A. Anca-couce, N. Zobel, A. Berger, and F. Behrendt, Smouldering of pine wood: Kinetics and reaction heats, Combustion and Flame, vol.159, issue.4, pp.1708-1719, 2012.
DOI : 10.1016/j.combustflame.2011.11.015

C. Lautenberger and C. Fernandez-pello, A model for the oxidative pyrolysis of wood, Combustion and Flame, vol.156, issue.8, pp.1503-1513, 2009.
DOI : 10.1016/j.combustflame.2009.04.001

A. Anca-couce, Multi-Scale Approach To Describe Fixed-Bed Thermo- Chemical Processes Of Biomass, p.2012, 2012.

R. Mehrabian, S. Zahirovic, R. Scharler, I. Obernberger, S. Kleditzsch et al., A CFD model for thermal conversion of thermally thick biomass particles, Fuel Processing Technology, vol.95, pp.96-108, 2012.
DOI : 10.1016/j.fuproc.2011.11.021

J. L. Torero and A. C. Fernandez-pello, Natural convection smolder of polyurethane foam, upward propagation, Fire Safety Journal, vol.24, issue.1, pp.35-52, 1995.
DOI : 10.1016/0379-7112(94)00030-J

M. Fatehi and M. Kaviany, Adiabatic reverse combustion in a packed bed, Combustion and Flame, vol.99, issue.1, pp.1-17, 1994.
DOI : 10.1016/0010-2180(94)90078-7

Y. Su, Y. Luo, W. Wu, Y. Zhang, and S. Zhao, Characteristics of pine wood oxidative pyrolysis: Degradation behavior, carbon oxide production and heat properties, Journal of Analytical and Applied Pyrolysis, vol.98, pp.137-143, 2012.
DOI : 10.1016/j.jaap.2012.07.005

J. Porteiro, D. Patiño, J. Collazo, E. Granada, J. Moran et al., Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor, Fuel, vol.89, issue.1, pp.26-35, 2010.
DOI : 10.1016/j.fuel.2009.01.024

M. L. Hobbs, P. T. Radulovic, and L. D. Smoot, Combustion and gasification of coals in fixed-beds, Progress in Energy and Combustion Science, vol.19, issue.6, pp.505-586, 1993.
DOI : 10.1016/0360-1285(93)90003-W

S. N. Naik, V. Vaibhav, P. K. Goud, A. K. Rout, and . Dalai, Production of first and second generation biofuels: A comprehensive review, Renewable and Sustainable Energy Reviews, vol.14, issue.2, pp.578-597, 2010.
DOI : 10.1016/j.rser.2009.10.003

P. Hasler, . Th, and . Nussbaumer, Gas cleaning for IC engine applications from fixed bed biomass gasification, Biomass and Bioenergy, vol.16, issue.6, pp.385-395, 1999.
DOI : 10.1016/S0961-9534(99)00018-5

Z. Wang, J. Cao, and J. Wang, Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor, Journal of Analytical and Applied Pyrolysis, vol.84, issue.2, pp.179-184, 2009.
DOI : 10.1016/j.jaap.2009.02.001

O. Onay and O. M. Koçkar, Fixed-bed pyrolysis of rapeseed (Brassica napus L.), Biomass and Bioenergy, vol.26, issue.3, pp.289-299, 2004.
DOI : 10.1016/S0961-9534(03)00123-5

M. Asadullah, M. A. Rahman, M. M. Ali, M. S. Rahman, M. A. Motin et al., Production of bio-oil from fixed bed pyrolysis of bagasse, Fuel, vol.86, issue.16, pp.862514-2520, 2007.
DOI : 10.1016/j.fuel.2007.02.007

T. Aysu and M. M. Küçük, Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products, Energy, vol.64, pp.1002-1025, 2014.
DOI : 10.1016/j.energy.2013.11.053

P. Lamarche, M. Tazerout, F. Gelix, S. Köhler, K. Mati et al., Modelling of an indirectly heated fixed bed pyrolysis reactor of wood: Transition from batch to continuous staged gasification, Fuel, vol.106, pp.118-128, 2013.
DOI : 10.1016/j.fuel.2012.12.005

URL : https://hal.archives-ouvertes.fr/hal-00935905

U. Henriksen, J. Ahrenfeldt, T. Kvist-jensen, and B. Gøbel, Jens Dall Bentzen, Claus Hindsgaul, and Lasse Holst Sørensen. The design , construction and operation of a 75 kW two-stage gasifier, Energy, pp.3110-111542, 2006.

E. Schröder, Experiments on the pyrolysis of large beechwood particles in fixed beds, Journal of Analytical and Applied Pyrolysis, vol.71, issue.2, pp.669-694, 2004.
DOI : 10.1016/j.jaap.2003.09.004

C. Di-blasi, C. Branca, and B. Teislev, Development of a novel reactor for the oxidative degradation of straw, Bioresource Technology, vol.91, issue.3, pp.263-271, 2004.
DOI : 10.1016/S0960-8524(03)00200-1

M. Milhé, L. Van-de-steene, M. Haube, J. Commandré, W. Fassinou et al., Autothermal and allothermal pyrolysis in a continuous fixed bed reactor, Journal of Analytical and Applied Pyrolysis, vol.103, pp.102-111, 2013.
DOI : 10.1016/j.jaap.2013.03.011

T. J. Ohlemiller, Modeling of smoldering combustion propagation, Progress in Energy and Combustion Science, pp.277-310, 1985.

S. E. Page, F. Siegert, J. O. Rieley, V. Hans-dieter, A. Boehm et al., The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, vol.354, issue.6911, pp.42061-65, 2002.
DOI : 10.1080/014311600210632

A. Rostami, J. Murthy, and M. Hajaligol, Modeling of a smoldering cigarette, Journal of Analytical and Applied Pyrolysis, vol.66, issue.1-2, pp.281-301, 2003.
DOI : 10.1016/S0165-2370(02)00117-1

M. Summerfield, T. J. Ohlemiller, H. W. Sandusky-]-j, A. C. Torero, M. Fernandez-pello et al., A thermophysical mathematical model of steady-draw smoking and predictions of overall cigarette behavior, Combustion and Flame, vol.33, issue.91, pp.263-2791, 1978.
DOI : 10.1016/0010-2180(78)90065-2

G. Rein, C. Lautenberger, A. C. Fernandez-pello, J. L. Torero, and D. L. Urban, Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion, Combustion and Flame, vol.146, issue.1-2, pp.95-108, 2006.
DOI : 10.1016/j.combustflame.2006.04.013

T. J. Ohlemiller, J. Bellan, and F. Rogers, A model of smoldering combustion applied to flexible polyurethane foams, Combustion and Flame, vol.36, pp.197-215, 1979.
DOI : 10.1016/0010-2180(79)90060-9

M. Zammarano, S. Matko, W. M. Pitts, D. M. Fox, and R. D. Davis, Towards a reference polyurethane foam and bench scale test for assessing smoldering in upholstered furniture, Polymer Degradation and Stability, vol.106, pp.97-107, 2014.
DOI : 10.1016/j.polymdegradstab.2013.12.010

M. Salman, J. I. Gerhard, D. W. Major, P. Pironi, and R. Hadden, Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering, Journal of Hazardous Materials, vol.285, pp.346-355, 2015.
DOI : 10.1016/j.jhazmat.2014.11.042

T. Hasan, J. I. Gerhard, R. Hadden, and G. Rein, Self-sustaining smouldering combustion of coal tar for the remediation of contaminated sand: Two-dimensional experiments and computational simulations, Fuel, vol.150, pp.288-297, 2015.
DOI : 10.1016/j.fuel.2015.02.014

C. Switzer, P. Pironi, J. I. Gerhard, G. Rein, and J. L. Torero, Volumetric scale-up of smouldering remediation of contaminated materials, Journal of Hazardous Materials, vol.268, pp.51-60, 2014.
DOI : 10.1016/j.jhazmat.2013.11.053

D. A. Schult, B. J. Matkowsky, V. A. Volpert, and A. C. Fernandez-pello, Propagation and extinction of forced opposed flow smolder waves, Combustion and Flame, vol.101, issue.4, pp.471-490, 1995.
DOI : 10.1016/0010-2180(94)00239-O

S. V. Leach, J. L. Ellzey, and O. A. Ezekoye, A Numerical Study of Reverse Smoldering, Combustion Science and Technology, vol.130, issue.1-6, pp.247-267, 1997.
DOI : 10.1080/00102209308907635

G. Rein, A. Bar-ilan, A. C. Fernandez-pello, J. L. Ellzey, J. L. Torero et al., Modeling of one-dimensional smoldering of polyurethane in microgravity conditions, Proceedings of the Combustion Institute, pp.2327-2334, 2005.
DOI : 10.1016/j.proci.2004.08.150

A. Rostami, J. Murthy, and M. Hajaligol, Modeling of smoldering process in a porous biomass fuel rod, Fuel, vol.83, issue.11-12, pp.11-12, 2004.
DOI : 10.1016/j.fuel.2003.11.018

F. He and F. Behrendt, Experimental investigation of natural smoldering of char granules in a packed bed, Fire Safety Journal, vol.46, issue.7, pp.406-413, 2011.
DOI : 10.1016/j.firesaf.2011.06.007

A. Bar-ilan, G. Rein, A. Fernandez-pello, J. Torero, and D. Urban, Forced forward smoldering experiments in microgravity, Experimental Thermal and Fluid Science, vol.28, issue.7, pp.743-751, 2004.
DOI : 10.1016/j.expthermflusci.2003.12.012

D. Colomba and . Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis, Progress in Energy and Combustion Science, pp.47-90, 2008.

K. Lu, W. Lee, W. Chen, and T. Lin, Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends, Applied Energy, vol.105, issue.0, pp.57-65, 2013.
DOI : 10.1016/j.apenergy.2012.12.050

X. Gu, X. Ma, L. Li, C. Liu, K. Cheng et al., Pyrolysis of poplar wood sawdust by TG-FTIR and Py???GC/MS, Journal of Analytical and Applied Pyrolysis, vol.102, issue.0, pp.16-23, 2013.
DOI : 10.1016/j.jaap.2013.04.009

C. , D. Blasi, and C. Branca, Modeling a stratified downdraft wood gasifier with primary and secondary air entry, Fuel, vol.104, pp.847-860, 2013.

T. Paul, S. Williams, and . Besler, The influence of temperature and heating rate on the slow pyrolysis of biomass, Renewable Energy, vol.7, issue.3, pp.233-250, 1996.

M. Inguanzo, J. Dominguez, C. Menéndez, J. J. Blanco, and . Pis, On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions, Journal of Analytical and Applied Pyrolysis, vol.63, issue.1, pp.209-222, 2002.
DOI : 10.1016/S0165-2370(01)00155-3

O. Onay, Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor, Fuel Processing Technology, vol.88, issue.5, pp.523-531, 2007.
DOI : 10.1016/j.fuproc.2007.01.001

C. A. Koufopanos, A. Lucchesi, and G. Maschio, Kinetic modelling of the pyrolysis of biomass and biomass components, The Canadian Journal of Chemical Engineering, vol.61, issue.1, pp.75-84, 1989.
DOI : 10.1002/cjce.5450670111

C. David, S. Salvador, J. L. Dirion, and M. Quintard, Determination of a reaction scheme for cardboard thermal degradation using thermal gravimetric analysis, Journal of Analytical and Applied Pyrolysis, vol.67, issue.2, pp.307-323, 2003.
DOI : 10.1016/S0165-2370(02)00070-0

A. V. Bridgwater, D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass, Organic Geochemistry, vol.30, issue.12, pp.1479-1493, 1999.
DOI : 10.1016/S0146-6380(99)00120-5

C. Ekstrom and E. Rensfelt, Flash pyrolysis of biomass in sweden, Proceedings of Specialists' Workshop on Fast Pyrolysis of Biomass. Solar Energy Research Institute, 1980.

M. Amutio, G. Lopez, R. Aguado, M. Artetxe, J. Bilbao et al., Kinetic study of lignocellulosic biomass oxidative pyrolysis, Fuel, vol.95, pp.305-311, 2012.
DOI : 10.1016/j.fuel.2011.10.008

C. Branca and C. D. Blasi, Global interinsic kinetics of wood oxidation, Fuel, vol.83, issue.1, pp.81-87, 2004.
DOI : 10.1016/S0016-2361(03)00220-5

D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment, Fuel, vol.88, issue.6, pp.1024-1030, 2009.
DOI : 10.1016/j.fuel.2008.10.034

T. Kashiwagi and H. Nambu, Global kinetic constants for thermal oxidative degradation of a cellulosic paper, Combustion and Flame, vol.88, issue.3-4, pp.3-4345, 1992.
DOI : 10.1016/0010-2180(92)90039-R

J. Haydary, ?. Jelemenský, L. Ga?parovi?, and J. Marko?, Influence of particle size and kinetic parameters on tire pyrolysis, Journal of Analytical and Applied Pyrolysis, vol.97, pp.73-79, 2012.
DOI : 10.1016/j.jaap.2012.07.003

R. Johansson, H. Thunman, and B. Leckner, Influence of intraparticle gradients in modeling of fixed bed combustion, Combustion and Flame, vol.149, issue.1-2, pp.49-62, 2007.
DOI : 10.1016/j.combustflame.2006.12.009

B. Peters and C. Bruch, Drying and pyrolysis of wood particles: experiments and simulation, Journal of Analytical and Applied Pyrolysis, vol.70, issue.2, pp.233-250, 2003.
DOI : 10.1016/S0165-2370(02)00134-1

J. Larfeldt, B. Leckner, and M. C. Melaaen, Modelling and measurements of the pyrolysis of large wood particles, Fuel, vol.79, issue.13, pp.1637-1643, 2000.
DOI : 10.1016/S0016-2361(00)00007-7

A. Kumar-sadhukhan, P. Gupta, and R. Saha, Modelling and experimental studies on pyrolysis of biomass particles, Journal of Analytical and Applied Pyrolysis, vol.81, issue.2, pp.183-192, 2008.
DOI : 10.1016/j.jaap.2007.11.007

V. Seebauer, J. Petek, and G. Staudinger, Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis, Fuel, vol.76, issue.13, pp.1277-1282, 1997.
DOI : 10.1016/S0016-2361(97)00106-3

A. Demirbas, Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues, Journal of Analytical and Applied Pyrolysis, vol.72, issue.2, pp.243-248, 2004.
DOI : 10.1016/j.jaap.2004.07.003

J. Shen, X. Wang, M. Garcia-perez, D. Mourant, J. Martin et al., Effects of particle size on the fast pyrolysis of oil mallee woody biomass, Fuel, vol.88, issue.10, pp.881810-1817, 2009.
DOI : 10.1016/j.fuel.2009.05.001

S. ?ensöz, S. Ang?n, and . Yorgun, Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil, Biomass and Bioenergy, vol.19, issue.4, pp.271-279, 2000.
DOI : 10.1016/S0961-9534(00)00041-6

J. Mathew, K. M. Hagge, and . Bryden, Modeling the impact of shrinkage on the pyrolysis of dry biomass, Chemical Engineering Science, vol.57, issue.14, pp.2811-2823, 2002.

R. Wai-chun, M. Chan, B. B. Kelbon, and . Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, issue.11, pp.1505-1513, 1985.
DOI : 10.1016/0016-2361(85)90364-3

D. Colomba and . Blasi, Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation, Chemical Engineering Science, vol.51, issue.7, pp.1121-1132, 1996.

M. Kenneth, M. J. Bryden, and . Hagge, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle, Fuel, vol.82, issue.13, pp.1633-1644, 2003.

B. V. Babu and A. S. Chaurasia, Heat transfer and kinetics in the pyrolysis of shrinking biomass particle, Chemical Engineering Science, vol.59, issue.10, pp.1999-2012, 2004.
DOI : 10.1016/j.ces.2004.01.050

Y. Haseli, J. A. Van-oijen, and L. P. De-goey, Modeling biomass particle pyrolysis with temperature-dependent heat of reactions, Journal of Analytical and Applied Pyrolysis, vol.90, issue.2, pp.140-154, 2011.
DOI : 10.1016/j.jaap.2010.11.006

H. Lu, E. Ip, J. Scott, P. Foster, M. Vickers et al., Effects of particle shape and size on devolatilization of biomass particle, Fuel, vol.89, issue.5, pp.1156-1168, 2010.
DOI : 10.1016/j.fuel.2008.10.023

C. A. Koufopanos, N. Papayannakos, G. Maschio, and A. Lucchesi, Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects, The Canadian Journal of Chemical Engineering, vol.6, issue.4, pp.907-915, 1991.
DOI : 10.1002/cjce.5450690413

A. Bharadwaj, L. L. Baxter, and A. L. Robinson, Effects of Intraparticle Heat and Mass Transfer on Biomass Devolatilization:??? Experimental Results and Model Predictions, Energy & Fuels, vol.18, issue.4, pp.1021-1031, 2004.
DOI : 10.1021/ef0340357

A. S. Chaurasia and B. D. Kulkarni, Most sensitive parameters in pyrolysis of shrinking biomass particle. Energy Conversion and Management, pp.836-849, 2007.

A. Kumar-biswas and K. Umeki, Simplification of devolatilization models for thermally-thick particles: Differences between wood logs and pellets, Chemical Engineering Journal, vol.274, pp.181-191, 2015.
DOI : 10.1016/j.cej.2015.03.131

H. Ström and H. Thunman, A computationally efficient particle submodel for CFD-simulations of fixed-bed conversion, Applied Energy, vol.112, pp.808-817, 2013.
DOI : 10.1016/j.apenergy.2012.12.057

G. Teixeira, L. Van-de-steene, A. Ponthieux, and S. Salvador, Prediction of the gasification kinetics of a single wood char particle from a limited set of parameters, Fuel, vol.123, pp.194-204, 2014.
DOI : 10.1016/j.fuel.2014.01.028

J. Blondeau and H. Jeanmart, Biomass pyrolysis in pulverized-fuel boilers: Derivation of apparent kinetic parameters for inclusion in CFD codes, Proceedings of the Combustion Institute, pp.1787-1794, 2011.
DOI : 10.1016/j.proci.2010.06.150

C. Chen and T. Kojima, Single char particle combustion at moderate temperature: effects of ash, Fuel Processing Technology, vol.47, issue.3, pp.215-232, 1996.
DOI : 10.1016/0378-3820(96)01014-4

B. Remiarova, . Markos, L. Zajdlik, and . Jelemensky, Identification of the mechanism of coal char particle combustion by porous structure characterization, Fuel Processing Technology, vol.85, issue.4, pp.303-321, 2004.
DOI : 10.1016/j.fuproc.2003.07.001

M. A. Andrei, A. F. Sarofim, J. M. Beér, E. Yates, N. Vida et al., Time-resolved burnout of coal particles in a fluidized bed Effect of fuel properties on biomass combustion : Part I. Experiments?fuel type, equivalence ratio and particle size, Combustion and Flame Changkook Ryu Fuel, vol.6182, issue.1, pp.17-18, 1985.

T. J. Ohlemiller and D. A. Lucca, An experimental comparison of forward and reverse smolder propagation in permeable fuel beds, Combustion and Flame, vol.54, issue.1-3, pp.1-3131, 1983.
DOI : 10.1016/0010-2180(83)90027-5

J. Porteiro, D. Patiño, J. L. Miguez, E. Granada, J. Moran et al., Study of the reaction front thickness in a counter-current fixed-bed combustor of a pelletised biomass, Combustion and Flame, vol.159, issue.3, pp.1296-1302, 2012.
DOI : 10.1016/j.combustflame.2011.10.007

W. Zhao, Z. Li, G. Zhao, F. Zhang, and Q. Zhu, Effect of air preheating and fuel moisture on combustion characteristics of corn straw in a fixed bed. Energy Conversion and Management, pp.3560-3565, 2008.

I. Part, Modelling approach?identification of the controlling factors, Fuel, vol.84, issue.16, pp.2116-2130, 2005.

Y. Yang, V. Sharifi, and J. Swithenbank, Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds, Fuel, vol.83, issue.11-12, pp.11-121553, 2004.
DOI : 10.1016/j.fuel.2004.01.016

C. Yao-bin-yang, A. Ryu, V. N. Khor, J. Sharifi, and . Swithenbank, Fuel size effect on pinewood combustion in a packed bed, Fuel, vol.84, issue.16, pp.2026-2038, 2005.
DOI : 10.1016/j.fuel.2005.04.022

J. C. Wurzenberger, S. Wallner, H. Raupenstrauch, and J. G. Khinast, Thermal conversion of biomass: Comprehensive reactor and particle modeling, AIChE Journal, vol.55, issue.10, pp.2398-2411, 2002.
DOI : 10.1002/aic.690481029

A. Anca-couce, N. Zobel, and H. A. Jakobsen, Multi-scale modeling of fixed-bed thermo-chemical processes of biomass with the representative particle model: Application to pyrolysis, Fuel, vol.103, pp.773-782, 2013.
DOI : 10.1016/j.fuel.2012.05.063

S. V. Leach, G. Rein, J. L. Ellzey, O. A. Ezekoye, and J. L. Torero, Kinetic and fuel property effects on forward smoldering combustion, Combustion and Flame, vol.120, issue.3, pp.346-358, 2000.
DOI : 10.1016/S0010-2180(99)00089-9

C. Di-blasi, Mechanisms of Two-Dimensional Smoldering Propagation Through Packed Fuel Beds, Combustion Science and Technology, vol.11, issue.1-3, pp.103-124, 1995.
DOI : 10.1016/0010-2180(78)90065-2

T. Kashiwagi and H. Nambu, Global kinetic constants for thermal oxidative degradation of a cellulosic paper, Combustion and Flame, vol.88, issue.3-4, pp.345-368, 1992.
DOI : 10.1016/0010-2180(92)90039-R

U. Krause, M. Schmidt, and C. Lohrer, A numerical model to simulate smouldering fires in bulk materials and dust deposits, Selected Papers Presented at the Fifth International Symposium on Hazards, Prevention, BIBLIOGRAPHIE and Mitigation of Industrial Explosions Fifth International Symposium on Hazards , Prevention, and Mitigation of Industrial Explosions, pp.2-3218, 2006.
DOI : 10.1016/j.jlp.2005.03.005

N. M. Laurendeau, Heterogeneous kinetics of coal char gasification and combustion, Progress in Energy and Combustion Science, pp.221-270, 1978.
DOI : 10.1016/0360-1285(78)90008-4

A. Rehmat and S. C. Saxena, Multiple Nonisothermal Noncatalytic Gas-Solid Reactions. Effect of Changing Particle Size, Industrial & Engineering Chemistry Process Design and Development, vol.16, issue.4, pp.502-510, 1977.
DOI : 10.1021/i260064a012

S. Yagi and D. Kunii, Studies on combustion of carbon particles in flames and fluidized beds, Symposium (International) on Combustion, vol.5, issue.1, pp.231-244, 1955.
DOI : 10.1016/S0082-0784(55)80033-1

M. Kenneth, K. W. Bryden, and . Ragland, Numerical Modeling of a Deep, Fixed Bed Combustor, Energy & Fuels, vol.10, issue.2, pp.269-275, 1996.

R. Mehrabian, A. Shiehnejadhesar, R. Scharler, and I. Obernberger, Multi-physics modelling of packed bed biomass combustion, Fuel, vol.122, pp.164-178, 2014.
DOI : 10.1016/j.fuel.2014.01.027

H. Chen, W. Zhao, and N. Liu, Thermal Analysis and Decomposition Kinetics of Chinese Forest Peat under Nitrogen and Air Atmospheres, Energy & Fuels, vol.25, issue.2, pp.797-803, 2011.
DOI : 10.1021/ef101155n

O. Senneca, R. Chirone, and P. Salatino, Oxidative pyrolysis of solid fuels, Journal of Analytical and Applied Pyrolysis, vol.71, issue.2, pp.959-970, 2004.
DOI : 10.1016/j.jaap.2003.12.006

E. R. Carvalho, C. A. Veras, and J. A. Carvalhojr, Experimental investigation of smouldering in biomass, Biomass and Bioenergy, vol.22, issue.4, pp.283-294, 2002.
DOI : 10.1016/S0961-9534(02)00005-3

L. Burhenne, J. Messmer, T. Aicher, and M. Laborie, The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis, Journal of Analytical and Applied Pyrolysis, vol.101
DOI : 10.1016/j.jaap.2013.01.012

M. Carrier, A. Loppinet-serani, D. Denux, and J. Lasnier, Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass, Biomass and Bioenergy, vol.35, issue.1, pp.298-307, 2011.
DOI : 10.1016/j.biombioe.2010.08.067

URL : https://hal.archives-ouvertes.fr/hal-00553239

N. Gao, A. Li, C. Quan, L. Du, and Y. Duan, TG???FTIR and Py???GC/MS analysis on pyrolysis and combustion of pine sawdust, Journal of Analytical and Applied Pyrolysis, vol.100, pp.26-32, 2013.
DOI : 10.1016/j.jaap.2012.11.009

M. G. Grønli, -A Theoretical and Experimental Study of Thermal Degradation of Biomass Generic

H. Yang, R. Yan, H. Chen, D. Ho-lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol.86, issue.12-13, pp.12-131781, 2007.
DOI : 10.1016/j.fuel.2006.12.013

M. Boberg-larsen, L. Schultz, P. Glarborg, L. Skaarup-jensen, K. Dam-johansen et al., Devolatilization characteristics of large particles of tyre rubber under combustion conditions, Fuel, vol.85, pp.10-111335, 2006.

A. Won-chan-park, H. R. Atreya, and . Baum, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-494, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

W. J. Massman, A review of the molecular diffusivities of H 2 O, O, N O, and N O 2 in air, O 2 and N 2 near STP, pp.321111-1127, 1998.

W. Zhao, Z. Li, D. Wang, Q. Zhu, R. Sun et al., Combustion characteristics of different parts of corn straw and NO formation in a fixed bed, Bioresource Technology, vol.99, issue.8, pp.992956-2963, 2008.
DOI : 10.1016/j.biortech.2007.06.030

H. Zhou, A. D. Jensen, P. Glarborg, P. A. Jensen, and A. Kavaliauskas, Numerical modeling of straw combustion in a fixed bed, Fuel, vol.84, issue.4, pp.389-403, 2005.
DOI : 10.1016/j.fuel.2004.09.020

M. Horttanainen, J. Saastamoinen, and P. Sarkomaa, Operational Limits of Ignition Front Propagation against Airflow in Packed Beds of Different Wood Fuels, Energy & Fuels, vol.16, issue.3, pp.676-686, 2002.
DOI : 10.1021/ef010209d

J. J. Saastamoinen, . Taipale, P. Horttanainen, and . Sarkomaa, Propagation of the ignition front in beds of wood particles, Combustion and Flame, vol.123, issue.1-2, pp.214-226, 2000.
DOI : 10.1016/S0010-2180(00)00144-9

D. Shin and S. Choi, The combustion of simulated waste particles in a fixed bed, Combustion and Flame, vol.121, issue.1-2, pp.167-180, 2000.
DOI : 10.1016/S0010-2180(99)00124-8

R. Van-der-lans, L. Pedersen, . Jensen, and K. Glarborg, Modelling and experiments of straw combustion in a grate furnace, Biomass and Bioenergy, vol.19, issue.3, pp.199-208, 2000.
DOI : 10.1016/S0961-9534(00)00033-7

G. Teixeira, Gazéification de charbon de granules de bois : comportement thermochimique et mécanique d'un lit fixe continu, Thèse de doctorat dirigée par Salvador, 2012.

F. Mermoud, Gazéification de charbon de bois à la vapeur d'eau : de la particule isolée au lit fixe continu, Thèse de doctorat dirigée par Salvador, 2006.

J. Tagutchou, Gazéification du charbon de plaquettes forestières : particule isolée et lit fixe continu, Thèse de doctorat dirigée par Salvador, 2008.

L. Yi and L. Dong, Experimental Study of Upward Forward Smoldering Combustion, Procedia Engineering, vol.11, issue.0, pp.196-204, 2011.
DOI : 10.1016/j.proeng.2011.04.647

S. Anis and Z. A. , Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review, Renewable and Sustainable Energy Reviews, vol.15, issue.5, pp.2355-2377, 2011.
DOI : 10.1016/j.rser.2011.02.018

L. Devi, K. J. Ptasinski, F. J. Janssen, S. V. Van-paasen, P. C. Bergman et al., Catalytic decomposition of biomass tars: use of dolomite and untreated olivine, Renewable Energy, vol.30, issue.4, pp.565-587, 2005.
DOI : 10.1016/j.renene.2004.07.014

L. Devi, J. Krzysztof, F. J. Ptasinski, and . Janssen, A review of the primary measures for tar elimination in biomass gasification processes, Biomass and Bioenergy, vol.24, issue.2, pp.125-140, 2003.
DOI : 10.1016/S0961-9534(02)00102-2

J. Han and H. Kim, The reduction and control technology of tar during biomass gasification/pyrolysis: An overview, Renewable and Sustainable Energy Reviews, vol.12, issue.2, pp.397-416, 2008.
DOI : 10.1016/j.rser.2006.07.015

C. Li and K. Suzuki, Tar property, analysis, reforming mechanism and model for biomass gasification???An overview, Renewable and Sustainable Energy Reviews, vol.13, issue.3, pp.594-604, 2009.
DOI : 10.1016/j.rser.2008.01.009

E. Douglas and C. , Relation of Reaction Time and Temperature to Chemical Composition of Pyrolysis Oils, pp.55-65

A. Dufour, P. Girods, E. Masson, S. Normand, Y. Rogaume et al., Comparison of two methods of measuring wood pyrolysis tar, Journal of Chromatography A, vol.1164, issue.1-2, pp.240-247, 2007.
DOI : 10.1016/j.chroma.2007.06.049

F. He, N. Zobel, W. Zha, and F. Behrendt, Effects of physical properties on one-dimensional downward smoldering of char: Numerical analysis, Biomass and Bioenergy, vol.33, issue.8, pp.1019-1029, 2009.
DOI : 10.1016/j.biombioe.2009.02.008

M. Fatehi and M. Kaviany, Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion, International Journal of Heat and Mass Transfer, vol.40, issue.11, pp.2607-2620, 1997.
DOI : 10.1016/S0017-9310(96)00282-7

M. Gunnar and G. , A theoretical and experimental study of the thermal degradation of biomass. dissertation, Norwegian University of Science and Technology, 1996. A theoretical and experimental study of the thermal degradation of biomass

S. Yagi and D. Kunii, Studies on effective thermal conductivities in packed beds, AIChE Journal, vol.3, issue.3, pp.373-381, 1957.
DOI : 10.1002/aic.690030317

J. Fjellerup, U. Henriksen, P. A. Anker-degn-jensen, P. Jensen, and . Glarborg, Heat Transfer in a Fixed Bed of Straw Char, Energy & Fuels, vol.17, issue.5, pp.1251-1258, 2003.
DOI : 10.1021/ef030036n

D. Colomba and . Blasi, Dynamic behaviour of stratified downdraft gasifiers, Chemical Engineering Science, vol.55, issue.15, pp.2931-2944, 2000.

A. N. Yao-bin-yang, C. Phan, V. Ryu, J. Sharifi, and . Swithenbank, Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser, Fuel, vol.86, issue.1-2, pp.169-180, 2007.
DOI : 10.1016/j.fuel.2006.07.012

]. C. Mandl, I. Obernberger, and F. Biedermann, Modelling of an updraft fixed-bed gasifier operated with softwood pellets, Fuel, vol.89, issue.12, pp.3795-3806, 2010.
DOI : 10.1016/j.fuel.2010.07.014

A. Sen, G. , and G. Thodos, Direct analogy between mass and heat transfer to beds of spheres, AIChE Journal, vol.9, issue.6, pp.751-754, 1963.

T. Predrag, M. U. Radulovic, L. D. Ghani, and . Smoot, An improved model for fixed bed coal combustion and gasification, Fuel, vol.74, issue.4, pp.582-594, 1995.

M. U. Ghani, P. T. Radulovic, and L. D. Smoot, An improved model for fixed-bed coal combustion and gasification : sensitivity analysis and applications, Fuel, issue.10, pp.751213-1226, 1996.

V. Francisco, A. Tinaut, J. F. Melgar, A. Pérez, and . Horrillo, Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study, Fuel Processing Technology, vol.89, issue.11, pp.1076-1089, 2008.

Y. B. Yang, V. N. Sharifi, and J. Swithenbank, Numerical Simulation of the Burning Characteristics of Thermally-Thick Biomass Fuels in Packed-Beds, Process Safety and Environmental Protection, vol.83, issue.6, pp.549-558, 2005.
DOI : 10.1205/psep.04284

J. Porteiro, D. Patiño, J. Moran, and E. Granada, Study of a Fixed-Bed Biomass Combustor: Influential Parameters on Ignition Front Propagation Using Parametric Analysis, Energy & Fuels, vol.24, issue.7, pp.3890-3897, 2010.
DOI : 10.1021/ef100422y

C. Di-blasi, G. Signorelli, and G. Portoricco, Countercurrent Fixed-Bed Gasification of Biomass at Laboratory Scale, Industrial & Engineering Chemistry Research, vol.38, issue.7, pp.2571-2581, 1999.
DOI : 10.1021/ie980753i

P. Morf, P. Hasler, and T. Nussbaumer, Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips, Fuel, vol.81, issue.7, pp.843-853, 2002.
DOI : 10.1016/S0016-2361(01)00216-2

J. Rath and G. Staudinger, Cracking reactions of tar from pyrolysis of spruce wood, Fuel, vol.80, issue.10, pp.1379-1389, 2001.
DOI : 10.1016/S0016-2361(01)00016-3

L. Fagbemi, R. Khezami, and . Capart, Pyrolysis products from different biomasses: application to the thermal cracking of tar, Fuel and Energy Abstracts, vol.43, issue.4, pp.293-306, 2001.
DOI : 10.1016/S0140-6701(02)86434-7

L. Michael, J. B. Boroson, J. P. Howard, W. A. Longwell, and . Peters, Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars, AIChE Journal, vol.35, issue.1, pp.120-128, 1989.

S. Baumlin, F. Broust, M. Ferrer, N. Meunier, E. Marty et al., The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours, Chemical Engineering Science, vol.60, issue.1, pp.41-55, 2005.
DOI : 10.1016/j.ces.2004.07.057

L. Tognotti, J. P. Longwell, and A. F. Sarofim, The products of the high temperature oxidation of a single char particle in an electrodynamic balance, Symposium (International) on Combustion, vol.23, issue.1, pp.1207-1213, 1991.
DOI : 10.1016/S0082-0784(06)80382-6

J. R. Arthur, Reactions between carbon and oxygen. Transactions of the Faraday Society, pp.164-178, 1951.
DOI : 10.1039/tf9514700164

M. Otterbein and L. Bonnetain, Combustion d'un carbone vitreux sous basses pressions d'oxygene, Carbon, vol.6, issue.6, pp.877-885, 1968.
DOI : 10.1016/0008-6223(68)90072-9

Z. Du, A. F. Sarofim, J. P. Longwell, and C. A. Mims, Kinetic measurement and modeling of carbon oxidation, Energy & Fuels, vol.5, issue.1, pp.214-221, 1991.
DOI : 10.1021/ef00025a035

M. Temi, P. K. Linjewile, and . Agarwal, The product COCO2 ratio from petroleum coke spheres in fluidized bed combustion, Fuel, vol.74, issue.1, pp.5-11, 1995.

D. D. Evans and H. W. Emmons, Combustion of wood charcoal, Fire Safety Journal, vol.1, issue.1, pp.57-66, 1977.
DOI : 10.1016/0379-7112(77)90008-X

M. Rossberg, Experimentelle Ergebnisse über die Primärreaktionen bei der Kohlenstoffverbrennung, Zeitschrift für Elektrochemie, vol.60, pp.952-956, 1956.

Z. Du, A. F. Sarofim, J. P. Longwell, and C. A. Mims, Kinetic measurement and modeling of carbon oxidation, Energy & Fuels, vol.5, issue.1, pp.214-221, 1991.
DOI : 10.1021/ef00025a035

K. Pedersen, The product ratio of CO/CO2 in the oxidation of biomass char, 2003.

F. He, W. Yi, and J. Zha, Measurement of the heat of smoldering combustion in straws and stalks by means of simultaneous thermal analysis, Biomass and Bioenergy, vol.33, issue.1, pp.130-136, 2009.
DOI : 10.1016/j.biombioe.2008.05.006

F. Gilbert, K. B. Froment, and . Bischoff, Chemical reactor analysis and design, 1990.

M. Ergun, Fluid Flow through Packed Columns, Journal of Chemical Engineering Progress, vol.48, issue.2, pp.89-94, 1952.
DOI : 10.1021/ie50474a011

I. Pop and D. B. Ingham, Transport Phenomena in Porous Media II, 2002.

F. He and F. Behrendt, Comparison of Natural Upward and Downward Smoldering Using the Volume Reaction Method, Energy & Fuels, vol.23, issue.12, pp.5813-5820, 2009.
DOI : 10.1021/ef900646p

J. Collazo, J. Porteiro, D. Patiño, and E. Granada, Numerical modeling of the combustion of densified wood under fixed-bed conditions, Fuel, vol.93, pp.149-159, 2012.
DOI : 10.1016/j.fuel.2011.09.044

D. Colomba and . Blasi, Modeling wood gasification in a countercurrent fixed-bed reactor, AIChE Journal, vol.50, issue.9, pp.2306-2319, 2004.

J. Corella, M. P. Aznar, J. Delgado, and E. Aldea, Steam gasification of cellulosic wastes in a fluidized bed with downstream vessels, Industrial & Engineering Chemistry Research, vol.30, issue.10, pp.2252-2262, 1991.
DOI : 10.1021/ie00058a003

M. Rönnbäck, M. Axell, L. Gustavsson, H. Thunman, and B. Lecher, Combustion Processes in a Biomass Fuel Bed-Experimental Results, Blackwell Science Ltd, pp.743-757, 2008.
DOI : 10.1002/9780470694954.ch59

Y. B. Yang, H. Yamauchi, V. Nasserzadeh, and J. Swithenbank, Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed???, Fuel, vol.82, issue.18, pp.822205-2221, 2003.
DOI : 10.1016/S0016-2361(03)00145-5

Y. B. Yang, H. Yamauchi, V. N. Sharifi, and J. Swithenbank, Effect of moisture content of fuel on the combustion behaviour of biomass and municipal solid waste in a packed bed, Journal of the Institute of Energy, issue.509, pp.76105-115, 2003.

L. Liang, R. Sun-fei, S. Wu, X. Liu, K. Dai et al., Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed, Bioresource Technology, vol.99, issue.15, pp.997238-7246, 2008.
DOI : 10.1016/j.biortech.2007.12.061