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A François Dufour
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Thiébaut, R., Jarne, A., Routy, J.P., Sereti, I., Fischl, M., Ive, P., Speck, R.,
D’Offizi, G., Casari, S., Commenges, D., Foulkes, S., Croughs, T., Delfraissy,
J.F., Tambussi, G., Levy, Y., & Lederman, M.M. Repeated cycles of recom-
binant human Interleukin 7 in HIV-infected patients with low CD4 T
cell reconstitution on antiretroviral therapy: Results of two Phase II
multicentre studies. Submitted to Clinical Infectious Diseases (August 2015)

Papers in preparation:

Jarne, A., Commenges, D., Prague, M., Levy, Y., Thiébaut, R. for INSPIRE
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D.

June 2014: 2nd Bordeaux Modelling Workshop, Bordeaux, France Model-
ing the effect of exogenous IL-7 in HIV infected patients. Jarne, A.,
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Chapter 1

Introduction

This thesis has been entirely financed by the Vaccine Research Institute. The
VRI was established by the French National Agency for Research on AIDS and
viral hepatitis (ANRS) and the University of Paris-Est Créteil (UPEC) following
the award of the status of Laboratory of Excellence by an international scientific
jury and announced by the French Prime Minister on 25 March 2011. The mis-
sion of the VRI (that is headed by Yves Levy) is to conduct research to accelerate
the development of effective vaccines against HIV/AIDS and HCV. This thesis
work has been developed in the context of the Biostatistics and bioinformatics
section, headed by Rodolphe Thiébaut;

The introduction of cART (combined antiretroviral therapy) has resulted in
the recognition of HIV as a chronic condition, with major improvements in the
life quality of HIV-infected patients. Generally, viral load dramatically decreases
a few weeks after starting antiretroviral therapy, until it becomes undetectable.
This usually leads to an adequate reconstitution of CD4+ T cells pool with the
consequent improvement in the immunenity, but sometimes this is not true. This
work has been focused on these “low responder patients”, who fail to achieve a
good enough improvement in CD4+ T cells count despite undetectable viral load
after at least 6 months of cART therapy. The CD4+ cells count remaining the
best single indicator of immunodeficiency related to infection with HIV, novel
therapeutic approaches and more concretely immunotherapeutic approaches are
being considered for improving immune competence. In our days, the scientific
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community is interested in Interleukin 7, a cytokine naturally secreted in the
bone marrow and the thymus, as a promising adjutant therapy to boost the
immune system of these patients.

The HIV infection is paradoxically a slow progressive pathogenic process
including rapid, highly dynamic mechanisms. Dynamical models based on sys-
tems of ordinary differential equations have been widely used and particularly
useful to study these mechanisms, as well as the interaction between HIV virions
and CD4+ T cells. During this thesis work, we have placed us in an scenario
with undetectable viral load, and we have modeled the effect of exogenous In-
terleukin 7 on CD4+ T cells. We have studied some amendments to an existing
mathematical model based on a system of ordinary differential equations. This
system distinguishes two main sub-populations of CD4+ T lymphocytes, quies-
cent (CD4+Ki67−) and proliferating (CD4+Ki67+), according to the presence
or not of the Ki67 proliferation biomarker. Also, we have used a complex statis-
tical theory developed in the team in recent years for considering some different
statistical models for the effect of the Interleukin 7. These models have been
compared according to different comparison criteria, fits of real data or predic-
tive abilities.

Second chapter provides a sufficiently wide background of HIV, antiretrovi-
ral therapy and immune response to cART. After a brief look at the state of the
global HIV/AIDS pandemic in 2015, we focus on biological basis of the interac-
tion HIV/immune system. Once we have a description of the HIV virus nature
and behavior, a historical look at the antiretroviral drugs birth and cART use
are exposed with a particular emphasis on mechanisms of reconstitution follow-
ing therapy. Finally, we focus on normal and pathological immune responses
to cART, with a bibliographic summary of figures and related parameters that
have been published in relation to the target population: the “low immunolog-
ical responders”.

Chapter three is dedicated to immune-based interventions. After a back-
ground about the utility of developing adjuvant therapies for these “immuno-
logical low responder” patients, there is a presentation of the cytokine signal-
ing as a fundamental process for human body regulation. An overview of the
Interleukin-2 case (which was considered as a promising intervention for low
immune responders) precedes the review of the Interleukin 7 (IL-7). Here we
care about endogenous IL-7 production and behavior, as well as some oppor-
tunities for its clinical application. We have revised the clinical trials involving
exogenous IL-7 in HIV infection to date, and we have fully entered into the
INSPIRE 2 and INSPIRE 3 studies, to which analysis we have contributed in
this thesis work. INSPIRE 2 and INSPIRE 3 trials are, to our knowledge, the
first studies where repeated cycles of exogenous IL-7 are administrated to HIV
infected patients.

The fourth chapter presents a background on mathematical modeling, with
a special look to history and behavior of dynamic models focused on the in-
teraction between the HIV virus and the immune system. We have extensively
revised the theory underlying mixed effect models based on ODE systems, by
looking in depth the ”“half-Bayesian” statistical approach that has been used
to estimate the unknown parameters. We present the existent mathematical
model we have used, conceived for modeling data from patients receiving a sin-
gle cycle of exogenous IL-7. It has been our “original model”, from which we
have adapted different mathematical and statistical patterns.
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The fifth chapter slightly modifies the previous model to transform it into
our “‘basic model”, that has been studied deeply in terms of statistical results
and goodness of fits. Then, it has been modified again for letting introduce a
feedback term. Different models have been studied and they are proposed with
the obtained results. For instance, the “pharmacokinetic/pharmacodynamic
model”, which takes into account the estimated concentration of exogenous
IL-7 at each time instead of the dose received. Also, a “four-compartment
model” involving naive and memory CD4+ T cells, as well as the “three-β’s
model”, that has finally been kept for future analysis. Finally, the “three-
compartment model” is shown with its modifications and obtained results, that
tried unsuccessfully to explain the biological background for the improvement
obtained with the “three-β’s model”.

Chapter six incorporates data from patients receiving repeated cycles from
the INSPIRE 2 and INSPIRE 3 trials, assessing the theoretical long-term effi-
cacy of this immune therapy. We have applied previous models to this data set,
and also a new statistical model is proposed to compare the effect of repeated
cycles with respect to the effect of the initial one. This “cycle effect” is found
to be significant and slightly lower than 1. Some hypotheses have been sug-
gested for trying to explain this phenomenon, as the so-called feedback effect or
the presence of antibodies. In this Chapter, we have also predicted the effect
of exogenous IL-7 when administered throughout different scenarios (different
number of injections in a cycle). Predicted trajectories of a regular patient (with
both random effects equal to zero) and two real patients have been displayed
for 4 years. We have ended up concluding that repeated complete cycles are
perhaps not necessary for all patients, and an adaptive treatment in function of
the response to the first cycle could be considered.

Chapter seven concludes, and a French abstract can be found in Chapter
eight. To finish, during this thesis work I have had the opportunity of doing a
3 months internship at the Universidad de Navarra (Spain) in the framework of
the Mérimée program. There, I took part of a team that is searching to describe
the epidemiology of HIV in Navarra and to estimate in this region the number
of HIV infections that are currently without diagnosis. This is explained in
Appendix F.
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Chapter 2

HIV infection and cART
therapy

2.1 Introduction: HIV pandemic in 2015

The end date for both the Millennium Development Goals (MDGs) and the
2011 Political Declaration on HIV and AIDS is the year 2015. For this occasion,
UNAIDS (Joint United Nations Program on HIV and AIDS) has presented a
report in order to review progress and start preparing for the final reporting
towards these targets. As the main statistics, there were 2.3 million people
newly infected in 2012, even though new HIV infections drop by 30% since 2002
(Maartens et al., 2014). There are 35 million people living with HIV in the
world (and the trend is on the rise), of which 19 million do not know their
HIV-positive status (Kelly and Wilson, 2015). In 2012 there were 1.6 million
AIDS-related deaths. Overall, almost 78 million people have been infected and
about 39 million people have died of HIV since the beginning of the pandemic
(according to the World Health Organization).

In 2011, the United Nations Political Declaration on HIV and AIDS rec-
ognized that HIV and AIDS constitute a global emergency, posing one of the
most formidable challenges to the development, progress and stability of soci-
eties and the world at large. They noted that despite substantial progress over
the three decades since AIDS was first reported, the HIV pandemic remains an
unprecedented human catastrophe.

2.2 Human Immunodeficiency Virus

2.2.1 Background: Immunity and CD4+ T cells

Immune system comprises small cells called lymphocytes, that can be divided
into B and T cells. B cells are produced in the bone marrow and they carry
extremely diverse antibody molecules. When a foreign pathogen like a virus
enters the body, the B cells that have antibody receptors of the correct specificity
will become activated. They will start to multiply providing even more specific
interaction with the virus. Antibody molecules of B cells can bind to the virus
particle and mark it as a foreign structure for elimination by other cells of the
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immune system (Nowak and May, 2000). T cells are produced in the thymus
and they can be roughly classified according to the quantity of surface proteins
into CD8 positive (CD8+) cells and CD4 positive (CD4+) cells. There are also
some functionally distinct populations: Helper T cells can secrete cytokines
(proteins acting as the messenger molecules of the immune system); cytotoxic
T lymphocytes (CTLs) kill infected cells; natural killer (NK) cells are involved
in innate immunity; regulatory T cells (Treg) inhibit immune responses.

HIV virus infect CD4+ T cells leading to a progressive depletion of the
number and functionality of these cells, together with progressive impairment
of cellular immunity and increasing susceptibility to opportunistic infections
(Okoye and Picker, 2013). CD4+ T cells count (CD4 count) is then used as an
indicator of HIV and AIDS disease progression.

Two distinct populations of T lymphocytes can be distinguished by pheno-
typic criteria: naive and memory cells. Mature T cells are produced in thymus
and the bone marrow, and then they migrate into lymph nodes, spleen and
mucosa-associated lymphoid tissue (Male and Brostoff, 2007). Those who are
immunologically inexperienced are called naive lymphocytes, and they will die
as naive cells if they do not recognize MHC-peptide complexes for which their
T-cell receptors (TCR) have high affinity (Berard and Tough, 2002). In the
steady state, the generation of new cells and the spontaneous death of these
cells maintain the pool of naive lymphocytes at a fairly constant number. After
naive lymphocytes are activated in specialized lymphoid organs they become
larger and proliferate and are called lymphoblasts, some of which differentiate
into effector lymphocytes (having the ability to produce molecules capable of
eliminating foreign antigens). On the other hand, memory cells may survive in
a functionally quiescent or slowly cycling state for months or years. Although it
is still not clear which surface proteins are definitive markers of memory popu-
lations, they have long been classified into central memory T cells (restricted to
the secondary lymphoid tissues and blood) and effector memory T cells (which
can migrate between peripheral tissues). Recently, another player has been
highlighted: the tissue-resident memory T cells, that occupies tissues without
recirculating (Mueller et al., 2013; Shin and Iwasaki, 2013; Sathaliyawala et al.,
2013).

2.2.2 What is the HIV virus?

Human Immunodeficiency Virus (HIV) is a retrovirus (their RNA genome is
transcribed into DNA by means of the enzyme reverse transcriptase: RT) firstly
isolated in 1983. As a member of the lentivirus family, it generally produces
a long-term latent infection and slowly progressive, fatal diseases. Two major
types have been identified: HIV-1 and HIV-2. HIV-2 has the same modes of
transmission but a lower infectivity potential than HIV-1 (Kanki et al., 1994)
and a slower progression to AIDS (Campbell Yesufu and Gandhi, 2011). These
two types may be further divided into groups, where HIV-1 group M is the
most common cause of AIDS. Henceforth in this work we will only reference to
HIV-1, even if only HIV is written for clarity purposes.

Primary target of HIV are CD4+ T cells, in which the virus can replicate
and thereby exhaust the lymphocytes, producing profound immunodeficiency
(Kurth and Bannert, 2010). In retroviruses, frequent ARN variations produce
new viral genotypes that can mutate into new viral quasispecies. For HIV,
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about three base exchanges were estimated in a single reverse transcription of
the genome (see Unger et al. (2000)).

2.2.3 HIV discovery

Warning signs began in 1981 with the publication of Gottlieb et al. (1981),
where a medicine assistant professor from Los Angeles presented the case of four
previously healthy homosexual men who had contracted Pneumocystis carinii
pneumonia, extensive mucosal candidiasis, and multiple viral infections. In
1982, Stahl et al. (1982) warned that an epidemic of a fulminant variety of
Kaposi’s sarcoma had recently appeared among young and middle-aged men in
the United States.

The HIV virus was firstly isolated thanks to a biopsied lymph node of a
patient with “signs and symptoms that often precede the acquired immune de-
ficiency syndrome” in 1983 (Barré-Sinoussi et al., 1983). This earned François
Barré-Sinoussi and Luc Montagnier the 2008 Nobel Prize in Physiology or
Medicine. By the summer of 1983, evidence was obtained for a retrovirus related
to HTLV (human T-lymphotropic virus) in many patients with AIDS (Gallo,
2002). Soon after the isolation of HIV, its main receptor (CD4 cell surface
molecules) was identified (Dalgleish et al., 1984; Klatzmann et al., 1984). This
discovery reinforced the idea of monitoring of the quantity of CD4+ T lym-
phocytes (CD4 count) together with the concentration of HIV RNA in plasma
(viral load) in the follow up of infected patients. A complete review of these
three decades of HIV research can be found in Barré-Sinoussi et al. (2013).

2.2.4 Natural evolution of untreated HIV infection

Natural history of untreated HIV infection can be divided into three well differ-
entiated phases, as detailed in Figure 2.1

Primary or Acute HIV Infection starts immediately after infection, and
it is characterized by an initial burst of viremia. Although anti-HIV-antibodies
are still undetectable, Viral load is already present in the first weeks after the
infection (Abu-Raddad, 2015). An important replication rate is accompanied
by a significant decrease of the CD4 count. Most of patients in this phase expe-
rience symptoms similar to those of many other viral infection that usually go
unnoticed. This short phase (6-12 weeks) is followed by the clinically asymp-
tomatic stage, where viral load remains stable and CD4 count falls relentlessly.
The length of the asymptomatic phase is very heterogeneous, with an average
of about 10 years (Nowak and May, 2000). After that, a severe immunod-
eficiency appears, where viral load increases and CD4 count drastically goes
down. The development of AIDS announces the final phase of the disease, when
the immune system is exhausted and patients die from opportunistic infections.

2.2.5 Virus replication

HIV replication cycle (see Figure 2.2) begins with the binding of the virus in
a CD4+ T cell. The viral external glycoprotein, gp120, recognizes the CD4
receptor and coreceptors (CXCR4, CCR5) present on the cell surface. Upon
infection of the susceptible host cell, HIV-RNA and proteins are released into
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Figure 2.1: Stages of the natural history of HIV infection. From: O
Brien, Stephen J. & Hendrickson, Sher L. (2013) Host genomic influences on
HIV/AIDS. Genome Biology 2013, 14:201. Retrieved 9 September 2015, from
GenomeBiology. doi:10.1186/gb-2013-14-1-201

the cytoplasm, and the enzyme reverse transcriptase (RT) uses this to synthe-
size double-stranded DNA in the process for which retroviruses have received
their designation (Gupta, 1996). Synthesized DNA (designated the provirus) is
subsequently integrated into the host chromosomal DNA by the enzyme viral in-
tegrase (IN). Then, host cell signals initiate the transcription of viral DNA into
genomic RNA and messenger RNA (mRNA), thanks to a viral protein called
tat. For its part, this mRNA will be therefore used to synthesize viral proteins
like tat. Assembly of viral proteins and encapsidation of the viral ARN lead
to the formation of new immature virus forms. Finally, the protease enzyme
converts them into new infectious virions that are released into the extracellular
environment and will be able to infect new cells (Girard et al., 2007).

2.3 Therapies against HIV virus

2.3.1 Antiretrovirals birth

In 1985 Zidovudine (AZT), belonging to a group of drugs known as NRTI (Nu-
cleotide Reverse Transcriptase Inhibitors), showed potent effects on the inhi-
bition of the infectivity and cytopathic effect of HIV in vitro (Mitsuya et al.,
1985). A double-blind, placebo-controlled trial was subsequently conducted in
order to establish the in vivo efficacy of AZT in patients with AIDS (see Fischl
et al. (1987)). In this study, 282 subjects were stratified according to CD4 count
and were randomly assigned to receive AZT (N=145) or placebo (N=137) for a
total of 24 weeks. When all subjects had completed at least 8 weeks, 19 placebo
patients and only 1 AZT patient had died; the study was stopped and all sub-
jects were put on AZT. In an unusually short period the FDA (Food and Drug
Administration) recommended the approval of AZT for use as a treatment of
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Figure 2.2: Main steps in the HIV replication cycle with antiretroviral drugs
blocking them. From: Barré-Sinoussi, F. & Ross, A.L. & Delfraissy, J.F.
(2013) Past, present and future: 30 years of HIV research. Nature Reviews
Microbiology 11, 877-883 (2013). Retrieved 5 September, 2015, from Nature.
doi:10.1038/nrmicro3132

selected patients with AIDS (Brook, 1987).
Different studies showed how Zidovudine decreased the rates of progression

to AIDS as well as significant increased CD4 count in adults with asymptomatic
HIV infection (Volberding et al., 1990; Cooper et al., 1993). Simultaneously,
other studies advised about drug resistance estimated in about 89% of persons
with late-stage HIV infection and 31% of persons with early stage disease after
12 months of AZT therapy (Larder et al., 1989; Richman et al., 1990). It was not
until October 1991 that a second drug was approved for the treatment of HIV
infection: the Didanosine (ddI). Patients developing AZT resistance mutations
were switched to this new monotherapy, but also Didanosine resistances soon
appeared (Kozal et al., 1994). Other NRTIs followed in following years, and
therapies based on a combination of two of these drugs improved survival by
delaying disease progression (Yarchoan et al., 1994; Darbyshire et al., 1996).

2.3.2 Combined Antiretroviral Therapy

The treatment of HIV infection was even more revolutionized in late 1995
and 1996, where two different types of antiretroviral drugs were added to the
fight against HIV/AIDS: the PI (Protease Inhibitors) and the NNRTI (Non-
Nucleotide Reverse Transcriptase Inhibitors). Several results supported the de-
velopment of combinations of more than two antiretroviral drugs to increase
and prolong HIV suppression while restricting mutations (D’Aquila et al., 1996;
Staszewski et al., 1996). The advent of combined antiretroviral therapy (cART)
for the treatment of HIV infection was seminal in reducing the morbidity and
mortality associated with HIV infection and AIDS thanks to an important re-
duction in HIV replication and increase of CD4 count (Collier et al., 1996).
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Nowadays, there are more than one hundred of antiretroviral drugs (see Table
2.1 for a review of drug currently used in the treatment of HIV infection).

Table 2.1: Brand name and active ingredients of the drugs currently used in the
treatment of HIV infection. From: U.S. Food and Drug Administration (FDA).
Retrieved 9 September, 2015, from fda.gov. Updated 25 September 2014

TYPE BRAND NAME AND ACTIVE INGREDIENTS

Multi
class

Atripla (efavirenz, emtricitabine and tenofovir), Complera
(emtricitabine, rilpivirine and tenofovir), Stribild (elvitegravir,
cobicistat, emtricitabine and tenofovir)

NRTIs Combivir (lamivudine and zidovudine), Emtriva (emtric-
itabine, FTC), Epivir (lamivudine, 3TC), Epzicom (aba-
cavir and lamivudine), Hivid (zalcitabine, dideoxycytine, ddC),
Retrovir (zidovudine, azidothymidine, AZT, ZDV), Trizivir
(abacavir, zidovudine and lamivudine), Truvada (tenofovir and
emtricitabine), Videx EC (enteric coated didanosine, ddI EC),
Videx (didanosine, dideoxynosine, ddI), Viread (tenofovir,
TDF), Zerit (stavudine, d4T), Ziagen (abacavir sulfate, ABC)

NNRTIs Edurant (rilpivirine), Intelence (etravirine), Rescriptor
(delavirdine, DLV), Sustiva (efavirenz, EFV), Viramune (nevi-
rapine, NVP), Viramune XR (nevirapine, NVP)

PIs Agenerase (amprenavir, APV), Aptivus (tipranavir, TPV),
Crixivan (indinavir, IDV), Fortovase (saquinavir), Invi-
rase (saquinavir mesylate, SQV), Kaletra (lopinavir and ri-
tonavir, LPV/RTV), Lexiva (fosamprenavir calcium, FOS-
APV), Norvir (ritonavir, RTV), Prezista (darunavir), Rey-
ataz (atazanavir sulfate, ATV), Viracept (nelfinavir mesylate,
NFV)

Fusion
Inhibitors

Fuzeon (enfuvirtide, T-20)

Entry
Inhibitors

Selzentry (maraviroc)

Integrase
transfer
Inhibitors

Isentress (raltegravir), Tivicay (dolutegravir)

Controversial in evaluations of the associated short- and long-term complica-
tions and costs has been that the start of the antiretroviral therapy was delayed,
for many years, until a patient’s CD4 count fell below 200 cells per cubic mil-
limeter, which led to frequent opportunistic infections. Today, we know that the
use of combined antiretroviral treatment allows also to reduce the spread of HIV
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infection. These therapies have shown to reduce the amount of HIV in blood
and in genital secretions, which is strongly correlated with sexual transmission
of HIV (Cohen et al., 2011).

In our time, first-line ART should consist of two Nucleotide Reverse-Transcriptase
Inhibitors (NRTIs) plus a Non-Nucleotide Reverse-Transcriptase inhibitor (NNRTI).
Consolidated ARV guidelines presented by the World Health Organization in
June 2013 recommend TDF + 3TC (or FTC) + EFV as a fixed-dose combina-
tion as the preferred option to initiate ART. In most cases, effective therapy can
dramatically reduce the risk of the classically defined AIDS complications (Li
et al., 1998). The latest news about HIV treatment appeared on 15 September
2015, when the WHO proposed to begin the antiretroviral treatment as soon as
possible, without waiting for achieving any CD4 count threshold.

2.3.3 Main goals of cART

Immunodeficiency results from viral replication, as well as dysregulation and
ultimately failure of host homeostatic mechanisms and cellular immune networks
(Okoye and Picker, 2013). The majority of patients who are able to access and
adhere to combination therapy will achieve durable viral suppression together
with an increase in the number of CD4 cells and the functional reconstitution
of the immune system (Battegay et al., 2006).

Life expectancy for HIV-positive patients accessing ART is improving over
time, but it remains below the life expectancy of the general population (Pat-
terson et al., 2015). A patient’s overall prognosis approaches the one of an
HIV-negative individual only if CD4 count is consistently maintained over 500
cells/µL (Kelley et al., 2009; Saison et al., 2014).

The key objectives of antiretroviral therapy are to minimize the viral load
and to recover and maintain an adequate CD4 count while maintaining a good
quality of life and minimizing toxicity and side effects. Then, the target of an-
tiretroviral therapy is to keep viral load below detection levels (usually between
20 and 50 copies/mL) and CD4 count above 500 cells/µL.

2.3.4 Immune reconstitution by CD4 count and viral load

From the beginning, the use of cART was linked to marked reductions in mor-
bidity and mortality associated with the acquired immunodeficiency syndrome
(AIDS). Firstly, the routine use of this combined therapy resulted directly in
dramatic improvement in life-expectancy among HIV-infected patients with ad-
vanced immune depletion (Autran et al., 1997; Carr et al., 1996; Hammer et al.,
1996; Palella Jr et al., 1998), and progressively the beneficial effect of the early
initiation of cART reached a global consensus. Kitahata et al. (2009) studied
the change of the risk of death in 17517 patients starting cART before the CD4
count fell below 350 or 500 cells/µL. They found that patients in the deferred-
groups had an increase in the risk of death of 94% and 69%, respectively.

Opportunistic Infections Project Team COHERE et al. (2012) adjusted a
Cox proportional hazards model for time to a first new AIDS event or death for
patients on cART with a suppressed viral load. They showed that the relation-
ship between the improvement in CD4 count and the risk of illness progression
strongly varies according to the CD4 count stratum. Absolute risk reduction
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for patients with a CD4 count above 500 cells/µL was found to have few clini-
cal relevance, whereas it was intermediate for CD4 count from 200 to 350 and
from 350 to 500 cells/µL. Importantly, in the category of patients below 200
cells/µL, small improvements of CD4 count showed great decreases in the risk
of progression.

In the UK, May et al. (2014) conducted a study relating viral load and CD4
count with life expectancy in HIV-positive persons. They found that, after 5
years of ART, expected age at death of 35-year-old men varied from 54 (48-61)
to 80 (76-83) years for those with CD4 count less than 200 cells/µL and no viral
suppression versus CD4 count at least 350 cells/µL and suppressed.

Lewden et al. (2007) compared mortality rates in cART treated patients
with mortality rates in the general population according to the level of CD4
count and the duration of exposure to cART. They also found that overall
mortality for HIV infected patients was 7 times higher than in the general
population. However, mortality reached the level of the general population
in patients maintaining a CD4 count > 500 cells/µL after the sixth year after
initiation of cART. A few years later, they compared mortality rates from data
from the study COHERE (Collaboration of Observational HIV Epidemiological
Research in Europe) comprising more than 80000 cART-treated HIV-infected
people. They found that in a special subgroup (men who do not inject drugs)
mortality rate was also similar to the general population when CD4 count >
500 cells/µL (Lewden et al., 2011).

2.3.5 Conclusion

A clear inverse relation exists between the number of CD4 cells in peripheral
blood and the risk of HIV-1 associated diseases and mortality. The frequency of
opportunistic infections dramatically declines upon initiation of antiretroviral
therapy and the subsequent increase in CD4 cell count (Battegay et al., 2006).

Even if the routine measures of CD4 cell count in virologically suppressed
patients have been questioned in these late years (see a review in Ford et al.
(2015)), it continues to be the most important predictor in people with HIV
infection.

In the next chapter, we see that there is no clear consensus with regard to
how to best define immunological success or failure in the context of sustainable
treatment-associated viral suppression.

2.4 Immune response to HAART

2.4.1 Different immunological responses to cART

There is no doubt that AIDS-defining morbidity and mortality has dramatically
decreased since the introduction of cART. Several phases of T cell reconstitu-
tion can be distinguished: During the first weeks/months, a rapid increase of
the CD4 count in plasma is observed, with a specifically rise of memory CD4
cells and destruction of optimal CCR5+ viral targets (Autran et al., 1997; Okoye
and Picker, 2013). After that, mainly the sub-population of memory CD4 lym-
phocytes contributes to maintain a slower increase of CD4 count; increase in
naive T cells exists but is very limited in adults (Pakker et al., 1999).
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Considerable individual variation in the reconstitution of CD4 lymphocytes
has been noted. The majority of patients have a good virological response to
therapy and exhibit sustained increases in their peripheral CD4 cell count, with
most individuals achieving a normal CD4 cell count (Kelley et al., 2009). In few
cases there is a virological failure of the therapy, the viral load remains high and
this leads to overt AIDS (Okoye and Picker, 2013). Finally, in a significantly
fraction of individuals, however, ART fails to effectively reconstitute CD4+ T
cells to pre-infection levels despite fully suppressed viral replication (Pakker
et al., 1999).

2.4.2 Consequences at short and long term

There is no doubt that individuals without evidence of increases in their CD4 cell
count over time take a higher risk of non-AIDS-related morbidity and mortality
Chêne et al. (2003); Kelley et al. (2009); Kantor et al. (2009); Saison et al.
(2014).

This risk in clinical progression is observed both at short- and long-term.
Grabar et al. (2000) noticed that patients with only a virologic response had
significantly higher risks for clinical progression at 6 months (relative risk 1.98)
whereas Lewden et al. (2007) found that differences in mortality remain higher
even 7 years after starting the cART.

2.4.3 Immunological response through time

Patients not achieving an adequate immunologic response despite undetectable
viral load are the target population within this work. There is no universal
term for designating such patients (for instance Immunological Non Respon-
ders: INRs or Inadequate Immunological Responders have been used), and the
main reason is the difficulty for finding universal criteria to classify the immune
response. It goes without saying that the achieved CD4 count must be the
main criterion, but, what is the threshold to determine a good response? (For
instance CD4 count<200 cells/µL, CD4 count<350 cells/µL, CD4 count<500
cells/µL, CD4 recovery≤25%, CD4 recovery≥100 cells/µL...). And in terms
of time, how long must it take after beginning cART? In fact, whether such
patients will experience normalization of their CD4 count with time is a key
question.

There are findings consistent with the idea of an asymptomatic effect, where
patients would continue to have significant but progressively smaller increases
in CD4 count after long time (Mocroft et al., 2007). For example, Lewden et al.
(2007) found significant rises in CD4 count after 5 years of cART for patients
beginning the treatment with CD4<200 cells/µL whenever viral suppression
can be maintained for a sufficiently long period of time. On the other hand,
Kelley et al. (2009) could not detect strong evidence of ongoing increases in CD4
count after year 7 among those who had yet to achieve a normal CD4 count,
supporting the theory of a “plateau effect”.

2.4.4 Immunological “low” responders

The lack of agreement on defining an immunological low response does not help
for estimating the percentage of persons in this situation. In spite of that,
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many authors have shed light on this issue. Here we present some of the figures
that can be found estimating the number of “low immunological responders” to
cART while adequate viral control. However, the mentioned differences in the
definition of “low immunological responders” do not let to properly compare
them. In any case, every figure must be assessed considering what is the study
population and specially the amount of time spent under cART:

• 30% (Marchetti et al., 2008)

• 10-25% (de Kivit et al., 2015)

• 17% (Grabar et al., 2000)

• 9%-45% (Rusconi et al., 2013)

• 5-30% (Saison et al., 2014)

• 36% (Battegay et al., 2006; Kaufmann et al., 2005)

In 2009, Kelley et al. (2009) presented one of the most durable studies, in
terms of time, regarding the immune response. They classified 366 virologically
suppressed patients according to the CD4 count and they found that 25% of
patients that began therapy between 100-200 cells/µL could be considered as
“low immunological responders”. This figure increases to 44% for patients with
a baseline < 100 cells/µL and it decreases to 5% for those starting therapy with
CD4> 300 cells/µL.

2.4.5 Parameters associated with immunological response
to cART

Mechanisms underlying the immune recovery in HIV-infected patients upon
long-term effective combined antiretroviral therapy remain elusive (Saison et al.,
2014). Factors are only partly known and depend on both the host and the virus.
Some of these factors linked to impairment of CD4+ T cells reconstitution un-
der cART are widely recognised, as baseline CD4 count, pre-therapy nadir
CD4 count, age (consistent with the effect of age on thymic function), degree
of viral suppression (possibly due to viral reservoirs) and especially when ini-
tiation of cART during primary infection rather than later in chronic infection
(Battegay et al., 2006; Mocroft et al., 2007; Egger et al., 2002; Kaufmann et al.,
2005; Okoye and Picker, 2013).

As for the drugs, cART intensification with Maraviroc in “low immunological
responders” showed a slight increase of the CD4 count at week 12, which was
not confirmed at week 48 (Rusconi et al., 2013). Also, a negative impact of the
combination of tenofovir and didaonsine at high dose on the recovery of CD4+

T cells was observed (Karrer et al., 2005).
In the last years, other factors have been proposed as having also an im-

pact on immunological response to cART, as microbial translocation (Marchetti
et al., 2008), levels of T regulatory cells (Gaardbo et al., 2014; Saison et al., 2014)
or levels of the CC chemokine macrophage inflammatory protein 1β (Prebensen
et al., 2015).

Also, within this year 2015, Jarrin et al. (2015) found that optimal restora-
tion after cART was significantly lower for patients having a rapid progression
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of the infection before treatment, but these differences disappeared after ad-
justing for baseline CD4 count. These results are in line with Kaufmann et al.
(2005), when saying that long-term CD4+ T cells changes during ART were not
associated with the natural course of CD4+ T cells depletion in untreated HIV-
infected people before ART initiation. As another example of the variability of
the considered factors, Allen et al. (2015) studied the association between the
response to the Hepatitis B virus and CD4 gains during the first year of cART
without conclusive results.
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Chapter 3

Adjuvant interventions for
HIV: Immunotherapy

3.1 Immunotherapies

In the previous Chapter, we have talked about the “immunologial low respon-
der” patients. Here, we focus on novel immune-based therapeutic approaches
that may be necessary to restore immunocompetence in these individuals.

3.1.1 Adjuvant therapies for HIV

It is not certain that prolonged cART would succeed to eradicate the infection
on the long term, despite the fact that cART can reduce plasma virus to unde-
tectable levels relatively fast. The reason is that HIV can persist in the body
in several cellular and anatomical reservoirs that are established early in the
infection, and contribute to long-term persistence of the virus. One of these
reservoirs comprises latent infected resting CD4+ T cells with a very long half-
life (about 4 years). At this rate, eradication of this reservoir has been estimated
over 60 years of cART treatment (Finzi et al., 1999; Pierson et al., 2000).

The fact that antiviral therapy does not restore effective defenses capable of
controlling HIV replication (Pantaleo and Lévy, 2013) opens the way for comple-
mentary therapies in the search of a functional cure and ultimately eradication
of the HIV. In addition to the search for an effective vaccine, immune based in-
terventions are being considered as a key factor in HIV therapy in recent years.
Development of an immunotherapy able to restore an effective immune response
could have a crucial role in the fight against the virus.

3.1.2 The role of cytokines

Understanding HIV-specific immunity and its failure is needed for the develop-
ment of these immunotherapies, that may one day lead to immune control of
HIV infection (Lange and Lederman, 2003). Interleukins are part of the family
of cytokines, that are communication tools between the lymphocytes for estab-
lishing and coordinating an adequate immunological response. Immune cells
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as well as other cells of the lymphoid organs send information about the infec-
tion that will be received by cells having specific receptors. This is a complex
process, where lymphocytes communicate through these interleukins for various
purposes: they send signals for activating lymphocytes, stimulating production
and proliferation of CD4+ T cells, and also for slowing cellular activity when
danger is finished, by means of apoptosis or controlled cellular death.

When HIV infects lymphocytes CD4, the homeostasis of the system is lost.
Regulation mechanisms are disturbed, both at cellular and immune system lev-
els. The number and function of CD4+ T cells is seriously perturbed, and signals
are incorrectly send and received. Infected CD4+ T cells continue to produce
new virus, and the system is no longer able to preserve the equilibrium, leading
to a progressively destruction.

Immune therapy is proposed as an adjuvant of antiretroviral therapy in order
to help the immune system to regain control of the situation.

3.1.3 Interleukin 2 therapy

Interleukin 2 (IL-2) is known to have a decisive influence in immune responses
and homeostasis. Before the appearance of the HIV, the in vitro T cell-stimulatory
capacity of the Interleukin 2 had already been documented (Morgan et al., 1976).
Its role in influencing various lymphocyte subsets, as the differentiation of CD4+

T cells into defined effector T cell (Boyman and Sprent, 2012; Zhu et al., 2010)
converted the Interleukin 2 into a powerful and promising candidate for im-
munotherapy against the HIV virus.

First results showed that intermittent infusions of IL-2 produced substantial
and sustained increases in CD4 count (Kovacs et al., 1995, 1996; Levy et al.,
1999, 2012). For instance, Stellbrink et al. (2002) studied the effect of IL-2 on
virus replication and reservoirs in 56 asymptomatic HIV-infected subjects with
CD4 count>350 cells/µL. They found a CD4 count normalization in ∼90% of
IL-2-treated patients whereas only ∼50% in cART-only subjects. Interestingly,
they do not found an impact on virus production or latency. Also, Chun et al.
(1999) noticed a reduction in the size of the pool of resting CD4+ T cells con-
taining HIV in the blood in patients receiving intermittent IL-2 in addition to
cART.

Despite the demonstrated role of the IL-2 in regulating proliferation, differ-
entiation and survival of T cells (Abrams et al., 2009), the clinical impact of
CD4+ increase associated with its use still remained to be seen.

The question was answered in 2009, at the 16th Conference on Retroviruses
and Opportunistic Infections (CROI) in Montreal, where Pr Yves Levy and
Pr Marcelo Losso presented the primary results of two large clinical trials: SIL-
CAAT (Levy et al., 2009b) and ESPRIT (Losso and Abrams, 2009), respectively.
These trials involved more than 5800 patients in the world, that were random-
ized into two groups: those who received repeated injections of IL-2 associated
to combined retroviral therapy and those who received cART alone. Despite
the significantly increase of CD4 count shown in both cases, no differences were
observed in terms of the risk of opportunistic diseases or death.

Initially, it was difficult to understand the reasons for this disappointing
performance. Shortly after, Weiss et al. (2010) found that the principal effect
of long-term IL-2 therapy was the expansion of CD4+CD25loCD127loFOXP3+

and CD4+CD25hiCD127loFOXP3hi T cells population, which are part of the
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regulatory T cells. Tregs represent a regulatory subset within the CD4+ lineage
involved in inhibiting the activation, proliferation and cytokine production of
effector T cells (Okoye and Picker, 2013). The increase in the subset of Tregs is
today the most accepted hypothesis for the failure of the IL-2 therapy in HIV
infection. However, such behavior can result in very promising results, since
IL-2 is being used in autoimmune diseases (Rosenzwajg et al., 2015; Klatzmann
and Abbas, 2015).

3.2 Endogenous Interleukin 7

3.2.1 Introduction

Interleukin 7 (IL-7) was firstly characterized in 1988 as a pre-B cell growth
factor (Namen et al., 1988), and it has since found to be indispensable for T-cell
development in humans. Now, it is known to play an essential role in both T-cell
and B-cell maturation (Beq et al., 2004; Fry and Mackall, 2002).

IL-7 is produced by stromal tissues and dendritic cells within the lymph
node (Hofmeister et al., 1999; de Saint-Vis et al., 1998). The complete set of
physiologic roles for this cytokine are still being elucidated, but we know the
essential role of the IL-7 in enhancing both thymic-dependent and independent
T-cell regeneration (Fry et al., 2001), proliferation (Vieira et al., 1998) and
survival of mature cells (Vella et al., 1998; Seddon et al., 2003). See Lundström
et al. (2012) for a review of the evidence implicating IL-7 as an important
modulator of peripheral T-cell homeostasis. More recently, Dooms (2013) set
out two mechanisms of IL-7 promotion of naive T cells survival: inhibition of the
mitochondrial death pathway and stimulation of glucose uptake and metabolism.

IL-7 has been involved in the pathophysiology of a variety of diseases: Rheuma-
toid arthritis (van Roon et al., 2005), systemic lupus erythematosus (Badot
et al., 2012), type 1 diabetes (Harrison, 2012) or multiple sclerosis (Gregory
et al., 2007). Some of the opportunities for clinical application of this cytokine
are summarized in Mackall et al. (2011).

3.2.2 Endogenous IL-7 in lymphopenia

Normal ranges for IL-7 oscillate from 0.3 to 8.4 pg/mL. Interestingly, there is
a strong inverse correlation between IL-7 levels and CD4 count in HIV-infected
patients (Fry et al., 2001). Actually, patients with a low CD4 count experience
elevated circulating and tissue levels of IL-7, and Lundström et al. (2012) showed
that this increased IL-7 availability plays a major role in mediating the enhanced
cycling of naive and memory T cells. Mastroianni et al. (2001) found that
treated patients who responded to cART had IL-7 concentrations below the
detection limit, while patients with evidence of cART failure had increased
concentrations of IL-7 (comparable to those found in the untreated group with
progressive disease). Hodge et al. (2011) established that increased levels of IL-7
during lymphopenia can be the consequence of a decreased receptor-mediated
clearance of IL-7 as the availability of receptors diminishes.

Saidakova et al. (2014) divided 80 HIV infected patients into two groups,
according to the level of immunological response after at least two years of
cART. They found that the amount of IL-7 in blood plasma was significantly
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lower in immunological low responders (< 350 cells/µL) than in patients with
an adequate immunological response, pointing to the insufficient amount of this
cytokine as a factor blocking the increase in the number of CD4+ T cells during
cART. Also, the relative number of CD4+CD127+ T cells (expressing the IL-7
receptor) in low immunological responders was lower; thus, they concluded that
these patients would have a deficiency of not only the amount of IL-7 but also
of the number of cells producing a response to IL-7.

3.3 Exogenous IL-7 therapy

3.3.1 IL-7 in other diseases

Exogenous IL-7 has been evaluated as immunoadjuvant in a large number of
illnesses in animals and humans for more than 20 years (Talmadge et al., 1993;
Valenzona et al., 1998). IL-7 is currently being evaluated in the therapy of sepsis
(Shindo et al., 2015), as well as in cancer (Sportès et al., 2010; Fritzell et al.,
2013) or in the context of stem cell transplantation (Perales et al., 2012), among
others.

3.3.2 IL-7 therapy in HIV infection

The relationship between IL-7 and modulation of immune function in patients
with lymphocyte depletion suggests potential usefulness of exogenous IL-7 in the
framework of the HIV infection. As far as we know, in 2009 were presented the
first trials studying the safety and efficacy of the administration of Recombinant
Human IL-7 (r-hIL-7).

Sereti et al. (2009) conducted a consecutive dose escalation design in order
to determine the effect of a single dose of non-glycosylated r-hIL-7. Participants
were HIV-infected persons under cART with HIV-RNA under 50000 cp/mL and
CD4 count over 100 cells/µL. They found demonstrable biologic activity since
3 µg/kg with a maximum tolerated dose of 30 µg/kg and the most notable side
effects were injection site reactions, transient increases in plasma HIV-RNA
levels and transient elevations of liver function tests. Despite an initial decrease
in circulating CD4 count on days 1 and 2 after IL-7 administration (possibly due
to a redistribution of cells out of the circulation), they observed next statistically
significant increases in almost all measured CD4 subsets, especially in central
memory CD4. They also found that naive and all memory and effector subsets
were induced to enter cell cycle after the injection (measured thanks to the
proliferation marker Ki67). Importantly, they did not observe changes in the
proportion of CD4+ T cells with Treg phenotype.

Also in 2009, Levy et al. (2009a) presented another phase I/IIa trial, where
the effect of 8 subcutaneous injections of non-glycosylated r-hIL-7 was evaluated.
Here, participants were cART-treated HIV-infected patients with HIV-RNA un-
der 50 cp/mL and CD4 count between 100 and 400 cells/µL. Patients received 3
or 10 µg/kg of r-hIL-7 every other day over 16 days. R-hIL-7 was well tolerated,
with peaks of viral replication presented in 4 of the 7 patients in the highest
dose group. As the main results, a sustained increase was observed in both
naive and central memory CD4 subsets. Total CD4 count peaked at day 21 in
both groups ,and the time to reach 500 cells/µL was equal to 7 days in average
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in patients receiving IL-7 at 10 µg/kg doses. Also, the CD4+ T cells gain 3
months after the first injection was strongly correlated with the CD4 count at
baseline. Analysis of Ki67 expression showed an increase of cycling cells in all
subsets except terminally differentiated effector cells.

3.3.3 INSPIRE (1) study

Subsequent studies were realized with a new glycosylated r-hIL-7 (CYT107),
having a longer half-life, and they were called INSPIRE studies. These studies
were carried out by Cytheris S.A. (which no longer exists), a bio-pharmaceutical
company focused on research and development of new immunotherapies. Data
are now managed by Revimmune Inc., a development stage biotechnology com-
pany that develops therapies for autoimmune diseases.

The first one was presented in Levy et al. (2012). INSPIRE (CYT-107-
06) is a phase I/IIa randomized placebo controlled, single-blind multicenter
dose-escalation study of subcutaneous intermittent r-hIL-7. Participants are
chronically HIV-infected patients with CD4 count between 101-400 cells/µL and
plasma HIV-RNA<50 copies/mL after at least 12 months of cART. This study
provided information about 21 patients who received 3 weekly subcutaneous
injections of r-hIL-7, at doses 10 µg/kg, 20 µg/kg or 30 µg/kg, plus two patients
by dose level who were randomized to receive placebo (N=27). As the major
findings, the maximal dose established as well tolerated was 20 µg/kg. This led
to important dose-dependent increases in CD4 count, especially within naive and
central memory subsets. CD4 count mean and percentage of CD4+Ki67+ mean
by group are shown in Figures 3.1 and 3.2. No increase in Tregs was observed,
and r-hIL-7 was contemplated as a real and powerful alternative to boost the
immune system in cART-treated HIV-infected patients with inadequate immune
response. The possibility of an intermittent therapy with repeated cycles of IL-7
in combination with cART was in the air.

Figure 3.1: CD4 count by group for INSPIRE patients
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Figure 3.2: Percentage of CD4+Ki67+ cells by group for INSPIRE patients

3.3.4 Description of the INSPIRE 2 and INSPIRE 3 stud-
ies

These are the first studies considering repeated cycles of exogenous IL-7, con-
ducted in HIV infected patients with a low immune response to cART despite
undetectable viral load.

A first part of this thesis work was the contribution in analyzing data from
INSPIRE 2 and 3 studies, that is the subject of an article submitted to Clinical
Infectious Diseases and can be found in the Appendix D.

INSPIRE 2

INSPIRE 2 (CLI-107-13) was a single arm clinical trial conducted in the USA
(Case Western Reserve, NIH/intramural NIAID, University of Miami) and in
Canada (McGill University Health Centre). The study was approved by the
ethics committees of the participating institutions, and all subjects provided
written informed consent at screening. The study was registered in clinicaltri-
als.gov, NCT01190111.

Patients received a cycle of 3 weekly subcutaneous injections of r-hIL-7 at 20
µg/kg. The study was amended 12 months after its initiation to repeat cycles
of r-hIL-7 in order to maintain CD4 count>500 cells/µL (see Figure 3.3).

Figure 3.3: INSPIRE 2 design
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INSPIRE 3

INSPIRE 3 (CLI-107-14) was an open-label, controlled, randomized trial
conducted in Italy (Milano, Brescia, Roma), Switzerland (Zurich) and South
Africa (Johannesburg and Bloemfontein). The study was approved by the ethics
committees of the participating institutions, and all subjects provided written
informed consent at screening. The study was registered in EudraCT, #2010-
019773-15 and clinicaltrials.gov, NCT01241643. INSPIRE 3 was prematurely
terminated because the Cytheris company was liquidated on June 18th 2013.
All patients were however followed for at least 3 months after the last drug
administration as per protocol.

While treated by cART, patients were randomized in two arms: CYT107
Arm and Control Arm with a ratio 3:1 (3 CYT107: 1 control). Patient ran-
domized to the CYT107 Arm received induction treatment within 2 weeks and
then were followed quarterly. A first cycle (3 weekly doses) of r- hIL-7 was
administered at 20 µg/kg. A new cycle was administered if at any quarterly
evaluation the CD4 count fell below 550 cells/µL. A maximum of four cycles
were administered over 21 months and 3 over the first 12 months. Patients ran-
domized to the Control Arm were followed without receiving study treatment
for one year. If CD4 count were still below 500 cells/µL, an induction cycle
was administered and then, repeated maintenance cycles of r-hIL-7 were given
if quarterly evaluations showed CD4 count below 550 cells/µL (see Figure 3.4).

Figure 3.4: INSPIRE 3 design

Conditions for eligibility in INSPIRE 2 and 3 are summarized in Table 3.1.
A total of 111 patients were included in the two trials (23 in INSPIRE 2 and

88 in INSPIRE 3). Median CD4 count before the first cycle was 266 cells/µL,
whereas it was 473 cells/µL and 373 cells/µL before the second and the third
one, respectively. A total of 107 patients started the first cycle; 74 started the
second cycle; 15 started the third cycle, and only one participant received 4
cycles. A total of 197 cycles were received, of which 42 were incomplete (one or
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Table 3.1: Main eligibility criteria for INSPIRE 2 and 3 studies

Criterion INSPIRE 2 INSPIRE 3

Age ≥ 18 years old
cART Minimum of one year Minimum of two years

HIV-RNA plasma level < 50 cp/mL
CD4 count 101-400 cells/µL 101-350 cells/µL

Other No hepatitis B or C nor HIV-2 or HTLV 1 or 2

two injections instead of three).

3.3.5 Results of the INSPIRE 2 and INSPIRE 3 studies

Sereti et al. (2014) presented some results from the first cycle of the INSPIRE
2 study, where it was confirmed that r-hIL-7 administration leads to important
increases of CD4 count in peripheral blood. They also showed results from
12 patients that underwent recto-sigmoid biopsies before and after r-hIL-7 ad-
ministration, concluding an increase in the gut mucosa as well as an apparent
improvement in gut barrier integrity after the treatment.

Here are some of the most important results of the analysis we did of both
INSPIRE 2 and INSPIRE 3 studies (see Thiébaut et al. (2015 in revision) for
more information): R-hIL-7 was overall well tolerated. A total of 1300 drug
Related Adverse Events (RAEs) were reported, most (77.6%) were grade ≤ 1,
20.7% grade 2 and 1.7% grade ≥ 3.

For analyzing the time spent over 500 CD4 cells/µL we included all patients
having a follow-up of 21-24 months after the first injection (N=76). The median
time spent above 500 CD4 T cells/µL was found to be 13.7 months (8.4, 20.1).
Half of these patients spent more than 63% of their follow-up with more than
500 CD4 T cells/µL.

Two major questions appear when analyzing data from these studies: Are
complete cycles necessary or could similar effect be obtained with 2 or even a
single injection? And also, have repeated cycles the same effect as the initial
ones? During maintenance cycles, observed CD4 responses after 2-injection
cycles and complete cycles seem similar, however, 1-injection cycles seem to
have a weaker effect (see Figure 3.5). As for the responses after first and second
cycles (for patients receiving complete cycles) we did not find differences (see
Figure 3.6).

These results were confirmed with a survival study. We analyzed the influ-
ence of some covariates as age, gender or CD4 baseline into the time to drop of
CD4 count below 550 cells/µL (the threshold for receiving a new cycle). Linear
interpolation allowed us to estimate the time to drop below 550 when this drop
was observed; otherwise, the observation was right-censored. A shared gamma
frailty model was used, in order to take into account the inter-individual vari-
ability. A Weibull hazard function was fitted using a parametric model with the
R package Frailtypack (Rondeau et al., 2012). The stronger predictor of drop-
ping below 550 CD4+ T cells/µL was CD4 count at baseline (p<0.001, HR=11.1
when CD4 below 200 cells/µL). The following variables were considered: age,
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Figure 3.5: Observed CD4 responses for INSPIRE 2 & 3 patients when receiving
1-injection cycles, 2-injections cycles or complete cycles within repeated cycles
with the number of observations at each time

sex, ethnic origin, type of cycle initial/maintenance, number of injections in
a cycle, time since HIV diagnosis, duration of cART, stage at diagnosis and
proviral HIV DNA levels at baseline. The only one that was found to have a
significant effect was the number of injections in a cycle (see Table 3.2). After
adjustment, there was still unexplained inter-individual variability in the prob-
ability of dropping below 550 cells/µL as the variance of the frailty parameter
(0.822) was significantly different from 0 (p=0.006).

As for the sub-populations of CD4+ T cells, the main increase was observed
among naive and central memory cells, with a transient increase of CD4+Ki67+

(cycling) cells and without relative increase of Tregs. There was no impact of
the presence of antibodies on the CD4+ T cell dynamics. Nearly half of the
patients had HIV-RNA blips exceeding 50 copies/mL; also 13% of the patients
included in INSPIRE 2 and 17% of the patients included in INSPIRE 3 had
HIV-RNA blips exceeding 200 copies/mL.

In conclusion, INSPIRE 2 and INSPIRE 3 studies show that repeated cy-
cles of r-hIL-7 can improve and sustain CD4 restoration in cART-treated HIV-
infected patients with a low immune response.
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Figure 3.6: Observed CD4 responses for INSPIRE 2 & 3 patients when receiving
initial and maintenance (complete) cycles

Table 3.2: Shared Gamma Frailty model using a Weibull hazard function. Data
are based on 95 patients with a CD4 T cell count > 550 cells/µL two weeks
after the last injection of r-hIL-7

Factor Hazard Ratio 95 % CI p-value

Baseline CD4 count <0.001
CD4 > 200 cells/µL 1
CD4 ≤ 200 cells/µL 11.10 (4.02, 30.66)
Type of IL-7 cycle 0.57
Initial cycle 1
Maintenance cycle 0.86 (0.51, 1.46)
Number of injections
in a cycle

0.023

Three injections 1
Two injections 2.27 (0.79, 6.55)
One injection 4.29 (1.32, 13.90)
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Chapter 4

Background: Modeling

4.1 Introduction

Throughout this work we have used dynamic models based on a system of ordi-
nary differential equations (ODEs). We basically distinguish two sub-populations
of CD4+ T cells: quiescent and proliferating cells, according to the presence or
not of the biomarker Ki67. A mixed effects model is applied on biological param-
eters in order to capture both populational and individual behavior. Statistical
inference in such mechanistic models can be an arduous task, mostly because of
the non-linearity of the ODE system and the presence of random effects. For this
purpose, we have used a program called NIMROD (Prague et al., 2013a), based
on the maximum a posteriori estimation of the penalized likelihood function.

In Section 4.2 there is an overview of the HIV modeling history, that has
been a relevant tool to improve our knowledge about the viral dynamics in
the last years. Section 4.3 explains our statistical approach, that is based on
a mathematical model, a statistical model on the biological parameters and a
model for the observations. Section 4.4 deals with parameter estimation in these
types of models; we review some of the proposed methods and we develop the
hierarchical approach that has been used during this thesis work. The NIMROD
program is succinctly presented. Section 4.5 describes the basis of our work:
the original model firstly presented in Thiébaut et al. (2014) and some minor
changes which help us to shape our “basic model”.

4.2 HIV modeling framework

According to Motta and Pappalardo (2013), “modeling” is the human activity
consisting of representing, manipulating and communicating real-world daily
life objects, and “system” is the collection of these interrelated objects. Gen-
erally speaking, a “model” can be any interpretable description of a system in
terms of the objects constituting it and the relationships among them. In clini-
cal research, mathematical models based on differential equations are especially
useful; as biological systems. These simplified mathematical representations of
the real world are especially useful in medicine, as biological systems interrelat-
ing different cellular populations.

A model can have different purposes. Descriptive models have been widely
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used for analyzing HIV data, as classic linear mixed models describing viral
load and CD4 count trajectories (Boscardin et al., 1998) or more complex bi-
variate mixed models taking into account left-censoring of viral load measure-
ments(Thiébaut et al., 2005). Mechanistic models, on the other hand, search
to translate the biological knowledge into equations, in our case a system of
ordinary differential equations. This ODE system represents important charac-
teristics of the underlying biological mechanisms, and we call this type of models
“dynamic models”. Unknown parameters involved in such a system of differ-
ential equations are called “biological” parameters, and they will condition the
behavior of the system. ODE systems involve functions and their derivatives
and they are, therefore, able to relate a continuous quantity and its rates of
change throughout time.

Since 1995, our knowledge about viral dynamics has greatly increased thanks
to dynamic models. The works of Ho et al. (1995) and Wei et al. (1995) were the
start point of a success story for modeling. First models searched to determine
the ratio between the destruction of cells and lack of their production in CD4
lymphocyte depletion seen in AIDS. Until then, HIV replication and clearance
rates were thought to be relatively slow (because of the stable levels of viral
load observed in patients following several years of infection). These models
showed that HIV production and clearance in chronically infected patients take
place at a rapid rate. The field of HIV research was also hugely influenced by
Perelson et al. (1996), who estimated the half-life of the virus in plasma at only
6 hours or less, and the production rate was estimated at 1010 virions per day
on average. There were many consequences to these findings, some of them of
a fundamental importance. HIV was considered as a rapidly reproducing virus
that could respond to therapy, but also as a virus that would repeat every single
possible point mutation of the genome several times a day, so it could quickly
become resistant to any single drug (Perelson, 2002).

These dynamic models became progressively more complex, as the biological
knowledge about the infection and the immune system increased. Today, most
HIV dynamic models describe the interaction between virions and CD4+ T cells:
a complete review of the existing models can be found in Xiao et al. (2013).

4.3 Parts of the theoretical model

Mechanistic approaches based on systems of ordinary differential equations with
biological “compartments” (cell populations) have been widely used. The orig-
inality and complexity of our approach is in the statistical part. An elaborated
method for the estimation of the parameters involved in these equations is im-
plemented in our team since 2007. A mixed effect model is applied to biological
parameters for distinguishing populational and inter-individual behavior, and a
so-called “model for the observations” let us to deal with observations of only
some of the system compartments and also with measurement errors. This is
generally presented in this Section. A frequentist maximum likelihood approach
based on an adaptation of a Newton-like method was initially proposed by Guedj
et al. (2007). Hereafter, a maximum a posteriori estimation in a semi-Bayesian
context was introduced by Drylewicz et al. (2012). This is furthered explained
in Section 4.4. We describe now the different parts of our model:
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ODE model for a population of subjects

For subject i, we can write
dXi(t)
dt = f(Xi (t), ξi)

Xi(0) = h(ξi)

(4.1)

where Xi(t) = [Xi
1(t), ..., Xi

K(t)] is the vector of the K state variables (or
compartments), and ξi(t) = [ξi1(t), ..., ξip(t)] is the p-vector of the parameters,
having a biological interpretation.

We often assume that the system is in a stable state at time 0 (all the state
variables are in equilibrium), but alternatively the start point can be fixed. In
order to be able to estimate the parameters, a compromise has to be found to
design a reasonably simple model which correctly fits the observed data.

Mixed effect model for ξ(i)

Biological parameters can be re-parametrized thanks to one-to-one functions
φl[ξ

i
l (t)] = ξ̃il (t), l=1,...,p. In our case, we take a logarithmic transformation to

ensure positivity. A mixed effect model can be applied on some of the biological
parameters, and this allows us to introduce covariates and to take into account
inter-individual variability. For the patient i and the biological parameter l we
have:  ξ̃il = log(ξil )

ξ̃il = φl + zilβl + bil

(4.2)

where φl is the intercept, and zil is the vector of explanatory variables asso-
ciated to the fixed effects of the lth biological parameter. The βl’s are vectors
of regression coefficients associated to the fixed effects. If bi is the individual
vector of random effects, we assume bi ∼ N (0,Σ).

In our model, we have not applied this statistical model for all parameters,
but to some of them which are supposed to be affected by IL-7 injections. As
for the random effects, we apply them for parameters that have shown a notable
inter-individual variability.

Model for the observations

In practice, the vector [Xi
1(t), ..., Xi

K(t)] is generally not directly observ-
able. Instead, we have some discrete-time observations of some functions of its
components. With relevant transformations used for obtaining normality and
homocedasticity of measurement errors distributions, we note the observable
components as follows (for the subject i at time j):

Yijm = gm(X(tijm, ξ̃
(i)

)) + eijm, eijm ∼ N(0, σ2
m)

with independent normally distributed measurement errors.
So the vector of the parameters to estimate includes biological parameters,

regression coefficients for the covariates, variances of random effects and vari-
ances of measurement errors.
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4.4 Maximum likelihood estimation

Working with nonlinear mixed effect models in a population context involves two
main numerical issues: the evaluation of the integrals involved when computing
the log-likelihood function and a possibly non closed-form of the solution of
the ODE system. Several attempts for approximating the likelihood function
have been made (Pinheiro and Bates, 1995), but it may result in misleading
conclusions (Ding and Wu, 2001). Also, purely Bayesian approaches relaying
on the Markov Chain Monte Carlo (MCMC) algorithms have been proposed
(Putter et al., 2002; Huang et al., 2006). In 2007, Guedj et al. (2007) proposed
the algorithm that we have used for estimating parameters.

In an inferential approach, the presence of random effects implies a hierarchi-
cal approach, so this algorithm starts by considering individual likelihoods given
the random effects. After that, marginal likelihood is computed by integrating
over the random effects via the adaptive Gaussian quadrature (Genz and Keis-
ter, 1996; Pinheiro and Bates, 2000). The Fortran solver DLSODE (Hindmarsh,
1983) allows us to solve the ODE system, using backward difference formula and
gear type method BDF (Radhakrishnan and Hindmarsh, 1993).

The approach of Guedj was subsequently adapted to compute the normal ap-
proximation of the posterior, allowing prior knowledge on biological parameters
to be taken into account (Drylewicz et al., 2012). The Bernstein-von Mises the-
orem (Van der Vaart, 2000) justifies asymptotically the assumption of a normal
approximation of the posterior (NAP). This amounts to compute the maximum
of the posterior distribution when the variance matrix is approximated by the
inverse of the Hessian of minus the logarithm of the posterior. Let L(θ) be the
log-likelihood function; let π(θ) and P (θ|Y ) be the prior and posterior distri-
bution, respectively; and let C be the normalization constant. Bayes theorem
gives:

log[P (θ|Y )] = L(θ) + log(π(θ)) + C, (4.3)

and the normal approximation of the posterior is obtained by maximizing
the penalized log-likelihood LP (θ) = L(θ) − J(θ). If we assume normal priors
for the p biological parameters, where E0 and v0 are the expectation and the
variance under these priors, the penalization term can be written as:

J(θ) =

p∑
j=1

[φj − E0(φj)]
2

2 v0(φj)
. (4.4)

Penalized likelihoods can be compared thanks to the criterion so-called
“LCVa”, an extension of Akaike criterion (AIC) proposed by Commenges et al.
(2007). It corrects for the number of parameters and for the penalization, and
is normalized on the number of observations (Commenges et al., 2008, 2015).
This criterion can be written as:

LCVa =− n−1[ L(θ̃)− Trace(H−1LP (θ̃)HL(θ̃))],

where HL is the Hessian of minus the log-likelihood. Since LCVa estimates
a risk, the smaller value the better model. When the response is univariate,
difference in criteria values can be considered as “large” beyond 0.1; however
this threshold must be higher when the response is multivariate, as in our case.
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Finally, a Fortran program called NIMROD (Normal approximation Infer-
ence in Models with Random effects based on Ordinary Differential equations)
was developed (Prague et al., 2013a) collecting this approach. As for the op-
timization procedure, the program is based on the Robust Variance Scoring
(RVS) algorithm (Commenges et al., 2006).

After calculating the individual score Ui(θ) using Louis’ formula (Louis,
1982), the observed log-likelihood LP (θ) and the scores U(θ) are calculated as
the sum over all the subjects. Finally, the Hessian of −LP (θ) is approximated
by

G(θ) =

n∑
i=1

Ui(θ)U
T
i (θ)− 1

n
U(θ)UT (θ) +

∂2J(θ)

∂θ2

To finish, for when the algorithm gets stuck, NIMROD is implemented with
an optional switch to a classical Levenberg-Marquardt algorithm by using the
Hessian matrix (Marquardt, 1963). This method will be more robust than
the Newton-Raphson method far from the maximum, when the penalized log-
likelihood is not very close to a quadratic form.

NIMROD has three convergence criteria or stopping rules: a threshold for
the displacement in the parameters space, a threshold for the variation in log-
likelihood and a main criterion named RDM (Relative Distance to Maximum),
that can be interpreted as the ratio of the numerical error over the statistical
error (Commenges et al., 2006):

RDM(θ(k)) =
UP (θ(k))TG−1(θ(k))UP (θ(k))

p
(4.5)

Once the algorithm has converged individual trajectories are computed thanks
to Parametric Empirical Bayes (PEB) estimators (Morris, 1983; Kass and Stef-
fey, 1989).

NIMROD is written in Fortran 90, and it has been implemented to let par-
allel computing over the subjects. An open source code is available in http://

etudes.isped.u-bordeaux2.fr/BIOSTATISTIQUE/NIMROD/documentation/html/

index.html.
During this thesis, we made some inquiries about NIMROD calculation time,

that can be found in Appendix A.

4.5 Original model

4.5.1 Description of the original model

Note: During the remainder of this work, the term IL-7 is sometimes used instead of
r-hIL-7 when there is no possibility of confusion.

As it has been said, the structure of the model must represent important
characteristics of the underlying biological mechanisms. We have considered
as starting point the mathematical model appeared in Thiébaut et al. (2014),
including two populations of CD4+ T-cell: non-proliferating cells (CD4+Ki67−,
denoted Q) and proliferating cells (CD4+Ki67+, denoted P).
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
dQ
dt = λ+ 2ρP − µQQ− πQ

dP
dt = πQ− ρP − µPP

(4.6)

The system is supposed to be in equilibrium at t=0. A graphical repre-
sentation of the model can be found in Figure 4.1. Q cells (CD4+Ki67−) are
produced at a constant rate λ. They become P cells (CD4+Ki67+) at rate π
and die at rate µQ. Every P cell divides and produces 2 Q cells at a rate ρ, and
dies at rate µP . Even if we call them mortality rates, the loss rates µQ and µP
are also influenced by any redistribution between blood and other tissues.

Figure 4.1: Graphical representation of the basic mathematical model

Table 4.1: Biological meaning of parameters from the original model

λ Constant rate of production of the non-proliferating cells Q (cells/day)

ρ Reversion rate (/day)

π Proliferation rate (/day)

µQ Mortality rate of non-proliferating cells Q (/day)

µP Mortality rate of proliferating cells P (/day)

The biological parameters are defined in the table 4.1. For subject i we
denote by ξi = (λi, ρi, πi, µiQ, µ

i
P ) the vector of individual biological parameters

that appear in the ODE system.
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As for the model for the observations, the state variables (P i(t), Qi(t)) are
not directly observable. Let Y i1j and Y i2k be the CD4 count and the Ki67 count
for patient i at times tij and tik, respectively. The following observation scheme
is assumed:  Y ij1 = 4

√
(P +Q)(tij1, ξ̃

i) + εij1

Y ik2 = 4

√
P (tik2, ξ̃

i) + εik2

(4.7)

where ξ̃i = (ξ̃il , l = 1, ..., 5) and the εij1 and εik2 are independent Gaussian

measurement errors with zero mean and variances σ2
CD4 and σ2

P , respectively.
Thiébaut et al. (2014) considered data from 53 patients receiving a com-

plete cycle of (glycosylated and not glycosylated) r-hIL-7. Their objective was
to use mathematical modeling to test whether an improvement of peripheral
proliferation itself can explain the observed CD4+ T cell dynamics:{

π̃ = π̃0 + β11trt + β2d t ≤ 16
π̃ = π̃0 t > 16

(4.8)

The alternative hypothesis was that other additional mechanisms (as an
improvement of production rate and/or of survival rate of quiescent cells) are
required: {

µ̃Q = µ̃Q0
+ β31trt + β4d t > 16

µ̃Q = µ̃Q0 t ≤ 16
(4.9){

λ̃ = λ̃0 + β51trt + β6d t ≤ 16

λ̃ = λ̃0 t > 16
(4.10)

Here, 1trt indicates whether placebo (1trt = 0) or IL-7 (1trt = 1) injections
have been received; and d is the quantity of the dose received. As we can see
in the equations, the original model considers two possible covariates: the IL-7
treatment and a possible dose-related effect (assumed to be linear). The time
of IL-7 effect on proliferation rate (t = 16 days) was found by profile likelihood.

In all cases, random effects were supposed on λ and ρ:{
λ̃i(t) = λ̃0 + biλ
ρ̃i(t) = ρ̃0 + biρ

(4.11)

4.5.2 Results for the original model

The results obtained with the simplest statistical model showed a significant
linear increase of estimated proliferation rate according to the dose group. In-
terestingly, this increased peripheral proliferation alone could not explain the
long-term changes in CD4 count, and the fact of adding a supplementary effect
on the mortality rate µQ and/or the production rate λ improved the results
from a statistical point of view. Both models (fixed effects on π and µQ, or on
π and λ) described correctly the CD4 count, and fits of the two model were not
easily distinguishable (see Figure 4.2).

Statistical model considering an effect on π and µQ provided slightly better
results from a statistical point of view (LCVa and likelihood results) where
proliferation rate improved from 0.027 cells/day to 0.107-0.156 cells/day and
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Figure 4.2: Goodness of fit of CD4 count for a random patient in each dose
group from INSPIRE (1) when considering only an effect on π (Model 1), on π
and µQ (Model 2) or on π and λ (Model 3)

mortality rate of quiescent cells decreased from 0.061 per day to 0.044-0.049
per day, corresponding to an improvement of the life span from 16.4 days to
20.4-22.7 days (Thiébaut et al., 2014).

As a conclusion, an increase of the survival of Q cells and/or of the pro-
duction rate also contributes to T-cell homeostasis during IL-7 therapy, even if
these parameters could not be perfectly differentiated.
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Chapter 5

Modeling a single cycle of
r-hIL-7

5.1 Introduction: basic model

In this first part, we have modeled a single cycle of IL-7. We have used data
from the INSPIRE (1) study (Levy et al., 2012), where a r-hIL-7 cycle (3 weekly
injections) was administered to 21 patients at different weight-dependent doses:
10, 20 and 30 µg/kg. Also, there were 6 control patients who only received an-
tiretroviral therapy. All treated patients received complete cycles (3 injections),
and we have CD4 count measurements at weeks 1, 2, 3 (at the moment of the
injections), weeks 4, 5, 6, 9, 12, and afterward, one measurement every three
months with a one-year follow up. Also, the number of CD4+ T cells expressing
the Ki67 proliferation marker (Ki67 count) was measured at weeks 1, 2, 3, 5
and 12.

5.1.1 Building our basic model

As our “basic model”, we have taken the original model explained in the prece-
dent Chapter with a slight modification: instead of two explanatory variables
for the effect of the IL-7 on every parameter, we have just kept a power of the
dose received: η1 = η2 = 0.25. This exponential function was found by profile
likelihood (the first step is detailed on Table 5.1).

The statistical model can be written:{
π̃ = π̃0 + βπd

η1 t ≤ 16
π̃ = π̃0 t > 16

(5.1)

and {
µ̃Q = µ̃Q0

+ βµQd
η2 t > 16

µ̃Q = µ̃Q0
t ≤ 16

(5.2)

5.1.2 Results for the basic model

In Table 5.2 we present the results when applying this model to the INSPIRE
data set (N=27 patients receiving 3 weekly injections of glycosylated r-hIL-7 at
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Table 5.1: Obtained log-likelihood for every model with values for η1 at the top
and values for η2 on the left

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1 -19.6 -19.8 -20.8 -22.4 -24.5 -26.9 -29.6 -32 -34.6 -36.9
0.2 -14.6 -13.3 -12.8 -13.2 -14.3 -16 -18.1 -20.3 -22.7 -25.2
0.3 -17.2 -14.7 -13.1 -12.6 -12.3 -13 -14.1 -15.7 -17.4 -19.4
0.4 -24.4 -21.6 -19.3 -17.6 -16.7 -16.3 -16.5 -17.3 -18.4 -19.7
0.5 -33.7 -30.1 -28.4 -26.2 -24.6 -23.6 -23.1 -23.1 -23.6 -24.3
0.6 -43.3 -40.1 -38.6 -36.3 -34.4 -32.9 -31.9 -31.4 -31.2 -31.5
0.7 -52.4 -50.8 -48.7 -46.6 -44.7 -43 -41.7 -40.7 -40.2 -40
0.8 -60.6 -60 -58.3 -56.6 -54.8 -53.1 -51.6 -50.4 -49.6 -49
0.9 -68.2 -67.7 -66.9 -65.8 -64.3 -62.7 -61.2 -60 -58.9 -58.1
1 -75.2 -74.9 -74.5 -73.8 -72.9 -71.7 -70.3 -69 -67.9 -67

doses 10, 20 and 30 µg/kg).
Estimated values of biological parameters are found to be close to those of

Thiébaut et al. (2014). Priors, means and standard deviations (in natural and
logarithmic scale) of all parameters are shown.

Table 5.2: Priors and estimated mean and standard deviation (sd) of all param-
eters (in logarithmic and natural scales) for the “basic model” when considering
IL-7 effects on π and µQ.

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.041 0.152 7.700 1.174
ρ 0.000 0.250 0.253 0.130 1.289 0.167
π -4.000 1.000 -3.527 0.108 0.029 0.003

µQ -3.600 0.500 -2.903 0.131 0.055 0.007
µP -2.500 0.500 -2.653 0.424 0.070 0.030
βπ - - - - 1.233 0.039
βµQ - - - - -0.178 0.037
σλ - - - - 0.213 0.062
σρ - - - - 0.387 0.138

σCD4 - - - - 0.205 0.011
σP - - - - 0.228 0.026

Penalized Log-Likelihood : -1.269
NON-Penalized Log-Likelihood :0.918

LCVa :-0.033

Importantly, for every patient we normally have 11 CD4 count measure-
ments, obtained at W1, W2, W3, W4, W5, W6, W9, W12, M6, M9 and M12
while we only have 5 Ki67 count measurements, at weeks W1, W2, W3, W5
and W12 (W=week, M=month).

In Figure 5.1, fits for the basic model are shown, comparing the previous
model (with an IL-7 effect on both π and µQ) with a simpler model, where
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only an effect on π is considered. Fits are shown for two representative enough
patients, as patient 16 and Patient 17.

Figure 5.1: Fits of basic model for two representative patients, patient 16 and
patient 17, for appreciating the effect of a supplementary IL-7 effect on µQ with
respect to only an effect on π

Fits of total CD4+ T cells are quite satisfying in the long term, although
they are not able to reach the higher observations of the day 21. By contrast, fits
of P cells must be improved, because this model does not capture the essential
of their dynamics. Next Sections describe our attempts to improve this basic
model.

Before starting with the development of different models, a brief study of
the coefficient of the reversion rate can be found in Appendix C.
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5.2 Incorporating a feedback model

5.2.1 Original feedback term

Feedback is a common mechanism in biological processes. The equilibrium
found in biological organisms is generally represented in dynamic systems (even
if they are linear) provided that an equilibrium point exists. (A brief study of
the equilibrium point can be found in Appendix B). This expression of the equi-
librium, that is called homeostasis in biology, is found in a natural way without
requiring an explicit feedback term. In spite of this, we tried to incorporate a
feedback process into the rate of proliferation in order to mathematically ensure
that cells level stays in a credible range. The idea is that, when the number of
CD4+ T cells become bigger than reasonable, this factor is going to slow down
the growth rate.

One possibility for the feedback factor is: 1
(P+Q)ν and model is written as

follows: 
dQi
dt = λi + 2ρiPij − µQiQij − πiQij

[
1

P+Q

]νi
dPi
dt = πiQij

[
1

P+Q

]νi
− ρiPij − µPiPij

(5.3)

Statistical model for the effect of IL-7 is then considered as previously. Re-
sults for this “feedback model” are shown in Table 5.3. Penalized and non-
penalized log-likelihoods have improved from -1.269 and 0.918 to 5.793 and
8.926, respectively. Also, LCVa criterium moves from -0.033 to -0.326, even if
this enhancement is not evident in descriptive ability of the model.

In Figure 5.2, we present fits for the two-compartment model (with an effect
of IL-7 on π and µQ) by comparing models with (yellow lines) and without
(green lines) feedback.

5.2.2 Other considered possibilities for the feedback term

Possibilities for the way of adding a feedback effect are almost endless. See
for instance Lévine and Müllhaupt (2010) for a complete review about control
systems engineering. We have tested different “feedback factors”, in order to
improve the likelihood function and above all to get better fits of proliferating
cells. For instance, some of the alternatives considered to modify the feedback
term are:

First modification:

To control the proliferation term by means of the total CD4 count through
the exponential function, as:{

dQi
dt = λi + 2ρiPij − µQiQij − πiQij

[
e−(P+Q)

]νi
dPi
dt = πiQij

[
e−(P+Q)

]νi − ρiPij − µPPij (5.4)

Second modification:
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Table 5.3: Priors and estimated mean and standard deviation (sd) of all param-
eters (in logarithmic and natural scales) for the “basic feedback model” when
considering IL-7 effects on π and µQ. Penalized (P) and Non Penalized (NP)
likelihood and LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 1.653 0.371 5.220 1.936
ρ 0.000 0.250 0.173 0.139 1.189 0.165
π -4.000 1.000 -2.048 0.574 0.129 0.074

µQ -3.600 0.500 -3.059 0.176 0.047 0.008
µP -2.500 0.500 -2.614 0.429 0.073 0.031
ν -2.500 2.000 -1.355 0.361 0.258 0.093
βπ - - - - 1.354 0.073
βµQ - - - - -0.234 0.056
σλ - - - - -0.266 0.113
σρ - - - - -0.367 0.132
σπ - - - - 0.078 0.040

σCD4 - - - - 0.205 0.011
σP - - - - 0.208 0.025

Penalized Log-Likelihood :5.793
NON-Penalized Log-Likelihood :8.926

LCVa :-0.326

To add a feedback term on the mortality rate of Q cells µQ, in addition to
the feedback term on proliferation rate π:

{
dQi
dt = λi + 2ρiPij − µQiQijeεi(P+Q) − πiQije−νi(P+Q)

dPi
dt = πiQije

−νi(P+Q) − ρiPij − µPPij

Third modification:

Finally, another attempt was to keep both feedback terms when letting the
mortality rate of P cells depending on P2, instead of P:

{
dQi
dt = λi + 2ρiPij − µQiQijeεi(P+Q) − πiQije−νi(P+Q)

dPi
dt = πiQije

−νi(P+Q) − ρiPij − µPP 2
ij

None of these modifications allowed us to improve the LCVa or the individual
fits, so we have kept as “feedback model” the original one shown in Equation
5.3.
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Figure 5.2: Comparison of fits of “basic model” with and without feedback,
when considering an effect of IL-7 on π and µQ

5.2.3 Conclusion

The model with feedback keeps the same behavior than the model without
feedback. This is definitely not the reason for the lack of accuracy of the fits of
P cells. Then we changed the approach and we decided to test a model based
on the concentration of the drug for each patient at each moment, instead of
the dose received. Even if we have few data about the concentration of r-hIL-
7 on patients, we have tried to build a satisfactory pharmacokinetic model to
precisely estimate this concentration at each time and to use these estimations
within a pharmacodynamic model where the IL-7 effect can be considered in a
continuous form.
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5.3 Pharmacokinetic/pharmacodynamic (PK/PD)
model

5.3.1 Introduction

Knowledge of the pharmacokinetics of drugs is essential for defining the treat-
ment protocols, and the study of the pharmacokinetics of antiretroviral drugs
has been particularly useful for the HIV infection care (Danner et al., 1995;
Hendrix et al., 2004; Bazzoli et al., 2010). We have used data from the first
INSPIRE study to characterize the pharmacokinetics of r-hIL-7.

Pharmacokinetics are the process of drugs in the body when they are ad-
ministered by any route (Gerber, 2000). Main steps in pharmacokinetics of a
subcutaneous administered drug as r-hIL-7, are absorption, distribution and
elimination. Essentially, after administration the drug reaches the systemic cir-
culation, and is distributed into tissues.

Here, we have tried to use a pharmacokinetic/pharmacodynamic (PK/PD)
model to describe the relationship between exogenous Interleukin 7 and CD4
response. (See Prague et al. (2013b); Wang et al. (2014) for examples of PK/PD
modeling in HIV field.)

5.3.2 Data

We used information from all the 27 patients of the INSPIRE study. Available
blood samples for PK sampling were as follows: at pre-1st injection, 2h post-1st

injection, 4h post-1st injection, 6h post-1st injection, 24h post-1st injection, 96h
post-1st injection, pre-2nd injection, pre-3rd injection, and 7 days after the third
injection.

Four days after receiving an injection, there was no longer r-hIL-7 concentra-
tion in the blood for most patients; so in practice, the significant measurements
were those at 2h, 4h, 6h, 24h and 96h after the first injection. In Figure 5.3 we
can observe the mean IL-7 plasma concentration by group during 7 days after
the first injection.

5.3.3 Description of the PK model

We used a mathematical model developed by Mélanie Prague, where three com-
partments are considered: the first one called “Local compartment” (CL), that
references the administration site (in our case, the subcutaneous tissue), the
“Plasma compartment” (CP ) and the “Tissue compartment” (CT ). R-hIL-7 is
absorbed at a rate ka, and it is eliminated at a cl rate. Also, redistribution from
the plasma to the tissue compartment (and vice versa) take place at rates kpt
and ktp, respectively. A brief description of parameters for the pharmacokinetic
model can be found in Table 5.4.

After that, if we are able to estimate tissue and plasma concentration of
r-hIL-7 at every time, we would like to use them within the statistical model
of lymphocytes. Up to now, we have only used the dose received for every
patient, a fixed value (10, 20 or 30 µg/kg) which did not let us to study the
IL-7 effect in a continuous form. Theoretical advantages of the use of tissue or
plasma concentration are obvious: for instance we would be able to consider a
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Figure 5.3: Mean IL-7 plasma concentration for patients from INSPIRE study
by group during 7 days after the first injection

statistical model without being forced to establish an artificial life for the IL-7
effect:

π̃ = π̃0 + βconcη ∀t > 0

instead of  π̃ = π̃0 + βπd
0.25 t ∈ (0, 16]

π̃ = π̃0 else

With parameter’s meaning according to Table 5.4, the mathematical model
can be written as follows:

dCL
dt = −kaCL CL(0) = dose0

dCP
dt = kaCL

V0
+

ktpVTCT
V0

− kptCP − clCP CP (0) = 0

dCT
dt =

kptV0CP
VT

− ktpCT CT (0) = 0

As for the statistical model, we have considered no additional fixed effects,
and random effects on ka, cl and V0. As for the model for the observation, only
the plasma compartment CP can be observed.
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Table 5.4: Biological meaning of pharmacokinetic parameters

ka Uptake rate (h−1)

cl Clearance rate (h−1)

V0 Volume of distribution in plasma compartment (m3)

VT Volume of distribution in tissue compartment (m3)

kpt Absorption from plasma to tissue (h−1)

ktp Absorption from tissue to plasma (h−1)

5.3.4 Results of the PK model

Identifiability problems prevented us from estimating all parameters at the same
time; so in practice, we considered ktp = kpt (absorption from tissue to plasma
equals to absorption from plasma to tissue). With this constraint, we fitted
the pharmacokinetic data with the previously described model. Thanks to
NIMROD, pharmacokinetic parameters were estimated (in logarithmic scale)
at (ka, cl, V0, Vt, ktp = kpt) = (−2.67,−1.01,−2.55,−3.10,−4.22) .

As the next step, we want to use the calculated trajectories of the plasma
and/or tissue concentration for improving results of our “basic model”, where
the mathematical model is the two-compartment model with feedback, and the
statistical model would be:

π̃ = π̃0 + βconcν

While doing this, we had to make some decisions, as:

Dose-weight question

Should we consider the PK process according only to the quantity of dose
received, or according to the ratio dose-weight? As we have said, the study
INSPIRE has provided us information about 21 patients, who have received
3 weekly subcutaneous injections of r-hIL-7 in doses 10, 20 or 30 µg/kg, plus
two patients by dose level who were randomized to receive placebo. Thus, the
quantity of r-hIL-7 that has been administered for every patient can be seen as
having two levels:
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• First, the patient has been allocated within one of the three treatment
groups.

• Second, the quantity of IL-7 that he is going to receive will depend on his
weight.

It is precisely this last “level” which we would like to make disappear. How
can we get this? We are going to keep in mind only the group of treatment (10
µg/kg, 20 µg/kg or 30 µg/kg), and we do not take care of the weight of the
patients. We supposed that all of them have the same weight (the average of
all subjects).

Tissue or Plasma Concentration

By taking into account the fact that we have two estimated concentrations,
we have had to decide which one is the most appropriate. After some tests, we
have kept the tissu concentration, with an exponent ν = 0.40, that has been
estimated by profile likelihood (see Table 5.5). It should be noted, however,
that the model with the dose is far better than all other PK models.

Table 5.5: Estimated means of all parameters in logarithmic scale for the “phar-
macokinetic model” for different exponential functions of tissue (Ti) and plasma
(Pl) concentration. Penalized log-likelihood (PLL) and LCVa criteria.

d0.25 Ti0.30 Pl0.30 Ti0.40 Pl0.40 Ti0.50 Pl0.50 Ti0.60 Pl0.60

λ̃ -0.62 -0.26 -0.35 -0.29 0.10 -0.17 0.24 -0.08 0.20
ρ̃ -0.13 -0.66 -0.95 -0.73 -1.13 -0.78 -1.20 -0.84 -1.20
π̃ -3.07 -0.20 -1.20 -0.59 -1.68 -0.57 -2.13 -0.60 -1.76
µ̃Q -3.92 -4.55 -4.53 -4.54 -4.85 -4.50 -4.84 -4.50 -4.83
µ̃P -3.26 -2.23 -3.10 -2.53 -1.82 -2.66 -1.86 -2.67 -1.85
ν̃ -1.88 -0.32 -0.56 -0.40 -0.76 -0.40 -0.90 -0.40 -0.78

βπ 1.40 2.17 2.50 2.11 3.45 2.02 3.46 1.98 3.35

σλ 0.57 0.32 0.52 0.41 0.32 0.43 0.27 0.53 0.23
σρ 0.36 0.28 0.27 0.28 0.12 0.27 0.12 0.25 0.13
σπ 0.02 0.19 0.16 0.18 0.13 0.20 0.19 0.23 0.22

PLL -20.6 -59.1 -106.0 -57.2 -121.7 -60.8 -126.8 -68.6 -130.6
LCVa 0.65 2.20 3.96 2.13 4.51 2.26 4.71 2.55 4.84

No random effects

Continuing with the idea of the dose-weight question, we decided to con-
sider no random effects (random effects equal to zero) within the PK model, in
order to have values in the concentration curves that are proportional to the
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dose received. Considering that our intention is to extrapolate this model in
subsequent studies with a much more bigger number of patients, this option is
going to let us to reduce a sizable amount of calculation time.

5.3.5 Pharmacodynamic model

Then we have calculated the trajectories for INSPIRE patients, we have simu-
lated all the three peaks, and after that we have obtained the average for every
dose. We have the estimated concentration available for every patient, accord-
ing to his treatment group. So, in the end we have defined the statistical model
as follows:

π̃ = π̃0 + βπC0.40
T (5.5)

So the concentration model is defined by the basic mathematical model for
two compartments (Equation 4.6) and this statistical model. This is a pattern
that is very close to the dose model; in fact, we have just substituted the dose
by the concentration. But this difference converts it into a more complex model
from a computational point of view and much more “realistic” from a biological
point of view. We expected that this concentration model allows us to improve
the results we have obtained, by keeping in mind its continuity and softness with
respect to the previous dose model. Howver, with this model, best results were
found as likelihood function equals to -54.5 and LCVa equals to 2.03. So, despite
all different possibilities that have been tested, we have not reached our aim:
to improve the obtained results for the Dose model. Thus, we have embarked
in the search of an appropriate function with the aim of getting close to results
achieved with the Dose model.

5.3.6 Sigmoid function as the pharmaco-dynamic function

In order to make the most of our PK model, we are going to become milder the
step from dose models to concentration models.

• Dose models had a disadvantage by their huge discontinuity with respect
to time (effect only below day 16...)

• Concentration models allow us not to abruptly interrupt the effect

That is the reason why we have started to search a function allowing us
a flexibility in the step/no effect of the treatment. We thought of a sigmoid
function, in order to take advantage to his “S” shape. Function we though were
functions as follows:

f(x) =
1

1 + e−α(x−γ)
(5.6)

By adding terms for having f(0) = 0 and limx→∞ f(x) = 1, and estimating
γ, we obtain a final equation that can be written as follows:

π̃ = π̃0 + β
1− e−αCT (t)

1 + e−α(CT (t)−1.69)
(5.7)

We have fixed several values for α, in order to estimate only one extra param-
eter. In Table 5.6, we show the results achieved for this “sigmoid concentration
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model”, for α = 0.5, 1, 2 and 5. We are going to compare these results with
the “basic model” under identical conditions (in both models random effects are
supposed on λ and ρ).

Table 5.6: Estimated means of all parameters in logarithmic scale for the “sig-
moid model“ with C0.40

T for α = 0.5, 1, 2 and 5 when considering only an IL-7
effect on proliferation rate π. Penalized log-likelihood (PLL) and LCVa criteria.

d0.25 α = 0.5 α = 1 α = 2 α = 5

λ̃ -0.55 -0.10 -0.24 -0.10 0.22
ρ̃ -0.14 0.31 0.27 0.27 0.23
π̃ -3.10 -2.47 -2.54 -2.53 -2.54
µ̃Q -3.93 -3.22 -3.20 -3.19 -3.24
µ̃P -3.23 -3.12 -3.19 -3.08 -3.06
ν̃ -1.90 -2.04 -2.18 -2.18 -2.12

βπ 1.41 3.66 2.53 2.05 1.87

σλ 0.58 0.71 0.69 0.68 0.69
σρ 0.35 0.51 0.45 0.42 0.45

σCD4 0.22 0.26 0.26 0.27 0.29
σP 0.21 0.47 0.49 0.50 0.51

PLL -17.8 -147.5 -153.7 -170.4 -192.8
LCVa 0.67 5.48 5.70 6.32 7.16

5.3.7 Conclusion of the concentration model

All information contained in concentration data seems to be captured with data
from the dose received. Furthermore, in spite of different efforts to include the
estimated concentration in the statistical model we have not achieved as good
results as those obtained with the dose, not even approximately. This fact has
led us back to the previous “Dose model”. Nevertheless, we can keep in mind
the possibility of using estimated concentrations in the future, perhaps when we
had more information about drug distribution and/or more available data.
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5.4 Four-compartment model

5.4.1 Introduction

Our next goal was to develop a more complex model, that allows us to ade-
quately model the trajectories of CD4 count, and, especially, of Ki67 count.
Here, our aim was to divide both quiescent and proliferating compartments into
naive and memory cells. The most accepted way to differentiate these popula-
tions seems to be the expressed isoform of a surface molecule called CD45. The
isoform contained in most naive T cells has a segment encoded by an exon des-
ignated A, that can be called CD45RA+ (CD45 “restricted A”). Most memory
cells, on the other hand, express an isoform without the A exon RNA, and can
be called CD45R0+. However, this way of distinguishing naive from memory
T cells is not perfect, and interconversion between CD45RA+ and CD45RO+

populations has been documented (Abbas et al., 2011). We know that Inter-
leukin 7 modulates the homeostasis in both naive and memory T cells subsets
(Jaleco et al., 2003). However, the proliferation rates can differ between cell
populations (Fry and Mackall, 2005; Surh et al., 2006)

5.4.2 Description of the four-compartment model

For the sake of simplicity, the notation here has been slightly changed. In this
section, we have worked with the following populations:

• Naive non-proliferating cells (Q)

• Naive proliferating cells (P)

• Memory non-proliferating cells (Q’)

• Memory proliferating cells (P’)

As for the mathematical model, we are going to consider:

dQ
dt = λ+ 2ρP − µQQ− πQ

dP
dt = πQ− ρP − µPP − τP

dQ′

dt = 2ρ′P ′ − µ′QQ′ − π′Q′ + τP

dP ′

dt = π′Q′ − ρ′P ′ − µ′PP ′

A visual description of this model can be seen in Figure 5.4. The equilibrium
point for the usual values of the parameters can be found in Appendix B.

We are going to start with the simplest model: without feedback effect. As
for the statistical model, we start by considering an IL-7 effect on naive and
memory proliferation rate, as follows:{

π̃ = π̃0+ βπd
0.25

π̃′ = π̃′0+ βπ′d
0.25

and eventually we can consider supplementary effects on mortality rates µQ
and µ′Q, and on production rate λ or τ .
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Figure 5.4: Mathematical representation of the original 4 compartments model,
where proliferating naive cells become quiescent memory cells at rate τ


µ̃Q = µ̃Q0

+ βµQd
0.25

µ̃′Q = µ̃Q′0+ βµ′Qd
0.25

λ̃ = λ̃0+ βλd
0.25

τ̃ = τ̃0+ βτd
0.25

We have tried to use as information as possible from the two compartments
model, as the prior information. For example, for λ, (rate of production of the
non-proliferating cells), there was no reason to think it is going to change, so we
used for the prior an average of posterior values previously obtained. For the
conversion rate τ , we had no previously idea, so we have put a non-informative
prior, in order to have no influence in posterior results. In a first approximation,
we have kept the same parameters as being affected by random effects (λ and
ρ).

Observed compartments: We have observed, for 27 patients, the total cell
population (Q+Q′+P +P ′) as before, and the total proliferating cells (P +P ′),
total naive cells (Q+Q′) and proliferating naive cells. We must keep in mind that
more than 60 percent of the time we only have one of the four possible “observed
compartments” (the other three have not been measured). As before, we had
11 CD4 count measurements for every patient, obtained at W1, W2, W3, W4,
W5, W6, W9, W12, M6, M9 and M12 and only 5 measurements for Ki67 count,
naive cells count, and proliferating naive cells count (at weeks W1, W2, W3,
W5 and W12).

The model for the observations is as follows:

Y ij1 = 4

√
(P + P ′ +Q+Q′)(tij1, ξ̃

i) + εij1

Y ik2 = 4

√
P + P ′(tik2, ξ̃

i) + εik2

Y ik3 = 4

√
P +Q(tik3, ξ̃

i) + εik3

Y ik4 = 4

√
P (tik4, ξ̃

i) + εik4

(5.8)
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5.4.3 Results of the four-compartment model

In Table 5.7 the mean (in logarithmic scale) and standard deviation for all esti-
mated parameters are presented, with non-identifiable parameters in gray. We
have compared the four-compartment model previously exposed, and another
one with a slightly modification (see Figure 5.5), where proliferating naive cells
directly become proliferating memory cells at rate τ .

Figure 5.5: Mathematical representation of the modified 4 compartments model,
where proliferating naive cells become proliferating memory cells at rate τ

When regarding obtained values for τ and ρ’ we perceive some identifiability
problems, owing to insufficient information. Some fits for patients 16 and 17 are
shown in Figures 5.6 and 5.7 (for both patterns with only an effect on π and
π′).
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Figure 5.6: Fits of four-compartment model with an effect of IL-7 on π and π′

for patient 16. Horizontal arrow stands for a switch from naive proliferating
cells to memory proliferating cells. Diagonal arrow stands for a switch from
naive proliferating cells to memory quiescent cells.

Figure 5.7: Fits of four-compartment model with an effect of IL-7 on π and π′

for patient 17. Horizontal arrow stands for a switch from naive proliferating
cells to memory proliferating cells. Diagonal arrow stands for a switch from
naive proliferating cells to memory quiescent cells.
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Table 5.7: Estimated parameters mean for different several four-compartment
model. Non identifiable parameters are shown in gray. Non Penalized likelihood
(NPLL) and LCVa criteria.

HORIZONTAL ARROW DIAGONAL ARROW

Effect Effect Effect Effect Effect Effect Effect Effect
π π′ π π′ π π′ π π′ π π′ π π′ π π′ π π′

λ τ µQ µQ′ λ τ µQ µQ′

λ̃ 1.118 1.066 0.808 1.046 1.064 0.987 0.852 0.976
τ̃ -0.341 -0.339 0.140 -0.325 -0.048 0.039 0.531 -0.050
µ̃P -2.416 -2.390 -2.344 -2.318 -2.334 -2.163 -2.175 -2.262
µ̃P ′ -2.229 -2.233 -2.188 -2.229 -2.163 -2.017 -2.151 -1.806
ρ̃ 0.783 0.785 0.586 0.788 0.950 0.837 0.679 0.963
ρ̃′ -0.271 -0.262 -0.212 -0.256 -0.347 -0.376 -0.256 -0.386
π̃ -4.442 -4.464 -4.603 -4.467 -4.235 -4.304 -4.367 -4.237
π̃′ -3.728 -3.727 -3.722 -3.732 -3.705 -3.721 -3.694 -3.704
µQ -3.252 -3.303 -3.561 -3.335 -3.280 -3.360 -3.559 -3.364
µQ′ -3.878 -3.877 -3.853 -3.874 -3.924 -3.993 -3.867 -4.072

βπ 2.281 2.299 2.205 2.301 2.219 2.235 2.080 2.225
βπ′ 1.031 1.014 1.216 1.016 1.128 1.135 1.246 1.193
βλ - -0.042 - - - 0.641 - -
βτ - - -1.203 - - - -1.345 -
βµQ - - - 0.018 - - - 0.036
βµQ′ - - - -0.005 - - - -0.05

σλ 0.218 0.219 0.230 0.220 0.216 0.213 0.214 0.213
στ 0.419 0.425 0.544 0.432 0.405 0.445 0.557 0.411

σCD4 0.211 0.212 0.214 0.213 0.213 0.213 0.212 0.213
σP 0.304 0.300 0.293 0.298 0.298 0.296 0.291 0.293
σCD4N 0.369 0.364 0.334 0.361 0.363 0.365 0.347 0.357
σPN 0.218 0.217 0.220 0.218 0.224 0.220 0.221 0.226

NPLL -81.036 -80.810 -74.699 -80.643 -84.177 -83.505 -75.161 -83.356
LCVa 3.345 3.691 3.202 3.142 3.295 3.205 2.882 3.132
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5.5 Three β’s model

Here, we rededicated ourselves to the “basic model”, where two sub-populations
of CD4+ T cells, CD4+Ki67− (Q) and CD4+Ki67+ (P) are considered. As we
have found in Section 4.5, there is undoubtedly an strong effect of exogenous IL-
7 on proliferation of the so-called quiescent cells. Our main problem, however,
is that we have not managed to adequately fit the cell response in terms of the
trajectory of the proliferating cells.

We are going to focus on a major question: Have all the three injections the
same quantitative effect on proliferation of CD4+ T cells? Or, more accurately,
what is the role of every single injection in the whole effect of a cycle? To allow a
different proliferation effect between injections, the statistical model is modified
to let π to vary as follows:

 π̃ = π̃0 + β1d
0.25 for t days after the first injection

π̃ = π̃0 + β2d
0.25 for t days after the second injection

π̃ = π̃0 + β3d
0.25 for t days after the third injection

(5.9)

What first needs to be clarified is how long every injection can produce its
effect. Up to now, we specified 16 days as the period for the whole cycle effect;
but here we have to deal with every injection as a whole. This is important
because later in this work we are going to analyze data from the INSPIRE 2
and INSPIRE 3 studies. There, patients have not necessarily received complete
cycles, but sometimes they have received 2-injection cycles or even cycles with
a single injection.

In Table 5.8, likelihood functions and LCVa for t ∈ [2,7].

Table 5.8: Likelihood functions and LCVa when considering a r-hIL-7 effect on π
through a single βπ for 16 days and different β’s for t days. The effect on µQ has
been considered as previously (see Equation 4.9). Random effects are applied on
λ and ρ. Penalized log-likelihood (PLL), Non-Penalized log-likelihood (NPLL)
and LCVa criteria

PLL NPLL LCVa

Same β (t=16) -1.269 0.918 -0.033

t = 2 -15.474 -3.061 0.136
t = 3 -10.854 -0.453 0.029
t = 4 -5.847 2.375 -0.073
t = 5 0.998 7.177 -0.260
t = 6 8.309 11.978 -0.431
t = 7 20.981 18.361 -0.775

Best results have been obtained when considering an effect for 7 days fol-
lowing each injection. We improved 22 points of likelihood with respect to the
“basic model”, and is in fact the model that offers us the best results in terms
of likelihood and LCVa.
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To recapitulate, this model is built with the original mathematical model
with feedback, and fixed effects on π during 7 days after each injection, and on
µQ as usual. Let di the dose received for patient i, and let Ni

t the number of
injections that patient i has received until time t. The statistical description for
the proliferation effect remains as follows:

π̃i(t) = π̃0 +

3∑
k=1

1{Nit=k} βπk d
0.25
i 1{Nit−Nit−7=1}

As already mentioned, random effects are added on the production rate λ
and the reversion rate ρ. In Table 5.9 we have complete results for this model.

Table 5.9: Priors and estimated mean and standard deviation (sd) of all pa-
rameters (in logarithmic and natural scales) for the “3 β’s model” with an effect
on π for 7 days when considering patients from INSPIRE (1)

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.129 0.289 8.405 2.433
ρ 0.000 0.250 0.115 0.144 1.122 0.161
π -4.000 1.000 -2.802 0.638 0.061 0.039

µQ -3.600 0.500 -2.883 0.196 0.056 0.011
µP -2.500 0.500 -2.727 0.384 0.065 0.025
ν -2.500 2.000 -2.022 0.813 0.132 0.108

βπ1 - - - - 1.453 0.072
βπ2 - - - - 1.154 0.070
βπ3 - - - - 0.838 0.195
βµQ - - - - -0.260 0.079
σλ - - - - -0.257 0.086
σρ - - - - 0.391 0.133

σCD4 - - - - 0.210 0.011
σP - - - - 0.171 0.018

Penalized Log-Likelihood :18.361
NON-Penalized Log-Likelihood :20.981

LCVa :-0.775

The major improvement obtained with the “three-β’s model” is not in terms
of likelihood, but in terms of the descriptive capacity of the proliferating com-
partment. For the first time, an adequate fit of Ki67 count is achieved, as can
be verified in Figure 5.8.
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Figure 5.8: Fits for the “three-β’s model
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5.6 Three-compartment model

5.6.1 Basis of the three-compartment model

In this section, we have tried to build a mathematical model enabling differ-
ent injection effects in a mechanistic way. Let Q* being a third intermediate
compartment, where cells are ready to proliferate as in Figure 5.12.

Figure 5.9: Graphical representation for the 3 compartments model

As before, we consider that Q cells are produced at a constant rate λ, and
die at a rate µQ. But now, these Q cells become Q* cells at a rate τ . Q* cells
can proliferate to P cells at a rate π, and for reasons of simplicity, we consider
they die at a rate µQ∗ = µQ. As for the “basic model”, µP is the mortality rate
of P cells that, in turn, will become Q cells at a rate ρ (see Equation 5.10).

dQ
dt = λ+ 2ρP − µQQ− τQ

dQ∗

dt = τQ− µQQ∗ − πQ∗

dP
dt = πQ∗ − ρP − µPP

(5.10)

Several hypotheses can support such a behavior. As a first idea, we can
consider that there are some cells with a week density of CD127 (the Interleukin-
7 receptor), that will not immediately react to the immunotherapy, and on the
other hand there are some other cells with a strong density of CD127, that will
respond fast to the IL-7 and will start to proliferate without delay. Antibodies
against r-hIL-7 could take part of another hypothesis, and their presence would
have a direct effect on the response to injections.

This three-compartment model allows cells to have a “step by step” response
when τ is small enough. However, when τ tends to infinity we are in the case
of the 2 compartments model, and results will be the same. To start, we have
considered the “three-compartment model” without feedback, and best results
in terms of likelihood and LCVa have been found when the supplementary IL-7
effect was considered on λ, instead of µQ (see Equation 5.11).

53




π̃ = π̃0 + βπd

0.25 d ≤ 16
π̃ = π̃0 t > 16

λ̃ = λ̃0 + βλd
0.25 d ≤ 16

λ̃ = λ̃0 t > 16

(5.11)

As previously, we observe only data from CD4 count and Ki67 count (to
note that there are only two observable compartments for three “real” compart-
ments), so the model of the observations is the same as for the “basic model”: Y ij1 = 4

√
(P +Q+Q∗)(tij1, ξ̃i) + εij1

Y ik2 = 4

√
P (tik2, ξ̃

i) + εik2

(5.12)

In Table 5.10 we have numerical results for this “three-compartment model”,
that have been improved compared with the “basic model” (from -1.269 to 9.484
for the likelihood and from -0.033 to -0.377 for the LCVa. However, it has failed
to reach the level of the “three-β’s model”. Some modifications have been
therefore considered, that are explained in next Section.

Table 5.10: Results for the “three-compartment model” without feedback.Fixed
effects on π and λ. Non Penalized and Penalized likelihoods and LCVa critieria.

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 4.000 -0.081 0.133 0.922 0.123
ρ 0.000 4.000 -2.265 0.221 0.104 0.023
π -4.000 4.000 -4.857 0.092 0.008 0.001

µQ -3.600 4.000 -5.111 0.095 0.006 0.001
µP -2.500 4.000 -6.490 3.707 0.002 0.006
τ -2.500 4.000 -4.990 0.279 0.007 0.002
βπ - - - - 3.204 0.484
βλ - - - - 2.880 0.129
σλ - - - - 0.223 0.055
σρ - - - - 0.309 0.110

σCD4 - - - - 0.229 0.011
σP - - - - 0.163 0.016

Penalized Log-Likelihood :9.484
NON-Penalized Log-Likelihood :10.467

LCVa :-0.377

54



5.6.2 Three-compartment model with a thymic compart-
ment

With the aim of still improving statistical results and fits, we have looked at
some possible variations of the “three-compartment model”. One possibility
could be to let immature CD4∗ T cells to incorporate to the system more pro-
gressively. The generation of mature CD4+ T lymphocytes in the thymus can
be represented in the model described in Figure 5.10, incorporating a “thymic
compartment”.

Figure 5.10: Fits for the three-compartment model

In this case, mathematical model could be written as follows, where Th is
the new thymic compartment, and ω is the rate of entry of lymphoid progenitor
cells into the thymus. Results for this model will be shown in Section 5.6.4.

dTh
dt = ω − λTh

dQ
dt = λTh + 2ρP − µQQ− τQ

dQ∗

dt = τQ− µQQ∗ − πQ∗

dP
dt = πQ∗ − ρP − µPP

(5.13)

5.6.3 Three-compartment model with a Q+ compartment

We have also interrogated us about the possibility that not all cells expressing
the ki67 marker are really proliferating cells. Before explaining this second vari-
ation of the “three-compartment model” we expose a little background about
the Ki67 bio-marker. Ki67 is a nuclear protein associated with cellular pro-
liferation, a biological process essential to all living organisms for maintaining
homeostasis (Bologna-Molina et al., 2013). It was firstly identified in 1983 by
Gerdes et al. (1983), and it is known to be expressed in all active phases of
the cell cycle (G(1), S, G(2) and mitosis) while it is undetectable in resting
cells (G0). There is a bio-marker that has been largely used in cancer research,
because the fraction of Ki67+ tumor cells is often correlated with the clinical
course of the disease (Scholzen et al., 2000; Verhoven et al., 2013). But also it is
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the most widely used in HIV studies for measuring cellular proliferation (Douek
et al., 2001; Mohri et al., 2001; Chomont et al., 2009). However, we can consider
that Ki67+ is not lost immediately after mitosis, and then a small percentage
of CD4+ T cells expressing this bio-marker are no longer proliferating.

This is the theory besides the “Q+ compartment model”, graphically por-
trayed in Figure 5.11.

Figure 5.11: Graphical representation for the “three-compartment model” with
a Q+ compartment

The corresponding mathematical model being:

dQ
dt = λ+ αQ+ − µQQ− τQ

dQ∗

dt = τQ− µQQ∗ − πQ∗

dP
dt = πQ∗ − ρP − µPP

dQ+

dt = 2ρP − αQ+

(5.14)

In spite of our efforts, we have not been able to find a response for the
percentage of CD4+Ki67+ cells that are not really proliferating. Regardless,
we wanted to be in a position to allow CD4+ T cells to keep this marker for
a few time later but, unfortunately, this model did not lead us to significant
improvements, either in terms of likelihood values or fits (results not shown).

5.6.4 Three-compartment model with feedback

Here too, we have considered the fact of adding a feedback process. Nevertheless,
this “three-compartment model” offers us several possibilities. The feedback
term can be applied as usual on proliferation rate (Q∗ cells that are proliferating)
or on τ , Q cells that are converting into Q∗ cells, ready to proliferate.

Mathematical model with an hypothetical feedback term on both terms
would be as follows:

dQ
dt = λ+ 2ρP − µQQ− τQ

[
1

P+Q+Q∗

]η
dQ∗

dt = τQ
[

1
P+Q+Q∗

]η
− µQQ∗ − πQ∗

[
1

P+Q+Q∗

]ν
dP
dt = πQ∗

[
1

P+Q+Q∗

]ν
− ρP − µPP

(5.15)
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In terms of likelihood and LCVa, the model expressing a feedback effect
on proliferation rate provides us better results, with no major differences in
parameters estimation (see Table 5.11).

Table 5.11: Summary for the “three-compartment model” with and without
feedback. Fixed effects are considered on π and λ. Non Penalized likelihood
and LCVa criteria.

Without Feedback Feedback on π Feedback on τ

λ̃ -0.081 -0.514 -0.417
ρ̃ -2.265 -2.223 -2.208
π̃ -4.857 -2.301 -4.810
µ̃Q -5.111 -5.223 -5.202
µ̃P -6.490 -6.934 -6.830
τ̃ -4.990 -4.886 -3.263
ν̃ - -0.836 -
η̃ - - -1.255
βπ 3.204 3.221 2.948
βλ 2.880 3.234 3.151
σλ 0.223 0.261 0.250
σρ 0.309 0.293 0.292
σCD4 0.229 0.225 0.225
σP 0.163 0.158 0.164

NPLL 10.467 15.750 13.133
LCVa -0.377 -0.568 -0.470

Nevertheless, differences found in likelihood between the “three-compartment
model” with and without feedback are not observed in the descriptive capacity
of these two models (see 5.12).

5.6.5 Conclusion of the three-compartment model

The fact that the Q∗ compartment could not be identified discouraged us from
going ahead with this “three-compartment model”: despite our attempts we did
not found a satisfactory biological explanation for the Q∗ compartment. One of
the possibilities we regarded was that it could be related to the number of CD4+

T cells expressing the Inteleukin-7 receptor CD127, but no clear connection ex-
ists between the estimated curve of the Q∗ compartment and absolute observed
CD4+CD127high cells number. The fact that we did not have a convincing
hypothesis to explain this Q∗ compartment made us reconsider the “three-β’s
model”, that will be recovered in the next Chapter to model repeated cycles.
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Figure 5.12: Comparison of the “three-compartment model” with and without
feedback (on π or on τ). No differences are observed.
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Chapter 6

Modeling repeated cycles of
IL-7

6.1 Incorporating data from INSPIRE 2 and IN-
SPIRE 3 studies

As it has been said in Section 3.3, INSPIRE 2 and INSPIRE 3 are, to our
knowledge, the first and only clinical trials where repeated cycles of exogenous
Interleukin 7 have been administrated to HIV-infected patients. When adding
data from the 23 and 84 treated patients from INSPIRE 2 and INSPIRE 3,
respectively, we count on N=128 patients receiving at least one cycle of r-hIL-
7. Data have been included from the time of the first injection. Overall, 197
r-hIL-7 cycles were administered, 41 of them incomplete cycles consisting of 1
or 2 injections.

First of all, we applied the “three-β’s model” to first cycles of all 128 IN-
SPIRE patients. For the first twelve patients of INSPIRE 2, clinic visits were
scheduled as for the INSPIRE patients: at weeks 1, 2 and 3 (at the moment of
the injections), weeks 4, 5, 6, 9 and 12, and after that all three months until the
next cycle (if CD4 count < 550 cells/µL). For the remaining eleven patients of
INSPIRE 2, and for patients of INSPIRE 3, visits at week 9 were not performed.
Measurements of CD4 count were made within all visits for all patients, while
Ki67 count are available only for the first 12 treated patients of INSPIRE 2 at
weeks 1, 2, 3, 5 and 12 within the first cycle. For the rest of them, no Ki67
count measurements are available.

Here, we have changed the statistical model of the r-hIL-7 effect on µQ. In-
stead of considering that the effect begins at day 16 (two days after the third
injection), we have considered it to begin two days after the first one. This
allows us to homogenize complete cycles with cycles of one or two injections.
Also, it was difficult to accept a permanent mortality effect, since here we deal
with patients followed up for a long time. This is why, from now on, the ef-
fect on the mortality rate µQ is considered to be constant since two days after
the first injection for twelve months, followed by a linear decrease during other
twelve months, without significantly modifying the results obtained with previ-
ous models. The fixed effect on µQ can be written as µ̃Q = µ̃Q0 + βµQd

0.25f(t)
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with

f(t) =

 1 if 2 < t ≤ 360
1− (t− 360)/360 if 360 < t ≤ 720 (t in days)
0 if 720 < t

When incorporating data from all patients, with the indicated statistical
model, we obtain the results displayed on Table 6.1.

Table 6.1: Priors and estimated mean and standard deviation (sd) of all param-
eters (in logarithmic and natural scales) for the “3 β’s model” when considering
all the 128 patients (only data from the first cycle).

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.355 0.087 10.541 0.920
ρ 0.000 0.250 0.635 0.102 1.887 0.192
π -4.000 1.000 -3.306 0.125 0.037 0.005

µQ -3.600 0.500 -2.617 0.080 0.073 0 .006
µP -2.500 0.500 -2.187 0.258 0.112 0.029
βπ1 - - 1.155 0.079
βπ2 - - 1.120 0.081
βπ3 - - 0.622 0.073
βµQ - - -0.239 0.022
σλ - - 0.267 0.025
σρ - - 0.575 0.108

σCD4 - - 0.241 0.003
σP - - 0.305 0.025

Penalized Log-Likelihood :-279.8
NON-Penalized Log-Likelihood :-273.3

LCVa :2.136

There are some differences with respect to the values found when analyzing
only the INSPIRE (1) patients. Production rate and mortality rates have been
found to be is slightly bigger, contrary to proliferation rate. However, main
results are fully maintained. The quantitative effects of the successive injections
are not equal. They are all significantly different from zero; the first and second
ones are similar but the effect of the third one is considerably weaker. Here, when
considering data from all patients, we can also observe a noticeable improvement
with respect to the model with same β’s, since LCVa is equal to 2.136 vs 2.558
(results not shown).
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6.2 Cycle effect model: Effect of successive cy-
cles

In order to model the long-term effect of a r-hIL-7 cure, we must incorporate
information from repeated cycles to the data set. During a median follow-
up of 23 months, there were 33 patients receiving only one cycle, 60 patients
receiving two cycles, 13 patients receiving 3 cycles and an only patient received 4
cycles. There was no clear difference between the CD4+ T cells responses after
the first and the second cycle in patients receiving complete cycles. Median
months between cycles was 12 for INSPIRE 2 (because per protocol half of the
patients were followed for a year before administration of a new cycle) and 6 for
INSPIRE 3. 95 of the 107 initial cycles were completed, while 10 of them were
2-injection cycles and 2 were 1-injection cycles. As for the 90 repeated cycles,
there were 60 completed cycles, 15 2-injection cycles and 15 1-injection cycles.
The median number of injections received par patient over the follow-up was 5.
In this Section we care about the effect of repeated cycles, and a key question is:
Have repeated cycles the same quantitative effect than initial ones? Or, more
precisely, can the great increase in CD4+ proliferation be maintained through
repeated cycles in the long term?

Let βC be a new fixed effect to estimate: the so-called “cycle effect”, that
can be incorporated into the statistical model as follows:

π̃i(t) = π̃0 +
[
βC1{C(t)>1} +

3∑
k=1

1{Nit=k} βπk d
0.25
i

]
1{Nit−Nit−7=1}

where 1C(t)>1 equals to 1 if a cycle has been received before time t and 0
otherwise. As previously, we consider a constant effect on µQ for twelve months,
followed by a linear decrease for another twelve months if a new cycle is not
received.

Results for this “cycle effect model” are shown in Table 6.2. We found that
the “cycle effect” is distributed as βC ∼ N (−0.163, 0.015); that is, it is sig-
nificantly negative. In natural scale, we found e−0.163 = 0.85. The effect on
proliferation rate within successive cycles is found to be 0.85 times the effect of
the first one. Several explanations could justify this fact, as the presence of anti-
bodies anti r-hIL-7 after the first cycle. Also we must consider the homeostatic
regulation of CD4+ T cells, that naturally depends on the starting point. There
are significant differences in mean CD4 count before the initial and repeated
cycles: the mean CD4 count at baseline was 266 cells/µL whereas it was 456
cells/µL before repeated cycles.

Figures 6.1 and 6.2 show some fits of real data from INSPIRE 2 and 3
patients obtained with the “cycle effect model”.
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Table 6.2: Priors and estimated mean and standard deviation (sd) of all pa-
rameters (in logarithmic and natural scales) for the “cycle effect model” when
considering all cycles for each patient; Penalized and Non Penalized likelihoods,
and LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 1.672 0.061 5.323 0.326
ρ 0.000 0.250 0.892 0.093 2.440 0.226
π -4.000 1.000 -2.853 0.074 0.058 0.004

µQ -3.600 0.500 -2.610 0.068 0.074 0.005
µP -2.500 0.500 -2.567 0.200 0.077 0.015
βπ1 0.931 0.042
βπ2 0.707 0.043
βπ3 0.229 0.042
βµQ -0.082 0.006
βC -0.163 0.015
σλ 0.243 0.026
σρ 0.515 0.084

σCD4 0.289 0.003
σP 0.281 0.019

Penalized Log-Likelihood :-618.6
NON-Penalized Log-Likelihood :-609.4

LCVa :4.762
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Figure 6.1: Fits for the “cycle effect model” of total CD4 count for 12 patients
from INSPIRE 2 and 3 chosen randomly among those who received more than
a cycle.
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Figure 6.2: Fits for the “cycle effect model” of Ki67 count for 6 patients from
INSPIRE and INSPIRE 2 chosen randomly among those who had measurements
for this biomarker (only during the first cycle).
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We have investigated if the feedback term could explain this apparent “cycle
effect”. As CD4 count is significantly higher before repeated cycles, a feedback
mechanism could intervene by preventing CD4 count from surpassing a physi-
ological level of 1200-1300 cells/µL, through the already explained homeostatic
regulation. We have added a simple feedback term as previously:

dQ
dt = λ+ 2ρP − µQQ− πQ 1

(P+Q)ν

dP
dt = πQ 1

(P+Q)ν
− ρP − µPP

Numerical and identifiability problems when dealing with such a complex
model applied to this large data set prevented us from directly estimate the
feedback coefficient ν. Computing the likelihood for ν = 0.05, 0.1, 0.15, 0.2,
0.25, 0.30 we found best results when ν=0.1. Results for the “cycle model with
feedback” are shown in Table 6.3.

Table 6.3: Priors and estimated mean and standard deviation (sd) of all param-
eters (in logarithmic and natural scales) for the “cycle effect model” when con-
sidering all cycles for each patient including a feedback term with ν=0.1.
Penalized and Non Penalized likelihood, and LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 0.275 0.157 1.316 0.207
ρ 0.000 0.250 1.052 0.083 2.863 0.238
π -4.000 1.000 -1.975 0.068 0.139 0.009

µQ -3.600 0.500 -2.538 0.067 0.079 0.005
µP -2.500 0.500 -2.212 0.138 0.109 0.015
βπ1 0.806 0.038
βπ2 0.626 0.037
βπ3 0.212 0.035
βµQ -0.063 0.005
βC -0.153 0.015
σλ -0.608 0.097
σρ -0.440 0.071

σCD4 0.286 0.004
σP 0.301 0.021

Penalized Log-Likelihood :-598.0
NON-Penalized Log-Likelihood :-584.5

LCVa :4.567

We can observe that, despite the significantly feedback term this model does
not modify the cycle effect, which is still highly significant.
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6.3 Repeated cycles maintaining adequate CD4
count

We want to compare some different protocols of r-hIL-7 cycles administration
for an average patient (having both random effects equal to zero), in order to
study the long term efficacy of the treatment in some different scenarios. As for
INSPIRE 2 and INSPIRE 3 studies, we consider that CD4 count are measured
every three months, and a new cycle is administered when CD4 count<500
cells/µL. We have compared four protocols that can be described as follows:

• Protocol A: All repeated cycles

• Protocol B: An initial complete cycle followed by 2-injection cycles

• Protocol C: An initial complete cycle followed by 1-injection cycles

• Protocol D: All 2-injection cycles

Expected trajectories for every protocol can be found in Figure 6.3.

Figure 6.3: CD4 count (cells/µL) predictions for 4 years for a patient having
biρ = biλ = 0. Protocols A, B and C include a first complete cycle followed
by: complete cycles (A), two-injection cycles (B) and one-injection cycles (C).
Protocol D includes only 2-injection cycles. Vertical dotted lines are CD4 count
(every three months) and vertical solid lines are injections. Horizontal line
marks the CD4 threshold of 550 cells/µL.

These protocols were compared over a four-year period in terms of: number
of cycles and injections received, median CD4 count over the follow-up and time
(in days) spent below 500 cells/µL.

As can be observed in Table 6.4 we found no major differences regarding
median CD4 count or time under 500 cells/µL between Protocol A and Protocol
B (all complete cycles vs an initial complete cycle followed by 2-injection cycles).
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However Protocol B requires 15 injections instead of 21. As for the Protocol
C (initial complete cycle followed by 1-injection cycles) time spent under 500
CD4/µL is identical than in Protocol A with only 10 injections, but it achieves
a lower median CD4 count and it requires one more cycle. Protocol D is slightly
worse in terms of time below 500 cells/µL.

Table 6.4: Comparison of the number of injections and cycles received, time
under 500 CD4 count and median CD4 count for a patient with random effects
equal to zero for the four protocols through four years. In protocol A, the
patient always receives complete cycles; in protocol B, the patient receives a
first complete cycle followed by repeated cycles composed of two injections; in
protocol C the patient receives a first complete cycle followed by repeated cycles
of one single injection; in protocol D the patient always receives 2-injection cycles
(including the initial one)

A B C D

Number of injections received 21 15 10 14

Number of cycles received 7 7 8 7

Time under 500 CD4/µL (days) 60 73 60 87

Median CD4 count 678 663 588 654

6.4 Adaptive protocols

In this Section, we are going to apply these simulations to real patients from
INSPIRE 2 and INSPIRE 3. We have taken two patients and we collect CD4
count measurements during the first received cycle in order to calculate their
random effects values. We have used this information to compute expected
trajectories and determine which would be the best protocol for each one.

Patient A had a good response in terms of CD4 count. Parameters with
random effect have been estimated by Parametric Empirical Bayes as being λ
= 6.586 and ρ = 4.797 (all the other parameters are the population parameters
obtained in the “cycle effect model”).

In Figure 6.4 we display the expected trajectories for this patient.
Table 6.5 shows results for the four criteria. According to our model, the

four protocols lead to minor differences for the four criteria. Protocol B would
spare 2 injections with respect to Protocol A where having little impact on the
CD4 count, and even Protocol C and D would be admissible.

Patient B had a poor response in terms of CD4 count. The value of the
parameters with random effect for him have been estimated to λ = 3.284 and
ρ = 1.956 (all the other parameters are the population parameters obtained in
the “cycle effect model”).
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Figure 6.4: CD4 count (cells/µL) predictions for 4 years for a particularly good
responder patient. Protocols A, B and C include a first complete cycle followed
by: complete cycles (A), two-injection cycles (B) and one-injection cycles (C).
Protocol D includes only 2-injection cycles. Vertical dotted lines are CD4 count
(every three months) and vertical solid lines are injections. Horizontal line
marks the CD4 threshold of 550 cells/µL.

Table 6.5: Comparison of the number of injections and cycles received, time
under 500 CD4 count and median CD4 count for a “good responder” patient
for the four protocols through four years. In protocol A, the patient always
receives complete cycles; in protocol B, the patient receives a first complete
cycle followed by repeated cycles composed of two injections; in protocol C the
patient receives a first complete cycle followed by repeated cycles of one single
injection; in protocol D the patient always receives 2-injection cycles (including
the initial one)

A B C D

Number of injections received 9 7 5 6

Number of cycles received 3 3 3 3

Time under 500 CD4/µL (days) 3 3 3 3

Median CD4 count 721 709 669 703

In Figure 6.5 we display the expected trajectories for this patient. Table
6.6 shows results for the four criteria for this patient. Our model predicts that

68



Figure 6.5: CD4 count (cells/µL) predictions for 4 years for a patient with a
particularly poor response. Protocols A, B and C include a first complete cy-
cle followed by: complete cycles (A), two-injection cycles (B) and one-injection
cycles (C). Protocol D includes only 2-injection cycles. Vertical dotted lines are
CD4 count (every three months) and vertical solid lines are injections. Horizon-
tal line marks the CD4 threshold of 550 cells/µL.

this patient could benefit from 2-injection cycles (protocol B) without loss of
efficiency in terms of CD4 count or time over 500 cells/µL (the improvement
supposed in the table seems to be due to chance). In this case, 1-injection cycles
could not be considered since time spent below 500 cells/µL is much higher than
for 2-injection cycles and the patient would receive three more cycles. Also, the
median CD4 count is worse than for the rest of protocols. Protocol D could also
be considered.

As we said before, Parametric Empirical Bayes estimators allows us to esti-
mate prior distributions for random effects. A posteriori of the PEB estimator
asymptotically converges to the true values of patient’s parameters.
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Table 6.6: Comparison of the number of injections and cycles received, time
under 500 CD4 count and median CD4 count for a “bad responder” patient
for the four protocols through four years. In protocol A, the patient always
receives complete cycles; in protocol B, the patient receives a first complete
cycle followed by repeated cycles composed of two injections; in protocol C the
patient receives a first complete cycle followed by repeated cycles of one single
injection; in protocol D the patient always receives 2-injection cycles (including
the initial one)

A B C D

Number of injections received 30 27 18 26

Number of cycles received 10 13 16 13

Time under 500 CD4/µL (days) 561 366 893 381

Median CD4 count 549 617 470 611
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6.5 Conclusion

This Chapter can be found as an article in Appendix E, and it is projected to
be submitted to Annals of Applied Statistics in November 2015. It provides, as
main conclusions, the decreasing effect of successive injections on proliferation
rate and the weak but significant “cycle effect”. The introduction of the feedback
term has not significantly changed the fact that the effect of repeated cycles on
proliferation rate is slightly weaker than the effect of the initial one. Other
possibilities, as the presence of r-hIL-7 antibodies after the first cycle could be
considered.

Also, simulations show how these repeated cycles are able to maintain ad-
equate CD4 count for a long time. Despite the fact that the most appropriate
model depends on every individual, our results agree with the survival analysis
presented in Section 3.3.5. where no differences are found when comparing the
time spent over 500 cells/µL after a complete cycle or a 2-injection cycle.

Also, some other questions regarding the interaction between the r-hIL-7
and the immune system could be modeled with additional data, for instance,
preferential effects on specific T cell subsets as recent thymic emigrants (RTEs)
and naive non-RTE T cell populations (Mackall et al., 2011).

Finally, when talking about predictions and individual expected trajectories,
it has been said that Parametric Bayes Estimator allows us to estimate prior
distributions for random effects. The PEB estimators asymptotically converges
to the true values of patient’s parameters. Our results would, however, be more
accurate if “real” values for random effects could be computed.
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Chapter 7

Conclusion

In this thesis work we have focused on the effects of exogenous Interleukin 7 (IL-
7) on CD4+ T lymphocytes from a statistical point of view. We have worked
with an existing mathematical model based on a system of ordinary differen-
tial equations involving two cell compartments: quiescent Q and proliferating
P CD4+ T cells. This system naturally includes five biological parameters:
production rate λ of quiescent cells (cells entering the system, including thymic
production), proliferation rate π (from quiescent to proliferating), reversion rate
ρ (every P cell is divided and produces two Q cells) and mortality rates of both
sub-populations µQ and µP . The effect on proliferation rate was found to be
highly significant, as well as effects on mortality rate of quiescent cells and
production rate depending on the model. We have made some variations to
the original model with the aim of searching an improvement in terms of the
“goodness” of the model.

We have used a complex method for the estimation of the parameters that
was created in the team several years ago. A mixed effect model applied on
the biological parameters and a model for the observations, together with the
previously cited mathematical model constitute the backbone of this approach.
Over it, an algorithm based on a maximum likelihood estimation is used, where
the presence of random effects implies a hierarchical approach. This method,
that integrates the individual likelihoods over the random effects via the adap-
tive Gaussian quadrature, was subsequently adapted to compute the maximum
a posteriori of the assumed normal distributions. By using an approximated
variance matrix, and based on the Robust Variance Scoring (RVS) algorithm,
this approach was implemented in a Fortran program called NIMROD, which
has been used during this thesis work.

When modeling a single cycle of IL-7 injections, we did an unsuccessful
attempt to link a pharmacokinetic and a pharmacodynamic model (using the
plasma or the tissue concentration of exogenous IL-7) in order to study its
effect in a continuous form. This did not provide us satisfying results and we
focused on doing modifications in the mathematical and the statistical model
with the dose received. The first modification we tried within the mathematical
model was to add a “feedback effect” on proliferation rate, in order to boost
the natural tendency of the ODE system to return to the equilibrium point. A
small but significant improvement in likelihood functions and LCVa criteria was
unfortunately not followed by an improvement of fits of real data. We turned
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into more sophisticated mathematical model as the “four-compartment model”,
where quiescent and proliferating CD4+ T cells were in turn divided into naive
and memory cells. Data we had at our disposal were not sufficient to determine
if every one of these compartments was correctly fitted.

An important result was obtained when the statistical model was changed
in order to let every injection have a quantitative different effect within a cycle.
This “three-β’s model” has provided us the best results so far when modeling
a single cycle. The declining trend in the effect of successive injections leads
us to consider a “three-compartment model”, where we could assume a grad-
ual response of the quiescent cells, but it did not let us express this declining
response adequately. However, this descending trend (concretely the fact that
the third injection seems to have a weak effect) is probably the most important
result underlined by this thesis work.

This result was confirmed when analyzing data from INSPIRE 2 and IN-
SPIRE 3 studies, where repeated cycles of exogenous IL-7 were administrated
for the first time to HIV-infected patients that did not reach to improve im-
mune system to adequate levels after combined antiretroviral therapy (cART).
A Shared Gamma Frailty model studying the probability of dropping under 550
cells/µL showed that the Hazard Ratio when receiving 1-injection cycles was
equal to 4.29 (1.32,13.90) with regard to complete cycles. However, the fact
of receiving 2-injection cycles was not significant. The strongest predictor of
dropping below 550 CD4+ T cells was CD4 count at baseline (p < 0.001) while
other considered variables as age, sex, type of cycle (initial/maintenance), HIV
DNA levels at baseline... were not significant. As other important results, IN-
SPIRE 2 and INSPIRE 3 studies confirmed the main increase among naive and
central memory sub-populations with no relative rise of Tregs. When analyzing
the time spent over 500 cells/µL in patients with a follow-up of 21-24 months,
the median time spent above 500 CD4 count was 13.7 months (8.4,20.1).

When modeling data from repeated cycles, two major questions have been
highlighted: the decreasing effect of successive injections was confirmed when
including initial and repeated cycles from all INSPIRE patients. Also a “cycle-
effect” was identified, that may mean that repeated cycles could have a slightly
weaker effect than the initial ones. We tried to explain this apparent “cycle
effect” with the introduction of a feedback term, that could collect the natural
homeostatic regulation of the CD4+ cells. This term was not enough to explain
the “cycle effect”, and the doubt remains: is this apparent difference due to the
natural homeostasis process (that we have failed to capture with the “feedback
model”) or there are another factors that could explain this (as the presence of
antibodies after the first cycle)? And what is more important, has this apparent
difference an impact on CD4 count in the long term?

Our predictions suggest that the effect of r-hIL-7 can be maintained through
repeated cycles in the long term. When considering a regular patient (having
both random effects equal to zero) we found that, after a first complete cycle, 2-
injection cycles could be administered instead of complete cycles without having
a negative impact on CD4 count or time spent over 500 cells/µL. This result is
confirmed when applying predictions of different protocols of administration to
real patients. The inclusion of random effects (that are found to be significant)
allows us to consider this dynamic model as an assistance for personalized treat-
ment decisions. However, exact values for random effects could be necessary to
accurately predict the behavior of every protocol.
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To finish, some results are shown about an update of the local HIV epi-
demic obtained during a 3 months internship in Navarra (Spain). A descriptive
analysis of data was followed by an analysis of the variables related with the
diagnostic delay. IDUs as the way of transmission and old age were the vari-
ables that appeared to have the most important influence on the fact of having
a late diagnosis. Survival analysis offered some interesting results as the com-
parison between the survival time regarding the CD4 count at diagnosis. Some
parametrical models were adjusted, as the Weibull model, and finally, we tried
to estimate the number of people living with HIV without diagnosis. Software
provided by UNAIDS (Spectrum and EPP package) allows us to estimate that
approximately 2000 people could be infected with the HIV virus right now in
Navarra, while only half of them are diagnosed. These results should be con-
firmed with more accurate data about the different population risk sizes and
prevalences.
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Chapter 8

Résumé détaillé en français

Cette thèse a été entièrement financée par l’Institut de Recherche Vaccinale
(VRI). Le VRI a été labellisé en 2011 dans le cadre de la création des labora-
toires d’excellence (Labex) par le Ministère de l’Enseignement Supérieur et de la
Recherche, dont il a été un des lauréats. Son projet prolonge le programme vac-
cinal de l’ANRS, l’organisme public chargé de coordiner et financer la recherche
sur le VIH/SIDA et les hépatites virales. Le VRI est dirigé par le Pr Yves
Levy, et il a pour mission de répondre aux défis scientifiques et aux obstacles
que représente le développement de vaccins efficaces contre le VIH et l’hépatite
C. Ce travail de thèse s’inscrit dans la division Biostatistique et bioinformatique,
dirigée par le Pr Rodolphe Thiébaut.

8.1 Introduction

8.1.1 Contexte épidémiologique

Un des huit Objectifs du Millénaire pour le Développement (OMD) établis par
l’ONU comprenait la lutte contre le VIH/SIDA. Ces objectifs avaient comme
date d’expiration l’année 2015, et à cette occasion, ONUSIDA a présenté un
rapport pour décrire la situation actuelle. Dans ce rapport il a été estimé que
pendant l’année 2013 environ 2,1 millions de personnes ont été infectées (ce qui
représente une chute du 38% depuis 2001) et 1,5 millions de personnes sont
décédées pour des causes liées au SIDA. En ce moment, il est estimé que 35
millions de personnes vivent avec le VIH dans le monde (et la tendance est à
la hausse), dont 19 millions ne connaissent pas leur statut. Depuis le début de
la pandémie, environ 40 millions de personnes sont mortes. Malgré les progrès
accomplis pendant ces 30 ans, la problématique liée au VIH/SIDA constitue une
catastrophe humaine aux proportions énormes et implique un défi majeur aux
progrès et la stabilité des sociétés d’aujourd’hui.

8.1.2 Contexte biologique

En 1981 et 1982, plusieurs cas de pneumonie, candidose, sarcome de Kaposi
et diverses infections virales furent constatées aux Etats-Unis parmi de jeunes
hommes homosexuels. Assez tôt, un nouveau syndrome d’immunodéficience
humaine fut défini, mais l’agent étiologique restait inconnu. En 1983, le virus
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VIH fut isolé et identifié comme la cause de ce nouveau syndrome. Le VIH est un
rétrovirus appartenant à la famille des lentivirus. Il est capable de transcrire son
génome (codé sous forme d’ARN) en ADN, qui va s’intégrer dans le génome des
cellules hôtes. Deux types principaux peuvent être distingués: VIH-1 et VIH-2,
comprenant de nombreux groupes et sous-types. Le VIH-2, beaucoup moins
répandu, est moins virulent que le VIH-1 et présente une progression plus lente
vers le SIDA. Dans ce travail, nous ferons toujours référence au VIH-1, même
si nous utiliserons le terme VIH pour une question de clarté.

Peu de temps après la découverte du VIH, les molécules CD4 (situées à la
surface des lymphocytes T CD4+) furent identifiées comme les récepteurs cel-
lulaires utilisés pour le virus. Actuellement, nous savons que ce récepteur est
insuffisant pour la pénétration du virus, et que le cycle de réplication commence
quand la protéine virale gp120 rencontre le récepteur CD4 et un corécepteur
(CXCR4 ou CCR5) dans la surface cellulaire. Une fois que le virus pénètre
dans la cellule, l’enzyme transcriptase inverse permet la synthèse d’ADN à par-
tir d’ARN du virus. Cet ADN va être incorporé à la charge chromosomique
de la cellule (grâce à l’enzyme intégrase), et de nouvelles particules virales
vont être produites et libérées dans le milieu extracellulaire où elles chercheront
d’autres lymphocytes susceptibles d’être infectés. Cela se traduit par une pro-
lifération virale extrêmement importante au début de l’infection (pendant les
premières semaines ou mois), accompagnée d’une chute du niveau de lympho-
cytes CD4+. Après nous trouvons la phase asymptomatique, qui peut prendre
plusieurs années, pendant laquelle nous observons un état de “faux équilibre”
où la charge virale est à peu près stable et le nombre de CD4+ diminue très
légèrement. Cette phase va aboutir (à défaut d’un traitement efficace) à un
état d’immunodéficience sévère qui annonce la phase finale de la maladie (phase
SIDA). Le système immunitaire est épuisé et le patient meurt d’une maladie
opportuniste.

L’apparition de la thérapie antirétrovirale transforma le scénario de la pandémie
du VIH. Le groupe des NRTI (inhibiteurs nucléotidiques de la transcriptase in-
verse) fut le premier à apparâıtre. La Zidovudine (AZT) fut la première molécule
autorisée pour des patients atteints de SIDA, mais bientôt les résistances ap-
parurent (leur apparition a été estimée à environ 90% pour les personnes en
phase SIDA et 31% des personnes dans la phase initiale au bout de 12 mois).
Une deuxième molécule appartenant aux NRTI, Didanosine, fut employée pour
les personnes ayant développé une résistance à l’AZT, mais peu de temps après
on put observer que le problème des résistances était commun à toutes les
monothérapies (dû principalement à l’extraordinaire capacité de mutation du
virus). Ensuite, d’autres antirétroviraux apparurent, comme les PI (inhibiteurs
de la protéase) ou les NNRTI (inhibiteurs non-nucléotidiques de la transcriptase
inverse).

L’utilisation combinée de trois ou plus de ces antirétroviraux parvint à main-
tenir sur le long terme la réduction de la réplication virale et l’augmentation
du nombre de CD4+, ce qui représente une vraie révolution dans la prise en
charge de ces patients. De nos jours, l’espérance de vie des patients vivant avec
le VIH peut être comparée à celle de la population générale lorsque le nombre
de CD4+ peut être maintenu au-dessus de 500 cellules/µL. Dans la pratique, les
deux principaux critères pour évaluer l’effectivité de la thérapie antirétrovirale
sont la charge virale, qui devrait être aussi petite que possible, et le nombre de
lymphocytes T CD4+ par microlitre. En effet, même si la charge virale a été
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supprimée (elle n’est pas détectable), le nombre de CD4+ a une très grande in-
fluence dans la progression clinique des patients sous thérapie antirétrovirale. Il
a été montré dans de nombreuses études que plus le nombre de CD4+ est élevé,
moins important sera le risque de morbidité et de mortalité pour ces patients,
et cette différence est particulièrement remarquable lorsqu’on parle de faibles
niveaux de CD4+. C’est la raison pour laquelle il est si important de définir
le concept de Immunological Low Responder (des patients ayant une réponse
faible d’un point de vue immunologique bien qu’ils aient une bonne réponse vi-
rologique). Mais comme nous allons le voir, il y a des difficultés qui ont empêché
un accord universel pour cette terminologie.

8.1.3 Patients à faible réponse immunitaire

Une fois que le traitement antirétroviral est commencé, il faut s’attendre à une
diminution majeure de la charge virale jusqu’à des niveaux indétectables, et une
augmentation du nombre de CD4+ jusqu’à des niveaux considérés suffisants.
Néanmoins pour un petit pourcentage des patients le traitement va échouer et
la charge virale ne va pas devenir indétectable. Et aussi, pour un pourcent-
age non négligeable de patients, la réussite d’un point de vue virologique ne
s’accompagnera pas d’une réussite d’un point de vue immunologique. Ces pa-
tients peuvent être appelés Immunological Low Responders (qui ont une réponse
immunologique faible) mais ils ont aussi été appelés Immunological Non Re-
sponders ou Inadequate Immunological Responders. Mais plus important que
la dénomination c’est le fait de discerner qui sont les patients qui peuvent
être considérés comme des “mauvais répondeurs”. Y a-t-il un seuil qu’on peut
fixer, comme 500 cellules/µL? Doit-il s’agir d’un rapport entre les niveaux pré
traitement et post traitement, comme un pourcentage (d’au moins 25%) ou un
chiffre (une récupération d’au moins 100 CD4+)? Toutes ces possibilités ont été
utilisées dans la littérature scientifique, ce qui montre qu’il n’y a pas une seule
définition pour ces Immunological Low Responders. Aussi, une autre question
majeure est de déterminer combien de temps doit-on attendre après le début
du traitement pour déterminer si un patient a bien répondu ou pas. Le fait que
la thérapie antirétrovirale d’un patient soit modifiée assez régulièrement (dû à
l’apparition de nouveaux traitements, ou à cause des résistances...) implique
que l’effet d’une thérapie particulière sur le nombre de CD4+ à long terme n’est
pas facile à étudier. Deux théories s’opposent: celle qui suppose une augmenta-
tion faible mais continue du nombre de CD4+, même après plusieurs années de
thérapie, et celle qui mise sur un effet plateau, par lequel il existerait un nombre
maximal de CD4+ qu’on ne peut pas franchir, même en continuant la thérapie.

S’il est difficile de définir qui sont les patients considérés comme Immuno-
logical Low Responders, il est aussi également difficile d’estimer leur nombre.
Plusieurs auteurs ont donné des chiffres approximatifs pour ce pourcentage,
qui peuvent varier de 5 à 45%, en sachant que la réponse immunologique sera
d’autant plus satisfaisante que le nombre initial de CD4+ sera haut. Effec-
tivement le nombre de CD4+ au moment de commencer le traitement a été
identifié comme un facteur fortement associé avec le nombre de CD4+ au cours
du traitement, mais ce n’est pas le seul paramètre qui a une influence sur la
réponse immunitaire. La phase de l’infection pendant laquelle le traitement
est commencé (le plus tôt sera le mieux) et l’âge (peut être dû à son effet sur
la réponse thymique) vont aussi avoir une influence significative. Récemment,
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d’autres facteurs comme le niveau de cellules T régulatrices (Treg) ou le niveau
de la protéine inflammatoire 1β ont été proposés. Quelques travaux ont étudié
l’effet supplémentaire de certains antirétroviraux, comme le Maraviroc, sur des
Immunological Low Responders sans obtenir de réponses concluantes.

8.1.4 Immunothérapie

Les approches basées sur les antirétroviraux ne sont pas les seuls enjeux de la
recherche actuelle sur le VIH. L’immunothérapie (visant à obtenir une réponse
immunitaire effective capable de développer des défenses) est une des questions
majeures dans la scène actuelle de la recherche d’un traitement contre le VIH.
Nous allons nous focaliser sur cette première composante, l’immunothérapie.
Mise à part la problématique des patients Immunological Low Responders, l’étude
des effets de ces interventions visant à booster le système immunitaire est d’une
grande importance pour l’ensemble des personnes vivant avec le VIH. Dès le
moment où il a été réalisé que, malgré l’efficacité de la thérapie antirétroviral
combinée, elle n’arriverait pas à éradiquer l’infection (en tout cas dans un délai
de temps raisonnable), ces interventions supplémentaires ont été regardées avec
espoir.

Lorsqu’on parle de réponse immunitaire, il est naturel de considérer les In-
terleukines comme une des possibilités thérapeutiques. Les Interleukines ap-
partiennent à la famille des cytokines, qui agissent comme outils de commu-
nication parmi les lymphocytes. Elles vont permettre d’établir et contrôler
une réponse immunitaire adéquate. Les cellules immunitaires pourront de cette
façon transmettre des informations sur un processus infectieux qui seront reçues
par d’autres cellules ayant les récepteurs nécessaires. C’est un processus extrêmement
complexe; les signaux envoyés peuvent concerner autant l’activation, production
ou prolifération des lymphocytes CD4+ que le ralentissement de l’activité cel-
lulaire lorsque l’infection est surmontée. Ce processus est gravement perturbé
lors de l’infection par VIH, car la population de lymphocytes CD4+ est modifiée
quantitativement et qualitativement. Aussi, les signaux sont incorrectement en-
voyés et reçus, ce qui conduit à une impossibilité du système immunitaire de
préserver l’équilibre, et par conséquent à une destruction progressive.

Une des cytokines connues pour son influence sur le système immunitaire
est l’Interleukine 2 (IL-2). Sa capacité de stimuler la réponse immunitaire étant
connue avant la découverte du VIH, elle a été longtemps considérée comme le
candidat le plus prometteur pour l’immunothérapie contre ce virus. Depuis les
années 90, plusieurs études ont montré la capacité de l’IL-2 exogène (administré
de façon intermittente comme un complément de la thérapie antirétroviral com-
binée) à augmenter considérablement le nombre de lymphocytes CD4+. Elle
fut longtemps considérée comme une thérapie prometteuse, mais les espoirs
disparaissent avec l’apparition de deux études indépendantes, comprenant plus
de 5800 patients et présentés au même temps (lors du congrès CROI 2009:
16th Conference on Retroviruses and Opportunistic Infections). Ces études
ne réussissent pas à montrer une vraie différence dans les risque de décès ou
d’apparition de maladies opportunistes parmi les patients traités et les non
traités, malgré une incontestable augmentation du nombre total de lympho-
cytes CD4+. Peu de temps après on a attribué cette apparente contradiction
au fait que l’augmentation du nombre de CD4+ est due en partie à une expan-
sion importante des cellules T régulatrices, chargées d’inhiber l’activation, la
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prolifération et la production des cellules T effectrices.

8.1.5 Interleukine 7

Une autre cytokine identifiée comme ayant un rôle majeur dans la réponse im-
munitaire est l’Interleukine 7 (IL-7), elle sera la molécule clé dans ce travail.
L’Interleukine 7 fut identifiée pour la première fois en 1988 sous la forme d’un
facteur de prolifération des lymphocytes B. Peu de temps après on a découvert
qu’elle a, de la même façon, une importance capitale dans le développement
des lymphocytes T. L’IL-7 est sécrétée par la moelle osseuse et le thymus.
L’ensemble des mécanismes exacts par lesquels cette cytokine intervient dans
le contrôle immunitaire sont encore en train d’être étudiés. On connait déjà
son importance pour stimuler la régénération des cellules CD4+, par exemple
à travers la production thymique, ainsi que pour aider la prolifération et la
survie des cellules matures. La possibilité d’une thérapie utilisant de l’IL-7
exogène a aussi été envisagée dans d’autres maladies comme le cancer ou la sep-
ticémie. En 2009, les deux premiers études (à notre connaissance) évaluant
l’administration de Recombinant Human Interleukin 7 (r-hIl-7) aux person-
nes vivant avec le VIH furent présentées. Une premier étude fut focalisée sur
l’administration d’une seule injection de r-hIL-7 non glycosylée, et une deuxième
étudiait l’administration de huit injections de r-hIL-7 tous les deux jours (pen-
dant 16 jours). Selon les résultats de ces deux études une dose acceptable pour-
rait osciller entre 3 et 30 µg/kg. Une augmentation importante du nombre de
cellules fut observée dans quasiment toutes les sous-populations (avec un maxi-
mum vers 21 jours après la première injection), sans observer une augmentation
de la proportion des cellules T régulatrices. De la même façon, il fut observé
que presque toutes les cellules se mirent à proliférer d’avantage sous l’effet de
l’IL-7. Ces études ont été le point de départ des trois études INSPIRE, qui
ont été réalisées avec de l’Interleukine 7 glycosylée (ayant une demie vie plus
longue) et qui sont l’axe de ce travail.

8.2 Les études INSPIRE

8.2.1 Background: INSPIRE (1)

L’étude INSPIRE (1) a été présentée en 2012 et elle comprend 27 participants vi-
vant avec le VIH. Ces patients ont un nombre de CD4+ entre 101-400 cellules/µL
malgré une charge virale indétectable après au moins un an sous thérapie an-
tirétrovirale. Les patients ont été répartis dans trois groupes, recevant trois
injections hebdomadaires de r-hIL-7 (de 10, 20 ou 30 µg/kg) plus un groupe
témoin de 6 patients (tous les patients ont continué à recevoir la thérapie
antirétrovirale). Les résultats ont été encourageants: une augmentation im-
portante du nombre de cellules CD4 (dépendant de la dose) a été observée,
spécialement parmi les cellules naives et les mémoires centrales. Les cellules
prolifératives (mesurées par le marqueur Ki67) ont aussi connu une augmen-
tation, et ce sans augmentation significative du nombre de Treg. De ce fait,
l’Interleukine 7 est considérée comme une possibilité réelle et puissante pour
favoriser une bonne réponse immunitaire chez les Immunological Low Respon-
ders. Cela a conduit au lancement de deux études (INSPIRE 2 et INSPIRE
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3) envisageant la possibilité d’appliquer des cycles répétés d’Interleukine 7.
Ces cycles répétés ont comme objectif de maintenir le nombre de lymphocytes
CD4+ au-dessus d’un seuil préfixé et considéré comme adéquat (en l’occurrence
500 cellules/µL). Au cours de cette thèse, nous avons contribué à analyser les
données brutes provenant de ces deux études, et nous allons les décrire.

8.2.2 Analyse descriptive d’INSPIRE 2 et 3

INSIPIRE 2 et INSPIRE 3 ont également été menées avec des patients vivant
avec le VIH, sous thérapie antirétrovirale et ayant une réponse immune in-
suffisante (CD4+ ∈ ]100,400] pour INSPIRE 2 et CD4+ ∈ ]100,350] pour IN-
SPIRE 3) malgré une charge virale indétectable. INSPIRE 2 a été conduit
avec 23 participants (des Etats Unis et du Canada), qui ont reçu d’abord un
premier cycle (3 injections hebdomadaires) de r-hIL-7 à une dose de 20 µg/kg.
Les douze premiers patients ont attendu un an avant d’être à nouveau traités
lorsque leur nombre de CD4+ était inférieur à 550 cellules/µL. Le reste des
patients ont été contrôlés tous les trois mois et lorsque leur nombre de CD4+

était inférieur à 550 cellules/µL ils ont également reçu un nouveau cycle. IN-
SPIRE 3 comprend 88 patients de l’Europe (Milano et Zurich) et l’Afrique du
Sud (Johannesburg et Bloemfontein). Les patients d’INSPIRE 3 ont été divisés
en deux groupes, le groupe dit “CYT107” (en référence au nom de la molécule
utilisée) et le groupe “Control”. Le premier groupe a reçu un premier cycle
suivi de cycles répétés quand le nombre de CD4+ (mesuré aussi tous les trois
mois) était inférieur à 550 cellules/µL. Les patients du groupe “Control” ont été
suivis pendant 12 mois sans recevoir d’intervention (autre que continuer avec la
thérapie antirétrovirale). Après ces 12 mois s’ils étaient encore au-dessous de
550 cellules/µL ils ont commencé avec un premier cycle suivi des cycles répétés
si nécessaire comme pour le groupe “CYT107”. Sur un total de 107 patients
qui ont reçu au moins un cycle, 74 ont reçu un deuxième cycle, 15 ont reçu
un troisième cycle et uniquement un patient a reçu quatre cycles. Le nombre
total de cycles reçus a donc été de 197, dont 42 étaient incomplets (composés
d’uniquement une ou deux injections, au lieu de trois). Il est important de
signaler que le nombre moyen de CD4+ avant les cycles initiaux était de 266
cellules/µL, avec 473 cellules/µL avant le deuxième cycle et 373 cellules/µL
avant le troisième cycle. Quelques résultats provenant du premier cycle des pa-
tients d’INSPIRE 2 ont déjà été présentés par Irini Sereti en 2012 (notamment
les résultats concernant l’intégrité de la barrière intestinale à travers une biopsie
rectale).

Pour le reste des données, elles ont été présentées dans l’article Thiébaut
et al. (2015 in revision) et parmi les conclusions principales nous trouvons:

• Quant aux effets adverses, la r-hIL-7 a globalement été bien tolérée. Les
effets secondaires indésirables étaient de grade ≤ 1 (77,6%), de grade 2
(20,7%) et de grade > 3 (1,7%)

• Nous avons analysé le temps passé au-dessus de 500 CD4 parmi les patients
qui avaient un suivi complet de 21 à 24 mois. Il a été trouvé que la moitié
de ces patients ont passé plus de 63% du temps de suivi au-dessus de 500
cellules/µL. Le temps moyen au-dessus de ce seuil a été de 13,7 mois.

• Un modèle de Weibull (modèle paramétrique de survie réalisé grâce au
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package R “Frailtypack”) a été utilisé pour identifier quelles sont les vari-
ables ayant une influence significative sur l’évènement “passage en dessous
de 550 CD4 cellules/µL”. Il a été trouvé que le facteur le plus influent est
le niveau de CD4+ avant le traitement (p-value < 0,001, rapport de risques
= 11,1). Un des résultats principaux de ces études concerne l’efficacité des
cycles incomplets (composés de 1 ou 2 injections) par rapport aux cycles
complets (3 injections). Il a été trouvé que les cycles de deux injections
ne semblent pas avoir un effet différent des cycles complets, tandis que
le fait de recevoir un cycle composé d’une seule injection est significatif
(rapport de risques 4,29, intervalle de confiance (1,32, 13,90) à 95%). Un
autre résultat extrêmement important fait référence à l’effet des cycles
répétés par rapport aux cycles initiaux. Avec ce modèle, nous n’avons
pas trouvé des différences significatives (rapport de risques 0,86, intervalle
de confiance (0,51, 1,46) à 95%). Les autres variables étudiées (l’âge, le
sexe, l’origine ethnique, le temps depuis le diagnostic de VIH, la durée
de la thérapie antirétrovirale, la phase de l’infection lors du diagnostic ou
le niveau de charge virale avant le traitement avec r-hIL-7) étaient non
significatives.

• Une augmentation dans quasiment tous les sous-types cellulaires a été
observée, notamment parmi les cellules näıves et les cellules mémoires
centrales, ainsi qu’une augmentation du pourcentage des cellules qui pro-
lifèrent (mesurées par le biomarqueur Ki67). Et cela sans augmentation
de la proportion des cellules T régulatrices.

• Environ la moitié des patients ont eu des pics transitoires de charge virale
au-dessus de 50 cp/mL. 13% des patients d’INSPIRE 2 et 17% des patients
d’INSPIRE 3 ont eu des pics au-dessus de 200 cp/mL.

• En conclusion, les études INSPIRE 2 et INSPIRE 3 ont montré que les
cycles répétés de r-hIL-7 peuvent promouvoir et maintenir une restaura-
tion du nombre de lymphocytes CD4+ chez des patients sous thérapie
antirétrovirale combinée.

8.3 Modélisation mathématique

8.3.1 Contexte

Dans la recherche médicale, les modèles mathématiques basés sur des équations
différentielles ont été largement utilisés, en particulier les systèmes biologiques
qui décrivent l’interaction entre différentes populations cellulaires. Nous avons
travaillé avec des modèles dits mécanistes, qui expriment nos connaissances bi-
ologiques à travers des équations (dans notre cas, il s’agit d’un système d’équations
différentielles ordinaires : EDOs). Ces modèles peuvent être appelés des modèles
dynamiques, les équations cherchant à représenter les caractéristiques les plus
importantes des mécanismes biologiques sous-jacents.

Nos connaissances sur la dynamique virale du HIV ont augmenté significa-
tivement grâce à ces modèles dynamiques. En 1995 et 1996, Ho, Wei et Perelson
ont présenté les travaux qui peuvent être considérés comme le point de départ
de l’histoire de la modélisation du virus HIV. Ces premiers travaux nous ont
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permis d’avoir quelques estimations qui ont bouleversé les connaissances sur
l’interaction du système immunitaire et le virus. Il a été estimé que la demie
vie du virus dans le sang était de seulement 6 heures, tandis que le taux de
production pouvait atteindre les 1010 particules virales par jour. Grâce à ces
découvertes, il a été compris que l’équilibre apparent pendant la phase asymp-
tomatique de l’infection par VIH était la conséquence des dynamiques virale et
lymphocytaire très importantes. Ces modèles sont devenus progressivement plus
complexes au fur et à mesure que nos connaissances biologiques augmentaient.

8.3.2 Approche utilisée

Nous avons utilisé pour ce travail une approche mécaniste basée sur un système
d’EDOs qui est particulièrement intéressante pour sa partie statistique. Depuis
l’année 2007, l’équipe utilise une approche basée sur trois points principaux
: le modèle mathématique, le modèle dit “statistique” ou de variabilité des
paramètres et le modèle des observations, qui vont être décrits. Une approx-
imation fréquentiste du maximum de vraisemblance basée sur une adaptation
des méthodes de type Newton fut proposée en 2007. La présence dans nos
modèles d’effets aléatoires et la possible non-linéarité du système d’équations
complexifient cette méthode. Les effets aléatoires obligent à l’utilisation d’une
approche hiérarchique, où les vraisemblances individuelles vont être calculées
conditionnellement aux effets aléatoires. Après, une intégration pourra être
faite sur ces effets aléatoires. Cette approche a été ultérieurement adaptée pour
le calcul d’une approximation normale de la distribution a posteriori (justifiée
par le théorème de Bernstein-von Mises). Une approximation de la matrice
hessienne est utilisée, et l’approximation normale a posteriori peut être calculée
en maximisant la vraisemblance pénalisée. Cet approche semi-bayésienne nous
permet de pouvoir prendre en compte certaines informations connues a priori
sur la valeur de nos paramètres.

Le critère qui a été utilisé pour comparer les vraisemblances pénalisées a été
LCVa (une extension du critère d’Akaike qui permet de corriger pour le nombre
de paramètres et la pénalisation). Toute cette approche a été implémentée dans
le programme NIMROD. La procédure d’optimisation est basée sur l’algorithme
RVS (Robust Variance Scoring). Une fois que les scores individuels ont été cal-
culés grâce à l’aide de la formule de Louis, la vraisemblance observée et les
scores sont calculés comme la somme sur tous les individus. Finalement, ces
scores seront utilisés pour approximer la matrice hessienne. Cependant, NIM-
ROD est implémenté avec une option de passage à un algorithme classique de
Levenberg-Marquardt lorsque l’algorithme est bloqué. Cet algorithme est ro-
buste loin du maximum, lorsque la vraisemblance pénalisée n’est pas très proche
d’une forme quadratique. NIMROD a trois critères d’arrêt : deux classiques (un
seuil pour le déplacement dans l’espace des paramètres et un seuil pour la vari-
ation de la vraisemblance) plus un critère nommé RDM (Relative Distance to
Maximum). Ce critère peut être interprété comme un rapport entre l’erreur
numérique et l’erreur statistique. Une fois que l’algorithme a convergé, les tra-
jectoires individuelles peuvent être calculées grâce aux estimateurs Parameteric
Empirical Bayes (PEB).
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8.3.3 Modèle original

Ce travail de thèse est basé sur un modèle déjà existant (Thiébaut et al., 2014),
qui a été appliqué à des patients qui ont reçu un premier cycle de r-hIL-7. Ce
modèle comprend deux populations de lymphocytes CD4+: quiescentes (Q) et
prolifératifs (P). Les cellules Q sont produites à un taux λ, elles deviennent des
cellules P à un taux π et vont mourir à un taux µQ. Les cellules P vont diviser
et produire deux cellules Q à un taux ρ et elles vont mourir à un taux µP . Le
système mathématique peut être écrit ainsi:

dQ
dt = λ+ 2ρP − µQQ− πQ

dP
dt = πQ− ρP − µPP

Avec ξi = (λi, ρi, πi, µiQ, µ
i
P ) le vecteur des paramètres biologiques pour l’individu

i. Une transformation logarithmique est appliquée sur ces paramètres biologiques
pour assurer la positivité : ξ̃i = log(ξi). Un modèle à effets aléatoires est ap-
pliqué sur les paramètres biologiques pour permettre une certaine variabilité
interindividuelle. Il a été considéré que les injections de r-hIL-7 ont un effet sur
la prolifération pendant 16 jours après la première injection (chiffre trouvé par
profil de vraisemblance). Cet effet va dépendre du fait d’avoir reçu le traitement
(1trt), et aussi de la quantité de dose reçue (d).{

π̃ = π̃0 + β11trt + β2d d ≤ 16
π̃ = π̃0 t > 16

De la même façon, des effets supplémentaires peuvent être considérés sur le taux
de mortalité des cellules Q (dans ce cas-là l’effet est considéré après 16 jours
jusqu’au moins la fin du suivi) ou sur le taux de production :{

µ̃Q = µ̃Q0
+ β31trt + β4d t > 16

µ̃Q = µ̃Q0
t ≤ 16{

λ̃ = λ̃0 + β51trt + β6d t ≤ 16

λ̃ = λ̃0 t > 16

Deux effets aléatoires ont été considérés sur λ et ρ :{
λ̃i = λ̃+ biλ
ρ̃i = ρ̃+ biρ

Avec bλ et bρ étant des effets aléatoires Gaussiens, indépendants, de moyenne
zéro et variance σλ et σρ respectivement.

Le modèle des observations est basé sur plusieurs observations du nombre de
cellules CD4+ aux temps discrets tj1 et le nombre de cellules CD4+Ki67+ aux
temps discrets tk2. Les mesures réelles seront considérées comme la somme
des mesures observées plus une erreur de mesure ε (Gaussiens, indépendants,
de moyenne zéro et variance σCD4 et σP ) : Y ij1 = 4

√
(P +Q)(tij1, ξ̃

i) + εij1

Y ik2 = 4

√
P (tik2, ξ̃

i) + εik2
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Le résultat obtenue par Thiébaut et al. (2014) est que l’effet sur la pro-
lifération cellulaire est très important, mais il n’est pas suffisant pour expliquer
la variation dans le nombre de cellules CD4+. Le modèle est amélioré d’un
point de vue statistique lorsqu’on rajoute un effet sur µQ ou sur λ. Par contre,
les prédictios des deux modèles ne peuvent pas être distingués à l’œil, et aucun
modèle n’arrive à bien modéliser le comportement des cellules P.

8.3.4 Notre modèle de base

Nous avons construit notre modèle de base en partant du modèle expliqué
précédemment. Le modèle mathématique est le même, et le modèle statis-
tique change légèrement. Au lieu de considérer l’effet des injections de r-hIL-7
comme dépendant de deux variables : le fait d’être traité et la quantité de dose
reçue, on a juste considéré un effet dépendant de la dose reçue à une certaine
puissance. {

π̃ = π̃0 + βπd
η1 d ≤ 16

π̃ = π̃0 t > 16

et {
µ̃Q = µ̃Q0

+ βµQd
η2 t > 16

µ̃Q = µ̃Q0
t ≤ 16

Les valeurs des exposants ont été trouvées par profil de vraisemblance comme
η1 = η2 =0,25. Quand on applique ce modèle aux données d’INSPIRE 1 (N=27
patients qui ont reçu un cycle de r-hIL-7 selon les doses 10, 20 ou 30 µg/kg),
nous avons trouvé les moyennes du vecteur des paramètres (λ,ρ,π,µQ,µP ,βπ,βµQ ,
σλ,σrho,σCD4,σP ) = (7,700, 1,289, 0,029, 0,055, 0,070, 1,233, -0,178, 0,213,
0,387, 0,205, 0,228). La valeur de la vraisemblance pénalisé est de -1,269 et
le LCVa = -0,033. Les courbes obtenues avec ce modèle peuvent être trouvées
en rouge dans la Figure 5.1. Elles ont été comparées avec les courbes obtenues
lorsqu’on considère un seul effet sur le taux de prolifération. Nous avons cherché
à améliorer les prédictios des cellules P en introduisant un terme de rétroaction
(feedback). Ce terme sera appliqué sur le taux de prolifération, pour empêcher
le nombre de cellules d’augmenter au-delà de ce qui est raisonnable. Plusieurs

termes ont été considérés, comme
[

1
P+Q

]ν
,
[
e−(P+Q)

]ν
, eε(P+Q). Aucune de

ces modifications ne nous a pas permis d’obtenir d’améliorations majeures. Les
résultats les plus convaincants d’un point de vue statistique ont été trouvés avec
le premier terme pour le feedback. Le modèle peut être écrit comme :

dQ
dt = λ+ 2ρP − µQQ− πQ

[
1

P+Q

]ν
dP
dt = πQ

[
1

P+Q

]ν
− ρP − µPP

L’exposant ν étant significatif, il a été estimé à environ 0,26. Malheureusement,
ce modèle a le même comportement que le modèle sans feedback (et les mêmes
prédictios), et il demande un temps de calcul beaucoup plus important. Nous
reviendrons sur ce modèle mais d’abord nous étudierons quelques modifications
sur le modèle de base, ayant comme premier objectif l’amélioration des prédictios
des cellules P.
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8.3.5 Modèle pharmacocinétique

Nous avons quelques observations de la concentration de la r-hIL-7 au moment
de la première injection, ainsi que 2h, 4h, 6h, 24h et 96h après. Nous avons
utilisé ces informations pour travailler avec un modèle pharmacocinétique exis-
tent dans l’équipe pour décrire l’absorption, la distribution et l’élimination de
la r-hIL-7. Nous distinguons trois compartiments : le compartiment local (CL),
le compartiment plasmatique (CP ) et le compartiment tissulaire (CT ). Si nous
appelons ka le taux d’assimilation, cl le taux d’élimination, VP et Vt le volume
de distribution dans le compartiments plasmatique et tissulaire, et kpt et ktp les
taux d’absorption du plasma au tissue et du tissue au plasma, respectivement,
le modèle peut être écrit :

dCL
dt = −kaCL CL(0) = dose0

dCP
dt = kaCL

V0
+

ktpVTCT
V0

− kptCP − clCP CP (0) = 0

dCT
dt =

kptV0CP
VT

− ktpCT CT (0) = 0

Les paramètres ont été estimés à (ka, cl, V0, Vt, ktp = kpt) = (-2,67, -1,01, -2,55,
-3,10, -4,22), avec la contrainte ktp = kpt à cause de problèmes d’identifiabilité.
Ce modèle pharmacocinétique va nous servir de base pour un modèle pharmaco-
dynamique, où nous pourrons nous baser sur la concentration à tous les temps
au lieu de la dose reçue, ce qui va nous permettre d’avoir un modèle d’une ap-
parence plus “continue”. Quelques hypothèses ont été faites pour implémenter
ce modèle pharmacodynamique. Par exemple, la dose reçue a été considérée
comme étant indépendant du poids, la concentration utilisée a été la concen-
tration tissulaire à la puissance 0,40 (trouvé par profil de vraisemblance. Aussi,
nous avons décidé de ne pas inclure des effets aléatoires, dans le but d’obtenir
courbes moyennes qui seront proportionnelles à la dose reçue. Cela nous per-
met aussi d’économiser un temps de calcul considérable. Le modèle statistique
pour l’effet de la r-hIL-7 sur la prolifération peut alors s’écrire :

π̃ = π̃0 + βπC0.40
T

Contrairement à ce que pouvait être attendu, tous les résultats avec la con-
centration étaient moins satisfaisants que le résultat du modèle avec la dose.
Néanmoins, nous avons fait un dernier essai en considérant une fonction sigmöıde
comme fonction pharmacodynamique, sans succès.

8.3.6 Modèle à 4 compartiments

Lors de l’étape suivante nous avons utilisé un nouveau modèle mathématique:
le modèle à 4 compartiments. Ce modèle comprend quatre sous-populations
lymphocytaires, les cellules naives non prolifératives (Q), les naives prolifératives
(P), les mémoires non-prolifératives (Q’) et les mémoires prolifératives (P’). Ce
modèle va nous permettre de prendre en compte les différences existantes parmi
ces populations, comme la différence dans la prolifération. Les cellules naives
et mémoires vont être distinguées par les marqueurs CD45RA+ (naives) ou
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CD45RO+ (mémoire). Le modèle mathématique peut être écrit comme :

dQ
dt = λ+ 2ρP − µQQ− πQ

dP
dt = πQ− ρP − µPP − τP

dQ′

dt = 2ρ′P ′ − µ′QQ′ − π′Q′

dP ′

dt = π′Q′ − ρ′P ′ − µ′PP ′ + τP

Ou avec une petite modification, comme :

dQ
dt = λ+ 2ρP − µQQ− πQ

dP
dt = πQ− ρP − µPP − τP

dQ′

dt = 2ρ′P ′ − µ′QQ′ − π′Q′ + τP

dP ′

dt = π′Q′ − ρ′P ′ − µ′PP ′

Le modèle des observations peut être écrit:

Y ij1 = 4

√
(P + P ′ +Q+Q′)(tij1, ξ̃

i) + εij1

Y ik2 = 4

√
P + P ′(tik2, ξ̃

i) + εik2

Y ik3 = 4

√
P +Q(tik3, ξ̃

i) + εik3

Y ik4 = 4

√
P (tik4, ξ̃

i) + εik4

Différents modèles statistiques ont été appliqués, comme un effet de la r-hIL-7
sur le taux de prolifération des cellules naives et/ou mémoires, des effets addi-
tionnels sur les taux de mortalité ou de production. Nous avons toujours gardé
la même structure : un effet de la dose à travers la racine quatrième. Malgré
les nombreuses tentatives, les résultats obtenus étaient moins prometteurs que
ceux obtenus avec le modèle à deux compartiments.

8.3.7 Modèle à 3 β’s

Maintenant nous allons étudier le meilleur modèle obtenu avec les données d’un
seul cycle: le modèle à 3 β’s . Nous sommes donc retournés au modèle de base,
avec un changement majeur dans le modèle statistique. On va permettre aux
différentes injections d’avoir des effets quantitativement différents sur le taux
de prolifération. Si on considère que chaque injection a un effet indépendant
(pendant 7 jours) le modèle statistique peut s’écrire comme : π̃ = π̃0 + β1d

0.25 t ∈ ]0, 7]
π̃ = π̃0 + β2d

0.25 t ∈ ]7, 14]
π̃ = π̃0 + β3d

0.25 t ∈ ]14, 21]

Avec ce modèle, on a pu observer une amélioration très importante au niveau
des prédictios des cellules P, comme nous pouvons le vérifier dans la Figure 5.8.
L’enjeu est alors d’essayer d’intégrer cet échelonnement des effets des injections
dans le modèle mathématique.
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8.3.8 Modèle à 3 compartiments

Nous avons considéré un troisième compartiment, dans l’occurrence nommé
Q*, où les cellules non-prolifératives pourront rester dans un premier temps
lorsqu’elles seront prêtes à proliférer. Si on appelle τ au taux de passage de Q
à Q*, le modèle peut s’écrire :

dQ
dt = λ+ 2ρP − µQQ− τQ

dQ∗

dt = τQ− µQQ∗ − πQ∗

dP
dt = πQ∗ − ρP − µPP

Avec le même modèle statistique que pour le modèle à deux compartiments, et
un modèle des observations qui peut s’exprimer : Y ij1 = 4

√
(P +Q+Q∗)(tij1, ξ̃i) + εij1

Y ik2 = 4

√
P (tik2, ξ̃

i) + εik2

Quelques modifications mineures ont été faites sur ce modèle, comme le fait
d’introduire un compartiment thymique pour pouvoir représenter la génération
de cellules immatures (qui vont s’incorporer plus lentement au système). Aussi,
nous avons créé un nouveau compartiment pour mettre en évidence le fait qu’il
pourrait avoir des cellules qui venaient juste de proliférer, mais qui n’avaient pas
encore perdu leur marqueur Ki67. Ces modèles ont été explorés avec et sans
feedback, avec différentes possibilités pour le modèle statistique, sans jamais
obtenir les résultats du modèle “à 3 β’s”.

8.3.9 Modélisation des données d’INSPIRE 2 et 3

Modélisation des premiers cycles

Le modèle “à 3 β’s” a été ensuite appliqué à l’ensemble des données provenant
des premiers cycles de l’ensemble des patients provenants des études INSPIRE
(1), INSPIRE 2 et INSPIRE 3, avec une légère modification. Pendant ces deux
études, les patients ont été suivis pendant longtemps (environ 2 ans) et l’idée
de considérer l’effet de la r-hIL-7 sur la mortalité des cellules Q comme étant
permanent est plus difficilement justifiée. Cela nous a décidé à étudier un effet
sur µQ en deux étapes : un effet constant pendant une année après un cycle
avec une décroissance linéaire pendant la deuxième année, si un nouveau cycle
n’a pas été reçu, comme :

f(t) =

 1 if 2 < t ≤ 360
1− (t− 360)/360 if 360 < t ≤ 720 (t en jours)
0 if 720 < t

Lorsqu’on a appliqué ce modèle à l’ensemble des données d’INSPIRE 1, IN-
SPIRE 2 et INSPIRE 3, les valeurs obtenues des paramètres ont été (λ, ρ, π,
µQ, µP , βπ1 , βπ2 , βπ3 , βµQ , σλ, σrho, σCD4, σP ) = (10,541; 1,887; 0,037; 0,073;
0,112; 1,155; 1,120; 0,622; -0,239; 0,267; 0,575; 0,241; 0,305). La valeur de la
vraisemblance pénalisée était égale à -279,8 et le LCVa égal à 2,136.
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Effet cycle

Le dernier grand résultat est l’introduction d’un “effet cycle” dans le modèle
statistique. Nous allons inclure les données de tous les patients et tous les
cycles (initiaux et répétés). Lorsqu’on veut permettre aux cycles répétés d’avoir
un effet légèrement différent que les cycles initiaux, un nouveaux paramètre dois
s’ajouter au modèle statistique: que nous allons appeler βC . Si N i

t est le nombre
d’injections reçues par le patient i au temps t, et C(t) le nombre de cycles reçus
par le patient i au temps t, le modèle peut s’écrire comme :

π̃i(t) = π̃0 +
[
βC1{C(t)>1} +

3∑
k=1

1{Nit=k} βπk d
0.25
i

]
1{Nit−Nit−7=1}

Avec ce modèle, l’effet cycle est significatif (moyenne -0,163, écart type 0,015).
Dans l’échelle naturelle, cela revient à dire qu’un cycle répété a un effet de
0,85 fois l’effet d’un cycle initial. Pourtant, lors de l’analyse statistique des
données d’INSPIRE 2 et INSPIRE 3 nous n’avions trouvé aucune différence.
Pour analyser si ceci peut être due à un mécanisme d’autorégulation (du fait
que le nombre de cellules CD4+ avant un cycle répété et normalement bien
plus élevé qu’avant un cycle initial) nous avons réintroduit l’effet feedback dans
le modèle mathématique. Nous avons estimé le coefficient feedback par profil
de vraisemblance et nous avons trouvé ν = 0,1. Malgré l’amélioration de la
vraisemblance pénalisée (de 20 points) et le LCVa (de 0,2 points), cet effet
feedback n’a pas neutralisé l’effet cycle. Une autre explication pourrait être
la présence d’anticorps après un premier cycle, qui va faire que la réponse aux
cycles suivants sera un peu moins faible. Ce sont des suppositions qui pourraient
faire l’objet de recherches dans le futur.

Protocoles d’administration

Pour en finir avec la modélisation des cycles répétés, nous avons comparé différents
protocoles possibles d’administration des injections de r-hIL-7. Les protocoles
suivants ont été comparés pendant 4 ans: Protocole A (tous les cycles complets),
Protocole B (un premier cycle complet, suivi de cycles de deux injections), Pro-
tocole C (un premier cycle complet, suivi de cycles d’une seule injection) et
Protocole D (tous les cycles de deux injections). Nous avons comparés ces
protocoles en termes de nombre de cycles et d’injections reçus, temps passé au-
dessous de 550 CD4+ et nombre moyen de cellules CD4+ pendant les 4 ans.
Nous avons trouvé que, pour un patient moyen (ayant les effets aléatoires égaux
à zéro) le Protocol B peut offrir un nombre moyen de CD4+ et un temps passé
au-dessus de 550 cellules/µL très similaire au Protocol A, avec 15 injections
au lieu de 21. Les prédictions peuvent être trouvés dans la Figure 6.3. Nous
avons également comparé ces 4 scénarios pour deux patients réels d’INSPIRE
2 et INSPIRE 3, ayant eu une réponse particulièrement bonne et mauvaise aux
injections de r-hIL-7. Dans les deux cas le Protocol B (un premier cycle complet
suivi de cycles composés de deux injections) semble être suffisant pour maintenir
un niveau acceptable de CD4+ la plupart du temps (Figures 6.4 et 6.5).
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8.4 L’épidémiologie du VIH à Pamplona

Pour conclure, j’ai eu l’opportunité de faire un stage de 3 mois à l’Universidad
Pública de Navarra (Espagne) dans le cadre du projet Mérimée (qui cherche
à favoriser la coopération parmi les écoles doctorales françaises et espagnoles).
Le projet prévoyait une actualisation d’une étude populationnelle basée sur la
pandémie de VIH et SIDA à Navarra. Actuellement, 640.000 personnes habitent
dans cette région, dont la pyramide démographique corresponde à une popula-
tion âgée (Figure F.1). Le diagnostic et le traitement de l’infection par VIH
a lieu dans un petit nombre d’hôpitaux, ce qui permet d’avoir un registre très
précis des infections depuis que le premier cas fut signalé en 1985. Depuis ce
jour, 1861 personnes ont été diagnostiquées de VIH.

Nous avons premièrement actualisé une analyse descriptive de l’épidémiologie
du VIH et du SIDA. Dans la Table F.1 nous pouvons trouver la distribution des
nouvelles infections dans le temps. Dans les Figures F.2 et F.3 la distribution
de l’âge au moment du diagnostic est présenté séparément pour les hommes
et les femmes. Concernant la nationalité, les étrangers (les personnes nées en
dehors de l’Espagne) représentent environ le 35% des infections. En termes de
retard dans le diagnostic, l’âge semble avoir un effet significatif (les tranches
d’âge les plus élevées présentent un risque plus important de retard dans le
diagnostic). Aussi, pendant les années 1994-1997 (quand la voie sexuelle s’est
imposé comme la principale voie de transmission) le pourcentage de diagnos-
tiques tardifs est plus important que pendant les années 1990-1993. La voie
de transmission semble aussi avoir une influence (moins de retard dans le diag-
nostic parmi les consommateurs de drogues injectables). Ceci est possiblement
dû au fait que presque toutes ces infections ont été diagnostiquées au début de
la pandémie, quand une grande sensibilisation est apparue parmi les personnes
ayant des comportements à risque. Lorsque le retard dans le diagnostic est défini
comme un nombre de cellules CD4+ inférieur à 200 cellules/µL ou inférieur à
350 cellules/µL au moment du diagnostic, il n’y a pas de différences majeures
(Table F.3). Une étude de survie a aussi été réalisée pour le temps libre de SIDA
(temps passé entre le diagnostic de VIH et le diagnostic de SIDA). La courbe
de Kaplan-Meier en fonction de l’âge peut être trouvée dans la Figure F.5. Les
courbes sont significativement différentes lorsqu’on divise les patients selon leur
nombre de CD4+ au moment du diagnostic. Des modèles paramétriques ont
aussi été appliqués, comme le modèle de Weibull, dont les résultats peuvent
être trouvés dans la Table F.6. Nous avons finalement utilisé un logiciel nommé
Spectrum pour estimer le nombre de personnes qui vivent avec le VIH à Navarra
et qui ne sont pas diagnostiquées. Ce logiciel a été développé par ONUSIDA, et
il permet de faire ce type d’estimations à partir des données qui sont envoyées
périodiquement par les différents états. Nous avons utilisé ce logiciel pour cal-
culer le nombre de personnes infectées sans diagnostiquer en Espagne, et ce
chiffre a été adapté proportionnellement à la population de Navarra. Il a était
obtenu que 2045 personnes pourrait être infectées de VIH (le double de ceux qui
sont diagnostiqués actuellement). Ce résultat doit être mis en perspective car
d’autres informations sont nécessaires pour établir plus précisément le chiffre
d’infections, comme la taille et la prévalence parmi les populations à risque.

89



Appendix A

Appendix A: Computing
NIMROD calculation time

In order to try to minimize, as much as possible, the level of computational
complexity in NIMROD, we did several tests for comparing the calculation time
for the “basic model”.

We are placed on the original mathematical model:
dQ
dt = λ+ 2ρP − µQQ− πQ

dP
dt = πQ− ρP − µPP

considering only a r-hIL-7 effect on proliferation rate π through the fourth
rate of the dose: {

π̃ = π̃0 + βπd
0.25 t ≤ 16

π̃ = π̃0 t > 16

and a single random effect on lambda:

λ̃ = λ̃0 + bλ, bλ ∼ N (0, σλ)

We will use the GNU profiler, gprof, to study which parts of the program
are taking most of the execution time, and how we can to intervene with the
aim of reducing the calculation time.

Importance of the number of patients

We compare changes in computation time through two iterations (time ex-
pressed in seconds) when comparing the same model for a different number of
patients. A clear correlation was established between the number of patients
and the calculation time, that after our tests, could grow slightly faster than
a linear form. In NIMROD, values for the global variable ABSERR can be
provided (this variable is used in the subroutine optimization.f90 while it is
defined in module.f90 ). ABSERR is supposed to give us the absolute error we
are willing to accept when computing the derivatives. Value by default is equal
to 1

Np
with Np is the number of patients. We tested results when the value of

ABSERR was fixed (for instance at ABSERR = 1
30 ) and when it was depending
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to the number of patients, without founding significant changes (see Table A.1
for a comparison for 6, 12 and 100 patients).

Table A.1: Computational time (expressed in seconds) for two iterations of the
“basic model” when changing the number of patients

6 patients 12 patients 100 patients

ABSERR = 1
Np

28.8 90.4 814.7

ABSERR = 1
30 28.8 90.9 815.0

Analytic vs numerical solution

Sometimes, we are able to compute analytic solutions for the ODE system
so-called “mathematical model”. This is particularly true when we deal with
a linear system, as the “basic model”. In that case, we interrogated us about
the convenience of looking for and facilitating the analytic solution, instead of
let NIMROD to search a numerical solution. We compared the time taking
for computing trajectories of 6, 12 and 100 patients if the analytic solution is
delivery directly by the user and if it must be computed numerically (see Table
A.2).

Table A.2: Computational time (expressed in seconds) for computing trajecto-
ries of 6, 12 and 100 patients when the analytic solution is delivery and when
it must be computed numerically

6 patients 12 patients 100 patients

Analytic solution 0.034 0.069 0.603
Numerical solution 0.045 0.099 0.886

As expected, the analytic solution should be provided in order to minimize
the calculation time as much as possible (because computing trajectories can be
done thousands of times within every launched model); even if differences are
not as important as it may seem.
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Appendix B

Appendix B: Equilibrium
points

We have wondered about the stability of the equilibrium points of this EDO
system. An equilibrium point of a dynamical system generated by a system of
ordinary differential equations is a solution that does not change with time.

In this case, equilibrium points have been obtained (with Maple) as being:

Q0 = (ρ+µP )∗λ
π∗(µP−ρ)+µQ∗(ρ+µP )

P0 = π∗λ
π∗(µP−ρ)+µQ∗(ρ+µP )

Equilibrium points can be stable or unstable.

Classification of the equilibrium points depending on parameter’s
value  dQ

dt

dP
dt

 =

(
−µQ − π 2ρ

π −ρ− µP

) Q

P

+

 λ

0

 (B.1)

So A =

(
−µQ − π 2ρ

π −ρ− µP

)
(B.2)

If real parts of all eigenvalues are negative, then the equilibrium is asymp-
totically stable.

∗|A−ηI| =
∣∣∣∣ −µQ − π − η 2ρ

π −ρ− µP − η

∣∣∣∣ = (−µQ−π−η)(−ρ−µP−η)−2ρπ =

η =
−µQ − π − ρ− µP ±

√
(µQ + π + ρ+ µP )2 − 4[ρµQ + µQµP + πµP − ρπ]

2
(B.3)

So, condition for asymptotic stability:

ρµQ + µQµP + πµP − ρπ > 0 −→ ρµQ + µQµP + πµP > ρπ (B.4)

As a result, this division of the parameters space produces two complemen-
tary regions: a region RS where equilibrium points are asymptotically stable,
and a region RNS where equilibrium points are non-stable.
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• RS ρµQ + µQµP + πµP > ρπ

• RNS ρµQ + µQµP + πµP < ρπ

For parameter’s value in Rns, we are going to obtain P < 0, Q < 0. However,
this Rns region is not a problem for us because usual values we take for priors
and obtained estimations of parameters always belong to RS .

Equilibrium for the four compartments model

As for the four compartment models (described in 5.4), there is one only
equilibrium point if we adjust for the regular values of the parameters:

Q = λ(ρ+τ+µP )
−ρπ+ρµQ+µPπ+µPµQ+τπ+τµQ

P = λπ
−ρπ+ρµQ+µPπ+µPµQ+τπ+τµQ

Q′ =
NQ′

DQ′

P ′ = NP ′
DP ′

where

NQ′ = 2πρ′τλ

NP ′ = (π′ + µ′Q)πτλ

DQ′ = (µPπρ
′µ′Q+µPπµ

′
Pπ
′+µPπµ

′
Pµ
′
Q+µPµQρ

′µ′Q+τπρ′µ′Q+µPµQµ
′
Pπ
′−

µPµQρ
′π′− τπNρ′π′+τµQρ

′µ′Q+τπµ′Pπ
′+µPµQµ

′
Pµ
′
Q−τµQ ρ′π′−µPπρ′π′+

τµQµ
′
Pπ
′+τµQµ

′
Pµ
′
Q−ρπρ′µ′Q− ρπµ′Pµ′Q−ρµ′Qρ′π′−ρπµ′Pπ′ρµQµ′Pπ′+ ρµQµ

′
Pµ
′
Q+

ρπρ′π′ + ρµQρ
′µ′Q + τπµ′Pµ

′
Q)

DP ′ = (µPπρ
′µ′Q+µPπµ

′
Pπ
′+µPπµ

′
Pµ
′
Q+µPµQρ

′µ′Q+τπρ′µ′Q+µPµQµ
′
Pπ
′−

µPµQρ
′π′− τπρ′π′+ τµQρ

′µ′Q + τπµ′Pπ
′+µPµQµ

′
Pµ
′
Q− τµQ ρ′π′−µPπρ′π′+

τµQµ
′
Pπ
′ + τµQµ

′
Pµ
′
Q − ρπρ′µ′Q− ρπµ′Pµ

′
Q − ρµQρ′π′ − ρπµ′Pπ′ + ρµQµ

′
Pπ
′+

ρµQµ
′
Pµ
′
Q + ρπρ′π′ + ρµQρ

′µ′Q + τπµ′Pµ
′
Q)
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Appendix C

Appendix C: Coefficient of
the reversion rate

Sometimes, when this “basic model” has been presented at scientific meetings,
people have interrogated us about the coefficient of the reversion rate ρ in the
mathematical model (here expressed in a general form N):

dQ
dt = λ+Nρ P − µQQ− πQ

dP
dt = πQ−ρ P − µPP

Even if the biological background maintains the idea that N=2 (we say that
“every P cell divides and produces two Q cells”), we wanted to further explore
this decision. The loss of P cells is conditioned by the reversion rate ρ and
the mortality rate µP . We can put 3ρ, 4ρ or nρ and this will not have a real
impact (only the value of µP will be modify to keep the behavior of the second
equation). There is only one possibility that is not included in this analysis: the
case where the coefficient is equals to one:

dQ
dt = λ+ρP −µQQ− πQ

dP
dt = πQ− ρP − µPP

In this case there is not proliferation, and µP must be negative in order to
reach the same likelihood as with the previous model. But a constraint is applied
on biological parameters to prevent them from being negatives (the logarithmic
transformation). While keeping this constraint, we found that log-likelihood
and LCVa when N=1 are much worse (-177.5 and 5.74, respectively) than the
original model with 2ρ (-1.27 and -0.03).
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Appendix D

Appendix D: CID’s paper

Paper under review (minor revisions):

Thiébaut, R., Jarne, A., Routy, J.P., Sereti, I., Fischl, M., Ive, P., Speck, R.,
D’Offizi, G., Casari, S., Commenges, D., Foulkes, S., Croughs, T., Delfraissy,
J.F., Tambussi, G., Levy, Y., & Lederman, M.M. Repeated cycles of recom-
binant human Interleukin 7 in HIV-infected patients with low CD4 T
cell reconstitution on antiretroviral therapy: Results of two Phase II
multicentre studies. Submitted to Clinical Infectious Diseases (August 2015)
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Abstract 

Background: Phase I/II studies in HIV-infected patients receiving ART have shown that 

one cycle of 3 weekly subcutaneous (s/c) injections of Recombinant Human Interleukin 

7 (r-hIL-7) is safe and improves immune CD4 T cell restoration. Herein, we report data 

from two phase II trials evaluating the effect of repeated cycles of r-hIL-7 (20 µg/kg) 

with the objective of restoring a sustained CD4 T cell count over 500 cells/µL. 

Methods: INSPIRE 2 was a single arm trial conducted in the US and Canada. INSPIRE 3 

was a two arm trial with 3:1 randomization to r-hIL-7 vs. control conducted in Europe 

and South Africa. Participants with plasma HIV-RNA<50 copies/mL while on ART and 

with CD4 T cell counts between 101-400 cells/µL were eligible. A repeat cycle was 

administered when CD4 T cells fell below 550 /µL. 

Results: A total of 107 patients were treated and received one (n=107), two (n=74), 

three (n=14) or four (n=1) r-hIL-7 cycles over a median follow-up of 23 months. R-hIL-7 

was well tolerated. Four grade 4 events were observed including one asymptomatic ALT 

elevation. After the second cycle, anti-r-hIL-7 binding antibodies developed in 82% and 

77% (neutralizing in 38% and 37%) in INSPIRE 2 and 3, without impact on the CD4 T 

cell response. Half the patients spent more than 63% of their follow-up time with more 

than 500 CD4 T cells/µL. 

Conclusion: Repeated cycles of r-hIL-7 were well tolerated and achieved sustained CD4 

T cell restoration to over 500 cells/µL in the majority of study participants. 
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Introduction 

Antiretroviral therapy (ART) has led to a profound improvement in morbidity and 

mortality in HIV infection [1–5]. In some patients suppressing plasma viremia below 

detection levels is not associated with a significant increase of CD4 T cell counts [6,7]. 

This failure of CD4 T cell restoration is associated with increased morbidity [2,4] and 

those who present late in disease course are less likely to normalize CD4 T cell counts 

over time. These patients may therefore benefit from strategies to rapidly enhance CD4 

T cell recovery [8,9]. 

Early phase I/II trials evaluating the effect of Recombinant Human Interleukin 7 (r-hIL-

7) have shown T cell count increases, reasonable tolerance, and no increase in T 

regulatory cells but occasional instances of transitory plasma viral load rebound 

(“blips”) [10–12]. The administration of r-hIL-7 led to an increase in naïve and central 

memory CD4 T cells related to increased cell proliferation and possibly to an increased 

thymic output and/or cell survival [12,13]. In a substudy three months after the first 

injection an improvement in gut barrier integrity was observed as well as a decrease of 

inflammatory markers measured in the blood. [14]. As CD4 T cell counts exceeding 

500/µL have been associated with better clinical outcomes [3], we thought to examine 

the effect of repeated cycles of r-hIL-7 therapy on reaching and sustaining CD4 T cell 

count above this threshold. A simulation based on the mathematical modelling of the 

response to the initial treatment cycle suggested that repeated r-hIL-7 cycles might be 

helpful for this purpose [13]. Here we report on the effect of repeated cycles of r-hIL-7 in 

two Phase II multicentre studies on maintaining CD4 T cell counts above 500 cells/µL.  
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Methods 

 

Intervention: Recombinant Human IL-7  

Recombinant Human Interleukin-7 (r-hIL-7, product code number CYT107 by the 

Cytheris company at the time of the trials) is a glycosylated 152 amino acid r-hIL-7 

expressed in a Chinese hamster ovary (CHO) cell line. A first “induction” cycle of 3 

weekly subcutaneous (SC) injections of r-hIL-7 20µg/kg was given on days 0, 7, 14. 

Subjects were eligible to receive new “maintenance” cycles of r-hIL-7 if the CD4 T cell 

counts fell below 550 cells/µL at quarterly monitoring. 

 

Study Designs 

The designs of the two studies are summarized in Figure 1 (A and B).  

INSPIRE 2 (CLI-107-13) was a single arm clinical trial conducted in the USA (Case 

Western Reserve, NIH/intramural NIAID, University of Miami) and in Canada (McGill 

University Health Centre). The study was approved by the ethics committees of the 

participating institutions (University Hospitals/Case Medical Centre, NIAID, University 

of Miami and McGill Health Centre), and all subjects provided written informed consent 

at screening. The study was registered in clinicaltrials.gov, NCT01190111. Eligible 

participants had to be receiving ART for a minimum of one year with plasma HIV-RNA < 

50 copies/mL and with CD4 T cell counts between 101-400 cells/µL. Patients received a 

cycle of 3 weekly subcutaneous injections of r-hIL-7 20µg/kg [12]. The study was 

amended 12 months after its initiation to repeat cycles of CYT107 administration to 

maintain CD4 T cell counts > 500 cells/µL.  
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INSPIRE 3 (CLI-107-14) was an open-label, controlled, randomized trial of r-hIL-7 

treatment to restore and maintain CD4 T cell counts above 500 cells/µL. This trial was 

conducted in Italy (Milano, Brescia, Roma), Switzerland (Zurich) and South Africa 

(Johannesburg and Bloemfontein) and was approved by the ethics committees of the 

participating institutions; all subjects provided written informed consent at screening. 

The study was registered in EudraCT, #2010-019773-15 and clinicaltrials.gov, 

NCT01241643. Eligible participants had to be receiving ART for at least 2 years with 

plasma HIV-RNA < 50 copies/mL for at least 18 months and with CD4 T cell counts 

between 101-350 cells/µL.  

While treated by ART, patients were randomized in two (2) arms “CYT107 Arm” and 

“Control Arm” with a ratio 3:1 (3 CYT107: 1 control). Patient randomized to the “CYT107 

Arm” received induction treatment within 2 weeks and then were followed quarterly. r-

hIL-7 was administered at the dose of 20 µg/kg for 3 weekly administrations. A new 

cycle of r-hIL-7 (3 weekly doses) was administered if at any quarterly evaluation the 

CD4 T cell count fell below 550 cells/µL. A maximum of four cycles was administered 

over 21 months and 3 over the first 12 months. Patients randomized to the “Control 

Arm” were followed without receiving study treatment for one year. If CD4 T cell counts 

were still below 500 cells/µL, an induction cycle of r-hIL-7 of 3 weekly doses was 

administered and then, repeated maintenance cycles of r-hIL-7 were given if quarterly 

evaluations showed CD4 counts below 550 cells/µL. 

 

In both trials, patients with chronic hepatitis B or C or who were seropositive for HIV-2 

or HTLV 1 or 2 were excluded. 
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End Points 

Here we report the restoration and maintenance of CD4 T cell counts above 500 cells/µL 

in HIV-infected patients who had failed to recover adequate immunological status 

(based on CD4 T cells count) despite virological control. Routine safety assessments 

included measurement of plasma HIV RNA levels, proviral DNA in circulating PBMC and 

assays of anti-CYT107 antibodies. Occurrence of adverse events was monitored during 

each cycle of CYT107 as well as at each quarterly visit. Markers of coagulation and 

inflammation (D-Dimer, sCD14, 16sDNA) were also monitored in some subjects as 

reported elsewhere [14]. 

 

 

Circumstances of premature study termination 

INSPIRE 3 was prematurely terminated as the Cytheris company was liquidated on June 

18th 2013. All patients were however followed for at least 3 months after the last study 

drug administration as per protocol. 

 

Immunogenicity analyses 

Anti-CYT107 antibodies in heparinized plasma were measured by ELISA (MSD® 

technology) at d0, d28 and d35 of the first cycle, and d0 and d28 of later cycles. 

Measurement was also performed at 3 months, and repeated every three months if 

positive. Neutralizing antibodies against CYT107 were detected in heparinized plasma 

using a cell-based bioassay. Briefly, plasma samples and controls were prepared in 4% 

plasma and 2x concentration of IL-7, and incubated for 1 hour at 37°C in 5% CO2 to 

allow neutralizing antibodies to bind the IL-7. Next, an equal volume suspension of a 
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murine IL-7 dependent B cell line (PB-1, 4 x.106 cells/mL) was added to each well. The 

plate was incubated 44-48 hours at 37°C, in 5% CO2. CellTiter 96® AQueous One 

Solution (-MTS, Promega) was added to all wells and the plate was incubated for 

approximately 4 hours at 37°C/5%CO2. Absorbance at 490nm was then read on a plate 

reader to measure cell proliferation. 

 

HIV-DNA quantification 

HIV1-DNA quantification was performed at d0, d28, d90 and at the end of study for 

INSPIRE 2 on whole blood samples using a quantitative real-time PCR method. DNA was 

extracted from whole blood samples and HIV load quantified by nested qPCR, using a 

technique allowing detection of 2 copy of HIV DNA per reaction [15].  

 

Statistical methods 

The analyses were performed with R Version 3.0.2 or later (2013 The R Foundation for 

Statistical Computing). 

For studying the percentage of time spent with CD4 T cell count exceeding 500 CD4 T 

cells/µL, patients from INSPIRE 2 and the CYT107 arm of INSPIRE 3 with a follow-up of 

21-24 months were included. The analysis was adjusted for baseline CD4 T cell count 

classified in two strata: [101-200] and (200-350]. To study the factors associated with a 

drop of CD4 T cell count below 550 cells/µL, only patients with CD4 T cell count > 550 

cells/µL two weeks after the last injection were included. The time spent above 550 CD4 

T cells/µL was imputed by linear interpolation when a measure below 550 cells/µL was 

observed; otherwise, the observation was right-censored (no drop observed until this 

date). A proportional hazard model was used for studying the effects of covariates 
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(initial CD4 count, age, gender). Since most patients had repeated cycles of injections, 

they could fall below 550 cells/µL several times; therefore, the correlation between 

times observed in the same patient had to be taken into account (precluding the use of 

an ordinary Cox model). For this purpose, a shared gamma frailty model was used. The R 

package Frailtypack allowed us to fit the hazard function using a parametric model 

(assuming a Weibull hazard function) [16].  
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Results 

Study population 

Eligibility for INSPIRE 2 and 3 is presented in Figure 2. Among the 111 patients included 

in the two trials (23 in INSPIRE 2 and 88 in INSPIRE 3), the median (IQR) CD4 T cell 

count at baseline was 263 (191; 320) in INSPIRE 2 and 266 (215; 326) cells/µL in 

INSPIRE 3. Patient characteristics are described in Table 1. During a follow-up of 23 (22; 

24) and 22 (20; 23) months respectively, most patients started two treatment cycles but 

some cycles were incomplete with receipt of one or two injections rather than three 

(Figure 3). The median number of total injections received was 5 (3; 6). Treatments 

received by the 107 treated patients are summarized in Table 2. 

 

CD4 T cell response 

CD4 T cell and CD4 T cell subpopulation responses (supplementary Figure 1) were 

similar to published data in the 23 INSPIRE 2 patients [11,12,14]. Briefly, the CD4 cell 

increase was mainly among naïve and central memory cells following r-hIL-7 injections 

with a transient increase of Ki67+ (cycling) CD4 T cells and without any relative increase 

of markers associated with T regulatory cells. Total CD4 T cell dynamics were similar in 

INSPIRE 2 and INSPIRE 3, therefore the data were merged (Figure 4 A and B) for further 

analyses. There was no clear difference between the CD4 T cell responses after the first 

and the second cycle in the 95 and 49 patients who received complete (3 injections) first 

and second cycles respectively (Figure 4 C). During the maintenance cycles (second and 

later cycles), the CD4 T cell responses are presented according to the number of 

injections received (Figure 4 D). 
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Among the 23 and 86 patients exposed to r-hIL-7 in INSPIRE 2 and INSPIRE 3, 26% (6) 

and 16% (14) developed anti drug binding antibodies (ADA) to CYT107 at the end of the 

first cycle. After the second cycle, these proportions increased to 82% and 77% in the 14 

and 44 patients exposed, respectively. Neutralizing antibodies developed in none of 23 

patients in INSPIRE 2 and in one of 86 patients in INSPIRE 3 after the first cycle and 6 

(38%) and 21 (37%) patients after the second cycle in INSPIRE 2 and 3 respectively. 

There was no impact of the presence of antibodies on the CD4 T cell dynamics 

(supplementary Figure 2). 

The median time spent above 500 CD4 T cells/µL for the 76 patients with a follow-up of 

21–24 months after the first injection was 13.7 months (8.4, 20.1). Half of these patients 

spent more than 63% of their follow-up (that ranged between 21-24 months) with more 

than 500 CD4 T cells/µL. To look at the factors associated with the probability of 

dropping below 550 CD4 T cells/µL (the threshold to start a new cycle of r-hIL-7) in the 

95 patients who achieved a CD4 T cell count above 550 cells/µL two weeks after a cycle, 

a Shared Gamma Frailty model was adjusted for the baseline CD4 T cell count, the 

number of injections in each cycle and the type of cycle (initial or maintenance). In this 

model (Table 3), fewer injections had a higher probability of dropping below 550 CD4 T 

cells/µL (p=0.023). This probability was greater after one injection (HR=4.3, CI=1.3; 

13.9) than after three injections whatever the cycle. The difference between two and 

three injections was not significant (HR=2.2, CI=0.79; 6.6). Lower baseline CD4 T cell 

count was the stronger predictor (p<.0001) of dropping below 550 CD4 T cells/µL, with 

risk increasing dramatically in persons with fewer than 200 CD4 T cells/µL at baseline 

(HR=11.1, CI=4.0; 30.7). The type of cycle (initial vs. maintenance) was not associated 

with the probability of dropping below 550 CD4 T cells/µL (p=0.57). Other variables: 
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age, sex, ethnic origin, time since HIV diagnosis, duration of cART, stage at diagnosis and 

proviral HIV DNA levels at baseline were not found to be predictive for CD4 T cell drop 

(data not shown). 

 

Safety and tolerability 

A total of 198 cycles were administered to 113 patients (including two participants who 

withdrew) and r-hIL-7 was overall well tolerated. A total of 1300 drug Related Adverse 

Events (RAEs) were reported, most (77.6%) were grade ≤1, 20.7% grade 2 and 1.7% 

grade ≥3. The mean number of RAEs reported at each cycle did not vary. The most 

common r-hIL-7-related AEs (RAEs) were injection-related reactions of grade 1 or 2, 

primarily local erythema (53.8%), grade 1 lymphadenopathy (7.5%), grade 1 fever 

(2.5%), rash of grade 1 or 2 (2.4%) and fatigue of grade 1 (3.6%). No deaths related to r-

hIL-7 were reported. Three serious adverse events related to r-hIL-7 were reported: two 

grade 3 rashes and one grade 1 rash associated with a hospitalization. Two patients 

were treated with oral corticosteroids for apparent hypersensitivity reactions. Five 

patients developed an anaphylactic/allergic reaction, one grade 2 and four grade 3. 

These comprised of diffuse, pruritic rashes associated in one patient with swelling of the 

tongue. No pulmonary symptoms or alterations in pulse or blood pressure were 

reported. No immune reconstitution inflammatory syndrome was reported neither. In 

four patients, treatment included antihistamines and corticosteroids for one day that led 

to resolution of all symptoms. One patient was treated with antihistamines only and 

recovered in three days. AST/ALT elevations were reported in 10 patients (9.2%), most 

were grade 1 or 2 (88%). One patient developed an asymptomatic grade 4 AST/ALT 
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elevation that was considered a probably RAE. Ten patients developed grade ≥ 3 AE of 

hypophosphataemia, three were considered possibly RAEs. 

 

The HIV RNA and DNA changes 

Nearly half of the patients had HIV RNA blips exceeding 50 copies/mL and 13% in 

INSPIRE 2 and 17% in INSPIRE 3 exceeded 200 copies/mL (Table 4). Injection of r-hIL-7 

was postpone in four patients because of these blips. In 18 patients of INSPIRE 2, there 

was an increase of the HIV DNA concentration from a median of 1.97 log10 copies/mL 

(1.39, 2.48) to 2.58 (2.00, 2.96) at day 28 (p<0.0001) and 2.27 (1.65, 2.85) at 3 months 

(p<0.0001) after the first cycle (supplementary Figure 3).  

 

Plasma coagulation and Inflammatory markers 

D-dimer, measured in INSPIRE 3, did not change significantly from baseline with a mean 

level of 0.274 mg/L (std +0.179) at baseline and 0.323 mg/L (+0.507) at M12 and 0.224 

mg/L (+0.113) at M21. Likewise, CRP levels in INSPIRE 2 and 3 remained the same 

during the course of the study: 6.1 (+9.4 mg/L) at baseline, 4.2 (+6.0 mg/L) at M12 and 

6.1 (+17.9 mg/L) at M21 (supplementary figures 4, 5). 
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Discussion 

We report the results of the first two studies evaluating the effect of repeated 

administration of cycles of r-hIL-7 on immune restoration. The first treatment cycle 

increased naïve and central memory CD4 T cells as reported previously [11,12]. We 

found that repeated r-hIL-7 cycles led to even greater increases in CD4 T cell counts 

resulting in a longer time spent above 500 cells/µL for those who received at least two 

injections per cycle. Although repeated doses of r-hIL-7 led to the development of both 

binding and neutralizing antibodies against the product, this was not associated with 

any blunting of the CD4 T cell increases induced by r-hIL-7 administration. 

As shown in an INSPIRE 2 substudy, administration of r-hIL-7 was associated with 

improvement of gut barrier integrity and a decrease at 3 months in 

inflammatory/coagulation markers sCD14 and D dimers [14]. In this larger study 

however, D-dimer decreases were not observed at three months nor did we see a 

decrease in CRP levels. We found here that repeated cycles of r-hIL-7 led to a longer time 

spent with CD4 cells above 500 cells/µL. The clinical impact of this CD4 T cell increase is 

unknown and needs to be explored through a larger scale randomized clinical trial 

focusing on the occurrence of clinical endpoints.  

r-hIL-7 appears to have a reasonable safety profile even with repeated cycles of 

administration. The study product was tolerated well and the incidence of serious 

adverse events was low enough to allow consideration of further development with the 

goal of asking if CD4 T cell increases result in clinical benefit. At the same time as we 

observed r-hIL-7 induced proliferation and expansion of memory CD4 T cells, treated 

patients experienced “blips” in plasma HIV RNA levels and an apparent increase in 

numbers of circulating cells containing proviral DNA. The significance of these virologic 
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effects is uncertain. While homeostatic responses to IL-7 have been implicated in 

maintaining the latent HIV reservoir in CD4 T cells [17], occurrence of viral blips seen in 

r-hIL-7 recipients in this and other studies [10–12], suggests that the cellular 

proliferation induced by r-hIL-7 also can activate or enhance HIV expression. Thus, the 

net effects of r-hIL-7 administration on the infectious viral reservoir merit further study. 

Further studies are also warranted to explore the clinical impact of r-hIL-7 

administration as well as the long term impact of this therapy on immune function. As 

shown previously, the CD4 T cell increase after administration of r-hIL-7 is likely due to 

increased CD4 T cell proliferation but also may relate to additional mechanisms such as 

improvement of cell survival and thymic output [13]. Repeated r-hIL-7 cycles might lead 

to an even more durable effect such as might be the consequence of improvement of 

lymphoid tissue architecture as reported in the gut [14] reversing abnormalities seen in 

advanced HIV infection [18]. 

In conclusion, repeated cycles of r-hIL-7 can improve and sustain CD4 restoration with 

increases of predominantly naïve and central memory CD4 T cells. This intervention 

could help persons who present for care late in disease course or who does not respond 

well to antiretroviral therapy achieve higher CD4 T cell counts sooner, possibly 

preventing morbidities and mortality [3,19]. 
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Table 1. Participant characteristics in INSPIRE 2 and INSPIRE 3 studies. 

Characteristics 

 

INSPIRE 2 

(N=23) 

INSPIRE 3 

(N=88) 

Number of treated and analysed patients 23 84 

Median age, years (Q1,Q3) 47 (42,51) 43 (37,51) 

Female, % 13.1% 34.1% 

Ethnic origin (Caucasian/African/Other) (16/3/4) (39/46/3) 

Median time since HIV diagnosis, years (Q1,Q3) 8 (4,20) 6 (3,13) 

Median duration of ARV, years (Q1,Q3) 5 (4,16)  4 (3,6) 

Clinical stage at diagnosis (A/B/C) (12/2/9) (38/11/39) 

Median CD4 T-cell count, cells/μL (Q1,Q3) 263 (191,320) 266 (215,326) 

Median CD8 T-cell count, cells/μL (Q1,Q3) 604 (405,867) 633 (457,843) 

Median CD4 T-cell count nadir, cells/μL (Q1,Q3) 41 (19,163) 54 (19,126) 

Median CD4/CD8 ratio  0.48 

(0.27,0.59) 

0.42 

(0.29,0.56) 

Median of months of follow up (Q1,Q3) 23 (22,24) 22 (20,23) 

Median  months between cycles (Q1,Q3) ͣ12 (6,12) 6 (6,9) 

Median number of injections received (Q1,Q3) 5 (3,6) 5 (3,6) 

Median number of started cycles (Q1,Q3) 2 (1.5,2) 2 (1,2) 

Median number of completed cycles (Q1,Q3) 1 (1,2) 1 (1,2) 

ͣFirst 12 patients in INSPIRE2 were followed for a year before administration of a new 

cycle.  
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Table 2. Description of the treatment received in INSPIRE 2 (N=23) and INSPIRE 3 

(N=84) studies. 

 

 
Characteristics 

 

 

INSPIRE 2 INSPIRE 3 TOTAL 

Cycle 1 Initial CD4 cell count/µL 263 

(191,321) 

267 

(215,326) 

266 

(208,327)  Starting cycle 23 84 107 

 Completed cycle 20 75 95 

 1 injection - 2 2 

 2 injections 3 7 10 

     

Cycle 2 Initial CD4 cell count/µL 473 

(441,489) 

478 

(424,512) 

473 

(424,509)  Starting cycle 17 57 74 

 Completed cycle 10 39 49 

 1 injection 2 10 12 

 2 injections 5 8 13 

     

Cycle 3 Initial CD4 cell count 316 

(292,336) 

474 

(336,491) 

373 

(321,491)  Starting cycle 3 12 15 

 Completed cycle 2 8 10 

 1 injection - 3 3 

 2 injections 1 1 2 

     

Cycle 4 Initial CD4 cell count - 475 475 

 Starting cycle - 1 1 

 Complete cycle - 1 1 

 1 injection - - - 

 2 injections - - - 
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Table 3. Factors associated with dropping to < 550 CD4 cells/µl 

 

Shared Gamma Frailty model using a Weibull hazard function. Data are based on 95 

patients with a CD4 T cell count > 550 cells/µL two weeks after the last injection of r-

hIL-7 that represent a total of 151 cycles. After adjustment, there was still unexplained 

inter-individual variability in the probability of dropping below 550 cells/µL as the 

variance of the frailty parameter (0.822) was significantly different from 0 (p=0.006). 

 

Factor Hazard Ratio 

 

95% CI P-value 

Baseline CD4 T cell count   < 0.001 

 CD4 > 200 cells/µL 1   

 CD4 ≤ 200 cells/µL  11.10 (4.02, 30.66)  

Type of IL-7 cycle   0.57 

 Initial cycle 1   

 Maintenance cycle 0.86 (0.51, 1.46)  

Number of injections in a given cycle  0.023 

 Three injections 1   

 Two injections 2.27 (0.79, 6.55)  

 One injection 4.29 (1.32, 13.90)  
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Table 4. Plasma HIV RNA dynamics during the follow-up after the first injection of 

r-hIL-7 in INSPIRE 2 and 3. 

 

Trial 

 

Total 

measurements 

% of  

RNA >50 

% of   

RNA >200 

% of treated 

patients with  

at least one 

HIV RNA>50 

% of treated 

patients with  

at least one  

HIV RNA>200 

INSPIRE 2 364 8.8 1.1 52.2 13.0 

INSPIRE 3 
1374 6.8 2.3 44.0 17.1 
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Figure 1a. INSPIRE 2 design 

Figure 1b. INSPIRE 3 design 

Figure 2. Flow chart of INSPIRE 2 & INSPIRE 3  

Figure 3. Individual changes in CD4 T cells over time following injections of r-hIL-7. 

Figure 4. CD4 T cell dynamics after r-hIL-7 injections. A) INSPIRE 2, B) INSPIRE 3, C) 

according to the first or second cycle (time 0 is the beginning of the first or second 

cycle), D) according to the number of injections performed in cycles following the initial 

one
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Figure 1B 
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Figure 4 

 

 

 

 

 

 

 

 



 

 

Suppementary Figure 1A. Detailed immune response in INSPIRE 2 patients for total CD4, Tregs, 

CD31+, CD4 naïve, central memory (TCM) and effector memory (TEM) at baseline to week 12 (W12). 

 

 

 



 

 

Supplementary Figure 1B. Detailed immune response in the subsample of the first 12 patients 

included in INSPIRE 2 for Ki67, CTLA4, LFA1, Tbet, Tim3 and PD1 markers at baseline to week 12 

(W12). 

 

 



 

 

Supplementary Figure 2. CD4 T cell dynamics (median and IQR) according to the presence of binding 

antibodies against IL-7 (ADA) A) After the first cycle and B) After the second cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 3. Median (IQR) of HIV DNA concentration by million of PBMC in INSPIRE 2 

(N=22): 1.97 log10 copies/mL (1.39, 2.48) at day 0 (baseline), 2.58 (2.00, 2.96) at day 28 and 2.27 

(1.65, 2.85) at week 12. Wilcoxon matched paired tests. 

 

 

 

 

 

 



 

 

Supplementary Figure 4. Median and first and third quartiles of CRP in INSPIRE 2 and 3 from day 0 

(D0) to month 21 (M21) (excluding center 15). Wilcoxon matched pairs tests. 

 

 

 

 

 

 

 



 

 

Supplementary Figure 5. Median and first and third quartile of D-dimer in INSPIRE 3 from day 0 (D0) 

to month 21 (M21) (excluding centers 42 and 43). Wilcoxon matched pairs tests. 
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2&3 study group. Modeling CD4 dynamics in HIV-infected patients
receiving repeated cycles of exogenous Interleukin 7. For Annals of
Applied Statistics

96



Submitted to the Annals of Applied Statistics

MODELING CD4+ T CELLS DYNAMICS IN
HIV-INFECTED PATIENTS RECEIVING REPEATED

CYCLES OF EXOGENOUS INTERLEUKIN 7

By Ana Jarne∗, Daniel Commenges∗, Mélanie Prague∗,§, Yves
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Combination Antiretroviral Therapy (cART) succeeds to control
viral replication in most HIV infected patients. This is normally fol-
lowed by a reconstitution of the CD4+ T cells pool; however, this does
not happen for a substantial proportion of patients. For these pa-
tients, an immunotherapy based on injections of Interleukin 7 (IL-7)
has been recently proposed as a co-adjutant treatment in the hope of
obtaining long-term reconstitution of the T cells pool. Several ques-
tions arise as to the long-term efficiency of this treatment and the
best protocol to apply. Mathematical and statistical models can help
answering these questions.

We develop a model based on a system of ordinary differential
equations and a statistical model of variability and measurement.
We can estimate key parameters of this model using the data from
the main studies for this treatment, the INSPIRE, INSPIRE 2 &
INSPIRE 3 trials. In all three studies, cycles of three injections have
been administered; in the last two studies, for the first time, repeated
cycles of exogenous IL-7 have been administered. Repeated measures
of total CD4+ T cells count in 128 patients as well as CD4+Ki67+ T
cells count (the number of cells expressing the proliferation marker
Ki67) in some of them were available. Our aim was to estimate the
possible different effects of successive injections in a cycle, to estimate
the effect of repeated cycles and to assess different protocols.

The use of dynamical models together with our complex statistical
approach allow us to analyze major biological questions. We found a
strong effect of IL-7 injections on the proliferation rate; however, the
effect of the third injection of the cycle appears to be much weaker
than the first ones. Also, despite a slightly weaker effect of repeated
cycles with respect to the initial one, our simulations show the ability
of this treatment of maintaining adequate CD4+ T cells count for
years. We were also able to compare different protocols, showing that
cycles of two injections should be sufficient in most cases.

1. Introduction. Infection by the Human Immunodeficiency Virus (HIV)
leads to severe lymphopenia and general immune dysfunction. Combination

Keywords and phrases: Mechanistic models, Interleukin 7, HIV, Modeling, CD4
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Antiretroviral Therapy (cART) allows controlling viral load in most pa-
tients and often leads to an adequate immune restoration. However, not all
patients get a satisfactory immune reconstitution despite undetectable viral
load. Sereti et al. (2014) called these patients “immunological non respon-
ders”; we prefer to call them “immunological low responders” because these
patients can still experience an increase of CD4+ T cells count under cART,
albeit insufficient.

A treatment based on injections of exogenous Interleukin-7 (IL-7) has
been recently proposed, and is for the moment the only promising approach
in this context (Sereti et al., 2009; Levy et al., 2009, 2012). Endogenous IL-7
is a cytokine produced by non-marrow-derived stromal and epithelial cells,
and since it was discovered in 1988 (Namen et al., 1988), it has been found to
play an important role in peripheral maintenance of T cells (Fry and Mackall,
2002; Mackall, Fry and Gress, 2011). In HIV-infected patients, a correlation
between plasma levels of endogenous IL-7 and CD4+ T cell counts has al-
ready been reported (Beq et al., 2004), and different mechanisms of action of
IL-7 regarding regulation of T lymphocytes number and behavior have been
uncovered, as enhancing thymopoiesis (Mackall et al., 2001; Okamoto et al.,
2002), proliferation (Vieira et al., 1998; Sportès et al., 2008) and survival
(Seddon, Tomlinson and Zamoyska, 2003; Kondrack et al., 2003) of CD4+

T cells.
Mathematical representations of the behavior of the immune system in the

context of HIV infection have been useful to describe and quantify biological
processes that are not directly observed; the interaction between HIV virions
and CD4+ T cells was firstly modeled by Ho et al. (1995) and Perelson et al.
(1996). For modeling the effect of exogenous IL-7 administration, it is not
useful to model virus concentration (because viral load is undetectable under
cART), but it is necessary to distinguish between quiescent and proliferating
cells. In this context, Thiébaut et al. (2014) have quantified the contribution
of several biological mechanisms in CD4+ T cells homeostasis. They have
studied the effect of a single cycle of exogenous IL-7. Here, we extend this
approach with a modified statistical model for analyzing repeated cycles,
based on data from 3 clinical studies, INSPIRE, INSPIRE 2 and INSPIRE
3. We focus on several major clinical questions. What is the effect of the
different injections in a cycle? What is the effect of repeated cycles? What
is the long-term efficacy of this therapy in maintaining CD4+ T cells count
at a satisfactory level (over 500 cells/µL)? What is the best protocol of
injections?

This paper is divided into 7 sections. Section 2 gives an overview of the
INSPIRE studies and the available data. Section 3 describes the main struc-
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ture of the mathematical and statistical models. Section 4 presents and
compares different statistical models: the “basic model” studying the effect
of exogenous IL-7 over a cycle as a whole, the “3 β’s model” allowing the
successive injections of a cycle to have different effects, and the “cycle ef-
fect model” investigating the long term effect when administering repeated
cycles. Section 5 compares results of four possible protocols (varying the
number of injections of a cycle) and predicts their impact on the mainte-
nance of CD4+ T cells count > 500 cells/µL for an average patient. Section
6 explores the possibility of optimizing the protocol by investigating in sim-
ulation the trajectories of CD4+ T cells count in good and bad responders.
Section 7 concludes.

2. Data and materials.

2.1. Data source and subjects. The data have been compiled from three
phase I/II multicenter studies: INSPIRE (Levy et al., 2012), INSPIRE 2 and
INSPIRE 3 (Thiébaut et al., 2015 in revision). These studies investigated the
effect of a purified glycosylated recombinant human Interleukin 7 (r-hIL-7)
treatment on immune restoration in immunological low responder patients.
All participants were aged ≥ 18 years, were under stable cART for at least
2 years, presenting CD4+ T cells count between 100-350 cells/µL (100-400
cells/µL for INSPIRE 2), and undetectable viral load for at least 6 months
prior to screening.

In the first study, INSPIRE, 21 patients received three weekly injections
(a “complete cycle”) of r-hIL-7 at different weight-dependent doses: 10, 20
and 30 µg/kg and the main objective was to evaluate the safety of this
treatment. INSPIRE 2 and INSPIRE 3 (with 23 and 84 treated patients,
respectively) further studied the biological activity (as well as the safety) of
repeated cycles of r-hIL-7 at 20 µg/kg. In this paper, data for all treated
patients from the three studies (N=128) have been included from the time
of the first injection. Overall, 197 r-hIL-7 cycles were administered (41 of
them were incomplete cycles consisting of 1 or 2 injections). More details
are provided in a previous publication (Thiébaut et al., 2015 in revision).

2.2. Study design and observations. Within the first INSPIRE study, all
patients received complete cycles. They had clinic visits at weeks 1, 2 and 3
(at the moment of the injections), weeks 4, 5, 6, 9 and 12, and after, one visit
every 3 months; see Levy et al. (2012) for more information. Among many
measured biomarkers, our model uses total CD4+ T cells count and the
number of CD4+ T cells expressing the Ki67 proliferation marker, hereafter
called “CD4 count” and “Ki67 count”, respectively. Measurements of CD4
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counts were made at each visit, while Ki67 counts were only measured at
weeks 1, 2, 3, 5 and 12.

For the first twelve patients of INSPIRE 2, clinic visits within the initial
cycles were scheduled as for the INSPIRE study (for the rest of them, vis-
its at week 9 were not performed). After, if CD4 counts were found to be
below 550 cells/µL in one of the quarterly visits, a new r-hIL-7 cycle was
administered (with the exception of the first 12 patients, who wait a year
before receiving a new cycle). Within these repeated cycles, clinic visits were
scheduled at weeks 1, 2 and 3 (at the moment of the injections), weeks 5
and 12, and once again quarterly visits are made to check the CD4 count. A
maximum of 4 cycles within 21 months and a maximum of 3 cycles within
12 months were established, and all patients have been followed up at least
3 months after the last cycle. CD4 counts were measured at all visits for all
patients, while Ki67 counts were measured only for the first cycles of the
first 12 patients at weeks 1, 2, 3, 5 and 12.

For INSPIRE 3, patients were randomized into two arms: “r-hIL-7 arm”
and “Control arm” with a ratio 3:1 (3 r-hIL-7 : 1 Control). Patients of
the “r-hIL-7 arm” received the same treatment scheme as patients from
INSPIRE 2. Patients of the “Control arm” were first followed up without
receiving the r-hIL-7 for one year, and if CD4 count was still below 500
cells/µL, r-hIL-7 treatment was started as for the other group (Thiébaut
et al., 2015 in revision). CD4 counts were measured at all visits. No Ki67
counts measurements were available.

The total duration of the studies was 12, 24 and 21 months for INSPIRE,
INSPIRE 2 and INSPIRE 3, respectively.

3. Mathematical and statistical structure.

3.1. Mathematical and statistical models. Our theoretical framework to
describe the dynamics of CD4 and Ki67 counts is based on the same system
of ordinary differential equations (ODE) as proposed by Thiébaut et al.
(2014). For patient i this model can be written as:

dQi

dt = λi + 2ρiP i − πiQi − µiQQi

dP i

dt = πiQi − ρiP i − µiPP i

The initial condition is assumed to be the equilibrium point (specified by
dQi

dt (0) = 0 ,dP
i

dt (0) = 0).
A graphical representation of the system can be found in Figure 1. This

model includes two state variables: P, the concentration of proliferating cells
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expressing the Ki67 proliferation marker (CD4+Ki67+) and Q, the concen-
tration of quiescent cells (CD4+Ki67−). We have also investigated a model
with a feedback term, obtained by multiplying the basic proliferation rate
by 1

(P i+Qi)ν
, where ν is a parameter to be estimated. We did not retain this

feedback term because it did not lead to major improvement of the fit while
requiring much more computation time (see Appendix A).

The vector of parameters of the ODE system is ξi = [λi, ρi, πi, µiQ, µ
i
P ].

These parameters have a biological interpretation: λ is the production rate,
ρ is the reversion rate, π is the proliferation rate and µQ and µP are the
mortality rates of Q and P cells, respectively. The logarithmic transformation

ensures positivity of these biological parameters: ξ̃
i

= log(ξi).

Fig 1: Graphical representation of the mathematical model

Modeling the variability of the parameters is a crucial ingredient in our
model because it allows to have a joint estimation of parameters across the
population instead of fitting the model patient-by-patient. A mixed-effect
model can be assumed for each transformed parameter l, l = 1,...,p (here p
= 5):

ξ̃il (t) = φl + β>l z
i
l (t) + uil

where φl is the intercept, βl is a vector of regression coefficients, zil is a vector
of explanatory variables, and uil are random effects assumed to be indepen-
dently and identically normally distributed. Thus, the parameters can vary
between subjects, but also with time through the time-dependent explana-
tory variables. In practice, for parsimony, random effects and explanatory
variables are included for a subset of the parameters.

In this paper, we present and discuss several of these variability models.
The random effects have been applied on λ and ρ: uiλ ∼ N (0, σ2λ), uiρ ∼
N (0, σ2ρ) for all the models. The explanatory variables used are functions of
the dose and of the timing of the r-hIL-7 injections and are used to model the
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6 A. JARNE ET AL.

proliferation rate (π) and the mortality rate (µQ). These choices are based
on many trials and on previous results of the literature (as in Thiébaut et al.
(2014)).

We also need a model for the observations. The state variables (P i(t), Qi(t))
are not directly observable; we only have discrete-time observations of some
functions of the components of this vector. Let Yi

1j and Yi
2k be the CD4

count and the Ki67 count for patient i at time tij and tik, respectively. The
following observation scheme is assumed:{

(Yi
1j)

0.25 = (P i(tij) +Qi(tij))
0.25 + εi1j

(Yi
2k)

0.25 = P i(tik)
0.25 + εi2k

with independently normally distributed measurement errors: εi1j ∼ N (0, σ2CD4),
εi2k ∼ N (0, σ2P ). Note that the times of observations may be different for
the two observed components; indeed there were less observations of Ki67
counts than of CD4 counts.

3.2. Inference. The vector θ to be estimated includes the intercepts of
the biological parameters (φλ, φρ, φπ, φµQ , φµP ), the regression coefficients
(βπ, βµQ), the variances of the random effects (σλ, σρ) and the variances of
the measurement errors (σCD4, σP ). As in Guedj, Thiébaut and Commenges
(2007a), first the individual likelihoods given the random effects can be com-
puted; then, the individual likelihoods are computed by integrating over the
random effects via the adaptive Gaussian quadrature (Genz and Keister,
1996; Pinheiro and Bates, 2000); the global log-likelihood is the sum of the
individual log-likelihoods. The parameters can then in principle be estimated
by maximum likelihood. However, due to identifiability problems, it is useful
to adopt an approximate Bayesian approach, as in Drylewicz, Commenges
and Thiebaut (2012). The prior distribution π(θ) allows incorporating prior
knowledge taken from the literature. In such very complex models MCMC
algorithm generally fail, so we use an approximate Bayesian inference, sim-
pler than the INLA approach of Rue, Martino and Chopin (2009) which is
also difficult to apply here. Bayes theorem gives

log[P (θ | Y )]) = L(θ) + log[π(θ)] + C,

where P (θ | Y ) is the posterior distribution, L(θ) is the log-likelihood and C
is the normalization constant. The Bernstein-Von Mises theorem (Van der
Vaart, 2000) justifies a normal approximation of the posterior (NAP). The
NAP can be computed by maximizing the penalized log-likelihood LP (θ) =
L(θ) + log[π(θ)] and computing the inverse of the Hessian of −LP (θ), H−1

LP
.

Thus, the NAP is N (θ̃, H−1
LP

(θ̃)).
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MODELING REPEATED CYCLES OF R-HIL-7 7

This computation can be achieved with the NIMROD program (Prague
et al., 2013) which uses the so-called RVS algorithm (Commenges et al.,
2006); parallel computing is implemented to achieve acceptable computation
times. Other approaches have been proposed for fitting ODE-based models:
Ramsay et al. (2007) proposed a penalized likelihood approach for the tra-
jectories of the state variables circumventing the need of solving the ODE
system, but this approach has also numerical issues in presence of random
effects; Kuhn and Lavielle (2005) have proposed the stochastic approxima-
tion expectation maximisation (SAEM) algorithm which can also be used
for maximising a log-likelihood or a penalized log-likelihood. One advantage
of the RVS algorithm is the possibility of computing a stringent stopping
criterion. See Appendix B for details.

3.3. Comparison of different models. Here, we present more than one
possible statistical model to describe the effect of r-hIL-7 on biological pa-
rameters. To compare them, apart direct likelihood comparison and individ-
ual fits, we use an approximate cross-validation criterion, LCVa, proposed
by Commenges et al. (2007). LCVa is an extension of Akaike criterion (AIC),
similar to the General Information Criterion (GIC) (Konishi and Kitagawa,
2008) that corrects not only for the number of parameters but also for the
penalization; LCVa is normalized on the number of observations (see Com-
menges et al. (2008) and Commenges et al. (2015) for further developments).
This criterion is:

LCVa =− n−1[ L(θ̃)− Trace(H−1
LP

(θ̃)HL(θ̃))],

where HL is the Hessian of minus the log-likelihood. Since LCVa estimates a
“risk” (cross-entropy or Kullback-Leibler risk equivalently), the smaller the
better. Differences in criteria values between two models can be considered
as “large” beyond 0.1 when the response is univariate. However, when the
response is multivariate, the threshold for considering a difference as “large”
should be higher, because LCVa, as defined here, is normalized on the num-
ber of subjects and does not take into account the number of observations
per subject.

4. Main results.

4.1. Basic model: A cycle as a whole entity. Firstly, we are interested in
estimating the global effect of the first cycle of r-hIL-7. To begin with, only
first received cycles for each patient have been considered. As in Thiébaut
et al. (2014) the effect of r-hIL-7 is considered to be dose-dependent. In our

imsart-aoas ver. 2014/10/16 file: ims-template.tex date: November 18, 2015



8 A. JARNE ET AL.

case, we have chosen a to consider a power of the dose (as is common in
pharmacology), that was fixed as 0.25 par profile likelihood (that is, the
fourth root of the dose).

The effect on proliferation π is taken into account during 7 days (this time
was also fixed by profile likelihood) after each injection. Besides, the effect
on the mortality rate µQ is considered to be constant from two days after
the first injection during twelve months, followed by a linear decrease during
another twelve months. As already mentioned, random effects are added on
the production rate λ and the reversion rate ρ. Let di the dose received for
patient i, and let Ni

t the number of injections that patient i has received
until time t. The statistical description for this first model is as follows:

π̃i(t) = π̃0 + βπ d0.25
i 1{N i

t−N i
t−7=1}

λ̃i(t) = λ̃0 + uiλ
µ̃iQ(t) = µ̃Q0 + βµQ d0.25

i f(t)

ρ̃i(t) = ρ̃0 + uiρ
µ̃iP (t) = µ̃P0

where 1{N i
t−N i

t−7=1} is an indicator function taking value 1 if an injection

has been administrated in the last 7 days, and

(1) f(t) =


1 if 2 < t ≤ 360
1− (t− 360)/360 if 360 < t ≤ 720
0 if 720 < t

Taking the same priors as Thiébaut et al. (2014), we ran the analysis
with the NIMROD program. The results are displayed in Table 1; r-hIL-7
injections increase the proliferation rate (π) from 0.041 per day at baseline
to 0.135 per day during 7 days after each injection (for the dose equal to 20
µg/kg). Also the estimated mortality rate of Q cells decreases from 0.104
per day at baseline to 0.072 during the first year after the treatment.

4.2. 3 β’s model: A cycle as three different injections. Here we focus on
a major question: Have all the three injections the same quantitative effect
on proliferation of CD4+ T cells? Or, more accurately, what is the role of
every single injection in the whole effect of a cycle? For this model too, we
only consider the first received cycle for each patient.The statistical model
for π was:

π̃i(t) = π̃0 +
3∑

k=1

1{N i
t=k}

βπk d
0.25
i 1{N i

t−N i
t−7=1}
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MODELING REPEATED CYCLES OF R-HIL-7 9

Table 1
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic

and natural scales) for the “basic” model when considering only the first cycle for all
patients from INSPIRE 1, 2 & 3; Penalized (P) and Non Penalized (NP) likelihoods, and

LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.967 0.062 19.440 1.196
ρ 0.000 0.250 0.680 0.095 1.973 0.187
π -4.000 1.000 -3.185 0.115 0.041 0.005

µQ -3.600 0.500 -2.264 0.073 0.104 0.008
µP -2.500 0.500 -1.550 0.202 0.212 0.043

βπ 0.997 0.058
βµQ -0.305 0.020

σλ 0.254 0.025
σρ 0.534 0.096

σCD4 0.254 0.003
σP 0.299 0.023

P likelihood -338.7
NP likelihood -327.4

LCVa 2.558

The results are displayed in Table 2. The quantitative effects of the suc-
cessive injections are not equal. They are all significantly different from zero;
the first and second one are similar but the effect of the third one is con-
siderably weaker. With this model there is a noticeable improvement with
respect to the previous one (LCVa is equal to 2.136 vs 2.558).

4.3. Cycle effect model: Effect of successive cycles. Among the 128 treated
patients from all the three studies, 74 have received more than one cycle.
A key question is: Have these repeated cycles the same quantitative effect
with respect to initial ones? CD4 counts are higher before starting repeated
cycles. Also, antibodies anti-r-hIL-7 could appear after an initial cycle, mod-
ifying the effect of r-hIL-7 when cycles are repeated. The second goal of this
paper is to estimate possible quantitative differences in repeated versus ini-
tial cycles. To make this possible, we included data from all received cycles
and we estimated a new fixed effect: the “cycle effect” βC . We keep the no-
tation ti1 for the time when patient i receives the first injection of a cycle. If
C(t) counts the number of cycles received at time t, let 1C(t)>1 be 1 if a cycle
has been received before time t, 0 otherwise. The cycle effect is incorporated
into the statistical model of proliferation rate as follows:
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10 A. JARNE ET AL.

Table 2
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic

and natural scales) for the “3 β’s” model when considering only the first cycle for all
patients from INSPIRE 1, 2 & 3; Penalized (P) and Non Penalized (NP) likelihoods, and

LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 2.355 0.087 10.541 0.920
ρ 0.000 0.250 0.635 0.102 1.887 0.192
π -4.000 1.000 -3.306 0.125 0.037 0.005

µQ -3.600 0.500 -2.617 0.080 0.073 0.006
µP -2.500 0.500 -2.187 0.258 0.112 0.029

βπ1 1.155 0.079
βπ2 1.120 0.081
βπ3 0.622 0.073
βµQ -0.239 0.022

σλ 0.267 0.025
σρ 0.575 0.108

σCD4 0.241 0.003
σP 0.305 0.025

P likelihood -279.8
NP likelihood -273.3

LCVa 2.136

π̃i(t) = π̃0 +
[
βC1{C(t)>1} +

3∑
k=1

1{N i
t=k}

βπk d
0.25
i

]
1{N i

t−N i
t−7=1}

The results are displayed in Table 3. The posterior distribution of the cycle
effect βC has mean equal to -0.163 and standard deviation equal to 0.015. In
other words, the cycle effect is found to be significantly negative. In natural
scale, the effect on proliferation rate for successive cycles is found to be
e−0.163 = 0.85 times the effect of the first cycle. The biological interpretation
of the cycle effect is not yet clearly explained. One explanation may be that
the first cycle has modified the reaction of the immune system to further
injections; one possibility is that antibodies against IL-7 decrease the efficient
concentration of IL-7 obtained at the target. However, we must take into
consideration differences in mean CD4 count before the initial and repeated
cycles. The mean CD4 count at baseline was 266 cells/µL whereas it was
456 cells/µL before repeated cycles. Considering the homeostatic regulation
of the population of CD4+ cells, that prevents CD4 counts from exceeding
1200-1300 cells/µL, a feedback mechanism may explain an apparent cycle
effect. With the aim to deeper study this phenomenon, we have incorporated
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MODELING REPEATED CYCLES OF R-HIL-7 11

a feedback term (see Appendix A). We found that a feedback effect could
indeed be detected, but this had no major influence on the estimate of the
cycle effect.

Table 3
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic

and natural scales) for the “cycle effect” model when considering all cycles for all
patients from INSPIRE 1, 2 & 3; Penalized (P) and Non Penalized (NP) likelihoods, and

LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 1.672 0.061 5.323 0.326
ρ 0.000 0.250 0.892 0.093 2.440 0.226
π -4.000 1.000 -2.853 0.074 0.058 0.004

µQ -3.600 0.500 -2.610 0.068 0.074 0.005
µP -2.500 0.500 -2.567 0.200 0.077 0.015

βπ1 0.931 0.042
βπ2 0.707 0.043
βπ3 0.229 0.042
βµQ -0.082 0.006
βC -0.163 0.015

σλ 0.243 0.026
σρ 0.515 0.084

σCD4 0.289 0.003
σP 0.281 0.019

P likelihood -618.6
NP likelihood -609.4

LCVa 4.762

Appendix C and D show some fits of real data from INSPIRE 2 and 3
obtained with this model. Individual predicted trajectories were computed
using the Parametric Empirical Bayes (PEB) for the parameters having a
random effect (λ and ρ). Several protocols have been compared in the next
Section by means of this model.

5. Comparing different protocols for an average patient. We
have used the “cycle effect model” to compare different administration pro-
tocols of r-hIL-7 containing complete and incomplete cycles. We always as-
sumed that CD4 counts are measured every three months, and a new cycle
is administered when CD4 count < 550 cells/µL for 4 years. We examined
four possibilities: in protocol A, the patient always receives complete cycles;
in protocol B, the patient receives a first complete cycle followed by repeated
cycles composed of two injections; in protocol C the patient receives a first
complete cycle followed by repeated cycles of one single injection; in protocol
D the patient always receives 2-injection cycles (including the initial one).
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12 A. JARNE ET AL.

The protocols were compared according to three criteria computed over
a four-year period: number of injections and cycles received, median CD4
count over the follow-up and time spent below 500 cells/µL. The criteria were
computed for an average patient having both random effects equal to zero
(equilibrium values of 272 and 6.3 for CD4 and Ki67 counts, respectively).

The results are displayed in Table 4, and we can observe the expected
trajectories in Figure 2.

A complete cycle followed by 2-injection cycles (Protocol B) could lead
to similar results than Protocol A in terms of median CD4 count, with the
non negligible advantage that Protocol B requires 15 injections instead of
21. Protocol C ensures and identical time spent under 500 cells/µL with
only 10 injections, but achieves a median CD4 count lower than Protocol
A. Protocol D is also slightly worse than Protocol A in terms of time below
500 cells/µL.

Table 4
Comparison of the number of injections and cycles received, time under 500 CD4 count

and median CD4 count for a patient with RE equal to zero for the four protocols through
four years. In protocol A, the patient always receives complete cycles; in protocol B, the

patient receives a first complete cycle followed by repeated cycles composed of two
injections; in protocol C the patient receives a first complete cycle followed by repeated

cycles of one single injection; in protocol D the patient always receives 2-injection cycles
(including the initial one)

A B C D

Number of injections received 21 15 10 14

Number of cycles received 7 7 8 7

Time under 500 CD4/µL (days) 60 73 60 87

Median CD4 count 678 663 588 654

6. Adaptive protocols: towards a personalized medicine. Let a
patient beginning the r-hIL-7 treatment with a first cycle during which we
collect several CD4 count measurements in order to know the value of his
random effects. This information can be used to calculate the expected tra-
jectories of this patient when applying the 4 previous protocols. We have
taken individual information for two real patients from INSPIRE 2 and IN-
SPIRE 3 studies and we want to compare what would be the best protocol
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Fig 2: CD4 count (cells/µL) predictions for 4 years for a patient having biρ
= biλ = 0. Protocols A, B and C include a first complete cycle followed by:
complete cycles (A), two-injection cycles (B) and one-injection cycles (C).
Protocol D includes only 2-injection cycles. Vertical dotted lines are CD4
count assessments (every three months) and vertical solid lines are injections.
Horizontal line marks the CD4 threshold of 550 cells/µL.

for them.
Firstly, we have chosen a patient having a very good response in terms of

CD4 count. For this patient, the value of the parameters including random
effects are equal to λ = 6.586 and ρ = 4.797 (all the other parameters are
the population parameters obtained in the “cycle effect” model).

In Figure 3 we predict the expected trajectories and Table 5 displays the
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14 A. JARNE ET AL.

four criteria for this patient. According to our model, there are only minor
differences between the four protocols for this patient for the four criteria.
Protocol B would spare 2 injections with little impact on the CD4 count
and even Protocol C would be admissible.

Fig 3: CD4 count (cells/µL) predictions for 4 years for a particularly good
responder patient. Protocols A, B and C include a first complete cycle fol-
lowed by: complete cycles (A), two-injection cycles (B) and one-injection
cycles (C). Protocol D includes only 2-injection cycles. Vertical dotted lines
are CD4 count assessments (every three months) and vertical solid lines are
injections. Horizontal line marks the CD4 threshold of 550 cells/µL.

We have chosen another patient having a particularly poor response to
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Table 5
Comparison of the number of injections and cycles received, time under 500 CD4 count

and median CD4 count for a ”good responder” patient for the four protocols through four
years. In protocol A, the patient always receives complete cycles; in protocol B, the
patient receives a first complete cycle followed by repeated cycles composed of two

injections; in protocol C the patient receives a first complete cycle followed by repeated
cycles of one single injection; in protocol D the patient always receives 2-injection cycles

(including the initial one)

A B C D

Number of injections received 9 7 5 6

Number of cycles received 3 3 3 3

Time under 500 CD4/µL (days) 3 3 3 g 3

Median CD4 count 721 709 669 703

the r-hIL-7 treatment. In this case, the value of the parameters including
random effects is equal to λ = 3.284 and ρ = 1.956.

Figure 4 displays the expected trajectories for the different protocols and
Table 6 gives the four criteria for this patient. Our model predicts that
this patient could benefit from 2-injection cycles (protocol B) without loss
of efficiency in terms of CD4 count or time over 500 cells/µL. However,
1-injection cycles (Protocol C) would not be enough.

7. Discussion. INSPIRE 2 and INSPIRE 3 are the first studies where
repeated cycles of r-hIL-7 were administrated to test the long-term restora-
tion of the immune system in low immunological responders. Here we have
used a simple mathematical model with complex statistical approaches to
model the effect of these repeated cycles on CD4+ T cells concentration.
We worked with two CD4+ T cells populations: quiescent and proliferating
(presenting the Ki67+ marker).

When considering every injection separately, the first important result
of this paper is that our model predicts a decreasing effect of successive
injections on proliferation rate; the third injection seems to have a weaker
effect. We also found that the effect of repeated cycles on proliferation rate
was slightly weaker than the effect of the initial one; the order of magnitude,
however, is the same. This can be due to the natural homeostatic regulation
of CD4+ T cells, since repeated cycles start at a higher CD4 count. In order
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Fig 4: CD4 count (cells/µL) predictions for 4 years for a patient with a
particularly poor response. Protocols A, B and C include a first complete
cycle followed by: complete cycles (A), two-injection cycles (B) and one-
injection cycles (C). Protocol D includes only 2-injection cycles. Vertical
dotted lines are CD4 count assessments (every three months) and vertical
solid lines are injections. Horizontal line marks the CD4 threshold of 550
cells/µL.

to investigate this question, we have introduced a feedback term; in this
case the feedback term slightly improved the fit but the estimate of the
“cycle effect” did not change much. Thus although a feedback mechanism
is plausible, there may be other reason, such as the presence of antibodies,
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Table 6
Comparison of the number of injections and cycles received, time under 500 CD4 count
and median CD4 count for a ”bad responder” patient for the four protocols through four

years. In protocol A, the patient always receives complete cycles; in protocol B, the
patient receives a first complete cycle followed by repeated cycles composed of two

injections; in protocol C the patient receives a first complete cycle followed by repeated
cycles of one single injection; in protocol D the patient always receives 2-injection cycles

(including the initial one)

A B C D

Number of injections received 30 27 18 26

Number of cycles received 10 13 16 13

Time under 500 CD4/µL (days) 561 366 893 381

Median CD4 count 549 617 470 611

for a slightly weaker effect of repeated cycles.
Simulations show how these repeated cycles are able to maintain adequate

CD4 counts for a long time. We have compared four protocols and shown
that cycles of two injections should be sufficient, sparing a certain number
of injections without detrimental effect on CD4 count. Our results agree
with a survival analysis presented in Thiébaut et al. (2015 in revision) who
compared the time spent over 500 cells/µL after a 3-injection cycle and a
2-injection cycle.

Also, the inclusion of random effects is a key ingredient when consid-
ering dynamic models as assistance for treatment personalized decisions.
Inter-individual differences in parameters imply inter-individual differences
in expected trajectories that can be used for devising adaptive treatment
strategies (Prague et al., 2012). We could use this mechanistic model for
guiding the treatment, with the aim of minimizing the number of adminis-
tered injections within repeated cycles ensuring the expected response. Pre-
dictions could also easily be made for different time lapses between cycles
or thresholds for receiving a new cycle.

Some other questions regarding the interaction between the r-hIL-7 and
the immune system could be modeled with additional data. For instance,
preferential effects on specific T cell subsets as recent thymic emigrants
(RTEs) and naive non-RTE T cell populations (Mackall, Fry and Gress,
2011) could be analyzed.
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APPENDIX A: MODEL WITH A FEEDBACK TERM

Trajectories satisfying an ODE system have an intrinsic tendency to re-
turn to the equilibrium point, when it exists, which is the case for the systems
proposed in this paper. In this sense, a feedback term is not necessary to
ensure homeostasis, a key concept in physiology. We have, however, consid-
ered adding a feedback term in the mathematical model in order to examine
the cycle effect βC in depth. This term will explicitly avoid CD4+ T cells to
proliferate without control and possibly ensure a faster return to an equilib-
rium point. The simplest feedback term is [ 1

P+Q ]ν , and can be added in both
equations to the proliferation term. The system with feedback is as follows:

dQi

dt = λi + 2ρiP i − µiQQi − πiQi
1

(P i+Qi)ν

dP i

dt = πiQi 1
(P i+Qi)ν

− ρiP i − µiPP i

Models with feedback were fitted using the 39 patients of INSPIRE who
had Ki67 count measurements. The feedback coefficient was estimated at
ν = 0.119. In Table 7 we compare some models with and without feedback
term.

Table 7
Comparison of loglikelihoods and LCVa criteria of models with and without feedback for

all INSPIRE patients with CD4 and Ki67 count measurements (N=39)

WITHOUT FEEDBACK WITH FEEDBACK
Basic model 3 β’s model Basic model 3 β’s model

NP loglike -44.643 -36.549 -41.735 -36.419
P loglike -49.393 -41.306 -46.965 -41.015

LCVa 1.146 0.940 1.073 0.963

The feedback term does not lead to a great improvement of the LCVa
criterion, especially for the 3 β’s model.

The detection of a cycle effect raises anew the issue of a possible feedback.
It may be that the feedback could not be detected when starting with very
low CD4 count, but could be more visible when starting at higher CD4
count; this feedback might explain the apparent cycle effect. To answer this
question we ran the model for repeated cycles with feedback. With this more
complicated model and larger data set, we could not directly estimate the
parameter ν, so we resort to profile likelihood. Computing the likelihood
for ν = 0.05, 0.1, 0.15, 0.20, 0.25, 0.30 we found that the best likelihood was
obtained for ν = 0.1, a value close to what was estimated in the small data
set (ν = 0.119). The results are shown in Table 8.
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Table 8
Priors and estimated mean and standard deviation (sd) of all parameters (in logarithmic

and natural scales) for the “cycle effect” model when considering all cycles for each
patient including a feedback term with ν = 0.1; Penalized (P) and Non Penalized (NP)

likelihood and LCVa criteria

PRIOR POSTERIOR POSTERIOR
(log-scale) (log-scale) (natural-scale)

mean sd mean sd mean sd

λ 1.000 1.000 0.275 0.157 1.316 0.207
ρ 0.000 0.250 1.052 0.083 2.863 0.238
π -4.000 1.000 -1.975 0.068 0.139 0.009

µQ -3.600 0.500 -2.538 0.067 0.079 0.005
µP -2.500 0.500 -2.212 0.138 0.109 0.015

βπ1 0.806 0.038
βπ2 0.626 0.037
βπ3 0.212 0.035
βµQ -0.063 0.005
βC -0.153 0.015

σλ -0.608 0.097
σρ -0.440 0.071

σCD4 0.286 0.004
σP 0.301 0.021

P likelihood -598.0
NP likelihood -584.5

LCVa 4.567

For the repeated cycles data set, the feedback term leads to an improve-
ment of the LCVa criterion. This may reflect a biological feedback mecha-
nism. However, this does not modify the cycle effect βC .
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APPENDIX B: IDENTIFIABILITY AND CONVERGENCE

As can be easily verified, both models with and without the feedback
term, present no problems regarding the “theoretical” identifiability (that
depends on the model structure) but even so, they could present “practical”
identifiability problems as explained in Guedj, Thiébaut and Commenges
(2007b). In fact, practical identifiability problems are a mix of statistical
and numerical problems which are difficult to disentangle; with scarce infor-
mation, the variances of the estimators are large, but it comes also with a flat
shape of the log-likelihood, making it difficult to maximize. The difficulty is
enhanced by the fact that there are several layers of numerical computation
needed to compute the likelihood, leading to an accumulation of numerical
errors.

A crucial point in an iterative algorithm is the stopping criteria. Besides
the displacement in the parameter space and the variation of the likeli-
hood function, another convergence criterion proposed by Commenges et al.
(2006) has been implemented in NIMROD. It is the Relative Distance to
Maximum (RDM) defined as

RDM(θ(k)) =
UP (θ(k))TG−1(θ(k))UP (θ(k))

p

where UP (·) is the penalized score and G(·) is an approximation of the Hes-
sian of minus the penalized likelihood. This criterion can be interpreted as
the ratio of the numerical error over the statistical error, and is asymptot-
ically invariant near the maximum to any one-to-one transformation of the
parameters. Prague et al. (2013) propose 0.1 as a good default value.
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APPENDIX C: SOME FITS OF TOTAL CD4+ T CELL COUNTS

Fig 5: Cycle effect model : Fits of total CD4 count for 12 patients from
INSPIRE 2 and 3 chosen randomly among those who received more than a
cycle.
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APPENDIX D: SOME FITS OF CD4+KI67+ T CELLS

Fig 6: Cycle effect model : Fits of Ki67 count for 6 patients from INSPIRE
and INSPIRE 2 chosen randomly among those who had measurements for
this biomarker (only during the first cycle).
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Appendix F

HIV epidemy figures in
Navarra (Spain)

F.1 Introduction

During this period I have had the opportunity to participate into the Merimée
2014 program: International Ph Degree, a program searching to encourage
a structured and sustainable cooperation between French doctoral schools and
Spanish partners. It is a shared scientific project including the reception of
doctoral students in French and Spanish doctoral programs. In my case, I did a
3 months internship at the Universidad Pública de Navarra (Spain), under the
supervision of Pr Francisco Guillén, Aurelio Barricarte and Jesús Castilla. The
original purpose (that was subsequently extended as we will see) was to update
a previous work presented in the thesis work of Dr Pablo Aldaz: a population
based study of the HIV and AIDS epidemic in the region of Navarra.

According to the census, there were 640.356 people living in Navarra on
January 1st, 2014; of which 50.3% were women. Many of these people (90.7%)
were born in Spain, and among the foreign nationals, Europeans represent a
majority, followed by Africans and Americans. We can observe in Figure F.1
the demographic pyramid corresponding to an aging population, where the birth
rate is dropping and life expectancy is rising.

Figure F.1: Population pyramid in Navarra (Spain). Obtained
from http:// www.navarra.es/home es/Navarra/Asi+es+Navarra/Navarra+en
+cifras/Demografia/poblacion.htm at October, 1st 2015
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Characteristics of the region of Navarra (with a relatively low population
density), where diagnosis and treatment of HIV infections are centralized in
few hospitals, let an early data collection and follow up. Since 1985 Navarra
has had an official registration of all the detected cases of HIV infection, AIDS
diagnosis and deaths of people living with HIV. This database offers a global and
realistic vision of the epidemic by including individuals that are normally under-
represented in these clinical cohorts, as people who are not regularly provided
attention through the health system or those who die due to causes beyond the
HIV infection.

Since the first case in 1985, there have been 1861 HIV diagnosis, and the
epidemic has not shown a homogeneous trend through time. Some important
events as the development of tests for early detection and, specially, the emer-
gence of cART therapy have been turning points in life expectancy and quality
of life. For instance, new infections have decreased in 33% since 2001. Here, we
want to review the epidemic since the first cases were diagnosed until January
1st, 2014. With the aim to have an adjusted and precise view of the impact of
this infection in Navarra, we have focused our work on four main axis:

F.2 Descriptive analysis of data

At the beginning, the idea was essentially to do an update of the work realized
by Dr Pablo Aldaz for his PhD degree: to do a descriptive analysis of HIV
infection from 1985 to 2013, both included. To begin with, in Table F.1 we can
observe the trend of the number of HIV diagnosis.

Table F.1: Number of HIV diagnosis in Navarra by period from 1985 to 2013

Period Number of cases Percentage

1985-1989 569 30,6
1990-1993 465 25,0
1994-1997 250 13,4
1998-2001 174 9,3
2002-2005 135 7,3
2006-2009 131 7,0
2010-2013 137 7,4

The incidence appears to have stalled since the year 2000. However, if we
consider annual data, we can observe a slight upturn in the last years (data not
shown). Regarding the mode of transmission, in our days a large majority of
new infections are contracted via the sexual pathway.

In Figure F.2 and F.3 we have represented the mean age at diagnosis of HIV
by sex, where we can observe an upward trend for both men and women.

The proportion of foreign nationals among the new diagnosis has shown an
increasing trend, and in the last years this proportion has been of about 35%
(data not shown).
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Figure F.2: Mean age at HIV diagnosis among men

Figure F.3: Mean age at HIV diagnosis among women

99



Table F.2: Multivariate descriptive analysis of the dependance of the late diag-
nosis on age, sex, period of diagnosis, origin or way of transmission

Coefficient Pr(> |z|) Confidence interval
Age by group

0 - 19 0.891 0.856 (0.256,3.099)
20 - 29 1
30 - 39 1.576 0.037 (1.027,2.417)
40 - 49 3.882 < 0.01 (2.350,6.415)
≥ 50 4.959 < 0.01 (2.818,8.728)
Sex
Men 1

Women 0.935 0.723 (0.645,1.355)
Period

1985-1989 0.613 0.088 (0.349,1.077)
1990-1993 1
1994-1997 1.818 0.013 (1.132,2.922)
1998-2001 1.280 0.369 (0.747,2.195)
2002-2005 1.202 0.556 (0.651,2.220)
2006-2009 0.963 0.909 (0.508,1.827)
2010-2013 0.523 0.068 (0.261,1.050)

Nationality
Spanish 1
Other 0.989 0.965 (0.602,1.625)

Way of transmission
Sexual 1
IDUs 0.490 < 0.001 (0.326,0.735)
Other 0.806 0.475 (0.446,1.458)

F.3 Diagnostic delay

In the second part we deal with one of today’s main obstacles for effective control
of HIV infection, both at individual and epidemic levels: the late diagnosis, here
defined as a simultaneous diagnosis of HIV and AIDS (within the same month
or over two consecutive months).

We will use a multivariate analysis carried out through a logistic regression,
in order to study the dependence of the response variable (late diagnosis) on
some factors such as age, sex, way of transmission, CD4 baseline or origin. We
must consider that it was not until 2002 that CD4 count baseline was systemat-
ically referred. Specifically, this information is available for 459 of 1861 patients
(25%). Age was stratified and the reference group was chosen to be people aged
20-29 (see Table F.2).

The following key conclusions can be drawn: Older age groups are signif-
icantly more likely to have a late diagnosis, while sex does not appear to be
relevant. With respect to the period of diagnosis, there is only the segment of
1994-1997 where the percentage of late diagnosis was significantly higher than
the reference segment of 1990-1993. We have found no effect of the origin in
late diagnosis. Sexual way appears as having a more important probability of
being diagnosed with CD4 count < 350 cells/µL.
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Table F.3: Comparison of the dependance of diagnostic delay according to the
definition on age, sex, period, origin and way of transmission

SIMULTANEOUS LATE ADVANCED
DIAGNOSIS DIAGNOSIS DISEASE

Age by group
0 - 19 0 - 19 0 - 19

20 - 29 20 - 29 20 - 29
30 - 39 30 - 39 aos 30 - 39
40 - 49 40 - 49 40 - 49
≥ 50 ≥ 50 ≥ 50

Sex
Men Men Men

Women Women Women
Period

2002-2005 2002-2005 2002-2005
2006-2009 2006-2009 2006-2009
2010-2013 2010-2013 2010-2013

Nationality
Spanish Spanish Spanish

Other Other Other
Way of transmission

Sexual Sexual Sexual
IDUs IDUs IDUs
Other Other Other

Now, we will study the relationship between CD4 count and late diagnosis.
We will use three different ways to refer to diagnostic delay based on CD4 count,
that will be evaluated and compared.

• Late diagnosis : CD4 count < 350 cells/mm3 at HIV diagnosis

• Advanced disease : CD4 count < 200 cells/mm3 at HIV diagnosis

In order to evaluate and compare these two markers, we will rely on data
from 2002 up to now, because as it has been said, available CD4 measurements
before 2002 were incomplete. We have once again made a multivariate analysis,
only for these last years (Table F.3).

As it can be verified, no major differences have been found with these three
definitions. Only the fact of being infected through IDUs way appears no more
as a “protective” factor.

F.4 Survival analysis : Cox model and Kaplan-
Meier curves

In this third part we focus on a survival study of two events of interest: ana-
lyzing two survival times: the AIDS-free time (time since HIV diagnosis to first
AIDS-defining event) and the time since HIV diagnosis to death. As in any
survival study, data we count on present some characteristics that prevent us
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from applying usual methods of data analysis. It must be taken into account
that we have a great quantity of censured observations: people with a diagnosis
of HIV infection that have not developed AIDS and/or are still alive.

F.4.1 Analysis of the AIDS-free time

To get an idea of how the AIDS-free time is distributed globally, we can find
the Kaplan-Meier survival curves for the event “diagnosis of AIDS” in relation
to the sex (Figure F.4) and also to the age group (Figure F.5).

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimacion del tiempo libre de SIDA segun el sexo

Meses desde diagnostico VIH

Ti
em

po
 li

br
e 

de
 S

ID
A

Mujeres
Hombres

           Months

                       AIDS-free time by sex

Women

Men

Figure F.4: Kaplan-Meier survival curve when the event is the diagnosis of
AIDS with respect to the sex
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Figure F.5: Kaplan-Meier survival curve when the event is the diagnosis of
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In Figure F.6 survival curves for the entire population distinguishing between
the existence or not of a diagnosis delay (defined by CD4 < 200 cells/µL):
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Figure F.6: Kaplan-Meier survival curve when the event is the diagnosis of
AIDS by distinguishing by CD4 count bigger or lower than 200 cells/µL

The log-rank test (also called Mantel-Haenszel test) tells us that in both
cases curves are significantly different (p-value < 0.001). Logically a CD4 count
below 200 cells/µL at diagnosis augurs a worse survival than a CD4 count below
350 cells/µL.

F.4.2 Analysis of survival time: from HIV diagnosis to
death

If we apply a Cox model for the survival time from HIV diagnosis to death, we
find similar results (see Table F.4).

In view of the results achieved, you might think that being a foreigner is a
protective factor. However, the large-scale immigration is a recent phenomenon
in Navarra that has coincided in time with the development of cART, and the
resulting improvement in life expectancy.

F.5 Survival study: Parametric models

Although the Cox model is the most widely used in this type of analysis, para-
metric models are considered as being more precise for estimating the probability
of survival. Furthermore, this type of models is essential if we want to obtain
the risk function in an explicit form, for instance if we want to compute the
absolute value of survival function for a specific value of a covariate.

After the appearance of cART, the use of these parametric models has con-
siderably expanded when studying the survival of people living with HIV. Data
from the “ART Cohort Collaboration”, collecting 13 trials from Europe and
North America, have been used for several studies which have shown the rele-
vance of using parametric models, and especially Weibull based models (Egger
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Table F.4: Survival analysis for the time from HIV diagnosis to death

Coefficient Pr(> |z|)
Sex
Men 1

Women 0.736 < 0.01
Age
0-19 0.751 0.190

20 - 29 1
30 - 39 1.637 < 0.01
40 - 49 3.191 < 0.01
≥ 50 4.288 < 0.01

Period
1985-1989 1.229 0.015
1990-1993 1
1994-1997 0.457 < 0.01
1998-2001 0.305 < 0.01
2002-2005 0.179 < 0.01
2006-2009 0.142 < 0.01
2010-2013 0.388 < 0.01

Nationality
Spanish 1
Other 0.317 < 0.01

et al., 2002; May et al., 2004). Also, an Australian cohort of HIV patients was
used to compare the relevance of four parametric survival models: exponential,
Weibull, log-normal and log-logistic. Results can be found in Nakhaee and Law
(2011).

Here, we wanted to apply six parametric models to our data, in order to
evaluate differences among them, as well as comparing survival functions from
these models with the one obtained with Kaplan-Meier (see Table F.5).

Table F.5: Comparing likelihood function for each one of the parametric models

PARAMETRIC MODEL Likelihood p-value
Exponential -5557.2 < 0.01

Gaussian -6010.1 < 0.01
Logistic -6044.2 < 0.01
Weibull -5521.5 < 0.01

Log-normal -5544.2 < 0.01
Log-logistic -5515.4 < 0.01

We will only develop the Weibull model, because it is the most extended
(Table F.6):

When comparing both survival curves (the one obtained with Kaplan-Meier
and the one obtained with the parameteric Weibull model) they are overlapping.
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Table F.6: Weibull model applied to our data

Coefficient Pr(> |z|)
Sex
Men 1

Women 0.764 < 0.001
Age by group

0-19 0.743 0.176
20-29 1
30-39 1.655 < 0.01
40-49 3.201 < 0.01
> 50 4.319 < 0.01

Nationality
Spanish 1
Other 0.318 < 0.01

Period
1985-1989 1.216 0.021
1990-1993 1
1994-1997 0.467 < 0.01
1998-2001 0.318 < 0.01
2002-2005 0.189 < 0.01
2006-2009 0.152 < 0.01
2010-2013 0.376 0.04
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F.6 Estimating the number of people living with
HIV infection without diagnosis in Navarra

To know the number of people infected with HIV, estimation models are nec-
essary. Alternatively, for knowing this data exactly, we should test everybody
regularly, which is logistically impossible and ethically problematical. UNAIDS
facilitates a software for estimating this figure for all countries. To create the
original files that will be used by this program, there is in every country a team
of epidemiologists, demographists and other specialists. Once data are collected,
each country sends their files, that will be revised by UNAIDS and validated
in collaboration with WHO and UNICEF. UNAIDS is responsible for ensuring
that results are presented in a homogeneous way and can be compared across
countries and through time.

Software used for these estimations is called Spectrum and EPP (Estimates
and Projections Package), and it was developed by the Institute Futures. In
Mars 2013, the group Reference Group on Estimates, Modeling and Projections
published the most recent guide for the utilization of Spectrum. Spectrum is
formed by different projects, and the project we are interested in is called AIM:
AIDS impact model. It can be used to make national and regional estimation
as the number of people living with HIV or the number of new infections. Also
since 2013, Spectrum has contained the package EPP (Estimates and Projection
Package) that can be used to design epidemic curves.

For countries considered of “concentrated epidemic”, like Spain, demographic
and epidemiological data must be provided (as the number of persons under
cART) to adequately use the program Spectrum. The information required
concerns, on the one hand, the sub-populations that are at increased risk of
acquiring HIV (sex workers, IDUs) and, on the other hand, the general popula-
tion. When estimating prevalence, data from reported HIV cases and supervi-
sion of pregnant women are necessary for the general population, and repeated
prevalence studies will be required for sub-populations at increased risk. As
for the estimation of the incidence in general population, prevalence curves and
information about the number of people under cART will be necessary, while
incidence estimations among risk populations will be based on prevalence and
death rates, as well as on hypotheses of HIV transmission and progression based
on literature revision and analysis of raw data of experts.

Every country will send estimations every two years. In 2012, 186 countries
sent these data, that will be used by Spectrum for computing estimations and
make them public. Data from 155 of these countries were shared in 2013 (this is
not the case for Spain). In 2013, some improvements in estimation method were
applied, as calculating incidence based on people under cART from 15 to 49,
instead of everybody over 15, revised of mortality by AIDS-non-related causes
among IDUs.

Based on this program, we have estimated general rates for Spanish people
and they have been prorated to the number of people living in Navarra. When
considering that Spanish people are 46.727.890 while Navarra people are 644.566,
we have divided the estimations by 644.566/46.727.890 = 0.0138.

We obtained that the number of estimated AIDS-related deaths in Navarra
in 2012 could be 10.99 (9.79,12.14), while data tells us that there were 11 persons
who died in this period. Similarly, the number of new HIV diagnosis in 2013

106



is estimated to be 45.00 (29.86,59.73) where 43 real diagnosis were found in
Navarra in this period.

Finally, the number of people living with HIV is estimated by Spectrum as
being equal to 2045 (1830,2243). If we consider that 1013 persons are diagnosed
in Navarra at this moment, we could conclude that approximately half of the
people living nowadays with HIV are not diagnosed. However, this data must
be treated very carefully, and estimations about size and HIV prevalence among
risk categories should be provided to increase the accuracy.
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Abstract: Fight against HIV and AIDS has shown major improvements in
life expectancy and quality of life of HIV-infected people since the introduction
of the cART. Today, viral load dramatically decreases a few weeks after starting
antiretroviral therapy, and it becomes undetectable after 6 months for most of
patients. This usually leads to an adequate reconstitution of CD4+T cells pool,
but this is not necessarily always true. This thesis is focalised on these “low
immunological responder” patients, who have not reached acceptable levels of
CD4+ T cells count despite undetectable viral load 6 months after having started
the cART therapy.

Today, Interleukin 7 (a cytokine naturally secreted in the bone marrow and
the thymus) is considered as one of the rare potential solution to boost the im-
mune system in this situation. During this thesis work, we have collaborated to
analyze data from the INSPIRE 2 & 3 trials, where repeated cycles (3 subcuta-
neous injections) of recombinant human Interleukin 7 have been administered
to a total of 107 of these “low responder patients”.

We have used dynamical models based on systems of ordinary differential
equations to study the effect of the exogenous Interleukin 7 on CD4+ T cells
through the three INSPIRE studies. A mathematical model together with a
mixed effects model applied on the biological parameters of the ODE system
and a “model for the observations” make up the structure of our work. A
maximum likelihood approach based on an adaptation of a Newton-like method
is combined with a maximum a posteriori estimation in a semi-Bayesian context.

Key words: Biostatistics, CD4+ T cells, clinical trials, differential equa-
tions, HIV, Interleukin 7, modeling.

Résumé: Des progrès majeurs dans l’espérance et la qualité de vie ont été
enregistrés dans la lutte contre le VIH et le SIDA avec l’introduction des traite-
ments antirétroviraux combinés. De nos jours, cette thérapie réduit nettement
la charge virale après quelques semaines de traitement chez la plupart des pa-
tients. Ceci conduit généralement à une reconstitution satisfaisante du nombre
de cellules CD4+, mais ce n’est pas toujours le cas. Cette thèse est focalisée
sur les patients ayant une réponse immunitaire insuffisante malgré une charge
virale indetectable, après au moins 6 mois de thérapie antirétrovirale combinée.

À ce moment, l’Interleukine 7 (une cytokine secrétée par la moelle épinière
et le thymus) est une thérapie prometteuse pour restaurer le système immuni-
taire dans une telle situation. Pendant ce travail de thèse, nous avons contribué
à l’analyse des études INSPIRE 2 & 3, où 107 patients présentant une faible
réponse immunitaire ont reçu des cycles (3 injections) répétés de r-hIL-7 (Inter-
leukine 7 recombinée humaine).

Nous avons utilisé des modèles dynamiques basés sur des systèmes d’équations
différentielles pour analyser l’effet de la r-hIL-7 exogène sur les cellules CD4+

lors des trois études INSPIRE. Un modèle mathématique, avec un modèle à
effets mixtes appliqué sur les paramètres biologiques et un “modèle pour les ob-
servations” forment la structure de notre travail. Une estimation par maximum
de vraisemblance basée sur une méthode de type Newton est combinée avec une
estimation du maximum a posteriori dans un contexte semi-Bayésien.

Mots clés: Biostatistique, cellules T CD4+, équations différentielles, essais
cliniques, Interleukine 7, modélisation, VIH.
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