R. M. Brown, Cellulose structure and biosynthesis: What is in store for the 21st century?, Journal of Polymer Science Part A: Polymer Chemistry, vol.36, issue.3, pp.487-495, 2004.
DOI : 10.1002/pola.10877

H. Sixta, Handbook of Pulp, 2006.
DOI : 10.1002/9783527619887

Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology, vol.83, issue.1, pp.1-11, 2002.
DOI : 10.1016/S0960-8524(01)00212-7

A. J. Ragauskas, M. Nagy, D. H. Kim, C. A. Eckert, J. P. Hallett et al., From wood to fuels: Integrating biofuels and pulp production, From wood to fuels: Integrating biofuels and pulp production, pp.55-65, 2006.
DOI : 10.1089/ind.2006.2.55

F. M. Gírio, C. Fonseca, F. Carvalheiro, L. C. Duarte, and S. Marques, Bogel-Lukasik, « Hemicelluloses for fuel ethanol: A review, Bioresour. Technol, vol.101, pp.13-4775, 2010.

M. Lawoko, G. Henriksson, and E. G. Gellerstedt, Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods, Holzforschung, vol.60, issue.2, pp.156-161, 2006.
DOI : 10.1515/HF.2006.025

B. Kamm and M. Kamm, Principles of biorefineries, Principles of biorefineries, pp.137-145, 2004.
DOI : 10.1007/s00253-003-1537-7

C. Chirat, D. Lachenal, and E. A. Dufresne, « Biorefinery in a kraft pulp mill: from bioethanol to cellulose nanocrystals, Cellul. Chem. Technol, vol.44, issue.1, p.59, 2010.

N. Lavoine, I. Desloges, and A. Dufresne, Microfibrillated cellulose ??? Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers, vol.90, issue.2, pp.735-764
DOI : 10.1016/j.carbpol.2012.05.026

A. Baylis and L. Sohettes, : A model for integrated biorefineries, Biofuels, Bioproducts and Biorefining, vol.4, issue.2, pp.115-117, 2010.
DOI : 10.1002/bbb.210

J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates???the US Department of Energy???s ???Top 10??? revisited, Green Chemistry, vol.12, issue.40, p.539, 2010.
DOI : 10.1039/b922014c

B. Thorp, « The Verdict Is In: Biofuels Boom, US Forest Prod· ucts Laboratory: Society of American Foresters Annual Meeting Ore?gun Convention Center, 2007.

E. Hytönen and P. Stuart, Integrating Bioethanol Production into an Integrated Kraft Pulp and Paper Mill: Techno-Economic Assessment, PULP Pap. Can, pp.25-32, 2009.

M. Marklund, R. Tegman, and E. R. Gebart, CFD modelling of black liquor gasification: Identification of important model parameters, Fuel, vol.86, issue.12-13, pp.1918-1926, 2007.
DOI : 10.1016/j.fuel.2006.12.015

A. V. Bridgwater, Principles and practice of biomass fast pyrolysis processes for liquids, Journal of Analytical and Applied Pyrolysis, vol.51, issue.1-2, pp.3-22, 1999.
DOI : 10.1016/S0165-2370(99)00005-4

D. Sutton, B. Kelleher, and J. R. Ross, Review of literature on catalysts for biomass gasification, Fuel Processing Technology, vol.73, issue.3, pp.155-173, 2001.
DOI : 10.1016/S0378-3820(01)00208-9

L. Devi, K. J. Ptasinski, and F. J. , A review of the primary measures for tar elimination in biomass gasification processes, Biomass and Bioenergy, vol.24, issue.2, p.125, 2003.
DOI : 10.1016/S0961-9534(02)00102-2

H. Yang and P. Liao, Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol, Applied Catalysis A: General, vol.317, issue.2, pp.226-233, 2007.
DOI : 10.1016/j.apcata.2006.10.018

J. He and W. Zhang, Research on ethanol synthesis from syngas, Journal of Zhejiang University-SCIENCE A, vol.9, issue.5, pp.714-719, 2008.
DOI : 10.1631/jzus.A071417

«. Rfa, Renewable Fuels Association ». [En ligne] Disponible sur: http://www.ethanolrfa.org, Consulté le, pp.6-2014

«. Food, ». , and F. , En ligne] Disponible sur: http://www.fao.org/statistics, Consulté le, pp.25-2013

K. E. Vroom, « The H factor: a means of expressing cooking times and temperatures as a single variable », Pulp Pap, Mag. Can, vol.58, issue.3, pp.228-231, 1957.

J. R. George, Delignification prolongee en milieu alcalin a l'aide d'un reacteur a lit fixe et a faible temps de passage. Application a la fabrication de la pate a papier, GRENOBLE, 1998.

R. E. Lapointe, Précis de chimie de la cellulose. Cheneliere-mcgraw hill, 2000.

E. Brännvall, A. Teder, H. Höglund, L. Miliander, U. Germgard et al., The Ljungberg Textbook: Pulp technology, 2004.

E. Sjöström, Wood chemistry: fundamentals and applications. Access Online via, 1993.

P. Morandini, F. Salamini, and E. P. Gantet, Engineering of Plant Metabolism for Drug and Food, Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents, vol.5, issue.2, pp.103-112, 2005.
DOI : 10.2174/1568013053586441

A. Dufresne, Nanocellulose: from nature to high performance tailored materials, 2012.
DOI : 10.1515/9783110254600

A. Van-heiningen, Converting a kraft pulp mill into an integrated forest biorefinery. », Pulp Pap, Can, vol.107, issue.6, pp.141-146, 2006.

H. Huang, S. Ramaswamy, and W. W. Al-dajani, Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: A comparative study, Bioresource Technology, vol.101, issue.2, pp.624-631, 2010.
DOI : 10.1016/j.biortech.2009.07.092

S. Yoon and A. Van-heiningen, Green liquor extraction of hemicelluloses from southern pine in an Integrated Forest Biorefinery, Journal of Industrial and Engineering Chemistry, vol.16, issue.1, pp.74-80, 2010.
DOI : 10.1016/j.jiec.2010.01.018

B. Grylls, Born Survivor: Bear Grylls, 2007.

K. Kyoung-heon, Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms, J. Sci. Food Agric, vol.85, issue.14, pp.2461-2467, 2005.

A. P. Dunlop, Furfural Formation and Behavior, Furfural formation and behavior, pp.204-209, 1948.
DOI : 10.1021/ie50458a006

R. J. Ulbricht, S. J. Northup, and J. A. Thomas, A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions, Fundamental and Applied Toxicology, vol.4, issue.5, pp.843-853, 1984.
DOI : 10.1016/0272-0590(84)90106-4

M. J. Taherzadeh and K. Karimi, « Acid-based hydrolysis processes for ethanol from lignocellulosic materials : a review, BioResources, vol.2, issue.3, pp.472-499, 2007.

J. R. Almeida, M. Bertilsson, M. F. Gorwa-grauslund, S. Gorsich, and E. G. Lidén, Metabolic effects of furaldehydes and impacts on biotechnological processes, Metabolic effects of furaldehydes and impacts on biotechnological processes, pp.625-638, 2009.
DOI : 10.1007/s00253-009-1875-1

K. Hoyer, M. Galbe, and E. G. Zacchi, Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content, Journal of Chemical Technology & Biotechnology, vol.50, issue.72, pp.570-577, 2009.
DOI : 10.1002/jctb.2082

N. Mosier, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology, vol.96, issue.6, pp.673-686, 2005.
DOI : 10.1016/j.biortech.2004.06.025

T. Song, A. Pranovich, and I. Sumerskiy, Holmbom, « Extraction of galactoglucomannan from spruce wood with pressurised hot water, Holzforschung, vol.62, issue.6, pp.659-666, 2008.

G. Garrote, H. Dominguez, and J. C. Parajó, Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood, Journal of Chemical Technology & Biotechnology, vol.49, issue.11, pp.1101-1109, 1999.
DOI : 10.1002/(SICI)1097-4660(199911)74:11<1101::AID-JCTB146>3.0.CO;2-M

M. S. Tunc and A. R. Van-heiningen, Hemicellulose Extraction of Mixed Southern Hardwood with Water at 150 ??C: Effect of Time, Industrial & Engineering Chemistry Research, vol.47, issue.18, pp.18-7031, 2008.
DOI : 10.1021/ie8007105

A. Wafa, U. W. Tschirner, and E. T. Jensen, Pre-extraction of hemicelluloses and subsequent kraft pulping. Part II: acid-and autohydrolysis. », Tappi J, vol.8, issue.9, pp.30-37, 2009.

J. Krogell, E. Korotkova, K. Eränen, A. Pranovich, T. Salmi et al., Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor ??? Effects of wood particle size, Bioresource Technology, vol.143, pp.212-220, 2013.
DOI : 10.1016/j.biortech.2013.05.110

E. L. Springer, Prehydrolysis of hardwoods with dilute sulfuric acid, Prehydrolysis of hardwoods with dilute sulfuric acid, pp.614-623, 1985.
DOI : 10.1021/i300020a023

J. F. Saeman, Kinetics of Wood Saccharification - Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature, Industrial & Engineering Chemistry, vol.37, issue.1, pp.43-52, 1945.
DOI : 10.1021/ie50421a009

L. Boiron, Etude de l'impact de l'extraction des hémicelluloses du bois sur les procédés d'obtention de cellulose et d'éthanol dans le cadre d'une bioraffinerie lignocellulosique, 2012.

J. Kautto and E. Saukkonen, Henricson, « Digestibility and paper making properties of prehydrolyzed softwood chips, BioResources, vol.5, issue.4, pp.2502-2519, 2010.

C. V. Mendes, J. M. Rocha, G. D. Sousa, E. M. Carvalho, and . Pap, Extraction of hemicelluloses prior to kraft cooking: A step for an integrated biorefinery in the pulp mill, pp.79-83, 2011.

W. W. Al-dajani and U. W. Tschirner, Pre-extraction of hemicelluloses and subsequent ASA and ASAM pulping: Comparison of autohydrolysis and alkaline extraction, Holzforschung, vol.64, issue.4, pp.411-416, 2010.
DOI : 10.1515/hf.2010.064

H. Lu, R. Hu, A. Ward, T. E. Amidon, B. Liang et al., Hot-water extraction and its effect on soda pulping of aspen woodchips, Biomass and Bioenergy, vol.39, pp.5-13, 2012.
DOI : 10.1016/j.biombioe.2011.01.054

S. Yoon, Van Heiningen, « Kraft pulping and papermaking properties of hotwater pre-extracted loblolly pine in an integrated forest products biorefinery », Tappi J, vol.7, issue.7, pp.22-27, 2008.

C. V. Mendes, M. G. Carvalho, C. M. Baptista, J. M. Rocha, B. I. Soares et al., Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept, Food and Bioproducts Processing, vol.87, issue.3, 2009.
DOI : 10.1016/j.fbp.2009.06.004

P. Mäki-arvela, T. Salmi, B. Holmbom, S. Willför, and D. Y. , Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review, Chemical Reviews, vol.111, issue.9, pp.5638-5666, 2011.
DOI : 10.1021/cr2000042

S. Yoon and K. Macewan, Van Heiningen, « Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery », Tappi J, vol.7, issue.6, pp.27-32, 2008.

S. Larsson, E. Palmqvist, B. Hahn-hägerdal, C. Tengborg, K. Stenberg et al., The generation of fermentation inhibitors during dilute acid hydrolysis of softwood, Enzyme and Microbial Technology, vol.24, issue.3-4, 1999.
DOI : 10.1016/S0141-0229(98)00101-X

W. Frederick, S. Lien, C. Courchene, N. Demartini, and A. Ragauskas, Iisa, « Coproduction of ethanol and cellulose fiber from Southern Pine: A technical and economic assessment, Biomass Bioenergy, vol.32, pp.12-1293, 2008.

W. W. Al-dajani and U. W. Tschirner, Pre-extraction of hemicelluloses and subsequent kraft pulping. Part I: alkaline extraction », Tappi J, vol.7, issue.6, pp.3-8, 2008.

S. N-'diaye, L. Rigal, P. Larocque, and P. F. Vidal, Extraction of hemicelluloses from poplar, Populus tremuloides, using an extruder-type twin-screw reactor: A feasibility study, Bioresource Technology, vol.57, issue.1, pp.61-67, 1996.
DOI : 10.1016/0960-8524(96)00041-7

S. N-'diaye and L. , Factors influencing the alkaline extraction of poplar hemicelluloses in a twin-screw reactor: correlation with specific mechanical energy and residence time distribution of the liquid phase, Bioresource Technology, vol.75, issue.1, pp.13-18, 2000.
DOI : 10.1016/S0960-8524(00)00032-8

S. Walton, « Biological Conversion of Hemicellulose Extract into Value-Added Fuels and Chemicals, 2009.

H. Sun, Y. K. Xu, and G. Z. Xu, « Isolation of hemicellulose from wood chips via extraction with kraft green liquor, Chem Res Chin Univ, vol.26, p.667, 2010.

S. Yoon and M. S. Tunc, van Heiningen, « Near-neutral pre-extraction of hemicelluloses and subsequent kraft pulping of southern mixed hardwoods », Tappi J, vol.10, issue.1, pp.7-15, 2011.

A. Arkell, H. Krawczyk, J. Thuvander, and A. Jönsson, Evaluation of membrane performance and cost estimates during recovery of sodium hydroxide in a hemicellulose extraction process by nanofiltration, Separation and Purification Technology, vol.118, pp.387-393
DOI : 10.1016/j.seppur.2013.07.015

F. Huang and A. Ragauskas, Extraction of Hemicellulose from Loblolly Pine Woodchips and Subsequent Kraft Pulping, Industrial & Engineering Chemistry Research, vol.52, issue.4, pp.1743-1749
DOI : 10.1021/ie302242h

J. Helmerius, J. V. Walter, U. Rova, K. A. Berglund, and D. B. Hodge, Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties, Bioresource Technology, vol.101, issue.15, pp.15-5996, 2010.
DOI : 10.1016/j.biortech.2010.03.029

S. L. Walton, D. Hutto, J. M. Genco, G. P. Van-walsum, E. A. Van-heiningen et al., Pre-Extraction of Hemicelluloses from Hardwood Chips Using an Alkaline Wood Pulping Solution Followed by Kraft Pulping of the Extracted Wood Chips, Industrial & Engineering Chemistry Research, vol.49, issue.24, 2010.
DOI : 10.1021/ie100848p

N. Jacquet, C. Vanderghem, C. Blecker, M. Paquot, N. Jacquet et al., « La steam explosion : application en tant que prétraitement de la matière lignocellulosique, Biotechnol. Agron. Société Environ, vol.14, pp.561-566, 2010.

A. Boussaid, J. Robinson, Y. Cai, D. J. Gregg, and J. N. Saddler, Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (douglas fir), Biotechnology and Bioengineering, vol.31, issue.3, pp.284-289, 1999.
DOI : 10.1002/(SICI)1097-0290(19990805)64:3<284::AID-BIT4>3.0.CO;2-C

M. M. Wu, K. Chang, D. J. Gregg, A. Boussaid, R. P. Beatson et al., Optimization of Steam Explosion to Enhance Hemicellulose Recovery and Enzymatic Hydrolysis of Cellulose in Softwoods, Applied Biochemistry and Biotechnology, vol.77, issue.1-3, pp.47-54, 1999.
DOI : 10.1385/ABAB:77:1-3:47

S. Shevchenko, Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips, Bioresource Technology, vol.72, issue.3, pp.207-211, 2000.
DOI : 10.1016/S0960-8524(99)00125-X

Z. Kádár, S. F. Maltha, Z. Szengyel, K. Réczey, and E. W. Laat, « Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH, Appl. Biochem. Biotechnol, vol.137, issue.140, 2007.

H. Jørgensen, J. B. Kristensen, and C. Felby, Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities, Biofuels, Bioproducts and Biorefining, vol.43, issue.16, pp.119-134, 2007.
DOI : 10.1002/bbb.4

M. J. Taherzadeh and K. Karimi, « Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: A review, BioResources, vol.2, issue.4, pp.707-738, 2007.

B. C. Saha, Hemicellulose bioconversion, Hemicellulose bioconversion, pp.279-291, 2003.
DOI : 10.1007/s10295-003-0049-x

M. Tenkanen, Action of Trichoderma reesei mannanase on galactoglucomannan in pine kraft pulp, Journal of Biotechnology, vol.57, issue.1-3, pp.191-204, 1997.
DOI : 10.1016/S0168-1656(97)00099-0

I. Kusakabe, G. G. Park, N. Kumita, T. Yasui, and E. K. Murakami, Specificity of .BETA.-mannanase from Penicillium purpurogenum for konjac glucomannan., Agricultural and Biological Chemistry, vol.52, issue.2, pp.519-524, 1988.
DOI : 10.1271/bbb1961.52.519

F. Franz and T. Hans, « Process for the production of paraffin-hydrocarbons with more than one carbon atom, pp.11-1930

A. D. Padula, M. S. Santos, and L. Ferreira, The emergence of the biodiesel industry in Brazil: Current figures and future prospects, Energy Policy, vol.44, pp.395-405, 2012.
DOI : 10.1016/j.enpol.2012.02.003

H. Maula, Neste Oil starts up its new renewable diesel plant in Singapore, pp.15-2010

D. Lorne, « Le point sur les biocarburants : progression des marchés nationaux et internationaux, p.2011

«. Iea-international-energy-agency and ». , En ligne] Disponible sur, pp.24-2013

J. Ziegler and «. Conférence-de-presse-À-l-'onu, Jean Ziegler qualifie le recours aux biocarburants de " crime contre l'humanité, pp.26-2007

B. Bureau, A. Gabrielle, and . Gohin, Bispo, « Revue critique des études évaluant l'effet des changements d'affectation des sols sur les bilans environnementaux des biocarburants, 2012.

F. Bai and W. Anderson, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnology Advances, vol.26, issue.1, pp.89-105, 2008.
DOI : 10.1016/j.biotechadv.2007.09.002

Y. Jin and T. W. Jeffries, Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae, Metabolic Engineering, vol.6, issue.3, pp.229-238, 2004.
DOI : 10.1016/j.ymben.2003.11.006

A. J. Maris, D. A. Abbott, E. Bellissimi, J. Brink, M. Kuyper et al., Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status, Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status, pp.391-418, 2006.
DOI : 10.1007/s10482-006-9085-7

E. Albers and C. Larsson, A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains, Journal of Industrial Microbiology & Biotechnology, vol.19, issue.8, pp.1085-1091, 2009.
DOI : 10.1007/s10295-009-0592-1

M. Johnston, J. S. Flick, and T. Pexton, Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.14, issue.6, pp.3834-3841, 1994.
DOI : 10.1128/MCB.14.6.3834

Y. Lin and S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects, Applied Microbiology and Biotechnology, vol.6, issue.3, pp.627-642, 2006.
DOI : 10.1007/s00253-005-0229-x

J. M. Laplace, J. P. Delgenes, R. Moletta, and J. M. Navarro, Combined alcoholic fermentation of D-xylose and D-glucose by four selected microbial strains: Process considerations in relation to ethanol tolerance, Biotechnology Letters, vol.135, issue.6, pp.445-450, 1991.
DOI : 10.1007/BF01030999

N. L. Silva, G. J. Betancur, M. P. Vasquez, E. B. Gomes, and E. N. Pereira, Ethanol Production from Residual Wood Chips of Cellulose Industry: Acid Pretreatment Investigation, Hemicellulosic Hydrolysate Fermentation, and Remaining Solid Fraction Fermentation by SSF Process, Applied Biochemistry and Biotechnology, vol.121, issue.124, pp.928-936, 2010.
DOI : 10.1007/s12010-010-9096-8

R. Gupta, K. K. Sharma, and R. C. Kuhad, Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498, Bioresource Technology, vol.100, issue.3, pp.1214-1220, 2009.
DOI : 10.1016/j.biortech.2008.08.033

D. Scordia, S. L. Cosentino, and T. W. Jeffries, Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack., Bioresource Technology, vol.101, issue.14, pp.14-5358, 2010.
DOI : 10.1016/j.biortech.2010.02.036

S. B. Kim, J. H. Lee, K. K. Oh, S. J. Lee, J. Y. Lee et al., Dilute acid pretreatment of barley straw and its saccharification and fermentation, Biotechnology and Bioprocess Engineering, vol.99, issue.4, pp.725-732, 2011.
DOI : 10.1007/s12257-010-0305-7

K. Srilekha-yadav, S. Naseeruddin, G. Sai-prashanthi, and L. Sateesh, Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis, Bioresource Technology, vol.102, issue.11, pp.6473-6478, 2011.
DOI : 10.1016/j.biortech.2011.03.019

T. Watanabe, I. Watanabe, M. Yamamoto, A. Ando, and E. T. Nakamura, A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance, Bioresource Technology, vol.102, issue.2, pp.1844-1848, 2011.
DOI : 10.1016/j.biortech.2010.09.087

L. R. Lynd, Production of ethanol from lignocellulosic materials using thermophilic bacteria: Critical evaluation of potential and review, Lignocellulosic Materials, pp.1-52, 1989.
DOI : 10.1007/BFb0007858

L. R. Lynd, P. J. Weimer, W. H. Van-zyl, and I. S. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbial Cellulose Utilization: Fundamentals and Biotechnology, pp.506-577, 2002.
DOI : 10.1128/MMBR.66.3.506-577.2002

A. H. Thompson, D. J. Studholme, E. M. Green, and D. J. Leak, Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius, Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius, pp.1359-1365, 2008.
DOI : 10.1007/s10529-008-9698-1

S. Brethauer, C. E. Wyman, and . Review, Review: Continuous hydrolysis and fermentation for cellulosic ethanol production, Bioresource Technology, vol.101, issue.13, pp.4862-4874, 2010.
DOI : 10.1016/j.biortech.2009.11.009

B. Alriksson, Ethanol from lignocellulose : Alkali detoxification of dilute-acid spruce hydrolysates », dissertation, 2006.

H. Shin, S. Mcclendon, T. Vo, and R. R. Chen, Escherichia coli Binary Culture Engineered for Direct Fermentation of Hemicellulose to a Biofuel, Applied and Environmental Microbiology, vol.76, issue.24, pp.24-8150, 2010.
DOI : 10.1128/AEM.00908-10

S. Walton, A. Van-heiningen, and E. P. Van-walsum, Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium, Bioresource Technology, vol.101, issue.6, 2010.
DOI : 10.1016/j.biortech.2009.10.043

A. Matsushika, H. Inoue, K. Murakami, O. Takimura, and E. S. Sawayama, Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae, Bioresource Technology, vol.100, issue.8, pp.2392-2398, 2009.
DOI : 10.1016/j.biortech.2008.11.047

S. Katahira, A. Mizuike, H. Fukuda, and E. A. Kondo, Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain, Applied Microbiology and Biotechnology, vol.280, issue.6, pp.1136-1143, 2006.
DOI : 10.1007/s00253-006-0402-x

T. Sakamoto, T. Hasunuma, Y. Hori, R. Yamada, and E. A. Kondo, Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, Journal of Biotechnology, vol.158, issue.4, pp.203-210, 2012.
DOI : 10.1016/j.jbiotec.2011.06.025

T. S. Khaw, Y. Katakura, J. Koh, A. Kondo, M. Ueda et al., Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch, Applied Microbiology and Biotechnology, vol.68, issue.5, pp.573-579, 2006.
DOI : 10.1007/s00253-005-0101-z

X. Q. Zhao, C. Xue, X. M. Ge, W. J. Yuan, J. Y. Wang et al., Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation, Journal of Biotechnology, vol.139, issue.1, pp.55-60, 2009.
DOI : 10.1016/j.jbiotec.2008.08.013

E. Palmqvist, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition, Bioresource Technology, vol.74, issue.1, pp.25-33, 2000.
DOI : 10.1016/S0960-8524(99)00161-3

F. W. Bai, L. J. Chen, and W. A. Anderson, Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system, Biotechnology and Bioengineering, vol.31, issue.5, pp.558-566, 2004.
DOI : 10.1002/bit.20221

S. Larsson, A. Quintana-sáinz, A. Reimann, N. O. Nilvebrant, and L. J. Jönsson, Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae, Appl. Biochem. Biotechnol, vol.84, issue.1, pp.617-632, 2000.

L. Olsson, Fermentation of lignocellulosic hydrolysates for ethanol production, Enzyme and Microbial Technology, vol.18, issue.5, pp.312-331, 1996.
DOI : 10.1016/0141-0229(95)00157-3

M. J. Taherzadeh, L. Gustafsson, C. Niklasson, and E. G. Lidén, Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae, Physiological effects of 5- hydroxymethylfurfural on Saccharomyces cerevisiae, pp.701-708, 2000.
DOI : 10.1007/s002530000328

M. J. Taherzadeh, L. Gustafsson, and C. Niklasson, Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, vol.87, issue.2, pp.169-174, 1999.
DOI : 10.1016/S1389-1723(99)89007-0

L. J. Jönsson, B. Alriksson, and N. Nilvebrant, Bioconversion of lignocellulose: inhibitors and detoxification, Biotechnology for Biofuels, vol.6, issue.1, p.16, 2013.
DOI : 10.1016/j.jbiotec.2011.06.026

C. Luo, D. L. Brink, and H. W. Blanch, Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol, Biomass and Bioenergy, vol.22, issue.2, pp.125-138, 2002.
DOI : 10.1016/S0961-9534(01)00061-7

B. L. Maiorella, H. W. Blanch, and C. R. Wilke, Feed component inhibition in ethanolic fermentation bySaccharomyces cerevisiae, Biotechnology and Bioengineering, vol.13, issue.10, pp.1155-1166, 1984.
DOI : 10.1002/bit.260261004

E. Palmqvist and . Hahn, Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification, Bioresource Technology, vol.74, issue.1, pp.17-24, 2000.
DOI : 10.1016/S0960-8524(99)00160-1

I. S. Horváth, A. Sjöde, B. Alriksson, L. J. Jönsson, and N. Nilvebrant, Critical Conditions for Improved Fermentability During Overliming of Acid Hydrolysates from Spruce, Critical Conditions for Improved Fermentability During Overliming of Acid Hydrolysates from Spruce, pp.1031-1044, 2005.
DOI : 10.1385/ABAB:124:1-3:1031

B. Alriksson, A. Sjöde, N. Nilvebrant, and L. J. Jönsson, Optimal Conditions for Alkaline Detoxification of Dilute-Acid Lignocellulose Hydrolysates, Applied Biochemistry and Biotechnology, vol.130, issue.1-3, pp.599-611, 2006.
DOI : 10.1385/ABAB:130:1:599

A. Chandel, R. Kapoor, A. Singh, and E. R. Kuhad, Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501, Bioresource Technology, vol.98, issue.10, 2007.
DOI : 10.1016/j.biortech.2006.07.047

S. Larsson, A. Reimann, N. Nilvebrant, and L. J. Jönsson, Comparison of Different Methods for the Detoxification of Lignocellulose Hydrolyzates of Spruce, Applied Biochemistry and Biotechnology, vol.77, issue.1-3, pp.91-103, 1999.
DOI : 10.1385/ABAB:77:1-3:91

H. Huang, S. Ramaswamy, and U. Tschirner, A review of separation technologies in current and future biorefineries, Separation and Purification Technology, vol.62, issue.1, pp.1-21, 2008.
DOI : 10.1016/j.seppur.2007.12.011

A. Converti, J. M. Dominguez, P. Perego, and S. S. Da-silva, Wood Hydrolysis and Hydrolyzate Detoxification for Subsequent Xylitol Production, Chemical Engineering & Technology, vol.22, issue.29, pp.1013-1020, 2000.
DOI : 10.1002/1521-4125(200011)23:11<1013::AID-CEAT1013>3.0.CO;2-C

B. Alriksson, A. Cavka, and L. J. Jönsson, Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents, Bioresource Technology, vol.102, issue.2, pp.1254-1263, 2011.
DOI : 10.1016/j.biortech.2010.08.037

B. Alriksson, I. S. Horváth, and L. J. Jönsson, Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors, Process Biochemistry, vol.45, issue.2, pp.264-271, 2010.
DOI : 10.1016/j.procbio.2009.09.016

T. Liu, L. Lin, Z. Sun, R. Hu, and E. S. Liu, Bioethanol fermentation by recombinant E. coli FBR5 and its robust mutant FBHW using hot-water wood extract hydrolyzate as substrate, Biotechnology Advances, vol.28, issue.5, pp.602-608, 2010.
DOI : 10.1016/j.biotechadv.2010.05.008

D. P. Bayrock and W. M. Ingledew, Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology, Journal of Industrial Microbiology and Biotechnology, vol.27, issue.2, pp.87-93, 2001.
DOI : 10.1038/sj.jim.7000167

R. Purwadi and M. Taherzadeh, The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells, Bioresource Technology, vol.99, issue.7, pp.2226-2233, 2008.
DOI : 10.1016/j.biortech.2007.05.021

Y. Lin, D. P. Bayrock, and W. M. Ingledew, « Evaluation of Saccharomyces cerevisiae grown in a multistage chemostat environment under increasing levels of glucose, Biotechnology Letters, vol.24, issue.6, pp.449-453, 2002.
DOI : 10.1023/A:1014501125355

Y. Tang, M. An, K. Liu, S. Nagai, T. Shigematsu et al., Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7, Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7 », pp.909-914, 2006.
DOI : 10.1016/j.procbio.2005.09.008

E. Palmqvist and M. Galbe, Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of spruce with Saccharomyces cerevisiae and on-line monitoring of glucose and ethanol, Applied Microbiology and Biotechnology, vol.50, issue.5, pp.545-551, 1998.
DOI : 10.1007/s002530051332

W. G. Lee, B. G. Park, Y. K. Chang, H. N. Chang, J. S. Lee et al., Continuous Ethanol Production from Concentrated Wood Hydrolysates in an Internal Membrane-Filtration Bioreactor, Continuous Ethanol Production from Concentrated Wood Hydrolysates in an Internal Membrane- Filtration Bioreactor, pp.302-304, 2000.
DOI : 10.1021/bp990130f

T. Brandberg, N. Sanandaji, and L. Gustafsson, Continuous Fermentation of Undetoxified Dilute Acid Lignocellulose Hydrolysate by Saccharomycescerevisiae ATCC 96581 Using Cell Recirculation, Biotechnology Progress, vol.10, issue.108, pp.1093-1101, 2005.
DOI : 10.1021/bp050006y

T. Brandberg, K. Karimi, M. J. Taherzadeh, C. J. Franzén, and E. L. Gustafsson, Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention, Biotechnology and Bioengineering, vol.18, issue.116, pp.80-90, 2007.
DOI : 10.1002/bit.21410

R. Millati, C. Niklasson, and M. J. Taherzadeh, Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae, Process Biochemistry, vol.38, issue.4, pp.515-522, 2002.
DOI : 10.1016/S0032-9592(02)00176-0

C. Liu and F. Wang, Ou-Yang, « Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles, Bioresour. Technol, vol.100, issue.2, 2009.

M. J. Taherzadeh and R. Millati, Continuous Cultivation of Dilute-Acid Hydrolysates to Ethanol by Immobilized Saccharomyces cerevisiae, Applied Biochemistry and Biotechnology, vol.95, issue.1, pp.45-58, 2001.
DOI : 10.1385/ABAB:95:1:45

J. Shen and F. A. , Modeling semi-simultaneous saccharification and fermentation of ethanol production from cellulose, Biomass and Bioenergy, vol.34, issue.8, pp.1098-1107, 2010.
DOI : 10.1016/j.biombioe.2010.02.014

J. Söderström, M. Galbe, and E. G. Zacchi, Separate versus Simultaneous Saccharification and Fermentation of Two???Step Steam Pretreated Softwood for Ethanol Production, Journal of Wood Chemistry and Technology, vol.7, issue.3, pp.187-202, 2005.
DOI : 10.1080/02773818808070700

V. Gomis, A. Font, R. Pedraza, and M. D. Saquete, Isobaric vapor???liquid and vapor???liquid???liquid equilibrium data for the system water+ethanol+cyclohexane, Fluid Phase Equilibria, vol.235, issue.1, pp.7-10, 2005.
DOI : 10.1016/j.fluid.2005.07.015

D. J. O-'brien, L. H. Roth, and A. J. Mcaloon, « Ethanol production by continuous fermentation?pervaporation: a preliminary economic analysis, J. Membr. Sci, vol.166, issue.1, pp.105-111, 2000.

L. M. Vane, Separation technologies for the recovery and dehydration of alcohols from fermentation broths, Biofuels, Bioproducts and Biorefining, vol.18, issue.23, pp.553-588, 2008.
DOI : 10.1002/bbb.108

J. Janson, « Calculation of the polysaccharide composition of wood and pulp. », Pap, Ja Puu, vol.52, issue.5, pp.323-332, 1970.

C. Chirat, G. Pipon, M. T. Viardin, D. Lachenal, and J. A. Lloyd, Suckling, « Hemicelluloses extraction from eucalyptus and softwood wood chips: pulp properties and ethanol production, ISWFPC, electronic proceedings O38, 2009.

M. Sanglard, Production simultanée de fibres cellulosiques blanchies et de polyxylosides d'alkyle dans le cadre d'une bioraffinerie papetière

H. Mao, « Technical evaluation of a hardwood biorefinery using the " Near-Neutral " hemicellulose extraction Process », The University of Maine, 2007.

W. E. Moore and D. B. Johnson, Procedures for the chemical analysis of wood and wood products (as used at the US Forest Products Laboratory), 1967.

C. Chang, P. Cen, E. X. Ma, and . Levulinic, Levulinic acid production from wheat straw, Bioresource Technology, vol.98, issue.7, pp.1448-1453, 2007.
DOI : 10.1016/j.biortech.2006.03.031

C. Chang, X. Ma, and E. P. Cen, Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature, Chinese Journal of Chemical Engineering, vol.14, issue.5, pp.708-712, 2006.
DOI : 10.1016/S1004-9541(06)60139-0

J. Shen and C. E. Wyman, Hydrochloric acid-catalyzed levulinic acid formation from cellulose: data and kinetic model to maximize yields, AIChE Journal, vol.37, issue.1, pp.236-246, 2012.
DOI : 10.1002/aic.12556

B. Girisuta, L. P. Janssen, and H. J. , Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid, Industrial & Engineering Chemistry Research, vol.46, issue.6, pp.1696-1708, 2007.
DOI : 10.1021/ie061186z

B. Girisuta, L. Janssen, and H. J. Heeres, Green Chemicals, Chemical Engineering Research and Design, vol.84, issue.5, pp.339-349, 2006.
DOI : 10.1205/cherd05038

V. E. Tarabanko, M. Y. Chernyak, S. V. Aralova, and B. N. Kuznetsov, Kinetics of levulinic acid formation from carbohydrates at moderate temperatures », React, Reaction Kinetics and Catalysis Letters, vol.75, issue.1, pp.117-126, 2002.
DOI : 10.1023/A:1014857703817

G. Garrote, H. Domí, and J. C. Parajó, Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis???posthydrolysis processes: posthydrolysis kinetics, Bioresource Technology, vol.79, issue.2, pp.155-164, 2001.
DOI : 10.1016/S0960-8524(01)00044-X

N. Us, Department of Commerce, « National Institute of Standards and Technology ». [En ligne]. Disponible sur: http://www, pp.1-2014

H. Huang, X. Guo, D. Li, M. Liu, J. Wu et al., Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids, Bioresource Technology, vol.102, issue.16, pp.16-7486, 2011.
DOI : 10.1016/j.biortech.2011.05.008

H. Ghezzaz, L. Pelletier, and P. R. Stuart, « Biorefinery implementation for recovery debottlenecking at existing pulp mills?part II: technoeconomic evaluation », Tappi J, vol.11, issue.8, pp.17-24, 2012.

T. Gutiérrez, L. O. Ingram, and J. F. Preston, Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1???An enzyme important in the detoxification of furfural during ethanol production, Journal of Biotechnology, vol.121, issue.2, pp.154-164, 2006.
DOI : 10.1016/j.jbiotec.2005.07.003

J. Zhang, Z. Zhu, X. Wang, N. Wang, W. Wang et al., Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation, Biotechnology for Biofuels, vol.3, issue.1, p.26, 2010.
DOI : 10.1186/1754-6834-3-26

E. Mateos-espejel, A. Alva-argaez, L. Savulescu, and E. J. Paris, « From kraft mills to forest biorefinery: An energy and water perspective. I. Methodology, Cellul. Chem. Technol, vol.44, issue.1, p.15, 2010.

M. Marinova, E. Mateos-espejel, and E. J. Paris, « From kraft mills to forest biorefinery: An energy and water perspective. II. Case study, Cellul. Chem. Technol, vol.44, issue.1, p.21, 2010.

M. Marinova, E. Mateos-espejel, N. Jemaa, and E. J. Paris, Addressing the increased energy demand of a Kraft mill biorefinery: The hemicellulose extraction case, Chemical Engineering Research and Design, vol.87, issue.9, pp.1269-1275, 2009.
DOI : 10.1016/j.cherd.2009.04.017

M. Moshkelani, M. Marinova, M. Perrier, and E. J. Paris, The forest biorefinery and its implementation in the pulp and paper industry: Energy overview, Applied Thermal Engineering, vol.50, issue.2, pp.1427-1436, 2013.
DOI : 10.1016/j.applthermaleng.2011.12.038

«. Boursorama and ». Boursorama, Disponible sur: www.boursorame.com. permis d'éliminer 65% du HMF, 53% du furfural, 12% des composés phénoliques tout en préservant plus de 85% des sucres fermentescibles. L'utilisation de soude ne permet pas d'obtenir d'aussi bons résultats, Au mieux, un rendement supérieur de 11% est obtenu à un pH de 9 et à une température de 80°C (Tableau 60) [144]. La soude est moins néfaste pour les sucres que le Ca(OH)

N. Le and . Finalement-plus-efficace-que-le-ca, Il préserve la dégradation des sucres, tout en éliminant une quantité significative de furanes et composés phénoliques Un traitement à un pH de 9, pour une température de 55°C permet d'éliminer 32% de HMF, Mg(OH)2 et le Ba(OH)2 [143]