665-007-9152-8

E. Andres, Discrete circles, rings and spheres, Computers & Graphics, vol.18, issue.5, pp.695-706, 1994.
DOI : 10.1016/0097-8493(94)90164-3

P. Guillot and A. Colin, Determination of the flow curve of complex fluids using the Rabinowitsch???Mooney equation in sensorless microrheometer, Microfluidics and Nanofluidics, vol.90, issue.19, pp.605-611, 2014.
DOI : 10.1007/s10404-013-1329-z

G. B. Froishteter and G. V. Vinogradov, The laminar flow of plastic disperse systems in circular tubes, Rheologica Acta, vol.4, issue.2, pp.239-250, 1980.
DOI : 10.1007/BF01521936

J. Goyon, A. Colin, and L. Bocquet, How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity, Soft Matter, vol.93, issue.12, pp.2668-2678, 2010.
DOI : 10.1039/c001930e

URL : https://hal.archives-ouvertes.fr/hal-00539783

P. Jop, Microscale Rheology of a Soft Glassy Material Close to Yielding, Physical Review Letters, vol.108, issue.14, pp.148301-69, 2012.
DOI : 10.1103/PhysRevLett.108.148301

Y. Yan, The influence of flow confinement on the rheological properties of complex fluids, Rheologica Acta, vol.18, issue.3, pp.255-266, 2010.
DOI : 10.1007/s00397-009-0401-9

T. Divoux, C. Barentin, and S. Manneville, From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids, Soft Matter, vol.106, issue.148, pp.8409-8418, 2011.
DOI : 10.1007/s00397-010-0504-3

V. Mansard and A. Colin, Local and non local rheology of concentrated particles, Soft Matter, vol.7, issue.15, pp.4025-4043, 2012.
DOI : 10.1039/c2sm25306b

V. Mansard, L. Bocquet, and A. Colin, Boundary conditions for soft glassy flows: slippage and surface fluidization, Soft Matter, vol.75, issue.36, pp.6984-6989, 2014.
DOI : 10.1039/C4SM00230J

H. A. Barnes, A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure, J. NN Fluid Mech, vol.56, issue.70, pp.221-251, 1995.

D. Bonn, Yield Stress Materials in Soft Condensed Matter " . ArXiv e-prints (Feb. 2015). arXiv: 1502.05281 (cit, pp.70-71

J. N. Israelachvili, Intermolecular and Surface Forces. Intermolecular and Surface Forces, 2010.

J. R. Seth, How do soft particle glasses yield and flow near solid surfaces?, Soft Matter, vol.324, issue.1, pp.140-148, 2012.
DOI : 10.1039/C1SM06074K

J. R. Seth, M. Cloitre, and R. T. Bonnecaze, Influence of short-range forces on wall-slip in microgel pastes, Journal of Rheology, vol.52, issue.5, pp.1241-1268, 2008.
DOI : 10.1122/1.2963135

URL : https://hal.archives-ouvertes.fr/hal-00430964

A. Vayssade, Dynamical role of slip heterogeneities in confined flows, Physical Review E, vol.89, issue.5, p.52309, 2014.
DOI : 10.1103/PhysRevE.89.052309

W. B. Horne, Phenomena of pneumatic tire hydroplaning, NASA technical note National Aeronautics and Space Administration, vol.2056, 1963.

H. M. Princen and A. D. Kiss, Osmotic pressure of foams and highly concentrated emulsions. 2. Determination from the variation in volume fraction with height in an equilibrated column, Langmuir, vol.3, issue.1, pp.36-41, 1987.
DOI : 10.1021/la00073a007

S. P. Meeker, R. T. Bonnecaze, and M. Cloitre, Slip and flow in pastes of soft particles: Direct observation and rheology, Journal of Rheology, vol.48, issue.6, pp.1295-1320, 2004.
DOI : 10.1122/1.1795171

S. P. Meeker, R. T. Bonnecaze, and M. Cloitre, Slip and Flow in Soft Particle Pastes, Physical Review Letters, vol.92, issue.19, pp.198302-75, 2004.
DOI : 10.1103/PhysRevLett.92.198302

G. V. Vinogradov, The flow of plastic disperse systems in the presence of the wall effect, Rheologica Acta, vol.1, issue.9, pp.765-775, 1975.
DOI : 10.1007/BF01521405

C. Metivier, Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls, Soft Matter, vol.8, pp.7365-7367, 2012.

T. G. Mason, J. Bibette, and D. A. Weitz, Elasticity of Compressed Emulsions, Physical Review Letters, vol.75, issue.10, p.2051, 1995.
DOI : 10.1103/PhysRevLett.75.2051

G. I. Taylor, Deposition of a viscous fluid on the wall of a tube, Journal of Fluid Mechanics, vol.10, issue.02, pp.161-165, 1961.
DOI : 10.1039/jr9350000527

F. P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, vol.194, issue.02, pp.166-188, 1961.
DOI : 10.1021/ie50601a051

V. S. Ajaev and G. M. Homsy, MODELING SHAPES AND DYNAMICS OF CONFINED BUBBLES, Annual Review of Fluid Mechanics, vol.38, issue.1, pp.277-307, 2006.
DOI : 10.1146/annurev.fluid.38.050304.092033

J. Raven, P. Marmottant, and F. Graner, Dry microfoams: formation and flow in a confined channel, The European Physical Journal B, vol.292, issue.1, pp.137-143, 2006.
DOI : 10.1140/epjb/e2006-00197-6

URL : https://hal.archives-ouvertes.fr/hal-00011120

M. J. Fuerstman, The pressure drop along rectangular microchannels containing bubbles, Lab on a Chip, vol.14, issue.11, pp.1479-1489, 2007.
DOI : 10.1039/b706549c

S. R. Hodges, O. E. Jensen, and J. M. Rallison, The motion of a viscous drop through a cylindrical tube, Journal of Fluid Mechanics, vol.501, pp.279-301, 2004.
DOI : 10.1017/S0022112003007213

L. W. Schwartz, H. M. Princen, and A. D. Kiss, On the motion of bubbles in capillary tubes, Journal of Fluid Mechanics, vol.10, issue.-1, pp.259-275, 1986.
DOI : 10.1063/1.864406

B. V. Deryagin and S. M. Levi, Film Coating Theory, p.95, 1964.

P. M. Schweizer and S. F. Kistler, Liquid Film Coating: Scientific principles and their technological implications, 2012.

P. Aussillous and D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids, vol.12, issue.10, pp.2367-2371, 2000.
DOI : 10.1063/1.1289396

D. Quéré, FLUID COATING ON A FIBER, Annual Review of Fluid Mechanics, vol.31, issue.1, pp.347-384, 1999.
DOI : 10.1146/annurev.fluid.31.1.347

D. A. Reinelt, The penetration of a finger into a viscous fluid, p.93, 1984.

E. J. Hinch, Perturbation methods, 1991.

J. Seiwert, Entraînements visqueux, p.115

D. A. White and J. A. Tallmadge, A theory of withdrawal of cylinders from liquid baths, AIChE Journal, vol.12, issue.2, pp.333-339, 1966.
DOI : 10.1002/aic.690120223

D. A. Reinelt and P. G. Saffman, The Penetration of a Finger into a Viscous Fluid in a Channel and Tube, SIAM Journal on Scientific and Statistical Computing, vol.6, issue.3, pp.542-561, 1985.
DOI : 10.1137/0906038

D. Quéré and A. De-ryck, Le mouillage dynamique des fibres, Ann. Phys. Fr, vol.231, issue.110, pp.1-149, 1998.

A. De-ryck and D. Quéré, Fluid Coating from a Polymer Solution, Langmuir, vol.14, issue.7, pp.1911-1914, 1998.
DOI : 10.1021/la970584r

S. J. Weinstein and K. J. Ruschak, COATING FLOWS, Annual Review of Fluid Mechanics, vol.36, issue.1, pp.29-53, 2004.
DOI : 10.1146/annurev.fluid.36.050802.122049

F. Kam??l?, Free coating of a non-Newtonian liquid onto walls of a vertical and inclined tube, Chemical Engineering and Processing: Process Intensification, vol.42, issue.7, pp.569-581, 2003.
DOI : 10.1016/S0255-2701(02)00077-6

M. W. Boehm, S. Sarker, and K. Koelling, An experimental investigation of two-phase coating flow within microchannels: the effect of coating fluid rheology, Microfluidics and Nanofluidics, vol.442, issue.6, pp.1175-1183, 2011.
DOI : 10.1007/s10404-010-0745-6

A. Lindner, L'instabilité de Saffman-Taylor dans les fluides complexes: relation entre les propriétés rhéologiques et la formation de motifs, 2000.

P. G. Saffman, Viscous fingering in Hele-Shaw cells, Journal of Fluid Mechanics, vol.58, issue.-1, pp.73-94, 1986.
DOI : 10.1063/1.864406

M. Maillard, J. Boujlel, and P. Coussot, Solid-Solid Transition in Landau-Levich Flow with Soft-Jammed Systems, Physical Review Letters, vol.112, issue.6, pp.68304-115, 2014.
DOI : 10.1103/PhysRevLett.112.068304

URL : https://hal.archives-ouvertes.fr/hal-01117227

M. Maillard, J. Boujlel, and P. Coussot, Flow characteristics around a plate withdrawn from a bath of yield stress fluid, Journal of Non-Newtonian Fluid Mechanics, vol.220, p.96, 2014.
DOI : 10.1016/j.jnnfm.2014.08.001

URL : https://hal.archives-ouvertes.fr/hal-01117234

S. Cohen-addad and R. Höhler, Rheology of foams and highly concentrated emulsions, Current Opinion in Colloid & Interface Science, vol.19, issue.6, pp.536-548, 2014.
DOI : 10.1016/j.cocis.2014.11.003

URL : https://hal.archives-ouvertes.fr/hal-01239406

A. and L. Goff, Figures d'impact: tunnels, vases, spirales et bambous, p.96, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00489654

C. Park, Two-phase flow in a gas-injected capillary tube, Advances in Polymer Technology, vol.57, issue.4, pp.320-328, 2003.
DOI : 10.1002/adv.10059

T. Gibaud, C. Barentin, and S. Manneville, Influence of Boundary Conditions on Yielding in a Soft Glassy Material, Physical Review Letters, vol.101, issue.25, p.258302, 2008.
DOI : 10.1103/PhysRevLett.101.258302

URL : https://hal.archives-ouvertes.fr/ensl-00303121

Q. Barral, Superposition d'ecoulements orthogonaux dans des fluides complexes : mise en place de l'experience, application aux suspensions et aux fluides a seuil, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00657329

B. Laborie, -Junction Devices, Physical Review Letters, vol.114, issue.20, p.204501, 2015.
DOI : 10.1103/PhysRevLett.114.204501

URL : https://hal.archives-ouvertes.fr/hal-01307565

A. S. Utada, Monodisperse Double Emulsions Generated from a Microcapillary Device, Science, vol.308, issue.5721, pp.537-541, 2005.
DOI : 10.1126/science.1109164

E. Lorenceau, Generation of Polymerosomes from Double-Emulsions, Langmuir, vol.21, issue.20, pp.9183-9186, 2005.
DOI : 10.1021/la050797d

URL : https://hal.archives-ouvertes.fr/hal-00182484

S. Okushima, Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices, Langmuir, vol.20, issue.23, pp.9905-9908, 2004.
DOI : 10.1021/la0480336

I. Kobayashi, S. Mukataka, and M. Nakajima, Novel Asymmetric Through-Hole Array Microfabricated on a Silicon Plate for Formulating Monodisperse Emulsions, Langmuir, vol.21, issue.17, pp.7629-7632, 2005.
DOI : 10.1021/la050915x

T. Nisisako and T. Torii, Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles, Lab Chip, vol.85, issue.2, pp.287-293, 2008.
DOI : 10.1039/B713141K

M. Hashimoto, Formation of Bubbles and Droplets in Parallel, Coupled Flow-Focusing Geometries, Small, vol.28, issue.10, pp.1795-1805, 2008.
DOI : 10.1002/smll.200800591

E. Amstad, S. S. Datta, and D. A. Weitz, The microfluidic post-array device: high throughput production of single emulsion drops, Lab Chip, vol.92, issue.4, pp.705-709, 2014.
DOI : 10.1039/C3LC51213D

G. F. Christopher and S. L. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, vol.40, issue.19, pp.319-126, 2007.
DOI : 10.1088/0022-3727/40/19/R01

J. Husny and J. J. Cooper-white, The effect of elasticity on drop creation in T-shaped microchannels, Journal of Non-Newtonian Fluid Mechanics, vol.137, issue.1-3, pp.121-136, 2006.
DOI : 10.1016/j.jnnfm.2006.03.007

J. H. Xu, Experimental and theoretical approaches on droplet formation from a micrometer screen hole, Journal of Membrane Science, vol.266, issue.1-2, pp.121-131, 2005.
DOI : 10.1016/j.memsci.2005.05.017

P. Garstecki, A. M. Ganan-calvo, and G. M. Whitesides, Formation of Droplets and Bubbles in Microfluidic Systems, 2005.
DOI : 10.1007/978-90-481-9029-4_9

P. Garstecki, Formation of monodisperse bubbles in a microfluidic flow-focusing device, Applied Physics Letters, vol.85, issue.13, pp.2649-2651, 2004.
DOI : 10.1063/1.1796526

A. M. Gañán-calvo, Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams, Physical Review Letters, vol.80, issue.2, p.285, 1998.
DOI : 10.1103/PhysRevLett.80.285

A. M. Ganán-calvo, Perfectly monodisperse microbubbling by capillary flow focusing: An alternate physical description and universal scaling, Physical Review E, vol.69, issue.2, p.27301, 2004.
DOI : 10.1103/PhysRevE.69.027301

L. Derzsi, Flow focusing with viscoelastic liquids, Physics of Fluids, vol.25, issue.9, p.92001, 2013.
DOI : 10.1063/1.4817995.1

Y. Ren, Z. Liu, and H. C. Shum, Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem, Lab Chip, vol.100, issue.10, pp.121-134, 2015.
DOI : 10.1039/C4LC00798K

J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Reviews of Modern Physics, vol.69, issue.3, pp.865-929, 1997.
DOI : 10.1103/RevModPhys.69.865

J. Eggers and E. Villermaux, Physics of liquid jets, Reports on Progress in Physics, vol.71, issue.3, p.36601, 2008.
DOI : 10.1088/0034-4885/71/3/036601

URL : https://hal.archives-ouvertes.fr/hal-00098347

P. Doshi, Persistence of Memory in Drop Breakup: The Breakdown of Universality, Science, vol.302, issue.5648, pp.1185-1188, 2003.
DOI : 10.1126/science.1089272

N. J. Balmforth, I. A. Frigaard, and G. Ovarlez, Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics, Annual Review of Fluid Mechanics, vol.46, issue.1, pp.121-146, 2014.
DOI : 10.1146/annurev-fluid-010313-141424

URL : https://hal.archives-ouvertes.fr/hal-00973814

P. Coussot and F. Gaulard, Gravity flow instability of viscoplastic materials: The ketchup drip, Physical Review E, vol.72, issue.3, p.31409, 2005.
DOI : 10.1103/PhysRevE.72.031409

G. German and V. Bertola, Formation of viscoplastic drops by capillary breakup, Physics of Fluids, vol.22, issue.3, p.33101, 2010.
DOI : 10.1063/1.3339783

A. Lindner, P. Coussot, and D. Bonn, Viscous Fingering in a Yield Stress Fluid, Physical Review Letters, vol.85, issue.2, pp.314-317, 2000.
DOI : 10.1103/PhysRevLett.85.314

N. Louvet, D. Bonn, and H. Kellay, Nonuniversality in the Pinch-Off of Yield Stress Fluids: Role of Nonlocal Rheology, Physical Review Letters, vol.113, issue.21, p.218302, 2014.
DOI : 10.1103/PhysRevLett.113.218302

URL : https://hal.archives-ouvertes.fr/hal-01085326

J. S. Hong and J. Cooper-white, Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel " . Korea-Australia Rheo, J, vol.21, pp.269-280, 2009.

A. R. Abate, Impact of inlet channel geometry on microfluidic drop formation, Physical Review E, vol.80, issue.2, p.26310, 2009.
DOI : 10.1103/PhysRevE.80.026310

M. T. Sullivan and H. A. Stone, The role of feedback in microfluidic flow-focusing devices, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.292, issue.5721, pp.2131-2143, 2008.
DOI : 10.1126/science.1109164

M. Baudoin, Airway reopening through catastrophic events in a hierarchical network, Proc. Natl. Acad. Sci. USA, pp.859-864, 2013.
DOI : 10.1073/pnas.1211706110

URL : https://hal.archives-ouvertes.fr/hal-00795952

H. Tavana, Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model, Biomedical Microdevices, vol.19, issue.Suppl. 3, pp.731-742, 2011.
DOI : 10.1007/s10544-011-9543-5

H. Fujioka, S. Takayama, and J. B. Grotberg, Unsteady propagation of a liquid plug in a liquid-lined straight tube, Physics of Fluids, vol.20, issue.6, p.62104, 2008.
DOI : 10.1063/1.2938381

P. Zamankhan, Steady motion of Bingham liquid plugs in two-dimensional channels, Journal of Fluid Mechanics, vol.19, pp.258-279, 2012.
DOI : 10.1063/1.2912501

M. T. Sullivan, K. Moore, and H. A. Stone, Transverse Instability of Bubbles in Viscoelastic Channel Flows, Physical Review Letters, vol.101, issue.24, p.244503, 2008.
DOI : 10.1103/PhysRevLett.101.244503

J. Ren, B. Ganapathysubramanian, and S. Sundararajan, Experimental analysis of the surface roughness evolution of etched glass for micro/nanofluidic devices, Journal of Micromechanics and Microengineering, vol.21, issue.2, p.25012, 2011.
DOI : 10.1088/0960-1317/21/2/025012

T. Ward, Microfluidic flow focusing: Drop size and scaling in pressureversus flow-rate-driven pumping, ELECTROPHORESIS, vol.125, issue.19, pp.3716-3724, 2005.
DOI : 10.1002/elps.200500173

D. E. Angelescu, Highly Integrated Microfluidics Design Artech House, p.9781596939806, 2011.

D. Liu and S. V. Garimella, Investigation of liquid flow in microchannels, J. Thermophys. Heat Tr, vol.181, pp.65-72, 2004.

J. Raven and P. Marmottant, Periodic Microfluidic Bubbling Oscillator: Insight into the Stability of Two-Phase Microflows, Physical Review Letters, vol.97, issue.15, p.154501, 2006.
DOI : 10.1103/PhysRevLett.97.154501

URL : https://hal.archives-ouvertes.fr/hal-00082860

P. Garstecki, M. J. Fuerstman, and G. M. Whitesides, Oscillations with uniquely long periods in a microfluidic bubble generator, Nature Physics, vol.42, issue.3, pp.168-171, 2005.
DOI : 10.1038/nphys176

J. Berthier, Highly viscous fluids in pressure actuated flow focusing devices, Sensors and Actuators A: Physical, vol.158, issue.1, pp.140-148, 2010.
DOI : 10.1016/j.sna.2009.12.016

W. Lee, L. M. Walker, and S. L. Anna, Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing, Physics of Fluids, vol.21, issue.3, p.32103, 2009.
DOI : 10.1063/1.3081407

H. Willaime, Arnold Tongues in a Microfluidic Drop Emitter, Physical Review Letters, vol.96, issue.5, p.54501, 2006.
DOI : 10.1103/PhysRevLett.96.054501

M. A. Unger, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

R. Mokso, The network of plateau borders of wet liquid foam obtained by X-ray tomography at ESRF. (Cit, p.183

J. Raven, Generation, flow and manipulation of a microfoam, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00192819

C. Epstein and M. S. Plesset, On the Stability of Gas Bubbles in Liquid-Gas Solutions, J. Chem. Phys, vol.1811, issue.220, pp.1505-1509, 1950.

W. Kloek, T. Van-vliet, and M. Meinders, Effect of Bulk and Interfacial Rheological Properties on Bubble Dissolution, Journal of Colloid and Interface Science, vol.237, issue.2, pp.158-166, 2001.
DOI : 10.1006/jcis.2001.7454

A. Arefmanesh and S. G. Advani, Diffusion-induced growth of a gas bubble in a viscoelastic fluid, Rheologica Acta, vol.22, issue.3, pp.274-283, 1991.
DOI : 10.1007/BF00366641