On the Power and Universality of Biologically-inspired Models of Computation

Résumé : Cette thèse adresse les problèmes d'universalité et de complétude computationelle pour plusieurs modèles de calcul inspirés par la biologie. Il s'agit principalement des systèmes d'insertion/effacement, réseaux de processeurs évolutionnaires, ainsi que des systèmes de réécriture de multi-ensembles. Les résultats décrits se classent dans deux catégories majeures : l'étude de la puissance de calcul des opérations d'insertion et d'effacement avec ou sans mécanismes de contrôle, et la construction des systèmes de réécriture de multi-ensembles universels de petite taille. Les opérations d'insertion et d'effacement consistent à rajouter ou supprimer une sous-chaîne dans une chaîne de caractères dans un contexte donné. La motivation pour l'étude de ces opérations vient de la biologie, ainsi que de la linguistique et de la théorie des langages formels. Dans la première partie de ce manuscrit nous examinons des systèmes d'insertion/effacement correspondant à l'édition de l'ARN, un processus qui insère ou supprime des fragments de ces molécules. Une particularité importante de l'édition de l'ARN est que le endroit auquel se font les modifications est déterminé par des séquences de nucléotides se trouvant toujours du même côté du site de modification. En termes d'insertion et d'effacement, ce phénomène se modéliserait par des règles possédant le contexte uniquement d'un seul côté. Nous montrons qu'avec un contexte gauche de deux caractères il est possible d'engendrer tous les langages rationnels. D'autre part, nous prouvons que des contextes plus longs n'augmentent pas la puissance de calcul du modèle. Nous examinons aussi les systèmes d’insertion/effacement utilisant des mécanismes de contrôle d’application des règles et nous montrons l'augmentation de la puissance d'expression. Les opérations d'insertion et d'effacement apparaissent naturellement dans le domaine de la sécurité informatique. Comme exemple on peut donner le modèle des grammaires gauchistes (leftist grammar), qui ont été introduites pour l'étude des systèmes critiques. Dans cette thèse nous proposons un nouvel instrument graphique d'analyse du comportement dynamique de ces grammaires. La deuxième partie du manuscrit s'intéresse au problème d'universalité qui consiste à trouver un élément concret capable de simuler le travail de n'importe quel autre dispositif de calcul. Nous commençons par le modèle de réseaux de processeurs évolutionnaires, qui abstrait le traitement de l'information génétique. Nous construisons des réseaux universels ayant un petit nombre de règles. Nous nous concentrons ensuite sur les systèmes de réécriture des multi-ensembles, un modèle qui peut être vu comme une abstraction des réactions biochimiques. Pour des raisons historiques, nous formulons nos résultats en termes de réseaux de Petri. Nous construisons des réseaux de Petri universels et décrivons des techniques de réduction du nombre de places, de transitions et d'arcs inhibiteurs, ainsi que du degré maximal des transitions. Une bonne partie de ces techniques repose sur une généralisation des machines à registres introduite dans cette thèse et qui permet d'effectuer plusieurs tests et opérations en un seul changement d'état
Type de document :
Thèse
Computation and Language [cs.CL]. Université Paris-Est, 2015. English. 〈NNT : 2015PESC1012〉
Liste complète des métadonnées

Littérature citée [119 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-01272318
Contributeur : Abes Star <>
Soumis le : mercredi 10 février 2016 - 15:45:07
Dernière modification le : dimanche 3 décembre 2017 - 13:47:21
Document(s) archivé(s) le : samedi 12 novembre 2016 - 16:54:45

Fichier

TH2015PEST1012.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01272318, version 1

Collections

Citation

Sergiu Ivanov. On the Power and Universality of Biologically-inspired Models of Computation. Computation and Language [cs.CL]. Université Paris-Est, 2015. English. 〈NNT : 2015PESC1012〉. 〈tel-01272318〉

Partager

Métriques

Consultations de la notice

238

Téléchargements de fichiers

177