A Tree of shapes for multivariate images

Résumé : De nombreuses applications issues de la vision par ordinateur et de la reconnaissance des formes requièrent une analyse de l'image multi-échelle basée sur ses régions. De nos jours, personne ne considérerait une approche orientée « pixel » comme une solution viable pour traiter ce genre de problèmes. Pour répondre à cette demande, la Morphologie Mathématique a fourni des représentations hiérarchiques des régions de l'image telles que l'Arbre des Formes (AdF). L'AdF représente l'image par un arbre d'inclusion de ses lignes de niveaux. L'AdF est ainsi auto-dual et invariant au changement de contraste, ce qui fait de lui une structure bien adaptée aux traitements d'images de haut niveau. Néanmoins, il est seulement défini aux images en niveaux de gris et la plupart des tentatives d'extension aux images multivariées (e.g. en imposant un ordre total «arbitraire ») ne sont pas satisfaisantes. Dans ce manuscrit, nous présentons une nouvelle approche pour étendre l'AdF scalaire aux images multivariées : l'Arbre des Formes Multivarié (AdFM). Cette représentation est une « fusion » des AdFs calculés marginalement sur chaque composante de l'image. On vise à fusionner les formes marginales de manière « sensée » en préservant un nombre maximal d'inclusion. La méthode proposée a des fondements théoriques qui consistent en l'expression de l'AdF par une carte topographique de la variation totale curvilinéaire depuis la bordure de l'image. C'est cette reformulation qui a permis l'extension de l'AdF aux données multivariées. De plus, l'AdFM partage des propriétés similaires avec l'AdF scalaire ; la plus importante étant son invariance à tout changement ou inversion de contraste marginal (une sorte d'auto-dualité dans le cas multidimensionnel). Puisqu'il est évident que, vis-à-vis du nombre sans cesse croissant de données à traiter, nous ayons besoin de techniques rapides de traitement d'images, nous proposons un algorithme efficace qui permet de construire l'AdF en temps quasi-linéaire vis-à-vis du nombre de pixels et quadratique vis-à-vis du nombre de composantes. Nous proposons également des algorithmes permettant de manipuler l'arbre, montrant ainsi que, en pratique, l'AdFM est une structure facile à manipuler, polyvalente, et efficace. Finalement, pour valider la pertinence de notre approche, nous proposons quelques expériences testant la robustesse de notre structure aux composantes non-pertinentes (e.g. avec du bruit ou à faible dynamique) et nous montrons que ces défauts n'affectent pas la structure globale de l'AdFM. De plus, nous proposons des applications concrètes utilisant l'AdFM. Certaines sont juste des modifications mineures aux méthodes employant d'ores et déjà l'AdF scalaire mais adaptées à notre nouvelle structure. Par exemple, nous utilisons l'AdFM à des fins de filtrage, segmentation, classification et de détection d'objet. De ces applications, nous montrons ainsi que les méthodes basées sur l'AdFM surpassent généralement leur analogue basé sur l'AdF, démontrant ainsi le potentiel de notre approche
Type de document :
Thèse
Image Processing. Université Paris-Est, 2015. English. <NNT : 2015PESC1118>
Liste complète des métadonnées


https://pastel.archives-ouvertes.fr/tel-01280131
Contributeur : Abes Star <>
Soumis le : lundi 29 février 2016 - 10:23:05
Dernière modification le : mardi 28 février 2017 - 13:39:18
Document(s) archivé(s) le : lundi 30 mai 2016 - 15:01:07

Fichier

TH2015PESC1118.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01280131, version 1

Collections

Citation

Edwin Carlinet. A Tree of shapes for multivariate images. Image Processing. Université Paris-Est, 2015. English. <NNT : 2015PESC1118>. <tel-01280131>

Partager

Métriques

Consultations de
la notice

252

Téléchargements du document

144