R. Ababou, Random porous media flow on large 3D grids : Numerics, performance, and application to homogenization, IMA MAthematics and its Applications : Environnement Studies (Math. Comput. Statist. Anal.). Wheeler MF, pp.1-25410, 1996.

E. Abarca, J. Carrera, X. Sànchez-vila, and C. I. Voss, Quasi-horizontal circulation cells in 3D seawater intrusion, Journal of Hydrology, vol.339, issue.3-4, pp.118-129, 2007.
DOI : 10.1016/j.jhydrol.2007.02.017

P. Ackerer, Efficient approximations for the simulation of density driven flow in porous media Advances in Water Ressources, pp.15-27, 2008.

M. Alfaro and P. Alifrangis, Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local. Interfaces Free Bound
URL : https://hal.archives-ouvertes.fr/hal-00800909

M. Alfaro, D. Hilhorst, and M. Hiroshi, Optimal interface width for the Allen-Cahn equation, RIMS Kokyuroku, vol.1416, pp.148-160, 2005.

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, vol.27, issue.6, pp.1085-1085, 1979.
DOI : 10.1016/0001-6160(79)90196-2

H. W. Alt and C. J. Van-duijin, A free boundary problem involving a cusp : breakthrough of saltwater- Interface and Free Boundaries, pp.21-72, 2000.

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z, vol.1, issue.183, pp.311-341, 1983.

Y. Amirat, Ecoulement de fluides missibles en milieux saturé, 2004.

Y. Amirat, K. Hamdache, and A. Ziani, MATHEMATICAL ANALYSIS FOR COMPRESSIBLE MISCIBLE DISPLACEMENT MODELS IN POROUS MEDIA, Mathematical Models and Methods in Applied Sciences, vol.06, issue.06, pp.729-747, 1999.
DOI : 10.1142/S0218202596000316

W. Badon-ghyben, Nota in verband met de voorgenomen putboring nabij amsterdam [notes ont the probable results of well drilling near amsterdam, Tijdschrift van het Kononklijk Instituut van Ingenieurs the Hague, pp.8-22, 1888.

P. M. Barlow, Ground water in freshwater-saltwater environments of the A tlantic coast, Geological Survey, p.1262

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

J. Bear, A. H. Cheng, S. Sorek, D. Ouazar, and I. Herrera, Seawater intrusion in coastal aquifer : Concept, methods and pratices, 1999.

J. Bear and A. Verruijt, Modelling groundwater flow and pollution, 1987.

G. Bellettini, L. Bertini, M. Mariani, and M. Novoga, Convergence of the One-Dimensional Cahn--Hilliard Equation, SIAM Journal on Mathematical Analysis, vol.44, issue.5, pp.3458-3480, 2012.
DOI : 10.1137/120865410

A. J. Bray, Theory of phase-ordering kinetics, Advances in Physics, vol.65, issue.3, pp.357-459, 1994.
DOI : 10.1143/JPSJ.60.1153

S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, 2002.

H. Brezis, Analyse fonctionnelle (Théorie et Applications), 1983.

E. Buckingham, Studies on the movement of soil moisture, 1907.

J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, The Journal of Chemical Physics, vol.28, issue.2, pp.258-267, 1958.
DOI : 10.1063/1.1744102

X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, Journal of Differential Geometry, vol.44, issue.2, pp.262-311, 1996.
DOI : 10.4310/jdg/1214458973

C. Choquet, PARABOLIC AND DEGENERATE PARABOLIC MODELS FOR PRESSURE-DRIVEN TRANSPORT PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.20, issue.04, pp.543-566, 2010.
DOI : 10.1142/S0218202510004337

C. Choquet, M. M. Diédhiou, and C. Rosier, Mathematical analysis of a sharp???diffuse interfaces model for seawater intrusion, Journal of Differential Equations, vol.259, issue.8, pp.3803-3824, 2015.
DOI : 10.1016/j.jde.2015.05.005

URL : https://hal.archives-ouvertes.fr/hal-01273793

P. Constantin, D. Cordoba, F. Gancedo, and R. M. Strain, On the global existence for the Muskat problem, Journal of the European Mathematical Society, vol.15, issue.1, pp.201-227, 2011.
DOI : 10.4171/JEMS/360

H. H. Cooper, A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. U.S. Geological Survey Water-Supply Paper 1613-C, 1964.

L. Cueto-felgueroso and R. Juanes, A phase-field model of unsatured flow, Water Resour. Res, p.45, 2009.

H. P. Darcy, Les fontaines publiques de la ville de Dijon, exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau. Victor Dalmont Ed, p.1856

H. G. Diersch and O. Kolditz, Variable-density flow and transport in porous media: approaches and challenges, Advances in Water Ressources, pp.899-944, 2002.
DOI : 10.1016/S0309-1708(02)00063-5

T. Doppler, H. J. Hendricks-franssen, H. P. Kaiser, U. Kuhlmann, and F. Stauffer, Field evidence of a dynamic leakage coefficient for modelling river???aquifer interactions, Journal of Hydrology, vol.347, issue.1-2, pp.177-187, 2007.
DOI : 10.1016/j.jhydrol.2007.09.017

M. Dubé, M. Rost, K. R. Elder, M. Alava, S. Majaniemi et al., Liquid Conservation and Nonlocal Interface Dynamics in Imbibition, Physical Review Letters, vol.83, issue.8, pp.1628-1631, 1999.
DOI : 10.1103/PhysRevLett.83.1628

J. Dupuit, Études théoriques et pratiques sur les mouvements des eaux dans les canaux couverts à travers les terrains perméables, p.1863

H. L. Essaid, A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model development and application, Water Resources Research, vol.26, issue.4, pp.1431-1454, 1990.
DOI : 10.1029/WR026i007p01431

G. O. Essink, Saltwater intrusion in 3D large-scale aquifers: a dutch case, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, vol.26, issue.4, pp.337-344, 2001.
DOI : 10.1016/S1464-1909(01)00016-8

L. Evans, Partial differential equations, Graduate Studies in Mathematic, vol.19, 1998.

J. G. Ferris, Cyclic fluctuatiuons of water level as a basic for determining aquifer transmissibility, Int. Assoc. Sci. Hydrology Publ, vol.1, pp.97-101, 1951.

G. Gagneux and M. Madaune-tort, Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière, Mathématiques et Applications, 1996.

M. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media, Adv. Diff. Equ, vol.9, pp.11-121235, 2004.

F. Hecht, New developpement in FreeFem++, J. of Numerical Mathematics, vol.20, pp.251-265, 2012.

A. Herzberg, Die Wasserversorgung einiger Nordseebader [the water supply of the north sea coast in Germany], Z Gasbeleucht Wasserversorg, vol.44, issue.45, pp.815-9842, 1901.

J. R. Chan-hong, C. J. Van-duijin, D. Hilhorst, J. Van, and . Kester, The Interface Between Fresh and Salt Groundwater: A Numerical Study, IMA Journal of Applied Mathematics, vol.42, issue.3, pp.209-240, 1989.
DOI : 10.1093/imamat/42.3.209

A. and L. Hyaric, Introduction to freefem++-cs, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169630

M. Jazar and R. Monneau, Formal derivation of seawater intrusion models, pp.2012-152
URL : https://hal.archives-ouvertes.fr/hal-00572241

J. J. Jiao, X. S. Wang, and S. Nandy, Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong, Engineering Geology, vol.80, issue.1-2, pp.71-92, 2005.
DOI : 10.1016/j.enggeo.2005.04.002

G. H. Keulegan, Ninthprogress report on model laws for density currents ; an example of density current flow in permeable media, U. S., Natl. Bur. Stand. rep. Gaithersburg, p.3411, 1954.

O. Kolditz, R. Ratke, H. G. Diersch, and W. Zielke, Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models, Advances in Water Ressources, pp.27-46, 1998.
DOI : 10.1016/S0309-1708(96)00034-6

O. A. Ladyzhenskaja, Linear and quasilinear equations of parabolic type, 1968.

W. J. De-lange, Three-dimensional density driven flow in a Dupuit-Forchheimer analytic element model for national groundwater management, RIZA, 1991.

H. Li and J. J. Jiao, Analytical solutions of tidal groundwater flow in coastal two-aquifer system, Advances in Water Resources, vol.25, issue.4, pp.417-426, 2002.
DOI : 10.1016/S0309-1708(02)00004-0

D. R. Lide, CRC Handbook of Chemistry and Physics, 2003.

C. Llopis-albert and D. Pulido-velazquez, Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers, Hydrological Processes, vol.23, issue.10, pp.3642-3654, 2014.
DOI : 10.1002/hyp.9908

P. Marion, K. Najib, and C. Rosier, Numerical simulations for a seawater intrusion problem in a free aquifer, Applied Numerical Mathematics, vol.75, pp.48-60
DOI : 10.1016/j.apnum.2012.11.003

G. and D. Marsily, Hydrogéologie quantitative. Collection Sciences de la terre, 1981.

J. W. Mercer, S. R. Larson, and C. R. Fauts, Simulation of Salt-Water Interface Motion, Ground Water, vol.7, issue.3, pp.374-385, 1981.
DOI : 10.1111/j.1745-6584.1980.tb03412.x

F. Murat, Soluciones renormalizadas de edp elipticas no lineales. Preprint 93023, Laboratoire d'Analyse Numérique de l, 1993.

M. Muskat, The flow of homogeneous fluids trough porous media, 1937.

K. Najib and C. Rosier, On the global existence for a degenerate elliptic???parabolic seawater intrusion problem, Mathematics and Computers in Simulation, vol.81, issue.10, pp.2282-2295, 2011.
DOI : 10.1016/j.matcom.2010.12.026

K. A. Narayan, C. Schleeberger, and K. L. Bristow, Modelling seawater intrusion in the Burdekin Delta irrigation area, North Queensland, Astralia. Agricultural water management, pp.217-228, 2007.

A. Novick-cohen, The Cahn-Hilliard equation. in Handbook of differential equation, 4 C.M. Dafermos and E. Feireisl edts, 2008.

J. T. Oden and N. Kikuchi, Theory of variational inequalities with applications to problems of flow through porous media, International Journal of Engineering Science, vol.18, issue.10, pp.1173-1284
DOI : 10.1016/0020-7225(80)90111-1

O. Pironneau, F. Hecht, and A. L. Hyaric, Freefem++ version 2.15-1. (http ://www.freefem, p.2015

V. Post, H. Kooi, and C. Simmons, Using Hydraulic Head Measurements in Variable-Density Ground Water Flow Analyses, Ground Water, vol.3, issue.12, pp.664-671, 2007.
DOI : 10.1007/s10040-004-0408-3

A. Quarteroni and A. Valli, Numerical approximations of partial differential equations, 1994.

E. Radkevich, On conditions for the existence of classical solution of the modified Stefan problem (the Gibbs-Thomson low), Russian Acad. Sci. Sb. Math, vol.75, issue.1, pp.221-246, 1993.

A. Florin, . Radu, . Iuliu-sorin, S. Pop, and . Attinger, Analysis of an Euler implicite-mixed finite element schemas for reactive solute transport in porous media, Numerical Methods for Partial Differential Equations, vol.26, pp.320-344, 2010.

V. D. Radulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations : Monotonicity , Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, vol.6, p.153, 2008.
DOI : 10.1155/9789774540394

A. S. Richey, B. F. Thomas, M. Lo, J. T. Reager, J. S. Famiglietti et al., Quantifying renewable groundwater stress with GRACE. Water Resources Research <10, pp.5217-5238, 1002.
DOI : 10.1002/2015wr017349

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744761

C. Rosier and L. Rosier, Well-posedness of a degenerate parabolic equation issuing from two-dimensional perfect fluid dynamics, Applicable Analysis, vol.75, pp.3-4441, 2000.

J. Rubinstein, P. Sternberg, and J. B. Keller, Fast Reaction, Slow Diffusion, and Curve Shortening, SIAM Journal on Applied Mathematics, vol.49, issue.1, pp.116-133, 1998.
DOI : 10.1137/0149007

M. Serfe, Determining the mean hydraulic gradient of ground water affected by tidal fluctuations, Ground Water, vol.29, pp.549-555, 1991.

U. Shamir and G. Dagan, Motion of the Seawater Interface in Coastal Aquifers: A Numerical Solution, Water Resources Research, vol.6, issue.3, pp.644-657, 1971.
DOI : 10.1029/WR007i003p00644

J. Shen and X. Yang, Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows, Comput. Math. Appl. Mech. Eng, vol.198, pp.2122-2136, 2009.

J. Shen and X. Yang, A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities, SIAM Journal on Scientific Computing, vol.32, issue.3, pp.1159-1179, 2010.
DOI : 10.1137/09075860X

J. Simon, Compact sets in the space, 1987.

S. Sorek, V. S. Borisov, and A. Yakirevich, A two-dimensional areal model for density dependent flow regime, Transport in Porous Media, pp.87-105, 2001.

F. Stauffer, Lecture notes. Groundwater, 2012.

M. Sussman, K. M. Smith, R. Ohta, and . Zhi-wei, A sharp interface method for incompressible two-phase flows, Journal of Computational Physics, vol.221, issue.2, pp.469-505, 2007.
DOI : 10.1016/j.jcp.2006.06.020

L. Tartar, Compensated compactness and application to p.d.e., nonlinear analysis and mechanics. Heriot-Watt Symposium, pp.4-39136, 1979.

M. H. Tber, M. El, and A. Talibi, A finite element method for hydraulic conductivity identification in a seawater intrusion problem, Computers & Geosciences, vol.33, issue.7, pp.860-874, 2007.
DOI : 10.1016/j.cageo.2006.10.012

M. H. Tber, M. El, A. Talibi, and D. Ouazar, Parameters identification in a seawater intrusion model using adjoint sensitive method, Mathematics and Computers in Simulation, vol.77, issue.2-3, pp.301-312, 2008.
DOI : 10.1016/j.matcom.2007.08.015

]. R. Temam, Navier Stokes Equations: Theory and Numerical Analysis, Journal of Applied Mechanics, vol.45, issue.2, 2001.
DOI : 10.1115/1.3424338

D. Thiery, Saltwater intrusion modelling with an efficent multiphasic approach : Theory and several field Applications. 18 Swim., volume 97-110, Araguas Custodio and Manzano, 2004.

J. H. Wösten, P. A. Finke, and M. J. Jansen, Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics, Geoderma, vol.66, issue.3-4, pp.227-237, 1995.
DOI : 10.1016/0016-7061(94)00079-P

C. Zammit, Analyse et évaluation des paramètres des caractéristiques hydrodynamiques des sols. Préduction par un modèle analytique à base physique à partir des données texturalles, Thèse de Docteur de l'Université Joseph Fourier-Grenoble 1, p.200, 1999.

E. Zeidler, Nonlinear functional analysis and its applications, 1986.