The use of geometric structures in graphics and optimization

Résumé : Les données du monde réel ont manifestement une composante géométrique importante et suggère les patterns géométriques signifiants. Les méthodes qui utilisent la nature géométrique des données sont activement développés dans plusieurs domaines scientifiques, comme, par exemple, la géométrie algorithmique, la géométrie discrète, la synthèse d'images, la vision par ordinateur. Dans le travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes efficaces pour deux domaines, celui de synthèse d'images et de l'optimisation combinatoire. Dans la première partie il s'agit de la structure de données géométriques, appelé une décomposition bien-séparée, et son application pour un des problèmes les plus difficiles dans la synthèse d'images, un efficace rendu photo-réalistique. Une solution consiste à appliquer toute une famille de méthodes de many-lights qui fait une approximation d'illumination globale par calcule individuelle d'illumination avec un grand nombre de VPLs (virtual point light) répartis sur les surfaces. L'application individuelle de chacun VPL résulte dans un grand nombre des calculs. Une des stratégies de la réussite pour réduire les computations est de faire les clusteurs considérés qui sont consideré comme une seul émetteur. Nous utilisons la décomposition bien-séparée de points comme le fondement de la structure des données susceptible de procéder à un calcul préliminaire et de conserver d'une façon compacte un grand nombre des clusterisations individuels potentiels ce qui montre que la clusterisation des VPL plus correspondante peut être extraite de cette structure de données d'une manière efficace. Nous montrons qu'au lieu de regroupper les points et/ou VPL indépendemment il vaut mieux produire les clusteurs sur l'espace de produit du nombre des points à nuancer et un groupe de VPL à la base de l'illumination des paires induite. En plus, nous proposons une technique adaptive afin d'échantillonner pour réduire le nombre des demandes de vérifications de visibilité pour chaque clusteur de l'espace de produit. Notre méthode consiste à détenir chaque émetteur qui peut être rapproché par VPL, matériaux spéculaire et à performer les méthodes précédents réconnus les meilleurs jusqu'au présent. La deuxième partie est consacrée au développement de nouveaux algorithmes d'approximation pour un problème fondamental de NP complet dans la géométrie algorithmique, précisément le problème du hitting set, avec une précision pour le cas d'un groupe de points et d'un groupe de disques, nous souhaiterons calculer les plus petits nombre du points qui touche tous les disques. Il arrive que les algorithmes efficaces à détecter le hitting set repose sur une structure géométrique clée, appelée epsilon-net. Nous donnons un algorithme utilisant uniquement les triangulisations de Delaunay pour construire les epsilon-nets de taille 13.4/epsilon. Nous donnons une implémentation pratique de la technique à calculer les hitting sets dans le temps quasi-linéaire en utilisant des epsilon-nets de petites tailles. Nos résultats aboutissent à une approximation de 13.4 pour le problème de hitting set par un algorithme qui fonctionne même pour les grands ensembles de données. Pour les ensembles de taille plus petite, nous proposons une implémentation de la technique de recherche locale avec une approximation bornes supérieures, avec le résultat obtenu d'approximation de (8 + epsilon) dans le temps O(n^{2.34})
Type de document :
Thèse
Signal and Image processing. Université Paris-Est, 2015. English. 〈NNT : 2015PESC1117〉
Liste complète des métadonnées

https://pastel.archives-ouvertes.fr/tel-01277092
Contributeur : Abes Star <>
Soumis le : lundi 22 février 2016 - 09:47:12
Dernière modification le : vendredi 28 octobre 2016 - 16:16:05
Document(s) archivé(s) le : lundi 23 mai 2016 - 11:33:07

Fichier

TH2015PESC1117.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : tel-01277092, version 1

Citation

Norbert Bus. The use of geometric structures in graphics and optimization. Signal and Image processing. Université Paris-Est, 2015. English. 〈NNT : 2015PESC1117〉. 〈tel-01277092v1〉

Partager

Métriques

Consultations de
la notice

143

Téléchargements du document

49